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Abstract

Counting problems lead naturally to integer sequences. For example if one asks

for the number of subsets of an n-set, the answer is 2n, or the integer sequence

1, 2, 4, 8, . . ..

Conversely, given an integer sequence, or part of it, one may ask if there is an

associated counting problem. There might be several different counting problems

that produce the same integer sequence.

To illustrate the nature of mathematical research involving integer sequences, we

will consider Escher’s counting problem and some generalizations, as well as counting

problems associated with the Catalan numbers, and the Collatz conjecture. We will

also discuss the purpose of the On-Line-Encyclopedia of Integer Sequences.
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Chapter 1

Introduction

Most integer sequences have certain patterns within their structure. It is interesting

to see how two separate counting problems, in turn, count the same sequence. It

would then be implied that the two counting problems have very much in common,

ignoring their respective disciplines. Studying the common groundwork of two prob-

lems will bring a better understanding. This is why the On-line Encyclopedia of

Integer Sequences is a helpful tool to one working with counting problems. The

ability to see different variations of the same problem can be very beneficial to a re-

searcher. This is also what makes the Catalan numbers so interesting. The Catalan

numbers have been found in numerous different counting problems, some of which,

are still being developed today.

A problem posed by the graphic artist, M.C. Escher, can be generalized to a

few different integer sequences. None of these, so far, have been found in respect

to other counting problems. Escher’s original problem was found to be in direct

relation to concepts in crystallography. The generalizations to his original problem

have very interesting properties themselves.
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Chapter 2

Neil Sloane’s On-line Encyclopedia

of Integer Sequences

Neil Sloane is a mathematician who has been maintaining a web page known as the

On-line Encyclopedia of Integer Sequences (or OEIS).

(http://www.research.att.com/ njas/sequences/)

This web page has a list of thousands of integer sequences and some interpreta-

tions for each of these sequences. Each sequence has its own ID number. Also, if

applicable, the sequences have a reference section for personal research, as well as

links to other pages. Many sequences have a name and some formulas to derive the

numbers. Some sequences also have an algorithm in different computer languages

to define the numbers as well as cross-references to similar number sequences. The

computer languages included are, but not limited to: MATLAB, Maple, MathCad,

and MATHEMATICA. A reference will be displayed in this paper for Sloane’s ID

number in the context of the sequence.
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OEIS refers not only to numerous integer sequences for reference, but also to

integer arrays. Pascal’s triangle (A7318) is read by rows and becomes

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, . . .

Square matrices are read by their anti-diagonals, so that the sequence an is read

a0 a2 a5 a9 . . .

a1 a4 a8 . . .

a3 a7 . . .

a6 . . .

2.1 Purpose

The purpose of the OEIS is to aid in research. An integer sequence could show up

in many places, and when it does, the OEIS may give more information than was

previously known. If the sequence is not previously known it can then be submitted

to the OEIS. Most of the sequences, which have a proof that the sequence counts

the objects described, will be accepted by Neil Sloane. If the sequence is previously

known, then it can be obtained along with alternate interpretations, computer code,

a reference to publications, or a generating function for the sequence.

People with common interests frequently converse with each other using the

medium of the internet; the OEIS is another propagation of this. The OEIS can

introduce two researchers of different disciplines to work together on a common

problem. A sequence can be queried to be better understood, one can read about

a sequence previously unknown. Also, the references help find publications on the

material. There maybe have been extensive research done on a sequence, but from

a different development than was previously known.
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Chapter 3

Escher’s Problem

3.1 Escher’s Life

Maurits Cornelius Escher was born in 1898 in the Netherlands. His father, George

Arnold Escher (1843-1939), was a civil engineer who wanted Maurits to train as

an architect. Maurits, or Mauk as he was called by his parents, had failed the

final examinations in a few high school classes and thus never graduated. Although

he passed his mathematics final exam, he was not considered to be highly skilled

in the ways of mathematics. Later in his life, even though he was respected by

mathematicians for his art, he still would exaggerate that he had difficulty with the

subject [BKLW81]:

At high school in Arnhem, I was an extremely poor pupil in arithmetic

and algebra, and I still have great difficulty with the abstractions of figures

and letters.

Eventually, he was able to enroll in the School for Architecture and Decorative Arts

in Haarlem after attempting an alternate school to retake the failed classes. While

trying to accomplish this he developed a skin infection that forced him to fall behind
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in attendance for the lectures. At the school Maurits wanted to try to follow his

father’s wishes and study architecture.

Mauk had showed some of his work to Samuel Jessurun de Mesquita, who was a

teacher of graphic arts at the school in Haarlem, and who advised Maurtis to con-

tinue his graphic work. With his parents’ permission, Mauk then devoted all of his

time to “the graphic and decorative arts, in particular woodcuts”. While studying

the graphic arts, he concentrated largely on landscapes from unusual perspectives

and plants.

Maurits traveled for much of the rest of his life, and he went to Italy and Spain

from years 1922 to 1935. While in Spain in 1922, Escher made his first visit to the

Alhambra Palace in Grenada. Majolica tilings decorate many surfaces in the Palace,

this palace truly inspired him to work with the regular divisions of the plane.

In 1923, while living in Italy he met his future wife, Jetta Umiker. Jetta and

Mauk got married in 1924 and they had their first child, George, in 1926. Their

second child, Arthur, was born in 1928. Together they lived in Italy for just over

a decade, taking frequent holidays around Europe. They were forced to leave Italy

by the Fascist political regime and then moved to Switzerland. Jetta and Maurits

disliked the Swiss surroundings and decided to take a Mediteranean expedition.

They traveled the coasts of France, Italy, and Spain. The couple made volumes of

sketches for future works. Maurits’ second visit to the Alhambra Palace was during

this expedition and was his richest source of inspiration. Jetta and Maurits spent

days on end creating sketches for the main source of his future work; Escher was

commissioned by the De Roos Foundation in 1957 to write an essay on his hobby

of regular divisions of the plane. This essay was later published as a book titled

Regelmatige vlakverdeling ; in it, he had this to say about his studies of the regular

divisions of the plane [BKLW81]:
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It remains an extremely absorbing activity, a real mania to which I

have become addicted, and from which I sometimes find it hard to tear

myself away.

Unknowingly, he studied areas of crystallography years before any other math-

ematician working in this area. He showed his work to his brother, Beer, who at

the time was a Professor of geology, mineralogy, palaeontology and crystallography

at Leiden University. Beer noticed the connections between Maurits’ tilings and

crystallography. So Beer sent Mauk a list of literature to feed his interest. Maurits

then went on to work on numerous different tilings and he developed a systematic

and highly mathematical approach using his own symbolism. This research resulted

in 1965 with Caroline H. MacGillavry’s book Symmetry Aspects of M.C. Escher’s

Periodic Drawings.

He then traveled to Switzerland and Belgium from 1935 to 1941. The Escher

family moved to Brussels in 1937. Their third son, Jan, was born in 1938. Escher’s

father passed away in 1939. The Escher family was forced to leave Brussels because

of the invading German forces in Europe. His mother passed away shortly after in

1940. During World War II, Maurits’ work drastically slowed since he became very

emotional about the war and, in particular, the loss of his parents. In 1944, German

forces captured Escher’s old teacher, Samuel Jessurun de Mesquita, who was Jewish.

The Escher family then moved to Baarn, Holland in 1941 trying to escape from

the clutches of German invading forces. Escher continued to live in Baarn for the

rest of his life, while taking frequent trips abroad. Due to his previous artistic

practices, he was easily able to return to his work and finally complete what he had

put on hold. In 1941, his research led to his notebook entitled, Regular Division of

the Plane with Asymmetric Congruent Polygons, which would be published later in

1958. In this notebook he had covered all the possible combinations of shape, color
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and symmetrical properties. From 1945 on, he was asked to give lectures all over

the globe. In 1951, two articles were published on Escher, one in Time magazine

and one in Life magazine. He then progressed to study the concept of infinity.

From 1954 to 1961, Mauk made a yearly sea voyage to and/or from Italy. On

one of his trips overseas, Escher became friends with H.S.M. Coxeter, professor at

the University of Toronto. Coxeter had commented on Escher’s new prints and

often suggested literature for Escher. Coxeter helped him learn how to understand

a circular division of the plane, where the center and the outside border would tend

to infinity. Escher once wrote in a letter to his son George, expounding the insight

he derived from Coxeter’s A Symposium on Symmetry as [BKLW81]:

His hocus-pocus text is no use to me at all, but the picture can proba-

bly help me to produce a division of the plane which promises to become

an entirely new variation of my series of divisions of the plane.

Escher was able to infer the rules pertaining to hyperbolic tessellations from the

illustration. In 1960, Escher made plans with Coxeter to organize lectures in Toronto

where Escher would speak on the subject.

Escher learned much on the subject of “impossible” objects from Roger Penrose.

The knowledge he gained helped him use it in his works of art. Knots, and Ascending

and Descending are a few examples of the spacial concepts developed. Later on in

his life he also became interested in doing his Metamorphosis series again. Though

Escher started falling ill in 1962, some say he did his best works in his later years.

By the end of 1968 his wife, Jetta, could not bear to live in Baarn anymore

and moved to Switzerland without Maurits. Their son, Jan, took care of Jetta in

Switzerland while Maurits lived with a housekeeper. His last work, Snakes, heads

toward infinity at both the center and the border of the picture, with snakes weaving

in and out of the tessellation. In 1971, the book De Werelden van M.C. Escher(The
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World of M.C. Escher) was published. Escher died in 1972 at the age of seventy-

three.

3.2 Escher’s Problem

While Escher was working on the regular division of the plane, he also experimented

with repeating patterns to tessellate the plane. For this he would take a one-square

design, called a motif. Each rotation (or reflection) of a motif is called its aspect.

Using different aspects of a single motif he would build a 2× 2 square array called

a translation block. The translation block is then used to tessellate the plane.

In order to incorporate the reflected image of the one motif, it would be necessary

to carve two separate stamps, the original and the reflected image. The stamps

would then be inked and used to produce the translation block. In his sketchbooks

Escher would experiment with different translation blocks and see how the resulting

plane would differ. Then the question was posed: “How many different patterns can

be made with a single motif?” He did restrict the rules for the four motifs of the

translation block for two separate cases [Sch97]:

1. The four aspects of the translation block are each either a translation or a

rotation of the original motif. (Only one stamp needed.)

2. Two aspects of the translation block are direct images of the original motif

and two are opposite (reflected) images. One of the following also applies:

(A) The two direct images have the same aspect and the two opposite images

have the same aspect.

(B) The two direct images and the two opposite images all have different

aspects.
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Each element in a translation block can be represented as a number. The list

of four numbers will denote (in a clockwise order starting at the upper left hand

corner of any unique translation block) the aspects in each position of the translation

block. Each number will denote an aspect of a motif. Let the original motif to be

the number 1, then consecutive 90◦ clockwise rotations will be labeled as 2, 3, and

4, respectively. Similarly, for the reflected stamps, Escher used an underline of each

of the numbers. So, 1
¯

is the mirror image of 1, etc. The four numbers that represent

a translation block is known as that block’s signature.

3.2.1 Solutions to Escher’s Problem and a Generalization

The Original Escher Problem

Case 1 The four aspects of the translation block are each either a translation or

a rotation of the original motif.

Schattschneider noted in [Sch97] that Burnside’s counting technique can be im-

plemented to solve this problem. First, let C4 be the group generated by a rotation

of 90◦, (i.e. C4 = {r, r2, r3, r4 = e}). Then, the Klein four-group, K4, coincides

with the action of translation on the set of translation blocks. Let the numbering

of positions on the block be

1 2

4 3

The possible translations are vertical, horizontal, and diagonal so K4 = {k0, k1,

k2, k3} where k0 = e, k1 = (12)(34), k2 = (14)(23), and k3 = (13)(24). C4 does

not commute with K4, yet riK4r
−i ∈ K4, so C4 normalizes K4. Also note that

C4 ∩ K4 = e. So, let H = K4C4 and it follows that H acts on each signature to

produce all of the equivalent signatures. Also note that |H| = 16.
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Burnside’s Lemma 3.1 [vLW01] Let H be a permutation group acting on a set

X. For h ∈ H let ψ(h) denote the number of points of X fixed by h. Then the

number of orbits of H is equal to 1
|H|Σh∈Hψ(h).

In the Escher problem the number of orbits is the number of different tessellated

patterns. The rotation and translation groups are acting on the set of all translation

blocks. If the use of rotations and translations of a certain tessellation arrives at

a different signature, then the original tessellating signature and the new signature

are equivalent. So, this leaves a less difficult question of what ψ(h) is for each

combination of rotation and translation.

To calculate, start by looking at all 16 different elements of H. Here are a few

examples, displaying the calculations for φ(h).

Example 1 h = k1r

To calculate φ(k1r), look at the action of k1r on a translation block. Let (P ,

Q, R, S) be the translation block where, P, Q, R, S are the arbitrary (clockwise)

aspects. Then, k1r(P, Q, R, S) = k1(S
′, P ′, Q′, R′) = (P ′, S ′, R′, Q′), where

P ′ = r(P ). Note that in the evaluation of k1r, the position of P maps directly back

to the same position, P , except the aspect is rotated once. Since there is no aspect

that, when rotated, remains the same, it is impossible for any translation block to

map to its original signature over k1r. So, ψ(k1r) = 0.

Example 2 h = k2r
2

It is easy to see that

k2r
2(P, Q, R, S) = k2(R

′′, S ′′, P ′′, Q′′) = (Q′′, P ′′, S ′′, R′′).

Notice, P and Q switching positions, as well as R and S switch positions with a
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180◦ rotation on each aspect. This implies that P = Q′′, and Q = P ′′, which can

both be true, as well as R = S ′′, and S = R′′. So, choose any of the four aspects of

the original motif for the position P , which leaves the position Q fixed. Also, choose

any of the four aspects for the position S, which leaves R fixed. This implies that

ψ(k2r
2) = 4 · 4 = 16.

There are 4 elements of H that have ψ(h) = 4, 6 elements with ψ(h) = 16, and 1

element, the identity, that fixes all the signatures, ψ(e) = 256. The other 5 elements

of H do not fix any signatures. Hence,

4 · 4 + 6 · 16 + 256

|H|
=

368

16
= 23

This is the same number that Escher derived sketching each of the patterns and re-

moving the signatures that he knew were equivalent to ones he had already drawn.

This counting technique is quicker to use, and in many ways, leads to easier calcu-

lations.

Case 2 Two aspects of the translation block are direct images of the original motif

and two are reflected images.

Again, the use of Burnside’s lemma is a very efficient method. The only difference

in the calculations are that the set of aspects are larger and the groups that act on

them include reflection. So, where C4 is the set of rotations in Case 1, consider

the group generated by reflections and a rotation. The symmetries of the square,

D4, are the group actions for rotations and reflections in this case. For the sake of

notation, let G = K4D4. Note that |G| = 32.

Case 2A The two direct images have the same aspect and the two opposite

images have the same aspect.
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There are 6 ∗ 4 ∗ 4 = 96 different signatures to consider (there are 6 ways to

position the two direct and the two reflected images, and 4 possible aspects for

each.) It is already known that

∑
g∈G

ψ(g) = 320

This implies that the number of equivalence classes for this case is 10. Escher also

got this exact result in his notebook.

Case 2B The two direct images and the two opposite images all have different

aspects.

There are 6 ∗ (4 ∗ 3)(4 ∗ 3) = 864 different signatures.

∑
g∈G

ψ(g) = 1248

Hence, the solution to Escher’s Case 2B is 39. Escher discovered 37 unique tessel-

lations. He made a few mistakes to arrive at this solution, one of which was that

he didn’t notice two of his solutions were, in fact, the same tessellation just rotated

and reflected.

Burnside’s lemma is a very useful counting technique and can be used in the

generalizations of this problem as outlined in the following sections.

The One-Dimensional Case

Here, instead of tessellating a 2-D plane with a 2×2 block, an infinite 1-D strip will

be created by repeating a 1 × n strip. Repeating a 1 × n block an infinite amount

of times on one strip is similar to creating a closed ring with n sides. The group

of symmetries that act on this ring are not as straight forward as in the original
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cases. There are still three group actions that will generate the group of symmetries:

rotation, translation, and mirror. The notation was denoted in [PSS06].

Translation of the strip corresponds to a rotation of the ring with n sides. The

rotation is about the vertical axis through the center of the ring. Each is a rotation

is of 360
n

◦
. This group, denoted by T , is equal to

〈
360
n

◦〉
, and has order n. So, the

action of T on an arbitrary signature Q1Q2 . . . Qn, where Qi is any aspect of the

given asymmetric motif for all i, looks like

T (Q1Q2 . . . Qn) = Q2Q3 . . . QnQ1.

Look at the action of translation on the ring to calculate the number of fixed

signatures by that action. So, a translation that moves the strip i positions corre-

sponds to a rotation of i
n
360◦. The orbits of i

n
360◦ have n

gcd(i, n)
elements in each

and there are gcd(i, n) orbits. So, for any i we can freely pick gcd(i, n) aspects,

the rest of the aspects are fixed by the action of consecutive translations. If we

denote ϕ(k) to be the Euler phi function, then the number of fixed signatures due

to translations for any n is ∑
k|n

ϕ(k)4n/k.

Where ϕ(k) refers to how many different translations have an orbit of size k.

Rotation can only be 180◦ about a horizontal axis that travels through the center

of a face of the ring, or the center of the intersection of two faces. This is equivalent

to rotating the infinite strip 180◦ about a single position (the only two choices for

this one position are either to rotate around one aspect or between two adjacent

aspects.) So, this action is not order-preserving, is denoted by R, and the rotation
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about the position between Q1 and Qn looks like

R(Q1Q2 . . . Qn) = R(Qn) . . . R(Q2)R(Q1)

Where R(Qi) is just a 180◦ rotation of the aspect of Qi.

Let’s now calculate how many signatures a rotation will fix. A rotation about

the axis that passes through the center of one of the faces will fix no signatures. This

is so since any aspect of the motif is not equal to its 180◦ rotation. So, need only

look at rotations about the axis that passes through the center of the intersection

of two faces. Except, this axis does not exist when n is odd. So, with n even, and

with 4 initial aspects to choose from there are

(n
2

)
4n/2

fixed signatures. This notes that half of the faces are freely chosen, leaving the other

half denoted by the first halves 180◦ rotation. Then for each position of the n
2

there

are 4 initial aspects to choose from. This number is the same for a combination of

a translation with a rotation about the horizontal axis.

The mirror (or reflection) symmetry, M , is either a reflection about the horizontal

plane that runs through the middle of each face of the ring, M1, or a reflection of a

vertical plane that divides the ring in half, M2. The reflection about the horizontal

plane is an order-preserving action. Taking a horizontal mirror of a ring (or strip)

will induce a reflection on each face of the ring about the horizontal plane. To

summarize

M1(Q1Q2 . . . Qn) = M1(Q1)M1(Q2) . . .M1(Qn)

Where M1(Qi) is a horizontal mirror image of the aspect.
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The horizontal mirror, alone, fixes no signatures for any n. Although a rotary

reflection, which is a combination of translations and a horizontal reflection does

fix some signatures. If the orbit of the translation is of odd size, then the rotary

reflection will fix no signatures. If it is of odd size, then the translation will lead

to an initial aspect will be mapped to itself, the mirror will then make the initial

aspect map to its own mirror image, which is impossible. So, the number of fixed

signatures for rotary reflections is

∑
k|n, 2|k

ϕ(k)4n/k.

The reflection of a vertical plane is order reversing. This corresponds to a reflec-

tion about the vertical line that divides the 1 dimensional strip into two equally sized

sections. Notice, that when n is odd, there are no fixed signatures for this action.

When n is odd, the middle position is reflected onto itself and we have assumed that

the motif is asymmetric. When n is even, the vertical reflection could pass through

the center of a motif, or could pass through the boundaries of the motifs. With the

vertical (reflection) plane passing through the center of a motif the action fixes no

signatures, for the same reason as when n is odd. When the vertical plane passes

through the boundary of motifs there are again,

(n
2

)
4n/2

fixed signatures. This is the same number as fixed signatures by 180◦ rotations

about the horizontal axis. The reason for this is similar to the explanation for

rotations. This also represents the number of fixed signatures for any combination

of translations, rotation, and vertical reflection, so long as at least a rotation or a

vertical reflection are present.
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Now, for 4 aspects without including mirror symmetries we have

n

2
4n/2 +

∑
k|n

ϕ(k)4n/k 1

2n

fixed signatures total. Since 2n is the order of the group in this case. If we include

mirror symmetry we then have

2
(n

2
4n/2

)
+

 ∑
k|n, 2|k

ϕ(k)4n/k

 +
∑
k|n

ϕ(k)4n/k

 1

4n

total fixed signatures.

Other Generalizations

The two-dimensional case is one where an n×n block is used to tessellate the plane.

Intuitively, this problem is easy to understand, yet computationally, this problem

is not an easy one. For each n, ϕ(n) be calculated fairly easily, and the number of

unique patterns is therefore also easy. The difficult part is to derive a formula to

describe the number of unique tessellations for some general n. When looking at

the answers for small n, it is not clear, at this time, what pattern exists.

The three-dimensional case was posed by Doris Schattschneider [Sch97]. This

can be described as a 2× 2× 2 supercube that is used to tessellate the space. There

will be 6 possible aspects for rotation of the cube. There is also a ‘reflection’ of an

aspect, which pertains to central inversion of the cube. We can then pose Escher’s

question to this set up. Not much has been written about its solutions as of this

time.
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Chapter 4

Catalan Numbers (A108)

Euler discovered a number sequence when studying the question:

How many distinct ways are there to triangulate a convex (n+2)-gon

with non-intersecting diagonals, where n ≥ 1?

Denote the resulting sequence by En. Although Euler deduced the pattern for En,

he thought his method was cumbersome and left the problem open to others to

work on. Eugene Charles Catalan was a Belgian mathematician who lived from

1814 to 1849. Eugene Catalan solved a different combinatorial problem in which

these numbers came up again. Catalan noticed the similarities in the two resulting

sequences and therefore became motivated to try to discover other interpretations

to describe this same integer sequence.

Let a sequence of numbers be defined as :

Cn =
1

n+ 1

(
2n

n

)

The result is the sequence C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, etc. This

sequence is known as the Catalan numbers (sometimes called the Segner numbers).
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Solutions to Euler’s Triangulation Problem The case where n = 1, the tri-

angulation of a triangle can only be done in 1 way. For n = 2, there are 2 diagonals

that could be added to arrive at the triangulation of a rectangle. Hence, for n = 2,

the answer to the problem is 2.

The case for n = 3 is displayed below.

Graphics made with Geometer’s Sketchpad

The solution to the next consecutive cases are 14, 42, 132, 429, etc.

4.1 Alternate Interpretations

4.1.1 Well-formed Sequences of Parentheses

There are numerous problems that result in the Catalan numbers.

Find the number of ways of writing a well-formed sequence of paren-

theses using n pairs of parentheses, or 2n parentheses.

This can also be seen as a multiplication of elements using 2n parentheses, where

multiplication is not associative and not commutative. When n = 1, there is only

one way to pair no parentheses: the null set, λ. When n = 2, there is only one

18



way to write 1 pair of well-formed parentheses, (). For the case of n = 3, there are

exactly two ways to properly use 2 parentheses:

(()) ()()

The case of n = 4 has 5 solutions:

()()() ()(()) (())() (()()) ((()))

Proof that this sequence is equivalent to Cn will be described in section 4.2.

4.1.2 Ordered Trees

There are many other ways of interpreting the Catalan numbers. For example, the

question could be asked:

How many ordered trees are there on n+ 1 vertices?

Note that an ordered tree is defined to be a rooted tree, in which, each tree obtained

by removing the root is also an ordered tree with some known order having been

assigned. Instead of going through each case of n, describing the bijective function

between the number of ordered trees on n+1 vertices and the number of well-formed

statements on n pairs of parentheses will be sufficient.

If, given an ordered tree, T , then define µ(T ) = P recursively, where P is a well-

formed sequence of parentheses. Initially, if T is a tree consisting of a single vertex,

then P contains no parentheses. Then, assume that µ is defined on all ordered trees

T̃ for k + 1 vertices, where k < n. Therefore, µ(T̃ ) is known with 2k parentheses.

Now, if T is an ordered tree with n + 1 vertices and s principle subtrees (the trees

obtained by removing the root) then denote the principle subtrees by T1, T2,. . . Ts.
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Then let the corresponding well-formed sequence of parentheses be P1, P2,. . . Ps,

and P = (P1)(P2) . . . (Ps).

So, for each vertex in T , not including the root, there will be one pair of paren-

theses associated with it, through µ. This implies that with n + 1 vertices in T ,

there is also 2n parentheses in P .

Now, to describe µ−1, let the well-formed sequence of parentheses be P =

(P1)(P2) . . . (Ps), where each Pi is also a well-formed sequence of parentheses. Then

the corresponding principle subtrees are T1, T2,. . . Ts, where each Ti = µ−1(Pi).

4.1.3 Binary Trees

How many binary trees are there on n vertices?

Let the function µ take a binary tree on n vertices and produce an ordered tree

on n + 1 vertices. Let B be a binary tree. The construction of T = µ(B) is as

follows [SW86]:

(a) The vertices of B are the vertices of T with the root deleted.

(b) The root of B is the first son of the root of T .

(c) Vertex v is a left son of vertex w in B if and only if v is the first son of w in T .

(d) Vertex v is a right son of vertex w in B if and only if v is the brother to the

right of w in T .

4.1.4 Full Binary Trees

Define a full binary tree to be a binary tree where every vertex has either 0 or 2

children. Then, the posed question is as follows.

20



How many full binary trees are there on 2n+ 1 vertices?

The bijection will be shown between a binary tree with n vertices and a full binary

tree with 2n + 1 vertices. Given a binary tree, B, add a new child to every vertex

of B with exactly 1 child. Also, to each vertex of B with 0 children add 2 children

to that vertex. This gives the construction of a full binary tree, µ(B). It can be

easily shown, using induction, that the number of terminal vertices (vertices with

0 children) in a full binary tree is one more than the number of internal vertices

(vertices with 2 children). Therefore, F has 2n + 1 vertices. The inverse of this

function is obtained by “pruning” the terminal vertices of F .

4.2 Equivalence to the Catalan Numbers

From the interpretation of well-formed statements with 2n parentheses, create a

string from the set {1, −1}. A left parenthesis is replaced by a 1, and a right

parenthesis is replaced by a −1. Now, rewrite Cn as:

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
=

(2n+ 1)!

(2n+ 1)(n+ 1)!n!
=

1

2n+ 1

(
2n+ 1

n+ 1

)

In lieu of this equality, consider ∆n, the set of {1, −1} strings with 2n + 1 digits,

and with n+ 1 of those digits being 1. Note, the cardinality of ∆n is
(
2n+1
n+1

)
. More

importantly, notice that any string can be cyclically permuted to 2n + 1 distinct

strings in ∆n. Therefore, ∆n can be partitioned into equivalence classes over cyclic

permutation. Each equivalence class will have 2n+1 elements in it. The number of

equivalence classes is exactly Cn, by definition.

Let P be the string with (n + 1) 1’s. Then, P = P1P2 · · ·P2n+1, where Pi ∈

{1, −1} for each i. Also, S0 = 0, S1 = P1, S2 = P1 + P2, . . ., S2n+1 = P1 + P2 +
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· · ·+ P2n+1 are the string’s associated partial sums.

Consider one of the equivalence classes described above, Θ. Take any string,

w ∈ Θ. Define γ(w) to be the index of the last minimal partial sum of w. So, if

w ∈ Θ, and Si ≥ 0 ∀i, S0 = 0, S6 = 0, and S8 = 0, then γ(w) = 8.

Notice what happens to γ(w+), with w+ being equal to w cyclically permuted

one position to the right. For sake of wording, if w = −1, 1, 1,−1, 1, then w+ =

1,−1, 1, 1,−1. It easily seen that

γ(w+) =

 γ(w) + 1 if γ(w) 6= 2n

0 if γ(w) = 2n

Therefore, there is exactly one string, w∗, such that γ(w∗) = 0. Note that the first

digit in w∗ must be a 1. If the initial 1 is removed, what remains is the string

that corresponds to the sequence of well-formed parentheses. This is also conversely

true, adding a 1 to the beginning of a string, ŵ, that corresponds to a well-formed

sequence of parentheses implies γ(ŵ) = 0. This shows that the number of well-

formed statements with 2n parentheses is exactly equal to the Catalan numbers,

Cn.
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Chapter 5

Collatz Conjecture

The Collatz conjecture has been credited to Lothar Collatz, who worked on it in the

1930’s while he was a student at the University of Hamburg.

Define a function, π : N+ → N+ (A6370), where

π(n) =


n
2
, if n ≡ 0(mod 2);

3n+1
2

, if n ≡ 1(mod 2)

This is known as the “Collatz” function.

Collatz Conjecture 5.0.1 For every n, there exists an iterate of the Collatz func-

tion π(k)(n) that equals 1.

The Collatz conjecture is also known as: the Syracuse conjecture, the “3x + 1”

problem, Kakutani’s problem, Hasse algorithm, and Ulam’s problem. The problem

had spread through word of mouth throughout the mathematical community. There

have been many researchers who have studied this conjecture, yet none who have

obtained a complete proof. There are a list of prizes that have been offered for the

proof or counter example of this conjecture. Paul Erdős once said, “Mathematics is

not yet ready for such problems.” Still, numerous mathematicians have done hours
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of work in the quest for a proof. There are a many different ways of attacking this

problem. Here are a few of the different interpretations.

The remaining sequence after one iteration of the Collatz number can be read

on the OEIS at (A6370). The sequence that is the largest output value for each

n from repeated Collatz iterations is denoted at (A6884). (A74473) is the smallest

number of iterations of the Collatz function is necessary such that πk(n) < n.

5.1 Methods for the Collatz Conjecture

5.1.1 Directed Graph Interpretation

Assume an infinite directed graph where each vertex is a positive integer such that

each vertex has at least one directed edge from n to π(n). Now, the sequence of

iterates (n, π(n), π(2)(n), π(3)(n), . . .) is called the trajectory of n. There are three

possible behaviors for trajectories [Lag85]:

1. Convergent trajectory. ∃ k ≥ 1 : π(k)(n) = 1.

2. Non-trivial cyclic trajectory. The sequence becomes periodic and @ k ≥ 1 :

π(k)(n) = 1.

3. Divergent trajectory. lim
k→∞

π(k)(n) = ∞.

This leaves the new interpretation to be:

Alternate Conjecture 5.1.1 All trajectories are convergent trajectories.

5.1.2 Stopping Time Interpretation

Clearly, it can be seen that the iterations will never arrive at π(k)(n) = 1 for some

k unless ∃ l : π(l)(n) < n. So, define σ(n) to be the smallest l : π(l)(n) < n. Call
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this the stopping time of n. If @ k ≥ 1 : π(k)(n) = 1 then set σ(n) = ∞. Denote

the total stopping time, σ∞(n), to be the smallest value of k : π(k)(n) = 1. Again, if

@ k ≥ 1 : π(k)(n) = 1, then set σ∞(n) = ∞. The conjecture is now stated as:

Alternate Conjecture 5.1.1 Every n ≥ 2 has a finite stopping time.

5.1.3 Heuristic Argument

This heuristic argument supports the conjecture. Start with an odd integer, n0, and

iterate the Collatz function until the output is another odd integer, n1. Notice that

half of the time n1 = 1
2
(3n0 + 1), a quarter of the time n1 = 1

4
(3n0 + 1), and an

eighth of the time n1 = 1
8
(3n0 + 1), etc. Then the expected growth between two

consecutive odd integers is the multiplicative factor

(
3

2

)1/2 (
3

4

)1/4 (
3

8

)1/8

· · · = 3

4
< 1

This implies that the iterates, on average, get closer to 1. Hence, no divergent

trajectories should exist.

5.2 Current Progress

There is still much research being done for the proof of this conjecture. This section

will mention a few of the recent discoveries without proof (see references). There is

much more information on this topic than presented here.

The Collatz conjecture has been verified for all n < 2.702 × 1016 by Oliveira e

Silva [OeS99], the computations for which extended the bound to all n < 1.125×1017.

It also easy to see that there is an infinite number of integers that have a finite total

stopping time (i.e. 2i for all i.) Computing π−1(n) implies traversing the directed
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graph interpretation in the opposite direction. Calculating π−1 of the family 2i, will

derive other infinite families with the same property.

It was shown by Crandall [Cra78] that if πk(n) = n for some k, then k > 17985.

Crandall also showed the correlation between the validity of the Collatz conjecture

and the diophantine equation 2x − 3y = p, where p is a prime.

Lower bounds on the total stopping time was shown by Applegate and La-

garias [AL03]. They proved that there are an infinitely many numbers having a

finite total stopping time such that σ∞(n) > 6.14316 log(n).
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