
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2015-04-24

Lane Departure and Front Collision Warning
System Using Monocular and Stereo Vision
Bingqian Xie
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Xie, Bingqian, "Lane Departure and Front Collision Warning System Using Monocular and Stereo Vision" (2015). Masters Theses (All
Theses, All Years). 274.
https://digitalcommons.wpi.edu/etd-theses/274

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/274?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Lane Departure and Front Collision Warning System Using
Monocular and Stereo Vision

by

Bingqian Xie

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

April 2013

APPROVED:

Professor Xinming Huang, Major Thesis Advisor

Professor Lifeng Lai

Professor Xiangnan Kong

Abstract

Driving Assistance Systems such as lane departure and front collision warning has

caught great attention for its promising usage on road driving. This, this research

focus on implementing lane departure and front collision warning at same time.

In order to make the system really useful for real situation, it is critical that the

whole process could be near real-time. Thus we chose Hough Transform as the main

algorithm for detecting lane on the road. Hough Transform is used for that it is a

very fast and robust algorithm, which makes it possible to execute as many frames

as possible per frames. Hough Transform is used to get boundary information, so

that we could decide if the car is doing lane departure based on the car’s position

in lane. Later, we move on to use front car’s symmetry character to do front car

detection, and combine it with Camshift tracking algorithm to fill the gap for failure

of detection. Later we introduce camera calibration, stereo calibration, and how to

calculate real distance from depth map.

Acknowledgments

I would like to express my gratitude to my advisor, Professor Xinming Huang,

who gave the chance to dig into Computer Vision world.

Thanks to my family and all of my friends for supporting me all the time.

i

Contents

1 Introduction 1

2 Lane Detection and Lane Departure Warning 3

2.1 Introduction . 3

2.2 Otsu Threshold . 5

2.3 Hough Transform . 7

2.3.1 Hough Transform rationale . 7

2.3.2 Implementation . 10

2.3.3 Using History Information to Improve HT results 12

2.4 Detect Lane Departure . 13

3 Car Detection and tracking 16

3.1 Using symmetry to detect car . 16

3.1.1 Find bounding box . 17

3.1.2 Good Features to Track . 19

3.1.3 use features to find corners of front car 20

3.2 Tracking: Camshift . 22

3.2.1 back projection . 24

3.2.2 mean-shift . 25

3.2.3 Camshift . 28

ii

4 Distance Estimation 29

4.1 Introduction . 29

4.2 Camera Calibration . 30

4.3 Stereo Image . 33

5 Conclusions 39

iii

List of Figures

2.1 Particles in the grid with random velocities 4

2.2 Illustration of Sobel filter and Otsu’s threshold binarization. (a) is

the original image captured from camera, (b) and (c) are ROI after

Sobel filtering and binarization, respectively. 8

2.3 Line representation in Cartesian coordinate system and polar coordi-

nate system . 9

2.4 Points from same straight line go to same bin in accumulator 11

2.5 History information help detect right lane position in this image: red

line is the raw data from Hough Transform, right line is the corrected

one using history lane position . 12

2.6 Detected lane . 13

2.7 Lane departure warning . 13

2.8 Lane departure warning system flow chart 15

3.1 images taken on road . 17

3.2 Get region of interest ROI and feature points 18

3.3 draw bounding box . 18

3.4 Use Good Features To Track to obtain feature points 20

3.5 Find car corners . 21

3.6 Quick Sort to sort array according to x value 22

iv

3.7 Find front car using bounding box and feature points 23

3.8 Steps to get back projection of detected front car image 26

3.9 meanshift algorithm illustration . 27

4.1 camera position and epipolar lines when not calibrated 35

4.2 stereo rectification result . 37

v

Chapter 1

Introduction

As the continuous growing of the amount automobiles, traffic accidents have been

a great issue all over the world. Driver assistance system thus gains great popular-

ity, which aims at helping drivers to be better concentrate when driving and giving

proper warning when any danger might occur. A great amount of accidents are

caused by tired and drowsy drivers, who did not notice the car is shifting to other

lanes or coming too close to the front car. Among driver assistance features, two im-

portant feature, lane departure warning system and front collision warning system

are developed to prevent drivers from ignorance of danger. In this thesis we focus

on performing lane departure warning and front collision warning while driving on

highways, for that lane changing and merging usually require special attention and

unintentional lane departure behavior is extremely dangerous. Different approaches

are applied to do lane detection. These approaches can be divided to two parts,

model based and feature based. McCall et al.[1] proposed “video-based lane estima-

tion and tracking” (VioLET) system which used steerable filters to do lane-marking

detection. Others use Hough Transform to do feature based lane detection. Wei et

al.[2] combined Hough Transform and Otsu Threshold method together to get bet-

1

ter performance of lane detection and put the design on Kintex platform[3]. Hough

Transform is a classic algorithm to detect straight lines with good performance and

fast speed, thus We chose Hough Transform as the algorithm for detecting lanes

and use this information to decide if the car is doing lane departure or not. As for

car detection methods, we limit our discussion to methods used for cameras that

are mounted on moving cars. This limitation is of great importance since solution

and method would be totally different if cameras are mounted still. There can be

separated to two ways, using monocular vision or using stereo vision[4, 5]. Different

kinds of pre-owned knowledge are used to detect cars, and the knowledge is usually

achieved from observation. Color information, shadow under the car, textures, cor-

ners and symmetry property of the back of car are very useful to detect front car.

Others combine features of cars and machine learning technique to detect the shape

of the car, in which HOG feature is very useful. The problem with this kind of

method is they are not fast enough to be real-time. Disparity map and perspective

view are often used when we have stereo vision. Toulminet el al.[6] use stereo vision

to get sparse disparity map which includes only corners’ disparity information and

combine it with car’s symmetry information. Chapter 2 introduces Ostu’s Method

and Hough Transform algorithm, and then use results from Hough Transform to

decide if the car is doing lane departure or not. Chapter 3 presents the idea of

detecting car position using symmetry information, and combine it with Camshift

tracking algorithm to keep tracking the car position in video stream. Chapter 4

introduces distance calculation method, calculating distance using monocular vision

and apply disparity map using stereo vision. Chapter 5 presents conclusion of our

achievements and possible improvement in the future work.

2

Chapter 2

Lane Detection and Lane

Departure Warning

2.1 Introduction

The core algorithm for doing lane detection is Hough Transform, which performs

on binary images and gives out the gradient and intercept of straight lines on the

image. To get better result from Hough Transform, pre-process the image and get

a good binary image is very important. Flow chart of processing image and send

binary image to Hough Transform block is shown as below (Figure 2.1).

The input image from camera is RGB form. First step is to apply a Sobel Filter

on the grayscale image to sharpen the edges after an RGB to grayscale conversion.

This operation helps highlight the lane marks and front vehicle boundary while

eliminating dirty noise on the road[3]. The operator of Sobel filter is

G = G2
x +G2

y (2.1.1)

3

Figure 2.1: Particles in the grid with random velocities

where Gx is Sobel kernel in x direction and similarly Gy in y direction.

Gx =

0.125 0 −0.125

0.25 0 −0.25

0.125 0 −0.125

 (2.1.2)

Next step is image dilation, which is a basic morphology operation. It usually uses

a structuring element for probing and expanding shapes in a binary image. In this

4

design, we apply image dilation to smooth toothed edges introduced by Sobel filter,

which can assist the subsequent blocks to perform better[3]. Processed binary image

is sent to Hough Transform block and the output is some formulas of straight lines.

One good property of Hough Transform that we could know the amount of points

that is on the same straight line. With this information, we could filter some straight

lines with very few points (called votes) on it. To get better performance of every

frame the system takes in, we optimize each frame’s Hough Transform result using

history information. It is very common that for some frames Hough Transform will

give out no straight lines or wrong lines; in this situation, history information about

where lines are is used for this frame in order to fill the miss lane information. After

getting lane information in each frame, we would decide if the car is doing lane

departure or not. If the car is doing lane departure, considering that lane position

changes very quickly during that time, we would stop using history lane position to

restrict the Hough Transform results. More detail will be discussed below.

2.2 Otsu Threshold

The accuracy of boundary information which is acquired from Hough Transform is

highly dependent on the quality of the image it takes in. Hough Transform takes

binary image as input image and produce straight line equation as output. A binary

image that contains sufficient details is the prerequisite to accurate line acquisition

from Hough Transform. Thus we choose Otsu’s threshold method to perform the

reduction of a grayscale image to a binary image.

A ’ perfect ’ binary image means high signal-to-noise, preserving desired infor-

mation while abandoning useless data to produce more accurate results and ease

computational burden. For Lane Departure Warning and Front Collision Warning

5

systems, the desired information is lane marks of the road and vehicles in the front.

Therefore, we cut off the top part of every image and crop the area of interest to

the bottom 320 rows of a 720P picture. All the subsequent calculation is conducted

on this region of interest (ROI). When converting from gray scale to binary image,

a fixed threshold is often not effective since the illumination variance has apparent

influence on the binarization[3].

Otsu’s threshold is a dynamic and adaptive method to obtain binary image that

is insensitive to background changes[3]. According to Otsu’s Method[7], the whole

image was separated as two classes: foreground and background. Average value of

the image could be expressed as:

u(t) = w0(t)u0(t) + w1(t)u1(t) (2.2.1)

Where u0 is average value inside background class and u1 is average value inside

foreground class. w0 and w1 are probabilities of two classes. t is the threshold that

separate two classes. The basic idea of Otsu’s Threshold is that traverse all t to find

one that maximizes the variance between two classes, which is equal to minimize

the variance inside each class.

g = w0(u0 − u)2 + w1(u1 − u)2 (2.2.2)

The implementation of Otsu’s Threshold is as follows. The first step of Otsu’s

method is to calculate probability distribution of each gray level as in 2.2.3.

pi = ni/N (2.2.3)

where pi and ni are probability and pixel number of gray level i. N is the total

pixel number of all possible levels (from 0 to 255 for gray scale) in the given grayscale

6

image. The second is to step through all possible level t to calculate ω∗(t) and µ∗

ω∗(t) =
t∑

i=0

pi (2.2.4)

µ∗ =
t∑

i=0

ipi (2.2.5)

The final step is to calculate between-class variance

(σ∗
B(t))

2 =
[µ∗

Tω
∗(t)− µ∗(t)]2

ω∗(t)[1− ω∗(t)]
(2.2.6)

In Figure 2.2, (a) is the origin image, after discarding upper half image and

apply Sobel Filter, we get grayscale image as illustrated in (b). (c) is binary image

obtained by apply Ostu’s Threshold to the grayscale image.

2.3 Hough Transform

2.3.1 Hough Transform rationale

Hough Transform is widely used as a proficient way of finding lines and curves in

binary image. Since most lines on the road are almost straight in pictures, we

will mainly discuss the way of finding straight lines in binary image using Hough

Transform. Given a binary image, on which has a straight line l:

y = kx+ b (2.3.1)

Where k is the slope and b is the y-intercept. Suppose point A(x1,y1) and point

B(x2,y2) are on line l, they both satisfy

7

Figure 2.2: Illustration of Sobel filter and Otsu’s threshold binarization. (a) is the
original image captured from camera, (b) and (c) are ROI after Sobel filtering and
binarization, respectively.

y1 = kx1 + b

y2 = kx2 + b

(2.3.2)

Rewrite both equations to

8

b = −x1k + y1

b = −x2k + y2

(2.3.3)

Letting point A(x1, y1) and B(x2, y2) and known parameters, the above two

lines will have an intersection point in parameter space, thus we can calculate b and

k in parameter space. Yet we cannot get vertical lines using this method, so line l

could be represented in polar coordinate system as

ρ = x cos θ + y sin θ (2.3.4)

(a) Straight line representation in Cartesian coordinate
system

(b) family of lines for given (x,y) pairs in plane
theta-rho

Figure 2.3: Line representation in Cartesian coordinate system and polar coordinate
system

For point A(x1,y1)there is a curve of ρ and θ that satisfies

ρ = x1 cos θ + y1 sin θ (2.3.5)

and same thing for point B(x2, y2):

9

ρ = x2 cos θ + y2 sin θ (2.3.6)

If point A and B are on the same straight line, there will exist a pair of ρ and θ

that satisfy both equation, which means two curves have an intersection point. As

more points on the same line are added to polar system, there should be one shared

intersection point between these curves. What Hough Transform does is to keep

track of intersection points between curves and the intersections with big voting

imply that there is a straight line.

2.3.2 Implementation

To implement Hough Transform, we constrain value of θ ∈ [0, π] and ρ ∈ [−R,R],

where R is the largest distance allowed from line to the origin. After turning the

image to binary image, we do following calculation for every white point (or every

black point). Here we set angle resolution to one degree, so for certain ρ value in

accumulator, we need 180 bins. The resolution of ρ is also set to one, which means

for each ρ 2R bins are needed. Form a two dimensional matrix that has 2R rows

and 180 columns called accumulator, each element is regarded as a bin for voting

a particular pair of ρ and θ . Our goal is to find which ρ and θ pair has largest

amount of points on it.

For a certain point (x, y), calculate different θ from 0 to π at interval of one

degree and get corresponding ρ. Increment this bin by one. After all pixels have

been processed, we get a two dimensional array accumulator that contains votes for

each bin.

To further process the accumulator, we need to eliminate those lines that are

very close to each other; this shows in accumulator as the bin value are very similar

10

to nearby bins. Getting several straight lines that are very close to each other on

the image is useless and waste of computing time, so we set a 3 × 3 window and

only choose one local maxima as the ‘representative’ of these similar lines. Given

a threshold of number of votings, we would examine each bin in the accumulator

to see (1) if it’s larger than the threshold and (2) if it’s the local maxima in its

window. If it satisfies both conditions, then set the rest in the window to zero, if

not, continue to examine next bin.

After eliminating similar straight lines, qualified (ρ, θ) pairs remain in the accu-

mulator and the value stands for the number of points that are on this straight line.

The rest of the bins in the accumulators is set to zero.

Figure 2.4: Points from same straight line go to same bin in accumulator

The algorithm is as follow:

1 . Create a two dimens iona l array c a l l e d accumulator

2 . For every po int in binary image , do

a . for theta=1 to 180 , compute cor re spond ing rho

b . increment bin (rho , theta) by one in accumulator

3 . check every (rho , theta) : i f t h i s bin i s l o c a l maxima and has enough

votes , save (rho , theta)

11

2.3.3 Using History Information to Improve HT results

Hough Transform sometimes return false positives due to various reasons: blurring

of the image, distraction of passing cars and insufficient amount of dotted line shown

up in the image. To fill the missing lane on the image, we use history information

to help with checking and correcting Hough Transform results.

After getting two lines’ equation using Hough Transform, we compare it with the

average line position from past five frames. Since images are taken at 30 frames per

second, lane position in less than 1/6 second shall not change dramatically. Thus

we could use history lane position to decide if the results are good or not. If it is

real line, it shall be used as the new lane equation. If it does not qualify, then we

need to use history information to help us get a lane equation that should be very

close to the true lane.

First compare it with the weighted average of the past five frames’ line equation,

if they are similar, we regard this frame as good and also save line information into

past five frames line information for future use. If lines are missing or far away from

what is expected based on history information, history line information is directly

used to substitute the wrong/missing ones. This method is easy to apply and is of

high accuracy and calculation speed, which ensures to keep the whole system as real

time as possible.

Figure 2.5: History information help detect right lane position in this image: red
line is the raw data from Hough Transform, right line is the corrected one using
history lane position

12

2.4 Detect Lane Departure

When car is driving normally on the road, two lanes on the image often appear as

Figure 2.6. Left and right lanes are symmetrical to each other along a vertical line,

and their angles are similar. If the car is making lane departure (Figure 2.7) we

notice that one lane will appear vertical and the other will appear more horizontal.

If the car is moving to left, left lane turns to vertical; if the car is moving to right,

right lane shall appear vertical. We could use this observation to utilize the angle

of two lanes to detect if a car is doing lane departure. Furthermore, we could decide

if a car is doing left or right lane departure.

Figure 2.6: Detected lane

Figure 2.7: Lane departure warning

We have already used Hough transform and it gives out two lanes on the road,

now we need to decide if the car is doing lane departure. Yet it will be inaccurate if

we just look at one single frame and make decision for that for a single frame, even

if we use history information to improve Hough Transform result, is not guaranteed

to be correct. To get secure warning signal, we use consecutive 8 frames and a

13

flag signal to give out lane departure warning signal. If one of the two lanes keeps

vertical (or near vertical) for 8 consecutive frames, set the flag to true, meaning that

this is a real lane departure movement.

Here the camera is put on the middle of the car when video is taken, so two

lanes appear in the middle of the image and are symmetrical to each other when the

driver is driving normally. If camera is put elsewhere, nothing will change except

for the angle threshold.

Figure 2.8 shows flow chart of the whole Lane departure warning system.

14

Figure 2.8: Lane departure warning system flow chart

15

Chapter 3

Car Detection and tracking

3.1 Using symmetry to detect car

Car detection has always been a very popular topic since it’s very useful for both

driving assistance equipment and some equipment that stand still for monitoring

use.

Methods for detecting car differs a lot for different circumstances. For still

cameras, the task of detecting objects is much easier than moving cameras. There

is a background that does not move so that we could do background subtraction

and any objects that are not belonged to background will stand out easily. This

method could not be applied to moving camera situation since background is always

changing. Here we constraint our discussion to the situation that the camera is

mounted on the moving vehicle that is driving on highway. Since we are trying to

do front collision warning, the only object that we care about is the front car. After

we know where the front car is, we could calculate the distance between the front

car and the proceeding car and give out appropriate warning signal when two cars

are too close to each other. Thus we constraint our discussion on car detection to

16

detection of front vehicle while the camera is mounted on a moving vehicle.

3.1.1 Find bounding box

As mentioned in [4], symmetry information plays an important role in car detection.

Figure 3.1 shows some images taken from the camera.

Figure 3.1: images taken on road

The reason that symmetry plays an important role in car detection is that the

front vehicle that we care about, if any, is always showing its back in the image. The

shape of the back of front car is always similar to rectangle, no matter what make it

17

is. In paper [6] symmetry map is used to find the symmetry axis of front car. The

symmetry map is calculated on the area of interest. Each vertical axis is examined

in this area of interest. For every vertical axis, all possible widths for that particular

axis are examined and results are stored in the symmetry axis. Then examine the

symmetry map and find the minimum value that represents the vertical axis and

corresponding width with it. Here we extract the idea of finding symmetry axis and

combine symmetry property of two lanes.

If there is a proceeding car in the front, it is between the two lanes that the

tested car belongs to by definition, which means the position of the front car must

be between the two lanes. So the symmetry axis of front car is similar to the

symmetry axis of two lanes we detected. Thus the triangle area between two lanes

is our region of interest.

Figure 3.2: Get region of interest ROI and feature points

Figure 3.3: draw bounding box

18

3.1.2 Good Features to Track

Good features are of great importance in feature-based vision system. Here we use

good features to track [8], an improved algorithm based on Harris corner, to extract

corner features from the image. Our goal is to get two lower corners of the front

car so that we could choose the correct bounding box to cover it. After getting

the correct bounding box, we would refine the position of proposing bounding box

according to the two lower corners’ position. The intensity difference by a slight

movement (u, v) for image I at position (x, y) can be expressed as

S(x, y) =
∑
u,v

w(u, v) [I(x+ u, y + v)− I(u, v)]2 (3.1.1)

where w(x,y) is the window function, I(x,y) is the value of image at position

(x,y), (u,v) is a small movement relative to (x,y). To find corners in the image, we

maximize the weighted sum of squared difference should be

S(x, y) ≈
∑
u

∑
v

w(u, v)(Ix(u, v)x+ Iy(u, v)y)
2 (3.1.2)

Apply Taylor Expansion to above equation and we get

S(x, y) ≈ [x y]M

 x

y

 (3.1.3)

where

M =
∑
u,v

w(u, v)

 IxIx IxIy

IxIy IyIy

 (3.1.4)

Matrix M is called Harris matrix and Ix and Iy are first order derivatives in x

and y directions. In Harris Corner detection algorithm,

19

R = det(M)− k[trace(M)]2 (3.1.5)

where det(M) = λ1λ2 and trace(M) = λ1 + λ2, λ1 and λ2 are the eigenvalues of

matrix M In good features to track, we use

R = min(λ1, λ2) (3.1.6)

if R is greater than the threshold, the point is considered to be a corner; if it is

smaller or equal to threshold, it is not a corner. Good Features to Track has several

advantages over Harris Corner. It gives out stronger corners than Harris corner

does, and the computational speed is faster. Thus here we utilize Good Features to

Track to find corner points of the image (as shown in Figure 3.4).

Figure 3.4: Use Good Features To Track to obtain feature points

3.1.3 use features to find corners of front car

Good Features to Track produces feature points on the image that contains lower

corners of the front car. As shown in [pic 18], each bounding box is examined to see

if it contains a qualified car image. We define that if there is a car in the bounding

20

box, it must satisfies that (1) there is at least one feature point that falls in lower

left area (denoted in Figure 3.5 as area A), (2) there is at least one feature point

that falls in lower right area (as denoted in Figure 3.5 as area B) and (3) the two

qualified feature points could not be the same one.

Figure 3.5: Find car corners

On each frame there are more than 25 bounding boxes that are on symmetry

axis, and each bounding box needs to examine all the feature points derived from

Good Features to Track. The position (x, y) of feature points are stored in a one

dimensional array whose order is randomly arranged. It leads to the result that for

each bounding box, we need to go through all the feature points of which most are

useless. And all feature points have to be examined for every bounding box in the

image.

To reduce the computational burden for each frame, we add an additional opera-

tion on the one dimensional array that stores all feature point. After Good Features

to Track gives out the array of feature point of which each element is described as

(x, y), we use Quick Sort to sort the array according to x axis by ascending order

and leave y unchanged. As denoted in Figure 3.6, we sort the array by x using Quick

Sort and let y just follow how x changes. Feature points are less than 100 points

so that sorting time is very short for each frame. Doing one Quick Sort on feature

points for each frame will benefit all the bounding boxes that tries to find qualifying

points in them. Each bounding box used to search all 100 feature points and for

21

each frame there will be more than 25 bounding boxes leading to more than 2500

searches for feature points of which most are repetitive. After doing quick sort to

the array, we only need to examine those points whose x axis falls in the bounding

box, and then check if corresponding y value qualifies. If it qualifies, check further

if it is the front car’s lower corner point.

Figure 3.6: Quick Sort to sort array according to x value

3.2 Tracking: Camshift

Detecting car position by finding symmetric bounding box is not enough in order to

get an accurate result since false positives are inevitable. Thus we choose to apply

a tracking algorithm to reduce the rate of false positive and fill the gaps for failure

of detection between frames.

Continuously Adaptive Mean-shift (CamShift) is an algorithm usually used to

track a given object, and it is a variation from mean-shift algorithm, which is a

widely used data analysis method. Mean-shift is used to find local maxima in a

density data set and was found very useful to track moving object in 1998 [9]. Later

it was greatly extended and developed. CamShift was a step further than mean-shift

for that it could be used to track those objects that change sizes in video stream.

22

(a) draw bounding boxes

(b) find qualified bounding boxes with corner information

(c) choose the best qualified bounding box

Figure 3.7: Find front car using bounding box and feature points

23

Given a bounding rectangular box that covers the object, CamShift could keep track

of the object even if the size of the object changes.

We have several reasons to choose CamShift instead of other tracking algorithms.

In front car detection and tracking problem, line jumping happens frequently. Thus

the object in the front usually change without any transition, so that we mainly rely

on the results of object detection because tracking results will always stick to one

object and very hard to change to another one.

The priority of detection result is higher than the priority of tracking result. Our

goal of tracking is helping to fill gaps when detection fails instead of predicting object

position for next frame. Some widely used tracking algorithms such as Kalman Filter

is used when we need to use history information to predict future results and noise

is white noise. Yet here the detection result sent to Kalman Filter is not promised

to have white noise and Gaussian distribution. Kalman Filter also help to eliminate

noise of past results to make values more “true to real values” which is not needed

here. And yet CamShift is suitable here since it use color information to track object

and gives out tracking result based on the given object position (using a rectangular

box) as initialization information.

Here we would first introduce back projection calculation since it’s the prereq-

uisite information needed by both mean-shift and CamShift, then move onto intro-

duction of how mean-shift works and how CamShift make up for the deficiency of

mean-shift algorithm.

3.2.1 back projection

Back projection is an efficient method of knowing how well the pixels from an image

fit into a histogram model that is derived from another image. We could use back

projection to describe the feature we wanted as a histogram and search for similar

24

features in some test images. The result of back projection is an output image

that shows how similar this image is compared to the model image. It is used in

both mean-shift and CamShift algorithm. First, histogram model is calculated for

targeted feature, which is usually a rectangular patch on the image that is given by

user (or other object detection algorithm). Instead of using RGB information, we use

HSV (hue-saturation-value) representation. RGB Histogram of object colors changes

dramatically in different lighting conditions, yet HSV Histogram (especially hue) of

object barely changes. Thus we use hue planes to keep those color information and

eliminate lighting influences.

The procedure of turning test image to hue distribution probability image ac-

cording to histogram model is call back projection.

Back projection steps:

(1) Turn the t e s t image from RGB to HSV

(2) Check every ’ p i x e l s hue value h(i , j) . Search the bin po s i t i o n o f h(

i , j) in histogram model

(3) Find the value o f the bin in histogram model

(4) Save value to r e s u l t image . I f not f i n i s h ed , go back to (2)

(5) Normalize r e s u l t image to range 0−255 so that the image could be

d i sp layed .

3.2.2 mean-shift

The mean-shift algorithm is widely used technique in finding local maxima of a den-

sity function. It has lots of applications and is of great importance in computer vi-

sion, such as segmentation, discontinuity preserving smoothing and tracking. What

mean-shift does is keep doing the hill-climbing in a density map until it gets to the

area where the density is the largest. We use Camshift, which is a deviation of

mean-shift algorithm as tracking algorithm.

25

(a) front car im-
age

(b) histogram of
detected front car

(c) HSV image of
front car

(d) back projec-
tion

Figure 3.8: Steps to get back projection of detected front car image

Mean-shift algorithm is used along with back projection to track objects in com-

puter vision. Mean-shift algorithm takes in a probability image, an initialization

window and iteration criteria, and it will output the position after it finds the local

maxima. When mean-shift is used in tracking, the input image shall be a back

projection image.

The procedure of back projection is as following. Take the histogram model

of target object (in our case it is the histogram image of a targeted car) and a

complete input image. The output back projection image is of the same size as the

input image, and pixel values on output images show the how likely that this pixel is

part of target object; the lighter the color is, the higher the probability is. Therefore

we could use mean-shift to find the area with highest density in the back projection

map, which is the most possible target object position.

In a space whose dimension is d (d is larger than 2) there are lots of points; our

goal is move to a place where most points are. We now restrict our discussion to two

dimensional space since it is the same situation as how images works. Draw a circle

26

Figure 3.9: meanshift algorithm illustration

in this space and all the points that falls in the circle has a vector. Sum up all the

vectors in this circle leads to a new vector that has a direction and value, and this

vector is mean-shift. Move towards the vector and we are now one step closer to

the highest density area. Keep doing hill-climbing and finally when the circle stops

moving, we are at a stable peak of the density map.

Zero-moment mean-shift:

for (int i =0; i<I . he ight ; i++)

for (int j =0; j<I . width ; j++)

M00+=I (i , j) ;

F i r s t moment :

for (int i =0; i<I . he ight ; i++)

for (int j =0; j<I . width ; j++)

{

M10+=i ∗ I (i , j) ;

M01+=j ∗ I (i , j) ;

}

xc=M10/M00 ;

yc=M01/M00 ;

27

3.2.3 Camshift

Meanshift is a robust algorithm to find maximum value of a probability distribution,

but it requires that user predefine the object size (window size) ahead of process,

which means the window size is always the same no matter if the object has come

closer and become bigger in the image, which is not very good.

Camshift (Continuously Adaptive Mean Shift) was first introduced by Gary

Bradski [9], it fixes this problem by bringing adaptive window size and rotation

of the target. First, apply Meanshift to image. When it converges, center window

on (xc, yc) and update size of the window:

width = 2

√
M00

256
(3.2.1)

Height is set to 0.7∗width in car detection case. Then continue using Meanshift

to converge and update window size until it finally converges.

28

Chapter 4

Distance Estimation

4.1 Introduction

Distance calculation with single camera is sometimes not accurate due to different

reason. Minor shaking of camera, camera position not properly aligned with the

ground, road situation all influence the result of distance calculation. In order to

increase distance calculation accuracy, we proceeds with the approach using two

cameras, which is usually called Stereo Vision method. Human eyes are the best ex-

ample of stereo vision. Stereo vision algorithm tries to work as eyes do: connecting

two images acquired and combine them together to get more information, the most

important one of which is depth information. For stereo cameras, we try to find

correspondent points in left and right images, and with the knowledge of baseline,

which is the distance between two cameras, we could get 3D position of each points.

Section 4.2 introduce the prerequisite of all vision related algorithm: camera calibra-

tion. Camera calibration is critical to help remove tangential and radial distortion,

and stereo vision algorithms can only work properly with undistorted images. We

will introduce how to do stereo calibration and getting disparity map in Section 4.3.

29

4.2 Camera Calibration

We begin to look at how simplest camera is working. Suppose f is focal length, Z

is the real distance between object and camera, X is the actual size of an object,

then the relationship of the size of the object on the image and X is:

−x = f
X

Z
(4.2.1)

Take displacement of chip when manufacturing into account, then the center of

the image is not on optical axis. As shown in Figure 4.1, (cx, cy) is not the center

of image plane in most cases. Thus we bring two more parameters cx and cy:

x = cx + fx

X
Z

y = cy + fy
Y
Z

(4.2.2)

In real world, in order to get the relationship between object point (X,Y, Z)

and object position in the image (x, y), we expand (x, y) to (x, y, w) where w is

proportional value and (x, y, z) is called homogeneous coordinates. [10]

x

y

w

 =M

X

Y

Z

 (4.2.3)

M =

fx 0 cx

0 fy cy

0 0 1

 (4.2.4)

M was called intrinsics matrix, because it contains the information about the

inner parameters that camera sensor has.

30

Extrinsics matrix, which represents the position and pose of a particular object,

includes two parts- rotation matrix and translation vector. When an object is taken

a picture, it is the procedure of moving object from real world coordinate to camera

coordinate, thus we use rotation matrix and translation vector to represent this

procedure. First rotate object separately in x, y, z direction by ψ, ϕ, θ degree:

Rx =

1 0 0

0 cosψ sinψ

0 − sinψ cosψ

 (4.2.5)

Ry =

cosϕ 0 − sinϕ

0 1 0

sinϕ 0 cosϕ

 (4.2.6)

Rz =

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (4.2.7)

R = RxRyRz (4.2.8)

Pc = (Pw − T)R (4.2.9)

In order to get intrinsics matrix and distortion coefficients, we use chessboard

to do camera calibration. After calibration, undistorted images could be acquired,

which is of great importance for following stereo calibration. The relationship be-

tween the point on chessboard and on image plane is connected by perspective

transform:

31

x

y

1

 =M

[
r1 r2 r3 t

]

X

Y

Z

1

(4.2.10)

where M is intrinsics matrix and

[
r1 r2 r3 t

]
is the 3 by 4 matrix that is the

combination of rotation and translation matrix. [x, y]T is the point position in image

plane coordinate, [X,Y, Z] is the point position in real world. Since chessboard is

flat so the point position in chessboard coordinate [X ′, Y ′, Z ′] is actually [X ′, Y ′, 0],

and transform is

x

y

0

 =M

[
r1 r2 t

]
X ′

Y ′

1

 (4.2.11)

We use two C310 cameras from Logitech for recording and testing images. After

camera calibration, we get intrinsics and extrinsics for both cameras:

M1:

rows : 3 c o l s : 3

data : [1 .4157914383711604 e+003 , 0 . , 6 .6802976893357720 e+002 , 0 . ,

1 .4162766911131785 e+003 , 3.4914784448315351 e+002 , 0 . , 0 . , 1 .

]

D1 :

rows : 8 c o l s : 1

data : [−1.4776484941109638e−001 , 7.6499050522731760 e−001 , 0 . , 0 . ,

−9.6916887332979833 e+000 , 0 . , 0 . , −8.2795353403607788 e+000]

M2:

rows : 3 c o l s : 3

data : [1 .4157914383711604 e+003 , 0 . , 6 .5260788018733592 e+002 , 0 . ,

32

1.4162766911131785 e+003 , 3.5555599289921815 e+002 , 0 . , 0 . , 1 .

]

D2 :

rows : 8 c o l s : 1

data : [6 .6749687756802317 e−002 , −2.8720351084190282e−001 , 0 . , 0 . ,

−1.3154781737158865 e+000 , 0 . , 0 . , −2.0339647716111684 e+000]

4.3 Stereo Image

Suppose we have two perfect identical cameras that do not have lens distortions and

are aligned perfectly side by side, the real distance between two cameras is T , the

real distance from object to camera plane is Z

T − d

Z − f
=
T

Z
(4.3.1)

Z =
fT

d
(4.3.2)

where disparity d is:

d = xl − xr (4.3.3)

An important note is that d is inversely proportional to Z, which means when

Z is extremely large, d is too small to be noticed and the change of d cannot be

asserted either. On the contrary, when d is extremely small, the same of amount of

4d would not change real distance by much. This tells us that the distance acquired

from disparity map is not accurate when distance is too big or too small, and luckily

neither do we care about these two situation: when front car is too far away, we do

not care about it; if the front car is too close, we do not care because the front car

33

must be detected before distance gets too close.

To make computers emulate what human eyes are doing, we need to go through

following processes.

First, align two camera side by side and make them as parallel as possible.

The distance T between two cameras shall be set properly corresponding to the

distance of target objects. If target objects are rather close to cameras (e.g. for

indoor detection) T could be set within 200mm˜300mm; if target distance is far

away, then T shall be set to larger value. Calibrate each camera and get intrinsics

parameters and undistorted images to eliminate most of lens distortions. One of

the reasons of aligning cameras as frontal parallel ([10])is because when doing stereo

correspondence, only the points that could be seen from both images can be used

to find its correspondence from one image to the other one.

For perfectly aligned cameras, there is no rotation between two cameras, and

translation is just the distance between them, yet in real world, due to manufacture

limitations and camera placement limitation, two cameras can never be perfectly

aligned, which will leads to the need for calibration. The purpose of stereo calibra-

tion is to calculate relative rotation matrix R and relative translation T . This is the

position of one camera relative to the other one, here we set the rule that R and

T are right camera relative to left one. We are still using chessboard image to do

stereo calibration, so during stereo calibration process, it will take 20 pair of image

pairs (the number of image pairs is decided by users, but the more the better.)

Insufficient calibration images will lead to inaccurate calculation of rotation matrix

and translation matrix. Also, intrinsics of left and right cameras are fed to stereo

calibration. Also stereo calibration itself could be used to do camera calibration and

stereo calibration at the same time, it is better to get good verified intrinsics data

and feed them as input when doing stereo calibration.

34

Figure 4.1: camera position and epipolar lines when not calibrated

In Figure 4.1, A is object point in real world and aland arare projection to left and

right image planes. Oland Orare center of projection for left and right camera, and

point Ol, Or, A define epipolar plane. The two intersection lines between epipolar

plane and left and right images, are call epipolar lines.

In Stereo rectification is processed after calibration. Stereo calibration is getting

relative position between two cameras, and rectification is turning one of the cam-

era and make it be in the same plane as the other one, which is the ideal situation

we discussed at the beginning of the section. Rectification process uses R and T

from stereo calibration and use different algorithm to rectify images so left and right

images look like they are taken by two parallel cameras sitting side by side. Repro-

jection matrix Q turn 2D point on image plane to 3D point in world coordinate,

and point (x, y) in image is mapped to point (X/W, Y/W,Z/W) in real world.

35

Q

x

y

d

1

=

X

Y

Z

W

(4.3.4)

Q =

1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 −1/Tx (cx − c′x)/Tx

(4.3.5)

where d is disparity calculated from stereo correspondence, (cx,cy) are principal

point in left image, c′x is principle point’s x coordinate value in right image. Tx is

translation between right and left cameras in x direction.

After rectification, left and right images are row aligned, which means right

camera is virtually rotated and moved so that its epipolar line is the same as the

one in left camera. This leads to the fact that for each point in left image, if it’s

also shown in the right one, then the correspondent point must be in the same row.

Rectification greatly reduce the computational burden for correspondence and now

we only need to search one row for each point. The purpose of correspondence is to

find disparity d = xl − xr for the object points in two images, so that reprojection

matrix Q is acquired from rectification process and disparity d together will enable

user to calculate real position for any point in image plane, as long as the point is

seen from both left and right images after rectification.

In Figure 4.2 the object A’s physical position in left and right image is (x0, y0) and

(x1, y1). Since images have already been rectified, left and right camera’s epipolar

line is the same, so that y0 = y1. Also, notice that x0 < x1because A appears

on the right in left image and appears on the left in right image. To search for

36

the corresponding point for (x1, y1), start from the pixel at (x1, y1) in right image

and move left while keep y1unchanged until a matching is found for pixel at (x0,y0)

in left image. the distance that the search travels in -x direction is disparity d.

After correspondence, we have d for every point in the image. We could refer to

reprojection matrix Q if we want to calculate the real position, including distance

information, for any point in the image.

Figure 4.2: stereo rectification result

After stereo calibration and rectification, we get relative translation matrix R

and relative translation T .

R:

rows : 3 c o l s : 3 dt : d

data : [9 .9790309865240179 e−001 , −6.3715996994504490e−002 ,

−1.1387599700156383e−002 , 6.3826544576960839 e−002 ,

9.9791461114552471 e−001 , 9.6229449567846129 e−003 ,

37

1.0750716594717668 e−002 , −1.0329597730423501e−002 ,

9.9988885457506105 e−001]

T:

rows : 3 c o l s : 1 dt : d

data : [1 .8625930899805514 e+001 , 5.8167566764790146 e−001 ,

6.3793034328336717 e−001]

We could also verify the matrix by checking if the baseline between two cameras

matches T.x:

T.x× chessboardBlockSize = baseline (4.3.6)

38

Chapter 5

Conclusions

In this thesis, we describe a way to implement lane departure warning and front

collision warning system. We first use Ostu Threshold method to get binary image,

then apply the image with Hough Transform, which is a well-known algorithm for

line detection. Later we use the boundary information from current frame and

combine it with history information to decide if the car is doing lane departure.

Then we utilize symmetry character of front car appearance to do car detection,

and combine it with Camshift tracking algorithm. Also, we move on to use stereo

vision method to do stereo calibration and later calculate depth map, which includes

distance information for detected car.

However, the method may be further improved in two ways. First, stereo image

processing is very time consuming and cannot be processed as fast as single image,

especially when we want to calculate disparity map. So we may need to find a faster

way to get essential disparity map for detected car but not the whole map for the

image.

We also notice that detecting and tracking front car process is currently combined

in a rather intuitive way. Front car detection is different from other object detection

39

because on one hand front car’s position barely move while driving, on the other

hand it will change dramatically once the front car or user’s car left current lane. So

we may want to find a better algorithm to handle front car detection part to make

the algorithm more robust.

In conclusion, lane departure warning and front collision warning system is a

promising system that might be essential for road driving in the future.

40

Bibliography

[1] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and tracking for
driver assistance: survey, system, and evaluation,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 7, no. 1, pp. 20–37, 2006.

[2] W. Wang and X. Huang, “An fpga co-processor for adaptive lane departure
warning system,” in Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on. IEEE, 2013, pp. 1380–1383.

[3] J. Zhao, B. Xie, and X. Huang, “Real-time lane departure and front collision
warning system on an fpga,” ipi, vol. 1, p. 0.

[4] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 5, pp.
694–711, 2006.

[5] S. Sivaraman and M. M. Trivedi, “A review of recent developments in vision-
based vehicle detection.” in Intelligent Vehicles Symposium, 2013, pp. 310–315.

[6] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A. Broggi, “Vehicle
detection by means of stereo vision-based obstacles features extraction and
monocular pattern analysis,” Image Processing, IEEE Transactions on, vol. 15,
no. 8, pp. 2364–2375, 2006.

[7] N. Otsu, “A threshold selection method from gray-level histograms,” Automat-
ica, vol. 11, no. 285-296, pp. 23–27, 1975.

[8] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on. IEEE, 1994, pp. 593–600.

[9] G. R. Bradski, “Computer vision face tracking for use in a perceptual user
interface,” 1998.

[10] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

41

[11] R. Marzotto, P. Zoratti, D. Bagni, A. Colombari, and V. Murino, “A real-time
versatile roadway path extraction and tracking on an fpga platform,” Computer
Vision and Image Understanding, vol. 114, no. 11, pp. 1164–1179, 2010.

[12] H.-Y. Lin, L.-Q. Chen, Y.-H. Lin, and M.-S. Yu, “Lane departure and front colli-
sion warning using a single camera,” in Intelligent Signal Processing and Com-
munications Systems (ISPACS), 2012 International Symposium on. IEEE,
2012, pp. 64–69.

[13] R. Risack, N. Mohler, and W. Enkelmann, “A video-based lane keeping as-
sistant,” in Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the
IEEE. IEEE, 2000, pp. 356–361.

[14] S. Lee, H. Son, and K. Min, “Implementation of lane detection system using
optimized hough transform circuit,” in Circuits and Systems (APCCAS), 2010
IEEE Asia Pacific Conference on. IEEE, 2010, pp. 406–409.

42

	Worcester Polytechnic Institute
	Digital WPI
	2015-04-24

	Lane Departure and Front Collision Warning System Using Monocular and Stereo Vision
	Bingqian Xie
	Repository Citation

	tmp.1530275769.pdf.AlqxX

