
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2019

Host-Based Traffic Engineering: Network
Endpoints with the Capabilities of SDN-Enabled
Switches
Jeffrey Estrada
Worcester Polytechnic Institute

Julian Philippe Lanson
Worcester Polytechnic Institute

Remy Kaldawy
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Estrada, J., Lanson, J. P., & Kaldawy, R. (2019). Host-Based Traffic Engineering: Network Endpoints with the Capabilities of SDN-Enabled
Switches. Retrieved from https://digitalcommons.wpi.edu/mqp-all/6726

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6726&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/6726?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6726&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Host-Based Traffic Engineering: Network Endpoints with the
Capabilities of SDN-Enabled Switches

A MAJOR QUALIFYING PROJECT

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science in

Computer Science

by

—————————————————–
Remy Kaldawy

—————————————————–
Julian P. Lanson

—————————————————–
Jeffrey Estrada

March 22, 2019

APPROVED:

—————————————————–

Professor Craig A. Shue, Project Advisor

Abstract

As effective internal security monitoring in enterprise networks become more necessary, IT
specialists’ need for fine-grained control over traffic flow becomes more pressing. The software-
defined networking (SDN) paradigm provides a viable solution to the problem of directing
network connections through arbitrary paths; however, for an enterprise to support traditional
SDN it must upgrade most (if not all) of its switches to modern OpenFlow-enabled models,
which is often prohibitively expensive. To date, a practical alternative to the switch-based
SDN architecture does not exist. In this paper, we present SHARP, a host-based SDN design
that achieves feature parity with traditional switch-based SDNs. SHARP makes use of VLAN
tagging and our own overlay-style networking protocol to allow endpoints to dictate how their
packets should be routed through the network by switches and other hosts. Our system can
provide the same degree of routing control as a switch-based SDN without requiring costly
upgrades and vendor lock-in. SHARP additionally surpasses the feature set of switch-based
SDNs by enabling coarse-grain routing control at Internet scale. To demonstrate the validity
and benefits of our system, we incorporate SHARP into PEACE, a next-generation SDN firewall
under development at WPI.

1

Contents

1 Introduction 5

2 Background 7
2.1 Software Defined Networking (SDN) . 7

2.1.1 The OpenFlow Protocol . 8
2.2 PEACE . 8

2.2.1 The PEACE Client . 9
2.2.2 Windows Filtering Platform . 10
2.2.3 The PEACE Client: Under the Hood . 12

2.3 Relevant Technologies . 16
2.3.1 Encapsulation and Tunneling . 16
2.3.2 Overlay Networks . 17
2.3.3 Virtual LANs . 17
2.3.4 Spanning Tree Protocol (STP) . 18

3 Implementation 20
3.1 Design Considerations . 20
3.2 Final Design . 21

3.2.1 The SHARP Header . 23
3.2.2 Network-Level Demonstration . 24
3.2.3 SHARP Design Benefits . 29

3.3 Registering Kernel Callouts with WFP . 30
3.4 Common Kernel Module Functions . 31

3.4.1 Allocating and Freeing Kernel Memory . 31
3.4.2 Retrieving a Packet’s Data . 31
3.4.3 Rebuilding and Re-injecting Packets . 34
3.4.4 Parsing a SHARP Packet . 34

3.5 The ALE Lookup Table . 35
3.5.1 ALE Lookup Table Design . 37

3.6 VLAN Tag Manipulation . 37
3.6.1 VLAN Tag Discovery . 37
3.6.2 The Ethernet Filtering Layer . 38
3.6.3 Outbound Tag Insertion . 38
3.6.4 Network Interface Card (NIC) Behavior . 41
3.6.5 Inbound Tag Removal . 42

3.7 SHARP Header Management . 42
3.7.1 Retrieval of Target Packets . 42
3.7.2 SHARP Header Generation . 44
3.7.3 Retrieval of SHARP Packet in Kernel Space 45

3.8 Intermediate SHARP Hops . 46
3.9 Handling SHARP Destinations . 46
3.10 Non-SHARP Destination Proxying . 48

3.10.1 Preparing a SHARP Packet for the Proxy Connection 50
3.10.2 Reusing the ALE Lookup Table for Source IP Storage 52
3.10.3 Receiving Packets from the Proxy Destination 53

2

4 Results 54
4.1 Experiment Overview . 54

4.1.1 GNS3 . 55
4.1.2 Physical Testbed Construction . 56
4.1.3 Experiment 1 . 57
4.1.4 Experiment 2 . 60

5 Discussion 62
5.1 SHARP over the Wider Network . 62
5.2 Securing the SHARP Protocol . 62
5.3 Analysis of Kernel Module Failures . 63
5.4 Reflections on the Windows Kernel . 64
5.5 Future Development Steps . 65

6 Related Work 66
6.1 Host-based SDN . 66
6.2 SDN-Based Security . 66
6.3 Flexible TCP Connections . 66
6.4 Overlay Networks . 67

7 Conclusion 68

Appendix A Router to Switch Configuration 72
A.1 Installing OpenWRT . 72

A.1.1 Installing tcpdump . 73
A.1.2 Configuring VLANs . 73

3

List of Figures

1 DeepContext system-level design . 9
2 PEACE client design overview . 13
3 VLAN spanning trees . 19
4 SHARP header specifications . 23
5 Sample SHARP network . 25
6 Destination flag assertion example part 1 . 25
7 Destination flag assertion example part 2 . 26
8 Reversing a SHARP header with flag assertion . 26
9 Destination flag de-assertion example part 1 . 27
10 Reversing a SHARP header with flag de-assertion . 28
11 Destination flag de-assertion example part 2 . 28
12 Destination flag de-assertion example part 3 . 29
13 ALE lookup table control flow . 36
14 Transport layer checksum pseudo-header . 41
15 Destination proxying logic diagram . 49
16 Testbed network configuration for experiments . 54
17 SHARP headers to be appended in experiments 1 and 2 55
18 Testbed network physical implementation . 57
19 Experiment 1: Source SHARP daemon . 57
20 Experiment 1: Source packet capture . 58
21 Experiment 1: Hub B packet capture . 58
22 Experiment 1: Intermediary kernel log . 59
23 Experiment 1: Hub A packet capture . 59
24 Experiment 1: Destination packet capture . 59
25 Experiment 2: Source kernel log . 60
26 Experiment 2: Hub A packet capture . 60
27 Experiment 2: Hub B packet capture . 61
28 Shell of OpenWRT router . 73
29 OpenWRT web interface “wireless” tab . 74
30 OpenWRT web interface “switch” tab . 74

4

1 Introduction

The heart of an enterprise IT technician’s responsibility is ensuring that the company’s network
is reliable and secure. Computer networking is so integral to the operation of modern businesses
that any unforeseen downtime on an enterprise’s networks will temporarily cripple productivity and
negatively impact the organization’s mission. One way network administrators can avoid such an
unfavorable scenario is ensuring that the core of their networks do not become so congested that
traffic cannot flow efficiently. Since network traffic volume is unpredictable on short timescales [1],
to prevent choke points from forming network administrators must be able to dynamically reroute
traffic through alternative paths to reach their destination. In addition to poor load-balancing, weak
security is also a detriment to the health of a network. If perimeter defenses such as firewalls and
intrusion detection or prevention systems (IDS/IPS) fail to block malware from being downloaded,
or if a piece of malware is introduced out-of-band (e.g. via a USB disk), often times there are no
additional controls to prevent it from spreading across the entire network. Whether the infection
results in paying ransoms, loss of data, or restoring machines from backup, every time a new machine
on the network is infected, the problem is compounded. To prevent an isolated incident from
engulfing all the hosts on the network, internal traffic needs to be flexibly routed through IDSes
positioned within the network, as opposed to at its edge.

Both of these scenarios make it clear that modern IT technicians need a high level of dynamic
control over the flow of traffic in their networks in order to perform their jobs properly. Today,
software-defined networking (SDN) is the standard mechanism for delivering this capability. In the
SDN paradigm, the routing decision process is separated from the data forwarding plane (physically
transferring bits from one ingress port to an egress port) and gets offloaded to a remote system called
the “controller.” To enable SDN networks, most of the large networking devices companies offer
switch models with special software that communicates with the remote controller program to obtain
routing decisions for each flow they encounter. However, in order to fully support SDN, enterprises
must upgrade many of their legacy networking hardware to the modern SDN-enabled models. Each
SDN-enabled switch can cost thousands of dollars, rendering such transitions prohibitively expensive.
Furthermore, the protocols used by each networking company for communication between switches
and the SDN controller differ slightly and are not cross-compatible, so enterprises are forced to lock
in to a particular vendor.

Part of the reason SDN-enabled switches are so costly is because they must have a more advanced
operating system and CPU than standard switches in order to communicate with the controller and
store a cache of routing decision rules. Unfortunately, even with these improvements, an SDN-
enabled switch is only powerful enough to query the controller for so many routing decisions per
second before its processing speed becomes a performance bottleneck [2]. Of course, one solution
is to configure coarse-grain routing rules instead of more expressive per-host, per-protocol rules,
thereby increasing the likelihood of a local rule cache hit and decreasing the need for communication
with the controller. However, this trade-off defeats SDN’s goal of providing IT technicians with
arbitrary control over the traffic in their networks.

Since an enterprise’s workstations already have powerful CPUs and large amounts of RAM
compared to switches, if an SDN could be implemented as a piece of software that would execute
on each endpoint, it could save the organization a lot of money. However, there are intuitive
reasons why SDN has traditionally been implemented in a switch-based fashion. In a standard
network configuration, switches are positioned between multiple computers and other switches, which
means they maintain many simultaneous Ethernet connections. Therefore when a switch receives
a packet, any decision made about which outbound port to send it through has a direct impact on
the path the packet takes to reach its destination. Conversely, hosts are typically connected to the
enterprise network via a single Ethernet cable, so there is only one direction they can send traffic. It
has been assumed that if an SDN infrastructure based on endpoint-controller communication were
implemented, it would not have nearly the same level of routing control as a traditional switch-based

5

SDN, and thus host-based SDNs have not been explored by the scientific community.
In this paper we demonstrate that a host-based SDN can achieve feature parity with the tradi-

tional switch-based design, without costly hardware upgrades. Our system, which we call SHARP, is
implemented as a piece of software that endpoints run to selectively encapsulate traffic in an overlay
networking protocol of our own design. When combined with a creative use of VLAN tagging, our
system is able to provide the same fine-grained routing control as switch-based SDNs. Our host-
based SDN design even surpasses switch-based SDN by allowing an enterprise to maintain some
level of routing control even after the traffic leaves its own network. To demonstrate the validity and
advantages of our system, we implement SHARP as an extension to the PEACE SDN firewall under
development at WPI. PEACE is an ideal foundation in that it already has elements of a host-based
SDN; the client PEACE program running on each machine intercepts new connection attempts and
consults the controller for decisions on whether to block or permit the connection. By incorporating
SHARP into PEACE, we allow the firewall controller to not only block traffic, but selectively proxy
permitted traffic through an IDS situated virtually anywhere on the network, enabling a more thor-
ough approach to network security than the weak perimeter-based strategy. Our paper makes the
following contributions:

• We present SHARP, a host-based SDN design that can achieve the same fine-grain routing
control as switch-based SDNs.

• We only use features of legacy networking devices in our design, allowing IT technicians to
control traffic flow without hardware upgrades.

• We demonstrate SHARP’s applications by incorporating it into the code base of the PEACE
Windows SDN firewall.

The remainder of the report is organized as follows. In Section 2, we discuss requisite background
knowledge including details about the SDN paradigm, PEACE, and the networking technologies we
used to construct our final system. In Section 3, we discuss our final design and implementation
of SHARP. Section 4 is an evaluation of our system and in Section 5 we discuss potential security
vulnerabilities and future improvements. We finish with an exploration of related work in Section 6
and conclude in Section 7.

6

2 Background

In this section, we provide an overview of the technologies that we reference and use in the im-
plementation of our project. We first discuss the SDN paradigm and the OpenFlow protocol. We
then introduce the architecture of PEACE, the SDN firewall whose functionality we extend in this
project. Here, we compare the features of and limitations of PEACE to switch-based SDN networks
in order to further motivate our work. Finally, we examine the networking components that we used
in our final project design, described in Section 3.

2.1 Software Defined Networking (SDN)

In a traditional network topology, switches and routers have two functions [3]. Firstly, when these
network devices receive a packet, they are responsible for determining where next to send the packet.
Switches determine which outbound port to send the packet through using ARP caches, whereas
routers check an incoming packet’s destination address against a table that dynamically maps IP
address prefixes to the address of the next router the packet should be forwarded to. At this step,
a router may also decide “drop” a packet if it is configured to act as a firewall. The router drops
the packet by refusing to forward it on to the next way point. Once the device has decided on the
correct port or interface to send the packet through, it is also responsible for physically moving the
packet to that port or interface. This involves recording the packet bits from the inbound port into
memory, and then writing the stored data “onto the wire” that is connected to the chosen outbound
port. Thus, traditional network devices manage both the data plane (movement of data) and the
control plane (formulation of routing decisions).

Software-defined networking is a paradigm of computer networking that decouples the control
plane from the data plane [4, 5]. A network device that supports SDN remains in charge of physically
moving the packet from one port to another; however, it provides an interface for routing decisions
to be offloaded to a separate program. When the data plane of an SDN-supporting network device
encounters a new network flow (identified by a TCP/IP 5-tuple), it queries the control-plane program
for a routing decision. The program that provides instructions to the data plane through the provided
interface is called a “controller.” While the controller could very well run on the network device
itself, the power of the SDN paradigm is that it allows the controller to run on a remote machine,
and this is often how SDN networks are configured. Furthermore, it is common for one controller to
manage multiple network devices simultaneously.

It is the controller’s job to dynamically instruct the devices under its management on how to
generate forwarding or routing tables. This type of infrastructure allows a centralized network policy
to be realized on the decentralized network topology. Each controller-level routing rule maps one
or more attributes of a connection (such as source IP address or transport protocol) to a routing
decision. The routing decision may be that packets matching the criteria must be dropped or it
may specify which outbound port to use for forwarding relevant packets. Each network device that
supports SDN has a local cache of the controller’s routing rules which it uses to decide how to handle
incoming packets. However, when it encounters a packet that does not match any of the rules in its
local cache, it must send the packet to the controller to receive a new routing decision. In this way, a
network administrator with just a single controller and a few well-placed SDN-enabled switches can
easily orchestrate the flow of traffic for security and load balancing throughout an entire network.

The developers of popular SDN controller programs also provide APIs for changing controller
behavior and requesting network statistics [3, 6]. Importantly, this provides a means for converting
functionality that has been traditionally reserved for network middleboxes into modular plug-in
programs that can be run on the controller machine as needed. Instead of having separate physical
firewalls, load balancers, IDS, and network address translation (NAT) devices all in one network,
each of these can be replaced by software modules running on a single controller machine. Thus, the
main benefits of an SDN are greatly-increased control over the movement of data within a network,

7

centralization and simplification of network management, and a framework for writing software to
influence traffic routing. Today, SDNs are primarly used in enterprises and data centers.

2.1.1 The OpenFlow Protocol

The OpenFlow protocol, first developed at Stanford University in 2008, is a networking protocol
designed to enable SDN infrastructure [7]. Although the concept of SDN networks existed prior to
OpenFlow, it was the first major protocol designed to standardize the method of communication
between a controller and the network devices it manages [8, 9]. In order to communicate using Open-
Flow, a network device needs a program called an “OpenFlow agent” to send and receive messages
with the controller, as well as modify the device’s forwarding or routing tables as instructed by the
controller. Today, switches from many leading network device companies such as Cisco, Juniper,
and Arista are advertised as “OpenFlow-enabled,” meaning that they ship with an OpenFlow agent
installed. However, as we mentioned in Section 1, each network device company implements its
own variant of the OpenFlow protocol, meaning that two switches from different vendors cannot
communicate with the same SDN controller.

2.2 PEACE

PEACE is a next-generation distributed firewall under development at Worcester Polytechnic Insti-
tute [10]. The design of PEACE draws from the 2017 paper DeepContext: An OpenFlow-Compatible,
Host-Based SDN for Enterprise Networks [11]. The authors of DeepContext make the observation
that network administrators have access to a limited amount of flow information for configuring
policies on the controller in an SDN network built around OpenFlow-enabled switches. A switch is
simply an intermediary for other devices’ packets; since the controller receives OpenFlow packets
from the switch, it can only make routing decisions based on metadata contained in those packets’
protocol headers (e.g. MAC addresses, IP addresses, transport protocol ports, etc.). However, when
creating routing policies, network administrators may find useful some additional contextual infor-
mation about a connection, such as the path to the program binary initiating the connection, the
program’s process ID, and the ID of the user running the program. Only the endpoint that initiated
the connection can provide this type of contextual information. DeepContext’s main contribution
is the Linux implementation of system for providing host-level flow context to a controller in a
host-based SDN infrastructure. Briefly, the authors accomplish this by creating a context tracker
program and modifying an OpenFlow agent to interact with this program before sending an Open-
Flow routing decision request to the controller. A diagram of the DeepContext system-level design
can be found in Figure 1.

At a high level, the PEACE SDN firewall is designed similarly to DeepContext. A PEACE client
runs on each machine in the network and intercepts new inbound or outbound connection attempts
made to or from its host machine. The metadata values for a new connection are compared against
a local cache of routing decision rules. When a new connection does not match any rules in the local
cache, the PEACE client creates an OpenFlow packet with additional context information and sends
it to its assigned PEACE controller for a routing decision. Network administrators can configure
the firewall rules in the PEACE controller through a web console.

PEACE is built on the premise that the host-level flow context introduced by DeepContext would
enable network administrators to create more detailed (and by extension stronger) firewall rules to
protect an enterprise network from exploitation. For instance, to protect against JavaScript-related
attacks, a network administrator may want to only allow employees to make HTTP requests if
they are using the most recent version of Google Chrome, and only if the --disable-javascript

option is enabled. Or, to prevent malware from being downloaded or spread surreptitiously, perhaps
connections should only be allowed if the user has clicked the mouse in the last second. With
knowledge of host-level contextual information, these types of fine-grained firewall rules can easily

8

Figure 1: When an application makes a network system call, the Context-Tracker kernel module collects
relevant flow context information and stores it in a user-level application. When the first packet for a
new flow is intercepted by the Open vSwitch (OVS) OpenFlow agent and the program determines that a
controller routing decision is required, the modified OVS agent communicates with the user-level Context-
Tracker application to obtain the appropriate context information. That information is appended to the
end of the OpenFlow header, and the request is sent to the controller.

be configured. When combined with an SDN architecture, it becomes simple for administrators
apply these powerful rules to an entire network from a centralized location.

In addition to increased precision in firewall rules, PEACE provides another benefit over tra-
ditional network security configurations. In Section 1 we explain that when a firewall is placed at
the boundary of a network, it is unable to filter intra-network traffic because the packets can reach
their destination without travelling through it. If an external virus is able to pass through these
security controls unnoticed or is introduced out-of-band to an internal host (e.g. via USB disk), it
can spread quickly through the network and the firewall is helpless to stop it. Since the PEACE
client runs on each host in the network and receives routing decision directly from the controller,
PEACE provides network administrators with absolute control over all tentative connections made
or received by PEACE-enabled machines, regardless of whether the other endpoint is internal or
external.

2.2.1 The PEACE Client

DeepContext was written for the Linux operating system. Since PEACE is designed for commercial
use, it is a re-implementation and extension of the DeepContext design in Windows and Mac OS X.
For our project, we focus entirely on the Windows implementation of the PEACE client.

A PEACE/DeepContext-style client program has the following main components:

1. Packet Manipulation Mechanism

The client program must be able to actively monitor packets as they are created and processed
on the operating system’s networking stack. This includes processing all packets in order
to recognize when a packet is the first in a new connection and having the ability to block
arbitrary packets from being sent or received.

9

2. OpenFlow Agent

When the client’s local cache of rules fails to provide a routing decision for a new connection,
the client program must be able to create an OpenFlow packet with the relevant information,
send the packet to a controller, and receive and process the controller response.

3. Connection Table

The client program should maintain a data structure that holds all ongoing connections, and
the routing decision associated with each one. This allows the packet manipulation mechanism
to quickly make routing decisions for all subsequent packets belonging to a new connection.

4. Context-Tracking Subprocess

Part of what makes the PEACE/DeepContext design special is that it provides the controller
with host-level flow context for use in routing decisions. In order to provide contextual infor-
mation, it must be collected from operating system’s internal structures and may need to be
stored temporarily before it is appended to the OpenFlow packet.

5. Inter-Process Communication

If the previous components are discrete processes, they need a method of communicating
context data and routing decisions to each other.

For multiple reasons, the Linux implementation of this design is much simpler than its Windows
counterpart. Firstly, DeepContext uses the Open VSwitch (OVS) software, which operates as a full-
fledged OpenFlow agent out of the box. On its own, the OVS software performs a majority of the
design’s networking functionality, including intercepting packets and determining when they belong
to a new connection, communicating with the OpenFlow controller to receive routing decisions, and
blocking or rerouting packets. When development first began on PEACE, an OVS implementation
for Windows did not exist. Although one exists today, it is heavily tied to the Windows Hyper-V
virtual machine (VM) manager [12]. Incorporating the Windows OVS into PEACE would require
end-users to install Hyper-V and run all their applications in a VM, making the system impractical.
Thus, the PEACE developers have opted not to use the OVS software, and have instead written
their own OpenFlow agent.

The authors of DeepContext also had access to the Linux NFQUEUE library, which allowed
their user-space context-tracking application to intercept packets as they were being processed by
the kernel. Without an equivalent user-space library in Windows, PEACE’s packet manipulation
component is implemented at the kernel level as a device driver using the Windows Filtering Platform
(WFP), which we will discuss in detail in Section 2.2.2. At the kernel-level, developers lose many of
the memory management abstractions provided by the operating system and code runs at a very high
priority level, meaning that page faults and other mechanisms that cause the process to block will
crash the operating system. Thus, the process of developing and debugging PEACE had significant
challenges that were not present in DeepContext.

2.2.2 Windows Filtering Platform

Before explaining the implementation of the PEACE client in detail, we must explain how the
Windows Filtering Platform operates. The WFP is a set of API functions and system services that
enable driver developers to intercept and read, modify or block packets at multiple layers of the
Windows networking stack [13]. The WFP main page in the online Windows Dev Center explicitly
specifies that the WFP can be used to implement various types of security middle-ware such as
firewalls, IDSes, and anti-virus programs.

In order to manipulate packets as they traverse the kernel’s networking stack, a developer creates
a callout object and registers it with the WFP filter engine. The filter engine is the core of the

10

WFP and orchestrates the delivery of packets to the functions associated with each callout for
processing. The filter engine maintains a set of packet filtering layers, that each have an identifier
associated with them to indicate the stage of the networking stack at which they exist. Many
of the filtering layers correspond with particular sections of the TCP/IP 4-layer reference model,
such as FWPM LAYER INBOUND IPPACKET V4 or FWPM LAYER INBOUND TRANSPORT V4, which are used
to intercept inbound IPv4 packets at the network and transport layers respectively. During callout
registration, the developer must specify one of the filtering layer identifiers as a parameter. When a
packet is being processed by the networking stack and reaches one of the filtering layers, the filter
engine triggers all of the callouts registered with that layer in order.

A callout object is comprised of an identifying GUID number, a set of flags, and pointers to three
functions: the classifyFn, notifyFn, and flowDeleteFn. Both PEACE and our project focus pri-
marily on the use of classifyFn functions. A classifyFn function is used to decide whether to per-
mit a packet to continue to its destination (internally or externally) or block it. It may additionally
decide to modify the contents of the packet; however, we will discuss the packet modification process
at greater length in Section 2.2.3.1. In order to qualify as a classifyFn, the WFP filter engine ex-
pects the function to have a specific set of arguments, which will be filled out by the engine at each
invocation. The FWPS INCOMING VALUES0* FixedValues and FWPS INCOMING METADATA VALUES0*

MetaValues parameters are arrays that hold header fields and packet metadata. Depending on
the TCP/IP stack layer the callout is registered at (stream, transport, network, Ethernet), cer-
tain pieces of information may or may not be available. For instance, a callout registered at the
FWPM LAYER INBOUND TRANSPORT V4 layer cannot expect to find the destination IP address stored in
these arrays. In this way, the WFP attempts to enforce the separation of the layers in the TCP/IP
model. In a classifyFn, the VOID* LayerData parameter is a pointer to the NetBufferList

struct that holds the packet itself. Finally, the FWPS CLASSIFY OUT0 * ClassifyOut parameter is
a struct pointer used by the function to declare its decision regarding whether the packet should
be permitted or blocked. The struct holds a actionType field where the decision is specified, and
a rights field to indicate whether the packet has the right to alter the packet’s actionType. The
FWPS CLASSIFY OUT0 struct also has a flags field, in which the FWPS CLASSIFY OUT FLAG ABSORB

flag can be set. If the flag is not set and the packet is blocked, the packet will be subject to event
logging and auditing. Setting the flag will allow the packet to be dropped silently, which is useful
when performing packet modification.

To register a callout object, a developer first calls FwpmEngineOpen(), which returns a handle
for further interaction with the WFP filter engine. After starting the registration transaction using
FwpmTransactionBegin() and adding a new sublayer using FwpmSublayerAdd0(), the developer
performs the registration by calling FwpsCalloutRegister() and FwpmCalloutAdd(). To specify
the filtering layer at which the callout be triggered, the developer must call FwpmFilterAdd() with
the corresponding identifier. Finally, the developer calls FwpmTransactionCommit() to commit the
updates to the filter engine.

We mentioned above that classifyFn functions receive packets as NET BUFFER LIST structs.
Each NET BUFFER LIST holds a linked list of NET BUFFER structs. Each NET BUFFER struct in turn
holds a linked list of Memory Descriptor Lists (MDLs) called an MDL Chain. An MDL is simply
a data buffer use to store a portion of the packet itself. We believe the purpose of having a chain
of MDLs is to allow for large packets to be stored in non-contiguous blocks of memory; however,
we are unsure as to the motivation behind designing the NET BUFFER LIST struct as a list of lists,
instead of a single list of MDLs. Regardless, understanding the composition of a NET BUFFER LIST is
important for performing inline packet modification. The proper protocol is to first copy the contents
of the original NET BUFFER LIST’s MDL chains sequentially into a separate buffer. The data stored
in the buffer can then be directly modified as needed, and converted into a new NET BUFFER LIST

struct. The function should set the ClassifyOut->actionType field to FWP ACTION BLOCK, and
the ClassifyOut->flags field to FWPS CLASSIFY OUT FLAG ABSORB. Finally, the function should
inject the newly created NET BUFFER LIST struct into the networking stack using an WFP injection

11

function. This procedure essentially replaces the original packet with a modified deep copy of itself,
and prevents the filter engine from logging that the original packet was dropped.

A WFP injection function is used by a callout’s classifyFn to re-inject a modified or pended
(deferred decision) packet into the Windows network stack [14]. The names of injection functions
indicate which TCP/IP stack layer the packet will be injected into, and whether it will be injected
on the send or receive path of the stack (e.g. FwpsInjectTransportReceiveAsync0()). Since
injecting a packet using these functions will cause the callout to be triggered again, classifyFn
functions should always call the FwpsQueryPacketInjectionState0() function to check whether
the packet has previously been injected to avoid infinite loops. Depending on which TCP/IP layer
injection function is being called, the list of parameters varies; however, some are consistently
required. A developer must first provide a HANDLE injectionHandle, which has been created by
calling FwpsInjectionHandleCreate0(). The injection handle used here will also be used when
calling FwpsQueryPacketInjectionState0() to determine whether a packet has previously been
injected. Injection functions also require a NET BUFFER LIST* netBufferList parameter, which
holds the packet to be reinjected. Due to the asynchronous nature of packet injection, developers
must pass an injection function a FWPS INJECT COMPLETE0 completionFn, which is a pointer to
a function that will be called once the packet injection is complete. Here a developer will do
any necessary dereferencing and buffer freeing associated with the packet injection. Finally, an
injection function takes a HANDLE completionContext parameter, which holds a pointer to any
additional information that should be passed to the completionFn function. The WFP filter engine
will fill the completionFn function’s VOID *context parameter with the pointer passed in the
completionContext injection function argument.

2.2.3 The PEACE Client: Under the Hood

Now that we have briefly introduced the relevant parts of the WFP service, we will begin to describe
the Windows implementation of PEACE in detail. Overall, the Windows PEACE client is split into
three main programs:

1. The WinSight Driver

This kernel driver defines callout functions for blocking or permitting connections based on
the first packet in a flow. The driver maintains a table of running processes and their relevant
data (PID, UID, etc.), which is combined with 5-tuple flow information extracted from the
packet’s headers to query the local cache of PEACE rules. The driver also maintains a list of
all ongoing connections and connection attempts, along with the routing decision associated
with them, so that the decision for re-injected packets can easily be accessed. When a routing
decision cannot be made using the local rule set, the WinSight driver elevates the decision to
the WinSightService program.

2. WinSightService

This user-space administrator service operates as an intermediary for the various kernel-level
and external components of PEACE. Even though the table of process data exists in the
kernel driver, in order for the callouts to access its data and make a routing decision, they
must send a request for process data to WinSightService, which fetches it for them. Similarly,
WinSightService can be called on to fetch context data from the GUI context collector process.
In the case that the WinSight driver cannot come to a routing decision using its local rule
cache, it must retrieve a decision from the PEACE controller; however, its priority level is too
high for direct socket communication. Instead, WinSightService handles encrypting, relaying,
and decrypting messages between the driver and the PEACE controller.

3. The GUI Context Collector

12

Figure 2: When a program issues a networking system call (1), the WFP filtering engine will deter-
mine whether to trigger the ALE-level send path callouts defined in the WinSight driver. If the driver’s
classifyFn function is triggered (2), it attempts to make a routing decision for the flow associated with
that packet based on the local rule cache. If no decision can be made, the packet is pended, and a basic
OpenFlow packet is created with the packet data. The driver then sends the packet up to the user-space
WinSightService program (3), which interacts with a side process (4) to collect the contextual information
to be appended to the OpenFlow packet (5). Next, WinSightService sends the OpenFlow packet over an
encrypted channel to the external PEACE SDN controller (6). Using its set of firewall rules, the controller
decides whether the packet should be blocked or not. It constructs a response OpenFlow packet and sends
it to WinSightService (7), which relays the response to the driver (8). If the packet should be allowed, the
driver re-injects the packet into the kernel networking stack (9), and the packet is sent on to the network
(10).

This user-space program fulfills requests from WinSightService for GUI context data
(mouse/keyboard events) related to a particular flow. Although a key part of what makes
PEACE unique, the GUI context collector process and its implementation are not relevant to
this project and thus is not discussed in detail.

The general flow of packet processing in the PEACE client is presented in Figure 2. Simply, when
one of the WinSight driver callouts encounters the first packet for a new connection, the classifyFn
function pends the packet and makes a request to WinSightService for process and GUI data. With
the header information from the packet and the supplied context data, the driver attempts to decide
whether to permit the connection or block it using the local cache of rules. If a decision cannot be
made, the driver makes another request to WinSightService to send an encrypted OpenFlow packet
to the PEACE controller to receive an authoritative routing decision. WinSightService forwards the
decrypted response to the driver, which will update the appropriate entry in the connection list with
the routing decision, and will re-inject the pended packet if the response was to allow the connection.
Now, we will describe how these programs implement the five components of the PEACE design as
described in Section 2.2.1.

13

2.2.3.1 Packet Manipulation Mechanism

As we discussed earlier, the Windows implementation of PEACE uses the Windows Filtering Plat-
form (WFP) kernel-level service to intercept packets and permit or block them. The PEACE driver
makes extensive use of a special WFP layer type called Application-Layer Enforcement (ALE), which
is specifically designed for flow-level processing [15]. Callouts registered with ALE filter identifiers
will be triggered once per new connection, which makes them ideal for implementing a firewall. For
TCP traffic, outbound ALE-level callouts will be triggered on a packet generated as a result of a
program calling the connect() function, while inbound ones will be similarly triggered on a call to
accept(). For UDP traffic, the ALE level considers a packet as belonging to a “new” connection
when it is sent to or received from a new, unique IP address and port tuple.

The PEACE driver has four ALE-level callouts for permitting connection establishment. The
ConnectV4 and ConnectV6 callouts authorize outgoing connection attempts for IPv4 and IPv6
traffic respectively, while ReceiveV4 and ReceiveV6 perform the same function for incoming con-
nection attempts from remote hosts. Although each callout has a separate classifyFn function,
they all operate in the same fashion. The classifyFn functions first check for trivial cases; for
instance, re-injected packets and packets on local loop-back should be automatically permitted.
After trivial checks have been exhausted, the local and remote IP address / port pairs are ex-
tracted from the FixedValues classifyFn parameter and stored in REGULARIZED ADDRESS PORT

structs. Additionally, the function locally stores the transportEndpointHandle field from the
MetaValues classifyFn parameter. This field is a handle to the local socket through which the
packet that triggered the callout will be sent. The two REGULARIZED ADDRESS PORT structs and the
transportEndpointHandle are then passed to the CheckRemoteEntry() function, which returns
the flow-level routing decision. If the packet belongs to a flow that does not yet have a routing
decision (due to the comparatively long process of communicating with the PEACE controller over
the network), then the returned decision is to pend the packet. The OpenFlow Agent component of
the PEACE driver will perform re-injection of pended packets should the controller decide to permit
the connection.

2.2.3.2 OpenFlow Agent

In Section 2.2.1, we defined the OpenFlow agent component specifically as the mechanism for com-
municating with the controller via the OpenFlow protocol. In the Windows PEACE client imple-
mentation, packet manipulation is performed by the WinSight driver via the WFP; however, because
the driver is situated in kernel space, it cannot directly communicate with the controller using a
socket as a user-space application might. Thus, WinSightService was created in part to handle pass-
ing OpenFlow messages between the driver and the external controller. When the WinSight driver
cannot make a routing decision for a new connection attempt intercepted by one of its WFP callouts,
it saves the first packet and encapsulates a copy in a OFP PACKET OUT OpenFlow packet struct. The
resulting struct is passed to WinSightService (for more information on how WinSightService and the
WinSight driver communicate, see Section 2.2.3.5). After receiving the struct, WinSightService calls
encryptOpenFlowBuffer() to perform AES on the struct bytes using functions from the bcrypt.h

header file. The resulting packet of encrypted data is sent to the PEACE controller via a socket.
When a response is received from the controller, WinSightService calls decryptOpenFlowBuffer()

to decrypt the packet, and the response is passed to the WinSight driver. Based on the Action field
of the passed OFP PACKET IN (which contains the controller’s decision), the WinSight driver may
re-inject the previously saved packet.

2.2.3.3 Connection Table

Although the ALE layer in WFP is designed for per-flow processing, an ALE-level callout is often
triggered multiple times for a single connection. This is partially due to the manner in which PEACE

14

processes packets, but TCP endpoints will also trigger the callouts repeatedly by retransmitting SYN
packets to unresponsive remote endpoints or by resetting the connection. It would be very inefficient
if the PEACE driver had to query the local rule cache or PEACE controller every time an ALE-level
callout was triggered for the same flow, so the driver maintains a table of active connections and
their associated routing decisions.

At a high level, the connection table is implemented as a hashmap of ENDPOINT ENTRY

structs. An ENDPOINT ENTRY represents a local socket, and stores a copy of the socket’s associ-
ated REGULARIZED ADDRESS PORT struct and transportEndpointHandle. Similarly, a REMOTE ENTRY

struct represents a remote socket that is connected to a local socket, and contains the
REGULARIZED ADDRESS PORT struct for the remote IP address / port pair. A full connection is
defined by a ENDPOINT ENTRY and REMOTE ENTRY pair, but since a local socket may have multiple
remote sockets connected to it (e.g. a webserver), each ENDPOINT ENTRY maintains a list of one or
more REMOTE ENTRY structs. Because each REMOTE ENTRY struct represents a unique connection, it
maintains the LONG Action field that holds the routing decision associated with the connection.

When an ALE-level connection authorization callout is triggered on a packet, it’s classifyFn

function obtains a decision for the packet (pend/permit/block) by passing the local and re-
mote REGULARIZED ADDRESS PORT structs and transportEndpointHandle associated with the con-
nection to the CheckRemoteEntry() function. If an ENDPOINT ENTRY with the corresponding
transportEndpointHandle does not exist yet (as in when the first packet sent or received over a local
socket is intercepted), the driver creates one with a call to CreateEndpointEntry(). This function
also adds a REMOTE ENTRY for the current connection to the new ENDPOINT ENTRY. Next, driver lo-
cates the REMOTE ENTRY for the connection by passing the remote REGULARIZED ADDRESS PORT struct
to FindRemoteEntry(). The driver returns the values stored in the Action field of the connection’s
REMOTE ENTRY struct back to the original classifyFn function. If the Action field indicates that the
routing decision needs to be elevated to the controller, the packet is pended and a OFP PACKET IN

packet is sent up to WinSightService (see Section 2.2.3.2).
The connection table finally needs a method for reaping closed connections so that it does

not grow too large. In addition to the four connection authorization callouts described in Section
2.2.3.1, the PEACE driver defines two callouts at the FWPM LAYER ALE ENDPOINT CLOSURE V4 and
FWPM LAYER ALE ENDPOINT CLOSURE V6 layers. These callouts trigger upon TCP or UDP socket
closure for IPv4 and IPv6 traffic respectively. They pass a transportEndpointHandle to the
DeleteEndpointEntry() function, which removes the local ENDPOINT ENTRY (and any associated
REMOTE ENTRYs) from the connection table.

2.2.3.4 Context-Tracking Subprocess

The mechanism for the context-tracking subprocess is not relevant to this work, and thus we omit
it.

2.2.3.5 Inter-Process Communication

Communication between user-space programs is performed via standard sockets from the winsock2

library. The communication mechanism between WinSightService and the WinSight driver is more
interesting because traditionally, kernel drivers exist to offer services to user-space applications. In
the Windows PEACE implementation, the roles are reversed; the driver program needs to make
requests to an application in user-space, namely WinSightService. Unfortunately, a straightforward
method for a driver to initiate communication with a user-space application does not exist. For
one, this is because kernel programs typically run at a very high priority level and their ability to
make blocking function calls is often highly restricted. Furthermore, the OS a cannot rely on a
particular third-party user-space application existing on a given machine, since they can be installed
and deleted at whim.

15

The solution devised by the PEACE developers was to re-appropriate the Windows Driver Frame-
work (WDF), the existing service Windows offers for drivers to receive and fulfill requests from user-
space [16]. A typical use of the WDF request API is as follows. By calling WdfIoQueueCreate(), a
driver instantiates a WDFQUEUE for storing pending I/O requests that the system sends to the driver,
in this case on behalf of a user-space application. Using WdfIoQueueRetrieveNextRequest(), the
driver can get the next request from the queue, which is stored in a WDFREQUEST struct. To get
the contents of the returned request, a driver calls WdfRequestRetrieveOutputBuffer(). Once the
driver has finished processing the request and performing any additional actions, it loads a response
into the WDFREQUEST struct using WdfRequestSetInformation(). Finally, the request response is
returned to the OS using one of a few variants of the WdfRequestComplete() function.

In the typical scenario, a user-space application that wants to make requests to a driver first calls
CreateFile(), specifying the name of the device associated with the driver, and receives a HANDLE

DeviceHandle for future communication with the driver. Next, CreateIoCompletionPort() takes
the DeviceHandle and returns a HANDLE CompletionPort struct for notifying the application of
asynchronous completion of I/O requests. In order to create a request, the application calls
DeviceIoControl(), using the DeviceHandle and a pointer to a buffer containing the data the
driver will need to complete the request. Finally, by using the CompletionPort struct, the applica-
tion can call GetQueuedCompletionStatus() to retrieve the I/O request response that was sent by
the driver using WdfRequestComplete().

As we mentioned earlier, the PEACE Windows implementation requires an inverted version of
this system. To put it simply, the PEACE developers accomplished this by causing WinSightService
to send a group of empty requests to the driver immediately after the connection to the driver’s
device is established. The driver holds onto these empty WDFREQUEST structs until it wishes to
make a request to WinSightService. In this way, calls made to WdfRequestComplete() by the
WinSight driver indicate submitting requests instead of responding to them, and calls made to
DeviceIoControl() in WinSightService indicate responses to those requests.

Now that this mechanism enables inverted communication between the WinSight driver and
WinSightService, the two components need a way to communicate the type of request or response
that each sent WDFREQUEST represents. In the Windows PEACE system, the input and output buffers
of any call to WdfRequestComplete() or DeviceIoControl() are filled with a WINSIGHT QUERY DATA

struct (defined by the PEACE developers). The fields of this struct include another struct called
the WINSIGHT REQUEST RequestFlags, which defines a set of flags such as IsOpenFlowPacket or
CollectGUIData; setting the values of these flags is the main method by which the WinSight driver
and WinSightService communicate. Since multiple request and response types require additional
information, the WINSIGHT QUERY DATA struct also defines a few data buffer fields. For instance, a
response to CollectGUIData includes the collected GUI data in the WCHAR ProcessGUIData buffer,
while a IsOpenFlowPacket request contains the OpenFlow packet to be sent to the controller in
another buffer.

2.3 Relevant Technologies

Here we will give an overview of the various technologies that we incorporated into our final project
design, as described in Section 3.

2.3.1 Encapsulation and Tunneling

In computer networking, encapsulation is the operation of wrapping data from one protocol inside
of another in order to allow it to continue travelling across a network [17]. For instance, when a
IPv6 packet needs to travel from one IPv6 router to another over a network that only support IPv4,
a common practice is for the edge IPv6 routers to encapsulate the IPv6 datagram by prepending an
IPv4 protocol header that specifies the next IPv6 router as the destination. When the packet arrives

16

at the next IPv6 router, the IPv4 header is stripped off and IPv6 routing resumes. Although in
this case the encapsulation is necessary, often times encapsulation is simply used to ensure a packet
reaches a hop-point (such as a proxy server) before its destination. Simple encapsulation protocols
include IP-in-IP and the Generic Routing Encapsulation (GRE) protocol.

Tunneling is the process of using encapsulation to secure network communications. In a tunneling
scenario, two hosts on separate secure networks wish to communicate with integrity and confiden-
tiality over an unsecured network. Tunneling protocols such as IPSec encrypt and digitally sign
IP packets and prepend additional headers before encapsulating everything in an outer IP packet
[18]. Virtual Private Network (VPN) client programs create tunnels to remote servers using IPSec
or similar protocols in order to hide the origin of users’ traffic.

2.3.2 Overlay Networks

Overlay networks describe any computer network that is built on top of a pre-existing network by
defining a set of virtual nodes and links that live on top of physical ones. The Internet itself was
originally an overlay network because the virtual links between computers rested on top of existing
telephone lines. Overlay networks often define a protocol for communication between the virtual
nodes, which is encapsulated in the standard protocol for the physical network. In the example
of the early Internet, although the engineers defined a protocol for communication between the
computers, the packets had to be converted by a modem into electrical signals that could travel over
the telephone lines.

An overlay network must somehow store the mapping between its virtual nodes and the underly-
ing physical nodes, as well as the physical links used to make each virtual link. It must also maintain
some policy for the addition of new nodes to the network. Overlay networks will also typically em-
ploy a policy to dynamically route packets between its nodes, based on some application-specific
heuristic (i.e. security or quality of service (QoS)). For example, Andersen et al. [19] create an
overlay network for rerouting packets in the event of router or link faults that affect any given node.

2.3.3 Virtual LANs

A virtual local area network (VLAN) is a virtual partition of a computer network at the link
layer of the TCP/IP networking stack. Configuring a VLAN is relatively simple, and enables traffic
engineering and network-level access control for connected resources. Often times, it is advantageous
for network administrators to be able to specify a subset of machines on a LAN, such that the
machines in that subset can only communicate with each other; for instance, an enterprise may
want to allow hosts connected to a guest Wi-Fi access point to use the Internet, but now allow
them to send packets to company servers or workstations. Without using VLANs, the only way
to achieve such a setup would be to physically disconnect the LAN into smaller networks. With
VLANs, administrators can easily perform these types of logical separations without modifying the
underlying physical topology. Overlay networks and VLANs are related in that a virtual network
is “overlaid” on top of a underlying physical topology of switches and links. One could consider a
VLAN to be a special kind of overlay network that applies to switches in a LAN.

Each VLAN on a network is identified by a unique number called a VLAN ID, which can range
from 1 to 4096. To assign a host to a particular VLAN, a network administrator logs into the switch
connected to that host, and changes the VLAN ID of the corresponding port (the default VLAN
ID for each port is 1, as VLAN 1 is the default VLAN). When a switch receives a packet from one
of its ingress ports, it determines the port’s VLAN ID and will only forward the packet through
egress ports that share the same VLAN ID. Thus, if one host is connected to a switch by a port with
a different VLAN ID than another host, the two machines can never communicate. Additionally,
since VLANs are configured entirely on switches, endpoints in the network are never aware of their
existence.

17

Using traditional port-based VLAN configuration, each port can only be assigned one VLAN
ID, and thus each physical link can only carry traffic belonging to hosts on one VLAN. If network
administrators wanted to allow two core switches to pass each other traffic for five VLANs, they
would need to connect the switches with five separate Ethernet cables. Today, many switch imple-
mentations support the IEEE 802.1 specification, which allow for a single port to support traffic for
multiple VLANs through a technique known as “trunking.” To perform trunking between switches,
each switch designates one of its ports as a “trunk port,” which can be configured by the network
administrator to accept traffic for a set of VLAN IDs. Because trunk ports can support multiple
VLANs, if a switch receives a packet from a trunk port it cannot immediately identify the associated
VLAN ID. Thus, when a switch receives a packet from an ingress port and decides to transmit it
over a trunk port, the switch inserts a “VLAN tag” into the packet’s Ethernet header containing
the ID of the associated VLAN. Once the packet is received by the other switch’s trunk port, the
VLAN tag is removed, and the switch reverts back to port-based VLAN [20].

2.3.4 Spanning Tree Protocol (STP)

In any network of non-trivial size, IT technicians interconnect core switches cyclically to avoid creat-
ing a single point of failure. Unfortunately, this type of configuration invariably creates opportunities
for packets to loop between switches indefinitely. Switches communicate by broadcasting requests
they receive on one port to all other active ports, but do not maintain the state of those requests in
memory. If a network has a loop, requests will be continually broadcast and re-broadcast between
switches, flooding the network with traffic and crippling it. To solve this issue, the Spanning Tree
Protocol (STP) was created. When switches are configured to use STP, they vote to ignore cer-
tain network links such that the network becomes a spanning tree, where there is only one possible
network path between each pair of hosts on the network [21]. To configure STP, network adminis-
trators may select a switch to act as the root node for the spanning tree, or the switches will elect
a root node among themselves. The shape of the resulting spanning tree can change dramatically
depending on the root node chosen during STP. Importantly, two VLAN IDs can each have their
own root nodes, and thus each VLAN can have a unique spanning tree. An example of this is shown
below in Figure 3:

18

Figure 3: A sample network has two VLANs, A and B. Each VLAN has a unique spanning tree, consisting
of the colored network links. Any link that is not colored has been elected by the switches to be disabled.
Note that the path traffic must travel for Machine 1 and 2 to communicate is much longer if they are a
part of VLAN A than if they are a part of VLAN B.

19

3 Implementation

In this section we describe the design process and implementation of SHARP, our host-based SDN.
We begin with a discussion of the various constraints we had to account for, and some of our early
concepts for the system’s design that were rejected in favor of our final design. We then explain the
final design of SHARP and its operation at a high level. Finally, we spend a majority of the section
detailing our experience implementing SHARP as an addition to the PEACE Windows SDN firewall
client.

3.1 Design Considerations

In Section 1, we explained that the goal of this project is to allow an endpoint to dictate the
route its traffic travels through the network, specifically with the same level of control as a switch-
based SDN. Once an endpoint’s network interface card (NIC) writes the bits of a packet onto the
Ethernet cable, the endpoint loses direct control over the routing of the packet. Therefore, we
knew that our final design would involve the host appending additional information to each packet
that would communicate its intentions to the other devices involved in transporting the packet to
its destination. We also wanted to ensure that SHARP could function without using any features
that are not available on legacy switches, since the value of our system is predicated on avoiding
networking hardware upgrades. Early on, we pinpointed VLAN tagging as feature of legacy switches
that would a valuable design element. As we discussed in Section 2.3.3, in organizations that use
VLANs for partitioning the network, a packet’s VLAN ID can heavily influence which outbound
port a switch decides to forward a packet through. By manipulating the VLAN ID associated with
a given packet, we could easily change the route that packet takes through local network.

We also wanted SHARP to allow clients to specify when a packet from their computer should
be directed to another machine as an intermediate checkpoint on its way to the destination. In the
interest of arbitrary routing control, we designed our system such that a network administrator could
specify a virtually unlimited number of intermediate hops. However, there is a good reason why a
network administrator would want at least one other machine to read certain network traffic before
it reaches its destination. The traditional perimeter-based approach to network security, in which
an IDS or IPS is positioned at the network edge, is flawed in that it cannot directly monitor internal
connections; malware can be introduced to a network from within (e.g. by a disgruntled employee),
and in Bro: a system for detecting network intruders in real-time, Paxson outlines multiple strategies
for external attackers to sneak malware download traffic past an IDS [22]. Without SDN, a network
administrator would struggle to configure the network to allow an IDS to monitor internal traffic
without creating a choke point in the network; by designing our system to allow packets to stop at
way points, we give network administrators the freedom to place an IDS at any location in their
network and selectively route traffic through it.

For a host to send their traffic to a way point, we knew SHARP’s final design would need
some sort of packet encapsulation. This could involve simply wrapping a packet in an outer set
of transport and network level headers, as with IP-in-IP or GRE encapsulation protocols, or a
dedicated encrypted tunnel between two way points could be formed, as with the IPSec and L2TP
protocols. Early in the design phase of the project we examined the tunnelling protocol approach.
We developed PowerShell scripts for automatically setting up an VPN connection using L2TP and
a pre-shared key. The script for building a VPN connection is shown here:

param(

[String] $Name, # VPN connection name

[String] $Ip, # IP address of the VPN server

[String] $Psk, # Pre-shared key used between server and client

[String] $Uname, # Username for server credentials

[String] $Pword # Password for server credentials

20

)

If a VPN Connection already exists with the right name, remove it since it might be

misconfigured

if ((Get-VpnConnection).Name -eq $Name) {

Remove-VpnConnection -Name $Name
}

Add the VPN Connection

Add-VpnConnection -Name $Name -ServerAddress $Ip -TunnelType L2TP -L2tpPsk $Psk
-SplitTunneling -Force -PassThru

If the VPN Connection is not already connected, connect using credentials received from

controller

if((Get-VpnConnection -Name $Name).ConnectionStatus -eq "Disconnected") {

rasdial $Name $Uname $Pword
}

The idea behind the VPN tunnel approach was that when the SDN controller responds to a host
machine’s routing decision query, it would somehow specify a chain of existing VPN tunnels for the
packet to travel through. For many reasons, we opted not to use this approach for SHARP’s final
design. Firstly, relative to other computer operations, building and tearing down VPN connections
is a time-consuming process. For efficiency, each computer would have to maintain only a handful
of tunnels and they would have to be relatively static; this would severely limit the degree of
routing control our design would offer. Secondly, communicating the state of all VPN tunnels on the
network to the SDN controller so that it would have an accurate real-time picture of the network
topology was a daunting engineering task given the time frame of the project. This task’s difficulty
is increased by the fact that VPN tunnels can be created, modified, or disabled by end users directly
through the Windows OS GUI, so a given tunnel’s status could easily change independently of
our system. Additionally, we wanted our design to operate as an overlay network, such that any
machine running SHARP could be specified as a way point; if we took the VPN tunnel approach
for packet encapsulation, each SHARP machine would need to run a VPN server such as OpenVPN
or StrongSwan, which would add dependencies and make installation painful. Finally, we wanted to
incorporate the entire SHARP implementation directly into the PEACE code base, and so calling a
set of scripts was simply an unattractive option.

3.2 Final Design

We will now describe in detail the final design of SHARP, our host-based SDN system. SHARP
provides routing control at the data-link and network layers of the TCP/IP model (Layers 2 and
3, respectively) by encapsulating packets in a SHARP header that includes information about the
network route the packet should travel. Routing control at the network layer consists of redirecting
a outbound packet to a series of 0 or more intermediate machines, which forward the packet to each
other before finally delivering the packet to its original destination. For a machine on the network
to properly parse and make decisions based on incoming packets with SHARP headers, they must
also have an PEACE client program installed. It follows that the set of SHARP-enabled machines
on a given LAN form an overlay network, and the only hosts that can be specified as intermediate
way points in the route of a packet with a SHARP header are hosts that are part of the overlay
network. Henceforth, endpoints that a part of the SHARP overlay network will be referred to as
nodes.

For enabling host-based routing control at the data-link layer, SHARP relies heavily on use of
VLAN IDs to influence the decisions of switches. In a network using SHARP, a set S of VLANs

21

is configured such that each VLAN in the set represents a unique spanning tree for the network,
and such that there is a VLAN ID to describe any possible non-looping network path between two
SHARP nodes. Any VLAN ID’s spanning tree describes a set of n!/(2!(n − 2)!) paths between
hosts, where n is the number of hosts on the network. Furthermore, for a given host, each VLAN’s
spanning tree describes n − 1 paths as there are n − 1 other hosts on the network. Thus we say
that one network path between two SHARP nodes is defined by the tuple (IP ADDR 1, IP ADDR
2, VLAN ID). In this way, simply by modifying the VLAN ID of an outgoing packet, a node can
completely change the layer 2 route the packet travels to reach its destination.

For a host to efficiently modify its VLAN ID on a per-packet basis requires the insertion of
VLAN tags (see Section 2.3.3). Accordingly, in SHARP each node is connected to the network via
a trunk port, configured on the switch to accept all VLAN IDs in S. This use of VLANs as a way
for endpoints to modify the path of their own traffic is innovative. In modern network, VLANs
are typically used to separate hosts. Each host is typically associated with a single VLAN via an
access port, and as a result it cannot tell what VLAN it is a part of. Additionally, trunk ports have
historically been reserved exclusively for linking switches together, and as such there is little to no
support in mainstream computer operating systems for appending VLAN tags. Because of this, as
we will discuss later in this section, our system involves a kernel-level program for appending VLAN
tags to packets on the send path of the networking queue.

At a high level, SHARP operates as follows. A SHARP node initiates a new connection to a
remote IP address. In typical SDN fashion, the first outgoing packet for that connection is pended
by a SHARP client program at the network layer, and a local rule cache is consulted to reach
a connection-level routing decision. If no local rule matches the connection attributes, the client
program sends an OpenFlow packet to the controller to receive an authoritative routing decision.
So far this accurately describes the function of the PEACE SDN firewall. Where the two systems
differ is in the nature of the OpenFlow response; as a firewall, PEACE is concerned with the binary
decision of approving or denying a packet. In the SHARP SDN design, the response from the
controller is a route through the network that packets in the connection should follow. A route
through the network is represented as a chain of n IP addresses (starting with the source address
and ending with the destination address), and the n− 1 VLAN IDs describing the Layer 2 route a
packet should travel between each pair of nodes. Upon receiving a route for a given connection, the
SHARP client stores it in a table that maps connection 5-tuples to routes so that the rule cache and
controller do not need to be consulted for future packets in the connection flow.

Upon determining the correct route for an outgoing packet P to follow, the SHARP client
program encapsulates the packet in a SHARP header H that contains its route (creating packet
HP). Based on the route header, the SHARP client determines the next node in the chain to send
HP to, and the proper VLAN tag ID to insert in the packet’s Ethernet frame header. The next
node receives HP , and similarly parses the header to find the next way point and VLAN ID.

The host specified by the final IP address in the chain may or may not be a SHARP node. If the
destination is a node, it will simply receive HP , strip the SHARP header off, and inject P into its
own inbound networking path so that it reaches the proper application. The receiving SHARP client
will also store the reverse of the received packet’s SHARP header (H−1) so that it may append it to
outgoing packets P−1 that are responses to P . If the destination is not a SHARP node, the last node
before the destination is responsible for proxying the connection. The proxying node stores H−1,
and rewrites P ’s source IP address to be its own IP address. By doing this, when the destination
receives P , P−1 packets will be delivered to the proxying node instead of P ’s original source node.
Once P−1 is received, the proxying node rewrites it’s destination address to be that of the source of
the original packet, appends H−1, and starts H−1P−1 on its journey through the reverse route to
the original sender of P .

22

3.2.1 The SHARP Header

Here we describe the fields of the protocol header that the SHARP client appends to outgoing packets
before redirecting them to a SHARP node. As we discussed in Section 3.2, the SHARP header is
responsible for carrying routing information between an endpoint running SHARP and an arbitrary
destination. The header is thus responsible for both the course-grained Layer 3 SHARP node path
and the fine-grained Layer 2 path which compose the nodal links within the chain of way points.
It follows that the SHARP header must maintain both Layer 3 information (namely, IP addresses)
and Layer 2 information (namely, VLAN tags) to sufficiently represent the chain. It must also hold
metadata to properly traverse and interpret the chain targets. With these considerations in mind,
the following diagram illustrates the SHARP header design.

Figure 4: SHARP header specifications.

The SHARP header starts with several metadata values. Each value is described below:

• Header Length: Total number of SHARP nodes in the path. Note that the total number of
IP addresses in the route will not be equal to the value of this field if the destination is not a
SHARP node.

• Current Index: Specifies the index of the current node in the SHARP route. Updated by
each node as the header is processed. We opted to use C-style indexing in the SHARP header,
such that while the packet is at IP Address 0, Current Index is equal to 0, and so on.

• Flags: A set of flags indicate characteristics of the SHARP route. Currently, two flags are
used:

– DestinationFlag: Indicates whether the final node in the route is a SHARP node. The
flag bit is 0x01 and the flag is asserted if the destination is a SHARP node.

– SendOrRecieveFlag: Indicates whether the chain represents an original outbound con-
nection or a response to a prior outbound connection. The flag bit is 0x10 and the flag
is asserted if the chain represents a response connection.

The remainder of the header consists of IP addresses and VLAN tags. Each VLAN tag corre-
sponds to the connection between the SHARP nodes whose IP addresses precede and succeed it

23

in the header. For example, VLAN 0 to 1 represents the Layer 2 connection between the SHARP
nodes with IP Address 0 and IP Address 1. By using the current index value, the kernel modules in
a given node can retrieve the IP address of the next node in the chain and the VLAN tag associated
with the Layer 2 path between those them. It can then organize a new packet to traverse to the next
node. The current index value is updated as the packet moves between the nodes that compose the
SHARP chain; each node increments the value once it processes the packet.

The composition of the SHARP header also varies based on the destination flag. If the flag is
set, then the final destination of the packet is a SHARP node. As a result, the final destination is
accounted for when calculating header length field. For a header length value of n, n IP addresses
and n − 1 VLAN tags will exist in the SHARP header. Once the current index reaches n − 1, the
node will determines that it is the intended receiver. It removes the payload from the SHARP packet
and sends the payload to its own application layer. However, if the flag is not set, then the final
destination of the packet is not a SHARP node. As a result, the final destination is not included
when calculating the header length field. For a header length value of n, n + 1 IP addresses and n
VLAN tags will exist in the SHARP header. Since the final IP address corresponds to a non-SHARP
node, then the VLAN tag field prior to it is meaningless and is filled with a dummy value. Once
the current index field reaches n− 1, the final SHARP node knows that it must proxy a connection
between the true source node and final non-SHARP destination. Details on the proxy behavior can
be found in Section 4.x.

At first it may appear counter-intuitive that we designed the SHARP header such that the Header
Length field does not always equal the number of IP addresses in the chain. However, in doing so,
we gave the SHARP header a useful property; whenever a node parses the SHARP header and finds
that HeaderLength − 1 = Index, then it knows that the SHARP header has to be stripped off to
reveal the inner payload and perform a special function. This happens regardless of whether the
DestinationFlag or SendOrReceiveFlag are asserted. Once the SHARP header has been stripped,
the SHARP node can read the flag values to determine what must be done next with the inner
packet. This property greatly simplifies some of the logic involved in processing a SHARP packet.

3.2.2 Network-Level Demonstration

We will now walk through two examples of the network-level SHARP header processing that occurs
to transport a packet to its destination through the specified route. We remind the reader that the
DestinationFlag bit is 0x01 and the SendOrReceiveFlag bit is 0x10, so a value of 3 in the Flag field
of the SHARP header indicates that both flags are asserted.

In the first example, starting with Figure 5, the DestinationFlag is asserted and so no connection
proxying is required. The network includes VLANs with IDs 3 and 4, and all three machines are
connected via trunk ports that accept these VLAN IDs.

1. An outbound packet P destined for 192.168.1.14 is intercepted, and a SHARP header H with
a length of 3 is appended to it to create HP . See Figure 5.

24

Figure 5: A sample network using SHARP, with VLANs 3 and 4. A packet starts at 192.168.1.12 and will
travel to 192.168.1.14 following the route in the SHARP header.

2. The source machine parses the newly added SHARP header; it determines that IP Address
192.168.1.13 is the next node in the chain, and that the VLAN to be used for transportation
between the current node and the next node is 3. HP is send over UDP to that address,
and just before the packet leaves the source machine, a VLAN tag with ID 3 is inserted in
the Ethernet frame header. Note that because of the way the VLAN trunk ports have been
configured, HP does not take the most direct route to 192.168.1.13. See Figure 6.

Figure 6: HP is sent over UDP to 192.168.1.13, with a VLAN tag ID of 3.

3. 192.168.1.13 receives HP and increments the Index field of the SHARP header. Using the
new Index value, it determines that 192.168.1.14 is the next node and sends HP over UDP to

25

that address. Again, before the packet leaves, as specified in the SHARP header, a VLAN tag
with ID 4 is inserted in the Ethernet header. See Figure 7.

Figure 7: HP is sent over UDP to 192.168.1.14, with a VLAN tag of 4.

4. 192.168.1.14 receives the packet and increments the SHARP header’s Index field. The SHARP
client finds that the new Index is equal to the Length - 1, indicating that the packet is at the
last SHARP node in the chain and the H needs to be removed to reveal the inner IP packet
P . Because the DestinationFlag is asserted in H, 192.168.1.14 is P ’s original destination,
so it simply injects P into its own kernel networking receive path. The SHARP client also
finds that the SendOrReceiveFlag is not asserted in H, meaning that 192.168.1.14 was not
the original source of the connection and thus does not already have an H−1 to append to
outgoing response packets P−1 belonging to the connection. The SHARP client reverses the
header to create H−1 (the result of which is shown at the bottom of Figure 8) and saves it in
a data structure that maps connection 5-tuples to SHARP headers. Reversed SHARP headers
always have both flags asserted. Since the DestinationFlag is asserted in H, the Length field
of H−1 will be the same as in H.

Figure 8: A SHARP header with the DestinationFlag asserted, and reversed counterpart, to be appended
to packets sent by the destination.

5. The process running in 192.168.1.14 for which P was originally destined forms a response
packet P−1. Once the packet has an IP header, it is intercepted and the map we discussed
earlier is consulted. Since a matching SHARP header H−1 for the connection exists, it is
appended to P−1 to make H−1P−1. The packet is then redirected to the next node in the
chain, and continues until it is eventually received by 192.168.1.12.

26

6. When H−1P−1 arrives at 192.168.1.12, since the SendOrReceiveFlag is asserted, the SHARP
client does not add a reversed header to its map. However, because the DestinationFlag is
asserted, it reinjects P−1 into its kernel networking receive path.

In the second example, starting with Figure 9, the DestinationFlag is not asserted, meaning that
the last IP address in the chain is not a SHARP node, and the last SHARP node must proxy the
connection. In this example, the default VLAN ID of 1 must be explicitly shown, and the destination
node is connected to its switch with a VLAN 1 access port instead of a trunk port.

1. An outbound packet P destined for 192.168.1.14 is intercepted, and a SHARP header H with
a length of 2 is appended to it to create HP . See Figure 9.

Figure 9: A sample network using SHARP, with VLANs 3 and 4 and the default VLAN 1. A packet starts
at 192.168.1.12 and will travel to 192.168.1.14 following the route in the SHARP header.

2. At this point the procedure is similar to that of the first example. The packet is redirected
to the next node in the chain, namely 192.168.1.13, and a VLAN tag of 3 is inserted into the
Ethernet frame header. Inserting the VLAN tag influences the path the packet HP takes to
get to the next node.

3. Once HP arrives at 192.168.1.13, the Index field is of H incremented, and it is compared to the
Length field. Since the Index is 1 less than the Length, the SHARP client on 192.168.1.13 knows
that it must strip H off of the packet to produce P . The DestinationFlag is not asserted, and
so the SHARP client determines that it must proxy the connection between the true source and
destination. The SHARP client parses the last IP address in the header to find the original
destination of P , and then overwrites the source IP address in P to be 192.168.1.13. P is
then re-injected on 192.168.1.13’s outbound kernel networking path. Note that even though a
default VLAN ID of 1 is used for the proxied connection, a VLAN tag must still be inserted
since the SHARP node is on a trunk port that expects tagged packets. In order to save the
proper SHARP header for the return path, 192.168.1.13 reverses H as shown in Figure 10 to
produce H−1. Note that the number of IP addresses decreases in H−1, but the Length field
remains the same value since it represents the number of SHARP nodes in the chain. In a
similar fashion to the first example, H−1 is stored in a table that maps connection 5-tuples to

27

SHARP headers. Note that the 5-tuple stored in the map contains 192.168.1.13 as one of the
IP addresses, since the original source was overwritten.

Figure 10

4. The packet P travels normally to 192.168.1.14, which believes that 192.168.1.13 is the source
of the connection. The packet is received by a process on 192.168.1.14, which sends a response
packet P−1 to 192.168.1.13. See Figure 11.

Figure 11: Because 192.168.1.13 modified the source IP address field in P ’s IP header, 192.168.1.14 is
unaware that 192.168.1.12 is the original source of P , and sends its response packet P−1 to 192.168.1.13.

5. Once P−1 arrives at 192.168.1.13, the SHARP client checks the connection 5-tuple against
the connection-to-header map. Since it was populated earlier, the SHARP client finds a
header H−1 to append to P−1. Parsing H−1, the SHARP client decides to send H−1P−1

to 192.168.1.12 over VLAN 3. See Figure 12.

28

Figure 12: H−1 is prepended to P−1 and the resulting packet is sent to 192.168.1.12 over VLAN 3.

6. H−1P−1 arrives at 192.168.1.12. The SHARP client increments the Index field of H−1, and
recognizes that it must perform a special action. Since the SendOrReceiveFlag is asserted, the
SHARP client strips off H−1 and injects P−1 into its networking inbound path.

3.2.3 SHARP Design Benefits

The Layer 3 routing control offered by SHARP surpasses that of commodity switch-based SDN
implementations. Let us examine how a switch-based SDN could approximate SHARP’s system
of redirecting traffic through a series of intermediate nodes. Flow rules could be written for each
OpenFlow-enabled switch to change the outbound port to which they send an incoming packet,
essentially causing the switches to force a packet to a different destination machine without changing
the destination MAC and IP addresses. However, when the intermediate machine receives the packet,
unless IP forwarding is enabled the packet will be dropped because of the mismatch between the
packet’s destination IP address and the IP address of the machine. Making this strategy work
requires enabling IP forwarding on endpoints, and thus the system is not host-independent.

Even if forwarding is enabled, we have not yet taken into account dynamic route changes. Simply
forcing a packet to an intermediate node by manipulating outbound port selection is a complicated
enough task, but dynamically updating OpenFlow rules to move the packet from hop to hop in the
chain is even more so. Although not included in our implementation, our design allows for updates
to be made to the SHARP header associated with a connection while the connection is active. In
almost any case, a SHARP node can be inserted into or removed from a chain without disrupting
the connection itself (an obvious exception to this rule would be removing or changing the source
and destination nodes specified in the SHARP header). The only non-trivial exception is that when
the DestinationFlag is not asserted for the SHARP header of a TCP connection, the proxying node
cannot be changed. Since the connection destination believes that the proxying node is the source
of the connection, if packets claiming to be part of the connection were to suddenly start being sent
from another IP address, the destination would issue a TCP RST packet to reset the connection. In
Section 6.3, we discuss some developing technologies that aim to solve this problem.

A further benefit SHARP provides over switch-based SDNs is that it does not require the in-
termediate nodes or destination to exist in the same LAN as the connection source. As long as a

29

node outside of the LAN has a SHARP client installed and has a publicly routable IP address, it
can be specified as a part of the chain. An example use case for this feature would be network ad-
ministrators offloading security monitoring to a cloud-based IDS for their enterprise’s cloud service
traffic. Of course, VLAN tagging has to be disabled for nodes sending SHARP packets to SHARP
nodes in other parts of the Internet, however it would be unrealistic to expect decisions made at and
endpoint to allow for Layer 2 routing control at the Internet level. In this way, we say that SHARP
provides the same level of fine-grain routing control offered by switch-based SDNs within the LAN,
while surpassing switch-based SDNs by providing coarse-grain routing control over the Internet.

3.3 Registering Kernel Callouts with WFP

In Section 2.2.2, we gave an overview of the Windows Filtering Platform: how it interacts with the
kernel networking queue, the various elements of a callout and its classifyFn function, as well as
what functions are necessary to register a callout with the WFP filter engine. As we will explain
later in this section, much of our implementation of SHARP relies heavily on WFP callouts; since
the PEACE driver code base already has a standardized mechanism for registering and unregistering
callouts, rather than reinventing the wheel, we decided to use the predefined functions offered by
PEACE.

The first step to registering a callout is creating a Global Unique Identifier (GUID) for the callout,
which is a randomly-generated 128-bit string. The GUID is then defined as follows:

#define WINSIGHT_MAC_OUTBOUND { 0x58de7344, 0x5059, 0x41e1, 0x92, 0x6f, 0x12, 0x19, 0x49,

0x0b, 0xf7, 0x4f}

After creating the GUID and our classifyFn function, we can create an instance of the
CALLOUT DATA struct defined by PEACE. The struct contains a pointer to the WFP filtering layer
the callout should be registered at, the callout GUID, as well as the names of the classifyFn,
notifyFn, and flowDeleteFn functions associated with the callout. An example CALLOUT DATA

struct definition is as follows:

static CALLOUT_DATA MAC_ETHERNET_OUTBOUND = { &FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET,

{WINSIGHT_MAC_OUTBOUND, 0, MQPKERNEL_OutboundMacClassify, Notify, NULL}, 0,

L"WinSight Egress", L"Winsight for MAC Egress" };

Here, the classifyFn function name is MQPKERNEL OutboundMacClassify, the notifyFn

function is a generic function defined by PEACE called Notify, and the flowDeleteFn has been set
to NULL. With a fully defined struct, we now add the following code block to the SetupCallbacks()

function:

if (NT_SUCCESS(status)) {

status = RegisterCallout(&MAC_ETHERNET_OUTBOUND);

}

The SetupCallbacks() function is responsible for calling FwpmEngineOpen(),
FwpmTransactionBegin(), and FwpmSubLayerAdd() to initiate the process of registering all
the defined callouts. The pointer to each CALLOUT DATA struct is then passed in turn to the
RegisterCallout() function, as demonstrated in the above code snippet. RegisterCallout()

formats the data contained in the passed struct into a FWPM CALLOUT struct and passses the
result into a call to FwpmCalloutAdd(), thus completing the callout registration. As part of
the clean-up process during an uninstall, the PEACE driver calls its own CleanupCallbacks()

function, which simply calls FwpsCalloutUnregisterById() for each callout that was installed
in SetupCallbacks(). When creating a new callout, a line is added to CleanupCallbacks() as

30

follows:

(void)FwpsCalloutUnregisterById(MAC_ETHERNET_OUTBOUND.CalloutId);

3.4 Common Kernel Module Functions

The kernel module implements several distinct operations at different callout layers of the Windows
Filtering Platform (WFP). However, large sections of code and functionality are shared between
each WFP callout. As a design principle, the WFP offers functionality that can be used at any
layer with very little modification. For example, there are unified strategies throughout the WFP to
retrieve, modify, and reinject a packet into the network queue. Consequently, our helper functions
which supplement WFP’s library implicitly change their behavior based on the WFP layer of the
caller. As a result, parts of the code common between the callouts are implemented in the same way.
These sections can be considered building blocks which form the foundation of any given callout.

3.4.1 Allocating and Freeing Kernel Memory

Kernel space cannot rely on the same memory management abstractions afforded to user space
programs. This is because the kernel itself is responsible for implementing memory virtualization
guarantees, typically by dividing physical memory into pages and swapping data in page-sized chunks
when required by the processor. The kernel has no access to those systems, and instead uses a
reserved chunk of privileged memory designated for itself. Without memory management, operations
which are commonplace in userspace C, like malloc and free, become non-trivial in the kernel.
Luckily, Windows offers APIs which manage memory in the kernel, abstracting away a lot of the
extra complexity.

The Windows API provides calls which allocate and free privileged memory:
ExAllocatePoolWithTag and ExFreePoolWithTag, respectively. ExAllocatePoolWithTag is
always called with the NonPagedPool parameter, which notifies the call to grab memory from the
non-paged (i.e. privileged) memory pool. Allocated buffers are associated with user-generated
four-byte tags which serve as identifiers for allocated sections of memory. When freeing a buffer, a
call to ExFreePoolWithTag must provide the tag used when allocating that buffer. This memory
allocation technique is present throughout the implementation of the kernel modules, and will be
referenced throughout the remainder of the implementation.

3.4.2 Retrieving a Packet’s Data

At a fundamental level, WFP callouts must receive, inspect, modify, and re-inject packets. Conse-
quently, packets must be transformed into a state where they can be easily analyzed and modified.
Fortunately, this process is ubiquitous along the platform’s different filtering layers. Thus, the pro-
cess to transform packets into an modifiable state is reused throughout all of the kernel module’s
callouts. Specifically, packets must be transformed from their representation in the WFP to a buffer
of raw bytes.

As mentioned in the Background, when packets reside within the Windows kernel, they are
represented as a NetBuffers, stored within a NetBufferList. The NetBufferList structure definition
is shown below:

typedef struct _NET_BUFFER_LIST {

union {

struct {

PNET_BUFFER_LIST Next;

PNET_BUFFER FirstNetBuffer;

};

31

SLIST_HEADER Link;

NET_BUFFER_LIST_HEADER NetBufferListHeader;

};

PNET_BUFFER_LIST_CONTEXT Context;

PNET_BUFFER_LIST ParentNetBufferList;

NDIS_HANDLE NdisPoolHandle;

PVOID NdisReserved[2];

PVOID ProtocolReserved[4];

PVOID MiniportReserved[2];

PVOID Scratch;

NDIS_HANDLE SourceHandle;

ULONG NblFlags;

LONG ChildRefCount;

ULONG Flags;

union {

NDIS_STATUS Status;

ULONG NdisReserved2;

};

PVOID NetBufferListInfo[MaxNetBufferListInfo];

} NET_BUFFER_LIST, *PNET_BUFFER_LIST;

Many of these structure parameters pertain to metadata which is not relevant for the task of
copying a packet to a data buffer. What is most important is that each NetBufferList can point to
another NetBufferList (the Next parameter), and that each NetBufferList is in turn composed by a
list of NetBuffers, the first of which is pointed to by the FirstNetBuffer parameter. NetBufferLists
may be joined together to represent several packets with similar out of band properties. Thus,
to fully read the data of a packet, one must iterate through the list of NetBufferLists, and read
through the list of NetBuffers within each NetBufferList. Another parameter which stands out is
the ParentNetBufferList, which points to the original NetBufferList if a given NetBufferList is a
clone. However, we choose to not use the WFP’s built in tools for cloning a packet, so in this
context the parameter can be ignored.

NetBuffers themselves are made up of a linked list of physical memory chunks called Memory
Descriptor Lists, or MDLs. When put together, the MDL memory chunks in the list describe a
single contiguous chunk of virtual memory. Thus, the MDL keeps track of how a virtual buffer is
spread over physical pages of memory. The NetBuffer structure definition is shown below:

typedef struct _NET_BUFFER {

union {

struct {

PNET_BUFFER Next;

PMDL CurrentMdl;

ULONG CurrentMdlOffset;

union {

ULONG DataLength;

SIZE_T stDataLength;

};

PMDL MdlChain;

ULONG DataOffset;

};

SLIST_HEADER Link;

NET_BUFFER_HEADER NetBufferHeader;

};

USHORT ChecksumBias;

USHORT Reserved;

32

NDIS_HANDLE NdisPoolHandle;

PVOID NdisReserved[2];

PVOID ProtocolReserved[6];

PVOID MiniportReserved[4];

NDIS_PHYSICAL_ADDRESS DataPhysicalAddress;

union {

PNET_BUFFER_SHARED_MEMORY SharedMemoryInfo;

PSCATTER_GATHER_LIST ScatterGatherList;

};

} NET_BUFFER, *PNET_BUFFER;

Each MDL represents a contiguous virtual buffer of memory. In reality, an MDL may consist
of many chunks of physical memory linked together to make the contiguous virtual chunk. This
distinction becomes important when designing the tools to read out the data from a packet into a
buffer. Fortunately, the WFP API abstracts away any direct interaction with the MDLs to retrieve
a packet. From the perspective of the API caller, a NetBuffer is composed of arbitrary chunks of
memory which represent the packet’s data.

To retrieve the packet’s data and copy it to a contiguous buffer, a callout iterates over the
NetBuffers which compose the NetBufferList associated with the packet and extract the data stored
in the MDLs. The following code snippet illustrates how this is done:

while (netBuffer != NULL) {

bp = NdisGetDataBuffer(netBuffer, NET_BUFFER_DATA_LENGTH(netBuffer), buffer, 1, 0);

if (bp == NULL) {

WdfSpinLockAcquire(AtomicMemoryManagementLock);

ExFreePoolWithTag(bufferHead, BUF_TAG);

WdfSpinLockRelease(AtomicMemoryManagementLock);

return;

}

if (bp != buffer) {

RtlCopyMemory(buffer, bp, NET_BUFFER_DATA_LENGTH(netBuffer));

}

buffer = buffer + NET_BUFFER_DATA_LENGTH(netBuffer);

netBuffer = NET_BUFFER_NEXT_NB(netBuffer);

}

In this implementation, a unified data buffer is extracted from the MDLs associated with each
NetBuffer using the NdisGetDataBuffer function. This API call takes in a pointer parameter which
suggests a destination address for the copy. Whether the function actually does copy to that address
is dictated by whether the MDLs occupy a contiguous chunk of memory. If the MDLs are indeed
contiguous, then the function will return a different pointer to the start of the data; if they are instead
fragmented, the function will copy the data contiguously into the provided pointer argument, and
the return pointer will match the argument. Thus, to ensure that all the data is copied into the same
place, we must copy data from the buffer pointed to by the return argument to the buffer pointed
to by the aforementioned parameter if their values are misaligned.

The loop begins with the buffer variable pointing to the head of the destination buffer. At
subsequent iterations of the loop, the pointer to the copy destination is incremented by the length
of the prior NetBuffer; that way, the data of sequential NetBuffers is concatenated into the single
array. This buffer is allocated from privileged memory, using the techniques described above. The
length of the data is determined by summing the length of all NetBuffers in the NetBufferList.

33

3.4.3 Rebuilding and Re-injecting Packets

When packet data has been copied into a buffer of bytes, the callout can arbitrarily manipulate it
to fit its specific purpose. Once the buffer has been modified, it must be repackaged into a new
Windows packet and inserted back into the kernel’s packet queue. Fortunately, the WFP offers a
unified method to do this, which is shared among the callouts. Only slight changes to function
names are necessary to apply the technique to a specific filtering layer.

In the previous section, packets were broken down from NetBufferLists to NetBuffers to MDLs to
raw data. Conversely, to build a packet from a data buffer, that buffer must be converted into a list
of MDLs, which must then be packaged into a list of NetBuffers, and which finally must by linked
together into a NetBufferList. Fortunately, WFP offers functionality which performs each step of
this packaging process. First, a call is made to IoAllocateMdl and MmBuildMdlForNonPagedPool

to bundle the data buffer into a list of MDLs. The former function allocates an MDL large enough
to fit the data buffer. However, the MDL is a virtual abstraction; therefore, the latter function
actually maps the MDL to physical chunks of memory. Once the MDL is allocated and mapped, a
call to FwpsAllocateNetBufferAndNetBufferList packages the MDL into NetBuffers, and those
NetBuffers into a NetBufferList.

The packaged NetBufferList can then be re-injected into the kernel queue, at the layer of the given
callout. To achieve this, the WFP provides injection API calls for each layer of the SHARP header.
Each call takes the current injection handle and context, several pieces of information pertinent to
the filtering layer, the NetBufferList, and a completition callback function. The callback function will
fire after the packet is successfully re-injected in the kernel queue; it is used to free all intermediate
data buffers allocated in kernel memory to produce the packet. The injection function for the
outbound Ethernet layer callout is shown below as an example:

NTSTATUS FwpsInjectMacSendAsync0(

HANDLE injectionHandle,

HANDLE injectionContext,

UINT32 flags,

UINT16 layerId,

IF_INDEX interfaceIndex,

NDIS_PORT_NUMBER NdisPortNumber,

NET_BUFFER_LIST *netBufferLists,

FWPS_INJECT_COMPLETE completionFn,

HANDLE completionContext

);

If the packet fails re-injection, the injection function will return a status other than
STATUS SUCCESS, and the completion function will not fire. In this case, the callout must man-
ually free any buffers used to produce the packet.

3.4.4 Parsing a SHARP Packet

As described in the Design section, SHARP packets wrap a packet payload with a SHARP header.
As a result, a SHARP packet may have both an external IP, UDP and SHARP header which are
actually used to traverse the network, and an internal IP and TCP/UDP header for the payload. The
WFP’s built in packet parsing tools fail to retrieve all information from the two-tiered nature of the
packet. If the packet does not yet have a SHARP header, the WFP will only retrieve information
about the payload; conversely, if the packet has a SHARP header, the WFP will only retrieve
information about the external IP and UDP headers. Furthermore, WFP has a strict adherence
to the OSI model, so a given filtering layer will only expose packet information at that layer. For
example, an IP filtering layer will only expose Layer 3 information directly to its related callouts.
These restrictions in the WFP make a custom parser necessary to analyze the contents of a packet.

34

The parser itself writes values to a custom output data structure. This structure supports parsing
both SHARP and non-SHARP packets, setting a boolean flag if the given packet belongs to SHARP.
The parser also follows the WFP’s design principle of making its helpers as ubiquitous as possible
across the filtering layers. An enum is passed into the parser to indicate the filtering layer of the
caller, and the parser adjusts its offsets based on the layer to retrieve the same values. Generally,
the parser looks for IP addresses, source and destination ports, and transport layer protocols (i.e.,
the data required to build a five-tuple). It also grabs specific SHARP header information, including
the header start index, the length of the header, the current hop on the packet’s route, and the flags
associated with the header. This simplifies areas of the code which must interface with the SHARP
header, since parameter retrieval only has to be done once. Shown below is the data structure which
the packet parser loads:

typedef struct MqpPacketData {

UINT32 SHARPHeaderSourceIpAddress;

UINT32 SHARPHeaderDestinationIpAddress;

UINT32 SHARPHeaderLength;

UINT32 payloadSourceIpAddress;

UINT32 payloadDestinationIpAddress;

UINT32 SHARPHeaderStartIndex; //how far into the packet does the SHARP header start?

UINT32 payloadStartIndex; //how far into the packet does the payload start

UINT16 SHARPHeaderSourcePort; //should always be 7001 for outbound packets

UINT16 SHARPHeaderDestinationPort; //should always be 7000 for outbound packets

UINT16 SHARPHeaderIndex;

UINT16 SHARPHeaderHops;

UINT16 SHARPHeaderVlanTag;

UINT16 SHARPHeaderFlags;

UINT16 payloadSourcePort;

UINT16 payloadDestinationPort;

UINT8 SHARPHeaderTransportType; //should always be UDP

UINT8 payloadTransportType; //the transport layer type of the payload

UINT8 SHARPDestinationType; //the destination type flag of the SHARP header

UINT8 isASHARPPacket; //is this struct representing a SHARP packet, or not?

UINT8 isVlanTagged; //is this packet vlan tagged?

} MqpPacketData;

Packet parsing is part of the sequence of actions which are common to all of the callouts. Gen-
erally, the packet is parsed immediately after its data is extracted into a buffer.

3.5 The ALE Lookup Table

While most of the code implementation fits within the WFP callout paradigm presented so far, one
other component exists within the kernel outside of the callouts themselves. This component, called
the ALE Lookup Table, manages which packets have to be sent to the SHARP daemon to receive
SHARP packets. This lookup table interacts with callouts at several filtering layers, including the
outbound ALE layer, which populates the table, and the outbound network layer, which references
the table. Since the table must interact with more than one callout, it should exist as a standalone
entity in the kernel. Furthermore, the table must persistently maintain the connections which need
SHARP headers because ALE layer callouts trigger for only the first packet in a stream. This means
that the ALE layer will not reliably forward any subsequent packets in a connection, and cannot
indicate whether a connection needs SHARP routing on a packet by packet basis. The ALE lookup
table allows a connection to be tabulated once and referenced for all subsequent packets in that
connection. The diagram below summarizes how the WFP callouts use the ALE lookup table:

35

Figure 13: ALE Lookup Table control flow.

Each step of the control flow is labeled in the diagram, and described in detail below:

1. The first packet in a flow is intercepted at the ALE layer callout. The ALE callout sends the
packet to user space, and subsequently to a remote SDN-like controller. The controller passes
back a decision on whether the flow needs SHARP routing via WinSightService.

2. If the controller confirms that the packet needs SHARP routing, then the ALE layer callout
will populate the ALE lookup table. The table entry uses the packet’s connection five-tuple
(Src IP, Src Port, Protocol, Dst IP, Dst Port) as a key, and asserts a boolean flag as the value.

3. The packet passes through the ALE layer callout and is intercepted at the network layer callout.

4. The network layer uses the packet’s five-tuple to reference the ALE lookup table. If an entry
with the provided key exists with the asserted boolean flag, the network layer callout sends
the packet back to user space to append a SHARP header. Since all subsequent packets in
the flow will have the same five-tuple, they will all be sent to user space and given SHARP
headers, regardless of whether the ALE layer callout intercepted them.

5. The packets which are sent up to user space interact with WinSightService and the SHARP
daemon, which appends a SHARP header to the packet and returns it back to the network
layer callout. The SHARP daemon may use both local and remote guidelines to select the
routing path expressed in the SHARP header.

6. When the network layer callout sees a packet with a SHARP header, it immediately lets
it through. The packet may then pass through to lower filtering layers, and eventually the
network.

36

3.5.1 ALE Lookup Table Design

The ALE Lookup Table itself is a singly linked list which exists in protected kernel memory. It
implements a set of functions necessary to initialize, parse, and update any linked list. These calls
are listed below, with a brief description of each:

• initAleLookupTable: Initializes the ALE lookup table, and populates it with a single empty
node to initialize the linked list. This function gets called once, during callout registration. It
also is responsible for initiating concurrency data.

• lookupEntryFromTable: Passes through the table, looking for any entries matching a given
five-tuple key. Passing through the table in this case is the same as traversing a singly-linked
list.

• addEntryToLookupTable: Adds a new entry to the head of the ALE Lookup Table. The
previous head becomes the successor of the new element. Entries are created with five-tuple
keys and boolean values.

• deleteEntryFromLookupTable: Removes an entry from the table. To remove nodes, a
reference is made to the previous/current node as the list is traversed. When the target node
is found, it is freed, and the node’s predecessor gets linked to the nodes successor.

Other more trivial helpers and macros exist which handle the creation of a FiveTuple key
from its component values. Once the table is instantiated, the ALE layer callouts curate
the table with addEntryToLookupTable, and the network layer callouts retrieve entries with
lookupEntryFromTable. This functionality is sufficient to acheive the design goals of the lookup
table.

The Windows kernel uses multithreading throughout its modules to achieve acceptable perfor-
mance; concurrency extends to the kernel queue’s design, and thus the Windows filtering platform.
Thus, the ALE lookup table must handle cases where two threads are trying to access its data. The
size and relative access times of the lookup table are small enough where we deemed wrapping the
table with a spin lock would sufficiently protect the system from race conditions without significantly
affecting performance. Like most other lock mechanisms in the kernel, a single spin lock object is
declared in global memory for the table. When a callout wants to access or modify the table, it
must claim ownership of the lock. It is incumbent on that callout to release the lock when it has
finished using the table.

3.6 VLAN Tag Manipulation

One of the primary responsibilities of the kernel module is to append a VLAN tag to the Ethernet
header of all outbound SHARP packets. Consequently, it must also intercept inbound SHARP
packets and remove their tags.

3.6.1 VLAN Tag Discovery

Each node running SHARP must append a VLAN tag to outbound SHARP packets to dictate the
packet’s Layer 2 path to the next SHARP node. To discover what VLAN a packet needs to belong
to, the SHARP kernel module performs a lookup on the SHARP header of the SHARP packet. The
header is indexed using its Current Index parameter to retrieve the tag value. For an index value of
n, the SHARP header is indexed by 6 + 4 + 6n bytes. Whenever a SHARP packet exits a SHARP
node, the kernel module increments its current index value. That way, the subsequent SHARP nodes
in the chain can index further into the header to retrieve tags.

37

3.6.2 The Ethernet Filtering Layer

The kernel module must operate withing the Windows Filtering Platform (WFP) to interact in
any way with the kernel’s packet queue. Specifically, the module must register callouts at different
filtering layers of the WFP which respect the layers of the OSI model. Windows’ native network
drivers construct network packets by sequentially adding headers one layer at a time. For example,
the platform might construct a packet destined as HTTP traffic by first appending a TCP header,
then an IP header, and finally an Ethernet header. The WFP allows one to intercept this construction
process at different layers of the network model. Callouts are similar to callback functions, such that
the callout is called for each packet in the kernel queue when it reaches the layer associated with
the callout.

SHARP’s kernel module registers a WFP callout at the Ethernet layer with the to append VLAN
tags to SHARP packets. While Microsoft’s main documentation for the WFP does not indicate that
the Ethernet layer can register callouts, one isolated documentation page shows that the WFP offers
four Ethernet-related filtering layers [23]. They are listed below, with a brief description of each:

• FWPM LAYER OUTBOUND MAC FRAME ETHERNET: Intercepts packets at
the Ethernet layer on the outbound path. Packets are intercepted behind the network card,
i.e. before the network interface card has processed the packet.

• FWPM LAYER OUTBOUND MAC FRAME NATIVE: Intercepts packets at the
Ethernet layer on the outbound path. Packets are intercepted in front of the network card,
i.e. after the network interface card has processed the packet.

• FWPM LAYER INBOUND MAC FRAME ETHERNET: Intercepts packets at the
Ethernet layer on the inbound path. Packets are intercepted behind the network card, i.e.
after the network interface card has processed the packet.

• FWPM LAYER INBOUND MAC FRAME NATIVE: Intercepts packets at the Eth-
ernet layer on the outbound path. Packets are intercepted in front of the network card, i.e.
before the network interface card has processed the packet.

The notion of the network interface card is important when deciding where to place the VLAN
callouts. On Windows, Layers 3 and 4 are managed by the OS (in software), while Layer 2 is
managed by the network card, on separate piece of hardware. Since the firmware on the network
interface cards is fixed, there is a possibility that packet modifications could cause errors at the
network card. In those cases, packet modifications have to be introduced after the network interface
card has processed them. In our case, however, all modification can be done before the network card
processes the packet, so long as the card follows the IEEE 802.1 VLAN specification. To append
a VLAN tag to outbound SHARP packets, the kernel module generates a callout at the OUT-
BOUND MAC FRAME ETHERNET layer of the WFP. This layer allows the module to append
VLAN tags to outbound packets before the packets enter the network interface card. The module
registers and initializes the callout with the WFP, using the methods described in Section 3.3.

3.6.3 Outbound Tag Insertion

The outbound ethernet callout itself follows a similar workflow as the rest of the callouts implemented
in the kernel module. After filtering the packet, the callout retrieves the data stored within the
packet as a buffer. If the intercepted packet belongs to SHARP, the callout retrieves the VLAN tag
which it must append from the SHARP header. Finally, the callout appends the tag to the data
buffer, generates a new Windows packet using the modified data buffer, and injects that packet at
the Ethernet layer of the kernel queue. Since the callout injects the new packets, the packets now
originate from the callout.

Before the callout inspects the packet contents, it performs preliminary filtering on the packet.
Specifically, it must always allow re-injected packets to proceed, without any further modification.

38

Since the callout injects its modified packets at the Ethernet layer of the kernel queue, the callout will
necessarily intercept those packets a second time. The callout must allow those packets to proceed,
since they are already tagged. The following code snippet checks if a packet had been re-injected:

FWPS_PACKET_INJECTION_STATE packetState;

packetState = FwpsQueryPacketInjectionState(InjectionHandleMac, LayerData, NULL);

if (packetState == FWPS_PACKET_INJECTED_BY_SELF) {

ClassifyOut->actionType = FWP_ACTION_PERMIT;

if (Filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT) {

ClassifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

}

return;

}

The code snippet checks if the incoming packet originated from the callout itself by checking
if the packet’s metadata includes the FWPS PACKET INJECTED BY SELF flag. If it does, the
intercepted packet is released back into the kernel queue by setting its FWP ACTION PERMIT
flag.

The outbound Ethernet callout must then consume the incoming packet and produce a buffer
with its contents. This process is shared among SHARP’s implemented callouts, so implementa-
tion details can be found in Section 3.4, which describe shared code practices. Several peculiar-
ities do arise because packets are being intercepted at the Ethernet layer. Most curiously, when
packets are intercepted at the OUTBOUND MAC FRAME ETHERNET layer, they already have
14-byte Ethernet headers appended to them. This is in direct contradiction to Windows’ own docu-
mentation, which claims that packets intercepted at the OUTBOUND MAC FRAME ETHERNET
should only be constructed to the network header [24]. According to the documentation, only the
OUTBOUND MAC FRAME NATIVE layer should intercept packets at the Ethernet header. Since
documentation is already sparse at best for WFP’s Ethernet filtering layers, the documentation in
this case may simply be incorrect.

After the packet’s data has been retrieved by the buffer, it is parsed for all relevant information.
Since the WFP forces applications which use it to follow the OSI model, the WFP’s native API only
provides information about the packet at the layer at which it was intercepted. For example, the
WFP only makes Layer 2 information available to our Ethernet layer callouts through its official
API; similarly, only Layer 3 information is available to our network layer callouts. As a result, we
implemented a set of custom API calls to perform full inspection of the packet. The behavior and
implementation of the custom packet parsing API can be found in Section 3.4.4.

The callout must then modify the data buffer to append a VLAN tag, or release the original
packet if it does not have a SHARP header. The packet parsing API has a built-in attribute in its
return structure which indicates whether the incoming packet is a SHARP packet. If the attribute is
not set, the callout simply sets the FWP ACTION PERMIT flag on the incoming packet and exits.
Otherwise, it parses the SHARP header to look up the tag value to append. The following function
parses the SHARP header to retrieve the tag value:

USHORT MQPKERNEL_LookupVlanTag(In PCHAR buffer, In UINT packetLength,

In MqpPacketData* data)

{

UNREFERENCED_PARAMETER(packetLength);

UINT offset = data->SHARPHeaderStartIndex + 6 + 4 + (6 * data->SHARPHeaderIndex);

return *(PUSHORT)(&buffer[offset]);

}

This function grabs the SHARP header start index from the struct filled by the packet parsing
API, and follows the rules dictated in Section 3.4.4 to grab the packet. Since the tag is 12 bits,

39

pointer recasting is used to grab two subsequent bytes from the buffer. This lightweight helper
showcases the power of this unified packet parsing API. A single call to the API loaded all relevant
values into a data structure, so any other callout helpers no longer bear the burden of inspecting
and parsing the packet.

The tag itself is inserted 14 bytes into the packet, between the two MAC addresses of the Ethernet
header and the header’s two-byte type parameter. The composition of the VLAN tag itself is four
bytes. The first byte are always set to 0x8100, to signal the presence of the VLAN tag. The next four
bits indicate the packet’s priority and congestion dropping rules; they are always set to 0x0. Finally,
the last 12 bits of the tag hold the tag’s value itself. The following code snippet demonstrates how
the callout appends the tag to the packet data buffer.

UINT32 tagOffset = 12;

// Shift everything past the VLAN tag down 4 bytes

RtlMoveMemory(buffer + tagOffset + tagLength, // Dest

buffer + tagOffset, // Src

packetLength - tagOffset); // Length

// Insert VLAN tag components:

buffer[12] = 0x81; // TPID - 0x8100

buffer[13] = 0x00;

vlanId = INVERT_PORT_BYTES(vlanId);

RtlCopyMemory(&buffer[14], (PCHAR)&vlanId, 2); //final byte and nibble is the VLAN id

The RtlMoveMemory call creates space in the packet to place the VLAN tag, while the subsequent
writes to the data buffer load in the VLAN tag, as specified in the paragraph above. Once the tag
has been appended, the callout follows the standard process to repackage the data buffer into a
Windows packet, as described in Section X.Y. If the repackaging successfully completes, the packet
is re-injected back into the kernel queue’s outbound Ethernet filtering layer. WFP provides an API
call designed to inject packets at this layer:

NTSTATUS FwpsInjectMacSendAsync0(

HANDLE injectionHandle,

HANDLE injectionContext,

UINT32 flags,

UINT16 layerId,

IF_INDEX interfaceIndex,

NDIS_PORT_NUMBER NdisPortNumber,

NET_BUFFER_LIST *netBufferLists,

FWPS_INJECT_COMPLETE completionFn,

HANDLE completionContext

);

FwpsInjectMacSendAsync0 conforms to the behavior of the rest of WFP’s re-injection API calls
by taking a constructed packet and an injection context, and firing a user-generated callback to
cleanup memory if the injection succeeds. The WFP handles memory management if the packet
is re-injected successfully; if it fails, the callout frees memory itself. It should be noted that re-
injected packets will be intercepted for a second time by the callout; however, the callout permits
these packets to continue unmodified, since the FWPS INJECTED BY SELF flag has been set in their
metadata.

40

3.6.4 Network Interface Card (NIC) Behavior

Any Ethernet-layer callout must accommodate the fact that the Ethernet layer is handled not only
by the host OS but also by a separate piece of hardware called the network interface card (NIC).
The network interface card is responsible for translating the software representation of the packet
into a transmission over the physical network medium. Since one of the card’s responsibilities is
the management of MAC addresses, it must implement the IEEE 802 specifications and involves
itself in the link layer. SHARP’s kernel modules are guaranteed to work on any host whose NIC has
implemented the IEEE 802.1 specification; specifically, the card must be able to pass tagged packets
up to the OS. However, there is no clear standard which dictates how the card must present tagged
packets to the host. Therefore, it is the task of the Ethernet callouts to conditionally implement
different types of behavior and maintain the ubiquity of the kernel modules across all Windows
systems.

The NIC of the machines that we tested SHARP on will strip VLAN tags from any incoming
tagged packets by default. However, they can optionally be configured to leave the VLAN tags
unaltered when passing packets up to the OS. For Intel’s IEEE 802.1 network cards, this behavior is
called Monitor Mode, and can be set as a registry option from Windows itself. The kernel modules
could conditionally receive packets on the input path with or without VLAN tags, based on how the
card itself is configured. It follows that an inbound callout must exist to remove VLAN tags from
packets if the NIC chooses not to.

As we mentioned in Section 3.2, VLAN tags have historically been reserved for communication
between switches, and manually inserting them into the outbound Ethernet frames of endpoint
machines is very atypical behavior. The entire process of developing SHARP was done on VMs,
and so during our initial testing phase we were unsure whether a physical machine’s NIC would
interact nicely with unexpected VLAN tags. We found that, while the system did not crash upon
reading manually inserted VLAN tags, it would write the packet onto the wire without calculating
the checksums for the IP and TCP or UDP packet headers. We theorize that this happens because
inserting a VLAN tag extends the length of an Ethernet frame header by 4 bytes; when the NIC
processes the packet, the network and transport layer headers are not where the NIC expects them
to be, and it simply decides to skip checksum calculation. When a host receives a packet that has
incorrect or blank checksum fields, standard behavior is to discard the packet. Therefore we had
write our own routines for calculating IP and transport layer checksums for outgoing packets. Both
IP and the transport layer checksums are formed by performing one’s complement addition of 16-bit
words of data. However, where the IP checksum only sums the words in the IP header, UDP and
TCP checksums involve their respective headers, an IP pseudo-header, and the application-level
data they are transporting. Figure 14 shows how the pseudo-header is formed out of pieces of the IP
header. Our algorithm for transport layer checksumming borrows heavily from the implementation
used in the code base of WinDivert [25].

Figure 14: The pseudo-header used in both TCP and UDP layer checksumming is the same. Source:
http://www.danzig.jct.ac.il/tcp-ip-lab/ibm-tutorial/3376c212.html

41

3.6.5 Inbound Tag Removal

Since the NIC conditionally removes VLAN tags from incoming packets, an inbound Ethernet-layer
callout must exist to remove tags when the network card chooses not to. Fortunately this behavior
is much more straightforward that the outbound Ethernet-layer callout’s, since behavior is universal
across all incoming packets. If the callout sees a packet with a TPID, which indicates the protocol
encapuslated in the payload of the frame, corresponding to a tagged packet in the Ethernet frame,
the callout removes the tag and resets the packet data to indicate a regular, untagged packet. The
packet retrieval process is identical to that of the outbound Ethernet callout; at the end of the
procedure, the packet exists in a data buffer. The callout then indexes the packet at a fixed offset,
and checks the TPID. If it finds that the packet is tagged, it removes the two-byte tag and the TPID.
Finally, the modified data buffer goes through the repackaging process to become a NetBufferList,
and that packet is reinjected into the inbound queue. The code snipped below demonstrates the
process by which a VLAN tag is removed:

UINT32 tagOffset = 12;

RtlMoveMemory(buffer + tagOffset, //Dest

buffer + tagOffset + tagLength, //Src

packetLength - 16);

RtlZeroMemory(buffer + (packetLength - tagLength), tagLength);

bufferLength -= tagLength;

The four byte chunk which holds the TPID and VLAN tag is removed via a call to RtlMove-
Memory, which consequently shortens the packet by four bytes. To ensure that the final four bytes
at the end of the buffer are no longer used, they are set to zero. The buffer length is also adjusted to
reflect the shorter size of the packet. This does not affect a subsequent call to ExFreePoolWithTag,
which needs only a pointer to the head of the buffer to free the original buffer which we allocated.

3.7 SHARP Header Management

As demonstrated in the previous section, the process which appends SHARP headers to packets
is multifaceted and relatively complex when compared with other operations, such as VLAN tag
manipulation. This is because the SHARP header process spans several sections of the code as
a whole, using subsystems located in both user space and kernel space. Generation begins in the
outbound network filtering layer, where a callout uses the ALE lookup table to recognize when a
packet needs a SHARP header. If a packet does indeed need a header, the outbound network chooses
not to reinject it, and instead sends it up to user space via WinSightService. WinSightService, which
acts as the user space-side portal between user space and kernel space, forwards the packet data to
the SHARP daemon. The SHARP daemon receives the packet, assembles a path, and generates a
SHARP header. It then appends the SHARP header to the packet, which has now become the new
SHARP packet’s payload, and sends it back out onto the network. When the network layer callout
intercepts this new SHARP packet, it immediately lets it through to the network.

3.7.1 Retrieval of Target Packets

To retrieve packets which need SHARP headers, a callout must exist somewhere along the kernel’s
network queue to intercept the packets and pass them to user space. Our implementation uses a
callout at the outbound network filtering layer to achieve this purpose. Specifically, it sits at the
FWPM LAYER OUTBOUND IPPACKET V4 layer, which intercepts all IPv4 packets in the outbound queue
at the network layer, i.e. after the packet’s IP header has been constructed, but before the Ethernet
frame’s construction or the network interface card. When packets are intercepted at this filtering
layer, they are indexed to the start of the IP frame, so the packet does not need to be rewinded to
reveal necessary information.

42

The outbound network callout’s logic flow is similar to the other callouts in the kernel module.
First, the kernel module extracts the packet’s data into a continuous buffer, using the same technique
used by the other callouts. This process is described in greater detail in Section 3.4. The buffer
is allocated using Windows’ memory allocation tools for privileged (non-paged) memory. Once the
packet is retrieved, the unified parsing API scans the packet and extracts relevant information from
it.

With the packet extracted and parsed, the callout makes a decision on whether it needs to be
sent to user space for SHARP routing. To make this decision, the outbound network callout checks
if the packet exists as an entry in the ALE lookup table. The ALE lookup table is indexed using
a packet’s five-tuple, a set of five values which sufficiently categorize a TCP/IP connection. These
five values are:

• Source IP Address: The source/origin IP address of the packet.

• Destination IP Address: The destination/target IP address of the packet.

• Source Port: The source port of the packet.

• Destination Port: The destination port of the packet.

• Transport Layer Protocol: The protocol used in the transport layer of the packet. This
will usually be either UDP or TCP.

Luckily, the unified packet parsing API grabs all these values, so key construction only requires
that relevant MqpPacketData fields are loaded into a FiveTuple structure. The packet parsing API
is powerful here because of how it simplifies the logic of subsequent callout tasks. Once the key has
been generated, a call to lookupEntryFromTable searches the ALE lookup table and retrieves the
value associated with the key, if it exists in the table. This logic flow is implemented in the code
snippet below:

UINT32 localAddr =

FixedValues->incomingValue[FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_LOCAL_ADDRESS].value.uint32;

UINT32 remoteAddr =

FixedValues->incomingValue[FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_REMOTE_ADDRESS].value.uint32;

UINT16 localPort = pd->payloadSourcePort;

UINT16 remotePort = pd->payloadDestinationPort;

UINT8 protocol = pd->payloadTransportType;

FiveTuple key;

INT8 lookup;

key = buildFiveTuple((ULONG64) localAddr, (ULONG64) remoteAddr,

localPort, remotePort, protocol);

lookup = lookupEntryFromTable(key);

The callout makes a decision on what to do with the packet based on its presence in the ALE
lookup table. Three scenarios are possible: first, the key exists in the table and has an associated
set boolean value; second, the key exists in the table and has an associated unset boolean value;
and finally, the key does not exist in the table at all. For the purposes of the outbound network
callout, the packet is blocked and sent to user space if its key exists in the table with an associated
asserted value. Otherwise, the packet is placed back in the network queue without any modification
or reinjection. A specialized helper, MQPKERNEL PacketToService, takes the packet data in a buffer
and sends it to WinSightService for further processing. A packet can be either blocked or permitted
by setting its ACTION TYPE metadata value. A value of FWP ACTION PERMIT permits the packet,
while a value of FWP ACTION BLOCK blocks the packet.

43

3.7.2 SHARP Header Generation

After the callout in the outbound network filtering layer sends a packet to WinSightService in
a WINSIGHT QUERY DATA struct with the MQP NeedsSharpHeader flag asserted, a WinSightService
worker thread processes the request in the CollectProcessData() function. We modified the func-
tion as follows to specially process queries that were sent by the SHARP outbound network callout
as follows:

if (query->RequestFlags.MQP_NeedsSharpHeader == 1) {

// Copy the packet data from query struct buffer

int pathLen = query->ProcessPathLength;

CHAR *MQP_buffer = (char *)malloc(pathLen);

memset(MQP_buffer, 0x00, pathLen);

memcpy(MQP_buffer, (void *)query->ProcessPath, pathLen);

if (MQP_SHARPSocketConnected) {

int iResult = send(MQP_DaemonSocket, MQP_buffer, pathLen, 0);

if (iResult != pathLen) {

AddToMessageLog("Failed to send full packet to the daemon.");

}

}

...

query->RequestFlags.IsEmptyPacket = 1;

return;

}

In this code snippet, we retrieve the packet data stored in the ProcessPath buffer of the
WINSIGHT QUERY DATA, and send it to the SHARP daemon through a TCP socket on port 7002
for processing. The daemon has a thread called the ServiceWorker, which is dedicated to commu-
nication with WinSightService. After performing standard socket setup, the ServiceWorker enters a
while loop and blocks on a call to recv(ServiceSocket). With this structure, the ServiceWorker
can always be prepared for a new message from WinSightService once it finishes processing the
previous one.

Any message WinSightService sends to the SHARP daemon will contain a packet. ServiceWorker
first checks to see whether the packet starts with an IP header or a SHARP header. If the packet
starts with a SHARP header, we know that it was sent by the inbound network callout. This
indicates that the only action that must be taken is to reverse the SHARP header and store it in a
table that maps connection 5-tuples to SHARP headers. If the DestinationFlag is not asserted in
the SHARP header of the received packet, the SHARP daemon can conclude that it is executing
on a machine that is performing TCP stitching with a non-SHARP destination. If this is the case,
to reverse the header the daemon first removes the last IP address and VLAN ID from the header.
After this initial check, reversing the SHARP route in the header is simply a matter of reversing
the order of the remaining IP addresses and VLAN IDs, regardless of whether the DestinationFlag
is asserted. Finally, in both cases, the DestinationFlag and SendOrReceive flags are asserted in the
reversed SHARP header.

To determine if the packet starts with an IP header, the SHARP node checks that the first
nibble of the packet is equal to 0x4. If the test is true, the SHARP daemon can conclude that the
outbound network callout sent the packet, and that it must append a SHARP header and send the
packet along the route specified therein. In a full implementation of SHARP, the daemon would
consult with either locally cached rules or the remote controller to determine the SHARP path
for each connection. However, due to the time constraints of the project, our system does not
include controller interaction. We first check the SHARP header map for any previously-reversed
header that matches the outgoing packet’s connection 5-tuple. If none is found, a generic SHARP

44

header is appended and the resulting packet is added to a global semaphore-locked queue for the
ConsumerWorker to process.

Once the packet is taken off the queue by the ConsumerWorker thread, it increments the Index
field of the SHARP header, and uses it to extract from the header the IP address of the next hop
in the chain of SHARP nodes. The ConsumerWorker thread then creates a UDP socket to connect
to that address. Typically, client sockets are not bound to a particular port; however, we decided to
enforce the rule that all client sockets created by ConsumerWorker will be bound to UDP port 7001.
Since source port binding is an uncommon technique, we have demonstrated its implementation in
the code snippet below:

// binding on port 7001

struct sockaddr_in sa;

char* localIp;

// connect to Google’s public DNS server at 8.8.8.8 to determine local IP address

getLocalIP(localIP, INET_ADDRSTRLEN);

memset(&sa, 0, sizeof(struct sockaddr_in));

sa.sin_family = AF_INET;

sa.sin_port = htons(7001);

inet_pton(AF_INET, localIP, &sa.sin_addr.S_un.S_addr);

result = bind(SendSocket, (struct sockaddr *) &sa, sizeof(struct sockaddr_in));

if (result != 0) {

printf("bind failed with error: %d\n", result);

exit(EXIT_FAILURE);

}

3.7.3 Retrieval of SHARP Packet in Kernel Space

Once the SHARP daemon has constructed the new SHARP packet, it creates a new UDP connection
over SHARP client-reserved ports and sends the packet to the first intermediate SHARP node in the
path. SHARP traffic always has a source port of 7001 and a destination port of 7000. SHARP traffic
is easily identifiable by comparing source and destination ports to these values. Since the SHARP
daemon generates a new connection to send out the SHARP packet, that packet will be seen by both
our outbound ALE layer and network callouts. These packets must pass through the callouts with
no modification, since they are already SHARP packets. To serve this purpose, short-circuit logic
exists in both callouts which permits SHARP packets to continue through the kernel queue. Our
custom packet-parsing API sets an explicit flag in its output structure to signal that it has parsed
a SHARP packet. The code snippet below shows how that flag gets set:

if (data->SHARPHeaderTransportType != UDP_PROTOCOL

|| data->SHARPHeaderSourcePort != OUTBOUND_SHARP_PORT

|| data->SHARPHeaderDestinationPort != INBOUND_SHARP_PORT)

{

//this is not a SHARP packet

/* adjust other parameters to reflect a non SHARP packet... */

data->isASHARPPacket = 0;

return STATUS_SUCCESS;

}

//this is a SHARP packet!

45

data->isASHARPPacket = 1;

A SHARP packet must be using UDP, have a source port of 7000, and have a destination port of
7001. Once the packet is parsed, both callouts need simply to check whether the SHARP packet flag
is set. If set, the callout permits the packet and deallocates the data buffer which held the copied
packet before returning. Since SHARP packets are allowed through the higher layer callouts, they
can reach the Ethernet layer callout untouched and recieve a VLAN tag.

3.8 Intermediate SHARP Hops

All SHARP packets are processed by the user-space daemon; however, those SHARP packets can
come from one of two sources. The daemon can receive packets either from SHARP daemons running
on other machines in the network, or from WinSightService. To handle incoming SHARP packets,
the SHARP daemon has a third thread, called SHARPWorker. The SHARPWorker thread operates
similarly to ServiceWorker in that it creates a UDP socket (bound to port 7000 in this case), enters
an infinite while loop and blocks on a call to recv() therein. Since TCP stitching is performed at the
kernel level in our implementation, one invariant is that packets will only arrive at SHARPWorker ’s
socket if the machine on which the SHARP daemon is running is not the last SHARP node in the
SHARP packet’s route. Because of this, once SHARPWorker receives a packet, it simply adds it
to the global packet queue and returns to blocking on a recv() call. The ConsumerWorker then
removes the packet from the queue, increments the SHARP header Index field, and determines
where to send the packet next.

3.9 Handling SHARP Destinations

Once a SHARP packet has completed its route, the payload housed within the packet must be sent
to the application layer of the destination node. It is incumbent on kernel space to do this, since
the application layer listens on ports for inbound packets coming through the network queue. While
it might be feasible to have a user space application recieve SHARP packets, unwrap them, and
proxy information to the intended application, such a solution would be slow and unnecessarily
complex. It is more sensible to leverage the network queue, and modify packets as they pass toward
the application layer. Thus, a WFP callout exists on the inbound path to handle cases where the
SHARP path has ended. The callout exists at the inbound IP-v4 network layer, which exposes Layer
3 and Layer 4 information of inbound IP traffic.

As explained in the Section 3.2 of the report, behavior at the end of a SHARP path can vary
based on the final destination of the packet. If the final destination is itself a SHARP node, the
payload need only be unwrapped from the packet and sent to the application layer. If, on the other
hand, the final destination is a non-SHARP node, the final SHARP node in the path must proxy a
connection between itself and the final destination. Proxy behavior is described in detail in the next
section. The remainder of this section will describe the callout’s behavior when the final destination
is a SHARP node.

The inbound network callout, like the rest of our WFP callouts, follows the same basic logic flow.
Packets are received and converted into a contiguous data buffer. Those data buffers are parsed for
relevant information, which informs modifications on those data buffers. Finally, the buffer gets
repackaged into a packet, and that packet gets reinjected back into the inbound network queue. The
inbound callout first converts and parses incoming packets using the same logic described in the
common kernel module functions section of the implementation.

Before describing the behavior of the callout after the packet is parsed, it is important to note a
peculiarity of the inbound callouts which must be handled when copying the packet into a fresh buffer.
The WFP has to parse each header of the inbound packet to determine the filtering layer it belongs
to. For example, the WFP has to scan the Layer 3 header of an incoming packet to confirm that it is

46

an IP header and send it to the inbound IP-v4 callout. When the WFP scans that header, it moves
the index which the head of the packet beyond the scanned header, and does not reset that index.
This means that inbound callouts receive packets at a layer above their filtering layer; in the case
of our IP example, the inbound IP-v4 packet would be indexed at the start of the transport header
(whether TCP or UDP). Fortunately, the WFP offers an API which makes the IP header available
again to the callout. In particular, two functions, called NdisRetreatNetBufferListDataStart and
NdisAdvanceNetBufferListDataStart, move the index pointing to the start of the buffer backward
and forward, respectively. For the purposes of the inbound IP-v4 callout, incoming packets are
retreated by the length of an IP header to make the packet’s IP header accessible. Conversely, the
packet must be advanced back to the transport header when letting the packet back into the network
queue.

Once the packet has been copied into a buffer and parsed, the callout makes a decision on
whether or not the packet’s payload is destined for its host. To do so, several parameters of the
packet are checked. First, the the callout determines whether the packet belongs to SHARP. The
unified parsing API returns a bitfield which is asserted if the scanned packet is a SHARP packet;
the callout relies on this field to make its decision. Only SHARP packets can have payloads, so the
callout only proceeds if the packet is indeed a SHARP packet. Next, the callout checks whether the
SHARP packet has reached the last hop on its path. The SHARP header stores a hop parameter and
a length parameter. The index parameter of the packet is incremented every time it passes through
the user-space of an intermediate node; thus, by the time the packet reaches its final node, the index
parameter is one less than the hop parameter of the packet. As a result, the kernel module checks
if the current hop parameter is one less than the length of the packet to determine if the packet is
at the end of the SHARP path. The following code snippet shows how this condition is checked:

if (pd->SHARPHeaderIndex < (pd->SHARPHeaderHops - 1)) {

//release the buffer and allow the packet through

WdfSpinLockAcquire(AtomicMemoryManagementLock);

ExFreePoolWithTag(buffer, BUF_TAG);

WdfSpinLockRelease(AtomicMemoryManagementLock);

ClassifyOut->actionType = FWP_ACTION_PERMIT;

if (Filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT) {

ClassifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

}

return;

}

Finally, the destination flags of the SHARP header are inspected. As explained in the SHARP
header section of the implementation, the destination type flag of the packet is asserted when the
true destination of the packet is a SHARP node. Thus, if that flag is asserted, the kernel module
can absorb the packet’s payload back into the application layer. Otherwise, the callout must enter
a proxy connection with the true destination, as described in the next section.

To absorb the payload into the application layer, the payload of the SHARP packet is copied
over to a freshly allocated buffer, and the original packet buffer is freed from memory. This freshly
allocated payload buffer will itself become packaged a new packet which gets reinjected back into
the inbound kernel queue. The following code snipped demonstrates this copying operation:

UINT payloadStartIdx = pd->payloadTransportType;

UINT payloadLength = packetLength - payloadStartIdx;

//create a new buffer which holds the payload of the SHARP packet

WdfSpinLockAcquire(AtomicMemoryManagementLock);

47

payload = ExAllocatePoolWithTag(NonPagedPool, payloadLength, BUF_TAG);

WdfSpinLockRelease(AtomicMemoryManagementLock);

RtlZeroMemory(payload, payloadLength);

RtlCopyMemory(payload, &(buffer[payloadStartIdx]), payloadLength);

Once the payload gets extracted from the SHARP packet, both its IP and TCP/UDP checksums
must be calculated. Since the payload was wrapped with a SHARP packet before it ever left the true
source machine, the network interface card never processes the packet. It is the NIC’s responsibility
to calculate the checksums of outbound packets; the payload, left untouched by the NIC, will never
have its checksums calculated. Thus, our system manually calculates the checksums for the payload
headers using the same functions we discuss in Section 3.6.4.

3.10 Non-SHARP Destination Proxying

In an ideal world, every client would adopt and implement the underlying SHARP protocol, such
that the client could send and receive SHARP packets. Unfortunately, at least in the foreseeable
future, clients and servers in the wider network may not be running SHARP; thus, the protocol
must adjust to handle connections between those SHARP-less devices. While this is possible, it
limits the extent to which packet routes can be controlled. Once a SHARP node sends a packet to a
non-SHARP client, all control over that packet’s path is lost. Therefore, the SHARP protocol allows
for only the final node in a chain, i.e. the true destination, to be a non-SHARP node. To implement
this, extra logic exists within the kernel which allows the last SHARP node in the chain to spoof
a fresh, non-SHARP connection to the final destination. This node is responsible for translating
between the incoming SHARP connection and the outgoing non-SHARP connection.

In our case, spoofing a connection is similar to a primitive version of network address translation.
A non-SHARP node, known henceforth as the proxy destination, does not understand what to do
with a SHARP packet. The final SHARP node in the chain, known henceforth as the proxy source,
must extract the payload from the SHARP packet and send the payload itself. However, the payload
holds the IP address of the true source node, as that node generated it. The proxy source must
replace the payload’s source IP address with its own address, and send it out to the proxy destination.
When the proxy destination responds, it sends a non-SHARP packet back to the proxy source. The
proxy source must replace the destination IP address of the incoming packet with the true source’s
address, load the packet as the payload of a new SHARP packet, and send that SHARP packet back
through the SHARP network to the true source. The proxy source thus handles translating packets
from within the SHARP network and packets from the wider network. The diagram below gives a
step-by-step view of the destination proxy logic:

48

Figure 15: The code logic diagram for destination proxying.

Each step of the control flow is labeled in the diagram, and described in detail below:

1. The packet starts at the last SHARP node in the chain, and is intercepted from within the
inbound packet queue. The inbound queue loads the packet into a data buffer and parses it.

2. The callout recognizes that it needs to proxy with a non-SHARP node. It strips away the
SHARP header, leaving only the initial packet payload.

3. The callout stores the source IP of the payload, which is the true source’s IP address. It
replaces it with its own IP address. With the IP address spoofed, the SHARP node can proxy
a connection to the non-SHARP node.

4. The SHARP node sends the modified payload to the proxy target. Since the payload enters
the network interface card, checksums do not need to be manually calculated.

5. The proxy target sends a return message back to the SHARP node. The packet enters the
kernel queue, and is intercepted once again by the callout.

49

6. The destination IP of the incoming packet, which holds the IP address of the proxy source, is
swapped with the true source IP address which was saved in step 2. The packet can now be
given a SHARP header and sent back on the reverse path.

7. The IP checksum is manually recalculated for the packet, which will become a new SHARP
payload. The payload is then sent to user space to receive a SHARP header and move along
the reverse SHARP path.

The proxy logic is implemented at the network filtering layer, since a fully-formed IP packet
must exist to be manipulated. The implemented sits on the inbound path by necessity, for two
reasons. First, the callout can intercept and toss SHARP packets destined for proxying before user-
space unnecessarily sees them. Second, the callout can receive return packets from non-SHARP
destinations and prepare them for the SHARP path before user-space sees them. Generally, user
space should be unaware that a proxy connection is happening within the kernel modules; all it
should do is satisfy requests to create SHARP connections. The rest of this section goes into greater
detail on how each segment of the proxy logic is implemented within the inbound network callout.

3.10.1 Preparing a SHARP Packet for the Proxy Connection

The inbound network callout shares the same general implementation pipeline of the other callouts
in the kernel. First, an intercepted packet is copied into a data buffer. Next, it is parsed. Finally,
some operation happens on the buffer, and either the modified packet is reinjected to sent to user
space. However, while the other callouts each implement just one component of SHARP’s logic, the
inbound network callout implements several features which together handle destination behavior. As
a result, the the inbound network callout checks for several conditions in the packet before chosing
what behavior to execute. Again, the incoming packets have to be rewound back to the IP header
before they are copied into a buffer. They are advanced back to the Layer 4 header if the original
packets are ever let back onto the inbound network queue.

Once the packet has been copied over into a buffer, it is parsed using the unified parsing API. If
the parsing API fails, the packet is blocked from rejoining the network queue; this is to ensure that
SHARP’s user space modules do not log malformed packets. Then, the callout checks if the packet
is a SHARP packet or not. This distinction is significant because it accurately divides packets which
need to begin the proxying process and packets returning from a proxied non-SHARP destination.
The callout continues to prepare the proxy connection only if the packet at hand is a SHARP packet.
The packet is then checked to determine if it has reached the final SHARP node. If it has not, the
packet must be let through to the SHARP user-space modules to send it to the next node on the
SHARP path. Since it is the SHARP daemon’s responsibility to increment the current hop field in
the packet, the kernel module will intercept the packet on the inbound path before user space gets
a chance to properly increment its value. As a result, the kernel module checks if the current hop
parameter is one less than the length of the packet to determine if the packet is at the end of the
SHARP path. The following code snippet shows how this condition is checked:

if (pd->SHARPHeaderIndex < (pd->SHARPHeaderHops - 1)) {

//release the buffer and allow the packet through

WdfSpinLockAcquire(AtomicMemoryManagementLock);

ExFreePoolWithTag(buffer, BUF_TAG);

WdfSpinLockRelease(AtomicMemoryManagementLock);

ClassifyOut->actionType = FWP_ACTION_PERMIT;

if (Filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT) {

ClassifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

}

50

return;

}

In the snippet above, if the packet has not reached the final SHARP node, the kernel module
relinquishes control of the packet and allows it to pass to the user-space daemon. If the packet is
indeed at the final SHARP node, the callout finally inspects the SHARP header flags. Specifically,
it checks the destination type flag as described in the SHARP header section of the implementation.
If the flag is asserted, the SHARP node is at the intended final destination and can be returned to
the application layer of the node. Otherwise, the packet still needs proxying to a non-SHARP true
destination.

If the packet passes all the checks mentioned above, the callout initiates the proxying process
on the packet. The callout first strips the SHARP header from the packet, isolating the packet’s
payload. This task is made easier thanks to the universal parsing API, which marks the the beginning
of the payload in the buffer. A new buffer is allocated to hold the isolated payload, and a call to
RtlCopyMemory places the payload in a new buffer, where it can act as an entirely new packet.

To prepare for proxying, the callout retrieves the host machine’s IP address, which is used
later to forge the source IP address of the payload. A helper designed for this task, called
MQPKERNEL LookupStitchSourceAddress, accomplishes this by finding the reference to the host
machine in the SHARP header. If a packet has arrived at a SHARP node, that packet must have
the node’s IP somewhere in its header. In the case of proxying, that IP will always be the second to
last address in the header. The code snippet below implements this lookup:

UINT MQPKERNEL_LookupStitchSourceAddress(_In_ PCHAR buffer, _In_ UINT packetLength, _In_

MqpPacketData* data)

{

UNREFERENCED_PARAMETER(packetLength);

UINT offset = data->SHARPHeaderStartIndex + 6 + (6 * data->SHARPHeaderHops - 1);

return *(PUINT)(&buffer[offset]);

}

Once the local IP address has been discovered, the module sends the original packet to user space.
As explained in the previous section, whenever the SHARP daemon receives a SHARP packet from
WinSightService, it prepares a reversed path from the host node back to the original source of the
packet. When the proxied packets return, they use the prepared SHARP path to navigate back
through the SHARP network to the true source node. The forging process itself requires only a call
to RtlCopyMemory at a 12 byte offset into the payload; it copies the retrieved local IP address into
the buffer location where the source IP address exists.

Next, the original IP of the payload must be indexed in a table for later reference. In fact, the
ALE lookup table is re-purposed to support this task; the details of how this works can be found in
the next section. For now, it is sufficient to understand that a new entry exists in the ALE which
contains both the IP address of the proxy destination and the IP address of the original source.
Once the lookup table has been updated, the payload can be re-injected back into the outbound
network queue, so that it can reach the proxy destination. As usual, the WFP offers an API call
to reinject packets into the outbound queue at the network layer: FwpsInjectNetworkSendAsync0.
This reinjection follows the same logic flow as re-injection in the rest of the callouts, and is described
in detail in the Common Kernel Module Functions section of this report. If the packet re-injects
successfully, the SendComplete callback function frees all allocated buffers and blocks the original
packet. Otherwise, the payload is tossed, and cleanup is handled manually in the callout itself.
It should be noted that before the packet gets repackaged and reinjected, its IP checksum and
UDP/TCP checksums must be recalculated. Again, the payload itself never touched a network
interface card, so the card never automatically calculated those checksums.

51

3.10.2 Reusing the ALE Lookup Table for Source IP Storage

We originally intended for a separate table to manage the storage and retrieval of source IP addresses
during the proxying process. Generally, we wanted to design compartmentalized code which handles
single elements of the functionality robustly. Unfortunately, due to time constraints, we had to apply
a more pragmatic approach to complete the implementation of SHARP. In the interest of saving
development time, we decided to reuse the ALE lookup table to handle source IP address storage.
The ALE lookup table is thus populated with two types of entries: those which signal the kernel
module to send a packet to user space, and those which keep track of the true source IP of a payload.
Curiously enough, these alternate entries in the table also perform the original task of the lookup
table; they signal the inbound callout that a returning packet from the proxy destination needs to
be sent to user space to recieve a SHARP header.

The keys of the new entries are still five-tuples which represent the returning proxy connection
(i.e. the connection from the proxy destination to the source). When the inbound callout begins
a proxy connection, it proactively populates the table with this key by flipping the values of the
outgoing proxy packet. Specifically, the source and destination ports and addresses of the outgoing
packet are swapped when generating the key. The code snippet below demonstrates how this is
done:

//the return connection’s source IP is the device we are stitching to

//the return connection’s destination IP is us.

UINT32 sourceIP = pd->payloadDestinationIpAddress;

UINT32 destIP = localIpAddress;

//the ports are inverted, since we are expecting a return connection

UINT16 sourcePort = pd->payloadDestinationPort;

UINT16 destPort = pd->payloadSourcePort;

UINT8 protocol = pd->payloadTransportType;

FiveTuple key;

key = buildFiveTuple((ULONG64)sourceIP, (ULONG64)destIP,

sourcePort, destPort, protocol);

In this snippet, the payload destination becomes the source IP, and the proxy source becomes the
destination IP. The ports also are swapped in the same way. Once the key has been generated, the
entry is populated into the table. However, the value associated with the entry is the true source IP
address, not a simple boolean flag. This is the modification which separates these alternate entries
from their regular counterparts; the values of these entries are used to recall the true source of the
connection. Since an IP address can be represented as a positive unsigned integer, the callout will
still recognize that the packet associated with the table entry needs to be sent to user space. The
inbound callout’s behavior based on lookup value is summarized below:

• lookup equal to 0: Release the packet, and do nothing with it.

• lookup equal to 1: Send the packet to user space, but do not use the lookup value as an IP
address.

• lookup greater than 1: Send the packet to user space, and also use the lookup value as an
IP address.

During the proxying process, once the true source IP is copied out of the payload buffer, it gets
loaded as the value of a new entry in the ALE lookup table. Thus, the lookup table both maintains
that the return packet must be sent to user space and that the return packet must have its IP
address swapped out with the true source’s address.

52

3.10.3 Receiving Packets from the Proxy Destination

Once a packet returns from the proxy destination, the inbound callout will again be the first thing
(other than the Ethernet-layer callouts) to recieve that packet. It is the responsibility of the inbound
network callout to prepare the packet for the return connection over the SHARP network. The
callout will only try to handle a returning proxy packet if that packet does not have a SHARP
header. To determine whether the packet truly came from a proxy destination, the ALE lookup
table is checked, using the five-tuple of the incoming packet. As explained in the previous section,
the reverse parameters of the outgoing packet were used to proactively store the reverse connection
in the table. The five-tuple of the return packet will match this proactively-made key. If an entry
does indeed exist in the table, and the value associated with that entry is an IP address, the callout
knows it is handling a proxy response and can proceed with preparing the packet for the return path
across the SHARP nodes.

Luckily, most of the functionality which is necessary to initiate a SHARP connection in user
space can be reused to prepare the return path of the proxied connection. The inbound network
callout need only replace the destination IP of the incoming packet, which is the address of the local
node, with the IP of the true source. The packet can then be sent wholesale to user space, and sent
back through the SHARP network. The original packet is then blocked, since a fresh packet with
be sent out from user space. Of course, if the incoming packet is not part of a proxied connection,
the callout simply allows it to pass through the network queue unaltered.

53

4 Results

In this section we demonstrate the Layer 2 and 3 routing control offered by the SHARP protocol as
described in Section 3. To do this, we create a testbed network with VLANs configured as specified
in Section 3.2, and we install our implementation of the SHARP client on machines connected to
this network. Because encapsulation as a mechanism for enabling Layer 3 routing control is already
in wide use (e.g. GRE, IP-in-IP, IPSec, VPN protocols), we primarily focus on proving that our
design allows endpoints to control their packets’ paths at the Ethernet layer by choosing from a set
of predefined VLAN tag IDs.

4.1 Experiment Overview

We designed a set of two experiments that demonstrates basic SHARP packet encapsulation and
header processing, but highlights the Layer 2 routing control offered by SHARP. The network design
for the experiment is shown in Figure 16.

Figure 16: The testbed network design used for conducting Experiments 1 and 2. The network contains
three VLANs (1, 3, and 4), which each define a unique spanning tree for the network.

The network consists of three endpoints that are interconnected by a series of 3 switches and 2
hubs. Each switch has trunk ports that support the VLAN IDs shown next to them. For instance,
the uppermost switch is connected to the machine with IP address 192.168.1.12 by a trunk port
that accepts VLAN tags with IDs 1, 3 or 4. VLANs 1, 3, and 4 each comprise two out of the three
links in the inner triangle of switches, thus implementing all unique, valid spanning trees for the
network.

The network design includes hubs as a method for monitoring traffic that crosses a particular
link. Initially, we expected to be able to run tcpdump on each of the switches to watch SHARP
packets traverse the network; however, our initial testing showed that tcpdump could only capture
traffic that was destined for the switch itself. Because the switch’s packet forwarding functionality
can be performed at the hardware level, software such as tcpdump is never able to capture these
packets. Thus, in order to observe SHARP packets in transit, we introduced the hubs between two
of the switch pairs. When a hub receives bits on one of its ports, it simply broadcasts those bits
on all other active ports. To capture traffic passing through a hub, we simply connect a computer

54

running Wireshark. In this experiment, since the switches on either end of the hub will expect traffic
with VLAN tags, the recording computer will only be able to observe traffic, and cannot send traffic
of its own past either switch. Since the recording computers are not meant to engage with the other
machines on the network for the experiment, this is ideal.

As preparation for each experiment, a rule is implemented at the outbound ALE layer of the
SHARP client’s kernel driver (see Section 3.5) indicating that connections with destination port 80
and destination IP address 192.168.1.13 require a SHARP header. Also, Python3 is installed on
the machine at 192.168.1.13 and the command python3 -m http.server is executed to start an
HTTP server. The experiments are then conducted as follows:

1. Install the SHARP client on each of the endpoints.
2. Start Wireshark on each of the endpoints, as well as on the monitoring devices connected to

the hubs.
3. Execute curl 192.168.1.13:80 on 192.168.1.11 to initiate an TCP SYN request for an

HTTP connection.
4. Wait for the SHARP-header encapsulated request to reach 192.168.1.13.
5. Kill the curl command.
6. Stop Wireshark and save the capture to a .pcapng file.
7. Uninstall the SHARP client and save log files.

The key (and only) difference between the two experiments is the SHARP header that is appended
to the outgoing TCP SYN packets on 192.168.1.11. The header for each experiment is shown in
Figure 17.

Figure 17: The SHARP header appended to the outgoing TCP SYN packet from 192.168.1.11 to
192.168.1.13 in each experiment. Note that the VLAN IDs between each node have been swapped.

In Experiment 1, the SHARP packet will be tagged with a VLAN ID of 3 when leaving
192.168.1.11, and thus should pass through Hub B (but not Hub A) on its way to 192.168.1.12.
On the other hand, in Experiment 2 the SHARP packet should travel through Hub A instead of
Hub B on its way to 192.168.1.12. If we show that this behavior does occur, then we will have
demonstrated that a host-based SDN can offer the same Layer 2 routing control as a switch-based
SDN, and it is as simple as changing the VLAN tag on an outgoing packet to change the entire path
a packet takes through the LAN.

After capturing traffic for each experiment in .pcap files, we will apply the display filter udp

and udp.port == 7000 to ensure that only traffic containing SHARP packets will be shown.

4.1.1 GNS3

Due to limited hardware availability, we initially aimed to conduct our experiments with a virtual
testbed, comprised of logically interconnected VMs. We identified Graphical Network Simulator
3 (GNS3) as an application that would potentially suit our needs. GNS3 is a network emulation
software which allows users connect switches, routers, and endpoint machines via a drag-and-drop
interface [26]. Importantly, in GNS3 users can import VM images to use as endpoints in the virtual

55

network; in order to install our own software, we needed the testbed application we chose to offer
this feature.

Because the PEACE software off of which we implemented SHARP is proprietary, we performed
the development and debugging for SHARP on Windows 10 VMs hosted on a WPI Linux server.
The Linux server used QEMU and KVM for its hardware virtualization and so our VM images were
stored in the .qcow2 file format, which was one of the formats supported by GNS3. We found quickly
that our Windows 10 VM’s 70 GB storage was too large for GNS3 to handle, as the application
would become unresponsive after we tried to add the VM to the list of available endpoints. By
creating a new Windows 10 VM with only 20 GB of hard disk space, we were able to successfully
add a VM with SHARP and PEACE installed to a sample network in GNS3. Despite opting for a
more lightweight VM, the GNS3 application was still somewhat slow and unwieldy to work with.

What ultimately caused us to abandon the idea of a virtual testbed was the fact that were
unable to set up VLAN trunking on the virtual network. Trunk ports are essential to the SHARP
design, and GNS3’s default switch element does not support VLAN trunking. It is possible to add
more advanced, proprietary switch elements to GNS3 by importing images such as the Cisco VIRL
IOSvL2. However, obtaining the Cisco VIRL IOSvL2 image required a privileged Cisco account,
and we decided it was not worth our time to pursue the virtual testbed option any longer.

4.1.2 Physical Testbed Construction

Having opted to create a physical testbed, we needed to acquire various pieces of hardware to
construct the network shown in Figure 16. We borrowed Windows 10 laptops to serve as the
SHARP-enabled endpoints from WPI’s Academic Technology Center, and although hubs are not
often used in production networks anymore, we were able to find professors in the Computer Science
department who still had some and graciously loaned them to us. While we were unable to acquire
switches for the experiment, we borrowed three TP-LINK Archer C7 routers from the department.
By replacing the stock firmware with OpenWRT, we gave the routers VLAN support. By disabling
DHCP on the routers and using only the LAN ports, they performed essentially the same function as
switches. In Appendix A we detail the process of installing OpenWRT and tcpdump on the routers,
and how to create VLANs and assign them to access and trunk ports. Figure 18 shows the final
physical network setup.

56

Figure 18: The final physical implementation of the testbed network used for conducting Experiments 1
and 2.

4.1.3 Experiment 1

We now present the results for Experiment 1. Figure 19 shows the SHARP daemon’s ServiceWorker
thread receiving the TCP SYN packet created by the curl command. The ServiceWorker then
checks the SHARP header table for an appropriate header, and finding none, appends the generic
SHARP header. The ConsumerWorker thread then indicates that it has received the packet, and as
specified in the SHARP header, creates a UDP socket in order to send the packet to 192.168.1.12.

Figure 19: The SHARP daemon running on 192.168.1.11 receives the TCP packet from WinSightService.
The destination port for the packet is 80 (A), and the flags in the TCP header indicate that it is a SYN
packet (B). After the ConsumerWorker thread receives the packet, it prepends a generic SHARP header
(C), and sends the encapsulated packet over UDP to 192.168.1.11.

Figure 20 demonstrates the packet leaving 192.168.1.11 on its way to the SHARP node at
192.168.1.12. As per the SHARP header, the outbound Ethernet callout on 192.168.1.11 has

57

inserted a tag for VLAN 3 into the Ethernet header.

Figure 20: A Wireshark capture shows the SHARP packet travelling from UDP port 7001 on 192.168.1.11

to UDP port 7000 on 192.168.1.12 (B). The packet has a VLAN tag with ID 3 inserted into the Ethernet
frame header (A).

As Figure 21 shows, Hub B captures the packet while it travels between 192.168.1.11

and 192.168.1.12, but has no record of the packet as it travels between 192.168.1.12 and
192.168.1.13, since the VLAN tag used between those nodes will specify VLAN 4.

Figure 21: A Wireshark capture shows the SHARP packet travelling across Hub B as it travels from
192.168.1.11 to 192.168.1.12.

Once the packet reaches 192.168.1.12, it is received by the SHARPWorker thread which was
listening on UDP port 7001 for any incoming SHARP packets. The ConsumerWorker thread then
increments the index field of the SHARP header and sends the packet to 192.168.1.13 in accor-
dance with the path defined by the SHARP header. As the encapsulated packet travels through
192.168.1.12 kernel networking send path, it triggers log prints as shown in Figure 22.

58

Figure 22: Log file showing the outbound processing of the SHARP packet on 192.168.1.12. Due to print
buffering, the order of print statements is slightly incorrect. However, the log still displays the outbound
network callout permitting a packet that it recognizes as having a SHARP header, and shows the outbound
Ethernet callout determining to append a tag for VLAN 4 due to the index value in the SHARP header.

Once 192.168.1.12 writes the SHARP packet onto the wire with a tag for VLAN 4, the network
switch connected to it directs the packet through the port connected to Hub A. Figure 23 shows
the Wireshark capture for Hub A. Finally, the SHARP packet arrives at 192.168.1.13, as shown
in Figure 24.

Figure 23: The SHARP packet captured by Hub A on its path between nodes 192.168.1.12 and
192.168.1.13. The packet has a VLAN tag of 4 (A), and the index value of the SHARP header has
been visibly updated from 0 to 1 by 192.168.1.12 (B). Note that Hub A has no record of the packet as
it travelled between nodes 192.168.1.11 and 192.168.1.12.

Figure 24: The SHARP packet arrives at its final destination.

59

4.1.4 Experiment 2

Having shown that packets will not pass through Hubs A and B if they are not appended with
tags for VLANs 4 and 3 respectively, we now swap the VLANs specified in the SHARP header
from Figure 17. This will demonstrate that we can selectively decide which path a packet will take
through the network simply by modifying the VLAN tag inserted into its Ethernet frame header.
Again, the experiment begins with 192.168.1.11 attempting to send a TCP SYN packet for a
HTTP connection to 192.168.1.13. Figure 25 shows the kernel-level log file for 192.168.1.11 as
the original packet is intercepted, receives a SHARP header, and permitted by the WFP callouts.

Figure 25: The kernel-level log file for 192.168.1.11 indicates that the ALE callout (created for testing)
flagged the packet to receive a SHARP header. The outbound network callout prints that it sent the
packet to WinSightService and then, after the packet had received a SHARP header from the SHARP
daemon, permits it to continue on the network send path.

The SHARP packet has a VLAN ID of 4 and therefore travels through Hub A, as shown in
Figure 26. On the other hand, the packet is never seen by Hub B while on its way to 192.168.1.12

(see Figure 27). We have therefore shown that a host can control which path a given packet takes
to reach its destination by modifying the value of the VLAN ID in the tag. Note that Hub A has
no record of the packet as it travels between 192.168.1.12 and 192.168.1.13.

Figure 26: Hub A’s capture log shows a SHARP packet destined for 192.168.1.12 with a tag for VLAN
4. Note that the hub has no record of the packet as it travels from 192.168.1.12 to 192.168.1.13 over
VLAN 3.

60

Figure 27: Hub B’s capture log shows a SHARP packet destined for 192.168.1.13 with a tag for VLAN 3.
Hub B exhibits the same behavior as Hub A in that it never receives the packet between from 192.168.1.11

and 192.168.1.12 over VLAN 4.

First and foremost, the results of Experiments 1 and 2 demonstrate that we can control packet
pathing by manipulating VLAN tag IDs. Additionally, the packet captures collected show the
selective encapsulation of packets in SHARP headers based on a comparison of flow features to
a rule we created. Combined with the proper reception and redirection of SHARP packets by
intermediate SHARP nodes, these results prove that we properly implemented all parts of the basic
SHARP design except for the proxying behavior and destination packet processing. We discuss the
difficulties we encountered in debugging our implementation of these parts of the system in Section
5.

61

5 Discussion

Here we discuss the limitations of our implementation of SHARP, and potential future additions
and improvements to the design.

5.1 SHARP over the Wider Network

The system described in this paper is limited in scope to a single LAN operating under a single
SDN controller. The controller maintains a map of the Layer 2 and Layer 3 topology of the LAN it
administers, and can thus issue SHARP headers for packets travelling between end hosts within the
LAN. However, the controller has no understanding of either the Layer 3 or Layer 2 topology in the
wider network, or in a separate LAN; thus, it cannot manipulate the path of a packet once it moves
past a gateway router to the wider network. For some institutions, it is permissible for arbitrary
routing to be limited to a single LAN, especially for institutions who an afford to locally host an SDN
controller. In some cases, however, a smaller institution may wish to have the controller hosted by a
separate remote service, and have local clients interface with the controller over the wider network.
In these cases, it would be advantageous to carry routing control beyond the local network of the
controller.

Ideally, a controller would like to know about the topology of every network which has imple-
mented the SHARP SDN, such that it could influence any potential path over the Internet as much
as possible. In reality, each controller will only understand the topology of its local network. Con-
trollers could still communicate with each other, in a distributed system, to construct paths which
use more than one local network. Such a design would allow controllers to communicate and cache
routing decisions between one another. For example, if a controller needed to know VLAN tags
and IP addresses to construct hops on a network administered by a different controller, the first
controller could retrieve and cache the topology it needs from the second controller. Any controller
would have enough information to generate SHARP paths between any two nodes running SHARP.
In a sense, the controllers would form a distributed system, since each one holds part of the larger
network topology and shares relevant information when necessary.

Another way to go about routing SHARP packets over the wider internet would be to mimic the
interdomain/intradomain approach adopted by the BGP. Controllers would be in charge of knowing
how to route packets within their own local networks, similar to an intradomain protocol. Controllers
would also be aware of the routers in separate networks to which the controller would send SHARP
packets bound for those networks, similar to an interdomain protocol. When those edge routers
receive packets from other SHARP networks, they could ferry the packets to local controllers to
receive routing rules for the local network. This would allow a controller to send packets to SHARP
nodes on the wider network without communicating with the controller associated with the remote
SHARP node. While such systems are relevant to SHARP, they are beyond the main scope of this
research project. A future MQP could focus on solving SHARP’s distributed controller problem.

5.2 Securing the SHARP Protocol

The SHARP protocol accomplishes our main objective: it offers host-based routing at both Layer
2 and Layer 3. Unfortunately, the inherent security of the protocol was not a consideration in its
design. As a result, the SHARP protocol in its current form has inherent security issues which
inhibit its ability to be adopted in a practical environment. A cursory analysis of the protocol
indicate that man-in-the-middle (MITM) attacks are feasible both between a SHARP node and the
controller and between two SHARP nodes in a SHARP path. Since all nodes in a SHARP path
share the burden of directing packets along that path, a malicious node which intercepts SHARP
packets could arbitrarily redirect those packets. Clearly, the channels of communication amongst

62

the SHARP nodes and the controller must be secure for SHARP to realistically ever see widespread
adoption.

Fortunately, an entire class of cryptographic systems exist which expressly solve the problem of
facilitating communication between two parties over an insecure network. These systems typically
rely on a trusted authority (TA) which both parties trust to facilitate communication. Our controller
already interacts with each node to dictate routing rules, so it could easily be repurposed to also serve
as the TA. For the remainder of this section, the Needham-Schroeder protocol will be examined as a
potential system which could be implemented into SHARP; however, it should be noted that other
protocols exist, including Kerberos, which are suitable for SHARP’s needs. Under the Needham-
Schroeder protocol, a SHARP node which would like to forward a SHARP packet would first ping
the controller and request a session key for communication between itself and the next node in the
path. The node receives a copy of the session key, encrypted with a shared key between itself and
the controller; it also receives a copy of the session key encrypted with a shared key between the
next node and the controller. The first node would send the latter encrypted session key to its
desired node, which would decrypt it to retrieve its copy of the session key. Since each session key
was encrypted with a trusted key between the controller and a unique node, both parties can be
confident that they were issued a fresh and trustworthy session key. Thus, they can proceed to send
nonce-padded messages to each other, encrypted with the session key. It should be noted that the
Needham-Schroeder protocol does not fully protect against replay attacks or MITM attacks; thus,
Kerberos may be a more suitable protocol to implement into SHARP.

One outstanding issue of using a key transport protocol is that somehow, a trusted key must be
established between the controller and each node. Furthermore, the channel between the controller
and any given node must also be resilient to MITM attacks and replay attacks. Unfortunately,
the protocols listed above do not explicitly describe how trusted keys are issued to communicating
parties. In the case of SHARP, that responsibility could be handled manually by a network admin-
istrator, or some other system could automatically register legitimate SHARP nodes in the network.
The design and implementation of such a protocol into SHARP could be the foundation of another
future MQP.

5.3 Analysis of Kernel Module Failures

Our experiment results conclusively demonstrate SHARP’s ability to route packets between differ-
ent host devices. Thus, SHARP packets can be generated and passed between nodes; however,
the packets fail to get absorbed back to the application layer once they have reached their final
destination. This stems from errors in our inbound network callout, which is responsible for the
destination-handling of packets. Unfortunately, the time restrictions of the MQP forced us to prior-
itize the generation of conclusive results which proved our VLAN/SHARP routing capability, so we
were unable to fix the outstanding issues in the inbound network callout. However, we have traced
the sources of the errors; they are outlined below.

For cases where a SHARP node is the true destination of a SHARP packet, the inbound callout
successfully unwraps and re-injects the packet’s payload. The re-injected packet is visible in the
kernel queue, and permitted past the inbound network callout. However, the re-injected payload
never reaches the application layer. This would suggest that somehow, the payload itself is mal-
formed, and the Windows Filtering Platform is tossing it out. We know that since the payload is
never processed by the network interface card, the payload’s IP and TCP/UDP checksums are never
calculated. We attempt to remedy this by manually calculating both checksums before the payload
gets bundled in the outbound network callout. We know for certain that the IP checksum is correct,
since we employ it to checksum VLAN-tagged packets. Unfortunately, the TCP/UDP checksum is
more complex to calculate, and even harder to validate. We suspect that the TCP checksum is being
calculated incorrectly. This concurs with our probing of the WFP, which indicated that packets were
getting tossed before the TCP/UDP callout. If we had more time to complete this MQP, we would

63

develop a system where we could replay specific outbound packets through an NIC to ensure that
our checksum algorithm is correct.

Unfortunately, the proxying system which allows SHARP packets to arrive at non-SHARP nodes
is fundamentally broken. This is because the inbound network callout does not have access to
the outbound network queue, despite the fact that the outbound queue re-injection functions are
exposed to the inbound callouts. Thus, when the inbound network callout tries to inject a proxy
packet into the outbound network queue, the packet instead enters the inbound network queue and
immediately gets tossed. This means that our proxying code is fundamentally untestable. In this
case, limited documentation and code samples led to a fundamental misunderstanding about the
Windows Filtering Platform. A redesign of the system, potentially using a user-space service, might
be necessary to successfully implement communication to non-SHARP nodes.

5.4 Reflections on the Windows Kernel

Windows driver development comes with unique challenges, from the implementation process itself
to the testing and validation pipeline. Those added challenges arise from several sources, including
the proprietary nature of the kernel, the design of Windows itself, and the documentation on the
Windows filtering platform. In this section of the discussion, we catalogue several the difficulties we
dealt with while developing for the Windows kernel.

Windows documentation itself is found on Microsoft’s website; it mostly consists of Doxygen-style
descriptions of different API calls under the WFP, but does not explain how the WFP is leveraged
to perform essential tasks. Furthermore, we found that the WFP often offers several different
API calls accomplish the same task. One of the reasons why our inbound network callout was
designed incorrectly was because the WFP documentation never clarifies at what callout layer each
re-injection function should be used. We also discovered WFP behaviors that were inconsistent with
Microsoft’s documentation. For example, their Github documentation states that callouts registered
at the outbound Ethernet layer intercept packets at their IP header; in reality, those packets are
intercepted at the Ethernet header [24]. Collectively, the challenges we encountered while learning
about the WFP reduced the speed at which we could develop SHARP.

The only resource available which fully implements callouts for the WFP exists as a Git repository
published by Microsoft, appropriately titled the WFP sampler. While in-line comments do exist
throughout the sampler, which clarify the functionality of code snippets, the code itself does not
document the context surrounding how different calls are used. For example, some API calls need
specific global variables asserted to function properly; the sampler might achieve this purpose with a
goto statement which sets several global variables at once, of which only a couple are relevant. The
sampler code also has limited relevance to our application because the WFP offers several different
methods of accomplishing the same tasks. Often, the sampler would use a valid method or technique
which would be irrelevant for our application because we had chosen a different method provided
by the WFP to accomplish the same task.

We also incurred delays in our development from our kernel debugging environment. Our testing
environment uses several Windows virtual machines. Some machines are reserved for developing
SHARP, while others are dedicated to testing SHARP. Thus, to test SHARP, our code had to first
be compiled on a development machine, then transferred over to a testing machine. We accomplished
this with Git; however, this added inefficiency to our testing pipeline because all object files and
binary files had to be pushed and pulled remotely. Once the compiled binaries arrive at a test
machine, a script installs our kernel modules. If the code fails, (as it almost invariably will during
development), Windows crashes, producing a blue screen and rebooting. This leaves several minutes
where the machine is unusable and unrecoverable. The machine will try to reboot and run the
broken kernel modules several times before it gives you the option to boot Windows in safe mode
to uninstall them. There is no way to determine what went wrong during that time. Once the
machine is recovered, the only way to examine the crash is to pass a crash report produced by

64

Windows to WinDbg, a debugging platform which produces register dumps, stack traces, etc. from
that crash dump. Unfortunately, these crash dumps often did not indicate the true source of a crash.
The Windows kernel is multi-threaded; if the kernel modules do something which causes a separate
thread to crash, the crash dump will provide a stack trace to that unrelated thread. Furthermore,
Windows overwrites its crash reports every time it blue-screens; since a machine will blue-screen
several times in a row before becoming recoverable, only the final (and often irrelevant) blue-screen is
available for analysis. This left us with print debugging and code deletion as our primary debugging
techniques.

5.5 Future Development Steps

While this report marks the end of our major qualifying project, we suspect that we will be continuing
to develop and update SHARP as a protocol. This section describes the steps which we plan to take
next as we continue to develop SHARP.

Our immediate goal is to repair our broken inbound network callout. Most importantly, we
would like SHARP payloads to be retrievable the application layers of SHARP nodes. As discussed
in Section 5.3, we suspect that a miscalculation of the TCP/UDP checksum is causing the WFP to
toss payloads as they exit the inbound network callout. Thus, we will probably develop a method to
easily test the validity of our checksums, perhaps by replaying the same packets several times with
and without a network interface card. The proxy system for non-SHARP destinations in the inbound
network callout needs a more general rework. We will write a new callout which encapsulates the
proxy service in its entirety. To circumvent the fact that inbound callouts do not have access to
the outbound queue, we will probably use another userspace helper to reroute packets out of the
machines.

Once we fully implement SHARP’s basic functionality, we will have more freedom in how we want
to develop our system. One possibility could be to implement the security features mentioned in
Section 5.2, to help make SHARP a system which could be used in practice. We could also integrate
SHARP into a software-defined network, such as PEACE. To test the SHARP protocol, we were
caching manually-generated rules on SHARP nodes. We have yet to implement controller interaction
or rule caching with SHARP. This would also be an essential step towards making SHARP usable
in real-world settings. On top of this, we could add network resiliency protocols and advanced
performance metrics to best gauge the performance hit incurred by using SHARP. As a general rule,
we would like to further show that SHARP could be used in practical applications.

65

6 Related Work

Here we describe early implementations of host-based SDNs in the literature. We also examine
works that employ the SDN paradigm to improve network security, works that address the problem
of flexible TCP connections, and different implementations and applications of overlay networks.

6.1 Host-based SDN

As we mentioned in Section 1, the scientific community has only marginally explored the potential
of a host-based SDN design. In Scotch, Wang et al. dynamically incorporate hosts running Open
vSwitch into a switch-based SDN in order to take advantage of the much higher processing power
they possess [2]. Papers by Taylor et al. [27] and Shue et al. [11] mark some of the first host-based
SDN designs, and suggest that hosts can provide the SDN controller with contextual information
about each tentative connection to allow for more fine-grained rules. Our work builds directly off of
these papers, which allow a controller to grant or deny connection requests, but lack the traffic path
control functionality that are natural for switch-based SDNs.

An implementation of host-based Layer 2 routing control does exist in the current literature.
With the SPAIN protocol, Mudigonda et al. create VLAN spanning trees, and allow endpoints
to manipulate traffic pathing by connecting them to trunk ports and inserting VLAN tags into
outbound traffic [28]. This is very similar to the final design we chose for SHARP, however SPAIN
does not support endpoints delegating routing decisions to an external controller as an SDN would.
Additionally, SHARP includes a protocol header which allows for more complicated network routes
to be defined, which have intermediate nodes and can travel across multiple VLAN IDs.

6.2 SDN-Based Security

The security applications of SDNs has been readily explored by the community. We designed SHARP
in part to give IT technicians more freedom in the placement of IDS middleware within their net-
works; to achieve the same goal with a traditional switch-based design, Qazi et al. developed SIMPLE
[29]. SIMPLE is a policy enforcement program that updates flow rule tables in OpenFlow-enabled
switches to steer traffic through a logical ordering of middleboxes provided by network administra-
tors. To aid developers in the creation of controller-based security software, Shin et al. created
the FRESCO framework [30]. Nobakht et al. develop a module for the popular Floodlight SDN
controller to perform specialized intrusion detection and prevention for IoT devices [31]. Once an
IoT device is registered with the system, the SDN redirects all of its traffic through the controller
for monitoring. Othman et al. demonstrate a controller-based firewall application for traditional
switch-based SDNs [32], while the PEACE host-based SDN firewall demonstrates that host-provided
connection context can be used to create more powerful firewall rules [10].

6.3 Flexible TCP Connections

In most cases, the design of the SHARP system allows for a connection’s assigned SHARP route
to be modified during the connection. Ignoring the trivial case of the source and destination node,
there is only one situation in which a node must remain static. When the DestinationFlag is not
asserted, the second to last node in the chain proxies the packet stored in the SHARP header by
overwriting the inner packet’s source IP address. If the SHARP route changes and a new proxying
machine is specified, the destination will receive packets for the same connection from two different
IP addresses, and if the inner packet’s transport layer protocol is TCP, the connection will be reset.
To allow the proxying node for a connection to be changed while the connection is ongoing would
require that the destination can receive packets for the same TCP connection from multiple IP
addresses.

66

Some methods have already been developed for allowing multiple IP addresses to share a single
TCP connection. Migratory TCP (M TCP) is an augmentation of the existing TCP protocol that
allows the server to specify multiple IP addresses to a client [33]. The client can then connect
to one of the provided IP addresses and specify when it wishes to communicate with a different
server IP address at any point in the connection using a MIGRATE REQUEST. Multiple systems have
been proposed for migrating application state between two clients in addition to migrating the TCP
connection itself [34, 35].

Two other protocols which could solve the issue of a single connection being shared by two client
IP addresses are Multipath TCP (MPTCP) [36] and SCTP [37]. MPTCP has an implementation
for the Linux kernel and is employed in Apple’s iOS and OS X operating systems, however it is
not supported by the Windows kernel [38, 39]. Likewise, SCTP is not a heavily adopted protocol
and is not implemented in the Windows kernel, and thus these options were not available to us for
designing SHARP. It should be noted that there is a third-party Windows driver for SCTP called
SctpDrv [40], however in order to use the driver for a connection, the destination of the connection
would have to support SCTP as well. Unless the destination were also a SHARP node, we would
not be able to assume that the destination had SCTP support.

Finally, the most widely-adopted but least desirable solution to this problem is using Network
Address Translation (NAT). NAT allows for IP addresses and transport layer ports for incoming or
outgoing packets to be modified according to a set of rules. To apply NAT to solve the multiple-
source TCP connection problem, when a new proxying node N is specified the SDN controller could
interact with the SHARP client on the destination machine and N to map N ’s IP address to the
that of the original proxying node, and vice versa. Since our implementation of SHARP did not
include controller interaction, we did not include this feature.

6.4 Overlay Networks

Overlay networks are applicable to a wide range of applications. Many overlay network applications,
including Andersen et al.’s resilient overlay networks (RONs), involve dynamically selecting the
highest-quality packet routes between hosts [19]. In the RON implementation, a special header is
appended onto each packet dictating the heuristic for route quality, like throughput, latency, or
packet loss. Each node on the network parses the heuristic, or policy, in the header and generates
a routing table which directs the next hop for the packet. Gu et al. also use overlay networks to
guarantee quality of service between nodes [41]. Stone uses overlay networks to dynamically reroute
suspicious traffic from edge routers to special tracking routers for inspection. Each edge router, as
an overlay node, checks if incoming traffic matches a certain attack signature. If it does, the overlay
network uses BGP to update the routing path of the traffic to the tracking router [42]. Other work
has been done to build application-agnostic overlay networks. Li and Mohapatra propose using one
or more overlay broker (OB) nodes within an autonomous network to implement arbitrary overlay
services. The resulting “overlay service” would implicitly guarantee services like network topography
discovery, routing path selection, and fault tolerance [43].

67

7 Conclusion

Host-based SDN has the potential to be an inexpensive, flexible, and powerful alternative to switch-
based SDN for enabling routing control and improving security in the LAN. So far, the concept of
a host-based SDN with routing control has not been explored by the scientific community, partly
because of the conception that it could not offer the same fine-grained traffic engineering capabilities
as switch-based SDNs. The goal of our project was to design a host-based SDN that achieved feature
parity with switch-based SDNs, and do so using only legacy hardware. Our final design is called
SHARP, which we implemented as a user-space daemon and a set of kernel-level callouts for the
Windows Filtering Platform. To accomplish routing control at the Ethernet layer, we repurposed
VLANs to create a set of unique spanning trees defining routes between nodes on a network. We
also attached endpoints to trunk ports so that they could manually insert VLAN tags into outgoing
packets to decide which VLAN each packet was a part of, and thus which path the packet would
take to reach its destination.

We also introduced Layer 3 routing control to the SHARP system, which local switch-based
SDNs do not support. To do this we developed the SHARP header, which encapsulates outgoing
packets and defines the set of SHARP-enabled machines the packet must visit before reaching its
destination. The SHARP header also defines which VLAN IDs to tag the packet with as it travels
between each node in the chain. By sacrificing Layer 2 control in some parts of the SHARP path,
our system even allows for public IP addresses on the Internet to be specified as intermediate nodes.

To test our design, we built an isolated physical network out of switches, hubs, and laptops.
We were able to prove that, with a correct configuration of VLANs on the switches, we could
choose between two paths to reach an intermediate node in a SHARP path simply by changing the
ID of the VLAN tag inserted in an outgoing packet’s Ethernet frame. We also showed that our
implementation correctly parsed the path defined in a SHARP header and could reroute packets to
intermediate nodes before successfully delivering them to the original destination machine. With
SHARP, we have demonstrated that a host-based SDN can offer routing control equal to and greater
than that of a switch-based SDN, and in a manner that is neither costly nor restrictive.

68

References

[1] H. Abrahamsson and M. Bjorkman, “Robust traffic engineering using l-balanced weight-settings
in OSPF/IS-IS,” in 2009 Sixth International Conference on Broadband Communications, Net-
works, and Systems, pp. 1–8, Sep. 2009.

[2] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch: Elastically scaling up SDN
control-plane using vSwitch based overlay,” in Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies, pp. 403–414, ACM, 2014.

[3] “Understanding the SDN architecture – SDN control plane & SDN data plane.” https:

//www.sdxcentral.com/sdn/definitions/inside-sdn-architecture/. Accessed December
28, 2018.

[4] “What is SDN?.” https://www.juniper.net/us/en/solutions/sdn/what-is-sdn/. Ac-
cessed October 8, 2018.

[5] “Sofware-defined networking.” https://www.cisco.com/c/en/us/solutions/

software-defined-networking/overview.html. Accessed October 8, 2018.

[6] “Floodlight REST API.” https://floodlight.atlassian.net/wiki/spaces/

floodlightcontroller/pages/1343539/Floodlight+REST+API. Accessed December 28,
2018.

[7] “What is openflow? definition and how it relates to SDN.” https://www.sdxcentral.com/

sdn/definitions/what-is-openflow/. Accessed October 8, 2018.

[8] “Openflow.” https://whatis.techtarget.com/definition/OpenFlow. Accessed October 8,
2018.

[9] “Three different SDN models.” https://www.rcrwireless.com/20170811/

three-different-sdn-models-tag27-tag99. Accessed October 8, 2018.

[10] “Contexsure networks.” https://www.contexsure.com/. Accessed October 2, 2018.

[11] M. E. Najd and C. A. Shue, “Deepcontext: An openflow-compatible, host-based SDN for
enterprise networks,” in 2017 IEEE 42nd Conference on Local Computer Networks (LCN),
pp. 112–119, Oct 2017.

[12] “OVS-on-Hyper-V design.” http://docs.openvswitch.org/en/latest/topics/windows/.
Accessed January 3, 2019.

[13] “Windows filtering platform.” https://docs.microsoft.com/en-us/windows/desktop/fwp/

windows-filtering-platform-start-page. Accessed January 3, 2019.

[14] “Packet injection functions.” https://docs.microsoft.com/en-us/windows-hardware/

drivers/network/packet-injection-functions. Accessed January 3, 2019.

[15] “ALE layers.” https://docs.microsoft.com/en-us/windows/desktop/fwp/ale-layers.
Accessed January 8, 2019.

[16] “Windows driver framework.” https://docs.microsoft.com/en-us/windows-hardware/

drivers/ddi/content/_wdf/. Accessed January 10, 2019.

[17] “What is encapsulation?.” https://www.computerhope.com/jargon/e/encapsul.htm. Ac-
cessed January 13, 2019.

69

[18] C. Shue, Y. Shin, M. Gupta, and J. Y. Choi, “Analysis of IPSec overheads for VPN servers,”
in Secure Network Protocols, 2005.(NPSec). 1st IEEE ICNP Workshop on, pp. 25–30, IEEE,
2005.

[19] D. G. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resilient overlay networks. PhD
thesis, Massachusetts Institute of Technology, 2001.

[20] S. McQuerry, “CCNA self-study (ICND exam): Extending switched networks with virtual
LANs,” Jan 2016.

[21] “Understanding and configuring spanning tree protocol (STP) on catalyst switches.” https:

//www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/

5234-5.html#concepts. Accessed Februrary 8, 2019.

[22] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer networks,
vol. 31, no. 23-24, pp. 2435–2463, 1999.

[23] “Using layer 2 filtering.” https://docs.microsoft.com/en-us/windows-hardware/drivers/

network/using-layer-2-filtering. Accessed March 12, 2019.

[24] D. McMichael, “Offset of fwp layer inbound mac frame ethernet · issue #529 ·
microsoftdocs/windows-driver-docs.”

[25] “Windivert documentation.” https://github.com/basil00/Divert/wiki/

WinDivert-Documentation. Accessed Feburary 8, 2019.

[26] “GSN3.” https://www.gns3.com/. Accessed February 13, 2019.

[27] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue, “Contextual, flow-based access
control with scalable host-based SDN techniques,” in INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, IEEE, pp. 1–9, IEEE, 2016.

[28] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN: COTS data-center
ethernet for multipathing over arbitrary topologies.,” in NSDI, vol. 10, pp. 18–33, 2010.

[29] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying middlebox
policy enforcement using SDN,” SIGCOMM Comput. Commun. Rev., vol. 43, pp. 27–38, Aug.
2013.

[30] S. W. Shin, P. Porras, V. Yegneswara, M. Fong, G. Gu, and M. Tyson, “Fresco: Modular com-
posable security services for software-defined networks,” in 20th Annual Network & Distributed
System Security Symposium, NDSS, 2013.

[31] M. Nobakht, V. Sivaraman, and R. Boreli, “A host-based intrusion detection and mitigation
framework for smart home IoT using openflow,” in Availability, Reliability and Security (ARES),
2016 11th International Conference on, pp. 147–156, IEEE, 2016.

[32] W. M. Othman, H. Chen, A. Al-Moalmi, and A. N. Hadi, “Implementation and perfor-
mance analysis of SDN firewall on POX controller,” in Communication Software and Networks
(ICCSN), 2017 IEEE 9th International Conference on, pp. 1461–1466, IEEE, 2017.

[33] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP: Connection migration for
service continuity in the internet,” in null, p. 469, IEEE, 2002.

[34] M. Bernaschi, F. Casadei, and P. Tassotti, “Sockmi: a solution for migrating TCP/IP connec-
tions,” in Parallel, Distributed and Network-Based Processing, 2007. PDP’07. 15th EUROMI-
CRO International Conference on, pp. 221–228, IEEE, 2007.

70

[35] M. Barisch, J. Kögel, and S. Meier, “A flexible framework for complete session mobility and
its implementation,” in Meeting of the European Network of Universities and Companies in
Information and Communication Engineering, pp. 188–198, Springer, 2009.

[36] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for multipath operation
with multiple addresses,” tech. rep., 2013.

[37] R. Stewart, “Stream control transmission protocol,” tech. rep., 2007.

[38] “Multipath TCP - linux kernel implementation.” https://multipath-tcp.org/pmwiki.php.
Accessed October 9, 2018.

[39] “Apple opens multipath TCP in iOS11.” https://www.tessares.net/

highlights-from-advances-in-networking-part-1/. Accessed October 9, 2018.

[40] “Sctpdrv: an SCTP driver for microsoft windows.” https://web.archive.org/web/

20110108073234/http://www.bluestop.org/SctpDrv/. Accessed October 9, 2018.

[41] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward, “QoS-assured service composition in managed
service overlay networks,” in Distributed Computing Systems, 2003. Proceedings. 23rd Interna-
tional Conference on, pp. 194–201, IEEE, 2003.

[42] R. Stone et al., “Centertrack: An IP overlay network for tracking DoS floods.,” in USENIX
Security Symposium, vol. 21, p. 114, 2000.

[43] Z. Li and P. Mohapatra, “QRON: QoS-aware routing in overlay networks,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 1, pp. 29–40, 2004.

71

Appendix A Router to Switch Configuration

As we discussed in Section 4, the physical testbed on which we demonstrated our implementation
required four VLAN-enabled switches. The WPI CS Department had a large supply of available
TP-LINK Archer C7 routers, and so we opted to use those to implement our testbed. Here we
discuss the process of converting the routers into switches by installing the open-source firmware
OpenWRT. We then explain how to create VLANs and configure each of the router’s LAN ports to
act as either an access or trunk port. Finally, we explain how to install the tcpdump packet capture
tool on the routers.

A.1 Installing OpenWRT

The TP-LINK firmware that the routers shipped with did not support VLANs so we installed a
distribution of OpenWRT, a free Linux-based operating system for embedded devices. OpenWRT
offers many features, including support for VLANs, that vendors only offer in the firmware of their
high-end devices.

The TP-LINK v3.13 firmware for the Archer C7 has a straightforward interface for firmware
upgrades. However, our initial attempt to install the OpenWRT firmware was rejected by the stock
firmware because the signature was not recognized. After some time testing different methods, we
discovered a successful (albeit convoluted) way to install OpenWRT:

1. Download DD-WRT, OpenWRT, and TP-Links v2 firmware files. The DD-WRT and TP-Link
files can be found at the DD-WRT router database, or the following link: https://dd-wrt.

com/support/router-database/?model=Archer%20C7%20(AC1750)_2.x. The OpenWRT
firmware file can similarly be found on OpenWRT’s website at: https://openwrt.org/toh/

views/toh_fwdownload.

2. Connect a laptop to the router on LAN Port 1.

3. In a browser type in tplinkwifi.net in the address bar and log in using the default credentials
of user name and password as ’admin’.

4. Click “System Tools”, and then click “Firmware Upgrade”.

5. Click “Browse” and select the DD-WRT binary file downloaded in Step 1. After clicking
“Upgrade”, the router will take a few minutes to switch to using the DD-WRT firmware, and
the web page will become unresponsive.

6. Connect to 192.168.1.1 via a browser and set a user name and password when prompted. A
web page (shown in Figure –) will appear.

7. Click on the tab labelled “Administration”, submit credentials if prompted, and click on the
“Firmware Upgrade” tab.

8. Select the Archer C7 v2 binary file from Step 1 and click “Upgrade”. As in Step 5, after a few
minutes the webpage will become unresponsive.

9. Connect to 192.168.0.1 via a browser. The TP-LINK router web interface will once again
appear, except the firmware has now been downgraded to v3.13.

10. Navigate to the “Firmware Upgrade” tab and now select the OpenWRT binary file from Step
1 and upgrade. As before, the webpage will eventually become unresponsive.

72

11. Open a terminal program and run ssh root@192.168.1.1. After logging in, the interface will
appear as shown in Figure 28.

Figure 28: The initial OpenWRT shell opened with ssh.

12. Set a password for the root account using the passwd command.

13. Return to the browser and navigate to 192.168.1.1. Use the credentials set in Step 12 to and
log in. The OpenWRT web interface will now appear.

A.1.1 Installing tcpdump

The tcpdump program is a tool for recording the packet data of traffic entering and leaving a ma-
chine. To install tcpdump on our routers, we used OpenWRT’s package manager, the Open Package
Management (opkg) tool. Instead of registering the routers’ MAC addresses with WPI’s network,
we opted to connect them to the Internet via a mobile hot spot for the purpose of downloading
tcpdump. Our method for downloading tcpdump is as follows:

1. Connect a computer to the router on a LAN port.

2. Access the router’s web console by putting its IP address in a browser’s search bar.

3. Click on the “Network” tab, and then click the “Wireless” Tab. The webpage should appear
as shown in Figure 29.

4. Click the “Scan” button on the radio1 interface, which will redirect to a page displaying
2.4GHz Wi-Fi networks. Select the Wi-Fi network to be used for downloading the software..

5. Select the correct mode under the “Operating Frequency” setting. For our 2.4Ghz bandwidth
mobile hot spot, the “legacy” mode was correct.

6. Once the router is connected to the Internet, open a terminal program and run ssh

root@<router IP address>.

7. Run opkg update and then opkg install tcpdump.

A.1.2 Configuring VLANs

To configure VLANs for an OpenWRT router, first connect to the router and open its web interface.
Click the “Network” tab, and then the “Switch” tab to arrive at the webpage shown in Figure 30.

73

Figure 29: The “Wireless” tab of the OpenWRT web interface.

Figure 30: The “Switch” tab of the OpenWRT web interface is used to configure VLANs on various ports and
interfaces of the router.

74

In this screen we can create VLANs and assign them to ports. To create a new VLAN, click the
“Add” button in the bottom left corner, and set the ID to be a unique number between 1 and 4096.
Each row corresponds to one VLAN, while each column corresponds to a given port or interface. To
configure a port as an access port for a given VLAN, set that port to be “untagged” and ensure that
no other entries in the column are also set to “untagged.” The router does not allow more than one
VLAN to be set to “untagged” for a given port, otherwise it would be unable to determine which
untagged packets belong to which VLAN. To set a VLAN to be trunked on a given port, set it to be
“tagged.” Any number of VLANs can be trunked on a given port since trunk ports expect incoming
frames to include VLAN tags that indicate which VLAN they belong to.

75

	Worcester Polytechnic Institute
	Digital WPI
	March 2019

	Host-Based Traffic Engineering: Network Endpoints with the Capabilities of SDN-Enabled Switches
	Jeffrey Estrada
	Julian Philippe Lanson
	Remy Kaldawy
	Repository Citation

	tmp.1554310086.pdf.9R70K

