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29 Abstract 
 
30 Coronary artery disease (CAD) is one of the leading causes of morbidity and mortality globally. Inthe 

 
31 last  few  years  our understanding  of the  genetic  and molecular  mechanisms  that promote  CAD in 

 
32 individuals has increased with the advent of the genome era. This complex inflammatory disease has 

 
33 well-defined  environmental risk factors however, in the last ten years, studies including genome-wide 

 
34 association studies (GWAS) have clearly demonstrated a genetic influence on CAD. Recently, studies 

 
35 on the human Y chromosome have also demonstrated  that genetic variation within the male-specific 

 
36 region of the Y chromosome (MSY) could play a part in determining cardiovascular risk in men, 

 
37 confuming the notion that the increased risk for CAD in men cannot be fully explained through common 

 
38 CAD risk factors. Here, we review the literature about the pathophysiology of CAD, its potential causes 

 
39 and environmental risk factors known so far. Furthermore, we review the genetics of CAD, especially 

 
40 the latest discoveries regarding the implication of the Y chromosome, the most underexplored portion 

 
41 of the human genome to date, highlighting methods and difficulties arising in this research field, and 

 
42 discussing the importance of considering the Y chromosome into CAD research. 
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57 Introduction 
 
58 Coronary Artery Disease (CAD), also known  as Coronary Heart Disease (CHO) or Ischaemic Heart 

 
59 Disease (IHD), is the most common type of cardiovascular disease and is the major cause of morbidity 

 
60 and mortality in the world according to the last report of the Global Burden of Disease  [1,2]. Indeed, 

 
61 CAD disrupts the oxygen-rich blood flow to the heart, making it the first cause of 'years of life lost' in 

 
62 developed  countries  and  second  in  developing  countries  after  pulmonary  respiratory  infections. 

 
63 Although  life  expectancy  has  been  extended  in  the  last  decade,  cardiovascular  disease  risk 

 
64 substantially increases with age, creating a heavy burden of morbidity and mortality [3,4]. 

 
65 CAD occurs when the arteries of the heart, which are known as the coronary arteries are damaged from 

 
66 plaques accumulating on the arterial wall. Over time, this buildup of plaques progressively hardens and 

 
67 narrows the blood vessels, a process known as atherosclerosis [5]. As a consequence, thrombosis of the 

 
68 vessels  or  stenosis  can  occur  and  lead  to  angina  pectoris  and  I  or  myocardial  infarction   [6]. 

 
69 Atherosclerosis  is a complex inflammatory  disease with well-defined  environmental risk factors but 

 
70 those risks cannot be the only explanation; it is at that point that genetics enters in the arena. Here, we 

 
71 will review the latest discoveries regarding the genetics of CAD and the implication of the human Y 

 
72 chromosome,  which  is  too  often  ignored  by  researchers  but  could potentially  be  the key  to 

 
73 understanding the CAD prevalence differences between men and women. 

 
74 

75 
 
76 Pathogenesis of CAD and common risk factors 

 
77 As CAD is a multistep and chronic disease, the build-up of plaque occurs over many years and may 

 
78 start in childhood [7]. Ifthe plaque ruptures, fragments stick to the site of the injury and may clump 

 
79 together to form blood clots, which can further narrow the arteries and worsen the angina. If a clot 

 
80 becomes large enough, it can mostly or completely block the artery resulting in a heart attack, stroke, 

 
81 or even sudden death [6]. 

 
82 CAD is a multifactorial and complex late-onset disease which originates from a complicated interplay 

 
83 of environmental and genetic factors. The environmental risk factors could influence the progression 

 
84 of the atherosclerotic plaque by interacting with the endothelium resulting endothelial dysfunction. The 



85 latter is thought to be triggered by risk factors such as lipid disturbances (high levels of low-density 
 

86 lipoprotein (LDL) and low level of high density lipoprotein (HDL)), hypertension, diabetes, obesity, 
 

87 cigarette smoking, elevated plasma homocysteine concentrations, lack of physical activity, aging, 
 

88 hereditary, and sex [7,8]. Currently the pathogenesis of CAD is not fully understood with the molecular 
 

89 mechanisms that promote CAD in individuals affected by these environmental factors remaining 
 

90 unclear. We know that atherosclerosis is driven by a chronic inflammatory process, elicited in part by 
 

91 subendothelial lipoprotein retention and involving innate and adaptive immune responses [9]. Indeed, 
 

92 lipid disturbances and other risk factors are thought to cause endothelial injury resulting in monocyte 
 

93 adhesion and migration to the intima, as well as the release of cytokines and growth factors. These 
 

94 include platelet-derived growth factor (PDGF) which leads to smooth muscle cells migration to the 
 

95 intima and proliferation (Fig.A). The recruitment of activated macrophages and T cells into and within 
 

96 the atherosclerotic lesions is guided by endothelial leukocyte adhesion molecules and chemoattractants 
 

97 [10]. Within the intima, smooth muscle cells produce an extracellular matrix including collagen and 
 

98 proteoglycans. LDL particles travelling in the blood and carrying cholesterol and triglycerides from the 
 

99 liver to other body tissues get through the endothelium layer due to their size and their density, and 
 
100 become  oxidised.  After  migration  to  the  sub-endothelial  space,  monocytes  differentiate  into 

 
101 macrophages which are able to ingest oxidized-LDL, forming specialized foam cells. Macrophages are 

 
102 not able to process the oxidized-LDL, and ultimately grow and then rupture, depositing a greater 

 
103 amount of oxidized cholesterol into the artery wall. This triggers the recruitment of more monocytes, 

 
104 thus increasing the inflammation and continuing the cycle. This inflammation leads to subendothelial 

 
105 accumulation of fatty substances called atheromatous plaques [1O]. Interestingly, the pathology of 

 
106 atherosclerosis is apparently indistinguishable and independent of the risk factor, or combination of 

 
107 risk factors associated with disease progression. This observation suggests that the pro-atherogenic 

 
108 pathways associated with each risk factor converge on a common molecular mechanism [11]. 

 
109 Furthermore, it has been shown that the Herpes virus infection is associated with atherosclerosis [12] 

110 with cytomegalovirus infection also being a risk factor for increased arterial blood pressure, and a co- 

111 factor in aortic atherosclerosis [13]. As many as 50% of patients with atherosclerosis lack currently 



112 identified risk factors, an observation suggesting that additional factors predisposing to atherosclerosis 
 

113 are as yet undetected [14]. 

114 

115 
 

116 The genetics of CAD 
 

117 It is now well known that heritability as risk factor for CAD should not be excluded from studies into 
 

118 its etiology. Indeed, CAD is a highly heritable trait, with genetic and environmental factors accounting 
 

119 for similar proportions of individual susceptibility [15,16]. According to the Framingham Offspring 
 

120 Study, the age-specific incidence of CAD is increased approximately two-fold in subjects with a family 
 

121 history of premature disease [17]. To date, GWAS have been able to identify more than 90 genes within 
 

122 various chromosomes that are involved in the pathogenesis of CAD [18-27] as summarised in Table 1. 
 

123 From the protein-coding genes in Table 1, STRING (software version  10.0) was used to highlight the 
 

124 protein-protein  interactions between  them (Fig.B). As expected, one major cluster showed up with 
 

125 stronger associations  between the proteins APOE, APOAl, APOB, LDLR,  LPA, LPL and PCSK9 
 

126 which are all proteins involved in lipid metabolism. However, interestingly, 30% of the genes do not 
 

127 show any interactions,  suggesting a field to be studied further in CAD. Moreover, among the genes 
 

128 found by GWAS (Table 1), it appears that majority of the risk loci harbor genes previously unknown 
 

129 to be involved in atherosclerosis. Indeed, only 15% of the identified CAD risk loci work through known 
 

130 risk factors, such as lipids and blood pressure, implying that key pathways leading to CAD are yet to 
 

131 be discovered [27]. 

132 

133 In 2007, the first GWAS in relation to CAD was published, identifying what is still the most genomic 
 

134 susceptible locus known for CAD heritability within the intergenic non-coding region of chromosome 
 

135 9p21[28]. This locus contains a long non-coding ribonucleic acid (lncRNA), referred to as antisense 
 

136 non-coding RNA in the INK.4 locus, commonly known as ANRIL (Table 1), as reviewed in [29,30]. 
 

137 So far, ANRIL is the most replicated marker of CAD, independent from the conventional risk factors 
 

138 and its expression is correlated with atherosclerotic lesions. This lncRNA is expressed in tissues and 
 

139 cell  types  affected  by  atherosclerosis,  such  as  primary  coronary  smooth  muscle  cells,  vascular 



140 endothelial cells, human monocyte-derived macrophage cells and RNA extracted from carotid and 
 

141 arterectomy [31]. Notably, an increased expression of ANRIL transcripts was found to be directly 
 

142 correlated with the severity of atherosclerosis [32,33]. Subsequent studies revealed that this locus is 
 

143 related to a broad spectrum of vascular phenotypes,  including CAD and myocardial  infarction 
 

144 [18,34,35], coronary artery calcification [36], peripheral artery disease [37,38], and abdominal aortic 
 

145 aneurysm [39]. However, despite the potential importance of this lncRNA to vascular disease, the 
 

146 pathophysiology underlying the link between ANRIL and CAD currently remains unknown. 
 

147 Taking the aforementioned studies into consideration, it has been shown that the increased risk for CAD 
 

148 cannot be fully explained through the conventional risk factors. 

149 

150 
 

151 CAD and the human Y chromosome 
 

152 The human Y chromosome  is one of two  sex chromosomes,  also known  as allosomes.  Of all 
 

153 chromosomes in human genome, the haploid Y chromosome contains the smallest number of genes. To 
 

154 date, over 200 Y-linked genes have been identified [40] that encode about 27 distinct proteins [41,42]. 
 

155 Its major part, the male-specific region (MSY), constitutes "'95% of its length, and does not recombine 
 

156 with the other sex chromosome (the X chromosome) during meiosis, and is inherited as an indivisible 
 

157 unit from fathers to sons [41]. The fundamental biological role of the human Y chromosome is thought 
 

158 to impart male characteristics  [43]. However, there is also data that links the Y chromosome to 
 

159 cardiovascular diseases. Indeed, CAD is predominately associated with males with a 3:1ratio of men to 
 

160 women [44,45] with males commonly developing CAD nine years earlier than women [46]. Moreover, 
 

161 polysomy of the Y chromosome (XYY karyotype) was linked to increased cardiovascular mortality [47], 
 

162 with associations found between single nucleotide polymorphisms (SNPs) of the MSY and blood 
 

163 pressure, circulating concentrations of total cholesterol, LDL cholesterol, proatherogenic B-phenotype 
 

164 of LDL cholesterol molecules, and paternal history of coronary artery disease [48-51]. Although not all 
 

165 studies have replicated these associations, the accumulated evidence lends support to the notion that 
 

166 genetic variation within the MSY could play a part in determining cardiovascular risk in men [52, 53]. 



167 Due to the haploid nature of the Y chromosome, the usual methods of analysis (such as GWAS) cannot 
 

168 be employed to investigate variations, and this is the reason why the Y chromosome is routinely 
 

169 excluded from large-scale GWAS. The Y chromosome is therefore the most underexplored portion of 
 

170 the human genome to date. To bypass this difficulty, Charchar et al. [54] performed an analysis of the 
 

171 Y chromosome phylogenetic tree. lbis strategy is defined by a series of biallelic SNPs which enable the 
 

172 MSY to be partitioned into 20 major haplogroups (non-recombining portions of DNA [55]) that descend 
 

173 from a common ancestor, Y-chromosomal Adam [42]. lbis study was the first to evaluate associations 
 

174 between main European Y chromosome lineages and coronary artery disease, as well as its underlying 
 

175 risk factors. Results showed that men who inherit haplogroup I (one of the most common Y chromosome 
 

176 types in Europe) from their male ancestors have a 50% increased risk of developing coronary artery 
 

177 disease compared to men with other Y chromosome haplogroups. lbis study also demonstrated that the 
 

178 effect of haplogroup I on CAD is not mediated by traditional cardiovascular risk factors (such as age, 
 

179 body-mass index (BMI), blood pressure, lipids, diabetes, smoking, alcohol consumption, socioeconomic 
 

180 status, or circulating concentrations of C-reactive protein) but might be mediated through a genetically 
 

181 programmed profile of immunity and response to inflammation [54]. lbis makes haplogroup I of the Y 
 

182 chromosome one of the strongest common genetic risk factors of CAD known to date. 
 

183 In order to confirm these  findings and identify the causative variants underlying  the increased 
 

184 susceptibility to CAD in carriers of haplogroup I, a total of 1988 biologically unrelated men from 4 
 

185 white European populations were genotyped, using 11 Y chromosome SNPs and classified into 13 of 
 

186 the most common European haplogroups [56]. The results of this study confirmed that haplogroup I of 
 

187 the Y chromosome, which has previously been linked to an increased risk of CAD, is not associated 
 

188 with conventional cardiovascular and metabolic risk factors in young men from the general white 
 

189 European population. lbis study also showed for the first time that CAD predisposing haplogroup I of 
 

190 the Y chromosome is associated with the downregulation of two MSY genes; ubiquitously transcribed 
 

191 tetratricopeptide repeat, Y-linked gene (UTY) and protein kinase, Y-linked, pseudogene (PRKY) within 
 

192 macrophages. The UTY gene encodes a protein containing tetratricopeptide repeats, involved in protein- 
 

193 protein interactions. lbis protein acts as an immune related minor histocompatibility antigen that may 
 

194 induce graft rejection of male stem cell grafts [41,57]. The dysregulated expression of this gene in 



195 macrophages of subjects with haplogroup I may lead to increased risk of CAD (Fig.A). This is also 
 

196 based  on an emerging role for  UTY in both the immune  system [56], haematopoiesis  [58] and 
 

197 cardiovascular system development [59,60], which are important processes that contribute to the 
 

198 development of CAD [60,61]. Recently published data by Wang et al. [62] on the role of UTY revealed 
 

199 that it is essential for progression of cardiac development and that it associates with cardiovascular 
 

200 specific transcription factors to regulate downstream target genes. Data on Uty mutant mice by Shpargel 
 

201 et al. [63] show that Uty is able to regulate gene activity through demethylase independent mechanisms. 
 

202 Furthermore, we used GIANT, the new human tissue-specific network webserver [64] to highlight the 
 

203 potential tissue-specific functional interactions of UTY with protein-coding genes in macrophages 
 

204 (Fig.C). According to the functional network generated the data predicts that UTY interacts with the 
 

205 following  genes:  DDX3Y,  EIFIAY,  KDM5D,  RPS4Yl,  USP9Y,  and  ZFY  in  macrophages. 
 

206 Interestingly, these 6 protein-coding genes are only located on the Y chromosome. These results 
 

207 reinforce the idea that the Y chromosome should be considered in future works in relation to CAD. In 
 

208 regards to PRKY, no studies have yet been published in relation to its involvement in cardiovascular 
 

209 processes. 

210 

211 
 
212 Concluding Perspectives 

 
213 Despite a large advancement in our knowledge of CAD genes due to GWAS, studies regarding Y 

 
214 chromosome linked-genes in relation to CAD are still sparse. The involvement and function of both 

 
215 autosomal and sex chromosome genes in an atherosclerotic context need to be further elucidated. So far, 

 
216 no additional studies have been published on PRKY and UTY in humans. In mice, a study linking the Y 

 
217 chromosome, HDL-cholesterol levels, and Uty has been recently published [65]. This study confirmed 

 
218 the effect of the Y chromosome on plasma HDL-cholesterol levels in mice by identifying several 

 
219 variants associated with plasma HDL-cholesterol levels. The results notably showed that the variation 

 
220 rs46947134 (a nonsynonymous SNP) in Uty was significantly associated with plasma HDL-cholesterol 

 
221 levels, however, it is still unknown whether the G/C variants in mouse Uty are associated with these 

 
222 expression levels [65]. 



223 Despite these breakthroughs, the exact cause of atherosclerosis still remains unknown, and the biological 
 
224 mechanisms underlying the association between CAD and human Y chromosome remains to be 

 
225 discovered. Further studies should focus on functional characterization of the biological underpinnings 

 
226 of the association between haplogroup I and UTYIPRKY expression in order to fully elucidate the 

 
227 mechanisms of increased susceptibility to CAD amongst men with haplogroup I of the Y chromosome. 

 
228 This would help us to better understand the complex interplay between the human Y chromosome, 

 
229 immunity, and cardio vascular disease; and maybe discover new diagnostic markers and therapeutic 

 
230 targets for CAD in men in the future. 
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412 Table 
 

413 
 

414 Table 1:Genome Wide Association  Study (GWAS) genes found to be involved in CAD. 
 

415 
 
 Chromosome   Location  Gene Name   Full Name  Gene Function  
 
 
 
 
 
 
 
 
 

Chr 1 

lp13 SORTI Sortilin 1 Sorting receptor in Golgi 
compartment 

lpl3 PSRCI Proline/serine-rich coiled-coil 1 Mitosis 

lp21 CELSR2 Cadherin, EGF LAG seven-pass 
G-type receptor 2 

Cell to cell signaling during nervous 
system formation 

lp32 PPAP2B Phosphatidic acid phosphatase 
tvoe 2B 

Conversion of phosphatidic acid to 
diacylitlvcerol 

lp32 PCSK9 Proprotein  convertase 
subtilisin/kexin type 9 

Regulating plasma cholesterol 
homeostasis 

lq21 IL6R Interleukin-6 receptor Regulation of the immune response, 
hematoooiesis 

lq21 AQPIO Aquaporin 10 Water-selective channel 

lq41 MIA3 Melanoma inhibitory activity 
family 3 

Loads COL7Al at endoplasmic 
reticulum exit sites 

lq43 FMN2 Formin 2 Organization of the actin 
cytoskeleton and cell polarity 

lq44 OR13GI Olfactory receptor 1301 Odorant receptor 

 
 
 
 
 
 
 
 
 

Chr 2 

2pl l VAMPS Vesicle-associated  membrane 
protein 8 

Autophagosome membrane fusion 
with lysosome 

2pl l.2 YAMP5 Vesicle-associated  membrane 
orotein 5 Myogenesis 

2p21 ABCG5 ATP-binding cassette sub- 
family G (WHITE), member 5 

Selective transport of dietary 
cholesterol 

 

2p21 

 

ABCG8 

 
ATP-binding cassette sub- 
family G (WHITE), member 8 

Stimulate the excretion of 
cholesterol and sterols intobile, 
transport of sterols back into the 
intestinal lumen 

2p24 APOB Apolipoprotein B Binding and internalization of LDL 
particles 

2ql3 ILJFJO Interleukin I family, member 10 
(theta) 

Regulate adapted and innate 
immune resoonses 

2q22 ZEB2 Zinc finger E-box binding 
homeobox 2 

Transcriptional inhibitor 

2q33 WDR12 WD repeat domain 12 Cell cycle progression, signal 
transduction, apoptosis 

Chr 3 3q22 MRAS Muscle RAS oncogene homolog Cell growth and differentiation 
 
 
 
 
 

Chr 4 

 
4q22 

 
ABCG2 

ATP-binding cassette sub- 
family G (WHITE),member 2 
(Junior blood llI'OUD) 

Xenobiotic transporter which may 
play a major role in multi-drug 
resistance 

4q31 EDNRA Endothelin receptor type A Associated with Gproteins 

4q32 GUCYJA3 Guanylate cyclase 1, soluble, 
alpha 3 

Conversion of GTP to 3',5'-cyclic 
GMP and DvroDhosphate 

4q32.3 PALLD Palladin, cytoskeletal associated 
orotein Organisation the actin cytoskeleton 

 
4q32.3 

 
RPL9P16 Ribosomal protein L9 

pseudogene 16 

 
Unknown 



 

 
 

Chr 5 

5ql4.l AP3Bl Adaptor-related  protein 
complex 3, beta 1subunit Organelle biogenesis 

 
5q31 

 
SLC22A4 

Solute carrier family 22 
(organic  cation/Zwitterion 
transoorter),member 4 

Organic cation transporter and 
plasma integral membrane protein 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chr 6 

6p21 KCNK5 Potassium channel, two pore 
domain subfamily K, member 5 Renal potassium channel 

 
6p21.3 

 
NFKBILl 

Nuclear factor of kappa light 
polypeptide gene enhancer in B- 
cells inhibitor-like 1 

 
Unknown 

6p21.3 DDX39B DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 398 

Splicing factor 

 

6p21.31 

 

ANKSJA 

 
Ankyrin repeat and sterile alpha 
motif domain containing IA 

Controls cell migration and neurite 
retraction through regulation of 
EPHA8 receptor tyrosine kinase 
sil!Dalling 

6p21.33 MCCDI Mitochondrial  coiled-coil 
domain 1 Unknown 

6p21.33 SNORD117 Small nucleolar RNA, CID 
boc 117 Unknown 

6p21.33 RPL15P4 Ribosomal protein LI 5 
pseudogene 4 Unknown 

6p21.33 LOC100287329 Uncharacterized 
LOC100287329 Unknown 

6p24 PHACTRl Phosphatase and actin 
regulator 1 Reorganization of actin skeleton 

 
6p24.1 

 
ADTRP Androgen-dependent TFPI- 

regulating protein 

Regulates the cell expression and 
the activity of the inhibitor TFPI in 
endothelial cells (in vitro) 

6q22 ROSI ROS proto-oncogene 1 Growth or differentiation factor 
recentor 

6q23.2 TCF21 Transcription factor 21 Epithelial-mesenchymal   interactions 
in kidney and lung morohogenesis 

6q25 LPA Lipoprotein Lp(a) Inhibits the activity of tissue-type 
plasminogen activator I 

 
6q25.l 

 
MTHFDIL 

Methylenetetrahydrofolate 
dehydrogenase (NADP+ 
deoendent) 1-like 

Synthesis of tetrahydrofolate (THF) 
in the mitochondrion 

 
6q25.3 

 
SLC22AJ 

Solute carrier family 22 
(organic cation transporter), 
member 3 

 
Plasma integral membrane protein 

 
 

6q26 

 
 
PLG 

 
 
Plasminogen 

Dissolves fibrin in blood clots and 
performs as aproteolytic factor in 
processes such as embryonic 
development, tissue remodeling, 
tumour invasion, and inflammation 

 
6q26 

 
LPAL2 Lipoprotein, Lp(a)-like 2, 

pseudogene 

Similar to Lp(a) but they are 
candidates for nonsense-mediated 
decay 

 
 
 
 

Chr 7 

 
7p21.l 

 
HDAC9 

 
Histone deacetylase 9 

Transcriptional regulation, cell 
cycle progression, and 
develomnental events 

7q22 COGS Component of oligomeric golgi 
complex 5 Norm.al Golgi function 

 

7q22.3 

 

BCAP29 

 
B-cell receptor-associated 
protein 29 

Transport of membrane proteins 
from the endoplasmic reticulum to 
the Golgi 

7q32.2 ZCJHCJ Zinc finger, C3HC-type 
containing 1 Regulates the onset of cell division 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the eye 

 
 

Chr 8 

 
8p22 

 
LPL 

 
Lipoprotein lipase 

Triglyceride hydrolase and 
ligand/bridging factor for receptor- 
mediated lipoprotein uptake 

8q24 TRIBl Tnbbles pseudokinase  1 Interacts with MAPK kinases and 
ree:ulates activation of MAP kinases 

 
 
 
 
 
 
 
 

Chr 9 

9p21 CDKN2B-AS1 
(ANRJL) CDKN2B antisense RNA 1 RNA molecule leading to epigenetic 

silencinst 

9q33 TNC Tenascin C Encodes an extracellular matrix 
protein 

 
 
9q34 

 
 
ABO 

ABO blood group (transferase 
A, alpha 1-3-N- 
acetylgalactosaminyltransferase  ; 
transferase B, alpha 1-3- 
galactosyltransferase) 

 
 
Protein basis for blood grouping 

 

9q34 

 

AGPAT1 

l-acylglycerol-3-phosphate  0- 
acyltransferase 2 
(lysophosphatidic acid 
acyltransferase, beta) 

 
Converts lysophosphatidic acid to 
phosphaditidic acid 

 
9q34 

 
EGFL7 

 
EGF-like-domain, multiple 7 

Codes for a secreted endothelial cell 
protein that contains two epidermal 
growth factor-like domains 

 
 
 
 
 
 
 

Chr 10 

lOpll KIAA1462 KIAA1462 Cell adhesion 
 

lOqll 
 
CXCL12 

Chemokine (C-X-C motif) 
ligand 12 

Embryogenesis, immune 
surveillance,  inflammation 
resnonse, tissue homeostasis 

10q23 IFIT6P Interferon-induced protein with 
tetratricopeptide repeats 6 Unknown 

 
10q23 

 
LIPA Lipase A, lysosomal acid, 

cholesterol esterase 

In the lysosome tocatalyze the 
hydrolysis of cholesteryl esters and 
triglycerides 

 
10q24 

 
CYP17Al Cytochrome P450, family 17, 

subfamily A, polypeptide 1 

Produces progestins, 
mineralocorticoids,  glucocorticoids, 
androgens, and estrogens 

 
10q24 

 
CNNM2 

Cyclin and CBS domain 
divalent metal cation transport 
mediator 2 

Magnesium homeostasis.Mutations 
are associated with renal 
h. -esemia 

 
 
 
 
 
 

Chr 11 

 
 
 

llq22 

 
 
 
PDGFD 

 
 
 
Platelet derived growth factor D 

Cell proliferation, cell migration, 
survival and chemotaxis. Involved 
in wound healing. Induces 
macrophage recruitment, increased 
interstitial pressure, and blood 
vessel maturation during 
angiogenesis 

llq23 A.POA.l Apolipoprotein A-I Reverse transport of cholesterol 
from tissues to the liver 

 

llq23 

 

ZNF259 

 

Zinc finger protein ZPRl 

Signaling molecule that 
communicates proliferative growth 
signals from the cytoplasm to the 
nucleus 

 
 
 
 

Chr 12 

12pl3 PRHI Proline-rich protein Haem 
subfamily 1 

Provide protective and reparative 
environment for dental enamel 

12pl3 PRR4 Proline rich 4 (lacrimal) Involved inprotective functions in 

 

12p13 

 

TAS1R50 

 
Taste receptor, type 2, 
member 50 

Mediate the perception of bitterness 
through a G protein-coupled second 
messenlrel' nathway 

12q24 ALDH2 Aldehyde dehydrogenase 2 Encodes a mitochondrial isoform 
 



 

  
12q24 

 
BIUP 

 
BRCA 1associated protein 

Regulates nuclear targeting by 
retaining proteins with anuclear 
localization simal in the cytoplasm. 

12q24 HNFJA HNFl homeobox A Transcription factor 
 

12q24 
 
SHZB3 

 
SH2B adapter protein 3 

Negative regulator of cytokine 
signaling.Plays a critical role in 
hematoooiesis 

 
 
 
 
 

Chr 13 

 
 

13ql2 

 
 
FLTl 

 

Vascular endothelial growth 
factor receptor 1 

Embryonic  vasculature 
development,  angiogenesis 
regulation, cell survival and 
migration, macrophage function, 
chemotaxis 

13q34 COL4Al Collagen alpha-I OV) chain Inhibits angiogenesis 
 
 

13q34 

 
 

COL4AZ 

 
 
Collagen alpha-2 OV) chain 

Inhibits angiogenesis, tumour 
growth, proliferation and migration 
of endothelial cells, reduces 
mitochondrial membrane potential, 
induces apoptosis 

 
Chr 14 

14q24-31 CALMl Calmodulin 1 (phospharylase 
kinase,delta) 

Regulates centrosom.e cycle and 
progression through cytokinesis 

14q32 HHIPLl HHIP -like 1 Carbohydrate metabolic process 
 
 
 

Chr 15 

 
15q22 

 
SMAD3 

 
SMAD family member 3 

Transforms growth factor-beta, 
involved in the regulation of 
carcino2e11esis 

15q25 ADAMTS7 ADAM metallopeptidase with 
thrombospondin type 1motif, 7 Degradation of COMP 

15q26 FURJN FURIN (paired basic amino acid 
cleaving enzyme) 

Codes for atype I membrane bound 
orotease 

 
 

Chr 16 

 
 

16q23 

 
 
CDH13 

 
 
Cadherin 13 

Negative regulator of axon growth 
during neural differentiation. 
Protects vascular endothelial cells 
from apoptosis due to oxidative 
stress 

 
 
 
 
 
 
 
 
 
 
 
 

Chr 17 

 
17pll 

 
PEMT Phosphatidylethanolamine  N- 

methyltransferase 

Converts  phosphatidylethanolamine 
tophosphatidylcholine by 
seauential methylation in the liver 

17pll RAil Retinoic acid-induced protein 1 Transcriptional regulator of 
circadian clock comoonents 

 
17pll 

 
RASDl Dexamethasonindiced Ras- 

related protein 1 

Alterations in cell morphology, 
growth and cell-extracellular matrix 
interactions 

17pl3 CLUH clustered mitochondria 
(cluA/CLUl) homolog 

Regulates transport or translation of 
transcripts close to mitochondria 

 

17p13 

 

SMG6 

 
SMG6 nonsense mediated 
mRNA decay factor 

Replication and maintenance of 
chromosomeends.Telomere 
regulation.  Nonsense-mediated 
mRNA decay 

 
17q21 

 
GIP 

 
Gastrin inhibitory polypeptide 

Potent stimulator of insulin 
secretion, poor inhibitor of gastric 
acid secretion 

 
 

17q21 

 
 
HAPl 

 
 
Huntingtin-associated protein 1 

Codes for a protein that interacts 
with huntingtin,two cytoskeletal 
proteins, and a hepatocyte growth 
fact<r-regulated tyrosine kinase 
substrate 

17q21 UBE2Z Ubiquitin-conjugating  enzyme 
E2Z Signalling pathways and apoptosis 



 

 
 
 
 
 
 
 
 

Chr 19 

19p13 LDLR. Low-density lipoprotein 
receptor Binds and transports LDL 

19pl3 ZNF627 Zinc finger protein 627 Transcriptional  regulation 

 

19p13 

 

SMARCA4 

SWI/SNF related, matrix 
associated, actin dependent 
regulator of chromatin. 
subfamily a, member 4 

Binds to BRCAI and regulates the 
expression of the tumorigenic 
protein CD44 

 
 

19q13 

 
 
APOE 

 
 
Apolipoprotein E 

Mediates the binding, 
internalization, and catabolism of 
lipoprotein particles. Serves as a 
ligand for the LDL and apo-E 
recentors in henatic tissues 

19ql3 HNRNPULI Heterogeneous nuclear 
nlxmucleonrotein U-like 1 

Involved in nucleocytoplasmic 
RNA transoort 

 
Chr 21 

 
21q22 

 
KCNE2 Potassium voltage-gated 

channel subfamily E member 2 

Modulates the gating kinetics and 
enhances stability of the potassium 
channel complex 

 
Chr 22 

 
22ql2 

 
SEZ6L 

Seizure related 6 homolog 
(mouse)-like 

Endoplasmic reticulum functions in 
neurons 
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478 Figure Legends 

479 

480 Figure A: Schematic diagram of hypothetical links between a genetic variation within the MSY 
 

481 and the fatty plaque build-up in CAD. 
 

482 Independent of traditional risk factors, a genetic variation within the male-specific region of the human 
 

483 Y  chromosome  (MSY)  results  in  a  downregulation  of  two  genes:  ubiquitously  transcribed 
 

484 tetratricopeptide repeat, Y-linked gene (UTY) and protein kinase, Y-linked, pseudogene (PRKY) in 
 

485 macrophages of men with haplogroup I.1bistriggers an endothelial dysfunction resulting macrophages 
 

486 migrating to the intima, and the release of cytokines and growth factors which further leads to smooth 
 

487 muscle cells migrating to the intima and proliferating. Also, LDL particles travelling through the blood 
 

488 pass through the endothelium and become oxidized. Then, macrophages absorb the oxidised-LDL, 
 

489 which forms specialized foam cells, which grow and then rupture, depositing a greater amount of 
 

490 oxidized-LDL into the artery wall. 
 

491 SRY: sex-determining region of the Y chromosome. 
 

492 Regions of the human Y chromosome: AZFa, azoospermia factor a; AZFb, azoospermia factor b; AZFc, 
 

493 azoospermia factor c; PARI, pseudo-autosomal region I; PAR2, pseudo-autosomal region 2. 

494 

495 Figure B: Protein-protein  interaction  network generated from GWAS protein-coding  genes 
 

496 involved in CAD. 
 

497 This network was generated using STRING (Search Too/for the Retrieval of Interacting Genes/Protein) 
 

498 database version 10.0 (http://string.embl.de) and represents the protein-protein interactions from the 86 
 

499 GWAS protein-coding genes found to be involved in CAD (Table 1). The interactions include direct 
 

500 (physical) and indirect (functional) associations derived from genomic context, high-throughput 
 

501 experiments, co-expression, and literature mining. Stronger associations are represented by thicker lines. 

502 

503 Figure C: UTY functional predicted interaction partners network in the macrophages. 



504 This network was generated using GIANT (Genome-scale Integrated Analysis of gene Networks in 
 
505 Tissues) webserver  (http://giant.minceton.edu/)  and represents  the predicted  6 protein-coding  genes 

 
506 most tightly connected to UTY in macrophages. Edge thickness correspond to edge strength. 

507 

 
508 

http://giant.minceton.edu/)
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