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Abstract

In this thesis, we propose a new framework for the generation of training data for machine learning

techniques used for classification in communications applications.

Machine learning-based signal classifiers do not generalize well when training data does not describe

the underlying probability distribution of real signals. The simplest way to accomplish statistical simi-

larity between training and testing data is to synthesize training data passed through a permutation of

plausible forms of noise. To accomplish this, a framework is proposed that implements arbitrary channel

conditions and baseband signals. A dataset generated using the framework is considered, and is shown to

be appropriately sized by having 11% lower entropy than state-of-the-art datasets.

Furthermore, unsupervised domain adaptation can allow for powerful generalized training via deep fea-

ture transforms on unlabeled evaluation-time signals. A novel Deep Reconstruction-Classification Network

(DRCN) application is introduced, which attempts to maintain near-peak signal classification accuracy

despite dataset bias, or perturbations on testing data unforeseen in training.

Together, feature transforms and diverse training data generated from the proposed framework, teaching

a range of plausible noise, can train a deep neural net to classify signals well in many real-world scenarios

despite unforeseen perturbations.
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Chapter 1

Introduction

1.1 Motivation

Since the late 1990s, the use of Neural Networks (NNs) in wireless communications has gained a signif-

icant following [7]. In an effort to reduce long analysis and design cycles, as well as improve performance

in certain aspects of wireless communications, NNs have been implemented as a data-driven approach to

solving many challenges. They have been proven to be an effective approach due to several attractive

properties, including adaptive processing, universal approximation, and computational efficiency [8].

With numerous existing closed-form solutions in the field of communications, it may be difficult to know

when it is appropriate to use a NN to complete a task. To start, for NNs in wireless communications to be

suitable for the challenge under consideration, there must not be a direct, closed-form solution. After it is

decided the use of a NN is suitable, it must be decided if the whole problem should be solved using a NN, or

just to solve for a portion of the ultimate answer by leveraging a NN. The accuracy of NNs depends first on

the quality and relevance of training data to testing data, so whether simulating or experimentally collecting

the data, it is important to take care and consider its quality and relevance. Another consideration when

implementing NNs is that they can very quickly become computationally burdensome if their architecture

is large. Additionally, over-training NNs to noise in the data can present issues when decisions are made

by the NN on testing data, and is caused by too many neural connections [7].

1.2 State of the Art

At present, there exist many opportunities for applying data-driven Artificial Intelligence (AI) to com-

munications tasks. Digital Pre-Distortion [9] (DPD), localization [10], modulation classification [11], Error

Control Code (ECC) decoding [12], Multiple Input Multiple Output (MIMO) detection [13], entire transmit

and receive chains [14], Software-Defined Radios [15] (SDRs), and channel modeling [16] have all witnessed
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improvements due to recent advances in AI. The focus of this thesis, however, is in generalized training

and testing, and so three of this years most impactful papers on this topic are discussed:

• Deepsig’s 2018 dataset [17] aims to increase machine-learning based signal classification accuracy

in the presence of unforeseen noise. A highly-plausible set of noise is synthesized and applied to

signals paired with 24 modulation class labels (including high-order modulation schemes such as

QAM256). Each signal is additionally paired with a Signal to Noise Ratio (SNR) value ranging from

-20 to +20 (a total of 239,616 across all class combinations). A signal contains 1024 complex-valued

samples double-precision floating-point values. Each transmission is affected by the non-idealities

of Rayleigh fading (taps defined as H ,
∑

i δ(t − Rayleighi(τ)) where τ = [0, 0.5, 1, 2]), carrier

frequency offset ∆fc ∼ N(0, σclk), pulse shaping using Root-Raised Cosine (RRC) filters with roll-off

values α ∼ U(0.1, 0.4), phase ambiguity θc ∼ U(0, 2π), sampling frequency offset ∆fs ∼ U(0, σclk),

and timing offset ∆t ∼ U(0, 16). Using an Ettus Lab B210 Universal Software Radio Peripheral

(USRP), the authors found that a NN trained with their simulated 2018 dataset only suffered a 7%

peak modulation classification accuracy penalty compared to the same NN trained with a measured

Over The Air (OTA) dataset.

• Researchers from the Israel Institute of Technology [18] investigated the cause of what they call the

“generalization gap”, or the phenomenon where NNs trained using mini-batch SGD have a testing

accuracy less generalizable to unforeseen noise the bigger the mini-batch size. They found that

the generalization gap is caused by having few parameter updates and not from the mini-batches

being large. Furthermore, the generalization gap can be reduced by adjusting the training method to

include more parameter updates such that η ∝
√
M , where η is the parameter update rate and should

be increased by a rate proportional to the square root of the mini-batch size,
√
M . They also showed

that weight updates during NN training should be scaled by a unit-mean Gaussian Random Variable

(RV) of variance σ2 ∝ M such that local minima in the objective function can be escaped, and

the absolute minimum can be reached (thus achieving maximum signal classification performance).

Notably, with this method of gradient update noise, the authors did not find much benefit in also

implementing the very popular dropout, drop-connect, or label noise, which have been the industry

standard for almost a decade. Finally, they present a “Ghost Batch Normalization” method which

performs SGD with few parameter updates yet with a insignificant generalization gap. By calculating

the mean µlBs of the lth batch and standard deviation σlBs of small (significantly smaller than batch

size BL) “Ghost Mini-Batches”, generalization error can be significantly reduced without increasing

η by shifting and scaling the weights γ during SGD by updating in the form γ
Xl−µlBs
σlBs

+ β where β

are the gradient updates and γ are the current weight values. The authors found in experiments that
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the learning rate needs to be adjusted from standard SGD such that ηL =
√
|BL|
|Bs| ηs.

• Researchers from Google Brain found that the generalization of a NN corresponds to an “input-output

Jacobian norm” and “number of transitions” metrics [19]. Consider the Jacobian J(x) = δfσ(x)/δxT ,

where the NN inputs x are passed through the soft-max function fσ, resulting in the generalization

sensitivity metric “Jacobian norm”: Extest

[
||J(xtest)||F

]
around the points of interest xtest. The

second generalization sensitivity metric they define is the number of transitions, or the number of

activated ReLU functions (f(x) = max(0, x)) in the hidden layers of a NN. They define this metric as

Extest[t(xtest)], where t(x) =
∫
z∈T (x)

∣∣∣∣ δc(z)
δdz

∣∣∣∣
1
dz. Neurons are sampled and put into the space T (x),

and the last hidden layer’s output is described as c(x). The authors plot generalization sensitivity

described by those two metrics between inter-class and intra-class perturbations, revealing where in

high-dimensional feature-space that perturbations are likely to cause incorrect classification. The

paper gives the example of a Gaussian perturbation ∆x ∼ N(0, εI) resulting in a change at the NN’s

output equal to ε||J(x)||2F and to the number of transitions equal to εt(xtest). If the change at the

output is large enough, incorrect classification occurs.

1.3 Current Issues

A number of issues remain open in the field of machine learning communications [20]. In order to

facilitate ML in systems, current wireless network infrastructures need to be updated to deploy Graphics

Processing Units (GPUs) at network edges, allowing for computationally efficient use of ML-based solu-

tions. Network slicing, or the allocation of wireless network resources for different use cases, is an area of

communications that still has seen very little attention from recent advances in AI. Additionally, standard-

ized datasets and environments for fair comparisons between architectures still do not exist. While some are

more popular than others, there is still not a set of renowned datasets in the wireless community as there

is in the computer vision community. Also, there is a significant lacking of theory behind hyper-parameter

optimization and data generalization, where both of these tasks are mostly performed by iterating through

every option in processes such as hyper-parameter validation, which is a very time consuming process.

Distillation or transfer learning is a technique that has not yet been successfully implemented in wireless

communications either, or transferring training results from one NN to another for use in a task similar to

the first. Although a defensive application was discovered in [21], novel attacks on NNs have shown that

the technique became obsolete within months of its writing [22].

Below, issues concerning the three state-of-the-art papers on generalized training are discussed:

• Deepsig’s 2018 dataset [17] shows a significant increase in size over their 2016 dataset, going from
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220,000 transmissions of 128 samples to 239,616 transmissions of 1024 samples, or 225.28 MB of

double-precision (64-bit) complex values to 1.96 GB. While still a small memory allocation com-

pared to many computer vision datasets, generating larger datasets with fewer assumptions increases

training time and complexity. It would be valuable for datasets to cover a large range of statistical

behaviors using very few samples, a task made difficult given the law of large numbers. Addition-

ally, the authors note that matching channel models to real-world deployment conditions is difficult,

taking time to estimate and implement to simulate training signals, leaving NNs inoperable for long

down-periods.

• Israel Institute of Technology’s GBN method [18] is powerful, however their results show that they

can only limit generalization error, at best, to as low as small batch SGD can (but more often reaches

an error in-between small and large batch SGD). It would be valuable to navigate around that limit by

leveraging a new training method other than small-batch SGD or by manipulating training datasets.

• While the development of the Jacobian norm and number of transitions matrices in [19] are powerful

metrics in finding the weak points of classifiers, the metrics are not very intuitive to interpret and

analyze, and there currently exists no convex-optimization solution to manipulating sensitivity to

minimize incorrect classifications. It is difficult to know how to act on how the Jacobian norm and

number of transitions to improve peak accuracy.

1.4 Thesis Contributions

This work contains the following contributions:

• A survey of wireless channel environments was given in Chapter 2 that can be used in the proposed

framework for dataset generation.

• A survey of machine-learning based signal classification was given in Chapter 3 that can be used to

implement an unsupervised domain adaptation architecture from Chapter 5.

• A framework for wireless transmission dataset synthesis, implementing arbitrary channel environ-

ments and baseband waveforms.

• A dataset generated using the framework from Section 4 was proposed, and was shown to be properly

sized, having 11% lower entropy than state-of-the-art datasets.

• A Deep Reconstruction-Classification Network (DRCN) was proposed in Chapter 5, which attempts

to maintain peak classification accuracy despite heavy data bias resulting in a 16% peak testing
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accuracy drop compared to an experiment with all else equal but no data bias. These contributions

show both data-side (pre-training) and testing-phase manipulations to increase NN generalization

and avoid retraining.

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 will give a survey of background knowledge learned by the

author on the topics of wireless channel modeling. Chapter 3 surveys neural networks with an emphasis on

training and data sets, and modulation classification. Chapter 4 presents the author’s work on generalized

training through the development and use of a low bias, low decay framework that synthesizes low-entropy

data sets modeling state-of-the-art wave-forms. Finally, Chapter 5 present’s the author’s ongoing work

on generalized training through the use of the domain adaptation technique, and concluding thoughts are

discussed in Chapter 6.

1.6 List of Related Publications

The following publications resulted from the activities of this thesis research:

• K. McClintick, A. Wyglinski. “Physical Layer Neural Network Framework for Training Data Forma-

tion.” IEEE 88th Vehicular Technology Conference, Fall 2018.

• K. Gill, K. McClintick, N. Kanthasamy, “Experimental Test-Bed for Bumblebee-Inspired Channel

Selection in an Ad-hoc Network.” IEEE 88th Vehicular Technology Conference, Fall 2018.
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Chapter 2

Understanding the Wireless

Communications Environment

The contributions of this thesis require a systematic understanding of wireless environments. Conse-

quently, this chapter presents a survey of classical channel model theory to provide context and knowledge

needed in discussion of Chapter 3, dataset synthesis.

Although transmitted waveforms begin as well defined, man-made, synthetic structures, a virtually

endless number of probabilistic, and sometimes non-linear, phenomenon alter the observed waveforms

receive-side [5]. Even within a single noise model, there can exist a limitless number of variations of that

imperfection from one wireless channel to another. Some of the most prevalent and common imperfections

include:

1. Additive White Gaussian Noise (Section 2.1), a model used to mimic the effects of many wideband

noise sources

2. Path loss (Section 2.2) reduction of signal power density due to reflection (Section 2.3), diffraction

(Section 2.4), scattering (Section 2.5), absorption, aperture-medium coupling loss, and free-space loss

3. Doppler shifts (Section 2.6) resulting from motion of the transmitter, receiver, or scatterers and

reflectors within the wireless channel

4. Carrier Frequency Offset (Section 2.7.1) of both the transmitter and receiver’s local oscillators, which

drive each radio’s mixers

5. Phase ambiguity (Section 2.7.2) introduced by the unknown distance between transmitter and receiver

6. Random Symbol Timing Offset (Section 2.7.3) resulting from independently running sample clocks
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7. IQ imbalance (Section 2.7.4) resulting from phase and magnitude mismatches between the sine and

cosine sections of receiver and transmitter chains

8. Rounding of sampled voltages and digital filter coefficients due to Quantization (Section 2.7.5)

9. Electronic Noise (Section 2.7.6) caused by semi-conductors such as shot and flicker noise

10. Coupled noise (Section 2.8) resulting from inter-modulation, interference from same and adjacent

channels, industrial noise, Cosmic and terrestrial events

When a communications transmit-receive pair move information from one point to another, there is a

great deal of sequential tasks that are performed by the transmit and receive chains (see Figure 2.1). It

is the goal of this section to describe popular models which discuss the impact of imperfections of these

tasks, as well as perturbations introduced during the informations journey from sender to receiver, over

the wireless channel. The first such model that is often discussed in this field is Additive White Gaussian

Noise (AWGN).
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2.1 Additive White Gaussian Noise

As it will become apparent in this section, there is a virtually unending number of types and sources

of noise in a wireless channel. The Central Limit Theorem (CLT) states that as independent random

variables are summed, their joint distribution approaches a Gaussian probability density function (PDF):

fx(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (2.1)

where σ is the standard deviation and µ the mean value of the RV, written as N (µ, σ2). AWGN is described

as additive because it is added to any transmission. There exists enough noise sources to approximate the

CLT at all frequencies such that the noise has uniform power across the frequency band. This is why

AWGN is described as white, an analogy for how white frequencies of optical wavelengths are the sum of

all other colors of the visible light frequency band.

AWGN is fundamental in wireless communications because it imposes a performance ceiling for any

task, and that idea extends to NNs involved with wireless data. One way of describing this ceiling was

presented by Claude Shannon in [23]. The channel capacity C of a wireless channel with power constraint

1
k

∑k
i=1 x

2
i ≤ P for k message codewords x1, x2, ..., xk, is:

C =
1

2
log2

(
1 +

P

N

)
, (2.2)

where N is the wireless channel AWGN variance. Codewords make up a codebook, or all possible messages

sent. Consider the optical telegraph [24], a mid-1700s invention of the French Chappe brothers. Five

brightly colored panels are painted onto a board and hidden by shutters that can be either open (1)

or closed (0), conveying 25 = 32 messages, x ∈ {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, ..., {1, 1, 1, 1, 1}. The larger the

number and dimensionality of codewords, the larger the power constraint P , the larger the channel capacity

C.

2.2 Path Loss

When implementing an AWGN channel model, a Link Budget technique can be used to approximate

the signal power, which is needed to determine SNR. A link budget is a calculation that determines received

power Pr of a wireless transmission as a function of the transmit chain, wireless channel, and receive chain

parameters. According to the Friis formula, the received power can be calculated in dBm as [1]:

Pr = Pt +Gt +Gr + 20 log10

(
λ

4πd

)
, (2.3)

where Pt is the transmitted power, Gr, Gt are the receiver and transmit antenna gains, λ is the wavelength

of the transmitted signal, and d is the transmission distance. The formula has a few assumptions: far-field
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transmission (d > 2D2

λ , d > 10D, d > 10λ for antenna length D), the signal is narrowband, and antennas

are isotropic in the direction of transmission. Notice that power received decreases with both increased

frequency and distance.

For high power, long range transmissions of frequencies up to L-band (2000 MHz) from a tall base-

station tower to a mobile user, the most popular topographical path loss model to be used in the free

space Friis formula defined by equation (2.3) is the Okumara-Hata [25] empirical path loss model, whose

behavior was collected in Tokyo, Japan using isotropic antennas, and has seen widespread use [26]. The

formula is rated for use up to 100 km and for at least 1 km, and is rated for a base-station height up

to 200 m and a mobile receiver height of up to 3 m. Over the years, many measurement campaigns [27]

have been conducted to expand the range of distances and frequencies the model can accommodate. The

original Okumara model can be described [28] as use of the Friis formula in (2.3) where Lpath is instead:

L50,dB = LF +Amu(f, d)−G(hte)−G(hre)−GAREA, (2.4)

where L50,dB is the 50th percentile (mean) of the propagation loss, LF is the free space propagation loss,

Amu(f, d) is the median attenuation relative to free space (see Figure 3.24 in [28]), G(hte), G(hre) are the

transmitting and receiving antenna gain factors in (2.5), respectively, and GAREA is the gain with respect

to the type of environment (see Figure 3.23 in [28]).

For various antenna heights, the antenna gain factors can be described as [1]:

G(hte) = 20 log
(
hte
200

)
, 1000m > hte > 30m (2.5a)

G(hre) = 10 log
(
hre
3

)
, hre ≤ 3m (2.5b)

G(hre) = 20 log
(
hre
3

)
, 10m > hre > 3m. (2.5c)

2.3 Reflections and Fading

Instead of link budgets, Ray Tracing Algorithms can be a preferred category of techniques when de-

termining signal power, especially in physically smaller wireless channels with well-defined dimensions.

A popular ray tracing model for representation of a channel with path loss is the discrete delay channel

model [1] (see Figure 2.2). The model behaves differently for narrow and wideband signals.
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Figure 2.2: The discrete delay channel model, adapted from [1]. Inputs each have isolated time delays τi,
ray powers |βi|2 = A0ai/di, and ray phases ejφi .

A narrowband signal is defined as a transmissions whose bandwidth does not significantly exceed

the coherence bandwidth of the channel the signal is traveling through. A received signal is considered

significantly wide if the inverse of the channel’s root mean squared (rms) delay spread τrms:

τrms =

√
τ2 + (τ)2, (2.6)

is five times smaller than the signal’s bandwidth [1]:

5

τrms
< BW. (2.7)

The delay spread τn is defined as:

τn =

∑L
i=1 τ

n
i |βi|2∑L

i=1 |βi|2
, (2.8)

where the additional time required for the ith signal path, or ray, to arrive is τi, and the power of the ith

ray is |βi|2 = A0ai/di. The path distance of the ith ray is di, the overall reflection coefficient of the ith ray

is:

ai =

Ki∑
j=1

aij , (2.9)

where aij is one of Ki reflections for the ith ray. A0 =
√
P0, the power of the received signal from one

meter away:

P0 = PtGrGt(λ/4π)2. (2.10)

If a signal is determined to be narrowband using (2.7), the received power can be formulated as:

Pr = P0

∣∣∣∣∣
L∑
i=1

ai
di
ejφi

∣∣∣∣∣ (2.11)

where the received phase offset φi = −2πdi/λ. Notice how the phase of each ray ejφi has the potential to

add constructively or destructively (see Figure 2.3).

The discrete delay channel model (see Figure 2.2) behaves differently for wide band signals. A wideband

signal in the frequency domain can be shown to be of a short time duration in the time domain [28]. Often
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Figure 2.3: Bluetooth Pr (2.11) observed by a receiver (See Appendix A.1) from a single car over a 50 m
stretch of road, whose reflections correspond to the scenario described in Figure 2.4. Significant fluctuations
occur frequently due to phase interference.

these bursts of signals are modeled as impulses, δ(t) (typically Gaussian pulses in application). In ideal

wideband communications, each path of arrival an impulse makes from transmitter to receiver are isolated.

Additionally, since impulse durations are instantaneous compared to time delays τi and do not overlap in

the time domain, the phase offset of each ray does not add constructively or destructively. Consequentially,

the received power of a wideband signal can be formulated as [1]:

Pr = P0

∣∣∣∣∣
L∑
i=1

ai
di

∣∣∣∣∣ =
L∑
i=1

|βi|2, (2.12)

and unlike (2.11), the phase term ejφi is missing. The result is that wideband path loss does not vary from

(2.3) very much, unlike (2.11). For a simulated wideband path loss model, see Figure 2.5.
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Figure 2.4: Physical Characteristics of the 5-reflection 3D Doppler channel. The paths are attenuated
assuming the ground path is dry asphalt[ref] (a5 = 0.34), the roadsides are concrete (a3 = 0.38), and the
cars are metallic (a2,4 = 0.8). The direct path is not attenuated by reflection (a1 = 1). Blue-tooth sources
are placed at a height of 1.5 m and the receiver at a height of 5m.
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Figure 2.5: Blue-tooth Pr (2.11) without phase interference observed by a receiver (See Appendix A.1)
from a single car over a 50 m stretch of road, whose reflections correspond to the scenario described in
Figure 2.4.



15

2.4 Diffractions due to Obstructions

Besides reflections, ray tracing algorithms must consider a phenomenon with electromagnetic waves

known as diffraction. Diffraction allows wireless signals to propagate to receivers they do not have Line

of Sight to, most notably long range transmissions to receivers blocked by the curvature of the earth.

A popular diffraction model used to modify (2.3) is the knife-edge diffraction model [28]. Given the

transmitter (see Figure 2.6) Υ receiver R, obstruction of height h above the direct path from Υ to R,

and distances d1, d2 from the transmitter and receiver to the obstruction respectively, the Fresnel-Kirchoff

diffraction parameter can be calculated as:

v = h

√
2(d1 + d2)

λd1d2
, (2.13)

to estimate the additional gain to free space (2.3) as:

GdB = 20 log |F (v)|, (2.14)

where the Fresnel integral can be calculated as:

F (v) =
(1 + j)

2

∫ ∞
v

e(−jπt2)/2dt. (2.15)

While it is often sufficient [28] to model just the largest diffraction, there are situations where a multiple

knife-edge diffraction model would increase the accuracy of a path loss model significantly.

2.5 Scattering due to Corrugated Surfaces

The final consideration when determining received power is how electromagnetic waves are scattered.

If one is to model path loss given by (2.3) just using the reflection expression of (2.11) and diffraction

expression of (2.14), the observed path loss would be higher [28] due to the energy being scattered in all

directions when impacting rough surfaces. Surface roughness is described using the Rayleigh criterion [28]

defined as the critical height hc in meters:

hc =
λ

8sinθi
, (2.16)

where λ is the signal’s center frequency and θi the signal’s angle of incidence on the flat surface under

consideration. A surface is considered to only have significant scattering if its protuberances are of height

greater than hc. If so, that surfaces reflection coefficient ai should be multiplied by a scattering loss factor:

ρ = exp
[
− 8
(πσhsinθi

λ

)2]
I0

[
8
(πσhsinθi

λ

)2]
, (2.17)
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Figure 2.6: An illustration of (2.14), where Υ is the transmitter, R is the receiver, h is the height of the
obstruction starting from the direct path from Υ to R, and d1, d2 from the transmitter and receiver to the
obstruction, respectively. The Huygens secondary source mimics a potentially strong reflected path, often
taking the form of a reflection off a layer of the earth’s ionosphere.

to form arough = aρs.where I0 is the Bessel function of the first kind and zero order, and σh is the standard

deviation of the assumed Gaussian variations of the surface’s protuberances about the mean.

A popular link budget model for scattering is the radar cross section model [28], which assumes a large,

distant (in the far-field of both the receiver and transmitter, R > 2d2

λ , R > 10d,R > 10λ), rough surface

(defined as h > hc) is scattering a transmission. Like in (2.3), transmit power, antenna gains, and path
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loss are considered, with a few additional terms:

PR(dBm) = PT (dBm) +GT (dBi) + 20log10(λ) +RCS(dB ·m2)−

30log10(4π)− 20log10(dT )− 20log10(dR),
(2.18)

where dT and dR are the distance from the transmitter and receiver to the scatterer, and the Radar Cross

Section (RCS) can be approximated as the surface area of the scatterer in square meters measured in dB

with respect to a one square meter reference.

2.6 Doppler Spectrum

Another wireless phenomenon that can affect system performance is Doppler Shift. In practice, infor-

mation is often sent in a radio system under mobile conditions. The impacts of this can be considerable,

especially in satellite and railway communications. Consider a sine wave being transmitted via a radio link

in a mobile environment, where a transmitter is moving at velocity Vm at an instantaneous distance d0

from a stationary receiver.

As the transmitter moves towards the receiver, the instantaneous distance d0 will shrink, impacting

transmission time as a function of time [1]:

τ(t) = τ0 −
Vm
c
t, (2.19)

where c is the speed of light in free-space, 3 · 108 m/s, and τ0 = d0/c is the starting transmission time.

Given this, the transmitted sine wave can be formulated by Euler’s formula as [1]:

r(t) = Are
j2πfc[t−τ(t)] = Are

j[2π(fc+fd)t−φ], (2.20)

where fc is the sine waves carrier frequency, Ar is the amplitude of the received signal, φ = 2πfctau0 is

the current phase offset, and fd is the Doppler shift caused by movement:

fd =
Vm
c
fc cos(θ), (2.21)

where θ is the direction of movement, for zero degrees being moving straight towards the receiver. The

frequency shift observed by the receiver is positive or negative depending on the direction of movement,

where magnitude is maximized by the cosine when moving exactly toward or away from the transmitter.

Commonly these maximal outcomes of (2.21) are described as the maximum Doppler shift fM = ±Vm
c fc

of bandwidth BD = 2fM .

However, as shown in Section 2.2, rarely is there one ray (see Figure 2.2) in a wireless channel. Each

ray is affected differently, and as consequence the frequency domain representation of the signal is affected

by a Doppler spectrum, or Doppler spread D(λ). Consider the wireless channel responding to probing
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impulse responses δ(t) at time delays τ in the form h(τ, t), where for the input x(t), the channel output is

y(t) = x(t) ~ h(t):

h(τ, t) =

L∑
i=1

βie
jφiδ(t− τi). (2.22)

The autocorrelation of the observed impulse response at two different delays and times can then be formu-

lated as [1]:

Rhh(τ1, τ2; t1, t2) = Rhh(τ1; ∆t)δ(τ1 − τ2), (2.23)

for ∆t = t2− t1. Given Rhh, the autocorrelation in the frequency domain given the time-varying frequency

domain impulse response H(f ; t) =
∫∞
−∞ h(τ ; t)e−jωτdτ is formulated in [1] as:

RHh(f1, f2; ∆t) = RHh(∆f ; ∆t), (2.24)

where ∆f = f2 − f1. The channel is assumed to have Wide-Sense Stationary Uncorrelated Scattering

(WSSUS), which is valid for most wireless channels [1]. A WSSUS wireless channel is one in which

the delays τi are uncorrelated, and the correlations between paths of equal delays are stationary, or time-

invariant. Given this, the autocorrelation can be estimated as RHh(∆f) if the channel is slowly time-varying

or time-invariant.

Finally, we can derive the Doppler spectrum D(λ) using the Fourier transform of (2.24):

RHH(∆f ;λ) =

∫ ∞
−∞

RHh(∆f ; ∆t)e−j2πλ∆td(∆t), (2.25)

such that:

D(λ) = RHH(0;λ). (2.26)

The spectrum is limited by ±fM , and the amount of variation of the spectrum over frequency is described

by the Doppler spread:

B2
D,rms =

∫ fM
−fM λ2D(λ)dλ∫ fM
−fM D(λ)dλ

. (2.27)

Equations (2.23) through (2.25) are summarized in Figure 2.7.
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Figure 2.7: A flow chart adapted from [1] summarizing equations (2.23) through (2.25). Arrows indicate
Fourier (down) and inverse Fourier (up) transforms.

In the most basic multi-path case, (2.26) takes the form:

D(f) =
1

2πfm

[
1−

(
f

fm

2)]−1/2

, |f | ≤ fm, (2.28)

or Jakes Doppler spectrum, where (2.21) is assumed and can be plotted over normalized frequency as seen

in Figure 2.8.
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Figure 2.8: Taps (a) (See Appendix A.1) calculated from the phasers and time delays described by Fig-
ure 2.4 as the transmitting car passes by the receiver at x = 25m. Jakes Doppler spectrum (b) where
frequency offset is maximal at ±fM (2.21), or movement directly away from and towards the receiver.
Small fluctuations in the spectrum is caused by movement within the channel caused by the leading and
lagging vehicles.

However, there is a whole field dedicated to modeling unique cases of Doppler shift. Some common

cases in addition to Figure 2.8 are displayed in Figure 4.9 of [1]. The series of experiments include a series

of impulse responses (2.22) and their Fourier transforms, describing a LOS experiment using a stationary

radio transmit-receive pair in a stationary environment (BD = 0Hz see (2.27)), and a LOS experiment

using a stationary receiver, but mobile transmitter that moved randomly within a 12 meter radius of a fixed

point to simulate a pseudo-stationary mobile user pacing on their telephone (BD = 4.9Hz). An obstructed

LOS (OLOS) experiment is described, using stationary devices 4 meters apart, but with heavy pedestrian

traffic around the transmitter (BD = 5.7Hz), and an OLOS experiment with stationary devices, but the

transmitter is rotated at a rate of 2.5 rotations per second (BD = 5.2Hz). Each experiment describes a

family of movement, corresponding to time and frequency domain Doppler signals that can be expected in

each, while also showing that BD can be equal for very different spectrum’s D(λ) shapes.

2.7 The Radio Front End

The RFFE (see Figure 2.1) is a term used to group all of the analog circuitry between a transmit or

receive chain’s antenna and mixer. At the most basic, RFFE’s contain:

• A Band Pass Filter (BPF), used to pass through the expected signal at the expected carrier frequency

and block out all other signals and noise. In-band noise and interference is still present. BPFs can

also damage signals due to in-band ripple, and are vulnerable to thermal noise, shot noise, and
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transit-time noise (see Section 2.7.6).

• A Low-Noise Amplifier (LNA), used to increase the power of in-band signals above the noise floor.

LNAs must have a low noise figure (NF), and are often only needed at frequencies above 30 MHz

due to the increased path loss (2.3).

• a Mixer, used to combine the carrier waveform with the transmitted or received waveform to form

the base-band signal or the Intermediate Frequency (IF) signal.

• A Local Oscillator (LO), used to drive the up-converting and down-converting mixers by creating a

carrier cosine waveform. Phase noise (see Section 2.7.6) can be introduced by flicker noise, and the

frequency of the carrier can drift with time (see Section 2.7.1).

Besides the issues listed above, the initial spacing between a transmit and receive radio can introduce

an initial phase offset, introducing phase ambiguity (see Section 2.7.2) even after frequency correction is

performed. Digital filters and the DAC/ADC (see Figure 2.1) can introduce significant error to signals

through quantization (see Section 2.7.5), and in the case of pulse-shaped (see Figure 3.6) waveforms, symbol

timing offset (STO) (see Section 2.7.3) can push bit error rates (BER) to their limits, 1/M (3.48).

Furthermore, the cosine and sine paths of the RFFE (see Figure 2.14) experience phase and magnitude

imbalances, resulting in stretched IQ plots (see Section 2.7.4).

Finally, various forms of electronic noise (see Section 2.7.6) can impede SNR, sometimes significantly.

2.7.1 Carrier Frequency Offset due to Local Oscillator Mismatch

Each radio system (see Figure 2.1) has either a down-converter or an up-converter (see Figure 2.9),

shifting the center frequency of the signal (see Figure 2.10) either up to the carrier frequency if transmitting

or down to the base-band if receiving.

However, this frequency shifting is not perfect and is often affected by a phase offset (see Section 2.7.6),

a frequency offset, and the creation of signal images. Images are lower-amplitude copies of m(t), the signal

being converted by the mixer, appearing at locations:

fimage =


fc + 2fIF if fLO > fc

fc − 2fIF if fLO < fc

, (2.29a)

fimage = fc + 2fLO, (2.29b)
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Figure 2.9: An illustration of the base-band signal m(t) being up-converted to the intermediate frequency
fc by a mixer, where the carrier waveform Accos(2π(fc + fo)t) is generated by a local oscillator (LO).
The error introduced by the LO, fo being random and unequal at the transmitter and receiver, frequency
offset is leftover after being down-converted to baseband (see Figure 2.10, whether the receiver be a super-
heterodyne or direct one.

for down converters and up-converters respectively, where the intermediate frequency fIF = |fc − fLO|.

The frequency offset introduced by LOs can be modeled as [?]:

fo,max =
fc × PPM

106
, (2.30)

where PPM is the parts per million resolution of the LO, often listed in a radio’s user manual, fc is the

carrier frequency, and fo,max is the maximum possible negative or positive frequency offset. For a transmit

receive pair, the total offset can then be defined as fo1 + fo2 , where each offset is a Gaussian random

variable bounded by each radio’s fo,max, making the random variable no longer Gaussian. This results in

a minimum possible offset of zero Hertz when each offset is zero (fo1 = fo2 = 0) or equal and opposite to

each other (fo1 = −fo2), and a maximum possible offset of ±2 × fo,max when the offsets are equal to the

maximum offset (fo1 = fo2 = ±fo,max).
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Figure 2.10: An IQ plot of a QPSK message offset in frequency. Phase rotation over time makes demodu-
lation inaccurate and Bit Error Rate (BER) high.

2.7.2 Phase Ambiguity after Frequency Correction

As seen in Figure 2.3, the received phase offset φi = −2πdi/λ can have significant effects on path loss.

However, this issue goes much deeper than received power: when a demodulator (see Figure 2.1) maps a

base-band waveform from IQ points to bits, this phase offset rotates the constellation by an amount that

has been found experimentally [1] to be random according to the uniform distribution U(0, 2π) radians.

Consequently, constellation plots such as Figure 3.21 can become very ambiguous (see Figure 2.11), where

the plot could be flipped along the real or imaginary axis and still look identical. As a result, various forms

of precautions have been developed to avoid errors resulting from phase ambiguity, including equalization,

codewords, and differential encoding.
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Figure 2.11: A constellation plot of a QPSK transmission. The four code-words are tilted by φambig = 20◦.
It is the job of a receive chain (see Figure 2.1) to determine if the transmission should be corrected by
adding one of the rotations: φoffset1 = 25◦, φoffset2 = 115◦, φoffset3 = 205◦, φoffset4 = 295◦.

2.7.3 Symbol Timing Offset when Down-Sampling at the Receiver

In a radio transmit receive chain (see Figure 2.1), the receiver does not typically have knowledge as

to which sample is to be picked to down sample when pulse shaping is implemented (see Figure 2.12).

The waveform takes time to transmit, and may be subject to additional delays due to the path taken (see

Section 2.6). Further, this delay is always changing. As a result, a receiver’s down-sampler must constantly

estimate the timing error, filter that error with a loop filter to avoid jerky changes to compensation, and

finally apply a correction to the incoming signal.
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(a) Signal without timing error (b) Signal with timing error

Figure 2.12: The in-phase dimension of a pulse-shaped, two symbol (+,-) QPSK transmission (a) and
its interpolated, Blackman Harris filtered realization. Additionally, the signal is shifted in time due to a
transmission delay this time.

Figure 2.13: A comparison of Figure 2.7.3 (blue) and its time-shifted realization from Figure 2.7.3. The
amplitude is reduced due to the amplitudes of a Blackman Harris interpolation filter’s coefficient values.

2.7.4 IQ Imbalance when Modulating

The transmit and receive chains of a radio system (see Figure 2.1) contain a similar modulation (see

Figure 2.14) and demodulation operations. The magnitude and phase seen by the cosine (in-phase) and

sine (quadrature, 90 degrees out of phase) paths of these operations are often not perfectly matched in

hardware implementations, resulting in a stretched IQ plot (magnitude imbalance) at the receiver before

mapping to bits, or a situation where the I and Q axis are no longer perpendicular due to phase imbalance
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(I is not truly 0 degrees, Q is not truly -90 degrees).

Figure 2.14: An illustration of the in-phase and quadrature paths of the modulator block in a RFFE (see
Figure 2.1). The in-phase (top) and quadrature (bottom) signals may not experience the same gains or
appropriate phases of 0 and 90 degrees due to manufacturing imperfections or normal wear.

Quality instruments tend to keep this low, although it can vary by large amounts over frequency [29].

IQ imbalance can be modeled at mapping time for each symbol through the expression:

sI = kI × sI ′, (2.31a)

sQ = −kQsin(φε)× sI ′ + kQcos(φε)× sQ′, (2.31b)

where sI ′, sQ′ are the balanced in-phase and quadrature components of the symbol, sI, sQ are the IQ

imbalanced in-phase and quadrature components of the damaged symbol, kI, kQ are the linear in-phase

and quadrature gains, and φε is the phase difference between the two paths. Notice that for φε = 0 and

kI = kQ = 0, IQ imbalance is not present, sI = sI ′, sQ = sQ′.
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2.7.5 Quantization at Filters and DACs/ADCs

A radio system (see Figure 2.1) experiences numerous forms of discrete approximations of continuous

values [30]. Two such examples are the digital approximations of analog waveforms by the ADC, and the

floating-point values assigned to derived continuous IIR filter coefficients (16-bit, 32-bit, or 64-bit typically,

or 2b discrete amplitudes). While a received waveform has a continuous value, computers only have so

much computational power and must reduce the value of voltages and and filter coefficients to discrete

values of so many points of precision (see Figure 2.16).
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Figure 2.16: A random analog waveform (see Appendix A.6), its natural Pulse Amplitude Modulation
(PAM) waveform obtained through multiplication with an impulse train, its flat-top PAM waveform formed
by holding the first value of each pulse, its Pulse Code Modulation (PCM) waveform obtained by quan-
tizing to the nearest value in the codebook [−0.9,−0.7,−0.3,−0.1, 0.1, 0.3, 0.7, 0.9], and the residual error
resulting from that quantization.
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2.7.6 Electronic Noise

Thermal Noise, or Johnson-Nyquist noise, is a form of white noise (see Section 2.1) that results from

the agitation brought on by any applied voltage to the charge-carrying electrons inside a radio’s conductive

components of its RFFE (see Figure 2.1). For a circuit with resistance R in Ohms, a signal of bandwidth

∆f in Hertz generates an RMS voltage of:

v =
√

4kBTR∆f, (2.32)

where kB = 1.38× 10−23J/K is Boltzmann’s constant, and T is the temperature of the circuit in Kelvin.

This voltage is white, or applied at all frequencies, adding the power:

PdBm = −174 + 10 log10(∆f), (2.33)

assuming room temperature, T = 298.15K.

The unit used to describe current, Amperes = Coulombs/Sec, describes an average rate of movement

of charge past a constant point. Current is a flow of electrons with small random variations in the arrival

rates of charge. The error introduced by these variations is what is described as shot noise in electronics,

and it is usually insignificant. However, at high frequencies and low temperatures, shot noise can overpower

other forms of electronic noise such as thermal noise as the dominating source. A form of white noise, shot

noise power begins by modeling electron flow as a Poisson process, ultimately deriving power as [?]:

P =
1

2
qI∆fR, (2.34)

where q = 1.602 × 10−19C is the charge of an electron, I is the average DC current flowing through the

conductor, ∆f is the bandwidth of the signal in Hertz, and R is the resistance of the circuit in Ohms.

Flicker Noise, or 1/f noise, occurs in all electronic devices as a low-frequency phenomenon resulting from

small changes, or flickers, in temperature changing the resistivity, and ultimately inducing a small voltage,

in conductive, current carrying sections of the RFFE [?]. In communications, low-frequency noise might

not seem like an issue, but local oscillators mix up flicker noise to frequencies close to the carrier, which is

called oscillator phase noise. Flicker noise is typically characterized by the corner frequency fc (typically

several kHz, determined by which Field Effect Transistor (FET) the RFFE (see Figure 2.1) uses), below

which electronic noise is dominated by flicker noise, and above which is dominated by the various white

band noise sources such as thermal and shot noise. As an Infinite Impulse Response (IIR) filter of order

N , flicker noise can be modeled by convolving time-domain samples with a filter defined by the numerator

coefficient λ and the denominator coefficients γi are determined recursively as:

λ =

√
2πfo10L/10, (2.35a)

γi = (i− 2.5)
γi−1

i− 1
, (2.35b)
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where fo is the frequency offset in Hz, L is the phase noise level in dBc/Hz compared to the carrier power,

and the filter coefficient initialization begins with γ1 = 1. An IIR filter is defined by these coefficients and

input waveform x[n] in the sample domain as:

y[n] =
1

γ1
(λx[n]− γ2y[n− 1]− ...− γiy[n− i+ 1]). (2.36)

Burst Noise results from the summed voltage errors resulting from Gibb’s phenomenon (see Figure 2.17)

on several discrete voltage signals changing state simultaneously [?]. Gibb’s phenomenon is a model used

to describe how sharp features in time-domain signals require higher and more frequency components

(perfectly square waveforms would require an infinite number of frequencies including frequencies of infinite

cycles/Sec), but due to limitations in hardware high frequency components may not be available and small

errors can occur at signal edges. If the various triggers, states, and clocks used in RFFE’s transition states

at the same time, the sum of these Gibb’s errors can exceed hundreds of mV.

Figure 2.17: A section of a time-domain square waveform formulated by summing cosines. While the states
of the square waveform aims to have values of negative and positive one, there are large deviations near
high-definition edges, and small ripples in flat sections. If unlucky, these analog deviations can sum to mV
values.

Transit-Time Noise is a high frequency noise that occurs in transistors [?]. Transistors are gate-like

semi-conductors used in a radio’s RFFE (see Figure 2.1), consisting of three nodes: a base, collector, and

emitter. When the voltage at a transistor’s base is large enough, current is allowed to flow from emitter to
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base, functioning as a switch. When this transit time from emitter to base is long compared to the period

of the Alternating Current (AC) signal, issues arise in the form of transit-time noise, as the transistor is

no longer being operated in its designed range. The noise will increase with frequency as the signal period

becomes shorter compared to transit-time.

2.8 Coupled Noise

While Section 2.7 describes models for noise generated by the radio itself, this section describes popular

models for noise coupled into the transmission by the environment.

Inter-modulation is the creation of copies of waveforms at unwanted frequencies when multiple signals

modulated by different carrier waveforms (see Section 2.7.1) share the same non-linear wireless channel

(see Figure 2.18). In the example of two sinusoids of frequencies F1, F2, their sum can be described as:

x = sin(2πF1t) + sin(2πF2t) (2.37)
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Figure 2.18: A periodogram (see Appendix A.2) calculated using a Kaiser window displaying the non-
linear sum of two sinusoids (F1 = 10kHz, F2 = 11kHz). The sum is made non-linear by evaluating each
time-domain sample of the sum through the polynomial y = 0.0005x3 + 0.0000001x2 + 0.1x+ 0.003.

Crosstalk is the undesired interference in one allocation of a wireless channel from a usually neighboring

allocation. Commonly this occurs in the form of transmissions near the edge of a frequency band (see

Figure 2.19).
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Figure 2.19: Two Gaussian pulses (see Appendix A.3) displayed in the frequency domain. If guard bands
(displayed here as 125-175 kHz) are not used or bandwidth (100 kHz in this example) is not carefully
allocated, interference can result from neighboring channels (displayed as vertical lines), as shown here.

Atmospheric noise is caused by an average of 3.5 million lightning flashes per day. Cloud to cloud strikes

are typically weaker and can be observed at a radio receiver as white noise (see Section 2.1) [31], while

cloud to ground strikes are stronger and can be seen as impulse noise (see tables of empirically derived

coefficients in CCIR 322 [31]).

Modern urban settings are populated by a host of electronics and machinery, all of which generate

electromagnetic emissions. Automobiles, aircraft, rotating machines such as alternators and engines, power

distribution systems, and lights are examples of such electronics and machinery. The power spectra of the

sum of these emissions can be described as [32]:

P (f) ∝ 1

fβ
, (2.38)

where f is the frequency in cycles and β is the fractional exponent. When β = 0, the power spectrum is

uniform, or AWGN (see Section 2.1). Exponent values of β = 1, 2, 3 are expressive of pink, brown, and

black noise, although any value 0 < β <∞ can be used in this model. Industrial noise can be modeled [32]

as a periodic permutation over time of various spectra (see Figure 2.8).
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(a) A class 4 industrial noise sequence,

modeled as in (2.38) as white, brown,

black, then pink noise.
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(b) A class 7 industrial noise sequence,

modeled as brown, white, pink, then

black noise.

Figure 2.20: Class 4 (a) and class 7 (b) industrial noise sequences (see Appendix A.4), each period lasting
1024 samples. This model is reflective of the time-varying nature of industrial noise, as the authors of [32]
found different power spectra dominate over others for often periodic time intervals.

There are numerous electromagnetic sources throughout the universe whose emissions travel very well

through the vacuum of space and disturb radio transmissions. Cosmic noise is a categorical term that

embodies various forms of noise, most commonly encountered at frequencies above 30 MHz [33]:

• Receivers pointed towards nearby stars such as our sun, super massive black holes at the center of

galaxies, and quasars.

• Charged particles and meteorites that fall into the earth’s orbit are deflected by the fundamental

electro-mechanical Lorentz force due to the earth’s magnetic field. This process produces Synchrotron

radiation [33] of emitted power P ∼ m−4, which results in most all radiation resulting from electrons

and positrons due to their small mass. Synchrotron radiation is phase coherent for showers of large

side surface area smaller than wavelengths emitted. Pulse amplitude is then defined [33] as:

A ∼ Epe
− r
r0 , (2.39)

where Ep is the energy in Joules of the primary particle, r is the distance to the shower core, and r0

is an experimentally determined constant.

• Super wide band noise generated by Cosmic Microwave Background Radiation (CMBR), a form

of radiation persisting from the big bang, which is present homogeneously throughout the known

universe (see Figure 2 of [34] for a plot of the intensity of the CMBR over frequency).
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2.9 Chapter Summary

In this chapter, various classical models for transmission imperfections and channel models were sur-

veyed, including AWGN, link budgets, ray models approximating reflections, diffractions and scattering,

Doppler shift, RFFE errors, electronic noise, and coupled noise. These channel environments serve as

options for arbitrary channel models for use in the proposed framework in Chapter 4. In Chapter 3, we

will survey machine-learning based signal classifiers.
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Chapter 3

Understanding Machine-Learning Based

Signal Classifiers

In order to better understand why test data perturbations unforeseen in the training data decrease signal

classification accuracy, this chapter communicates the basic concepts of linear classifiers (see Section 3.1),

Convolutional Neural Network (CNN) classifiers leveraging non-linear activation functions, and how to

design a CNN architecture (see Section 3.2). Furthermore, fields of generalized (see Section 3.5 and

Section 3.7) and robust training are presented (see Section 3.4) to further discuss the state-of-the-art and

provide background knowledge needed for Chapter 5.

3.1 Linear Classifiers

A linear classifier [2] is the simplest form of supervised machine learning (meaning the classifier is taught

to classify using labeled examples, where as in unsupervised learning no such examples are available). A

linear classifier is comprised of two main parts: a score function that reduces raw data to K class scores

(where K is the number of class categories), and a loss function, which is a metric that describes how

closely a training signal’s class scores match the ground truth.

The word neural in the term neural network is inspired by an analogy bridging the worlds of math and

biology. The basic computational cell of brain is the neuron and its mathematical model (see Figure 3.1)

is very rough. In reality, dendrites perform non-linear, time-varying operations on signals coming in from

axons [2] rather than the multiplication of a scalar, as seen in the mathematical model. Furthermore,

there are many types of neurons, and a very important aspect of their behavior that is ignored in machine

learning is the timing of their axon firings. A linear classifier, as its name implies, does not make use of

an activation function, and each neuron simply computes a biased dot product of its inputs.
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Figure 3.1: A neuron cell (adapted from [2]) is composed of a nucleus which receives signals from many
dendrites. The amount of influence a dendrite has on a neuron is determined by synapses. When the sum
of incoming signals is above a threshold, the nucleus fires a signal down its axon, which in turn splits into
many dendrites, feeding into other neurons. In this mathematical model inspired by this phenomenon,
the previous neurons’ axons carry the signals x0, x1, x2, split into many dendrites. Synapses influence that
value by a weight, (w0, w1, w2). The cell body adds weights to each incoming dendrite (b0, b1, b2), computes
the dot product of all dendrites, and outputs a signal on its axon defined as the output of some activation
function f whose input is the dot product.

The Multi-class Support Vector Machine [2] (SVM) is a commonly used loss function that wants the

correct class for each signal to have a score higher than the wrong ones by a margin of ∆. The SVM is

defined as:

Li =
∑
j 6=yi

max(0, Sj − Syi + ∆), (3.1)

where Syi is the highest class score and Sj is the set of all other scores. As an example, if the ground truth

for the ith signal used to train a three-class linear classifier is yi = 0 6= 1 6= 2, the margin ∆ = 10, and the

class scores S = [13,−7, 11]:

Li = max(0, S1 − S0 + ∆) +max(0, S2 − S0 + ∆), (3.2a)

Li = max(0,−7− 13 + 10) +max(0, 11− 13 + 10), (3.2b)

Li = max(0,−10),max(0, 8), (3.2c)

Li = 8. (3.2d)

The j = 1 term contributes no loss to Li because the correct class score S0 = 13 was more than ∆ = 10

larger than the incorrect score S1 = −7. The j = 2 term was not, so the loss score was increased by how
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much the margin was missed by, eight.

A commonly used reduction for the dot product of terms Wxi+b is to combine W, b into one matrix [2].

This is done by adding a unit value to the end of each flattened row vector signal xi as shown in Figure 3.2.

Figure 3.2: An illustration (adapted from [2]) of reducing W ∈ [3, 4] and b ∈ [3, 1] into a single matrix,
W ∈ [3, 5] by adding a unit value to the end of xi ∈ [5, 1].

For a single-layer Linear Classifier (input is directly connected to neurons which are directly used to

calculate class scores) and linear score function S = f(xi, w), SVM can be vectorized and written as:

Li =
∑
j 6=yi

max(0, wTj xi − wTyixi + ∆), (3.3)

where each of the N training signals xi, i = 0, 1, ..., N − 1 are the flattened row vectors of two-dimensional

(D = 2) signals, where each element represents an alternating in-phase and quadrature (IQ) sample. All

flattened signals together make up the matrix of samples x ∈ [N, k ×D].

Suppose we are given a new set of scores S = [13,−7,−5], such that now in (3.2) we achieve Li = 0. If

we set all weights W = λW , for λ = 3, through (3.3) we would achieve in (3.2) Li = max(0, (−7− 13)λ+

10) +max(0, (−5− 13)λ+ 10) = 0. For any λ > 1, in fact, the loss function would remain at zero. To keep

weights minimal and remove this ambiguity, the SVM employs a regularization penalty [2], defined as:

R(w) =
∑
k

∑
l

w2
k,l, (3.4)

such that the SVM is now defined as:

Li =
∑
j 6=yi

max(0, wTj xi − wTyixi + ∆) + λ
∑
k

∑
l

w2
k,l. (3.5)
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This way, no single input dimension of a training example xi can have a dominating impact on all K scores

by itself. For example, the unit amplitude, two-symbol, two-SPS Quadrature Phase Shift Keying (QPSK)

signal xi = [1, 1, 1, 1] and two weight vectors w0 = [1, 0, 0, 0] and w1 = [0.25, 0.25, 0.25, 0.25] result in the

same dot product wT0 xi = wT1 xi = 1, but the regularization penalty for R(w0) = 12 + 02 + 02 + 02 = 1 >

R(w1) = 0.252 + 0.252 + 0.252 + 0.252 = 0.25. As a result, w1 would achieve the lower regularization loss

λR(w) and total loss Li because the influence of its weights are more evenly distributed across both the

I and Q components of both the first and second symbol of the transmission xi. Using w0, all influence

is given to the in-phase component of the first symbol. In [2], it is suggested that ∆, λ can safely be set

to one in all cases, and can be tuned together as a single hyper-parameter (a concept covered later in this

chapter).

The other popular loss function, besides SVM, is the soft-max function [2] defined as fj(z) used in the

loss function Li:

fj(z) =
ezj∑
k e

zk
, (3.6a)

Li = − log

(
efyi∑
j e

fj

)
, (3.6b)

where fj is the j-th element of the K class scores fj , j = 0, 1, ...,K − 1. This function can be though of as

the normalized probability that the label yi is correct given the signal xi parameterized by weights matrix

W :

P (yi, xi;W ) =
efyi∑
j e

fj
. (3.7)

The function is analogous to a probability in the sense that each soft-max rating 0 ≤ fj ≤ 1 and
∑

j fj = 1.

A three-class modulation linear classifier soft-max vector f = [0.2, 0.2, 0.6], for instance, may represent that

the classifier believes that the test-time signal given to it is 60% likely to be QPSK modulated IQ data,

20% likely to be BPSK modulated, and 20% likely to be QAM-16 modulated.

A comparison between SVM and soft-max is displayed in Figure 3.3. In practice, the performance of

both loss functions is near equal [2]. However, one can train faster or classify more accurately than the

other, given the right circumstances. Since the SVM operates properly when an incorrect score is more

than a margin lower than the correct score, time is not wasted training a linear classifier to decide between

two easily distinguishable labels. The soft-max classifier, on the other hand, always benefits from a lower

score for incorrect labels, and a higher score from the correct labels.

In this section so far, its been mentioned that λ,∆ are defined as hyper-parameters. Throughout

Section 3 this term will be used to describe constants used in various machine learning tasks that might
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Figure 3.3: An illustration (adapted from [2]) of the computation of class cores f and the resulting loss
score Li using both SVM and soft-max functions. Both use the same class scores f , but have very different
interpretations of their results, 1.58 and 1.04. The SVM considers each incorrect score less than a margin
below the correct score as a contributor to loss, while the soft-max classifier relays a value proportional to
the belief that the label assigned to each signal is correct.

not have clear values. The way researchers typically tune hyper-parameters is through a data-driven

approach known as validation [2].

Validation is a simple concept: try out different values for each hyper-parameter and see what works

best. An important detail here is that evaluation-time signal data cannot be used to tune hyper-parameters.

The information contained in test data should never be used until evaluation time for any reason, as the

fundamental assumption of machine learning is that decisions are made through learning from training

data. This is called over-fitting the classifier, and typically results in poor performance if the test signals

are switched.

Consider the code below as Python pseudo-code for a validation example. For lambda = [1, 2, 5, 10, 100, 500, 1000],

we find out how good out linear classifier LC is at determining the modulation scheme of each training

signal in Xtr rows. Instead of using all 10,000 signals to train, we take 500 of them for this purpose, and

determine which value of λ nets the highest classification accuracy, using that value at evaluation-time.
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import numpy as np

# assume we have Xtr rows, Ytr, Xte rows, Yte as the flattened signals and

# their associated modulation labels

# Say that Xtr rows is our training data: a 10,000 x 3200 matrix,

# representing 10,000 transmissions of 1,600 alternating IQ samples

Xval rows = Xtr rows[:500, :] # take first 500 signals for validation

Yval = Ytr[:500]

Xtr rows = Xtr rows[500:, :] # keep last 9,500 for training

Ytr = Ytr[500:]

# find hyperparameters that work best on the validation set

validation accuracies = []

for lambda in [1, 2, 5, 10, 100, 500, 1000]:

# use a particular value of lambda and evaluation on validation data

LC = LinearClassifier()

LC.train(Xtr rows, Ytr)

# here we assume a modified LinearClassifier class that can take a lambda

# as input for its SVM

Yval predict = LC.predict(Xval rows, lambda = lambda)

acc = np.mean(Yval predict == Yval)

print 'accuracy: %f' % (acc,)

# keep track of what works on the validation set

validation accuracies.append((lambda, acc))

As the number of signals used in validation, the number of hyper-parameters, and the number of values

swept over for validation increase, it should become apparent that validation quickly becomes a highly

costly endeavor. If the amount of training data available is small, it becomes hard to trust the outcomes

of validation sweeps, and the even more costly cross-validation technique is often implemented, if needed.

The goal of cross-validation is to split up training data into folds, performing validation once for each fold,

where that fold acts as the current validation data. Referencing the Python pseudo-code above, a 4-fold

cross-validation would perform four validations: first with signals 1 through 2,500 as validation data and

signals 2,501 through 10,000 as training data, second with signals 2,501 through 5,000 as validation data

and signals 1 through 2,500 and 5,001 through 10,000 as training data, and so on (see Figure 3.4). The

classification accuracy for each lambda value is then averaged for all four folds, and the value of lambda
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with the highest average is selected as the best to use at evaluation-time.

Figure 3.4: An illustration (adapted from [2]) of common data splits between training, validation, and
testing data. In this image, validation is performed on fold 5, training on folds 1-4, and testing on the rest.
Next, fold 1 would be used as validation data, and folds 2-5 as training data, and so on, until all 5 folds
have been used as the validation data.

In this section, it has so far been discussed how the loss function Li evaluates the quality of the

current weights W used in a linear classifier. Using that information, how can the weights be improved

to better perform at supervised learning? Consider the example loss function in Figure 3.5, where dark

blue represents low loss and red represents high loss. The axes represent varying weight values for two

weights, although in practice the number of weights would take the dimensions of this plot higher than

what can be visualized. Computing the gradient of that landscape would return a vector pointing in the

most blue direction, representing how those two weights should be changed to most significantly reduce

the loss function used.

Computing the gradient involves solving for many derivatives. This can either be done analytically

(a slow but accurate method) or numerically (a faster but less accurate method). In practice, analytic

gradients typically take too long to derive [2], and numerical derivatives have been found to be the most

accurate when calculated using the centered difference formula:

δf

δx
= [f(x+ h)− f(x− h)]/2h, (3.8)

where h << 1 (typically 1e-5 [2]). In a three-weight example case is used to calculate the gradient:

∇f(w0, w1, w2) =
δf

δw0
ŵ0 +

δf

δw1
ŵ1 +

δf

δw2
ŵ2, (3.9)

where w0, w1, w2 are weights used and ŵ0, ŵ1, ŵ2 are the weights’ unit vectors. It is important to note

that the gradient is just a vector, and doesn’t determine to what magnitude weight updates should occur.

As shown in Figure 3.5, there are consequences to updating by too much or too little.

To generalize in the extreme, a linear classifier might find that the weights corresponding to samples

surrounding the max and min samples of Figure 3.6 should be increased to minimize its loss function. Giving

those weights too much influence, however, may cause the classifier to ignore imperfections or phenomenon
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Figure 3.5: An illustration (adapted from [2]) of an SVM loss function’s gradient vector (3.9) for a two-
weight linear classifier. Each of the two axis represent values assigned to a weight. In practice, loss functions
have pockets of local minima/maxima, and cannot be visualized due to the number of dimensions required
to represent each weight used. The color gradient red represents high loss, while blue low loss. The white
circle represents the current values chosen for weights wo, w1, the arrow the gradients unit vector, and the
dashed line an extension of that vector. Updating the weights by too much will put the weights (currently
green loss) in perhaps a higher loss section of the graph (yellow or red), but adjusting the weights by too
little each update will be computationally expensive and perhaps get the SGD stuck in a local minimum
of the SVM loss function.

that reveal themselves at other samples in the signal such as zero crossings or the tails trailing or leading

the symbols due to convolution with the RRC filter.
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Figure 3.6: The in-phase components of one positive and one negative QPSK symbol, up-sampled to 16
SPS by a Raised-Root Cosine (RRC) filter with a roll-off coefficient of 0.35. Making up half the values of
an example flattened training signal vector xi, classification decisions of a linear classifier using this signal
would likely depend most heavily on samples surrounding the 60th and 80th sample, as they most strongly
correlate to what bits are being transmitted. As a result, weights corresponding to those samples would
likely be pushed to higher values during SGD.

How should it be decided by how much and via what method to update weights? Most methods

are iterative, performed by updating weights, calculating the loss function, and adjusting the weights

according to an algorithm. These methods are called Stochastic Gradient Descent (SGD) because the loss

function is being navigated via the gradient in the presence of random variations. The comparison is often

made [2] between SGD and a person walking down a mountain blindfolded. The calculation of a gradient is

sometimes called doing a back-pass through the neural network, as the process begins at the classification

neurons and works backwards, while computing the loss function for the current SGD iteration is called a

forward-pass since the NN is traversed from the input layers to the classification ones.

Vanilla updates are the simplest choice, where the weights matrix W is changed after each gradient

calculation according to:

W += η∇W, (3.10)
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where the hyper-parameter η is the learning rate or step size, and ∇W is the current gradient computed

on weights W . Typically weight updates are halted by automated processes parameterized by patience

and convergence values. If the classifier’s loss function converges to within a certain percentage difference

of the last loss value, supervised training will end after a patience period after some amount of weight

updates have passed without exceeding the convergence threshold. The purpose of the patience period is

to give natural variations in the loss function a chance to overcome a local minimum.

Momentum updates almost always result in faster convergence [2], and can often avoid the pitfall of

getting trapped in local minima that vanilla updates can be susceptible to. Think of momentum updates

as a ball in 3D space rolling down a hill side. In this interpretation of updates, the current weight values W

can be thought of as the current position in space, and the update a velocity value, displacing the weights:

v(i) = µv(i−1) − η∇W, (3.11a)

W += v(i), (3.11b)

where the velocity is initialized at zero as v−1 = 0, and momentum µ is a tunable hyper-parameter, typically

0.9 in practice [2], v(i) is the current velocity value, and v(i−1) is the previous back pass velocity value.

Nesterov Momentum [35] performs slightly better, evaluating the gradient at the weights’ location

where the momentum step µ has carried the values, rather than the current position. For the ith SGD

back pass, the Nesterov Momentum update on W is defined as:

v(i) = µv(i−1) − η∇W, (3.12a)

W += (1 + µ)v(i) − µv(i−1). (3.12b)

Adagrad [36] is another method that caches updates, where the updates are defined as:

cache = (∇W )2, (3.13a)

W += − η∇W
cache+ h

, (3.13b)

where h = 0+ to avoid divide by zero errors. While adagrad begins fast, the aggressive update term η∇W
cache+h

often stops learning too early [2] without proper annealing (covered later in this section).

RMSprop [37] or Root Mean Square (RMS) propagation begins by looking at the signs of the last two

gradients for the weight. If they are the same sign, that means parameter updates are on the right course,

and learning rate η should be accelerated by a small increase factor IF . If different, the weight update was

too large and jumped over a local minimum, and the learning rate should be made smaller by a moderate

decrease factor DF . Next, the learning rate should be increased or reduced such that it stays between a
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range of limits specified at the start of learning. Then, the update is applied:

η(i) =


IF × η(i−1) if ∇W > 0

DF × η(i−1) if ∇W < 0

, (3.14a)

W += η(i)∇W. (3.14b)

Adam [38] is a recent and recommended [2] parameter update algorithm that performs better than the

other parameter updates defined so far. Adam updates utilize RMSprop combined with adagrad, defined

as:

m = β1m+ (1− β1)∇W, (3.15a)

mt =
m

1− βt1
, (3.15b)

v = β2v + (1− β2)(∇W )2, (3.15c)

vt =
v

1− βt2
, (3.15d)

W +=
−η ×mt√
vt+ h

. (3.15e)

where m, v are smoothed and squared smoothed gradients ∇W , mt, vt are bias correction mechanisms

which account for the fact that m, v = 0 at initialization, and h is used as in [36] to avoid divide by zero

errors. The constants β1, β2 are tunable hyper-parameters.

Annealing the learning rate η is typically to speed up SGD, as the first few back passes typically require

large changes [2] to the weights W . Below are the three common methods of annealing.

Step decay is the simplest method, reducing the learning rate every few back passes by a factor α:

η(i) =

{
η(i−1) − α if i mod s , (3.16)

where α ∈ [0, 1]. This decay is piece-wise, applied at every s multiple of the current back-pass i. A good

way to tell when and by how much to reduce η is to look at the loss at each back pass. If the loss is not

reducing, that may be a sign that the weights are bouncing around a minimum, overshooting each time.

Reducing the learning rate at this point would allow the loss function to fall into that minimum.

Another method is exponential decay [2], which is continuous (applied at every back-pass), and decays

such that at back-pass i, learning rate is:

η(i) = η(i−1) − α0e
−ki, (3.17)

decaying more rapidly than (3.16), where the values α0 and k are hyper-parameters.

Inverse decay is a third method of annealing which decays η more slowly than exponential decay

expressed in (3.17) but faster than step decay expressed in (3.16), defined by:

η(i) = η(i−1) − α0/(1 + ki). (3.18)
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Computing gradients in a linear classifier can be thought of as flowing backwards, or back-propagating,

through the neurons. Since neurons (see Figure 3.1) mostly interact with their inputs through multiplication

and addition, circuit graphics (see Figure 3.7) are often used to visualize SGD.

Figure 3.7: A circuit model (adapted from [2]) showing the forward pass (green) by applying inputs to the
gates operators and backward pass (red) by applying the chain rule recursively. Gates represent a few local
operations done by a linear classifier’s neurons. Gates can do both passes totally independent of other
gates, without knowledge of the full circuit, or classifier structure.

Beginning with a forward pass, consider the weights x = −2, y = 5, z = −4 and states q = x + y =

5 − 2 = 3 and f = z × q = −4 × 3 = −12. Using (3.9), the backward pass unit start value δf
δf = 1 would

be changed by ∇f =
[ δf
δq ,

δf
δz

]
= [z, q] = [−4, 3], and ∇q =

[ δq
δx ,

δq
δy

]
= [1, 1]. The resultant back pass values

are then x = 1 × δf
δq ×

δq
δx = −4, y = 1 × δf

δq ×
δq
δy = −4, z = 1 × δf

δz = 3, which would now be used as the

new forward pass values. This process is very powerful due to its independence.

In Figure 3.8, forward passes through circuit models were done using weight values in green. What

values should be used on the first forward pass? One might first want to try all zero values, however this

would result in all gates computing zero value outputs, which would result in all gates computing the same

gradient ∇W , and the same updates using (3.15). Consequently, all weights would be the same, all neurons

equally influencing classification.

The next thought might be to perform symmetry breaking by setting all weights w ∼ N (0, 1) such

that each neuron has unique updates and more importance (higher weight values) can be associated with

some signal samples than others. However, it should be noted that the unit variance σ2 = 1 is not

preserved throughout the classifier, as the variance grows with each neuron’s dot product s =
∑n

i wixi (see
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Figure 3.1):

Var(s) = Var(
n∑
i

wixi), (3.19a)

=
n∑
i

Var(wixi), (3.19b)

=
n∑
i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi). (3.19c)

Consequently, in [2, 39] it is suggested for ReLU (3.22) classifiers to initialize each neurons’ weights as

W0 ∼ N (0,
√

2/n) where n is the number of weights in that neuron. For zero-mean activation function

classifiers such as Tanh (3.21), W0 ∼ N (0,
√

1/n) is suggested [2].

While addition and multiplication gates cover both operations involved in a dot product (see Figure 3.1),

an activation function must also be traversed in SGD in Non-Linear Classifiers, which will be referred to

synonymously with Neural Networks (NNs) from now on. The first popular non-linear activation function

is the sigmoid, defined as:

σ(x) = 1/(1 + e−x), (3.20)

which was historically popular because it serves as a good metaphor for the firing of a neuron [2], having

outputs ranging from not firing at σ(x) = 0 to saturated firing at max frequency, σ(x) = 1. A significant

issue with (3.20) is that during back passes of SGD, saturated regions produce a gradient of near zero

using (3.8). This keeps all but the largest of signals from flowing through neurons. Another issue is that

(3.8) is positive for all x. If this is the case, the gradient on the weights w during back passes will always

be all positive or all negative, causing jerky zig-zag weight updates that can make it difficult for the loss

function to converge to a minimum (see Figure 3.5).

The tanh non-linear function solves the all positive issue [2] in (3.20) by zero-centering the equation:

tanh(x) = 2σ(2x)− 1. (3.21)

However, (3.21) still saturates to -1 and 1, resulting in gradient-killing back passes. With the improvement

of zero-centering, (3.21) is always preferred to (3.20).

A very common activation function is the Rectified Linear Unit (ReLU) function [2]:

f(x) = max(0, x). (3.22)

The reasons for ReLU’s popularity are that it was found to make for very fast [40] weight convergence

through SGD, and is computationally cheap. However, one should take note that the gradient (3.9) of

(3.22) is computed as:
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δf

δx
(y) =


1 if x ≥ y

0 if x < y

(3.23)

Notice how this gate routes all the gradient to the larger input. The implications of this can be seen in

Figure 3.8.

Figure 3.8: A circuit model (adapted from [2]) showing the forward pass (green) by applying inputs to the
gates operators and backward pass (red) by applying the chain rule recursively of a circuit featuring a ReLU
max gate. The blacked out w weight would cause all gates before it to have a gradient of zero, killing those
neurons. Using (3.9), the back pass value for w can be shown to be w = 1× δ

δa2a× δ
δr (r+p)× δ

δw max(w, z) =
1× 2× 1× 0 = 0

Leaky ReLU attempts to fix the blackout issue [2] that (3.22) has by giving a small negative slope α

for values x < 0:

f(x) =


x if x ≥ 0

αx if x < 0

(3.24)

While this sometimes prevents blackouts, other times it does not, and many are unsure why it works when

it does and why it does not when it does not [2]. The leaky slope α can be parametrized and tuned

to optimize a classifier (called PReLU) as seen in [41], although the reason why this is of benefit is still

unclear.

Most researchers use (3.22) in practice, and if a large number of neurons are dying during SGD, leaky

ReLU and PReLU are often used.

Signal data does not always come in a form that is friendly for machine learning. Sometimes one or

several operations must be performed on IQ, time domain, or frequency domain data to prevent certain

errors from occurring in training or testing a linear classifier. As mentioned in (3.21), zero-centered values

are of great importance, for example. It is important to note that these operations should only be calculated
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using training data, and then applied equally to all training, validation, and testing data. Below are several

forms of data preprocessing that are used and why they are important.

Mean subtracting data, defined as subtracting the mean vector µ (or sometimes by sample mean) of

the set of data vectors x ∈ X:

x = x− µ. (3.25)

This is the most common form of data preprocessing in computer vision, and is needed if the data is not

already zero-centered such that SGD avoids having back pass steps with all negative or all positive gradient

updates [2]. Such updates would be jerky and difficult to converge to any low-loss state. Mean subtraction

can be one constant value (mean over all elements of all signals), or sometimes an average signal (mean

elements over all signals). In wireless communications this is unnecessary if the probability to send each

bit or symbol is equal and the data sequence is sufficiently long. Most modulation schemes (BPSK, QPSK,

QAM, etc) are already zero-centered.

Normalization, defined as scaling each zero-centered data vector by the vector or set inverse standard

deviation 1/σ:

x =
x− µ
σ

. (3.26)

Normalization is necessary if different inputs are expected to have different scales, units, or amplitudes,

but are equally important [2]. This may be caused by different SNR values, or by the use of a diverse set

of modulation schemes. As a consequence, larger amplitude modulations like QAM-64 may end up with

larger weights associated with some samples than they deserve during SGD.

Principal Component Analysis [42] (PCA) is the last method to consider, which reduces the dataset X

to the p highest variance signals x ∈ X. This is meant to save time, as classifiers trained with PCA-treated

data are only training on the strongest linearly independent vectors, and have been shown to perform

well [2] despite not using the full set of vectors X. PCA-reduced data XPCA is also called dimensionally

reduced, defined as the dot product of the data X with Up (the last p columns of each row of the eigenvectors

U) formed by the SVD factorization of the covariance matrix cov(X) of the mean-subtracted data XZC :

xiZC = xi −
∑
xi

k ×D
,xi ∈ X,xiZC ∈ XZC , (3.27a)

cov(XZC) =
XT
ZC ·XZC

N
, (3.27b)

USV ∗ = cov(XZC), (3.27c)

XPCA = XZC · Up, Up ∈ [N, p]. (3.27d)

for eigenvalues S, conjugate transpose of the unitary matrix V ∗, k samples per signal, dimensionality

D = 2 for in-phase and quadrature components, N is the number of signals in the dataset, XT is the
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matrix transpose of X, and · is the element-wise dot product between two matrices:

X · Y = x1 × y1 + x2 × y2 + ...+ xn−1 × yn−1, (3.28)

for elements x ∈ X, y ∈ Y of length n.

3.2 Convolutional Neural Networks Architecture and Design

In Section 3.1 it was discussed how classification is performed for a given set of weights and testing

signals, and how those weights are trained using SGD. In this section the topics of Convolutional Neural

Networks (CNNs), what makes one classifier different from another and what it means to train too much

will be discussed.

In linear classifiers, each layer of the architecture is fully-connected with each neuron’s output getting

fed to the input of each neuron in the subsequent layer. A key metric that differentiates one neural network

from another is the number of parameters it has [2], or the sum of its weights and biases (w, b) across all

neurons. This value is directly proportional to the learning capacity and training cost of the architecture.

For example, consider Figure 3.9, which has [3 × 4] + [4 × 4] + [4 × 1] = 32 weights w, one for each

connection, and 4 + 4 + 1 = 9 biases b, one for each non-input neuron. The resulting number of parameters

is w + b = 32 + 9 = 41. Many modern architectures contain 100s of millions of parameters and 10s of

layers [2].
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Figure 3.9: A three-layer neural network (adapted from [2]) with two fully-connected hidden layers. Each
hidden layer has four neurons, and the input has three samples. As shown in Section 3.2, not all architec-
tures use fully connected layers, and for good reason.

In Section 3.1, we discussed the linear classifier and how it reduces many-dimensioned test signals into

a few values communicating its belief as to which category a signal belongs to, calculated using weights

and biases calculated using SGD. It was also mentioned that classification performance rarely improves

with additional layers beyond two hidden layers. This is not the case with CNNs [2], which results in tens

of hidden layers. For all but the smallest signals, this translates to billions or trillions of parameters (see

Figure 3.9). Fully connecting the neurons of each hidden layer would be hugely computationally expensive,

and more importantly would result in significant amounts of over-fitting [2].

In order to address these two issues as well as to achieve levels of classification accuracy not found in

linear classifiers, CNNs deploy a three-dimensional architecture (see Figure 3.10), convolutional layers in

place of hidden layers, and a troupe of regularization layers that separate each convolutional layer.



52

Figure 3.10: A comparable CNN (adapted from [2]) to the linear classifier in Figure 3.9. Convolutional
layers are three-dimensional, and only the last few layers are fully connected. The rest of the CNN is much
more sparsely connected in an effort to reduce over-fitting and computational cost.

In Section 3.1, we defined the flattened signal xi ∈ [1, k×D] as having elements representing alternating

IQ samples. The differences between linear classifiers and CNNs begin with the input vectors, which we

now define in three dimensions as xi ∈ [D, k] for D = 2 where the top row of the signal contains k in-phase

samples, and the bottom row represents k quadrature samples. Together the two rows form the complex

sample (I,Q).

The next key difference comes in the form of how neurons compute their output axon (see Figure 3.1).

In a CNN, the dot product operation is replaced by the convolutional layer. Consider a convolutional layer

with a three-dimensional output shape containing a depth value equal to the number of filters and an equal

width and height equal to:

out dim = (W − F + 2P )/S + 1, (3.29)

where W is the side length of the square input, F is the receptive field size of the square filters used, P

is the amount of zero padding (or value-zero elements) applied to all four sides of the input, and S is the

stride or step size in the change in filter position between each convolution computation. See Figure 3.11

to see an example of calculating 18 axon values.

Notice that the output volume is smaller than the input volume. A key role of zero-padding is to

maintain dimension size throughout forward passes without adding information to the data. Stride can be

set to one to capture the most information from each input, but can be set higher as a form of regularization,

or to reduce computational complexity. The next difference is that a CNN applies its activation function

as a separate layer, performing an element-wise function, leaving the output shape unchanged. A ReLU
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Figure 3.11: Two convolution computations (adapted from [2]) applied to an input (blue) of size W = 5,
filters (red) of size F = 3, zero-padding (gray) P = 1, and stride S = 2. Through (3.29), we obtain the
output matrix (green) height/width (5− 3 + 2× 1)/2 + 1 = 3 of depth two due to using two filters for an
output shape ∈ [3, 3, 2]. Highlighted is the computation of o[2, 0, 0] = 3, computed as x[4 : 6, 0 : 2, 0]~w0[:
, :, 0] + x[4 : 6, 0 : 2, 1] ~ w0[:, :, 1] + x[4 : 6, 0 : 2, 2] ~ w0[:, :, 2] + b0[:, :, 0] = 3.

(3.22) activation layer would maintain output shape, for example, computing each element y = max(0, x)

from input element x.

A key operation CNNs perform is down-sampling, which is often achieved by pool layers. Pool layers

reduce the height/width of the current output shape by taking the population mean or max-valued element

of a group of input values, governed by a filter size and stride, similarly to convolutional layers. This critical

step has been shown [2] to reduce over-fitting while maintaining the key feature information of signals.
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Figure 3.12: Max pooling (adapted from [2]) of a 244 by 244 pixel image. Input size W = 224, filter size
F = 2, and a stride S = 2 resuls in an output shape (3.29) of (224 − 2 + 2 × 0)/2 + 1 = 112. Depth is
maintained.

It has been found in practice that repeating sequences of convolutional and down-sampling layers can

extract higher dimension features in signals and images [2]. CNN layer sequences are typically terminated

with a few fully connected dense layers whose elements correspond to class scores, such as the ConvNet

CNN architecture in Figure 3.13.

Figure 3.13: A ConvNet [3] architecture that passes raw image data through three convolutional layers, a
fully connected dense layer, a maxout layer, and a softmax classifier.

There have been many investigations in the last decades into what the best CNN architectures are.

There is a lot to decide, including where to place down-sampling, convolution, fully-connected, and ac-
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tivation layers, as well as how many sequences of those placements to use. Additionally, each process is

dictated by potentially dozens of hyper-parameters. Below is a brief list of powerful, popular, and recent

CNN architectures (a more detailed survey is given recently by [43]):

• LeNet [44] is the first successful CNN architecture, used to read zip codes and digits.

• AlexNet [45] is very similar to LeNet but is much deeper and more popular. Presented in 2012,

AlexNet featured stacked convolutional layers, where previously such layers were always followed

immediately by pooling layers.

• ZFNet [46] was presented in 2013 as an improvement to AlexNet, designing the middle convolutional

layers to be bigger than the starting and ending ones. Additionally, hyper parameters were tweaked,

making the stride and filter size of the first convolutional layer very small.

• GoogLeNet [47] was designed in 2014 by a group of staff from Google. The architecture made use of

an Inception Module (V1, later followed by Inception V2 [48], V3 [49], and Inception-ResNet [50]),

reducing the number of parameters by an order of magnitude. Additionally, GoogLeNet found that

the parameters contained in the ending fully-connected layers in previous CNNs did not have much

impact on classification accuracy. By removing these and replacing the fully-connected layers with

average-pooling layers, parameter counts can be further reduced.

• VGGNet [51] was also introduced in 2014, drawing attention to network depth. The optimal depth

they found was having 16 layers, but the architecture is mostly popular for its very homogeneous

composition of repeating 3x3 convolutional layers and 2x2 pooling layers from start to finish.

• ResNet [52] was presented in 2015, featuring skip connections, batch normalization, and a complete

lack of fully-connected layers. Skip connections helped SGD training (3.9) avoid gradient saturation,

while batch normalization and a lack of fully-connected layers reduced training complexity.

While pooling is an intuitive and computationally simple method of down-sampling, there are several

other popular methods to control the capacity of a CNN to prevent over-fitting:

• L2 regularization (3.4) adds the term R(w) = 1
2λw

2 to the loss function (3.3). The 1
2 constant is

used such that the gradient calculated during SGD is equal to λw. L2 regularization requires weight

decay (see Section 3.1: Parameter Updates) to be linear (or vanilla).

• L1 regularization is similar to L2 regularization, often combined in the form R(w) = λ1 | w | +λ2w
2.

This combination is defined as elastic net regularization, resulting in most weights being near zero,

causing the weight matrix to be sparse. Consequently, most parameters can be ignored, and only

parameters corresponding to the strongest features need to be used.
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• Max norm constraints bound weight values by imposing the upper limit ‖~w‖2 < c. This prevents

weights from significant increases, but adds ambiguity to weight information in cases where many

weights are clamped.

• Dropout [53] is the most effective and simple regularization method [2]. Dropout sets weights that

connect any two layers to zero during training with probability p. It is effective because over-fitting is

caused by an overabundance of neural connections [2], and dropout very directly reduces the number

of those.
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(a) Before dropout is implemented. (b) After dropout is implemented.

Figure 3.14: An illustration (adapted from [2]) of full-connected neurons before (a) and after (b) connections
are dropped. Arrows represent connections between neurons, while neurons with x’s through them represent
neuron connections terminated by being dropped out.
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3.3 Neural Networks: Universal Approximators

The reason neural networks can classify any set of signals is because they can reduce many-element

signals down to a few values using any set of functions. A neural network with just one hidden layer is a

universal approximator, or its outputs’ relation to its inputs can be written as any function one can come

up with [54].

This is an enormous claim, and any skeptic should reasonably meet it with caution. Consider Figure 3.3,

a 2-layer NN with two neurons in its hidden layer. Using the sigmoid (3.20) function σ(wx+ b) For large

w, small b, it is shown in Figure 3.3 that the output can be shaped into a step function, centered where

ever desired by varying b.

It is easy to see, then, knowing the fundamental theorem of calculus, that at a subsequent neuron which

performs a sigmoid operation on the dot product of its weighted inputs, any function can be approximated

given an infinite number of step functions with customizable location and height (using weights hi, see

Figure 3.3). More formally, as shown in [54], for any continuous function f(x) and some ε > 0, there is a

neural network with one hidden layer g(x) that uses some non-linear function (i.e., tanh (3.21) such that

∀x, | f(x)− g(x) |< ε.

Although only one hidden layer is needed to fully represent any continuous function f(x), in practice

multiple layers are much more practical, as they fit better with observed functions and statistics [2].

For fully connected neural networks, it has been found that classification accuracy is rarely increased for

architectures beyond two hidden layers [2]. In Section 3.2, we will show this is not at all the case for CNNs,

which often benefit from having tens of hidden layers.

3.4 Bayesian Optimization of Machine Learning Algorithms

Bayesian optimization [55] aims to find the global maximizer x∗ of the unknown objective function f

such that:

x∗ = arg max
x∈χ

f(x), (3.30)

where χ is the design space. Neural Networks can be viewed as a form of Bayesian optimization. The reason

for this is because Bayesian optimization is any sequential model-based approach to solving a problem. A

CNN (see Section 3.2) can be represented as a Bayesian optimization problem by mapping the tunable

parameters (weights) W → x and the observed classification accuracy (loss function) L = f (i.e., equation

(3.3)). That, however, is where the comparison ends, as Bayesian optimization is categorically a form of

Reinforcement Learning (RL), or trying to learn about an environment. Updates to the parameters x are

provided via Bayesian posterior updates, or our updated beliefs given data. Posterior updates are guided by
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(a) Sigmoid as in (3.20) parameter w shapes

the transient part of the output of each hidden

layer neuron, while b shifts it in x.

(b) The sigmoid function saturates at

zero and one, so output ranges from zero

to two for this network.

Figure 3.15: A diagram (a) of a simple non-linear neural net with a two neuron hidden layer and a plot
(b) describing its output over values 0 < X < 1 (see Appendix A.7).

(a) Input 0 < X < 1 is weighted and

passed through sigmoid non-linear acti-

vation functions.
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Approximation of Waveform Using 10 Neurons

(b) The continuous waveform (blue) can be ap-

proximated by the neural net output (red).

Figure 3.16: A diagram (a) of a ten neuron hidden layer and a plot (b) of their summed output. With
each additional neuron in the hidden layer, the sum of sigmoids at the neuron in the subsequent layer (see
Appendix A.7) is a closer approximation of a given continuous waveform.



60

acquisition functions αn : χ, where the next parameters in time xn+1 are chosen by maximizing the current

time acquisition function αn. To accomplish this goal, Bayesian optimization asks for two ingredients:

a probabilistic surrogate model which contains a prior distribution describing our current beliefs about

the unknown loss function, and a known loss function that describes how optimal a series of queries are

at accomplishing a task. The expected loss function is minimized to select the optimal queries, and the

observed outputs cause the prior to be updated to provide a more accurate distribution.

Use of an acquisition function is often much more computationally expensive than optimizing the black

box function f [55], so it is critical that the acquisition functions be simple to evaluate. See Figure 3.17

for an illustration of three time iterations of Bayesian optimization.

Given an a priori distribution p(w) which describes probable values for parameters w before observing

data, the a posteriori distribution p(w|D) can be inferred using Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D)
, (3.31)

which describes our updated beliefs about w after observing data D. This is known as a Parametric Model.

The choice of statistical model used now is paramount to the effectiveness of the Bayesian optimization [55].

The simplest such model is the Beta-Bernoulli Bandit Model (see Algorithm 1). The metaphor the name

is based on is a gambling one, where a bandit Bernoulli problem is considered. A slot machine has K arms

or levers, each with some probability of winning money. The effectiveness of each arm on the bandit is

modeled as the function f , taking function input a ∈ 1, ...,K, returning the Bernoulli parameter ∈ (0, 1).

With the outcome of winning money or not denoted as yi ∈ {0, 1}, the outcome of pulling arm ai has mean

parameter f(ai). With the K arms available, f can be fully described by parameters w ∈ (0, 1)K .

Once arms start getting pulled, it can be seen how often each arm actually wins money, and the

comparison is made to probability the arm was believed to have to win money. This data is represented

as D = {(ai, yi)}ni=1, where ai indicates which of the K arms were pulled, and yi is one of money was won

and zero otherwise. We can compute the a posteriori distribution using the prior distribution over w:

p(w|α, β) =
K∏
a=1

beta(wa|α, β), (3.32)

which is a good choice because beta distributions are the conjugate prior to the Bernoulli likelihood, or

part of the same probability distribution family. The a posteriori distribution can be derived using (3.32)

as:

p(w|α, β) =

K∏
a=1

beta(wa|α+ na,1, β + na,0), (3.33)

where na,0 =
∑n

i=1 I(yi = 0, ai = a) is the number of losses resulting from pulling arm a and na,1 =∑n
i=1 I(yi = 1, ai = a) is the number of wins resulting from pulling arm a. The hyper-parameters α, β
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Figure 3.17: An illustration (adapted from [55]) of three time iterations of (3.30). The black line is the
estimated objective or loss function f , while the dashed black line is the true f (unknown but visualized).
The acquisition function α is in green, whose maxima are highlighted with red arrows, indicating either
exploration (when uncertainty σ(·), blue, is large) or exploitation (model prediction is high, solid and
dashed black lines match). Observations xn are marked as black dots, with the new observations in the
n = 3 and n = 4 sub-figures highlighted in red. Notice how new observations reduce uncertainty, and are
first taken at high value points (right skewed) to maximize impact on acquisition function reduction.

must be tuned. Finally, we decide the next arm an+1 to pull by posterior sampling a single sample w̃ from

the posterior and maximizing the surrogate fw̃:

an+1 = arg max
a

fw̃(a), w̃ ∼ p(w|Dn). (3.34)

Arms are only explored under this model if they are likely under the belief of the posterior to be optimal, or

bring in the most wins. Using the bandit parametric model in deep learning, weights W would be updated

at each step n in descending order from the most to least impact on reducing the loss function.
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Algorithm 1 The multi-armed bandit algorithm

1: procedure Input: α,β: hyper-parameters required

2: Initialize na,0 = na,1 = i = 0 for all a

3: repeat

4: for a = 1, ...,K do

5: w̃a ∼ beta(α+ na,1, β + na,0)

6: end for

7: ai = argmaxaw̃a

8: Observe yi by pulling arm ai

9: if yi = 0 then

10: na,0 = na,0 + 1

11: else

12: na,1 = na,1 + 1

13: end if

14: i = i+ 1

15: until stop criterion reached

16: end procedure

Can we make predictions on outcomes from arm-pulling without the parameters w? These are known

as Non-Parametric Models. Using a kernel mapping trick [55], rather than mapping features to labels, we

can describe a similarity between points, depending on which paradigm is more computationally tractable.

In other words, it is simpler to work with the distances between points rather than to map those points in

high-dimensional space. This requires only a J×J matrix inversion on kernels as opposed to the parametric

models’ n× n matrix of time indexed observation periods. Consider the following kernel model:

Ki,j = k(xi, xj) = Φ(xi)V0Φ(xj)
T = 〈Φ(xi),Φ(xj)〉V0 , (3.35)

where Φ = φ(X) is the feature mapping matrix on design matrix X, V0 a hyper-parameter denoting

the variance of a zero-mean Gaussian random variable, xi, xj are all similar pairs of points in X, and

〈Φ(xi),Φ(xj)〉V0 is the inner product. The benefit of the kernel line of thinking is a normally distributed,

data-driven posterior distribution can be described by mean and variance below, with no parameters known

as a Gaussian Process:

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y −m), (3.36a)

σ2
n(x) = k(x, x)− k(x)T (K + σ2I)−1k(x), (3.36b)

where k(x) is the covariance between point x and all previous observations, and k(xi, xj) is the kernel at



63

Ki,j . The above mean and variance describe the non-parametric model’s estimation and uncertainty at

point x representing the solid black line and blue uncertainty area in Figure 3.17, accomplished without

weights W but with kernels K. A simple and common kernel k(x, x′) is the Matérn [56] stationary kernel

covariance function:

k(x, x′) = θ2
0 exp(−r), (3.37)

for r2 = (x, x′)TΛ(x, x′), and Λ the diagonal matrix populated by d length scales θ2
i . All θ values are

hyper-parameters. This section only begins to scratch the surface of Bayesian optimization. Besides the

kernel above there is a host of other options, as well as many parametric and non-parametric methods

such as linear models, sparse spectrum Gaussian Processes, Sparse Pseudo-input Gaussian Processes, and

Random Forest [55]. Finally there is a choice of acquisition functions not even covered here, although

in [55] it is mentioned that hyper-parameter and acquisition function choice does not have a strong impact

on performance.

3.5 Distillation of Neural Network Weights

Distillation is an idea [57] that begins with the thought that a very costly but effective way of improving a

classifier’s classification accuracy on a given signal would be to have many identical neural networks classify

a signal and average the results, due to the random nature of SGD, SVM, or other training methods.

In Section 3.1: Soft-Max Classifier, the soft-max function (3.6) was discussed in its use to describe a

neural network’s belief in a signal belonging to a class. What that equation leaves out is a scaling parameter

named temperature, which determines how far or closely spaced probabilities are. Soft-max functions with

high temperature tend towards equal probabilities, where low temperature soft-max functions tend to

award the highest probability a value of one, all else zero. In its simplest form, distillation trains two

neural networks, one with a low parameter count and one with a cumbersome, high parameter count, with

high temperature T in its soft-max:

fj(z) =
ezj/T∑
k e

zk/T
. (3.38)

After training, the temperature is set to one in the distilled network, but kept constant in the cumbersome

network. This high-entropy form of training has seen considerable investigation since the foundational

paper [57] for its increases in classification accuracy [57] and increased security against adversarial pertur-

bations [21].
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3.6 Generative Adversarial Networks (GAN)

Generative Adversarial Networks [58] achieve deep feature extraction on unannotated data through

back passing through pairs of neural networks. Consider a decoy neural network that generates signals

with the objective of fooling a modulation classifier NN into thinking the signals it is observing are not of

one modulation scheme, but another. It has been shown in many works (see Figure 8 of [59]) that small

or very large changes can be made to signals, images, and voice that cause brittle or too generally trained

classifiers to poorly classify.

In a GAN setup, the decoy network described above is called the generator, while the modulation

classifier is the discriminator. See Figure 3.18 for an overview of how networks in a GAN interact with

each other.

Figure 3.18: A flow diagram (adapted from [58]) of a GAN testing process (training stage is complete).
Synthetic data samples are formed by the generator via a noise source, and the discriminator tries to
correctly classify them as fake while classifying real data samples as real. Discriminator average accuracy
is bounded by 50% (guessing) and 100% (always correct). Depending on the learning capacity of each
neural network and the methods of training, evaluation-time accuracy can fall anywhere in-between.

The goal of training a GAN is to find the parameters of the discriminator that maximize classification

accuracy, and the parameters of the generator which minimize the discriminator’s classification accuracy.

For the generator, this means optimal parameters have been achieved when the discriminators accuracy

falls to 0.5, or correctly classifying fake versus real samples half of the time. Given that there are only two

labels, this accuracy is equal to that of a coin flip, or the best possible confusion.
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Figure 3.19: A flow diagram (adapted from [58]) describing the SGD (3.9) training feedback loop between
the generator and discriminator (used to drive the testing stage shown in Figure 3.18). Parameter updates
continue until the learning capacity of the networks are reached and average classification accuracy of the
discriminator converge to a steady state value ∈ (0.5, 1).

3.7 Neural Network Feature Transformations Performed Via Domain

Adaptation

There is a method of generalized training [60] that has been explored in computer vision recently,

motived by autonomous vehicle technology. There is not enough annotated (tagged with classification

labels) images of roads environments, so a method was developed for training autonomous vehicle computer

vision neural networks with computer-generated 3D images that still allow the networks to test well with

real-world pictures at evaluation time (see Figure 1 of [60]).

The core idea of domain adaptation is to create a latent space Z (see Figure 3.20) that is characteristic

agnostic that can perform feature transformations on feature vectors learned from annotated data from the

source domain X into data from the target domain Y using unannotated data from Y such that a sum of

weighted loss functions is minimized (see Figure 3 of [60], which describes how the weighted loss functions

(3.40)-(3.45) interact with each domain X, Y , and Z).

Domain adaptation attempts to perform SGD (3.9) on the general loss function:

Q = λcQc + λidQid + λzQz + λtrQtr + λcycQcyc + λtrcQtrc, (3.39)

where each individual loss function Q is weighted by λ. Below, the role and contents of each loss function

Q is discussed.

The core loss function Qc aims to perform the task of even the most basic linear classifier (see Sec-

tion 3.1): calculate some difference between each ground truth label ci and each evaluation signal. This is
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Figure 3.20: A flow diagram (adapted from [60]) describing the various transforms fx, gx, h, fy, gy and
spaces X, Z, Y , C and their interactions at the highest level in domain adaptation. The field is motivated
by scarcity of annotated real pictures, but has much wider applications. Implemented correctly, training of
classifiers becomes highly generalizable, making testing well under conditions not trained under becomes
very robust when domain adaptation is performed on a set of unlabeled data from the new target domain.

a standard neural net operation, independent from domain adaptation, described as [61]:

Qc =
∑
i

lc(h(fx(xi)), ci), (3.40)

where lc is some loss function (i.e., L1 norm, L2 norm cross entropy), h : Z ⇒ C is the transform in

Figure 3.20 from Z space to the annotations C, fx is the mapping from the source to the embedded

domain, and xi is a signal from the source domain X.

First and foremost in domain adaptation, it is desired for the transforms in Figure 3.20 to only remove

structured noise from signals, not information bits. The mapping from the X or Y domain to the Z domain

and back should be as close to an identity mapping as possible. That is the role of the individual loss

function Qid [6], which is described as:

Qid =
∑
i

lid(gx(fx(xi)), xi) +
∑
j

lid(gy(fy(yj)), yj), (3.41)

where gx, fx, gy, fy are domain mappings (see Figure 3.20), and lid is the sample or pixel-wise loss function

(i.e., L1 or L2 norm).

Secondly, it is very important for the latent Z space to be domain agnostic. This is achieved by training

the Z space using a GAN (see Section 3.6) discriminator dz : Z → {cx, cy} (c are annotations mapped to

Z) which tries to classify if a feature in the latent space Z was generated from the X or Y domain. The

GAN’s loss function contributing to (3.39) can be described as [62]:

Qz =
∑
i

la(dz)fx(xi)), cx) +
∑
j

la(dz(fy(yj)), cy), (3.42)

where la is a suitable loss function for GANs.
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As an extra precaution to make sure the transforms in Figure 3.20 are consistent, discriminators in the

source domain dx : X → {cx, cy} and target domain dy : Y → {cx, cy} are trained [63] to classify whether

a sample is fake (from the other domain) or real (from its own domain). The loss function minimized to

accomplish this must match ground truths cx to signals from the X domain mapped through the Z domain

and into the target Y domain, and likewise for the ground truths cy of signals from the Y domain:

Qtr =
∑
i

la(dy(gy(fx(xi))), cx) +
∑
j

la(dx(gx(fy(yj))), cy), (3.43)

Similarly to (3.41), a cycle loss function [63] was developed to ensure the mapping from any signal in

the X domain to the Z domain, Y domain, back to the Z domain, and finally back to the X domain is as

similar as possible to the original image. The equivalent is added for images from the target Y domain to

formulate identity mappings through the use of:

Qcyc =
∑
i

lid(gx(fy(gy(fx(xi)))), xi) +
∑
j

lid(gy(fx(gx(fy(yj)))), yj), (3.44)

Similarly to (3.40), a translations loss function formulated in [60] is minimized such that classifications

on signals additionally passed through the fake domain (Y if the signal is from X, X if the signal is from

Y ) are correct in the Z domain when mapped to annotations C:

Qtrc =
∑
i

lc(h(fy(gy(fx(xi)))), ci). (3.45)

3.8 Modulation Classification

In Section 3, Chapter 4, and Chapter 5, the concept of classification labels is often mentioned, and

used in the context of modulation classification. The aim of this section is to communicate to the reader

what a modulation scheme is (see Section 3.8), and the different forms neural nets take to classify them

(see Section 3.8.1). This area of AI communications is driven by a number of things, including Adaptive

Coding and Modulation [64] (ACM), a commonly used technique to adapt wireless transmissions to highly

time-varying phenomenon such as fading. One such thing ACM adjusts according to the environment and

wireless channel is the best modulation scheme to use to maximize throughput, and the receiver in an

ACM system may not always have prior knowledge of what scheme is being used to transmit.

Modulation

In the field of communications, a modulated signal y(t) is simply the multiplication of the signal to be

transmitted, u(t), with a cosine described by ω0, its carrier frequency, cos(ω0t):

y(t) = u(t) cos(ω0t), (3.46)
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and that signal is typically demodulated into a base-band signal z(t) by the receiver chain through the use

of a demodulator, which can be described as:

z(t) = u(t) cos(ω0t). (3.47)

However, this process has been shown [1] to result in frequency-domain periodic copies of the signal in

z(ω), so a low-pass filter H(ω) must be implemented to remove them.

A primary use of signal modulation is traffic control. Two signals being sent by two transmit-receive

pairs in the same location at the same time can be clearly detected and recovered [1] when modulated

differently, or using the same scheme at different carrier frequencies. Another key benefit of modulation is

to reduce the corruption of signals when traveling through a noisy channel [28].

While an exhaustive list of modulation schemes and their performance can be found in [65], the design

and use of the Quadrature Phase Shift Keying (QPSK) modulation scheme is described in this section to

give a better idea behind modulation scheme use.

Typically modulation schemes are described as being M−ary, or having M unique constellation points.

For information represented by a number of bits b, M is calculated as:

2b = M. (3.48)

Modulation schemes are typically expressed as sn(t), time domain cosines that are functions of the message,

n. In the case of QPSK M = 4 = 2b for b = log2(M) = 2, meaning each message contains two bits of

information. Each possible message n = 1, 2, 3, 4 represents the binary message transform n = i : b →

(b1, b2), i = 1, 2, 3, 4, resulting in n = 1 : b → (0, 0) = 0, n = 2 : b → (0, 1), n = 3 : b → (1, 0), and

n = 4 : b→ (1, 1). For QPSK, the constellation map sn(t) is described as:

sn(t) =

√
2Es
Ts

cos(2πfct+ (2n− 1)
π

4
), n = 1, 2, 3, 4, (3.49)

where Es is the energy in Joules per symbol n = i : b→ (b1, b2), i = 1, 2, 3, 4, Ts is the sampling period of

the ADC/DAC in Hz, and fc is the modulation carrier frequency. It can be shown that any modulation

constellation can be represented by a set of basis functions and amplitudes sn(t) = sn1φ1(t) + sn2φ2(t).

Basis functions must be orthogonal, and the whole set orthonormal, meaning each basis is a vector in

euclidean space on a unique axis of the coordinate space, mathematically defined as the inner product of

any two basis functions being zero 〈φi(t), φj(t)〉 =
∫ T

0 φi(t)φj(t) = 0.For QPSK, these are derived [28]:

φ1(t) =

√
2

Ts
cos(2πfct), (3.50a)

φ2(t) =

√
2

Ts
sin(2πfct), (3.50b)



69

Figure 3.21: A set of QPSK constellation points (3.49) for Es = 4. The horizontal axis is defined as φ1(t)
or the real valued element in a complex tuple, and the vertical axis as φ2(t), traditionally represented as
the imaginary valued element in a complex tuple. The resulting transformations are n = 1 : b → (0, 0) :
s→ (2/

√
2, 2/
√

2), n = 2 : b→ (0, 1) : s→ (−2/
√

2, 2/
√

2), n = 3 : b→ (1, 0) : s→ (−2/
√

2,−2/
√

2), and
n = 4 : b→ (1, 1) : s→ (2/

√
2,−2/

√
2)

resulting in the points
(
±
√
Es/2,±

√
Es/2

)
for n = 1, 2, 3, 4, shown in Figure 3.21. A common metric

used to describe the effectiveness of any given modulation scheme is its efficiency εp, defined as the squared

minimum euclidean distance between any two constellation points sn(t), divided by the population mean

energy in Joules per bit:

εp =
d2
min

Ēb
(3.51)

For the case of QPSK, there are two bits per symbol, so Ēb = 1
2Ēs. For (3.50), the L2 norm of the basis

functions is d2
min =

∫ T
0 (φ1(t) − φ2(t))2dt = ||s1(t) − s2(t)||2 = (2/

√
2 + 2/

√
2)2 = 8, s1(t), s2(t) chosen

since all points are equidistant. The energy per symbol is Ēs = 〈s1(t), s1(t)〉 = (2/
√

2)2 + (2/
√

2)2 = 4, so

the efficiency comes out to be εp = 8/(4/2) = 4, which is the highest efficiency a modulation scheme can

achieve when using all constellation points available [28].

3.8.1 Neural Network Modulation Classification

In a communications transmit receive pair, it is not always known a priori which modulation scheme

is to be used. This can cause critical failure, as if an incoming signal cannot be properly mapped to the
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right message bits, bit error rate can increase significantly. Although numerous [4] Automatic Modulation

Classification (AMC) methods have existed for decades, the area has seen new life with the data-driven,

high accuracy classification results coming in from new deep neural networks [4]. It is the goal of this

section to investigate the architecture of a foundational [4] Convolutional Long short-term Deep Neural

Network (CLDNN) that performs modulation classification, as to provide insight on what is happening

behind-the scenes when modulation classification is mentioned in other parts of this work.

In [4], signals xi ∈ [2, 128] are defined by two rows for in-phase and quadrature components, and 128

columns for each complex sample. The architecture used is exceedingly simple: two convolutional layers

(see Section 3.2) and a single dense layer followed by a soft-max (3.6) classifier. The hidden layers are

followed by ReLU (3.22) activation layers, and dropout layers (see Figure 3.2) with p = 0.5. In [4] figures

describing their optimization process are detailed, resulting in choosing a filter size F = 8, stride S = 1,

and 50 filters (see Figure 3.11 for an example convolution).

See Figure 11a of [4] for the time (top) and frequency (bottom) domain magnitude plots [4] of a trained

[1, 8] filter like those in Figure 3.22. This filter’s first, second, and seventh weights have the most influence

on classification. See Figure 11b of [4] for the time-domain IQ plot of a [2, 128] output signal from the [1, 8]

filter in Figure 11a of [4]. The signal input to the filter was random, but trained to maximally activate

the filters eight weights. The result is a Binary Phase Shift Keying (BPSK) waveform, indicating that this

filter was trained to maximize the eventual soft-max class scores of BPSK signals.

Figure 3.22: A flow chart (adapted from [4]) describing the forward pass (see Figure 3.8) of a set of eight
input values through the CLDNN. A [1, 8] input vector is concatenated with values filtered through a [1, 8]
filter in both the first and second convolutional layer. Each filter (see Figure 11a of [4]) contains eight
weights and one bias value (see Figure 3.11 for example filters), which are calculated during SGD (3.9).
The Long Short-Term Memory (LSTM) cell holds the values for the soft-max classification layer.

Two common metrics in modulation classification used to evaluate, in detail, the performance of a

classifier is the testing accuracy curve (see Figure 3.23) and the confusion matrix (See Figure 3.24).
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Figure 3.23: A 3D modulation classification accuracy plot obtained by testing a range of frequency offset
RML2016.10a [5] data samples on a poorly-designed CNN over a range of SNR values. This shows the
accuracy floor of 1/11, which indicates the CNN guessing one of the eleven modulation schemes in the
dataset due to overwhelming frequency error. The peak accuracy of 35% is quite low due to poor hyper-
parameter tuning and a low learning capacity architecture (caused by too much or not enough dropout,
filter layers not correctly extracting features, not enough neurons in dense layers, etc). Modulation accuracy
spikes at certain periodic values of frequency offset, perhaps due to aliasing (so much spinning that the IQ
data doesn’t look like its spinning anymore).
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Figure 3.24: A confusion matrix obtained from a constant CFO (2.30) line drawn down the CFO axis of
Figure 3.23 at 13% CFO normalized to sampling rate. The color gradient communicates classification accu-
racy averaged over SNR values ranging from -20 dB to 20dB. The horizontal axis displays the modulation
scheme that the CNN classifies signals by, and the vertical axis the ground truth of those signals. A per-
fectly performing classifier would have a deep blue diagonal matrix, where each signal of each modulation
type of each SNR is correctly classified by having the highest soft-max value at its index corresponding to
the signals’ ground truth label.
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3.9 Chapter Summary

In this chapter, the fundamentals of deep learning was discussed, specifically topics concerning training.

Additionally, Section 3.8 presented a survey of modulation classification, the primary form of neural network

evaluation discussed in this thesis. This survey provides the knowledge required to understand and derive

architectures for unsupervised domain adaptation in Chapter 5. Additionally, insight has been provided for

the type of machine-learning based signal classifiers datasets generated from the framework in Chapter 4

may be used with.

In the next Chapter 4, a novel framework for low-decay, low-bias dataset generation is presented.
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Chapter 4

Physical Layer Neural Network

Framework for Training Data Formation

In this chapter, a low decay, low bias dataset synthesis framework is proposed that models Machine

Learning (ML) dataset theory using Python classes and instruction files, and whose simulation results show

an 11.58% entropy decrease at classification time relative to state-of-the-art training sets. There has been a

growing interest in choosing appropriate training data in order to enhance NN performance at classification

time. Developing ML based signal classifiers requires training data that captures the underlying probability

distribution of real signals. To synthesize a set of training data that can capture the large variance in signal

characteristics, a robust framework that can support arbitrary baseband signals and channel conditions is

presented.

The proposed framework is intended to be used in conjunction with arbitrary wireless environments.

Chapter 2 presents a survey of wireless environments that one might be interested in modeling. This work

is intellectually controlled and its source code is consequently absent from the Appendix.

4.1 Introduction

Radio Frequency (RF) Neural Networks (NN) have recently received significant attention within the

wireless research community [66, 67]. However, RF NNs do not possess the openly available datasets and

established benchmarks that are frequently associated with other NN applications [5, 66]. Consequently,

there is a need within the wireless community for establishing freely available datasets and benchmarks

that can be used to evaluate and compare the implementations of RF NNs.

In a dense RF environment, a receiver must be able to first detect and isolate a transmission [1] before

a RF NN can extract features and perform signal classification. This detection and isolation is impeded
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by a variety of real-world impairments [27,28], which can negatively affect a NNs classification accuracy in

highly time-varying and probabilistic environments. In recent publications [5,68], the effect on evaluation-

time classification accuracy of signal bandwidth (BW), limits and statistics of powerful imperfections, and

size of training sets has been explored but not fully understood.

For any signal-domain NN, an often used framework for dataset generation is the GNU Radio Com-

panion (GRC) channel model blocks [5]. Each channel block offers a modular, sequential, and parallelized

method of dataset manipulation. However, GRC cannot readily construct massive ensembles of varied

wireless channels. Another resource for RF NNs is the RadioML 2016.10A dataset and Github reposi-

tory, which contains their generation code [5]. While the dataset is popular due to its availability, some

researchers have had difficulty in replicating the peak accuracy of their classifier [69], and the statistics

of the datasets are bound to a single, time-invariant channel model. Should a test set stray too far in

terms of Signal-to-Noise-Ratio (SNR), pulse shaping, Local Oscillator (LO) drift, or some other parame-

ter, the classification accuracy can potentially suffer [68] as a result of data bias, or training under a false

assumption. A strength of signal-domain ML is that it is easy to simulate more data in order to grow a

dataset. Consequently, as long as the memory and computational resources exist, generating large datasets

that cover numerous permutations of channel imperfections would be a valuable tool with respect to the

classification of real signals.
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The work presented in this chapter possesses the following contributions to the current state of the art:

• A brief list of desirable variations for signal-domain ML datasets to achieve full coverage of the

statistics of real signals.

• A framework that synthesizes datasets with the objective of reducing data decay and data bias, and

capturing the underlying statistics of real signals.

– Channel imperfection models are sequentially applied to input baseband signals modularly,

where channel imperfections’ constants and random variables (RV) are defined through the use

of an instructions file.

• Example transmissions synthesized with our framework, constrained by parameters corresponding to

relevant hardware specifications and signal structures.

• Simulation results showing that the generated datasets contain low entropy at evaluation time, and

guidelines for generating diverse and robust RF-domain datasets through Kullback-Leibler Divergence

(KLD) entropy analysis of approximations of Probability Density Functions (PDFs).

The rest of this chapter is organized as follows: The proposed framework and dataset variations are

presented in Section 4.2, and applications of the framework in Section 4.3. Section 4.4 presents KLD

entropy analysis of training set approximations of PDFs and their implications on training set size, and

concluding thoughts are presented in Section 4.5.

4.2 Proposed Framework

The proposed framework is described in Figure 4.1. The framework requires a Dataset Under Test

(DUT) as well as instructions for which channel imperfection models are to be applied to the DUT. The

framework outputs are instances of the DUT that have been modified by a unique permutation of channel

imperfections. Channel imperfection models may be added, modified, or removed from the framework by

minimal editing of the instructions. Each 1D sequence’s output is computed and written in a separate

Central Processing Unit (CPU) process.

Regarding the size of an RF dataset and the choice of information it should contain, two pitfalls that

need to be avoided when building a dataset for ML use are data decay and data bias, which are defined as

follows:

• Data decay is the gradual decrease in testing accuracy over time as simulated training data and

empirical testing data have statistically drifted apart. In the RF domain, data decay can be caused

by hardware advances or changes in communication standards.
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• Data bias is any large difference in training and testing accuracy due to the training set being designed

based on false assumptions. Examples for this are numerous, ranging from false assumptions about

Signal-to-Noise-Ratio (SNR) and other channel characteristics to false assumptions about hardware

condition and use.

A framework is useful for the prevention of data decay since it allows for flexible and easy generation,

keeping datasets current and relevant. Data bias can be avoided through the use of a framework by

influencing training data by a wider range of effects than expected at evaluation time. A framework

makes this tuning process simple and quick using small edits to an instructions file designed to maximize

the amount of information contained in commands relevant to data bias and decay (i.e., link budget

parameters).

Table 4.1: Example 2D Channel Object Matrix (refer to Figure 4.1). Objects are instances of run-time
imported Carrier Frequency Offset (CFO) and Additive White Gaussian Noise (AWGN) Python classes.
Instance variables of the objects are imported from the 3D characteristics matrix. Some characteristic
sweeps should be linearly spaced (phase ambiguity in radians), and others log spaced (SNR of an AWGN
model)

Channel Feature Variations

1 AWGN1 Variance: 0.01 SNR: 0 dB

AWGN2 Variance: 0.01 SNR: 20 dB

AWGN3 Variance: 0.1 SNR: 0 dB

AWGN4 Variance: 0.1 SNR: 20 dB

2 CFO1 offset norm to samp rate: 2.5%

CFO2 offset norm to samp rate: 5.0%

ML datasets have K categories (or labels), y = {0, 1, ...,K − 1}, and N examples (i.e., images, text

blocks, or an RF waveform) of dimensionality D, x = [N×D] [2]. In the context of a modulation classifier of

IQ datasets, K is the number of modulation schemes to be used as labels, D is the dimensions of a training

signal, with a length equal to the number of complex samples per signal and a depth of 2 representing the

in-phase and quadrature components of each complex sample, and N is the number of transmissions in

the dataset.

Statistical heuristic methods of varying complexities suggest different amounts of data to fully represent

the underlying statistics of a set of transmissions for the purpose of classification [70]. A popular and simple

heuristic that we consider represents the number of training examples N as the product:

N = K × C (4.1a)

C = (f × F )× (v × V ) (4.1b)
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Figure 4.2: Example set of eight 1D channel sequences (refer to Figure 4.1) formed by permuting through
the 2D channel object matrix. SampBasic.hdf5 is the DUT, and is pushed through each sequence sample
by sample, leveraging Multiprocessing.

where C is the number of training transmissions per class, F is the number of transmissions per input

feature the dataset has, V is the number of transmissions per variation of those input features, and f

and v are the number of input features and variations. The robust computer vision datasets CIFAR-10

and CIFAR-100 [71] choose a C value of 6,000 and 600, respectively, and the RF dataset RML2016.10A

1,000 [67].

To avoid data bias, one wants to include as many channel imperfections in training transmissions as

possible in a signal-domain ML training set to avoid training under a false set of assumptions of channel

conditions (see Table 4.2 for examples). It is important to note that not all of these input features will

have a significant effect on evaluation time accuracy, which is why the framework is designed to easily

add and remove channel imperfection models, which rescales the number of training examples size by an

integer change of:

∆N = (∆f × F )× (∆v × V ). (4.2)

While several input variations are displayed in this chapter, the proposed framework is designed with

the explicit future purpose of allowing for an endless contribution of channel imperfection models from the

physical layer ML community in addition to the list in Table 4.2. Refer to Chapter 2 for a survey of wireless

environments that one might be interested in modeling when implementing the proposed framework.

Many features have well defined classical models that describe their behavior, excluding certain non-

linear phenomenon such as amplifier non-linearities [72]. It is the goal of this proposed framework to treat

each one of these channel model imperfections as functions f(a, b, ...) described by variations a, b, ..., which

serve as function inputs.

In the proposed framework, the choice of features and variations to be used in an experiment are
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Table 4.2: Examples of variations in computer vision image datasets, and a collection of analogies for their
signal domain parallel [2].

Computer Vision Communications

Orientation Phase ambiguity

Size Signal amplitude

Deformation AWGN, STO, more

Lighting Frequency-fading multi-path

Occlusion Signal jamming

Camouflaged Co-band, neighbor-band interference

Intra-class Variation Alternate modulation (i.e. non-rect QAM)

Image stretching IQ imbalance

Motion Blur Frequency offset (i.e. CFO, Doppler shift)

described by the instructions file. Instruction files have two lines of code per channel imperfection model,

with one describing a key-value pair of the imperfection’s name, and the other a key-value pair describing

the imperfection model’s function inputs (variations). The framework is described by Algorithm 2.

4.3 Applications of Proposed Framework

In order to obtain real-world wireless data, we used in this work a USRP N210 software-defined radio

(SDR) from Ettus Research employing an SBX daughter board [73]. Datasets influenced by state-of-the-

art radio front-end imperfection models are valuable because the radios are current and widely-used, and

thus the datasets are resistant to data decay and bias. In this instruction file, imperfection models are

defined by data sheets describing the Ettus N210 with an SBX daughter-board [29]. Figure 4.3 illustrates

an example transmission from the dataset, xi of dimensionality D, where each sample of xi is a complex

tuple (I, Q). Each xi represents a transmission sent from an N210 impacted by CFO, AWGN, STO, and

phase ambiguity, the four of which are believed by the authors to be amongst the most influential RF

variations on IQ shape and behavior, and thus evaluation-time accuracy of real signals.

Most RF environments are not occupied by a single signal, but by a dense clutter of unique signals

organized by time-varying Medium Access Control (MAC) and network-layer protocols. Consequently,

certain channel imperfections such as multi-path fading can be correlated across multiple transmissions

(i.e., due to common landmarks), while imperfections such as a transmitter and receivers LO drift are

statistically independent. To synthesize training and testing sets that use state-of-the-art signal structures,

these imperfections need to be appropriately correlated and applied, and their transmissions summed.
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Algorithm 2 The proposed framework in Figure 4.1 implementing KLD analysis (see Figure 4.6) to

properly size datasets.

1: procedure Input: Arbitrary baseband signal b[n], parameters A, and k stochastic pro-

cesses {Xk(ak)}ak∈A, entropy criterion E

2: repeat

3: for ak ∈ A do

4: for constant aki do

5: for j values do

6: define {Xk1,j...,i,j (ak1,j , ..., aki,j )}

7: end for

8: end for

9: end for

10: define m = k × i× j series Xm =
(Xk,i,j(ak,i,j)

k

)
m

11: for Xm do

12: framework noisy signal sm[n] = Xm(b[n])

13: end for

14: calculate KLD(sm[n], Xm) = e

15: if e > E then

16: redefine b[n]

17: else

18: entropy criterion satisfied, exit

19: end if

20: end procedure

Figure 4.4 presents a set of three separate transmissions produced from the proposed framework in pursuit

of this goal.

4.4 Simulations and Results

In the previous section, the number of examples a training set should have and what information those

examples should contain was discussed. As shown in [68], the number of observations or samples that are

contained in an example can have a significant impact on training time and testing accuracy of a NN. In

this section, it is investigated how many samples pulled from RVs are needed to estimate their theoretical

PDFs to within a specific degree of accuracy.
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Figure 4.3: 1 SPS pulse shaped Quadrature Phase-Shift Keying (QPSK) IQ data representing the baseband
data of an Ettus Research N210 transmission. For the sake of visualization, frequency offset from Local
Oscillator (LO) drift has been left out. The top track displays the dataset influenced by phase ambiguity
and AWGN, then the matched filtering of that data. The bottom track additionally shows STO, where
the data is interpolated and filtered up to an intermediate 2 SPS, offset in time, then decimated (and once
again match filtered like the top track).

It is desirable to have the number of samples be integers of base two since it is computationally

efficient [2] and allows for an integer number of symbols to be contained in each training example, as most

commonly SPS is also base two. Furthermore, each training example needs to create enough instances of

the RVs that govern its variations such that a PDF formed from that data is similar to the theoretical

PDF. In this way, testing data can be correctly classified because the NN has learned the behavior of

the data. The Central-Limit Theorem (CLT) states that when properly normalized, independent RVs are

summed, the distribution tends towards a Gaussian one. Furthermore, the Law of Large Numbers states

that the average result of a certain number of trials tends towards the expected value as the number of

trials increases. To investigate the implications of these two laws in signal-domain dataset synthesis as

they pertain to Figure 4.3, KLD analysis (4.3) is performed, with results shown in Figure 4.6:

DKL(P ||Q) =
∑
i

P (i)log2

(
P (i)

Q(i)

)
, (4.3)

where the expected probability P (i) can be defined as the definition of a Gaussian PDF:

P (i) =
1√

2πσ2
e−

(x−µ)2

2πσ2 , (4.4)

and the measured probability Q(i) is defined as the histogram formed from the data q(i):
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Figure 4.4: The AWGN channel effect is described by its SNR and Gaussian RV variance, σ. Three
AWGN channels of varying SNR but constant σ described by ChannelConfig.ini are applied to the same
infile sampBasicmod.py. The outputs of which are manually moved to Intermediate Frequency (IF) fold-
ers corresponding to a secondary instructions file, MergeConfig.ini. Merge datasets.py (see Figure 4.5)
modulates and sums the independent transmissions.

q(i) = CDF−1
norm(u) + eps, (4.5)

where eps ∼ U(0, 0+) to avoid log2(0) errors in (4.3) resulting from zero-observation bins, u ∼ U(0, 1), and

CDF−1
norm(u) is the inverse Cumulative Distribution Function (CDF) of the Gaussian distribution:

CDFnorm(x) =
1

2

[
1 + erf

x− µ
σ
√

2

]
. (4.6)

RML2016.10A is a dataset generated using GRC’s dynamic channel model, which combines their Symbol

Rate Offset (SRO), CFO, and flat-frequency fading models. The probabilistic nature of the dataset is

dictated by the SRO and CFO Gaussian RVs, and the AWGN Gaussian RV. Our proposed application

(see Figure 4.3) is described by a uniform RV from a phase ambiguity and STO model, two Gaussian RVs
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Figure 4.5: Three 16 SPS pulse shaped QPSK datasets from Figure 4.4 are modulated to intermediate
frequencies 10, 15, and 20 MHz. Each dataset was pushed through the framework as a DUT and modified
by a unique AWGN channel block independently, each representing a transmitted signal. Future work will
implement this feature to produce MIMO and OFDM datasets.

describing the CFO of a transmitting and receiving LO, and a Gaussian RV contained in the AWGN model.

Since KLD is additive (4.7) for independent distributions (i.e., P1, P2, Q1, Q2), the values in Figure 4.6 are

calculated as the sum of KLD for each RV of the dataset under consideration.

DKL(P ||Q) = DKL(P1||Q1) +DKL(P2||Q2). (4.7)

4.5 Chapter Summary

The proposed framework showcases the ability to model fundamental ML theory through the use of

an instruction file and a library of Python classes. The proposed framework has low data decay and data

bias, and the KLD entropy analysis shows that an application of the proposed framework is properly sized,

achieving 11.58% less entropy than state-of-the-art datasets at classification time.
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Figure 4.6: RML2016.10A is composed of 1,000 training sets containing 128 samples each per class per SNR
value. Transmissions average 28.3 bits divergence from theory. The proposed application (see Figure 4.3)
averages 36.2 bit divergence from theory. In order to achieve similar KLD entropy at an RF NNs evaluation
time to state-of-the-art datasets, this analysis shows the proposed application requires at least 256 samples
per transmission. The resulting divergence from theory is 25 bits, or a 11.58% decrease from RML2016.10A.
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Chapter 5

Domain Adaptation of Wireless Channels

Despite training machine-learning based signal classifiers on permutations of plausible noise models,

unforeseen test perturbations are still likely to remain and result in classification errors. What else can be

done to get classifiers to perform as if test and training data was statistically equivalent?

In this chapter, a novel application of domain adaptation is presented to combat dataset bias of wireless

transmissions using a CNN. Using the proposed method, it is attempted to maintain peak testing accuracy

despite substantial dataset bias resulting in a loss of 16% peak testing accuracy. Research on this topic

has just begun and research is ongoing.

5.1 Introduction

Dataset bias [74] presents a significant problem for NNs across many industries. Bias arises when false

or incomplete assumptions are made about testing data, and there exist statistical differences between

testing and training data either due to unforeseen perturbations or incomplete or low quality training

data.

Domain adaptation [60] is a method of treating dataset bias, motivated by the automotive industry to

construct images for computer vision NNs out of 3D rendered graphics of roads. It is a loosely defined field

that also goes under the names of class imbalance [75], covariate shift [76], and sample selection bias [77].

The method involves reconstructing data from a source domain into a target domain (see Chapter 2).

However, as far as the the authors know, this method has only been applied to computer vision scenarios.

The parallel drawn in this chapter is that source and target domains can represent a statistical space

of stochastic processes (see Chapter 2) corresponding to a real world transmission utilizing a specific set of

hardware and a specific wireless medium. Given the time-varying nature of wireless channels, even wireless

NNs trained on Over-The-Air (OTA) data can suffer dataset bias and decay by the time the testing phase

is reached. It is the goal of the authors to investigate maintaining peak modulation classification accuracy
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by performing domain adaptation transforms on deep features learned from training data transmitted

using certain hardware over a certain wireless medium, but tested using data sent over a different wireless

medium using different hardware. The method of domain adaptation used at the infancy of this work is the

simpler Deep Reconstruction-Classification Network [6] (DRCN). This method is categorically a form of

unsupervised domain adaptation, meaning data samples used from the target domain to learn transforms

are not labeled, or contain no ground truth modulation scheme.

The work presented in this chapter suggests the following contributions to the current state of the

art [60]:

• A novel reconstruction network application that can be used to reconstruct wireless transmissions

from one set of stochastic processes to another via a characteristic-agnostic wireless channel domain.

• A novel application of method of dataset bias reduction via unsupervised domain adaptation.

The rest of this chapter is organized as follows: Section 5.2 describes the DRCN architecture and its

application in the communications field, Section 5.3 describes the training and testing of the DRCN, and

concluding thoughts are discussed in Section 5.4.

5.2 System Architecture

A domain is described as a PDF over the input space X and output space Y , denoted as DXY . In

unsupervised domain adaptation, labeled samples generated from a source domain {(xsi , ysi )}
ns
i=1 ∼ SX and

unlabeled samples from the target domain {(xti)}
nt
i=1 ∼ TX are mapped by the labeling function f : X → Y

and g : X → F such that the domains S and TX are i.i.d. and minimally different by designing F .

To define this projects mappings, let the supervised learning mapping be fc : X → Y and the unsuper-

vised mapping be fr : X → X. Additionally, let the encoder feature mapping which transforms features

to the characteristic-agnostic domain Z be genc : X → F , the decoder mapping the Z domain to the target

domain be gdec : F → X, and the featuring label mapping be glab : F → Y . See Figure 5.1 for an overview

of these mappings in relation to domain space.
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Figure 5.1: An overview of the DRCNss domain mappings and the space each domain occupies. See (5.2)
to see how they’re used in the DRCNs objective function.

Given a signal from the source input space, x ∈ X, the mappings fc, fr can be expressed as:

fc(x) = (glab ◦ genc)(x), (5.1a)

fr(x) = (gdec ◦ genc)(x). (5.1b)

To define the DRCN’s learning parameters, let θc = {θenc, θlab} denote the supervised domain adapta-

tion model’s weights and bias’ and let θr = {θenc, θdec} denote the unsupervised model’s.

To define the DRCN’s loss function, let the signal space x ∈ X and label space y ∈ Y (in this case

representing 11 modulation schemes, y ∈ {0, 1}11) be used to define the classification loss function lc : Y ×Y

and the reconstruction loss function lr : X ×X. The loss at any point then in SGD is defined as:

Lnsc ({θenc, θlab}) ,
ns∑
i=1

lc(fc(x
s
i {θenc, θlab}), ysi ), (5.2a)

Lnsr ({θenc, θdec}) ,
nt∑
j=1

lr(fr(x
t
j {θenc, θdec}), xtj). (5.2b)

The objective function of the DRCN is then defined as:

L , min
θ
λLnsc ({θenc, θlab}) + (1− λ)Lntr ({θenc, θdec}), (5.3)

where 0 < λ < 1 is a hyper-parameter giving a bias or importance to classification or reconstruction.

The DRCN architecture (see Appendix C.4) is composed of two sections, as shown in Figure 5.2.
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Figure 5.2: The DRCN (adapted from [6]) is composed of two sections: the Convnet [3] classification NN
(left) and reconstruction Convae [6] NN (right). The classification NN performs source label prediction and
is composed of three convolutional layers of depth (number of filters) nb = [100, 150, 200] where filter size
is 3× 3. Each max pooling layer condenses a 2× 1 grid of values into one equal to the largest of the four.
Dropout probability ρ = 0.5, dense layers have 1024 neurons, and the soft-max classification layer has 11
outputs, one for each modulation scheme. The reconstruction NN is an auto-encoder that performs data
reconstruction. This teaches commonalities between classifying in both domains, helping the formation of
F , transforming to a characteristic-agnostic domain.

The RML2016.10a dataset [5] and its target domain counterpart are described by Table 5.1. Each

dataset contains 11 modulation labels and 20 Es/N0 labels ranging from -20 dB to +20 dB, for 220

class combinations of labels. Each label pair generates 1,000 transmissions containing 128 complex valued

64-bit (double-precision) samples representing IQ data. Having both multiple samples per transmission

and multiple transmissions per class combination of labels allows the random variables that drive the

stochastic wireless channel processes to generate a number of samples sufficient enough to realize the

processes theoretical probability functions, in accordance with the law of large numbers. The design goal

of the target domain wireless channel is for it to be significantly statistically different from the source

domain wireless channel, as to challenge this chapter’s hypothesis most strongly, but not for it to be too

significantly noisier or cleaner, as that would simply reflect on the CNNs ability to classify noisy data.

5.3 DRCN Results

Training and testing was done on Worcester Polytechnic Institute’s Turing High-Performance Com-

puting cluster (HPC). Jobs were submitted using bash scripts (see Appendix B.1) calling a meta file (see

Appendix C.1).
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Table 5.1: A summary describing the statistical differences between the source domain and target domain
datasets. Maximum Doppler frequency is denoted as fD, multi-path taps are defined by their time delay τ
and amplitude a, Nsin describes the number of sinusoids used in the frequency-selective fading model, FS
is the sampling frequency of the simulated transmitter and receiver, ∆maxt and ∆maxf are the maximum
symbol rate and carrier frequency offsets, σt and σf are the standard deviations of the Gaussian-distributed
symbol rate and carrier frequency offsets, and K is the Rician K-factor ratio of specular to diffuse power.

Variable Source Domain Target Domain

fD 1 Hz 10 Hz

τ [0, 0.9, 1.7] [0, 0.5, 0.7, 1.5, 2.1, 4.7]

a [1, 0.8, 0.3] [0.8, 1, 0.5, 0.25, 0.2, 0.08]

Nsin 8 2

FS 200 kHz 50 kHz

∆maxt 50 Hz 500 Hz

σt 0.01 0.1

∆maxf 500 Hz 5 kHz

σf 0.01 0.1

K 4 40

5.3.1 Training

Partitioning was done according to a 0.6/0.2/0.2 training/validation/testing ratio (see Appendix C.2).

Mini-batch training was then completed on the Convnet and DRCN architectures according to Table 5.2

using a batch size of 1024 over 30 epochs (see Figure 5.3).
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Figure 5.3: Convnet and DRCN training accuracies at each epoch of SGD. The legend indicates whether
the DRCN or Convnet architecture was used, and the domain the training partition was from.

5.3.2 Testing and Discussion

Test results were printed to the terminal through a .out file (see Appendix B.4). Architectures were

tested against partitions as describe in Table 5.2. The Convnet used in the DRCN to encode/classify

(see Figure 5.1) is trained and tested against partitions of the source (experiment 1, see Appendix B.2)

and target (experiment 2, see Appendix B.3) domain data to establish benchmarks and the difference in

how challenging the wireless channels are. Ideally, the channels should be equally challenging and have

similar accuracies. This would show that the decrease in accuracy from experiment 1 to 4 is not caused

because the wireless channel is more challenging, but because of dataset bias. Additionally, the Convnet is

trained and tested against statistically different data (experiment 4, see Appendix B.5) to show the penalty

of dataset bias, hypothesized to result in near-floor accuracy of 9%, or 1/11 (the number of modulation

labels). Finally, the DRCN is likewise trained and tested (experiment 3, see Appendix B.4), hypothesized

to obtain a peak testing accuracy between (1) and (4), reducing the affect of dataset bias on classification.

5.4 Chapter Summary

In this chapter, the state of the art of domain adaptation in communications was discussed in Sec-

tion 5.1, Section 5.2 described the DRCN architecture and its application in the communications field, and

Section 5.3 described the training and testing of the DRCN.
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Table 5.2: At each stage of training the Convnet classifier is evaluated against a 20% testing partition.
The peak testing accuracy obtained over 30 epochs is presented below for each of the four experiments.

Experiment Architecture Dataset (train/test) Peak Accuracy

1 Convnet source/source 51.7%

2 Convnet target/target 35.1%

3 DRCN source/target 41.7%

4 Convnet source/target 43.5%

The data bias had a smaller effect on the Convnet than hypothesized (expected accuracy to be at the

accuracy floor 9%, but instead only dropped from 51.7% to 43.5%). Although the DRCN has not yet shown

the ability to compensate for dataset bias via data reconstruction (experiment 3 in Table 5.2 performed

at best equally to experiment 4), its effectiveness in computer vision [6] warrants further investigation in

this novel application. Research continues to discover why the ConvAE decoder is ineffective, which could

be caused by a low learning capacity or over-fitting in the classification/decoder architecture. Similarly,

the two wireless channels in Table 5.1 may be too different for reconstruction to be learned by the chosen

architecture. Finally, it may be the case that signals are too low dimension for this computer vision

technique, and no choice of architecture or dataset will result in successful reconstruction.
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Chapter 6

Conclusion

In Chapter 2, a survey of background knowledge learned by the author on the topics of wireless channel

modeling. Chapter 3 surveyed neural networks with an emphasis on training and data sets, and modulation

classification. Chapter 4 showcased work on generalized training through the development and use of a

low bias, low decay framework that synthesizes low-entropy data sets modeling state-of-the-art waveforms.

Finally, Chapter 5 presented ongoing work on generalized training through the use of the domain adaptation

technique.

6.1 Research Outcomes

The work presented in this thesis has resulted in the following research outcomes:

• A survey of wireless channel environments was given in Chapter 2 that can be used in the proposed

framework for dataset generation.

• A survey of machine-learning based signal classification was given in Chapter 3 that can be used to

implement an unsupervised domain adaptation architecture from Chapter 5.

• A framework for wireless transmission dataset synthesis, implementing arbitrary channel environ-

ments and baseband waveforms.

• A dataset generated using the framework from Section 4 was proposed, and was shown to be properly

sized, having 11% lower entropy than state-of-the-art datasets.

• A Deep Reconstruction-Classification Network (DRCN) was proposed in Chapter 5, which attempts

to maintain peak classification accuracy despite heavy data bias resulting in a 16% peak testing

accuracy drop compared to an experiment with all else equal but no data bias. These contributions
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show both data-side (pre-training) and testing-phase manipulations to increase NN generalization

and avoid retraining.

6.2 Future Work

Given the outcomes of this work, the following future tasks are of interest to the authors:

• Improving the generalization of the DRCN method presented in Chapter 5. This could be caused by

a low learning capacity or over-fitting in the classification/decoder architecture. Similarly, the two

wireless channels may be too different for reconstruction to be learned by the chosen architecture.

Finally, it may be the case that signals are too low dimension for this computer vision technique,

and no choice of architecture or dataset will result in successful reconstruction.

• Investigating Ghost Batch Normalization [18] (GBN) as a method of increasing generalizaiton. None

of the contributions in this thesis are meant to totally solve the problem of dataset bias. It is of the

interest of the author to see how much GBN can contribute.

• Developing a method of using Jacobian Norm and Transition Matricies [19] to manipulate general-

ization sensitivity, making communications NNs robust to perturbations. Changes to a classifier’s

architecture can change the number of activations given different data samples and the way class

scores are changed by data perturbations.
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Appendix A

Channel Modeling MATLAB

A.1 Road channel.m

% AUTHOR: Kyle McClintick

% DATE: 9/17/18

% DESCRIPTION: Calculates the received power for a narrow-band signal

% as a function of distance given a 20x50x5 meter room, 0.7 wall and

% ceiling attenuation, 5.2GHz tone transmitted at 1mW, only considering

% first order reflections, and antenna height of 1.5m, a transmitter

% at (25,10), and a receiver at locations ranging from (1,5) to (49,5).

clc;

close all;

clear;

% seven first order paths (direct, walls, floor, ceiling)

r = 5000; % resolution, number of positions plotted

% 26.822 m/s is 60 MPH, to move 48 meters takes 1.79 seconds

t = linspace(0, 1.79, r);

phasors = zeros(r,5);

wb phasors = zeros(r,5);

path lengths = zeros(r,5);

PNB = zeros(1,r);

a = [1 0.38 0.34 0.8 0.8]; % mean dry asphalt attenuation coeff for floor, metal for front

and back (cars), concrete for sides
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c = 3*10ˆ8; % speed of light

f = 2.42*10ˆ9; % TPMS is 315 MHz (434MHz in Europe), bluetooth 2.42 GHz

xm = 50;

Pt = 0.00631; % -30dBm power transmitted for tpms, +8dBm for bluetooth

ym = 3.7; % width of a one lane road

xt = 25;

yt = 4.7; % listening station is a 1 meter off road

xr = sort(linspace(1,xm-1, r)+normrnd(0, 3, [1,r])); % position vector

yr = smoothdata(ym/2 + normrnd(0, 1, [1,r]),'gaussian',100); % car is somewhere near middle

of lane

freq = 12.5; % avg tire has 12.5 RPS at 60 MPH

ht = 5; % listening station height

hr = 1.5*ones(1,r); % bluetooth height

% TPMS height changes as the tire rotates, wheel radius 19.05cm (where tpms

% is attached), whole wheel plus tire radius 34.42462cm

%hr = 0.3442462 + 0.1905*cos(2*pi*freq*t);

x1 = sort(linspace(1-2, xm-1-2, r)-normrnd(5, 3, [1, r])); % trailing car path

x2 = sort(linspace(1+2, xm-1+2, r)+normrnd(5, 3, [1,r])); % leading car path

y1 = smoothdata(ym/2 + normrnd(0, 1, [1,r]),'gaussian',100);

y2 = smoothdata(ym/2 + normrnd(0, 1, [1,r]),'gaussian',100);

for i=1:r

% direct path

path lengths(i,1) = sqrt((xt-xr(i))ˆ2+(yt-yr(i))ˆ2);

% bottom wall

path lengths(i,2) = sqrt((xt-xr(i))ˆ2+(-yt-yr(i))ˆ2);

% top wall, ignored for RSU on top

% path lengths(i,3) = sqrt((xt-xr(i))ˆ2+(-(ym-yt(i))-(ym-yr(i)))ˆ2);

% floor reflection

path lengths(i,3) = sqrt((xt-xr(i))ˆ2+(yt-yr(i))ˆ2+(-ht-hr(i))ˆ2);

if xt > x1(i)

% path off first car behind

path lengths(i,4) = sqrt((-(xt-x1(i))-(xr(i)-x1(i)))ˆ2+(yt-y1(i))ˆ2);

end

if xt < x2(i)

% path off first car ahead

path lengths(i,5) = sqrt((-(x2(i)-xt)-(x2(i)-xr(i)))ˆ2+(yt-y2(i))ˆ2);

end

% calculate phasors using path lengths

phasors(i,:) = a * sqrt(Pt) .* exp(sqrt(-1)*2*pi*path lengths(i,:)/(c/f)) ./ path lengths

(i,:);
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% wide band phasors have no phase term. Used to evaluate effectiveness

% of averaging narrow band phasors

wb phasors(i,:) = a * sqrt(Pt) ./ path lengths(i,:);

if xt < x1(i)

% diffraction occurs on lagging car, modeled later

phasors(i,4) = 0;

wb phasors(i,4) = 0;

end

if xt > x2(i)

% diffraction occurs on leading car, modeled later

phasors(i,5) = 0;

wb phasors(i,5) = 0;

end

% final received power

PNB(i) = 20*log10(abs(sum(phasors(i,:))));

wb PNB(i) = 20*log10(abs(sum(wb phasors(i,:))));

end

fixed fading low = smoothdata(PNB,'movmedian',30);

fixed fading high = smoothdata(PNB,'sgolay',500);

figure(1)

% subplot(1,2,1)

% plot(linspace(1,49,r), PNB, linspace(1,49,r), wb PNB,'LineWidth',2);

plot(linspace(1,49,r), wb PNB,'LineWidth',2);

grid on; title('Bluetooth Wide-Band Shadow Fading');

xlabel('Xcar (m) where Xrsu = 25');

ylabel('Pr (dB)');

% lgd = legend('Narrow Band Bluetooth', 'Bluetooth Power Profile with No Phase');

lgd.FontSize = 20;

% subplot(1,2,2)

% plot(linspace(1,49,r), fixed fading low, linspace(1,49,r), fixed fading high,'LineWidth',2)

% grid on;

% xlabel('Xcar (m) where Xrsu = 25','FontSize', 20);

% ylabel('SG PNB (dB)','FontSize', 20);

% lgd = legend('n=30 median','n=500 SG');

% lgd.FontSize = 20;

figure(2)



105

plot(linspace(1,49,r), PNB); grid on;

xlabel('Xcar (m) where Xrsu = 25');

ylabel('PNB (dB)','FontSize', 24);

% Doppler spectrum and spread

Tau = zeros(r,5); % travel time for each path for each receiver position

for i=1:r

Tau(i,:) = path lengths(i,:) / c;

end

% taps of middle location of center beacon node

figure(3)

stem(Tau(r/2,:), abs(phasors(r/2,:))); grid on;

title('Taps as Beacon Passes Sensor'); xlabel('Tau (seconds)');

ylabel('Amplitude');

% plot doppler spectrum

figure(4)

semilogy(linspace(-2*pi*c/f,2*pi*c/f,r), sum(abs(fft(abs(phasors))).ˆ2,2)); grid on;

title('Doppler Spectrum'); xlabel('Frequency w (Hz)');

ylabel('D (dB)');

% calculate rms delay spread, tau rms at taps passing by RSU

tau = abs(phasors(r/2,:)).*Tau(r/2,:) / abs(phasors(r/2,:));

tau2 = abs(phasors(r/2,:)).ˆ2.*Tau(r/2,:) / abs(phasors(r/2,:));

tau rms = sqrt(tau2 - tauˆ2)

tau max = max(Tau(r/2,:))

% plot car swerving over time

figure(5)

plot(linspace(1,49, r), yr); ylim([0 3.7]);

grid on;

title('Ycar movement from 0m to 50m');

xlabel('Xcar (m)'); ylabel('Ycar (m)');

% lets get the power gradient, no more random variation in position

xr = linspace(xt, xm-1, r);

yr = ym/2;

x1 = linspace(xt-2-5, xm-1-2-5, r);

y1 = ym/2;
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x2 = linspace(xt+2+5, xm-1-2+5, r);

y2 = ym/2;

for i=1:r

% direct path

path lengths(i,1) = sqrt((xt-xr(i))ˆ2+(yt-yr)ˆ2);

% bottom wall

path lengths(i,2) = sqrt((xt-xr(i))ˆ2+(-yt-yr)ˆ2);

% top wall, ignored for RSU on top

% path lengths(i,3) = sqrt((xt-xr(i))ˆ2+(-(ym-yt(i))-(ym-yr(i)))ˆ2);

% floor reflection

path lengths(i,3) = sqrt((xt-xr(i))ˆ2+(yt-yr)ˆ2+(-ht-hr(i))ˆ2);

if xt > x1(i)

% path off first car behind

path lengths(i,4) = sqrt((-(xt-x1(i))-(xr(i)-x1(i)))ˆ2+(yt-y1)ˆ2);

end

if xt < x2(i)

% path off first car ahead

path lengths(i,5) = sqrt((-(x2(i)-xt)-(x2(i)-xr(i)))ˆ2+(yt-y2)ˆ2);

end

% calculate phasors using path lengths

phasors(i,:) = a * sqrt(Pt) .* exp(sqrt(-1)*2*pi*path lengths(i,:)/(c/f)) ./ path lengths

(i,:);

if xt < x1(i)

% diffraction occurs on lagging car, modeled later

phasors(i,4) = 0;

end

if xt > x2(i)

% diffraction occurs on leading car, modeled later

phasors(i,5) = 0;

end

% final received power

PNB(i) = 20*log10(abs(sum(phasors(i,:))));

end

fit = polyfit(10*log10(linspace(1,xm-(xt+1), r)), PNB ,1);

gradient narrowband = fit(1)

figure(6)

plot(linspace(1,xm-(xt+1),r), PNB); grid on; title('Total TPMS Prx Over Road Distance');
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xlabel('distance (m)'); ylabel('PNB (dB)');

A.2 intermod.m

% AUTHOR: KWM

rng default

fi1 = 10e3; % sinusoid 1

fi2 = 11e3; % sinusoid 2

Fs = 48e3;

N = 1000; % num time domain samples

x = sin(2*pi*fi1/Fs*(1:N))+sin(2*pi*fi2/Fs*(1:N)); % sum sinusoids

% make sum non-linear by evaluating polynomial. Also add gaussian noise

% y = 0.0005xˆ3 + 0.0000001xˆ2 + 0.1x + 0.003

y = polyval([0.5e-3 1e-7 0.1 3e-3],x)+1e-5*randn(1,N);

% evaluate periodogram (PSD) using kaiser window, plot

w = kaiser(numel(y),38);

[Sxx, F] = periodogram(y,w,N,Fs,'psd');

[myTOI,Pfund,Ffund,Pim3,Fim3] = toi(Sxx,F,'psd')

toi(Sxx,F,'psd');

A.3 crosstalk.m

% AUTHOR: KWM

% simulates two neighboring gaussian pulses interfering with each other

% time domain

Fs = 100e6;

tc = gauspuls('cutoff',50e2,0.8,[],-40);

t = -tc : 1/Fs : tc;

y1 = gauspuls(t,200e3,0.6)+1e-5*randn(1,length(t));

y2 = gauspuls(t,100e3,0.6)+1e-5*randn(1,length(t));
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% freq domain

Y = fft(y1);

L = length(t);

P2 = abs(Y/L);

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

Y2 = fft(y2);

P2 2 = abs(Y2/L);

P1 2 = P2 2(1:L/2+1);

P1 2(2:end-1) = 2*P1 2(2:end-1);

% plotting

plot(f,P1,f,P1 2); xlim([0 300000]);

title('Single-Sided Amplitude Spectrum')

xlabel('f (Hz)');

ylabel(' |P(f) |');

%Add vertical line

y1=get(gca,'ylim'); hold on; plot([75e3 75e3],y1,'r-','linewidth',2); hold off;

y2=get(gca,'ylim'); hold on; plot([125e3 125e3],y1,'r-','linewidth',2,'HandleVisibility','off

'); hold off;

y3=get(gca,'ylim'); hold on; plot([175e3 175e3],y1,'b-','linewidth',2); hold off;

y4=get(gca,'ylim'); hold on; plot([225e3 225e3],y1,'b-','linewidth',2,'HandleVisibility','off

'); hold off;

legend('200 kHz Gaussian Pulse','100 kHz Gaussian Pulse');

A.4 industrialnoise.m

% Author: Kyle McClintick

white = dsp.ColoredNoise('Color','white');

brown = dsp.ColoredNoise('Color','brown');

pink = dsp.ColoredNoise('Color','pink');

black = dsp.ColoredNoise('InverseFrequencyPower',2);

out w = white();
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out brwn = brown();

out p = pink();

out blk = smoothdata(black());

out w1 = white();

out brwn1 = brown();

out p1 = pink();

out blk1 = smoothdata(black());

class 4 = [out w; out brwn; out blk; out p];

class 7 = [out brwn1; out w1; out p1; out blk1];

figure(1)

plot(class 4); title('Class 4 Industrial Noise');

xlabel('Discrete Time (n)'); ylabel('Amplitdue');

figure(2)

plot(class 7); title('Class 7 Industrial Noise');

xlabel('Discrete Time (n)'); ylabel('Amplitdue');

A.5 iqoffset.m

% AUTHOR: kyle mcclintick

% Gen AWGN QPSK data

I = sqrt(2)/2 * (2*randi(2,1000,1) - 3) + 1e-1*randn(1000,1);

Q = sqrt(2)/2 * (2*randi(2,1000,1) - 3) + 1e-1*randn(1000,1);

% apply IQ offest

kI = 1;

kQ = 1;

phi = 20*pi/180;

I o = kI*I;

Q o = kQ*sin(phi)*Q - kQ*sin(phi)*I;

scatter(I,Q); hold on;
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scatter(I o,Q o); title('QPSK Waveform');

xlabel('In-phase'); ylabel('Quadriture');

legend('No IQ Offset','IQ Offset'); xlim([-1.5 1.5]); ylim([-1.5 1.5]);

hold off;

A.6 pcm.m

% AUTHOR: Alex Wyglinski, Kyle McClintick and Gigi Dong

% DATE: 10/3/18

close all;

clear;

clc;

% Define constants

L = 100; % Length of the overall transmission

M = 10; % Pulse duration for rectangular pulse train

N = 10; % Upsampling factor for generating analog waveform

% Generate a discrete version of a random continuous analog

% waveform using a Uniform Random Number Generator and

% an interpolation function to smooth out the result

analog wavefm = interp((2*rand(1,(L/M))-1),M);

% Generate a rectangular pulse train of samples

impulsetrain wavefm = reshape(ones(N,1)*rem(1:1:(L/N),2),[1,L]);

% Plotting Base signals

% figure(1)

% subplot(2,1,1)

% plot(analog wavefm); title('Random Analog Waveform')

% ylim([-2 2]); ylabel('Signal Amplitude'); xlabel('Discrete Time (n)');

% subplot(2,1,2)

% stem(impulsetrain wavefm); ylabel('Signal Amplitude');

% xlabel('Discrete Time (n)'); title('Impulse Train');

% PAM

natural PAM = analog wavefm .* impulsetrain wavefm;

flattop PAM = repelem(natural PAM(1:N:end), N);
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% plotting PAM

% figure(2)

% subplot(2,1,1)

% stem(natural PAM); title('Naturally Sampled PAM');

% ylim([-2 2]); ylabel('Signal Amplitude'); xlabel('Discrete Time (n)');

% subplot(2,1,2)

% stem(flattop PAM); ylabel('Signal Amplitude');

% xlabel('Discrete Time (n)'); title('Flat-Top PAM');

% Quantizing

q = zeros(1,L);

[ind,quantv] = quantiz(downsample(analog wavefm,N), ...

[-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8], ...

[-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9]);

for i=1:N-1

[d, ix] = min(abs(quantv - flattop PAM(1+((i-1)*N)) ));

q(1+((i-1)*N):i*N) = quantv(ix);

end

q = q .* impulsetrain wavefm;

residual = flattop PAM - q;

%

figure(3)

subplot(5,1,1)

plot(analog wavefm); title('Random Analog Waveform'); xlabel('Time');

ylabel('Signal Amplitude');

subplot(5,1,2)

stem(natural PAM); title('Natural PAM'); xlabel('Discrete Time (n)');

ylabel('Signal Amplitude');

subplot(5,1,3)

stem(flattop PAM); title('Flat-Top PAM'); xlabel('Discrete Time (n)');

ylabel('Signal Amplitude');

subplot(5,1,4)

stem(q); title('PCM'); xlabel('Discrete Time (n)');

ylabel('Signal Amplitude');

subplot(5,1,5)

stem(residual); ylabel('Residual Amplitdue'); xlabel('Discrete Time (n)');

title('Quantization Error');
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A.7 universal approximator.m

% AUTHOR: KYLE MCCLINTICK

% DATE: Oct 31st 2018

% simple two neuron case showcasing step ability

x = linspace(0,1);

w1 = 999;

b1 = -400;

b2 = -650;

sigmoid1 = 1./(1+exp(-(w1*x+b1)));

sigmoid2 = 1./(1+exp(-(w1*x+b2)));

figure(1)

plot(x,sigmoid1+sigmoid2); title('Two Neuron Hidden Layer Output');

xlabel('x'); ylabel('Sum of Dendrites at next layers neuron');

% try to approximate an actual analog function

L = 100; % Length of the overall transmission

M = 10; % Pulse duration for rectangular pulse train

% Generate a discrete version of a random continuous analog

% waveform using a Uniform Random Number Generator and

% an interpolation function to smooth out the result

analog wavefm = interp((2*rand(1,(L/M))-1),M);

approx = zeros(1,L);

num neurons = 10;

for i=1:num neurons

b = -10 * (num neurons*(i-1) + 1);

w = 999;

weight = analog wavefm((i-1)*num neurons + 1);

approx = approx + weight * 1./(1+exp(-(w*x+b))); % add sigmoid for this segment

approx = approx - weight * 1./(1+exp(-(w*x+(b-num neurons*10))));% remove it from future

segments

end

figure(2)
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plot(x, analog wavefm,x,approx); title('Approximation of Waveform Using 10 Neurons');

xlabel('x'); ylabel('Sum of Dendrites at next layers neuron');
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Appendix B

High-Performance Computing Cluster

Bash

B.1 bash job submission.sh

#!/bin/bash

#SBATCH -N 1

#SBATCH -n 2

#SBATCH -t 10:00:00

#SBATCH -o commdrcn kwm.out

#SBATCH --gres=gpu:2

module load cuda90/toolkit/9.0.176

module load cudnn/7.1

source /home/kwmcclintick/tf keras/bin/activate

python main sm.py

B.2 1convnet.out

Using TensorFlow backend.
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2018-12-03 16:58:48.659439: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 0 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:03:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 16:58:48.828053: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 1 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:83:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 16:58:48.828195: I tensorflow/core/common runtime/gpu/gpu device.cc:1511] Adding

visible gpu devices: 0, 1

2018-12-03 16:58:49.682739: I tensorflow/core/common runtime/gpu/gpu device.cc:982] Device

interconnect StreamExecutor with strength 1 edge matrix:

2018-12-03 16:58:49.682842: I tensorflow/core/common runtime/gpu/gpu device.cc:988] 0 1

2018-12-03 16:58:49.682855: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 0: N N

2018-12-03 16:58:49.682862: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 1: N N

2018-12-03 16:58:49.683293: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5279 MB memory) ->

physical GPU (device: 0, name: Tesla K20Xm, pci bus id: 0000:03:00.0, compute capability:

3.5)

2018-12-03 16:58:49.683991: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5279 MB memory) ->

physical GPU (device: 1, name: Tesla K20Xm, pci bus id: 0000:83:00.0, compute capability:

3.5)

source dataset shape:

(220000, 2, 128)

Source domain partition summary:

X train: (132000, 2, 128, 1)

Y train: (132000, 11)

X val: (44000, 2, 128, 1)

Y val: (44000, 11)

X test: (44000, 2, 128, 1)

Y test: (44000, 11)

target dataset shape:

(220000, 2, 128)

Target domain partition summary:

X tgt train: (132000, 2, 128, 1)

Y tgt train: (132000, 11)

X tgt val: (44000, 2, 128, 1)

Y tgt val: (44000, 11)
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X tgt test: (44000, 2, 128, 1)

Y tgt test: (44000, 11)

Layer (type) Output Shape Param #

=================================================================

input 1 (InputLayer) (None, 2, 128, 1) 0

conv2d 1 (Conv2D) (None, 2, 128, 100) 1000

activation 1 (Activation) (None, 2, 128, 100) 0

max pooling2d 1 (MaxPooling2 (None, 1, 128, 100) 0

conv2d 2 (Conv2D) (None, 1, 128, 150) 135150

activation 2 (Activation) (None, 1, 128, 150) 0

max pooling2d 2 (MaxPooling2 (None, 1, 128, 150) 0

conv2d 3 (Conv2D) (None, 1, 128, 200) 270200

activation 3 (Activation) (None, 1, 128, 200) 0

flatten 1 (Flatten) (None, 25600) 0

dense 1 (Dense) (None, 1024) 26215424

activation 4 (Activation) (None, 1024) 0

dropout 1 (Dropout) (None, 1024) 0

dense 2 (Dense) (None, 1024) 1049600

activation 5 (Activation) (None, 1024) 0

dropout 2 (Dropout) (None, 1024) 0

dense 3 (Dense) (None, 11) 11275

=================================================================

Total params: 27,682,649

Trainable params: 27,682,649



117

Non-trainable params: 0

None

Train Convnet source/source

Epoch-1: (loss: 2.271, acc: 0.202), (val loss: 2.131, val acc: 0.202), (test Loss: 2.135,

test acc: 0.196) -- 65.37 sec

Epoch-2: (loss: 2.050, acc: 0.297), (val loss: 1.901, val acc: 0.296), (test Loss: 1.900,

test acc: 0.291) -- 52.84 sec

Epoch-3: (loss: 1.839, acc: 0.371), (val loss: 1.719, val acc: 0.367), (test Loss: 1.716,

test acc: 0.365) -- 52.95 sec

Epoch-4: (loss: 1.746, acc: 0.393), (val loss: 1.657, val acc: 0.387), (test Loss: 1.653,

test acc: 0.389) -- 52.92 sec

Epoch-5: (loss: 1.666, acc: 0.408), (val loss: 1.591, val acc: 0.404), (test Loss: 1.588,

test acc: 0.405) -- 52.84 sec

Epoch-6: (loss: 1.595, acc: 0.425), (val loss: 1.544, val acc: 0.424), (test Loss: 1.543,

test acc: 0.423) -- 52.81 sec

Epoch-7: (loss: 1.526, acc: 0.456), (val loss: 1.460, val acc: 0.452), (test Loss: 1.458,

test acc: 0.446) -- 52.80 sec

Epoch-8: (loss: 1.483, acc: 0.465), (val loss: 1.423, val acc: 0.457), (test Loss: 1.419,

test acc: 0.455) -- 52.85 sec

Epoch-9: (loss: 1.448, acc: 0.474), (val loss: 1.405, val acc: 0.468), (test Loss: 1.401,

test acc: 0.464) -- 52.96 sec

Epoch-10: (loss: 1.420, acc: 0.483), (val loss: 1.379, val acc: 0.478), (test Loss: 1.377,

test acc: 0.471) -- 52.86 sec

Epoch-11: (loss: 1.404, acc: 0.498), (val loss: 1.360, val acc: 0.492), (test Loss: 1.357,

test acc: 0.485) -- 52.97 sec

Epoch-12: (loss: 1.385, acc: 0.502), (val loss: 1.351, val acc: 0.493), (test Loss: 1.348,

test acc: 0.488) -- 52.91 sec

Epoch-13: (loss: 1.368, acc: 0.497), (val loss: 1.365, val acc: 0.489), (test Loss: 1.362,

test acc: 0.484) -- 52.86 sec

Epoch-14: (loss: 1.354, acc: 0.511), (val loss: 1.330, val acc: 0.500), (test Loss: 1.326,

test acc: 0.495) -- 53.04 sec

Epoch-15: (loss: 1.346, acc: 0.514), (val loss: 1.322, val acc: 0.502), (test Loss: 1.317,

test acc: 0.497) -- 52.82 sec

Epoch-16: (loss: 1.334, acc: 0.524), (val loss: 1.310, val acc: 0.512), (test Loss: 1.306,

test acc: 0.508) -- 52.86 sec

Epoch-17: (loss: 1.327, acc: 0.520), (val loss: 1.319, val acc: 0.507), (test Loss: 1.315,

test acc: 0.502) -- 52.82 sec

Epoch-18: (loss: 1.317, acc: 0.530), (val loss: 1.299, val acc: 0.514), (test Loss: 1.295,

test acc: 0.509) -- 52.85 sec
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Epoch-19: (loss: 1.306, acc: 0.530), (val loss: 1.301, val acc: 0.513), (test Loss: 1.298,

test acc: 0.506) -- 52.88 sec

Epoch-20: (loss: 1.302, acc: 0.532), (val loss: 1.301, val acc: 0.514), (test Loss: 1.297,

test acc: 0.507) -- 52.80 sec

Epoch-21: (loss: 1.298, acc: 0.537), (val loss: 1.293, val acc: 0.515), (test Loss: 1.289,

test acc: 0.511) -- 52.83 sec

Epoch-22: (loss: 1.297, acc: 0.534), (val loss: 1.305, val acc: 0.513), (test Loss: 1.300,

test acc: 0.510) -- 52.91 sec

Epoch-23: (loss: 1.294, acc: 0.542), (val loss: 1.291, val acc: 0.517), (test Loss: 1.288,

test acc: 0.514) -- 52.81 sec

Epoch-24: (loss: 1.281, acc: 0.538), (val loss: 1.299, val acc: 0.515), (test Loss: 1.296,

test acc: 0.511) -- 52.82 sec

Epoch-25: (loss: 1.277, acc: 0.542), (val loss: 1.289, val acc: 0.519), (test Loss: 1.287,

test acc: 0.515) -- 52.83 sec

Epoch-26: (loss: 1.278, acc: 0.540), (val loss: 1.308, val acc: 0.513), (test Loss: 1.304,

test acc: 0.509) -- 52.94 sec

Epoch-27: (loss: 1.268, acc: 0.547), (val loss: 1.288, val acc: 0.517), (test Loss: 1.285,

test acc: 0.515) -- 52.87 sec

Epoch-28: (loss: 1.263, acc: 0.548), (val loss: 1.295, val acc: 0.517), (test Loss: 1.289,

test acc: 0.514) -- 52.79 sec

Epoch-29: (loss: 1.261, acc: 0.554), (val loss: 1.286, val acc: 0.520), (test Loss: 1.282,

test acc: 0.517) -- 52.89 sec

Epoch-30: (loss: 1.252, acc: 0.557), (val loss: 1.286, val acc: 0.519), (test Loss: 1.282,

test acc: 0.515) -- 52.84 sec

B.3 2conv.out

Using TensorFlow backend.

2018-12-03 13:39:16.727641: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 0 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:03:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 13:39:16.860210: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 1 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:83:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB
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2018-12-03 13:39:16.860296: I tensorflow/core/common runtime/gpu/gpu device.cc:1511] Adding

visible gpu devices: 0, 1

2018-12-03 13:39:17.420655: I tensorflow/core/common runtime/gpu/gpu device.cc:982] Device

interconnect StreamExecutor with strength 1 edge matrix:

2018-12-03 13:39:17.420727: I tensorflow/core/common runtime/gpu/gpu device.cc:988] 0 1

2018-12-03 13:39:17.420738: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 0: N N

2018-12-03 13:39:17.420744: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 1: N N

2018-12-03 13:39:17.421083: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5279 MB memory) ->

physical GPU (device: 0, name: Tesla K20Xm, pci bus id: 0000:03:00.0, compute capability:

3.5)

2018-12-03 13:39:17.421456: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5279 MB memory) ->

physical GPU (device: 1, name: Tesla K20Xm, pci bus id: 0000:83:00.0, compute capability:

3.5)

source dataset shape:

(220000, 2, 128)

Source domain partition summary:

X train: (132000, 2, 128, 1)

Y train: (132000, 11)

X val: (44000, 2, 128, 1)

Y val: (44000, 11)

X test: (44000, 2, 128, 1)

Y test: (44000, 11)

target dataset shape:

(220000, 2, 128)

Target domain partition summary:

X tgt train: (132000, 2, 128, 1)

Y tgt train: (132000, 11)

X tgt val: (44000, 2, 128, 1)

Y tgt val: (44000, 11)

X tgt test: (44000, 2, 128, 1)

Y tgt test: (44000, 11)

Layer (type) Output Shape Param #

=================================================================

input 1 (InputLayer) (None, 2, 128, 1) 0

conv2d 1 (Conv2D) (None, 2, 128, 100) 1000

activation 1 (Activation) (None, 2, 128, 100) 0
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max pooling2d 1 (MaxPooling2 (None, 1, 128, 100) 0

conv2d 2 (Conv2D) (None, 1, 128, 150) 135150

activation 2 (Activation) (None, 1, 128, 150) 0

max pooling2d 2 (MaxPooling2 (None, 1, 128, 150) 0

conv2d 3 (Conv2D) (None, 1, 128, 200) 270200

activation 3 (Activation) (None, 1, 128, 200) 0

flatten 1 (Flatten) (None, 25600) 0

dense 1 (Dense) (None, 1024) 26215424

activation 4 (Activation) (None, 1024) 0

dropout 1 (Dropout) (None, 1024) 0

dense 2 (Dense) (None, 1024) 1049600

activation 5 (Activation) (None, 1024) 0

dropout 2 (Dropout) (None, 1024) 0

dense 3 (Dense) (None, 11) 11275

=================================================================

Total params: 27,682,649

Trainable params: 27,682,649

Non-trainable params: 0

None

Train Convnet target/target

Epoch-1: (loss: 2.398, acc: 0.119), (val loss: 2.388, val acc: 0.120), (test Loss: 2.389,

test acc: 0.118) -- 63.67 sec

Epoch-2: (loss: 2.351, acc: 0.160), (val loss: 2.310, val acc: 0.161), (test Loss: 2.311,

test acc: 0.157) -- 52.43 sec

Epoch-3: (loss: 2.258, acc: 0.208), (val loss: 2.174, val acc: 0.207), (test Loss: 2.178,

test acc: 0.207) -- 52.48 sec
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Epoch-4: (loss: 2.095, acc: 0.262), (val loss: 1.941, val acc: 0.260), (test Loss: 1.939,

test acc: 0.256) -- 52.42 sec

Epoch-5: (loss: 1.953, acc: 0.274), (val loss: 1.891, val acc: 0.275), (test Loss: 1.887,

test acc: 0.274) -- 52.43 sec

Epoch-6: (loss: 1.915, acc: 0.287), (val loss: 1.875, val acc: 0.290), (test Loss: 1.872,

test acc: 0.286) -- 52.44 sec

Epoch-7: (loss: 1.904, acc: 0.299), (val loss: 1.852, val acc: 0.298), (test Loss: 1.848,

test acc: 0.297) -- 52.43 sec

Epoch-8: (loss: 1.892, acc: 0.291), (val loss: 1.854, val acc: 0.288), (test Loss: 1.851,

test acc: 0.291) -- 52.41 sec

Epoch-9: (loss: 1.875, acc: 0.301), (val loss: 1.849, val acc: 0.300), (test Loss: 1.846,

test acc: 0.299) -- 52.41 sec

Epoch-10: (loss: 1.891, acc: 0.295), (val loss: 1.862, val acc: 0.296), (test Loss: 1.860,

test acc: 0.295) -- 52.40 sec

Epoch-11: (loss: 1.860, acc: 0.306), (val loss: 1.832, val acc: 0.306), (test Loss: 1.830,

test acc: 0.306) -- 52.40 sec

Epoch-12: (loss: 1.851, acc: 0.296), (val loss: 1.836, val acc: 0.296), (test Loss: 1.834,

test acc: 0.294) -- 52.42 sec

Epoch-13: (loss: 1.834, acc: 0.319), (val loss: 1.801, val acc: 0.317), (test Loss: 1.800,

test acc: 0.317) -- 52.40 sec

Epoch-14: (loss: 1.831, acc: 0.322), (val loss: 1.804, val acc: 0.323), (test Loss: 1.802,

test acc: 0.322) -- 52.39 sec

Epoch-15: (loss: 1.819, acc: 0.333), (val loss: 1.780, val acc: 0.330), (test Loss: 1.779,

test acc: 0.329) -- 52.40 sec

Epoch-16: (loss: 1.796, acc: 0.296), (val loss: 1.837, val acc: 0.295), (test Loss: 1.834,

test acc: 0.293) -- 52.41 sec

Epoch-17: (loss: 1.788, acc: 0.330), (val loss: 1.771, val acc: 0.329), (test Loss: 1.771,

test acc: 0.327) -- 52.40 sec

Epoch-18: (loss: 1.772, acc: 0.347), (val loss: 1.733, val acc: 0.346), (test Loss: 1.732,

test acc: 0.344) -- 52.40 sec

Epoch-19: (loss: 1.769, acc: 0.335), (val loss: 1.748, val acc: 0.331), (test Loss: 1.747,

test acc: 0.329) -- 52.42 sec

Epoch-20: (loss: 1.757, acc: 0.338), (val loss: 1.744, val acc: 0.333), (test Loss: 1.742,

test acc: 0.332) -- 52.42 sec

Epoch-21: (loss: 1.748, acc: 0.352), (val loss: 1.714, val acc: 0.349), (test Loss: 1.713,

test acc: 0.348) -- 52.40 sec

Epoch-22: (loss: 1.745, acc: 0.347), (val loss: 1.721, val acc: 0.344), (test Loss: 1.719,

test acc: 0.344) -- 52.41 sec

Epoch-23: (loss: 1.744, acc: 0.355), (val loss: 1.710, val acc: 0.351), (test Loss: 1.708,

test acc: 0.350) -- 52.39 sec
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Epoch-24: (loss: 1.729, acc: 0.338), (val loss: 1.732, val acc: 0.335), (test Loss: 1.729,

test acc: 0.331) -- 52.40 sec

Epoch-25: (loss: 1.725, acc: 0.353), (val loss: 1.701, val acc: 0.347), (test Loss: 1.700,

test acc: 0.347) -- 52.34 sec

Epoch-26: (loss: 1.729, acc: 0.333), (val loss: 1.750, val acc: 0.331), (test Loss: 1.747,

test acc: 0.330) -- 52.35 sec

Epoch-27: (loss: 1.720, acc: 0.353), (val loss: 1.708, val acc: 0.349), (test Loss: 1.705,

test acc: 0.348) -- 52.46 sec

Epoch-28: (loss: 1.709, acc: 0.351), (val loss: 1.706, val acc: 0.346), (test Loss: 1.704,

test acc: 0.347) -- 52.35 sec

Epoch-29: (loss: 1.707, acc: 0.354), (val loss: 1.700, val acc: 0.349), (test Loss: 1.699,

test acc: 0.346) -- 52.43 sec

Epoch-30: (loss: 1.707, acc: 0.360), (val loss: 1.697, val acc: 0.354), (test Loss: 1.696,

test acc: 0.351) -- 52.41 sec

B.4 3commdrcn.out

Using TensorFlow backend.

2018-12-03 13:38:38.863491: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 0 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:03:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 13:38:38.991373: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 1 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:83:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 13:38:38.991469: I tensorflow/core/common runtime/gpu/gpu device.cc:1511] Adding

visible gpu devices: 0, 1

2018-12-03 13:38:39.615807: I tensorflow/core/common runtime/gpu/gpu device.cc:982] Device

interconnect StreamExecutor with strength 1 edge matrix:

2018-12-03 13:38:39.615958: I tensorflow/core/common runtime/gpu/gpu device.cc:988] 0 1

2018-12-03 13:38:39.615974: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 0: N N

2018-12-03 13:38:39.615981: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 1: N N

2018-12-03 13:38:39.616589: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5279 MB memory) ->

physical GPU (device: 0, name: Tesla K20Xm, pci bus id: 0000:03:00.0, compute capability:
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3.5)

2018-12-03 13:38:39.617574: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5279 MB memory) ->

physical GPU (device: 1, name: Tesla K20Xm, pci bus id: 0000:83:00.0, compute capability:

3.5)

2018-12-03 13:38:45.593172: W tensorflow/core/common runtime/bfc allocator.cc:211] Allocator

(GPU 0 bfc) ran out of memory trying to allocate 3.48GiB. The caller indicates that this

is not a failure, but may mean that there could be performance gains if more memory were

available.

2018-12-03 13:38:46.356328: W tensorflow/core/common runtime/bfc allocator.cc:211] Allocator

(GPU 0 bfc) ran out of memory trying to allocate 3.03GiB. The caller indicates that this

is not a failure, but may mean that there could be performance gains if more memory were

available.

2018-12-03 13:38:49.108255: W tensorflow/core/common runtime/bfc allocator.cc:211] Allocator

(GPU 0 bfc) ran out of memory trying to allocate 3.03GiB. The caller indicates that this

is not a failure, but may mean that there could be performance gains if more memory were

available.

2018-12-03 13:38:50.368324: W tensorflow/core/common runtime/bfc allocator.cc:211] Allocator

(GPU 0 bfc) ran out of memory trying to allocate 3.48GiB. The caller indicates that this

is not a failure, but may mean that there could be performance gains if more memory were

available.

source dataset shape:

(220000, 2, 128)

Source domain partition summary:

X train: (132000, 2, 128, 1)

Y train: (132000, 11)

X val: (44000, 2, 128, 1)

Y val: (44000, 11)

X test: (44000, 2, 128, 1)

Y test: (44000, 11)

target dataset shape:

(220000, 2, 128)

Target domain partition summary:

X tgt train: (132000, 2, 128, 1)

Y tgt train: (132000, 11)

X tgt val: (44000, 2, 128, 1)

Y tgt val: (44000, 11)

X tgt test: (44000, 2, 128, 1)

Y tgt test: (44000, 11)

Create DRCN Model
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Layer (type) Output Shape Param #

=================================================================

input 1 (InputLayer) (None, 2, 128, 1) 0

conv2d 1 (Conv2D) (None, 2, 128, 100) 1000

activation 1 (Activation) (None, 2, 128, 100) 0

max pooling2d 1 (MaxPooling2 (None, 1, 128, 100) 0

conv2d 2 (Conv2D) (None, 1, 128, 150) 135150

activation 2 (Activation) (None, 1, 128, 150) 0

max pooling2d 2 (MaxPooling2 (None, 1, 128, 150) 0

conv2d 3 (Conv2D) (None, 1, 128, 200) 270200

activation 3 (Activation) (None, 1, 128, 200) 0

flatten 1 (Flatten) (None, 25600) 0

dense 1 (Dense) (None, 1024) 26215424

activation 4 (Activation) (None, 1024) 0

dropout 1 (Dropout) (None, 1024) 0

dense 2 (Dense) (None, 1024) 1049600

activation 5 (Activation) (None, 1024) 0

dropout 2 (Dropout) (None, 1024) 0

dense 3 (Dense) (None, 11) 11275

=================================================================

Total params: 27,682,649

Trainable params: 27,682,649

Non-trainable params: 0

None
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Layer (type) Output Shape Param #

=================================================================

input 1 (InputLayer) (None, 2, 128, 1) 0

conv2d 1 (Conv2D) (None, 2, 128, 100) 1000

activation 6 (Activation) (None, 2, 128, 100) 0

max pooling2d 3 (MaxPooling2 (None, 1, 128, 100) 0

conv2d 2 (Conv2D) (None, 1, 128, 150) 135150

activation 7 (Activation) (None, 1, 128, 150) 0

max pooling2d 4 (MaxPooling2 (None, 1, 128, 150) 0

conv2d 3 (Conv2D) (None, 1, 128, 200) 270200

activation 8 (Activation) (None, 1, 128, 200) 0

flatten 2 (Flatten) (None, 25600) 0

dense 1 (Dense) (None, 1024) 26215424

activation 9 (Activation) (None, 1024) 0

dense 2 (Dense) (None, 1024) 1049600

activation 10 (Activation) (None, 1024) 0

dense 4 (Dense) (None, 1024) 1049600

activation 11 (Activation) (None, 1024) 0

dense 5 (Dense) (None, 25600) 26240000

activation 12 (Activation) (None, 25600) 0

reshape 1 (Reshape) (None, 1, 128, 200) 0
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conv2d 4 (Conv2D) (None, 1, 128, 200) 360200

activation 13 (Activation) (None, 1, 128, 200) 0

conv2d 5 (Conv2D) (None, 1, 128, 150) 270150

activation 14 (Activation) (None, 1, 128, 150) 0

conv2d 6 (Conv2D) (None, 1, 128, 100) 135100

activation 15 (Activation) (None, 1, 128, 100) 0

up sampling2d 1 (UpSampling2 (None, 2, 128, 100) 0

conv2d 7 (Conv2D) (None, 2, 128, 1) 901

=================================================================

Total params: 55,727,325

Trainable params: 55,727,325

Non-trainable params: 0

None

Epoch-1: (loss: 2.272, acc: 0.188, gen loss: 0.000), (val loss: 2.135, val acc: 0.188), (

test Loss: 2.333, test acc: 0.139) -- 145.27 sec

Epoch-2: (loss: 2.058, acc: 0.285, gen loss: 0.000), (val loss: 1.910, val acc: 0.283), (

test Loss: 2.105, test acc: 0.223) -- 128.05 sec

Epoch-3: (loss: 1.854, acc: 0.366, gen loss: 0.000), (val loss: 1.730, val acc: 0.361), (

test Loss: 1.942, test acc: 0.279) -- 128.14 sec

Epoch-4: (loss: 2.259, acc: 0.315, gen loss: 0.000), (val loss: 1.847, val acc: 0.316), (

test Loss: 2.060, test acc: 0.244) -- 127.94 sec

Epoch-5: (loss: 1.865, acc: 0.329, gen loss: 0.000), (val loss: 1.802, val acc: 0.329), (

test Loss: 2.006, test acc: 0.256) -- 128.03 sec

Epoch-6: (loss: 1.829, acc: 0.335, gen loss: 0.000), (val loss: 1.780, val acc: 0.333), (

test Loss: 1.980, test acc: 0.261) -- 127.95 sec

Epoch-7: (loss: 1.800, acc: 0.357, gen loss: 0.000), (val loss: 1.746, val acc: 0.355), (

test Loss: 1.930, test acc: 0.280) -- 126.86 sec

Epoch-8: (loss: 1.765, acc: 0.374, gen loss: 0.000), (val loss: 1.698, val acc: 0.372), (

test Loss: 1.899, test acc: 0.291) -- 126.97 sec

Epoch-9: (loss: 1.730, acc: 0.356, gen loss: 0.000), (val loss: 1.751, val acc: 0.353), (

test Loss: 1.913, test acc: 0.297) -- 127.07 sec

Epoch-10: (loss: 1.674, acc: 0.408, gen loss: 0.000), (val loss: 1.587, val acc: 0.405), (

test Loss: 1.792, test acc: 0.335) -- 127.17 sec
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Epoch-11: (loss: 1.603, acc: 0.427, gen loss: 0.000), (val loss: 1.533, val acc: 0.426), (

test Loss: 1.743, test acc: 0.346) -- 126.82 sec

Epoch-12: (loss: 1.558, acc: 0.440, gen loss: 0.000), (val loss: 1.491, val acc: 0.434), (

test Loss: 1.706, test acc: 0.357) -- 126.98 sec

Epoch-13: (loss: 1.565, acc: 0.452, gen loss: 0.000), (val loss: 1.463, val acc: 0.444), (

test Loss: 1.687, test acc: 0.363) -- 127.03 sec

Epoch-14: (loss: 1.598, acc: 0.455, gen loss: 0.000), (val loss: 1.445, val acc: 0.450), (

test Loss: 1.665, test acc: 0.370) -- 127.05 sec

Epoch-15: (loss: 1.781, acc: 0.440, gen loss: 0.000), (val loss: 1.495, val acc: 0.433), (

test Loss: 1.716, test acc: 0.351) -- 127.07 sec

Epoch-16: (loss: 1.569, acc: 0.459, gen loss: 0.000), (val loss: 1.443, val acc: 0.452), (

test Loss: 1.658, test acc: 0.374) -- 126.88 sec

Epoch-17: (loss: 1.490, acc: 0.466, gen loss: 0.000), (val loss: 1.419, val acc: 0.460), (

test Loss: 1.637, test acc: 0.379) -- 127.10 sec

Epoch-18: (loss: 1.459, acc: 0.467, gen loss: 0.000), (val loss: 1.405, val acc: 0.459), (

test Loss: 1.629, test acc: 0.380) -- 126.91 sec

Epoch-19: (loss: 1.444, acc: 0.476, gen loss: 0.000), (val loss: 1.396, val acc: 0.466), (

test Loss: 1.617, test acc: 0.384) -- 126.92 sec

Epoch-20: (loss: 1.427, acc: 0.477, gen loss: 0.000), (val loss: 1.381, val acc: 0.468), (

test Loss: 1.602, test acc: 0.387) -- 127.02 sec

Epoch-21: (loss: 1.424, acc: 0.485, gen loss: 0.000), (val loss: 1.371, val acc: 0.475), (

test Loss: 1.597, test acc: 0.392) -- 127.02 sec

Epoch-22: (loss: 1.407, acc: 0.487, gen loss: 0.000), (val loss: 1.365, val acc: 0.478), (

test Loss: 1.585, test acc: 0.396) -- 127.04 sec

Epoch-23: (loss: 1.397, acc: 0.495, gen loss: 0.000), (val loss: 1.355, val acc: 0.484), (

test Loss: 1.578, test acc: 0.400) -- 126.98 sec

Epoch-24: (loss: 1.387, acc: 0.497, gen loss: 0.000), (val loss: 1.351, val acc: 0.485), (

test Loss: 1.581, test acc: 0.399) -- 127.02 sec

Epoch-25: (loss: 1.380, acc: 0.489, gen loss: 0.000), (val loss: 1.358, val acc: 0.479), (

test Loss: 1.594, test acc: 0.392) -- 126.93 sec

Epoch-26: (loss: 1.372, acc: 0.501, gen loss: 0.000), (val loss: 1.344, val acc: 0.491), (

test Loss: 1.575, test acc: 0.405) -- 127.01 sec

Epoch-27: (loss: 1.364, acc: 0.505, gen loss: 0.000), (val loss: 1.339, val acc: 0.494), (

test Loss: 1.569, test acc: 0.406) -- 129.98 sec

Epoch-28: (loss: 1.358, acc: 0.504, gen loss: 0.000), (val loss: 1.334, val acc: 0.491), (

test Loss: 1.562, test acc: 0.406) -- 132.31 sec

Epoch-29: (loss: 1.353, acc: 0.510, gen loss: 0.000), (val loss: 1.331, val acc: 0.497), (

test Loss: 1.558, test acc: 0.413) -- 132.06 sec

Epoch-30: (loss: 1.344, acc: 0.517, gen loss: 0.000), (val loss: 1.317, val acc: 0.501), (

test Loss: 1.550, test acc: 0.417) -- 132.13 sec
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B.5 4conv.out

Using TensorFlow backend.

2018-12-03 20:33:11.621082: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 0 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:03:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 20:33:11.783667: I tensorflow/core/common runtime/gpu/gpu device.cc:1432] Found

device 1 with properties:

name: Tesla K20Xm major: 3 minor: 5 memoryClockRate(GHz): 0.732

pciBusID: 0000:83:00.0

totalMemory: 5.57GiB freeMemory: 5.49GiB

2018-12-03 20:33:11.783761: I tensorflow/core/common runtime/gpu/gpu device.cc:1511] Adding

visible gpu devices: 0, 1

2018-12-03 20:33:19.157765: I tensorflow/core/common runtime/gpu/gpu device.cc:982] Device

interconnect StreamExecutor with strength 1 edge matrix:

2018-12-03 20:33:19.158315: I tensorflow/core/common runtime/gpu/gpu device.cc:988] 0 1

2018-12-03 20:33:19.158336: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 0: N N

2018-12-03 20:33:19.158344: I tensorflow/core/common runtime/gpu/gpu device.cc:1001] 1: N N

2018-12-03 20:33:19.158820: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5279 MB memory) ->

physical GPU (device: 0, name: Tesla K20Xm, pci bus id: 0000:03:00.0, compute capability:

3.5)

2018-12-03 20:33:19.162065: I tensorflow/core/common runtime/gpu/gpu device.cc:1115] Created

TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 5279 MB memory) ->

physical GPU (device: 1, name: Tesla K20Xm, pci bus id: 0000:83:00.0, compute capability:

3.5)

source dataset shape:

(220000, 2, 128)

Source domain partition summary:

X train: (132000, 2, 128, 1)

Y train: (132000, 11)

X val: (44000, 2, 128, 1)

Y val: (44000, 11)

X test: (44000, 2, 128, 1)

Y test: (44000, 11)

target dataset shape:

(220000, 2, 128)
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Target domain partition summary:

X tgt train: (132000, 2, 128, 1)

Y tgt train: (132000, 11)

X tgt val: (44000, 2, 128, 1)

Y tgt val: (44000, 11)

X tgt test: (44000, 2, 128, 1)

Y tgt test: (44000, 11)

Layer (type) Output Shape Param #

=================================================================

input 1 (InputLayer) (None, 2, 128, 1) 0

conv2d 1 (Conv2D) (None, 2, 128, 100) 1000

activation 1 (Activation) (None, 2, 128, 100) 0

max pooling2d 1 (MaxPooling2 (None, 1, 128, 100) 0

conv2d 2 (Conv2D) (None, 1, 128, 150) 135150

activation 2 (Activation) (None, 1, 128, 150) 0

max pooling2d 2 (MaxPooling2 (None, 1, 128, 150) 0

conv2d 3 (Conv2D) (None, 1, 128, 200) 270200

activation 3 (Activation) (None, 1, 128, 200) 0

flatten 1 (Flatten) (None, 25600) 0

dense 1 (Dense) (None, 1024) 26215424

activation 4 (Activation) (None, 1024) 0

dropout 1 (Dropout) (None, 1024) 0

dense 2 (Dense) (None, 1024) 1049600

activation 5 (Activation) (None, 1024) 0

dropout 2 (Dropout) (None, 1024) 0
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dense 3 (Dense) (None, 11) 11275

=================================================================

Total params: 27,682,649

Trainable params: 27,682,649

Non-trainable params: 0

None

Train Convnet source/target

Epoch-1: (loss: 2.267, acc: 0.199), (val loss: 2.133, val acc: 0.199), (test Loss: 2.341,

test acc: 0.146) -- 73.69 sec

Epoch-2: (loss: 2.047, acc: 0.307), (val loss: 1.893, val acc: 0.306), (test Loss: 2.088,

test acc: 0.235) -- 52.47 sec

Epoch-3: (loss: 1.834, acc: 0.368), (val loss: 1.719, val acc: 0.366), (test Loss: 1.929,

test acc: 0.282) -- 52.48 sec

Epoch-4: (loss: 1.746, acc: 0.387), (val loss: 1.673, val acc: 0.382), (test Loss: 1.896,

test acc: 0.296) -- 52.51 sec

Epoch-5: (loss: 1.699, acc: 0.393), (val loss: 1.634, val acc: 0.390), (test Loss: 1.840,

test acc: 0.309) -- 52.48 sec

Epoch-6: (loss: 1.640, acc: 0.422), (val loss: 1.563, val acc: 0.418), (test Loss: 1.771,

test acc: 0.340) -- 52.47 sec

Epoch-7: (loss: 1.577, acc: 0.438), (val loss: 1.522, val acc: 0.433), (test Loss: 1.751,

test acc: 0.349) -- 52.46 sec

Epoch-8: (loss: 1.525, acc: 0.447), (val loss: 1.473, val acc: 0.440), (test Loss: 1.682,

test acc: 0.367) -- 52.48 sec

Epoch-9: (loss: 1.484, acc: 0.463), (val loss: 1.428, val acc: 0.455), (test Loss: 1.651,

test acc: 0.373) -- 52.48 sec

Epoch-10: (loss: 1.453, acc: 0.470), (val loss: 1.411, val acc: 0.464), (test Loss: 1.637,

test acc: 0.379) -- 52.51 sec

Epoch-11: (loss: 1.433, acc: 0.476), (val loss: 1.401, val acc: 0.469), (test Loss: 1.627,

test acc: 0.383) -- 52.49 sec

Epoch-12: (loss: 1.410, acc: 0.489), (val loss: 1.368, val acc: 0.481), (test Loss: 1.597,

test acc: 0.393) -- 52.50 sec

Epoch-13: (loss: 1.396, acc: 0.488), (val loss: 1.373, val acc: 0.480), (test Loss: 1.596,

test acc: 0.395) -- 52.49 sec

Epoch-14: (loss: 1.383, acc: 0.500), (val loss: 1.348, val acc: 0.492), (test Loss: 1.581,

test acc: 0.403) -- 52.49 sec

Epoch-15: (loss: 1.376, acc: 0.499), (val loss: 1.351, val acc: 0.488), (test Loss: 1.578,

test acc: 0.402) -- 52.49 sec

Epoch-16: (loss: 1.364, acc: 0.508), (val loss: 1.331, val acc: 0.498), (test Loss: 1.559,

test acc: 0.410) -- 52.48 sec
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Epoch-17: (loss: 1.356, acc: 0.497), (val loss: 1.364, val acc: 0.486), (test Loss: 1.606,

test acc: 0.398) -- 52.47 sec

Epoch-18: (loss: 1.346, acc: 0.516), (val loss: 1.321, val acc: 0.502), (test Loss: 1.556,

test acc: 0.412) -- 52.47 sec

Epoch-19: (loss: 1.332, acc: 0.515), (val loss: 1.322, val acc: 0.501), (test Loss: 1.557,

test acc: 0.414) -- 52.48 sec

Epoch-20: (loss: 1.326, acc: 0.522), (val loss: 1.310, val acc: 0.507), (test Loss: 1.543,

test acc: 0.419) -- 52.46 sec

Epoch-21: (loss: 1.318, acc: 0.526), (val loss: 1.311, val acc: 0.509), (test Loss: 1.549,

test acc: 0.423) -- 52.49 sec

Epoch-22: (loss: 1.314, acc: 0.523), (val loss: 1.317, val acc: 0.508), (test Loss: 1.554,

test acc: 0.420) -- 52.48 sec

Epoch-23: (loss: 1.310, acc: 0.534), (val loss: 1.301, val acc: 0.514), (test Loss: 1.528,

test acc: 0.430) -- 52.49 sec

Epoch-24: (loss: 1.298, acc: 0.535), (val loss: 1.299, val acc: 0.515), (test Loss: 1.534,

test acc: 0.430) -- 52.50 sec

Epoch-25: (loss: 1.295, acc: 0.533), (val loss: 1.294, val acc: 0.511), (test Loss: 1.534,

test acc: 0.430) -- 52.47 sec

Epoch-26: (loss: 1.290, acc: 0.534), (val loss: 1.314, val acc: 0.510), (test Loss: 1.546,

test acc: 0.427) -- 52.48 sec

Epoch-27: (loss: 1.282, acc: 0.542), (val loss: 1.291, val acc: 0.516), (test Loss: 1.526,

test acc: 0.435) -- 52.45 sec

Epoch-28: (loss: 1.277, acc: 0.546), (val loss: 1.290, val acc: 0.518), (test Loss: 1.529,

test acc: 0.434) -- 52.47 sec

Epoch-29: (loss: 1.276, acc: 0.546), (val loss: 1.291, val acc: 0.518), (test Loss: 1.532,

test acc: 0.432) -- 52.47 sec

Epoch-30: (loss: 1.272, acc: 0.550), (val loss: 1.291, val acc: 0.517), (test Loss: 1.524,

test acc: 0.435) -- 52.48 sec
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Appendix C

Commdrcn Python

C.1 main sm.py

"""

Run DRCN on SVHN (source) --> MNIST (target)

Author: Muhammad Ghifary (mghifary@gmail.com)

Revisions made by: Kyle McClintick (kwmcclintick@wpi.edu)

Run DRCN on RML2016.10A (source) --> modified RML2016.10A (target)

This is the meta file. Datasets are loaded and partitioned by dataset.py

The DRCN model is then made, which both classifies and transforms a dataset as per the

publication by Ghifary et al

The model is then trained using mini-batches

"""

from keras.utils import np utils

from drcn import *

from myutils import *

from dataset import *

# Load datasets

print('Load datasets (* partitions used in DRCN)')
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(X train, y train), (x val, y val) ,(X test, y test) = load rmlsource(dataset='

RML2016.10a.dat') # source, train and validation data

( , ), ( , ), (X tgt test, y tgt test) = load rmltarget(dataset='RML2016.10a.targetd.dat')

# target, test data

# Convert class vectors to binary class matrices

nb classes = 11

print('Create DRCN Model')

drcn = DRCN()

input shape = (X train.shape[1], X train.shape[2], X train.shape[3])

# model has 3 conv layers with 100, 150, and 200 filters, of dimensions 3x3.

# model prevents overfitting via 2x2 maxpooling and 50% dropout layers

# activation function is ReLu, classification layers are softmax layers with 1024 nodes

drcn.create model(input shape=input shape, dense dim=1024, dy=nb classes, nb filters=[100,

150, 200], kernel size=(3, 3), pool size=(2, 1),

dropout=0.5, bn=False, output activation='softmax', opt='adam')

print('Train DRCN...')

PARAMDIR = ''

CONF = 'svhn-mnist drcn v2'

drcn.fit drcn(X train, y train, X tgt test, validation data=(X test, y test), test data=(

X tgt test, y tgt test),

nb epoch=30, batch size=1024, PARAMDIR=PARAMDIR, CONF=CONF)

print('Train Convnet...')

# create convnet for benchmarking against the drcn

conv = DRCN()

conv.create convnet(input shape, dense dim=1024, dy=11, nb filters=[100,150,200], kernel size

=(3, 3), pool size=(2, 1),

dropout=0.5, bn=False, output activation='softmax', opt='adam')

# benchmark drcn against naked convnet trained and tested on source domain data

conv.fit convnet(X train, y train, nb epoch=30, batch size=1024, shuffle=True,

validation data=(x val, y val), test data=(X tgt test, y tgt test),

PARAMDIR=PARAMDIR, CONF=CONF)

C.2 dataset.py
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import gzip

import pickle

import numpy as np

'''

Load and partition the target domain dataset for main sm.py

'''

def load rmltarget(dataset='RML2016.10a.targetd.dat'):

# import dataset

Xd = pickle.load(open(dataset, 'rb'))

# Split labels from data

[snrs, mods] = map(lambda j: sorted(list(set(map(lambda x: x[j], Xd.keys())))), [1, 0])

X = []

lbl = []

for mod in mods:

for snr in snrs:

X.append(Xd[(mod, snr)])

for i in range(Xd[(mod, snr)].shape[0]):

lbl.append((mod, snr))

X = np.vstack(X)

print('target dataset shape:')

print(np.shape(X))

# partition data into train, validation, test sets

np.random.seed(2016) # set seed for consistent partitioning

n examples = X.shape[0]

n train = int(n examples * 0.8) # ratio of training data

train idx = np.random.choice(range(0, n examples), size=n train, replace=False) # take

subset from dataset for train/val

n val = int(n examples * 0.1) # ratio of validation data, rest will be test data

val idx = np.random.choice(list(set(train idx)), size=n val, replace=False) # val idxs

picked from training subset

test idx = list(set(range(0, n examples)) - set(train idx)) # test idxs taken from

remaining index values

train idx = list(set(train idx) - set(val idx)) # subtract validation idxs from training

idxs

X train = X[train idx] # training data (not to be used in drcn)

X val = X[val idx] # validation data (not used in the drcn)

X test = X[test idx] # test data (used in drcn)



135

Y train = to onehot(list(map(lambda x: mods.index(lbl[x][0]), train idx))) # training

labels

Y val = to onehot(list(map(lambda x: mods.index(lbl[x][0]), val idx))) # validation

labels

Y test = to onehot(list(map(lambda x: mods.index(lbl[x][0]), test idx))) # validation

labels

# reshape X dims for batch normalization later

X train = np.expand dims(X train, axis=3)

X val = np.expand dims(X val, axis=3)

X test = np.expand dims(X test, axis=3)

print('target domain partition summary:')

print('X train: ' + str(np.shape(X train)))

print('Y train: ' + str(np.shape(Y train)))

print('X val: ' + str(np.shape(X val)))

print('Y val: ' + str(np.shape(Y val)))

print('X test*: ' + str(np.shape(X test)))

print('Y test*: ' + str(np.shape(Y test)))

return (X train, Y train), (X val, Y val), (X test, Y test)

'''

Load and partition the source domain dataset for main sm.py

'''

def load rmlsource(dataset='RML2016.10a.dat'):

# import dataset

Xd = pickle.load(open(dataset, 'rb'))

# Split labels from data

[snrs, mods] = map(lambda j: sorted(list(set(map(lambda x: x[j], Xd.keys())))), [1, 0])

X = []

lbl = []

for mod in mods:

for snr in snrs:

X.append(Xd[(mod, snr)])

for i in range(Xd[(mod, snr)].shape[0]):

lbl.append((mod, snr))

X = np.vstack(X)

print('source dataset shape:')

print(np.shape(X))

# partition data into train, validation, test sets
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np.random.seed(2016) # set seed for consistent partitioning

n examples = X.shape[0]

n train = int(n examples * 0.9) # ratio of training data set here

train idx = np.random.choice(range(0, n examples), size=n train, replace=False)

test idx = list(set(range(0, n examples)) - set(train idx))

X train = X[train idx] # training data

X test = X[test idx] # drcn validation data

Y train = to onehot(list(map(lambda x: mods.index(lbl[x][0]), train idx))) # training

labels

Y test = to onehot(list(map(lambda x: mods.index(lbl[x][0]), test idx))) # validation

labels

# reshape dims for batch normalization later

X train = np.expand dims(X train, axis=3)

X test = np.expand dims(X test, axis=3)

print('source domain partition summary:')

print('X train*: ' + str(np.shape(X train)))

print('Y train*: ' + str(np.shape(Y train)))

print('X test*: ' + str(np.shape(X test)))

print('Y test*: ' + str(np.shape(Y test)))

return (X train, Y train), (X test, Y test)

C.3 myutils.py

"""

Contains all helpers for DRCN

"""

from PIL import Image, ImageDraw

import numpy as np

from keras import backend as K

import os

'''

zero centers data. Not needed for RML

'''
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def preprocess images(X, tmin=-1, tmax=1):

V = X * (tmax - tmin) / 255.

V += tmin

return V

'''

removes zero-centering from output data. Again, not needed for RML, its already zero centered

'''

def postprocess images(V, omin=-1, omax=1):

X = V - omin

X = X * 255. / (omax - omin)

return X

def show images(Xo, padsize=1, padval=0, filename=None, title=None):

# data format : channel first

X = np.copy(Xo)

[n, c, d1, d2] = X.shape

if c == 1:

X = np.reshape(X, (n, d1, d2))

n = int(np.ceil(np.sqrt(X.shape[0])))

padding = ((0, n ** 2 - X.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (X.ndim -

3)

canvas = np.pad(X, padding, mode='constant', constant values=(padval, padval))

canvas = canvas.reshape((n, n) + canvas.shape[1:]).transpose((0, 2, 1, 3) + tuple(range

(4, canvas.ndim + 1)))

canvas = canvas.reshape((n * canvas.shape[1], n * canvas.shape[3]) + canvas.shape[4:])

if title is not None:

title canv = np.zeros((50, canvas.shape[1]))

title canv = title canv.astype('uint8')

canvas = np.vstack((title canv, canvas)).astype('uint8')

I = Image.fromarray(canvas)

d = ImageDraw.Draw(I)

fill = 255

d.text((10, 10), title, fill=fill, font=fnt)

else:
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canvas = canvas.astype('uint8')

I = Image.fromarray(canvas)

if filename is None:

I.show()

else:

I.save(filename)

return I

def get impulse noise(X, level):

p = 1. - level

Y = X * np.random.binomial(1, p, size=X.shape)

return Y

def get gaussian noise(X, std):

# X: [n, c, d1, d2] images in [0, 1]

Y = np.random.normal(X, scale=std)

Y = np.clip(Y, 0., 1.)

return Y

def get flipped pixels(X):

# X: [n, c, d1, d2] images in [0, 1]

Y = 1. - X

Y = np.clip(Y, 0., 1.)

return Y

def iterate minibatches(inputs, targets, batchsize, shuffle=True):

assert len(inputs) == len(targets)

if shuffle:

indices = np.arange(len(inputs))

np.random.shuffle(indices)

for start idx in range(0, len(inputs), batchsize):

end idx = start idx + batchsize

if end idx > len(inputs):
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end idx = start idx + (len(inputs) % batchsize)

if shuffle:

excerpt = indices[start idx:end idx]

else:

excerpt = slice(start idx, end idx)

yield inputs[excerpt], targets[excerpt]

def accuracy(Y1, Y2):

n = Y1.shape[0]

ntrue = np.count nonzero(np.argmax(Y1, axis=1) == np.argmax(Y2, axis=1))

return ntrue * 1.0 / n

'''

saves weights and hyperparams

'''

def save weights(model, PARAMDIR, CONF):

# model: keras model

print(' == save weights == ')

# save weights

PARAMPATH = os.path.join(PARAMDIR, '%s weights.h5') % CONF

model.save(PARAMPATH)

# save architecture

CONFPATH = os.path.join(PARAMDIR, '%s conf.json') % CONF

archjson = model.to json()

open(CONFPATH, 'wb').write(archjson)

'''

ReLU but capped at a value of one

'''

def clip relu(x):

y = K.maximum(x, 0)

return K.minimum(y, 1)
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def augment dynamic(X, ratio i=0.2, ratio g=0.2, ratio f=0.2):

batch size = X.shape[0]

ratio n = ratio i + ratio g + ratio f

num noise = int(batch size * ratio n)

idx noise = np.random.choice(range(batch size), num noise, replace=False)

ratio i2 = ratio i / ratio n

num impulse = int(num noise * ratio i2)

i1 = 0

i2 = num impulse

idx impulse = idx noise[i1:i2]

ratio g2 = ratio g / ratio n

num gaussian = int(num noise * ratio g2)

i1 = i2

i2 = i1 + num gaussian

idx gaussian = idx noise[i1:i2]

ratio f2 = ratio f / ratio n

num flip = int(num noise * ratio f2)

i1 = i2

i2 = i1 + num flip

idx flip = idx noise[i1:i2]

Xn = np.copy(X)

# impulse noise

Xn[idx impulse] = get impulse noise(Xn[idx impulse], 0.5)

Xn[idx gaussian] = get gaussian noise(Xn[idx gaussian], 0.5)

Xn[idx flip] = get flipped pixels(Xn[idx flip])

return Xn

C.4 drcn.py

"""

DRCN main class
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Dependency:

keras 2.2.4

Python 2.7

Tensorflow-gpu 1.12.0

Author: Muhammad Ghifary (mghifary@gmail.com)

Revisions by: Kyle McClintick (kwmcclintick@wpi.edu)

creates the convnet classifier and convae NN to transform data from source to the target

domain

"""

from keras.models import Model

from keras.layers import Input, Flatten

from keras.layers.convolutional import Conv2D, MaxPooling2D, UpSampling2D

from keras.layers.pooling import MaxPooling2D

from keras.layers.core import Activation, Dropout, Dense, Reshape

from keras.layers.normalization import BatchNormalization

from keras.optimizers import RMSprop, Adam

from keras.preprocessing.image import ImageDataGenerator

import os

import numpy as np

import time

from myutils import * # contains all helpers for DRCN

class DRCN(object):

def init (self, name='svhn-mnist'):

"""

Class constructor

"""

self.name = name

'''

Convnet breaks off half way through the CNN structure to classify the data given to it

'''

def create convnet(self, input, dense dim=1024, dy=11, nb filters=[100,150,200],

kernel size=(3, 3), pool size=(2, 2),

dropout=0.5, bn=True, output activation='softmax', opt='adam'):
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"""

Create convnet model / encoder of DRCN

Args:

input (Tensor) : input layer

dense dim (int) : dimensionality of the final dense layers

dy (int) : output dimensionality

nb filter (list) : list of #Conv2D filters

kernel size (tuple) : Conv2D kernel size

pool size (tuple) : MaxPool kernel size

dropout (float) : dropout rate

bn (boolean) : batch normalization mode

output activation (string) : act. function for output layer

opt (string) : optimizer

Store the shared layers into self.enc functions list

"""

h = input

self.enc functions = [] # to store the shared layers, will be used later for

constructing conv. autoencoder

for i, nf in enumerate(nb filters):

enc f = Conv2D(padding='same', filters=nf, kernel size=kernel size)

h = enc f( h)

self.enc functions.append(enc f)

h = Activation(activation='relu')( h)

if i < 2:

h = MaxPooling2D(pool size=pool size, padding='same')( h)

h = Flatten()( h)

enc f = Dense(units=dense dim)

h = enc f( h)

self.enc functions.append(enc f)

if bn:

h = BatchNormalization()( h)

h = Activation(activation='relu')( h)
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h = Dropout(rate=dropout)( h)

enc f = Dense(units=dense dim)

h = enc f( h)

self.enc functions.append(enc f)

if bn:

h = BatchNormalization()( h)

feat = Activation(activation='relu')( h)

h = Dropout(rate=dropout)( feat)

# classification layer is a fully connected dense layer of output size equal to # of

classes

y = Dense(units=dy, activation=output activation)( h)

# convnet

self.convnet model = Model(inputs= input, outputs= y)

self.convnet model.compile(loss='categorical crossentropy', optimizer=opt)

print(self.convnet model.summary())

self.feat model = Model(inputs= input, outputs= feat)

'''

This NN recreates the training data as a set from the other domain

'''

def create model(self, input shape=(1, 32, 32), dense dim=1024, dy=11, nb filters

=[100,150,200], kernel size=(3, 3),

pool size=(2, 2), dropout=0.5, bn=True, output activation='softmax', opt

='adam'):

"""

Create DRCN model: convnet model followed by conv. autoencoder

Args:

input (Tensor) : input layer

dense dim (int) : dimensionality of the final dense layers

dy (int) : output dimensionality

nb filter (list) : list of #Conv2D filters

kernel size (tuple) : Conv2D kernel size

pool size (tuple) : MaxPool kernel size

dropout (float) : dropout rate

bn (boolean) : batch normalization mode

output activation (string) : act. function for output layer

opt (string) : optimizer
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"""

d1 = input shape[0]

d2 = input shape[1]

c = input shape[2]

if opt == 'adam':

opt = Adam(lr=3e-4)

elif opt == 'rmsprop':

opt = RMSprop(lr=1e-4)

input = Input(shape=input shape)

# Create ConvNet

self.create convnet( input, dense dim=dense dim, dy=dy, nb filters=nb filters,

kernel size=kernel size, pool size=pool size, dropout=dropout,

bn=bn, output activation=output activation, opt=opt)

# Create ConvAE, encoder functions are shared with ConvNet

h = input

# Reconstruct Conv2D layers

for i, nf in enumerate(nb filters):

h = self.enc functions[i]( h)

h = Activation(activation='relu')( h)

if i < 2:

h = MaxPooling2D(pool size=pool size, padding='same')( h)

[ , wflat, hflat, cflat] = h.get shape().as list()

h = Flatten()( h)

# Dense layers

for i in range(len(nb filters), len(self.enc functions)):

h = self.enc functions[i]( h)

h = Activation(activation='relu')( h)

# Decoder

h = Dense(units=dense dim)( h)

h = Activation(activation='relu')( h)

xdec = Dense(units=wflat * hflat * cflat)( h)



145

xdec = Activation(activation='relu')( xdec)

xdec = Reshape((wflat, hflat, nb filters[-1]))( xdec)

i = 0

for nf in reversed(nb filters):

xdec = Conv2D(filters=nf, kernel size=kernel size, padding='same')( xdec)

xdec = Activation(activation='relu')( xdec)

if i > 1:

xdec = UpSampling2D(size=pool size)( xdec)

i += 1

xdec = Conv2D(c, kernel size=kernel size, padding='same', activation=clip relu)(

xdec)

self.convae model = Model(inputs= input, outputs= xdec)

self.convae model.compile(loss='mse', optimizer=opt)

print(self.convae model.summary())

'''

Trains the DRCN NN by performing SGD on the batch normalized weights

'''

def fit drcn(self, X, Y, Xu, nb epoch=50, batch size=128, shuffle=True,

validation data=None, test data=None, PARAMDIR=None, CONF=None):

"""

DRCN algorithm:

- i) train convnet on labeled source data, ii) train convae on unlabeled target

data

- include data augmentation and denoising

Args:

X (np.array) : [n, d1, d2, c] array of source images

Y (np.array) : [n, dy] array of source labels

Xu (np.array) : [n, d1, d2, c] array of target images

nb epoch (int) : #iteration of gradient descent

batch size (int) : # data per batch

shuffle (boolean) : shuffle the data in a batch if True

validation data (tuple) : tuple of (Xval, Yval) array

test data : tuple of (Xtest, Ytest) array

PARAMDIR (string) : directory to store the learned weights

CONF (string) : for naming purposes



146

"""

history = {}

history['losses'] = []

history['accs'] = []

history['gen losses'] = []

history['val losses'] = []

history['val accs'] = []

history['test losses'] = []

history['test accs'] = []

history['elapsed times'] = []

best ep = 1

# begin training in mini batches

for e in range(nb epoch):

start t = time.time()

# convae training

gen loss = 0.

n batch = 0

total batches = Xu.shape[0] / batch size

for Xu batch, Yu batch in iterate minibatches(Xu, np.copy(Xu), batch size,

shuffle=shuffle):

Xu batch = get impulse noise(Xu batch, 0.5)

l = self.convae model.train on batch(x=Xu batch, y=Yu batch)

gen loss += l

n batch += 1

if n batch >= total batches: # break out, happens if batch size isn't exact

multiple of n

break

gen loss /= n batch

history['gen losses'].append(gen loss)

# convnet training, using mini batches

loss = 0.

n batch = 0

total batches = X.shape[0] / batch size
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for X batch, Y batch in iterate minibatches(X, Y, batch size, shuffle=shuffle):

l = self.convnet model.train on batch(X batch, Y batch)

loss += l

n batch += 1

if n batch >= total batches: # break out, happens if batch size isn't exact

multiple of n

break

loss /= n batch

history['losses'].append(loss)

# calculate accuracy

acc = accuracy(self.convnet model.predict(X), Y)

history['accs'].append(acc)

elapsed t = time.time() - start t

history['elapsed times'].append(elapsed t)

val loss = -1

val acc = -1

best val acc = -1

# begin optimizing hyperparameters using validation on val data taken from source

domain dataset

if validation data is not None:

(X val, Y val) = validation data

val loss = 0.

n batch = 0

for Xv, Yv in iterate minibatches(X val, Y val, batch size, shuffle=False):

l = self.convnet model.test on batch(Xv, Yv)

val loss += l

n batch += 1

val loss /= n batch

history['val losses'].append(val loss)

val acc = accuracy(self.convnet model.predict(X val), Y val)

history['val accs'].append(val acc)

test loss = -1

test acc = -1

# evaluate on test data taken from target domain dataset
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if test data is not None:

(X test, Y test) = test data

test loss = 0.

n batch = 0

for Xt, Yt in iterate minibatches(X test, Y test, batch size, shuffle=False):

l = self.convnet model.test on batch(Xt, Yt)

test loss += l

n batch += 1

test loss /= n batch

history['test losses'].append(test loss)

test acc = accuracy(self.convnet model.predict(X test), Y test)

history['test accs'].append(test acc)

print('Epoch-%d: (loss: %.3f, acc: %.3f, gen loss: %.3f), (val loss: %.3f,

val acc: %.3f), (test Loss: %.3f, test acc: %.3f) -- %.2f sec' %

((e + 1), loss, acc, gen loss, val loss, val acc, test loss, test acc, elapsed t)

)

# save weights at the highest accuracy

if PARAMDIR is not None:

if (acc + val acc) > best val acc:

best val acc = (acc + val acc)

best ep = e + 1

CONFCNN = '%s cnn' % CONF

save weights(self.convnet model, PARAMDIR, CONFCNN)

CONFCAE = '%s cae' % CONF

save weights(self.convae model, PARAMDIR, CONFCAE)

else:

print('do not save, best val acc: %.3f at %d' % (best val acc, best ep))

# store history

HISTPATH = '%s hist.npy' % CONF

np.save(HISTPATH, history)

# visualization

if validation data is not None:

(X val, Y val) = validation data

Xsv = X val[:100]
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Xs = postprocess images(Xsv, omin=0, omax=1)

imgfile = '%s src.png' % CONF

Xs = np.reshape(Xs, (len(Xs), Xs.shape[3], Xs.shape[1], Xs.shape[2]))

show images(Xs, filename=imgfile)

Xs pred = self.convae model.predict(Xsv)

Xs pred = postprocess images(Xs pred, omin=0, omax=1)

imgfile = '%s src pred.png' % CONF

Xs pred = np.reshape(Xs pred, (len(Xs pred), Xs pred.shape[3], Xs pred.shape

[1], Xs pred.shape[2]))

show images(Xs pred, filename=imgfile)

if test data is not None:

(X test, Y test) = test data

Xtv = X test[:100]

Xt = postprocess images(Xtv, omin=0, omax=1)

imgfile = '%s tgt.png' % CONF

Xt = np.reshape(Xt, (len(Xt), Xt.shape[3], Xt.shape[1], Xt.shape[2]))

show images(Xt, filename=imgfile)

Xt pred = self.convae model.predict(Xtv)

Xt pred = postprocess images(Xt pred, omin=0, omax=1)

imgfile = '%s tgt pred.png' % CONF

Xt pred = np.reshape(Xt pred, (len(Xt pred), Xt pred.shape[3], Xt pred.shape

[1], Xt pred.shape[2]))

show images(Xt pred, filename=imgfile)

### just in case want to run convnet and convae separately, below are the training

modules ###

def fit convnet(self, X, Y, nb epoch=50, batch size=128, shuffle=True,

validation data=None, test data=None, PARAMDIR=None, CONF=None):

history = {}

history['losses'] = []

history['accs'] = []

history['val losses'] = []

history['val accs'] = []

history['test losses'] = []

history['test accs'] = []

history['elapsed times'] = []
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best ep = 1

for e in range(nb epoch):

loss = 0.

n batch = 0

start t = time.time()

for X batch, Y batch in iterate minibatches(X, Y, batch size, shuffle=shuffle):

l = self.convnet model.train on batch(X batch, Y batch)

loss += l

n batch += 1

elapsed t = time.time() - start t

history['elapsed times'].append(elapsed t)

loss /= n batch

history['losses'].append(loss)

# calculate accuracy

acc = accuracy(self.convnet model.predict(X), Y)

history['accs'].append(acc)

val loss = -1

val acc = -1

best val acc = -1

if validation data is not None:

(X val, Y val) = validation data

val loss = 0.

n batch = 0

for Xv, Yv in iterate minibatches(X val, Y val, batch size, shuffle=False):

l = self.convnet model.test on batch(Xv, Yv)

val loss += l

n batch += 1

val loss /= n batch

history['val losses'].append(val loss)

val acc = accuracy(self.convnet model.predict(X val), Y val)

history['val accs'].append(val acc)

test loss = -1

test acc = -1

if test data is not None:
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(X test, Y test) = test data

test loss = 0.

n batch = 0

for Xt, Yt in iterate minibatches(X test, Y test, batch size, shuffle=False):

l = self.convnet model.test on batch(Xt, Yt)

test loss += l

n batch += 1

test loss /= n batch

history['test losses'].append(test loss)

test acc = accuracy(self.convnet model.predict(X test), Y test)

history['test accs'].append(test acc)

print(

'Epoch-%d: (loss: %.3f, acc: %.3f), (val loss: %.3f, val acc: %.3f), (test Loss:

%.3f, test acc: %.3f) -- %.2f sec' % \

((e + 1), loss, acc, val loss, val acc, test loss, test acc, elapsed t))

if PARAMDIR is not None:

if (acc + val acc) > best val acc:

best val acc = (acc + val acc)

best ep = e + 1

save weights(self.convnet model, PARAMDIR, CONF)

else:

print('do not save, best val acc: %.3f at %d' % (best val acc, best ep))

# store history

HISTPATH = '%s hist.npy' % CONF

np.save(HISTPATH, history)

def fit convae(self, X, nb epoch=50, batch size=128, shuffle=True,

validation data=None, test data=None, PARAMDIR=None, CONF=None):

history = {}

history['losses'] = []

history['val losses'] = []

history['test losses'] = []

history['elapsed times'] = []

best ep = 1
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for e in range(nb epoch):

loss = 0.

n batch = 0

start t = time.time()

for X batch, Y batch in iterate minibatches(X, np.copy(X), batch size, shuffle=

shuffle):

l = self.convae model.train on batch(X batch, Y batch)

loss += l

n batch += 1

elapsed t = time.time() - start t

history['elapsed times'].append(elapsed t)

loss /= n batch

history['losses'].append(loss)

val loss = -1

best val loss = 100000

test loss = -1

print('Epoch-%d: (loss: %.3f), (val loss: %.3f), (test Loss: %.3f) -- %.2f sec' %

\

((e + 1), loss, val loss, test loss, elapsed t))

if PARAMDIR is not None:

if loss < best val loss:

best val loss = loss

best ep = e + 1

save weights(self.convae model, PARAMDIR, CONF)

else:

print('do not save, best val loss: %.3f at %d' % (best val loss, best ep)

)

# store history

HISTPATH = '%s hist.npy' % CONF

np.save(HISTPATH, history)

# visualization

if validation data is not None:

Xtv = validation data
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Xt = postprocess images(Xtv, omin=0, omax=1)

imgfile = '%s tgt.png' % CONF

Xt = np.reshape(Xt, (len(Xt), Xt.shape[3], Xt.shape[1], Xt.shape[2]))

show images(Xt, filename=imgfile)

Xt pred = self.convae model.predict(Xtv)

Xt pred = postprocess images(Xt pred, omin=0, omax=1)

imgfile = '%s tgt pred.png' % CONF

Xt pred = np.reshape(Xt pred, (len(Xt pred), Xt pred.shape[3], Xt pred.shape

[1], Xt pred.shape[2]))

show images(Xt pred, filename=imgfile)

if test data is not None:

Xsv = test data

Xs = postprocess images(Xsv, omin=0, omax=1)

imgfile = '%s src.png' % CONF

Xs = np.reshape(Xs, (len(Xs), Xs.shape[3], Xs.shape[1], Xs.shape[2]))

show images(Xs, filename=imgfile)

Xs pred = self.convae model.predict(Xsv)

Xs pred = postprocess images(Xs pred, omin=0, omax=1)

imgfile = '%s src pred.png' % CONF

Xs pred = np.reshape(Xs pred, (len(Xs pred), Xs pred.shape[3], Xs pred.shape

[1], Xs pred.shape[2]))

show images(Xs pred, filename=imgfile)
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