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Abstract

Effective human-swarm interaction is essential for the introduction of swarm-based

solutions into real-world application scenarios. One of the main impediments ob-

structing productive human-swarm interaction is the difficulty in creating suitable

interfaces for humans to convey their desired intent to multiple robots simultane-

ously. As the size of a swarm increases, the complexity of formulating and delivering

explicit commands for each individual robot becomes increasingly intractable. In

fact, it can be challenging for developers or operators struggle to direct robot swarms

to finish even the most basic tasks.

In our work, we consider a different approach wherein humans specify only the

desired goal rather than the individual commands necessary to achieve this goal.

We explore this approach in a collaborative transport scenario, where the human

user chooses the target position for an object, and a group of robots subsequently

moves it by adapting themselves to the environment.

The main outcome of this thesis is the integration of a collaborative transport

behavior of swarm robots and an augmented reality (AR) human interface. We

implemented an AR application in which a virtual object is displayed overlaid on

a detected target object. Users can manipulate the virtual object to generate the

target configuration for the object. The designed centralized controller translates

the target position to the robots and synchronizes the state transitions. The whole

system is tested on Khepera IV robots through the integration of the Vicon system

and the ARGoS simulator.
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Chapter 1

Introduction

All social species (especially insects) collaborate to some extent to co-exist in nature

while facing the basic challenges of survival. For example, self-organizing behaviors

can be seen in ants when they form bridges with their bodies [11] and in birds

when they flock together to avoid predators [32]. Although each species displays

a diverse range of behaviors, the feature common to all such species is that they

display emergent properties when interacting collaboratively. The basic features

which differentiate swarm behavior from other forms of intra-species collaboration

are decentralized control, lack of synchronicity, and simple and identical members

[3]. An emergent property of intelligence appears due to interactions among simple

entities achieving a more higher-level global goal. The resulting system is more

robust, scalable and flexible.

Swarm robotics is an approach to collective robotics, that takes inspiration from

the self-organized behaviors of social animals [6]. Because swarm robotics can lever-

age the emergent properties of self-organizing systems, robots designed for swarm

applications need not be highly sophisticated and typically have low cost and small

size. Communication range limitations, noise in sensing and actuation architectures
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and algorithms are necessary to make a large group of robots work coherently.

Several mature control algorithms have been designed and developed that can

drive a robot swarm robot to behave ”intelligently” [6]. Robot swarms can ren-

dezvous [10] in arbitrary dimensions, self-assemble, and self-organizing [15]. Swarms

can also realize forging and chain formation, which forms a certain pattern or keep

communication topology. In these implementations, autonomy, emergence, and dis-

tributed functioning replace control, pre-programming, and centralization. Collec-

tive Transport, sometimes called group prey-retrieval, is one type of such intelligent

behavior that requires explicit cooperation. It is inspired by the process by which

ants transport a large piece of food or humans move a huge object cooperatively.

The object to be transported is usually too heavy for a single robot to move, which

naturally leads to multi-agent cooperation. Determining the goal position and plan-

ning the path can be time-consuming for a large number of tiny robots, especially

when they have limited sensing and communication abilities. Most relevant research

is still at the stage-of-proof [22]. Our proposed method employs remote interaction

with a pre-set infrastructure to exchange information between the user and the robot

swarm. Thus, the user is able to choose an object and a target position for it, and

this choice will be relayed to the robot swarm.

Robots are expected to operate autonomously most of the time. However, the

involvement of a human operator can be beneficial to the robot’s execution or even

necessary [25]. Humans often have more contextual information with regard to a

given task. This can help to recognize and mitigate the shortcomings inherent to

the autonomous swarm’s limited contextual awareness and semantic abilities. It is

necessary that changes in intent can be conveyed effectively from humans to robot

swarms. Research on how and what humans should use to effectively interact with

robots is ongoing. Traditional interfaces include PCs equipped with keyboards, mice,
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screens, and joysticks. Advanced devices range from simple tablets and wearable de-

vices to sophisticated brain-machine interfaces and electromyographic sensors. But

the exponentially demanding computations resulting from the complex interactions

between individual robot entities within robot swarms mean these existing interfaces

cannot offer an effective means of robot swarm control. The limitations of these sys-

tems manifest in the challenges faced by human operators, who may share a working

environment with swarm system and find themselves overwhelmed. How the current

methods should be modified or even replaced to interact with swarms remains in

doubt. However, augmented reality (AR) has many useful qualities which might

be exploited to resolve these difficulties. First, it can be used to visualize robot

information directly on the swarm member by adopting mature data visualization

techniques. Second, the input method comes with the development AR, VR has an

integrated solution to translate the human input into recognizable data. Third and

finally, the touchscreen or motion-sensing technology is not only easy for humans to

operate, but can also be used to designate new tasks precisely.

Our primary motivation is to expedite the advancement of effective real-world

human-swarm interactions. From factory assembly to surgery, classical robots have

replaced or assisted human laborers in many roles and helped people to better per-

form many complex processes. While the tasks performed by such classical robots

are often complex and can demand extensive human ingenuity to algorithmatize,

they are typically predefined and conducted in insulated, unchanging environments.

For a robot swarm, as each component of it is an independent robot, it is easier

to be deployed into an unknown environment because no explicit constraints need

to be fulfilled for the relations between robots. This makes the swarm system has

fewer positional or kinetic constraints compared with other kinds of robot systems.

But this also makes it harder for a human operator to translate high-level tasks
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into meaningful instructions for each swarm member. In our research, we attempt

to execute high-level goal-based tasks through human-swarm interaction. By in-

corporating AR technology, we have enabled the operator to issue orders and get

direct feedback in a natural, unobtrusive way. A basic state machine which can be

arranged and extended easily are well implemented, concealing cumbersome inter-

swarm relations from the user. As the user interface needs to communicate with all

the robots, a special module is necessary to translate and convey the intent. After

the commands from AR terminal are received, robots will deploy around the object,

and conduct the transport behaviors automatically. We aim to find a balance be-

tween manpower and efficiency of finishing the task and establish the failure check

and a remediation mechanism. To simplify the study and enhance our results, a

global localization system was used for every robot and for the object, but the in-

formation every robot used for their task could also be acquired by local estimators

if equipped with proper sensors and communication modules.

1.1 Problem Statement

This thesis aims at realizing a viable system for human-swarm interaction on the task

of collaborative transport. This task requires a target object to be transported to an

assigned location at an assigned angle. The system developed requires the task to be

given from the user through a friendly interface. The users should assign the task in

a natural way, meaning they do not need to have any professional knowledge, choose

algorithms for each robot or input their intent using predefined commands through

a keyboard. The execution should be planned and conducted by the swarm. The

system should have robustness which means the robot swarm should either finish

the task, or correct errors and indicate irresolvable failure.
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On the hardware side, it is required that the robots can apply forces to the object

and have at least 2 degrees of freedom (along the horizontal plane). Furthermore, the

robots possess the inter-robot communications hardware, to enable collaboration,

and proximity sensors to enable obstacle avoidance. For assessment, we also need

the ability to acquire the configuration information about the robot, the object, and

the target, to calculate the relative position of the object to the target, and robots to

the object. This means the robot should have basic range sensors and communicate

with a centralized controller.

The configuration consists the dimension and poses of every individual entity in

the arena. Given the position of an object in the environment where obstacles exist,

the device with a camera should be able to locate the object the user selects and

send the localization information to swarm. The detected position of the object is

po = (xo, yo), which is a predefined anchor attached to a fixed place on the object.

The user selects the goal position pg = (xg, yg). The robots, initialized in random

locations, will gather and move the object to this target position. The points forming

the path of transportation are assigned by the user in order. The obstacles can be

detected by swarm or camera. The transport process can be intervened by dragging

a path on the screen to assist the transportation process.

1.2 Thesis Structure

This thesis is organized in the following manner. The second chapter details related

work, including others’ work on swarms, human-swarm interaction, collaborative

transport, trajectory control, etc. The third chapter, Design and Implementation,

describes our specific implementation in detail and lays the groundwork for our

testing on the implementation. The fourth chapter details the experiment design

5



to test the performance of the whole system, and list the corresponding result.

Conclusion and future work are discussed in the last chapter.
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Chapter 2

Related Work

We give a broad review on the topic related to each part of the system, covering the

human-swarm interaction, augmented reality and collaborative transport.

2.1 Human Swarm Interaction

Emergent properties related to human-swarm interaction (HSI) needs to be clar-

ified. The survey by Colling et al. of [25] identifies the core concepts needed to

design a human-swarm system. In the work, HSI is introduced from the perspec-

tive of a human operator by discussing the cognitive complexity. The interface is

introduced between swarm and operators. The challenges and solutions relating to

human-swarm communication, such as state estimation, visualization and human

control of swarms, are introduced. For the latter, they develop a taxonomy of con-

trol methods that enable operators to control swarms effectively. At the lowest level,

the user can assign the motion primitives for the robot. At a higher level, different

kinds of algorithms, consisting of a bundle of flocking, foraging, and engagement,

can be switched and executed by swarm robots [24]. Other types of control from the

operator include changing parameters of a swarm control algorithm, indirect influ-
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ence through the environment or selecting and controlling through leaders [25]. The

majority of interaction happens remotely (i.e., the human is outside the swarm and

sending commands through a computer terminal). Since swarms are often intended

to be deployed in inaccessible or dangerous areas, remote interaction is safe and more

comfortable for a human user. Different from fully decentralized controllers which

only need local information or communication with neighbor robots, human needs

to exchange information with swarm robots during the interaction, which means a

large scale of the communication network is required to be maintained. Another

type is the proximal interaction where operators and swarms working in a shared

environment [25]. The robot can sense the operator, who can be seen as a special

member of the swarm.

Nine categories of human-swarm interaction metrics derived from the biological

and robotic swarm literature are presented in [7]. It is judged that human-robot

and human-computer interaction metrics may be inappropriate to describe the be-

haviors emerging in human-swarm interaction, and biological swarm metrics are

carefully investigated. Based on a broad range of literature review, they identify a

total of fifty-four metrics applicable to HSI. Categories include human attributes,

task performance, timing, status, leadership, decisions, communications, micro-level

movements and macro-level movements.

Application closer to HSI has been done [28]. A novel end-to-end solution is pre-

sented for distributed multi-robot coordination that translates multitouch gestures

into low-level control inputs for teams of robots. An iOS application developed by

the authors in which the user is presented with a team of robots and a prism (a

bounding box covering all the robots). The translating and scaling operation to the

prism in a virtual environment will change the coordinates of the prism which are

transferred to the server and act as the input of the onboard robot controllers. The
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collision-free convergence to a goal is guaranteed between robots. This approach al-

lows the human user to solve the cognitive tasks such as path planning while leaving

precise motion to the robots. A photo of their iOS application is shown in figure

2.1.

Fig. 1: The iPad App interface: four views, with manipulation
options at center. (Left) Touch and drag to translate the prism.
(right) Zoom in or out to scale the prism.
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Fig. 2: A sample (asynchronous) control loop. Commands
are sent from the input device to the server, which sends
prism vertices to the onboard controllers of the robots which
synthesize commands. Robots broadcast their positions to
the server, which relays them to the input device to be
rendered (not pictured is communication between robots
within range).

tionally, some environments are extremely difficult to model.
In many cases, the environment model must be compatible
with a controller–for example, polytope-based controllers
require environments defined using polytopes, which may
be time-consuming or complex to build while maintaining
completeness. Abstracting the robots’ environment to a union
of rectangular prisms reduces its complexity and makes it
easier for a user to choose safer paths in real time.

The outline of this paper is as follows. In Section II
and III we define the problem and preliminary definitions,
respectively. Section IV presents our solution, with analy-
sis in Section V. Software implementation is discussed in
Section VI. We present simulation and experiment results in
Section VII and conclude with a discussion in Section VIII.

II. PROBLEM STATEMENT

Consider a team of n homogeneous robots VR = {ri|i =
1, . . . , n} that must navigate to a destination set D in a
shared, constrained, bounded environment. Each robot has
the configuration xi 2 Rd, d 2 {2, 3} representing its
position in Cartesian space, with dynamics:

ẋi = ui, xi 2 Xi ⇢ Rd, i = 1, . . . , n. (1)

In order to maintain safety, robots must maintain a minimum
distance from each other, �min > 0.

Problem 2.1: Consider a team of homogeneous robots VR

with dynamics (1). For some initial state x0 and destination

D, find a control policy which will drive the robots to within
a bounded ball of D while avoiding collisions with the
environment and maintaining a distance greater than �min

between robots.

III. PRELIMINARIES

We seek a solution to Problem 2.1 that can be synthesized
automatically from high-level specifications. The controller
must be usable by non-experts who may not have experience
with code or robots. To that end, we have developed a
solution that generates low-level controllers for individual
robots from simple multitouch inputs on an iOS interface.

In this work, we assume
• a user is capable of navigating a rectangular prism via

multitouch input in a constrained environment such that
the final position of the prism encloses the set D without
colliding with the environment;

• all agents are identical;
• the environment is static;
• robots initiate with at least �min distance between every

pair of robots;
• each robot is capable of self-localizing;
• robots are capable of transmitting only their current pose

to other robots within a radius � > �min;
• robots are capable of globally receiving limited infor-

mation from a server about the environment;
• the initial and goal points in the environment must be

connected.
Note we make no assumption about the goal set other than

being reachable, and that it can be enclosed by a final prism.
The controller is implemented in two parts: an iOS inter-

face to receive and parse user input and display the current
system state, and a Python-based server which receives user
commands and interfaces with the robots via ROS [18].

A. Abstracting the Environment

The environment of the robots is determined by user
inputs on the iOS interface. The interface shows real-time
position of the robots in the environment, and an initial
bounding box for the robots P0. In 3-D, the robots’ bounding
box is a rectangular prism; in 2-D, it is a rectangle. We
assume obstacles do not exist within this initialized prism.
We choose a rectangular prism since it is simply described by
2d halfspaces, and intersections are easy to compute. Other
shapes can also be chosen, with changes to the virtual forces
(Sec. IV). We henceforth refer to the rectangle or rectangular
prism simply as a prism.

The user manipulates the prism on the screen (Fig. 1),
dragging and scaling, so it navigates the space without
contacting obstacles in the environment (while this requires
the user to avoid obstacles, a physics engine could be used to
detect and prevent collisions). Since the robot state is defined
as a single point and does not capture the robot’s physical
extent, on the interface the environment must be padded by
the robots’ size to ensure robots do not collide with obstacles.

As the user manipulates the prism enclosing the robots
on the screen, new coordinates are transmitted to a server,

1756

Figure 2.1: The iPad App interface of robot team control

2.2 Collaborative Transport

A hybrid force/position control architecture for object transportation is introduced

in [27]. The architecture uses an object-level controller to compute the forces and

torques needed to push an object along the desired path. A multi-robot actuation

subsystem, which has a force/position controller, uses these desired forces/torques

to generate commands, and applies proper net force and torque to the object, while

maintaining relative the positions of individual robots with respect to the object.

But they do not consider rotation and the force/torque calculation is an open-loop

control.

Based on a specially-designed physics model, [26] investigates a simple decen-

tralized strategy for robots to transport collectively without explicit coordination.

What an agent knows is only the target direction; it does not know the object shape,
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object weight, its own position, or the position of other robot entities in the system.

Their paper mainly focuses on the transport phase after the robots have been de-

ployed. The object can move exactly how the swarm moves. However, the success

of their paper is limited to certain selections of robot platforms by which the robot

can apply force in any directions no matter where it is attached to the object.

A fully decentralized pushing method is depicted in [22]. Object color is used

as a guide by generating the occluded area behind the object where a direct view

to the target is blocked. A robot swarm moves randomly to find the occluded area.

Occluded robots move against the object to apply a lateral force. The mathematical

derivation of this method is also given. If the changing occluded outline of the object

is acted on by uniformly distributed line forces, the object will move and converge

to the target position. As the object position changing, the outline acted by robots

will keep changing with the occluded area. The translating direction does so. The

object will converge to the target position in the end.

The cooperative control framework described in [14] has the ability to switch

between decentralized controllers, which allows for changes information. A single

type of omnidirectional camera is utilized by proposed estimators at different levels.

The single-camera can be used as an obstacle detector, a collision detector, or a state

observer. Like [19], which estimates the average position by constructing a tree, the

estimator included in the controller address the relative localization problem with

local information.

2.3 Augmented Reality

As detailed in [35], augmented reality (AR) combines real-world and computer-

generated data (virtual reality). AR systems integrate computer graphics, computer
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vision, and image processing to create a kind of visualization technique that is useful

in a variety of domains including robotics. AR has been used for robotic navigation,

mobile applications, computer-assisted surgery, education, gaming, military devices,

manufacturing, product assembly, and repair, etc.

The most popular application of AR in robotics is in medical robotics. [1] in-

cludes information about the use of additional force feedback to a tele-operated

robot-assisted surgical system. Instead of supplying the force or tactile feedback to

the user’s hand, the system displays the force level overlaid on top of the moving

instrument tips. [31] describes the utilization of augmented reality in a laparoscopic

surgical robot, da Vinci, and an endoscopic robot system containing an AR function

that can show the location and direction of the system tip.

AR could be used in robotics software debugging, allowing the developer to see

the real world as the robot does. [9] contributes a systematic analysis of the chal-

lenges in robotic software that make an AR debugging space an attractive option.

Based on these, they describe an open-source implementation of an intelligent de-

bugging system and present an evaluation of its efficacy. [13] details the transforma-

tion of a robot swarm into a distributed interface embedded within the environment.

Each robot acts like a pixel within a much larger visual display space and only needs

to display a small amount of data to human users. Information from a large number

of small-scale robots can enable situation awareness, monitoring, and control.

A novel system designed for Kilobots is called augmented reality for Kilobots

(ARK) [30]. It is able to communicate personalized location-and-state-based infor-

mation to each robot and receive information about each robot’s state. The Kilobots

can sense additional information from a virtual environment in real-time. ARK is

implemented in flexible base control software which allows users to define varying

virtual environments within a single experiment using integrated overhead tracking
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and control.

Mixed reality has also been used in robotics [21]. Mixed reality can enable

robots to interact with physical and virtual objects in any number of physical or

virtual environments. This enables the prototyping of algorithms on a combination

of physical and virtual objects, including robots, sensors, and humans. Robots can

be enhanced with additional virtual capabilities or can interact with humans without

sharing physical space.
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Chapter 3

Design and Implementation

3.1 System Workflow

A sketch for the implementation is shown in figure 3.1. The workflow of the

Khepera IVs

Object

Arena

Vicon

PC

Argos
iPad

User

Figure 3.1: The implementation

whole system consists of three basic parts: a human-swarm interface, a centralized

controller and multiple actuators. Augmented reality technology is used to provide
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an intuitive interface for human interaction. No prior rigorous training is required

for the user to understand and use the interface. The required pose of the object can

be manipulated in the AR application using a virtual object to determine the goal

position and orientation. This visualization of the goal will give the user a direct

reference as to how the final position will ultimately look. This can be extended to

the manipulation of multiple objects and forming complex construction using this

framework. The detection capability of the AR resolves the problems of determining

the world frame and target object detection. The platform of Vuforia is chosen from

a set of tools. The AR human interface is designed as an iOS application running

on an iPad due to its powerful processing ability, and an easy-to-use system, and

versatile touchscreen.

The hybrid controller is a combination of one centralized controller governing the

data exchange between the system and individual robot controllers. This controller

is designed using a state machine control policy implemented in ARGoS, a multi-

robot simulator. Compared with traditional simulators such as MATLAB, ARGoS

is more efficient due to its unique multi-thread architecture specifically designed

for swarm robot. The centralized controller is responsible for global position data

and information exchange between all the system components. The robot actuators

are chosen to adopt differential-drive carrying a decentralized controller to execute

specific kinematic motions. We mainly focus on the software design and implemen-

tation and assemble existing hardware to utilize their functions. In order to achieve

encapsulation and make all functions independent, different levels of controllers are

divided into separate modules and called in assigned sequences. The centralized con-

troller is contained only in ARGoS and runs prior to the decentralized controllers

which are loaded in each robot entity and operate independently.

The communication between the above two modules is established using User
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Datagram Protocol (UDP) for socket based networking on the iPad and the laptop.

UDP does not need to establish the connection in advance and does not send check

message from the server to client. This will decrease the workload for the tablet,

which will improve the efficiency a lot.

3.2 Centralized Controller

As shown in figure 3.2, the centralized controller has the following 4 functional parts:

state machine transfer, update information for the Khepera IV robots, communica-

tions with Vicon, check for failure and success.

Vicon: get global
position

Transfer robot
state

Check success &
failure

Khepera: update
information

No Yes

Figure 3.2: Four basic functions of the centralized controller.

After detecting the predefined object with iPad’s onboard camera, the aug-

mented reality module will send the object position and orientation. The centralized

controller receiving the message will do the high-level task planning by generating

deployment position, storing middle points of the trajectory and popping out them

in sequence.

The primary responsibility of the centralized controller is to handle the synchro-

nization of certain state transitions for all the robots. It controls the state machine

in the robots by continuously monitoring the condition of the state transitions as it

is able to acquire to global information such as the object and each individual robot

positions. We use a group of a miniature assign-and-check state machine for the
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whole procedure. In the control step of each task phase, the centralized controller

first assigns the task by passing commands and information to each robot once, and

checks the completion of the current phase repetitively. It will bring all robots to

a state based on its current state and the special relative configuration the robot is

in.

When the condition of state transition is fulfilled, the centralized controller will

do the corresponding calculation that requires global information for the robots

or order the robots to do the calculation that only needs local information. It

should communicate between all entities including the localization system, iPad,

and robots. In our framework, the centralized controller will run on a laptop. Each

decentralized controlled robot has their own chip, runs program independently, and

comes equipped with the ability to communicate directly with the laptop.

The workflow is shown in figure 3.3.

3.3 Augmented Reality

Augmented Reality (AR) is implemented as an interactive tablet application. Unlike

conventional collaborative transport in which the goal position is well defined by

using indicators, our swarm receives the goal position directly from the tablet. For

augmented reality workflow, three parts are concatenated to achieve the following

functions.

• Object detection.

• User touch operation.

• Message transfer and communication.

The algorithm in pseudo-code is shown in algorithm 1.
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Figure 3.3: A specific workflow of the state machine and communication.
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Function: Object Manipulation
Input: video stream
Send : pose : (x, y, θ)
Init(database);
Detect(config);
while obj is detected do

if #touch > 0 then
p← touch[0];
switch p.phase do

case Begin do obj ← RayCast(p, config);
case Move do Translate(obj, p);
case Release do Send(obj.pose);

end
if #touch==2 then

q ← touch[1];
switch q.phase do

case Begin do α0 ← AngleBetween(p, q);
case Move do

α← AngleBetween(p, q);
Rotate(obj, α− α0);

end

end

end

end

end
Algorithm 1: Object manipulation method through touch screen. The rotation
and translation are distinguished by the number of touches on the screen. The
phase of every occuring touch has 3 types: Begin: the finger start to touch the
screen; Move: the finger is skimming over the screen; Release: the finger leaves
the screen.
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3.3.1 Detection

Detection is responsible for determining the world origin and the real object. The

configuration of the objects to be transported is first acquired by the AR application

using a camera. The object to be transported is predefined in a database, which

means its size and surface pattern is known to the application in advance. This

information is used by the AR toolkit to realize the detection automatically.

The world origin is defined as a special predefined stationary target F0 placed

in the real arena. The planar positions and orientations of all the objects are rep-

resented by the pose of a frame, F (x, y, θ) w.r.t. F0 attached to a fixed point on

the project, which is the geometry center in our condition. Max of N objects to

be transported could be identified and tracked simultaneously. N is based on the

capability of the detection module used.

After the success of detection, the position and orientation of the object will be

stored as V (xV , yV , θV . A virtual object with the same pose information, V = F , is

shown overlaid in real time on the target object once the target is detected. As the

object is predefined, the virtual object’s shape and scale can be exactly the same

as the real object. Thus, the overlaid virtual object is not only a reminder to let

the user know which objects can be manipulated, but also the goal poses in the

next steps. The selected object ID will be sent to the centralized controller as well.

Translation and rotation operations are enabled for the user to manipulate by hand.

3.3.2 Translation

A touch point P0 = (px0, py0) in pixel coordinate will determine a ray starting

from the camera’s focus point through P0. If this ray intersects with the virtual

object V whose initial position equals to the real object, the intersecting point is
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denoted H(xH , yH , zH), which can be considered the touch point in the real world

coordinate. A reference virtual plane parallel to the ground (x-y plane of F0) is

created. D = H − V is the offset between the touch point and the virtual object

center. The motion of the finger, the new single touch point is denoted as P ′0 at

each time step, H ′ is the ray-cast point between the ray and the virtual plane. The

new position of the virtual object is updated by V ′ = D +H ′.

3.3.3 Rotation

The rotation operation is accomplished through the coordination of two fingers. The

second finger is denoted as P1 = (px1, py1) and form a vector with P0 under pixel

coordinate

u = P1 − P0

With the change of P0 and P1 at next time step, new vector u′ is calculated in the

same way.

δ = angle(u′)− angle(u)

The orientation of the virtual object around z axis θ is added by δ, and u is updated

to u′. After all fingers are released, the updated V is saved and transmitted.

3.3.4 Implementation

Vuforia is one of the most widely used software platforms for augmented reality

applications on hand-held and head-worn devices. For developers, it delivers a cross-

platform solution for attaching digital content to physical objects and environments.

Developers can add AR cameras and targets easily in Unity editor, and make use

of the integrated physics engine, rendering function and event handler in unity.

Vuforia is still under development, and we continuously update our system to make
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Figure 3.4: The ray cast and vectors

use of the newest features. The whole toolkit works as a plugin of Unity platform.

This integration provides a number of benefits including a streamlined development

workflow and a more seamless software update process. The Unity platform has a

unified development process for Android and iOS platform.

A normal Unity project consists of scenes, assets, scripts and plugins. Assets

contain the 3D models, images and textures and other resources. Scenes are where

all the elements from assets are placed, combined and arranged in the unit of the

game object. Scripts are C#/Javascript source file that can be bundled with a

certain game object, which can be linked to other game objects as an object to call

their member functions or implement own algorithms. Plugins are where code other

than C#/Javascript is stored. Programs written in C can be maintained here and

called if a certain interface routine is followed. This Unity project can be built and

generate an Xcode project that will be built again and uploaded to the designated

device. The AR application can run on iPad Air 2 as the augmented reality input

device of our system.
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(a) The Unity interface (b) The AR application

Figure 3.5: AR application related

3.4 Collaborative Transportation

3.4.1 Control Policy

As mentioned in chapter 2, three major ways of transportation are pushing, pulling

and caging. We mainly focused on caging methods inspired by pushing proposed

in [22]. In their work, the robots keep pushing only along the section of the object’s

perimeter that occludes their views of the goal, as shown in figure 3.6. Pushing
CHEN et al.: OCCLUSION-BASED COOPERATIVE TRANSPORT WITH A SWARM OF MINIATURE MOBILE ROBOTS 309

Fig. 1. Illustration of how a swarm of robots can push a large object in a 2-D
planar environment (adapted from [1]). The robots keep pushing only along
the section of the object’s perimeter that occludes their views of the goal. As a
consequence, the motion of the object will be approximately toward the goal.

III. METHODOLOGY

A. Problem Formulation

The task we consider is as follows. A bounded environment
contains a convex-shaped object, a goal, and a number of robots.
The environment is otherwise free of obstacles. The aim is that
the robots, which are initially placed in arbitrary locations, push
the object to the goal. Note that the goal specified in the problem
may not be the final destination of the transportation. In a broader
scenario, the goal could be moving, or it could be one of a series
of way points (see Section VI).

We make the following assumptions. The object and the goal
can each be recognized by the robots. The dimension of the
object is large enough to occlude the robots’ perception of the
goal when they are behind it (see Fig. 1). The robots can perceive
the goal from any point within the environment, unless it is
occluded by the object.

B. Occlusion-Based Cooperative Transport Strategy

Consider a number of robots that can distribute themselves
uniformly around the section of the object’s surface that oc-
cludes their view of the goal (the “back side” of the object), as
shown in Fig. 1. Then, if all the robots push the object by moving
in a direction perpendicular to the object’s surface at their points
of contact, the motion of the object will be approximately to-
ward the goal. As the object moves, its occluded surface changes
over time, thus changing the direction of motion. If the robots
keep pushing only against the occluded surface, the object will
eventually reach the goal.1

The occlusion-based cooperative transport strategy can be
realized using a fully decentralized behavior and without explicit
communication among the robots. In Fig. 2, the behavior of the
individual robots is given in the form of a state machine. A robot
first searches the object using an algorithm that is suitable for
the environment (“Search Object”). For bounded environments,
as considered in this paper, the robot performs a random walk.

1The strategy could in principle be also used for transporting objects that are
not tall enough to occlude the robots’ view of the goal. If a robot reached the
object, but the goal was visible “behind” it, the robot would then still push.

Fig. 2. State machine representation of the individual robot behavior realizing
the occlusion-based cooperative transport strategy. The start state is “Search
Object.” If the object is lost at any stage, the robot restarts from “Search Object.”
The behavior is fully decentralized and does not require explicit interrobot
communication.

More sophisticated search algorithms could help our strategy
to also cope with unbounded environments. Once the object is
seen the robot moves toward it (“Approach Object”). When the
robot has reached the object, it enters state “Check for Goal”
to work out whether the goal can be seen from its position. If
the goal cannot be seen, the robot will push the object simply
by moving against it (“Push Object”). If the goal can be seen,
the robot will attempt to find another position around the object
(“Move Around Object”), for example, executing a left-hand-
wall-following behavior.

Although not strictly necessary, a behavior realizing the above
strategy should also prevent robots from colliding with each
other and the boundaries of the environment. This can greatly
improve performance because robots move with fewer collisions
(if any). Hence, in our implementations, robots and the bound-
ary are treated as obstacles to avoid. The goal, if embodied, is
also treated as an obstacle, while it still serves as the target of
transportation.

When a group of robots execute the overall behavior, they
eventually end up at different positions along the occluded sec-
tion of the object due to the stochastic nature of the system.
However, the more robots that are used, the more likely it
is that they approximate a uniform distribution (as shown in
Fig. 1).

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the occlusion-based coopera-
tive transport strategy for the case of arbitrary convex objects
in planar environments. We prove that, under some idealized
assumptions, the strategy always succeeds in moving the object

Figure 3.6: Illustration of how a swarm of robots can push a large object in a 2-D
planar environment from [22]. We extend their method by deploying the robots
around the object. In our case, only ones in the occluded area are effective, which
does not require a continuous re-deployment.

needs narrower working space than caging, as the robots are only deployed behind

the object with respect to the goal position. On the other hand, due to the limited
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angle of affecting force the robots can apply to the object, it lacks a means to steer

or rotate the object. Continual re-deployment makes the translation slow and full of

unintentional rotation. The instability brought by the adjustment is not promising.

There are also other transport methods that design special connectors attached to

the object guaranteeing the robot’s capability of applying force in any direction to

the object, which, in an intuitive way, lacks the sense of generality.

Caging needs more workspace, by which means we need to dilate the object if

obstacle avoidance is applied. Considering that an individual of a swarm or a multi-

robot group is small, this dilation is acceptable. The caging method requires all the

robots to form a closure around the object to avoid it escaping from the capture in

every motion step. If the robots can be arranged closely to stick the outline, the

object will move exactly as the robots. A strict motion control is required to keep

the closure while conducting translation and rotation. The robot is differential drive

non-holonomic robot. A corresponding control method is adopted based on what

kind of tasks a single robot is executing.

3.4.2 Deployment

Position Generation

Playing the role of the information exchange hub, the centralized controller knows

the position of the object and is suitable to manage the robot positions near the

object. Currently, a centralized deployment generation method is used. Based

on the number of the robots, a deploying arrangement with an even angular gap

between the robots is generated. The side where robots occupy needs to form a

closure ensuring that the object won’t escape from the robots gap.

For pushing, the robots are deployed behind the object. The robots will de-
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ploy with a gap just a few millimeters wider than the robot’s radius. This can

approximate an occluded area generated by a light source from an infinite distance.

All robots are deployed in a circle, as shown in figure 3.7, with a radius larger

than the dimension of the object. The gap between robots should be equivalent as

well as close enough to ensure a form of closure avoiding the object escaping from

the grasp. A circular formation whose radius is larger than the object’s dimension

is generated.

Figure 3.7: Robots deployed around the object

Position Assignment

As shown in algorithm 2 and figure 3.8, we will limit the maximum value of the

shortest distances from each robot to all deployment positions. This is intended to

minimize the waiting time between motions, as gathering requires a synchronization

of all robots. To achieve this, we create a table listing all pairs of robot-to-position

distance pairs of robots and positions. Then a select-and-delete operation will be

executed from the largest minimum distance values of these pairs. The chosen posi-

tions for each robot will be sent to according robot through WiFi. One assignment
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Figure 3.8: The table of distance from each robot to each generated deploy position.
First find the minimum value of each row (D01, D13, D22, D30), then find the max-
imum value among these minimum values D22. The index of this searched element
is (i, j). Delete row i and column j, and apply the algorithm to the remained table
until the table is empty.

Function: Positon Allocation
Input : The robot-position distance table Dk

Output: plan
Init(min list);
while Dk is not empty do

foreach row di in Dk do
for dij in di do if dij < min list(i) then min list(i)← dij;
;

end
for min list(i) ∈ min list do if maxmin > min list(i) then
maxmin← min list(i);

;
(i, j)← FindRowColumnOf(Dk,maxmin) delete(D(i :));
delete(D(: j));
plan.add(i, j);

end
return plan;

Algorithm 2: Deployment position allocation
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is made by the pair:

(i, j) = max
i

(min
j

(|pi − qj|)), i, j ∈ 1, . . . , N

means robot i will take position j. After the assignment, the ith row and jth column

of the distances table will be removed. After the deployment position is generated,

they will be assigned to each robot based on their pairwise relation.

Robot Kinematic

During the execution of deployment, each individual robot needs to go to the de-

ployment position guided by their own controller. This controller needs to take

the goal position, obstacles, and their own pose information into consideration. The

ARGoS-Khepera package supply a velocity control interface, which will allow setting

the linear velocity for the left and right wheel of differential drive.

Approaching The notion of the basic approaching motion is straightforward. If

there is no obstacle, the robot will go to the goal directly by spinning around to face

to the goal first and move forward with the speed controller. We adopt proportional

control to realize this motion. The control input is the linear velocity v and angular

velocity ω.

Assume the robot is at position pr with an orientation θr. Denote the linear

velocity of the center of the robot to be v, angular velocity to be ω. We assume

the robot will only go in the forward direction due to the obstacle avoidance policy

adopted. The assigned deployment position for robot pr is pd. The approach vector

is

q = pd − prbt
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. Its angle is θq. The angle deviation is

θg = θq − θrbt

and the distance deviation is |q|.

When implementing on hardware, there is a maximum speed for the differential

drive. We also don’t want the robot to move at a certain lower speed which cannot

drive the robot when the battery is low or the ground condition is bad. As the

sigmoid function has a constant value when the independent variable is high, and

linear when it is low as shown in figure 3.9, we modify it a little to map the deviations

to the control variables:

Figure 3.9: The curve of sigmoid function. The function is ninear when close to the
origin, and constant when far.

v = 0.5
vmax

1 + e−k1|q|

w = (
1

1 + e−k2θg
− 0.5)ωmax

where vmax = r × ωmax
Gain k is set to accelerate the converging speed into the converging area. Since

the deployment position may be compacted and very close to the object, after it
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reaches a neighbor area of the goal position, it will move directly without obstacle

avoidance to get the convergence. The speed will overflow since the max condition

for the linear velocity and angular velocity may happen simultaneously. We divide

it by 2, which can be regarded that the max velocity is limited by half.

vl =
v − ωr

2

vr =
v + ωr

2

Obstacle Avoidance The obstacle avoidance method adopts proximity sensors,

which in our case, are Khepera’s ultrasonic sensors, that can return a value from 0

to 1. The larger the return value is, the closer an obstacle is. Therefore a vector

from one sensor can represent the obstacle distance and orientation.

Compared with potential field or using continuous feedback to realize obstacle

avoidance, our method is suitable for a Khepera to run in a decentralized way

without global information. We use the front 5 sensors for obstacle avoidance.

If a symmetric obstacle-avoidance policy is used (a turn without translation, or

exactly the same awareness areas for the front 5 and back 5 sensors that can trigger

symmetric motions), the robot may bounce between two nearby obstacles, shake its

head forever, or move back and forth ended up getting stuck. As shown in figure

3.10, the middle three sensors have a lower threshold to trigger a hard turn, because

obstacle in this area will definitely block the heading direction. Sensors on two sides

are used to make a soft turn with a higher threshold, as the obstacle on these two

sides.

The obstacle avoidance policy is depicted in algorithm 3.
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Figure 3.10: The sensor detecting the obstacle

Function: Obstacle Avoidance
Input : SensorReading
Output: Reach Goal
while not reach goal do

if obstacle detected then
approach goal

if obstacle in front then HardTurnParam(vl, vr);
else if obstacle on side then SoftTurnParam(vl, vr);
else ApproachParam(vl, vr);
SetV elocity(vl, vr);

end
return true;

Algorithm 3: Obstacle avoidance policy
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Gathering After correctly deployed, the robots will conduct a ”gathering” motion

in order to grab the object. As we want to grab the object tightly, we are not using

Proportional control where the feedback strength will decrease when the goal is

about to be achieved.

Function: Gather(a, θ)
Input : Approach vector a, robot angle θ
Output: stuck flag
Initialize counter = 0;
while not all stuck do

if (a.angle− θ > turning threshold) then
(vl, vr) = (0, 0.3max speed);

else if (a.angle− θ < −turning threshold) then
(vl, vr) = (0.3max speed, 0);

else (vl, vr) = (0.3max speed, 0.3max speed);
if (robot actual speed < 0.1max speed) then counter+ = 1;
else (counter = 0);
if (counter ≥ 30) then stuck = true;

end
return true;

Algorithm 4: Gather motion

After all robots getting stuck, the relative position of each robot will be recorded

as a parameter for the formation keep behavior in the pre-rotate calculation. This

includes:

• The relative distance Rij from the robot j to object i.

• The relative angle βij.

• Average relative position of all the robots Gi.

3.4.3 Translation

The translation here is the process when the center of the object is moving toward

the goal position. For transportation, we use caging method. All robots form a
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Figure 3.11: The robots grab the object. The black dash line is used to calculate
the desirable relative position w.r.t. Fi frame

close enclosure strictly and move in the same direction in order to keep the object

within the shape.

Caging is actually an omnidirectional pushing of sorts. The robots-formed shape

will grab the object tightly similarly to a gripper, so the object will move with the

robot shape. But since the communication latency and that the kinematic of every

robot cannot be sensed accurately, an ideal firm shape cannot be achieved. When

controlling the shape, we also need to find a balance between efficiency and shape-

keeping. We cannot set the trajectory as depending on time because the object is

what we want to keep shape around. All robots tend to move slowly to keep the

shape, but they need to move forward.

In [36] a stable trajectory control method is proposed. The method is easy to

implement and very effective. It only requires the error of orientation and planar

position, which is ideal for us since our reference is the object, not a time-based
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trajectory. We want to map the relative position between the robot and the object,

and that between the object and the target position.

For a differential drive robot, assume the robot’s pose is represented as a triple:

p(t) =


x(t)

y(t)

θ(t)


The (x(t), y(t)) is the planar position of the robot’s center in the world coordinate

frame F0 at time t. θ(t) is the robot’s front orientation from the x-axis in the range

of (−π,+π]. The front of the robot is the direction the robot goes toward when

both wheels are set to equivalent positive speed, in other words, is the direction of

linear velocity v of the robot center.

θ(t) = tan(−1)(
ẏ(t)

ẋ(t)
)

Another kinematic of the robot center is its angular velocity ω. The robot’s

Jacobian matrix can be written as follow:
ẋ

ẏ

θ̇

 = ṗ = Jq =


cos θ 0

sin θ 0

0 1


v

ω



In our scenario, the desired trajectory for the robot pd is not determined by t.

Instead, it is determined by the object’s current position po. In the gathering motion,

we calculate the relative distance r and angle β under the object’s coordinate frame

F .
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Assume the direction of the object is θo.
xd

yd

1

 =


cos β sin β xo

− sin β cos β yo

0 0 1



R cos β

R sin β

1


and θr equals to the angle of pg − po where pg is the position of the goal in F0.

The position error from the robot’s position is calculated by:

pe =


xe

ye

θe

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (pd − p)

When the robot is at the desirable position pd, it should move in planned velocity

qd =

vd

ωd


the so-called approaching vector is u(t) = (pt−po(t)). The transfer matrix from

the world coordinate to the object

The initial relative position of robot w.r.t. the object is ~v = T (−1)( ~xo− ~xr, yo−

yr).

Our control method is based on this error and the desirable velocities.

q =

v

ω

 =

v(pe, qd)

ω(pe, qd)


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In [36], a stable control method is proposed:

q =

v

ω

 =

v(pe, qd)

ω(pe, qd)

 =

 vd cos(θe) +Kxxe

ωd + vd(Kyye +Kθ sin θe)


Under a critical damping scenario, Ky = 6.4 × 10−3/cm, Kx = 0.7/sec and Kθ =

0.16/cm.

After get the control variable (v, ω), the wheel speed an be set

vl

vr

 =

v−ωr
R

v+ωr
R


3.4.4 Rotation

A rotation process will be conducted after the object reaches the final target position

following a set of re-deploy and gathering. An ideal rotation without additional

translation for the object should be executed. The stable control method for the

differential drive robots proposed in [36] also works for circular path control.

Pre-rotation phase The control policy we adopts requires a small initial error in

both orientation, θ and position, (x, y). Same as translation, the rotation requires

the robots to face the direction tangent to the perimeter of the circle. After the

robots are deployed and gather to grab the object tightly, a pre-rotation calculation

occurs to find the radius of the circular motion.

Different from translation, rotation may fail to conduct when all the robots

can’t touch the object instantly when start moving figure 3.12. During the control
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calculation, we set the relative angle

βj = arctan(
yj − yo
xj − xo

)± 90◦

The sign is positive if the rotation counterclockwise negative if clockwise.

Figure 3.12: All the robots are not able to rotate the object since their coming
segment of planned trajectory cannot guarantee sustained contact with the object.
If the current position is desirable, due to the control strength, all robots remain
static.

3.4.5 Software and Hardware

ARGoS

ARGoS is a specialized multi-physics robot simulator. It is written in C++ and can

be utilized in both C++ and Buzz. It can simulate large-scale swarms of robots

of any kind efficiently and be customized easily by adding new plug-ins. Before

ARGoS, a multi-robot system can only be simulated in MATLAB and the user needs
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to design controllers and model the physical environment from the very beginning.

In ARGoS, controllers can be implemented and deployed to all robots identically.

The localization and pose information of each entity can be accessed easily by using

the pointers and handles. The ARGoS plays as a bridge between Vicon, iPad and

Kheperas.

Figure 3.13: The window of ARGoS simulator

An ARGoS project, basically a CMake project, consists of three folders: ex-

periments, controllers, and loop functions. The conceptual diagram is shown in

figure 3.14. The experiments folder contains XML files with extension .ARGoS

that configure the information needed for an experiment. Controllers are C++

program compiled in one or more libraries to be called by the ARGoS simulator

when running. The virtual function ”ControlStep()” will be executed in every time

step, manipulates the calculation, sensor readings and drivers on the robot. Loop

functions or other C++ code manipulating the work (excluding robots), such as

visualization, manipulating abstract class in the physical world, or communication

happens in pre-step or post-step functions. The UDP receiver is implemented in

loop functions.
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Figure 3.14: The structure of ARGoS simulator. loop fucntion folder contains the
program of the control interface between controller and sensor//actuator and the
visualizations block. Controller folder implements Controller block. Experiments
folder set parameters for each trial. ARGoS core manipulates other background
process.

Khepera

The Khepera IV (figure 3.15) is a compact robot designed for any indoor lab applica-

tion (table, lab floor) such as navigation, swarm, artificial intelligence, computation,

demonstration, etc. It requires a little space to operate, even in a swarm. The use

of a KB-250 bus allows users to stack many different extensions on the top of the

robot in mere seconds, providing an unbeatable modularity.

Khepera IV has 12 infrared sensors and 5 ultrasonic sensors. The range of the

IR sensor is 2 to 250 mm and that of the ultrasonic sensors is 2 to 200cm. For

obstacle avoidance during the deployment phase, 5 infrared sensors arranged evenly

in the front of the robot are used as proximity sensors to detect obstacles. Wireless

communication is used to exchange information with the centralized controller. Due

to the lack of local communication with other Khepera or detect certain signal, the
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(a) The front view of Khep-
era IV.

(b) The bottom of Khepera
IV.

Figure 3.15: Pictures of Khepera IV

Khepera IV is not able to perform in an isolated environment as a pure centralized

swarm.

Khepera IV User Manual ver 3.0   15 
 

4.1.2 Reflected light measurements (proximity) 

Sensors are mainly meant to detect obstacles around the Khepera. 
Measurements for reflected light depend on objects reflectivity and on 
ambient light conditions. Object colors, materials and surfaces do have an 
influence on the sensor’s response. Moreover, as any sensor, IR sensors are 
subject to environmental noise. For all these reasons, graphics below are 
given for information only and should not be considered as references. 
Value range is 0 to 1023, 0 stands for no obstacle, 1023 for very near 
obstacle. Here’s an example of value with a white paper used as an 
obstacle: 
 
 

 
Figure 10 : IR value vs Distance 

  
The IR value never falls to 0 as, even with no obstacle, the IR reflects on 
the floor and adds a static value. As all the sensors are not exactly the 
same, the solution is to perform a calibration of the IR with no obstacle in 
front. With this calibration, the user will be able to improve detection of 
obstacle at distance greater than 20cm. 

 
  

Figure 3.16: The reading value vs. sense range

3.5 Other Components

3.5.1 Global Tracking System

Vicon system is an advanced motion capture system using optical cameras. We

adopt Vicon Vero with on-board sensors that monitor camera position and tem-

perature to ensure optimal performance. Aside from the main camera, the Vicon
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(a) A broad view of the Vicon system

(b) A closes view to Vicon

Figure 3.17: Vicon Screenshot

camera has a group of small infrared transmitters. In our experiment, the precise

position and pose of the Khepera IVs and the object to be manipulated are localized

by the Vicon system. At least 4 markers are affixed to each distinguishable entity

to guarantee reliable localization.

Thanks to the work of the ARGoS-Vicon package, the configuration data from

the Vicon system can be received and visualized by ARGoS in real time. All di-

mensions and pose information of robots and objects are either defined or detected

in Vicon environment rather than in the .argos file. Other parts of the code are

independent of these pre-configurations.
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3.5.2 Communication

Once all finger contacts are released, the indicated planar position and orientation

(x, y, θ) of the object will be packed into a package and sent through the socket. It

should be noted that the pose should be transformed from the coordinate system

of the object to that of the robot controller. To achieve the maximum sending

efficiency, we only send a given position packet once. This requires the receiver to

listen to for messages continuously.

We use UDP protocol instead of TCP/IP to send data from the iPad to the

centralized controller. TCP is Transmission Control Protocol, which is more reliable

as the sender requires the receiver to give feedback and error check to make sure

that the message is properly delivered. UDP protocol, the User Datagram Protocol,

is just a datagram sent to the target IP address. There is no guarantee that the

message is delivered, but the communication is more efficient.

Because there is no guarantee of packet delivery, the socket using UDP must

already be active and working before the very first message is sent. All received

messages are put in the buffer without being flushed by the operating system kernel.

As such, it is unpractical to know which is the newest message. Consequently, if the

packets are continuously sent without time stamps until the buffer overflowed, the

buffer would simply drop the incoming messages of unknown sequence. In order to

mitigate this risk, we only send the position from the iPad when the user conducts

a set of touch motions to ensure the receiver buffer is clear.

As mentioned before, the UDP listener will be activated before the first message

is sent and need to continue listening thereafter. The recvfrom() function will be

stuck and wait if the socket buffer is empty, which will block the main single thread.

We use multi-thread programming to deal with this problem. The UDP server

thread starts when the whole system is initialized, and remain in the loop of receiving
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the message. When the buffer is empty, this message is just stuck in one round of

the loop. When the message is received, the message is recorded and read by the

centralized controller. Then the child thread will go to the next step of the loop and

listen to the message again. Since the user won’t manipulate the object faster than

the process speed of a single loop containing the recvfrom() function, the buffer will

never overflow and all incoming messages will be received under normal conditions.

The child thread will jump out the loop and destructed when the ARGoS simulator

is closed.

3.5.3 Failure Check

As the target object may have various physical properties, an improperly configured

robot swarm (with a deployment shape for example), might fail to keep formation

during the transportation process. Similarly, the swarm may be compromised by

the sudden unexpected rotation of the object or slipping on one side of the object.

As the deployment is dependent on the object, one or more re-deployments can

potentially restart the whole process and fix the issue under certain scenarios.

Loose shape during translation Due to the loosening of robot swarm shape,

the object may rotate unexpectedly, apply a large force to the robots, and escape

from the enclosure during the translation process. The ”loose” check will be based

on a large value of xe and ye which will cause a robot to fully halt.

Deviation during rotation After the object has been grabbed, the average po-

sition of all the robots will be calculated. If this average position deviates too much

from the original one, we assume that the formation has been broken.
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Single Loose

Group Draft

Figure 3.18: The robots grab the object. The black dash line is used to calculate
the desirable relative position w.r.t. F frame
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Chapter 4

Experimental Evaluation

4.1 Experimental Design

One part of our experiment included trials using real robots. The target is dictated

by the user through the AR application or by the program, and robots are running

in the real scenario supervised by Vicon. In these trials, the localization of the Vicon

system is treated as the ground truth. The other part of the experiment is running

purely on the laptop by adding noise to the sensor and the localization information,

actuator speed and sensor reading.

The choice of key performance metrics is flexible for human-swarm interaction.

Different considerations emphasize different focuses on metrics ranging from the

object placement precision to the efficiency of transport. Hereafter we detail some

general specifications relevant to the whole system.

4.1.1 AR application performance

In the very beginning of our experiment, the localization error of the real object is

measured. Each time the world center (Vuforia Marker) and the object are placed,
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the origin of Vicon will be set by placing an infrared stick on the origin marker and

taking 10 distinct measurements.

Experiments on dragging were conducted in the following manner. The virtual

object was initialized at the origin. The real object was placed at a random position

and its Vicon position was recorded. The user was asked to drag the virtual object

to a specified configuration, and the AR localization was recorded and compared to

the above Vicon readings.

Figure 4.1: The object we design and use.

4.1.2 Transport metric

The transportation performance is our main metric of interest. Once the precise

position of the real and virtual objects are recorded accurately, the efficiency of

the task depends on how accurately and quickly the object is transported. The

Vicon system acts as the true data source of our measurement, which passes data

to ARGoS simulator where everything can be processed.

The following terms, covering the speed, efficiency, and precision of the trans-

port, were measured. Trials using different objects and different numbers of robots
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(swarms of four or more) were conducted.

• Precision: The error of the final position and angle of the object.

• Translation efficiency: The total actual distance traveled by the object

ratio to the planned path length.

• Rotation efficiency: The total actual rotating angle of the object ratio to

the planned rotating angle of the object.

• Rotation speed: The average rotating speed during the rotation phase ratio

to the desired angular speed.

• Translation speed: The average translating speed during the translation

phase ratio to the desired linear speed.

The error of the final position is calculated by |pg − pf |, where pg is the goal

position (xg, yg) and pf is the final position of the object. The angular error is

calculated as tthe absolute value |θg − θf |.

The path the robot needs to drive the object over is the planned path, which

is a feasible and continuous path. Even the smallest extra additional distance is

regarded as waste. So the translation efficiency will be measured as the ratio of

ideal path length to the actual path length.

In a normal translation, the object angle may change due to the translational

kinematics involved. But in our application, the translation method we used does

not include any angle adjustment. Thus, any angular change is undesirable, though

sometimes it may contribute to the rotation. Therefore, the rotation efficiency will

be calculated by the following equation:

1

2
· |θp|+ |θc|∫

δθ
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As the planned angle is the effective part as in the travel distance part. The

rotational part also compensates for the unwanted angular change in the transla-

tion phase, which cannot be regarded as waste. The extra useless rotation should

be minimized by decreasing the total rotational change instead of decreasing the

rotation angle.

Consider a scenario where the object reaches the goal angle after the translation

by accident. The result is what we wanted, but the process is uncontrollable, so the

efficiency should not be considered superior.

During the translation and rotation phases, we designate a desired speed for the

robots. As the robots should keep a relatively static position in an ideal scenario,

the object should just move as the robot’s speed. Any delay or slowing down is

regarded as waste. So the speed will be normalized by the ideal translational and

rotational speeds under different desirable configuration.

4.1.3 Robot metric

The performance of the robots themselves will also be considered. Prior to the

transport, we consider the efficiency of the deployment phase and the balance of the

robots. The following items were measured for each individual:

• Energy balance: the ratio of min and max total travel distance was recorded.

• Deployment efficiency: Average velocity during the displacement to the posi-

tion.

• Robot use rate: The average robot travel distance during translation ratio to

the object translation distance.

The first step was to measure the energy consumption balance between robots.

Too much consumption of a certain robot is undesirable since imbalance can cause
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accelerated electromechanical degradation of individual robots. The speed we cal-

culate which is based on displacement is the speed of approach to the target, not the

path length divided by time. The straighter the path is (which means the influence

of the obstacles are diminished) it finds, the more efficiently it has operated.

During the translation process, the ideal condition is that every robot should

move precisely with the object. So the average travel distance is calculated to

compare to the travel distance for the robots.

4.2 Results

The performance of the system is given in this section. Separate tests were conducted

for the AR application, hybrid controller, and the integration of these two parts.

The result are shown in figure 4.2.

4.2.1 AR precision

The box used in this part is the small box with WPI logo.

Figure 4.2: The precision of AR application. The degrees near each point is the
respective degree error.
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AR error
Metric/Rbt# 4 5 6 7 8
2D Error(cm) 0.8 2.1 0.6 0.1 0.4
Angle error(◦) 0.7 0.7 0.7 1.0 0.8
Distance Efficiency 97.5% 98.1% 99.4% 98.7% 99.2%
Degree Efficiency 17.1% 97.9% 97.6% 91.4% 71.4%
Translation speed 71.3% 99.8% 99.7% 99.8% 97.1%
Rotation speed 78.1% 96.5% 94.5% 94.6% 90.0%
Deploy speed(cm/s) 4.24 4.36 4.42 4.59 3.97
Energy balance 0.92 0.87 0.85 0.86 0.84
Robot Efficiency 64.9% 81.9% 81.9% 82.1% 78.6%

Table 4.1: Result from experiments using simulator, from (0, 0, 0) to (0, 0, π)

Real Robot Performance
Metric/Rbt# 4 5 6 7 8
2D Error(cm) 4.6 5.0 8.6 9.4 3.5
Angle error(◦) 1.40 0.93 1.15 1.4 1.2
Distance Efficiency 91.6% 81.3% 70.5% 66.3% 78.5%
Degree Efficiency 85.7% 87.2% 83.1% 85.2% 82.0%
Translation speed 46.1% 51.0% 45.6% 30.9% 110.0%
Rotation speed 88.5% 89.7% 99.2% 93.6% 97.0%
Deploy speed(cm/s) 4.70 4.12 3.39 3.07 3.32
Energy balance 0.75 0.69 0.67 0.65 0.54
Robot Efficiency 51.4% 58.4% 53.1% 46.1% 58.5%

Table 4.2: Result from experiments using real robots

4.2.2 Trials in ARGoS

Several trials are run in ARGoS with noise added. The noise is uniformly distributed.

For proximity sensors, the noise range is (−0.1, 0.1). For the wheel velocity, the noise

is ±1cm/s. The result is shown in table 4.1.

4.2.3 Trials with real robot

Trials using iPad as the user input are shown in table 4.2.

Experiments specially designed for the collaborative transport were conducted.
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(a) t = 0s, initial configuration (b) t = 53s, robots are deployed.

(c) t = 67s, the robots grab the object. (d) t = 73s, translating.

(e) t = 80s, reaches the final goal. (f) t = 109s, rotation finishes.

Figure 4.3: Human swarm interaction with 5 robots transporting the object.
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W-shape performance
Metric/Trial# 1 2
2D Error(cm) 10.0 7.1
Angle error(◦) 1.28 1.43
Distance Efficiency 85.2% 79.6%
Degree Efficiency 54.0% 54.9%
Translation speed 55.7% 54.7%
Rotation speed 93.6% 98.4%
Deploy speed(cm/s) 4.84 4.82
Energy balance 0.91 0.93
Robot Efficiency 69.0% 67.7%

Table 4.3: Mesurement from 2 trials for conducting. Use 5 robots.

The object and final goal are far away from the origin marker, which is hard for the

iPad to detect or display. The transport range exceeds the iPad view angle. This

tests the capability of the transport system to endure tasks of long duration.

We chose to make the object move in a W-shape for ”WPI”.

4.3 Analysis

It can be calculated from figure 4.2 that the average error of x is around 1 cm,

y is less than 1 cm. Both are acceptable. The average angular error was -7.58

degrees. These errors are identified as systematic errors and will be added to the

original value before being sent to the ARGoS. These systematic error comes from

how the image is attached to the object which has reflective markers on it, since

the detection mechanism is based on image detection for the AR app, but reflective

markers for Vicon. After the compensation, the AR part can correctly reflect the

user’s intention on the target position.

Although the resulted transport precision is considered to be enough for the

current stage of basic object placement, the transport range is limited due to the

dramatic drop in precision of detection when the object is far away. This is con-
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(a) t = 0s, initial configuration (b) t = 53s, reach middle of ”W”

(c) t = 90s, position reached (d) t = 111s, angle reached

Figure 4.4: Collaborative transport through ”W” shape

strained by the quality of the on-board camera and the iPad’s internal odometer.

In table 4.1, it can be seen that the 2D error and angular error are very low

and nearly ideal. The distance and degree efficiencies are also high at a level over

90% most of the time. The trial with 4 robots has low degree efficiency due to the

spiral motion of all the robots during the translation phase. Such extensive useless

rotation drug the rotating efficiency down significantly, and also negatively impacted

the translational speeds.

When the above results are compared with table 4.2, the performance drops.

For the 2D error, apart from the localization error from Vicon, the remaining error

mainly comes from the gathering motion before the rotating motion, which disturbs

the object due to the time interval between different robots contacting with the ob-

ject. The decrease of the translational speed is caused by that more re-deployment

motions and loose conditions were triggered. Finally, as the contact face between the
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object and the floor was uneven, the real-world object movements were less stable

than that of its simulated counterpart. It may rotate or get stuck during transla-

tion, affecting the robot’s trajectory. This also resulted in greater re-deployment

correction, further decreasing to the robot’s efficiency.

From both screen shots of the video, figure 4.3 and figure 4.4, it can be seen that

the object can be transported to the correct position and angle. Especially in figure

4.3, it is clear that the object can align with the virtual object observed through

iPad’s camera within tolerable error.
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Chapter 5

Conclusion and Future Work

In our work, we successfully implemented a novel system for human-swarm inter-

action for the task of collaborative transport. We designed and implemented the

augmented reality application on iPad for human users to select the predefined target

object, and overlaid a virtual object on it for moving and rotating. The centralized

controller used can receive the user-specified goal through UDP communication, and

translate it to the correct control commands for the robots. It can then synchro-

nize all robots by checking their states and exchange necessary information with the

robots. Each robot can receive signals and execute the tasks designated to them.

Deployment, pushing, caging, and rotation have been implemented.

Future work could include certain manipulation methods for multiple objects

to be transported to form a particular architecture. Multiple objects can exist in

the same environment, and robots should organize them in a desired configuration

determined by the user. To achieve this kind of task, a robot swarm channel should

be formed wherein precisely-angled pushing along the desired motion vector is the

only possible movement. The future centralized controller should be implemented in

the AR application or even be removed. This leads to a possible research topic that
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the whole system to be made as decentralized as possible, or make the interaction

terminal to be a special member (a leader) of the swarm. A decentralized estimator

can be adopted required in this decentralized architecture. Local communications

should be adopted without the need to use an existing network. The current angle

of view of the tablet is also limited, which constrains the translating range of the

object. A drone with a camera or some other devices with a broader view angle

can be used to transmit the video back to the tablet for interaction. Simpler robots

such us Kilobots instead the expensive and powerful Khepera can be used.
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