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ABSTRACT 

Tuberculosis is a deadly disease caused by bacteria of the genus Mycobacterium. One-third of 

the world’s population is infected with Mycobacterium tuberculosis.  Two million these deaths 

occur each year in immunocompromised AIDS patients. M. tuberculosis has co-evolved with 

humans for many thousands of years. The bacillus has developed tactics to overcome the 

immune defense system and multiply in the macrophage. At the interface of the host and 

pathogen interactions, there is an interchange of metals and electrolytes. The host on one hand 

reduces the availability of metals essential for pathogen survival, like manganese and iron, in the 

macrophage and increases potassium ions which reduce pH in the phagolysosome. The host also 

generates Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), to create toxic 

affects through interactions with metals and metalloproteins. M. tuberculosis copes with the 

hostile environment in the macrophage by preventing the acidification of the phagolysosome, 

secreting antioxidant enzymes such as alkylhydroperoxidase (AhpF) and peroxiredoxin (AhpC), 

superoxide dismutase, SodA and SodC, and catalase KatG through the SecA system. M. 

tuberculosis contains 28 metal transporters, among them there are 12 unique P-type ATPases. 

This is an unusually high number of P-type ATPases in an organism. These ATPases transport 

several monovalent and divalent metals (Cu
+
, Cu

2+
, Ag

+
, Zn

2+
, Na

+
, K

+
, Ca

2+
, Cd

2+
, Pb

2+
, Mn

2+
, 

Mg
2+

, and Co
2+

) across biological membranes, using energy from ATP hydrolysis.  Our analysis 

has revealed that these P-type ATPases have homologs in other intracellular 

symbiotic/pathogenic bacteria and certain chemolithotrophic archaea and bacteria. A correlation 

can hence be drawn among these pumps and the capability of surviving in noxious environments 

and coping with adverse redox conditions. Possible substrates were identified by determining the 

consensus sequences in different helices of these ATPases. However, out of the 12 P-type 
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ATPases confirmed, transported substrate could be postulated for four of these proteins; CtpA, 

CtpB, CtpV and KdpB. Using bioinformatic approaches we have characterized the possible 

genetic environment of these genes. The transmembrane regions were analyzed for consensus 

sequences and the N-terminals and C-terminals were scrutinized for metal binding domains, and 

we were able to categorize these ATPases into P1 type and P2 type ATPases. In an attempt to 

determine the substrate specificity, two of these ATPases (CtpC and ctpG) were cloned and 

transformed into Escherichia coli cells.  Cells expressing CtpC were grown in different 

concentrations of metals and pHs. In these experiments CtpC was found to show an interaction 

with copper and cadmium.  Pure protein was obtained by His-tag purification and para-Nitro 

Phenol Phosphatase (pNPPase) assay was performed with different metals, it was found that 

copper and zinc activated the phosphatase activity of the enzyme; and cobalt and manganese 

were inhibitory. Inhibition of the pNPP assay could mean that there would be activation in the 

ATPase assay, meaning that cobalt and manganese could be possible substrates to this enzyme.  

 

Keywords: P-type ATPases, Mycobacterium tuberculosis, CtpC, CtpG, macrophage. 
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The more you care, the stronger you can be. 

Jim Rohn 

 

 

 

 

If your heart acquires strength, you will be able to remove blemishes from others without 

thinking evil of them. 

The weak can never forgive. Forgiveness is the attribute of the strong. 

Mohandas Karamchand Gandhi 

 

 

 

 

 

 

 

All too often arrogance accompanies strength, and we must never assume that justice is on the 

side of the strong. The use of power must always be accompanied by moral choice. 

Theodore Bikel 
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1. INTRODUCTION 

 

1.1 SURVIVAL IN THE MACROPHAGE 

M. tuberculosis (Mtb) has affected humanity throughout history. The World Health Organization 

(WHO) has estimated that one third of the world’s population is infected with Mtb, with about 

eight million new cases diagnosed annually 1. Not much is known about the physiological and 

immunological responses of the host to infection and the biology of Mtb in its natural setting 
2
.  

 

Mycobacteria survive within macrophages by inhibiting the maturation of phagosomes into fully 

bactericidal phagolysosomes 3. Electron microscopy studies of M. avium infection in mice 

deficient in Nramp1, show that Nramp is recruited to the membrane of M. avium containing 

phagosomes in wild type mice, causing bacteriostasis, increased bacterial damage, increased 

acidification and increased fusion to lysosomes when compared to NrampI
-/-

 phagosomes 4. A 

simplified explanation for this could be provided with the hypothesis that, inhibition of 

phagosome maturation of mycobacteria requires a metal dependant process that can be 

antagonized by NrampI mediated metal efflux from the phagosomal lumen. The presence in 

culture filtrates of proteins e.g. ESAT-6, SodA 5, GlnA 6 and KatG suggest the existence of 

protein secretion systems that operate in Mycobacterium tuberculosis (Mtb) 7,8. Identification of 

the secreted metalloproteins of Mtb would open a way to study the corelation between the 

existence of the metal transporting pumps and pathogen survival. The secreted components like 

the SODs that are involved in prevention of ROS (Reactive Oxygen Species) and RNS (Reactive 

Nitrogen Species) stress to the Mycobacteria in the phagosome have an active metal centre. It is 
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hence relevant to consider metals as one of the most important components of intra-phagosomal 

survival by Mtb. 

 

1.2 REACTIVE OXYGEN SPECIES AND REACTIVE NITROGEN SPECIES 

ROS and RNS are defense mechanisms generated by the host macrophage on encounter with a 

pathogen. Recent studies involving mice deficient in the
 
respiratory burst oxidase or inducible 

nitric oxide synthase have shown the importance of reactive oxygen and nitrogen intermediates 

in mammalian immunity 9. The term “RNS” refers to oxidation states of the nitrogenous products 

of Nitric Oxide Synthases (NOS), they range from nitric oxide (NO) to nitrate (NO3

- 
). The most 

common RNS encountered in physiological environments are NO, NO2, NO2
 - 

, N2O3, N2O4, S-

nitrosothiols, peroxynitrite (OONO
- 
), and dinitrosyl-iron complexes 10. The term “ROS” refers 

to intermediate reduced products of O2 en route to water, superoxide (O2
 

) hydrogen peroxide 

(H2O2) and hydroxyl radical (OH) along with reactive products of these with halides and 

amines 11,12.  

 

Antioxidant defense systems have evolved to protect cells against ROS damage. They include 

the enzymes glutathione peroxidase, glutathione reductase, copper and zinc-dependent 

superoxide dismutase (Cu-ZnSOD), catalase and manganese-dependent superoxide dismutase 

(MnSOD)(Fig. 1). 

 

Mtb exports several proteins into the phagosome. The functions of these proteins are related to 

cellular homeostasis like cell wall synthesis and energy generation. Others are directly associated 

with detoxification of ROS and RNS in noxious environments of the phagosome 13,14. It has been 
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established that protein export pathways play an important role in bacterial pathogenesis. Most of 

the bacterial virulence factors are exported proteins and systems responsible for their export are 

critical to virulence 15. The Sec-dependant protein export pathway is conserved throughout all 

bacteria and is responsible for the translocation of precursor proteins containing classical amino 

terminal signal sequences across the cytoplasmic membrane. Mycobacteria possess multiple 

secA genes (secA1, secA2) in their genomes 16. These exported proteins are one of the first 

molecules to interact with the host and protein export is critical to virulence. SecA2 is known to 

be required for the optimal secretion of superoxide dismutase (SodA) and catalase-peroxidase 

(KatG). Both these proteins function to detoxify ROS 16.  Many of these enzymes are 

metalloproteins. Some are loaded in the cytoplasm with the metal and then secreted in the folded 

state through the TAT system. Others however are secreted unfolded via the Sec pathway and 

they then acquire their cofactors in the periplasm 17. Heavy metal sensing in the cell is far from 

being properly understood 18. In recent years it has been observed that there is almost no free 

metal present in a living cell and the metals are handed down from one protein to another 

through chaperones and efflux systems 19,20.  

 

Fig. 1: Structure of the monomeric unit of human superoxide dismutase 2 (SOD2), showing the 

Zinc cofactor in the centre. 
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1.3 P-TYPE ATPASES 

The regulation of metal ion concentrations is central to the physiology of all organisms. Mtb 

encodes 28 putative metal ion transporters based on sequence homology analysis 
21. Cation 

transporters in Mtb represent 24% of all encoded transporter sequences. This repertoire of 

transporters confers the versatility required for adaptation to intracellular and extracellular niches 

22. Out of these, 12 are active transporters or P-type ATPases. Here ATP hydrolysis provides the 

energy for cation transport across the membrane. P-type ATPases; transport a variety of 

monovalent and divalent metals across membranes using the energy of hydrolysis of the terminal 

phosphate bond of ATP. They are thought to appear in early evolution and are key proteins in the 

maintenance of metal homeostasis in all organisms.  

 

Analysis of P-type ATPase sequences in Mtb have shown that some of them have 8 TM helices 

23,24, evidence has also been found of ATPases with 6, 7 and 10 TM helices 25-28.  

In the ATPases with 8 TM helices, the conserved residues in TMs H6, H7 and H8 form the Trans 

Membrane – Metal Binding Domain (TM-MBD) and provide the signature sequences that 

predict the metal sensitivity of the P-type ATPases 29 30. The large loop between TMs H6 and H7 

represents the cytoplasmic loop responsible for ATP binding and hydrolysis. This loop is called 

the ATP Binding Domain (ATP-BD). This is made up of the nucleotide (N) binding and 

phosphorylation (P) domains (Fig. 2) 31. A “hinge” region separates the two domains. The 

smaller cytoplasmic loop between TM H4 and H5 forms the actuator (A) domain 32. 
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Fig. 2:  A schematic representation of the membrane topology of a P-type ATPase. Transmembrane 

helices, H1-H8, are indicated. The relative locations and structure of Archaeoglobus fulgidus CopA 

actuator (A) domain and phosphorylation (P) and nucleotide (N) domains 31,32are shown. To represent 

one of the repeats present in the N-terminus the human Menkes disease protein (MNK) fifth N-terminal 

metal binding domain (N-MBD)33 is depicted. The conserved amino acids in H6, H7 and H8 forming the 

transmembrane metal binding domain (TM-MBD) are symbolized by red dots. The C-terminal metal 

binding domains (C-MBDs) with likely diverse structures are represented by yellow rectangles 

 

Active transport of the metal by P-type ATPases follows the E1-E2 Albers-Post model, 

alternating the affinities of intracellular metal binding sites from high (E1) to low (E2) (Fig. 3) 

34. In the E1 state the ATPase has a high affinity for metal and the TM-MBDs are accessible 

from the cytoplasmic side. In contrast, an enzyme in the E2 state has low affinity for the metal 

and in this conformation the metal binding site faces the opposite side of the membrane. 

According to this model, enzyme in E1 state is phosphorylated by Mg-ATP (µM) with metal ion 

binding to the TM-MBDs from the cytoplasmic side (E1.ATP.nM). The phosphorylation occurs 

with the transfer of the terminal phosphate of ATP to a conserved Asp residue located in the P- 

domain followed by the subsequent release of ADP (E1.P.xM
+n

). This phosphorylation causes 

occlusion of the bound metal ion at the TM-MBDs. The enzyme is unstable in the E1.P state and 

converts rapidly to the E2.P state. This transition leads to the release of the metal ions into the 



6 
 

extracellular/luminal compartment. Finally, dephosphorylation takes place and the enzyme 

returns to the dephosphorylated state and metal is freed from E2. The enzyme then returns to the 

E1 conformation on ATP (mM) binding to E2.   

 

Biochemical studies with eukaryote, prokaryote and archeal P1B-type ATPases have provided 

evidence for individual steps of the catalytic mechanism. ATPase activity, phosphorylation, 

dephosphorylation and metal transport studies have been carried out with isolated or membrane 

preparations of Cu
+
- and Zn

2+
-ATPases 35 36 37 38 39 40.  

  

 

Fig. 3:  Catalytic Mechanism of P1B-type ATPases. E1 and E2 represent the different conformations of 

the enzyme. M+n represent the different metals that are transported by P1B-type ATPases. n indicates the 

uncertainty on the stoichiometry of the metal transport. M+n (in) represents the cytoplasmic and M+n 

(out) represents the extracellular or luminal localization of the transported metal.  
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Transport experiments show that P1B-type ATPases drive metal efflux from the cytoplasm 35 36 37 

41 40. This agrees with a mechanism where the enzyme binds to ATP and the metal in the E1 state 

(TM-MBDs are open to the cytoplasmic site). Some earlier reports suggest that some Cu
+
-

ATPases might drive metal influx into the cytoplasm 42,43. This would however require an 

alternative mechanism where the binding of another substrate would be required in the E1 state 

to trigger ATP hydrolysis and enzyme phosphorylation followed by subsequent conformational 

changes to allow metal influx.  The direction of transport of metal by the Mtb ATPases has not 

yet been defined. We have addressed this issue for one of these ATPases through experiments 

using E. coli transformed with ctpC. 

 

1.4 TRANSMEMBRANE METAL BINDING SITES AND CLASSIFICATION 

OF P-TYPE ATPASES  

P-type ATPases transport a variety of ions against their concentration gradients using the energy 

they acquire from ATP hydrolysis in the cytoplasm. The Na, K ATPase, Sarcoplasmic Reticulum 

(SR) Calcium ATPase, yeast Proton ATPase and the Gastric H, K ATPase are all well studied 

examples of P-type ATPases 44 45.  

 

Type IA ATPases are found only in bacteria. Based on their primitive structure, they may be 

ancestral proteins. Type IB ATPases are found in bacteria, archaea and eukaryotes and are 

speculated to have evolved early in evolution. Type IIA and Type III ATPases are found in 

archaea, plants and fungi, but not in bacteria, and therefore must have evolved later. Type IV, 

type V (Fig. 4), type IIB and type IID are only found in eukaryotes and probably evolved after 

the split between archaea and eukaryote 24 25. 
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Most of the P1B ATPases contain a CPX signature sequence in the helix previous to the DKTGT 

sequence. The proline seems to be conserved in all P-type ATPases and has known to be 

important for metal binding and transport 29 24 26 27 46 28. Mutations to this proline in some Cu
+
 

ATPases have yielded proteins that were deficient in ATPase activity. 36 47 48 49 

 

 

Fig. 4: Overview of the P-type ATPase Family: Families are designated by roman numerals on the left 

followed by the name of the transported ion. Boxes indicate transmembrane segments; Filled circles, 

inhibitory sequences; Open circles, heavy metal binding sites. Abbreviations are: PL, phospholipids; 

NAS, no assigned specificity; plb, phospholamban. The ( subunit of type IIC ATPases so far has only 

been shown to be associated with Na
+
/K

+
-ATPase isozymes. It is uncertain whether association with a 

proteolipid is a general feature of type IIIA ATPases. This is indicated by a question mark.  
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P-type ATPases have several conserved segments that can be identified by multiple alignment 24. 

These domains are situated in the helix preceding the DKTGT domain and the following two 

helices after the DKTGT domain. In P1B ATPases the sequence CPC, CPH, SPC precedes the 

DKTGT sequence on TM 6 (Fig. 5). Besides this consensus, there are additional sequences on 

TM 7 and TM 8 that helps to sub classify these ATPases into P1B1-P1B5. 50 51 52 53 54 55. The large 

cytoplasmic loops between these helices are believed to be involved in any possible 

communication with the chaperones in the cytoplasm that helps to ferry the metal across the 

plasma membrane. They are also known to be involved in communication with other parts of the 

protein for inducing conformational changes, ion binding and ATP hydrolysis 29. 
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Fig. 5: Phylogenetic Tree of the P1B-type ATPases. The tree was prepared from a ClustalW alignment 

of representative sequences of P1B-type ATPases. The relative abundance of sequences from each 

subgroup has been maintained. The metal specificity and the structural characteristics are indicated next 

to the subgroup denomination. Amino acids in TMs are proposed to participate in determining metal 

selectivity. Black blocks represent His-rich N-MBDs; orange blocks, CXXC N-MBDs; and red, His and 

Cys rich N- and C-MBDs (This figure is published by Argüello et al., 200757).   
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1.5 N AND C METAL BINDING DOMAINS  

Besides TM-MBD most P1B-ATPases have 1-6 cytoplasmic metal binding domains (MBD) 

located either in the N-terminus (N-MBD) or C-terminus or both (Tables 1 and 2). Most typical 

ones are the N-MBDs observed in Cu+-ATPases and bacterial Zn
2+

-ATPases of subgroups IB-1 

and IB-2. These are usually 60-70 amino acid domains characterized by a highly conserved 

CxxC sequence 29,46,58,59.  

 

Table 1:  Cytoplasmic N-terminus Metal Binding Domains of P1B-ATPases (table has been presented 

in Eren. E thesis Dec 2006) 
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N-MBDs have been shown to receive metal from chaperones, however in Mtb there are no 

known chaperones that have been identified. Some zinc ATPases have histidine rich metal 

binding domains., similar sequences have been identified in ZIP (Zinc-regulated transporter, 

Iron-regulated transporter Protein) and CDF (Cation Diffusion Facilitator) families in the loops 

between transmembrane domains. Copper ATPases of subgroup P1B3 and a few members of P1B4 

have a distinct His-rich metal binding domain instead of typical N-MBDs 29. These domains 

have His stretches instead of Hx repeats. 

 

Table  2: Cytoplasmic C-terminus Metal Binding Domains of P1B-ATPases (table has been presented 

in Eren. E thesis Dec 2006) 
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Not all P1B ATPases have a cytoplasmic MBD. This suggests that they are present for a 

regulatory function. Removal of N-MBD by truncation or inhibition of metal binding sites by 

mutation reduces enzyme activity with small changes in metal affinity. 60,61 37,62-64 65. Previous 

experiments done in our laboratory has shown that N-MBDs of Archaeglobulus fulgidus Cu
+
-

ATPase CopA and Cu
+2

-ATPase CopB control the enzyme turnover rate through the rate 

limiting conformational change associated with metal release/dephosphorylation37,62. Similar to 

the findings in copper ATPases it has also been found that Zinc ATPases (ZntA) also behave in a 

similar manner 66. Truncation of either the N-MBD or C-MBD of A. thaliana Zn
+2

-ATPase 

HMA2 results in a 50% decrease in enzyme activity with no significant change in metal affinity 

suggesting that both are regulatory domains 67. Thus, we explored the N and C terminal sites of 

the Mtb ATPases to determine if they had any metal binding domains in these regions. 
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2. MATERIALS AND METHODS 

 

2.1 IDENTIFICATION OF HOMOLOGS OF THE MTB ATPASES 

 

A total of 192 sequences were analyzed to classify the Ctps in Mtb into the different categories 

based on the sequence similarity in helices H6, H7 and H8 in P1B ATPases and H4, H5 and H6 in 

the P2 ATPases. Online search tool NCBI’s pBLAST68 program was used. 

 

2.2 IDENTIFICATION OF TRANSMEMBRANE HELICES 

 

TM prediction tools were used from ExPASy (Expert Protein Analysis Systems) 69, they were 

SOSUI (Nagoya University, Japan) 70, TMPRED (EMBnet-CH) 71, HMMTOP (Hungarian 

Academy of Sciences) 72, DAS (Dense Alignment Surface method (Stockholm University)) 73 

and PredictProtein™ (Columbia University) 74. 

 

2.3 IDENTIFICATION METAL BINDING CONSERVED RESIDUES 

 

Proteins identified by NCBI’s pBLAST program were aligned using the software MegAlign™ 

from DNAStar™. Conserved residues were then identified in the TM regions using knowledge 

obtained from the previous analysis and mapping of these regions. 
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2.4 CLONING AND EXPRESSION OF CTP C AND CTP G 

ctpC and ctpG cDNA were amplified by PCR from genomic DNA. Amplicons were ligated into 

pEXP5/NT-TOPO/His vector (Invitrogen, Carlsbad, CA). This vector introduced an N-terminal 

hexahistidine tag suitable for Ni
2+

 affinity purification. BL21Star™ E. coli cells (Invitrogen, 

Carlsbad, CA) were used for expressing ctpC and ctpG. Protein expression was induced with 

1mM isopropyl D thiogalactoside (IPTG). A second construct of ctpC and ctpG was sub cloned 

into pBAD/TOPO/His vector (Invitrogen, Carlsbad, CA). This vector introduces a carboxyl 

terminal hexahistidine tag suitable for Ni
2+

 affinity purification and a V5 epitope for immuno-

detection. The gene sequence was confirmed by automated DNA sequence analysis.   

 

E. coli  ∆CopA and ∆ZntA (E. coli genetic stock centre at Yale University) have the CopA and 

ZntA genes mutated with a Kanamycin resistance cassette. These cells were transformed with the 

pEXP5/NT-TOPO construct for subsequent growth curve experiments. 

 

For protein purification the BL21 cells were grown at 37ºC in 2 x YT media supplemented with 

150 µg/ml ampicillin, 50 µg/ml chloramphenicol and expression induced with 1mM IPTG. Cells 

were harvested 3 h post-induction, washed with 25 mM Tris, pH 7.0, 100 mM KCl and stored at 

-70°C.  

 

2.5 GROWTH CURVES 

96 well plates were used to grow and analyze the growth of bacteria in different metal 

concentrations.  The E. coli used were: BL21Star™, LMG194 ∆CopA and RW3110 ∆ZntA. 

Empty vector was transformed into these strains to behave as controls. The cells were grown in 
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2x YT media to an OD600 of 0.6. Induced with 1mM IPTG for 1 hr. The cells were harvested by 

centrifugation at 5,000g for 5 minutes and resuspended in media containing 2x YT, 100 µg/ml 

Ampicillin and 0.1mM IPTG, for LMG194 ∆CopA and RW3110 ∆ZntA, 50 µg/ml Kanamycin 

was used besides ampicillin to maintain the mutation. The cells are diluted to an OD600 of 0.2 in 

the same media and transferred to the 96 well plates containing 10µl of the required metal. OD600 

was obtained at indicated intervals and the results were analyzed using Microsoft Excel™ and 

Kaliedagraph™ from SynergySoftware™. 

 

2.6 HEAVY METAL INIBITION ASSAY 

2x YT Agar plates (2% Agar) were prepared, a layer of Top Agar (< 0.7% Agar) of 3 ml volume 

was maintained at a temperature of 55 ºC in a water bath. BL21Star™ cells with ctpC in 

pEXP5/NT-TOPO were induced with 1mM IPTG for 1 hr, harvested and resuspended in media 

containing 2x YT, 100 µg/ml ampicillin and 0.1mM IPTG. The cells were diluted to an OD600 of 

0.2 in Top Agar kept at 55 ºC. The cooled agar plates were then distributed with 3 ml of the Top 

Agar + ctpC BL21Star™ cells and Top Agar + pEXP5/NT-TOPO BL21Star™ cells. 

Whattman No.1 Filter Paper Discs (0.5 cm) were loaded with the desired quantity of metal and 

placed on the top Agar with sterile double-autoclaved and flamed forceps. Water or water with 

ascorbic acid was used as a control. The plates were placed at room temperature to cool down 

and then placed at 37 ºC overnight. Inhibition halos were observed in the lawn of bacteria that 

grew overnight on the plates. These were photographed and measured. The empty vector cells 

were compared with the cells with the insert. 
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2.7 METAL CONTENT IN E. COLI EXPRESSING CTP C AND CTP G  

E. coli cells expressing CtpC and CtpG, and cells transformed with empty vector, were grown in 

2x YT media overnight. The cells were then transferred to fresh media and grown to an OD600 of 

0.6. The cells were induced for 3 hrs with 0.002% Arabinose. Cells were harvested by 

centrifugation, and washed 3 times with water.  Cells were disrupted by sonication, protein 

content was analyzed using Bradford method 75and subjected to ICP-MS analysis 76.  

 

2.8 CTP C PROTEIN EXPRESSION AND PURIFICATION 

Protein purification was carried out as previously described 77. All purification procedures were 

carried out at 0-4 ºC and no special precautions were taken to prevent enzyme oxidation.  Cells 

were suspended in buffer A (25 mM Tris, pH 7.0, 100 mM sucrose, 1 mM phenyl methyl 

sulfonyl fluoride (PMSF)) and disrupted by passing them through a French Press 3 times at 

20,000 p.s.i.. Lysed cells were centrifuged at 8,000 x g for 30 min. The supernatant was then 

centrifuged at 163,000 x g for 1 h, the pellet washed with buffer A, and centrifuged at 229,000 x 

g for 1 h. Membranes were resuspended in buffer A (10-15 mg/ml) and stored at -70°C. For 

protein solubilization and purification, membranes (3 mg/ml in buffer B: 25 mM Tris, pH 8.0, 

100 mM sucrose, 500 mM NaCl, 1 mM PMSF) were treated with dodecyl-β-D-maltoside (DDM) 

(Calbiochem, San Diego, CA), added drop wise to a final concentration of 0.75%. The 

membrane preparation was incubated with the detergent for 1 h at 4°C with mild agitation.  The 

suspension was cleared by centrifugation at 229,000 x g for 1 h and Ni
2+

-nitrilotriacetic acid (Ni-

NTA) resin (Qiagen, Valencia, CA) pre-equilibrated with buffer B plus 0.05% DDM, 5 mM 

imidazole was added to the supernatant. After incubation for 1 h at 4°C, the resin was placed on 

a column and washed with buffer B, 0.05% DDM, 20 mM imidazole. The protein was eluted 
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with buffer B, 0.05% DDM and 200 mm imidazole. Fractions were concentrated by filtration in 

50,000 MW centricon (Millipore, Billerica, MA) and imidazole was removed using a Sephadex 

G-25 column. The protein was eluted with 25 mM Tris, pH 8.0, 100 mM sucrose, 50 mM NaCl, 

0.01% DDM, 10% glycerol and stored in this buffer at -70°C. All protein determinations were 

performed in accordance with Bradford75.Protein expression and purification was examined on 

10% SDS-PAGE 78. Expression of the proteins was observed by staining the gels with 

Coomassie Brilliant Blue and immunobloting using Anti-His6 Epitope Tag Antibody (Rabbit 

Polyclonal IgG) and Goat Anti-Rabbit IgG Antibody (horseradish peroxidase conjugate) 

(GeneScript Corporation, Piscataway, NJ).  

 

2.9 pNPPase ASSAY OF CTP C 

 

pNPPase activity assays were carried out as previously described79. pNPPase activity assay 

mixture contained 50 mM Tris, pH (75 ºC) 6.1, 3 mM MgCl2, 3 mM ATP, 0, 2, 10, 20 or 50 mM 

Cys, 0.01% asolectin, 0.01% DDM, 400 mM NaCl, 0.01 mg/ml purified enzyme, and different 

concentrations of metal was used. The buffer was prepared at room temperature and pH 7. 

pNPPase activity was measured for 10 min at 37 °C.  
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3. RESULTS 

 

3.1 P-TYPE ATPASES IN MTB 

 

The focus of our study has been to understand the structure and function of Mtb ATPases. In 

particular we wanted to study the P-type ATPases that are known to transport heavy metals. We 

wanted to deduce a possible function for these ATPases regarding conserved residues found on 

the TM helices after sequence alignment with other known ATPases. We have conducted a 

bioinformatics analysis of the twelve P-ATPases of Mtb.  Interestingly, most of these proteins 

cannot be associated with the subgroups described earlier (Fig. 4).  This is surprising since most 

microorganisms contain a P1A-type K
+
-ATPases and one or two P1B-ATPase genes, usually Cu

+
 

or Zn
2+

-ATPases (P1B1 and P1B2 subgroups). Based on the previously observed conserved 

residues, we could identify that ctpA, B and V are Copper ATPases of subgroup P1B1. They are 

present in all the known mycobacterial genomes (M. avium, M. bovis, M. bovis BCG, M. leprae, 

M. marinum, M. semegmatis, M. ulcerans).  

 

Ctps A, B and V belong with the same group as the Cu
+
/Ag

+
-ATPases. Proteins that belong with 

this subgroup are found in eukaryotes, prokaryotes and archea. These include Menkes’ and 

Wilson disease proteins, which are, associated with genetic Cu transport disorders in humans 

26,80 81,82. For example, Arabidopsis thaliana RAN1 83 84,  E. coli CopA 36 77 30 and A. fulgidus 

CopA have been shown to transport non-physiological substrate Ag
+
 and drive the efflux of the 

metal from the cytoplasm 85 77. Proteins of this subgroup have a conserved CPC in TM H6, in 

addition, these proteins contain conserved residues, Asn, Tyr in TM H7 and Met, Ser in TM H8.  
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CtpC aligned closer to CtpV than to CtpA or B (Fig. 6). It looks like a mutated copper ATPase as 

it has a Met in TM H8 replaced with a His. CtpG has APC instead of CPC in TM H6, which 

leads to other possible substrates for this protein. CtpJ and D have a SPC in TM H4, which 

classifies them to the P1B4 subgroup. Members of this group have only 6 putative TMs 23. Of 

these, the large cytoplasmic loop containing the DKTGT sequence is located between TM H4 

and H5. The substrate specificity of these enzymes has not been characterized. Further 

characterization studies of other members are necessary to state the metal specificity of subgroup 

1B-4 proteins. 

Previously no proteins from Mycobacteria were found in P1B5 subgroup. However there are some 

proteins from this genus (other than Mtb) that were found to belong to this subgroup. Ctps E, F, 

H and I belong to the P2 ATPases. They have to yet be classified into subgroups. 

 

As a starting point toward formulating relevant hypothesis on the functional role of these 

ATPases, we analyzed their topology, presence of signature amino acids, and putative substrate 

specificity (Table 3). Additionally, homologs of the Mtb P-ATPases were identified, using 

protein BLAST searches, (last column in Table 3). Except the Cu
+
 ATPases (CtpA, CtpB and 

CtpV) and the K
+
-ATPases KdpB, the other sequences are found in symbiotic bacteria 

(pathogenic or beneficial) and some chemolithotrophic archaea and bacteria.  

 

KdpB: Is a multi subunit protein present only in prokaryotes, it drives K
+
-efflux. The E. coli 

homologue has been well characterized 86.   
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CtpV, CtpB, and CtpA: Are typical Cu+
-ATPases. They contain Cu

+
 coordinating signature 

sequences in their TMs. They are highly homologous (40-56% identity). Mutation of 

homologous genes in Pseudomonas aeruginosa and Listeria monocytogenes reduces their 

virulence 87 88. 

Table 3: P-type ATPases in Mtb  

 

CtpC: Is homologous (26-36% identity) to Cu
+
-ATPases (CtpV, B, and A). However, two key 

Cu
+
 binding residues are not conserved.  It may thus be involved in transporting another metal. 

Alternately, transport of Cu
+
 with a 1 Cu/ATP (rather than 2 Cu/ATP) 

89
 can be hypothesized.  

CtpJ and CtpD: These are members of the P1B4 subgroup.  Studies of Synechocystis CoaT suggest 

that these are Co-ATPases 90. Studies of Arabidopsis HMA1, containing identical metal 

coordinating residues, have proposed that this is a Cu+
-ATPase 91 or a Ca-ATPase 92.  

Functional complementation studies of AtHMA1, carried out by previous members in our lab, 

suggest that members of this group belong to the Mn-ATPases.  Clearly, these are heavy metal 

transporting ATPases, their specificity is still to be determined.  
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CtpG: This is a rare ATPase. We could identify only two homologous sequences, in M. bovis and 

Legionella pneumophila.  It has the topology of P1B-ATPases with the typical DKTGT sequence 

in the ATPBD, but no other characteristic allows its association with any particular subgroup.  

CtpE and CtpF:  Their membrane topology corresponds with that of P2 or P3-ATPases (Fig. 1) 

but they do not appear to have residues conserved in ATPases of known substrate, except for a 

conserved Glu in H4.  This Glu is characteristic of P2 and P3 ATPases and it is absent in P1B-

ATPase 24 45 93 94.  We hypothesize that these might transport an alkali metal, protons, or 

perhaps ammonium.  

CtpH and CtpI: These are similar to CtpE and CtpF; however, they have a long (>600 aa) N-

terminal fragment present only in homologous bacterial P-ATPases.  

 

 

 

Fig. 6: Dendrogram depicting the homology of the Ctps.  
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As a part of this work, we have studied the N and C terminal domains for the Mtb ctps. No 

conserved residues were observed in the N-terminal or C-terminal domains of the Mtb ctps. This 

could mean that there is no conservation of function of these domains from the known P-type 

ATPases. This is strange because Mtb like E. coli does not possess any known chaperones for 

transporting heavy metals. The N and C terminal domains of CopA for example have a 

regulatory role in the enzyme’s function. The regulation of these Mtb Ctps is not known and has 

to be determined by further studies. 

 

3.2 GENOMIC ORGANIZATION OF MTB CTPS 

 

The roles and functionality of these genes can be hypothesized by looking at their operons. This 

gives us an idea of what genes are co-expressed with the gene of interest. ctpC in Fig. 7 shows 

these putative functional units for genes of interest. CtpC is co-expressed with flanking genes 

related to cell synthesis.  Alternately, CtpG and CtpV appear co-expressed with stress response 

transcriptional regulators that belong with the ArsR and CsoR families respectively. It is possible 

that these genes are co-expressed when Mtb ctps are expressed in response to stress that is 

encountered in the phagosolysosome. Microarray analysis that was conducted on the 194 genes 

present in Mtb 95 96has identified ctpC, G and F to be elevated when there is stress experienced 

by the bacteria in the macrophage. 
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Fig. 7:  Figure showing the genomic organization of the ctps. 

 

3.3 HOMOLOGS OF CTPS IDENTIFIED IN OTHER ORGANISMS 

A through bioinformatic analysis was performed on the 12 P-type ATPases of Mtb. We have 

attempted to characterize these proteins in to subgroups based on the conserved sequences found 

in the different domains. Using a pBLAST search homologs were identified in other organisms.  

It was noticed that there was an abundance of these proteins in symbiotic, pathogenic and 

chemolithotrophic archea and bacteria. (Table 4) 
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Table 4: Homologous sequences found in other organisms.   

 

 

3.4 MTB HAS MORE P-TYPE ATPASES THAN MOST KNOWN 

ORGAMISMS 

 

A sample set of organisms was considered to analyze the number of P-type ATPases they 

possess. It was observed that most of the organisms had 1-2 ATPases or sometimes even 3. M. 

bovis showed 4 ATPases that were present in Mtb. (Table 5) 
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Table 5: Maximum number of P-type ATPases in other organisms.   

 

3.5 METAL BINDING CONSERVED RESIDUES IN TRANSMEMBRANE 

HELICES WERE IDENTIFIED  

Once the different metal binding helices were identified, they were aligned with their homologs 

from other organisms and consensus sequences in each set was identified along with other TM 

helices. (Table 6) 
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Table 6: Conserved residues identified in each helix.   

Interestingly there were no Mtb proteins identified as P1B5, but there were other Mycobacteria 

like M. gilvum, M. sp. MCS and M. vanbaalenii that were identified with P1B5 proteins. Ctps E, F, 

H and I resembled potassium, sodium or calcium ATPases. They were hence compared with 

calcium ATPases from P2A and P2B, Proton Potassium ATPases from P2C, Sodium Potassium 

ATPases from P2C, α subunits of P3A and P3B ATPases. 

 

It was observed that ctpE had around 20% homology to Manganese calcium ATPases and P3A 

ATPases. CtpF is 33% homologous to Manganese calcium ATPases. ctpH is 27% homologous to 

P3A ATPases and ctpI is 20% homologous to Manganese Calcium ATPases and 19% 

homologous to P3B ATPases. It can be deduced that ctpE and F can be similar to ctpH and I 

except for the stoichiometry. (Fig. 8) 
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Fig 8: Homology of ctpE, F, H and I to other P2 and P3 ATPases.   

 

Additionally the N and C terminal domains were analyzed for conserved metal binding domains 

ctpA and B did not have a significant C terminal cytoplasmic domain. This is consistent with the 

copper ATPases that are seen in E. coli like CopA. There was a glycine, arginine rich region 

observed in ctpE. But nothing significant was observed in the C terminal cytoplasmic domains of 

the Mtb Ctps. (Table 7) 



30 
 

 

 

 

Table 7: Conserved residues in the N and C terminal domains.   

 

 

3.6 ANALYSIS OF THE ROLE OF CTP C 

The strains BL21Star™, LMG194 ∆CopA and RW3110 ∆ZntA were used for obtaining the 

growth curves. The cells were grown in 96 well plates. The cells grown in No metal and no metal 

+ ascorbate showed no difference when compared with cells transformed with empty vector. 

This showed that the cells were behaving normally. Differences were observed in 750 μM copper 

(Fig. 9A), 125 μM cadmium (Fig. 9B), 750 μM Iron (Fig. 9C). 



31 
 

 

Fig 9: Differences observed in growth curves with Cu, Cd and Fe in BL21 cells.  (*n=3) 

 

The cells expressing ctpC appear to be more resistant to Cu
2+

 and Cd
2+

. In Iron, however the 

cells expressing ctpC seemed to be more sensitive than the cells with the empty vector. The cells 

were also grown in different pHs of 5.5, 6, 6.5 and 7. No differences were observed in their 

growth curves. 

 

C 

A B 
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LMG194 ∆CopA and RW3110 ∆ZntA with the empty vector and ctpC were then subjected to 

the same metal concentrations to observe a difference. ctpC showed a difference with RW3110 

∆ZntA strain, at 125 μM Cd (Fig. 10A) and LMG194 ∆CopA strain at 750 μM Cu (Fig. 10B). 

  

Fig 10: Differences observed in growth curves with Cu and Cd with LMG194 ∆CopA and 

RW3110 ∆ZntA cells.  (*n=3) 

 

Further studies need to be done to elucidate the true substrate for ctpC. 

 

3.7 HEAVY METAL INHIBITION ASSAY SHOWED A DECREASE IN 

INHIBITION ZONE FOR CADMIUM, NICKEL AND COPPER 

Heavy metal inhibition assays were perform on 2x YT agar plates as described in the material 

and methods. There was a significant reduction in the inhibition zones observed for Cadmium 

(Fig. 11A), Nickel (Fig. 11B) and Copper (Fig. 11C). 

B A 
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Fig 11: Heavy metal inhibition assay on 2x YT agar plates. (*n=3)   

A 

pEXP5/NT          ctpC+ pEXP5/NT         

Cadmium 1M 

Nickel 1M 

B 

  pEXP5/NT                     ctpC+ pEXP5/NT         

C 

Copper 1M 

         pEXP5/NT                     ctpC+ pEXP5/NT         
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3.8 CTP C AND CTP G EXPRESSING E. COLI SHOW ACCUMULATION OF 

COBALT IN CTP G 

The Top10 cells that were grown and induced for protein production were then subjected to 

nitric acid digestion, the results were analyzed by ICPMS analysis. 

It was observed that cells expressing ctpC retained Molybdenum and Manganese (Fig. 12), while 

ctpG significantly retained Cobalt (Fig. 12). The data obtained pertaining to ctpC was 

inconsistent with what was observed in previous liquid and agar experiments. 

 

Fig 12: Heavy metal quotas of E. coli transformed with ctpC and ctpG.  Data normalized by 

protein content and expressed as a percent of the content in E. coli transformed with empty vector (*n=1).  

 

3.9 CTP C WAS CLONED AND EXPRESSED FOR PRODUCTION OF PURE 

PROTEIN 

ctpC and ctpG were amplified from genomic Mtb H37Rv DNA (Fig. 13) , cloned into 

pCRT7/NT-TOPO/His vector and transformed in BL21 cells. Fig. 14 shows the purified protein 

isolated from the corresponding cells after induction with IPTG. To purify the protein, the 

membrane fraction was solubilized with 0.75% DDM under conditions in which maximal 

enzymatic activities were retained. 
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Fig. 13: PCR Amplification of CtpC and CtpG: Lane 1 indicates negative control and Lane 2 indicates 

the amplified DNA. 

 

The solubilized proteins were subsequently purified by Ni
2+-

NTA affinity column. These 

purification procedures yielded pure ctpC as judged by Coomassie Brilliant Blue-stained SDS 

PAGE gel (Fig. 14). The immunostained western blot showed that the protein was obtained in 

the pure form . 

 

Fig. 14: Expression of Pure protein for ctpC.  Lane 1 is 10µg of protein loaded onto an SDS-PAGE 

gel. Lane 2 is a His tag protein (C CopA) used as a positive control for the Western blot. Lanes 3 and 4 

are the western blot of the Protein gel. 
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3.10 pNPPase ASSAY SHOWED INHIBITION BY MANGANESE AND 

COBALT 

pNPP assay was performed at 37 °C for different metals at 1, 10 and 100 µM metal 

concentrations. The absorbance read at 410nm was then plotted against the metal concentration 

(Fig. 15). It was observed that cobalt and manganese inhibited the enzyme. Metals that inhibit 

enzyme activity in the pNPP assay are known to activate the ATPase assay. Thus, this may mean 

that cobalt or manganese could be the possible substrates. This assay has been performed only 

once and has to be repeated to produce more conclusive results. Subsequently an ATPase assay 

will provide proof of the activity by a particular metal. The results seen in this assay however 

does not complement the results from the studies performed in E.coli. Activation by copper and 

zinc however prove that the enzyme has phosphatase activity, but no conclusive results can be 

drawn. 

 

 
Fig. 15: pNPP activity of ctpC with different metals.  pNPPase for ctpC activity is indicated in 

nmol/mg/min. (*n=1) 
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4. SUMMARY 

Macrophages are central to host defense against microbes. Intracellular pathogens like Mtb have 

evolved to evade the body’s antimicrobial functions. Mtb has successfully exploited 

macrophages as its primary niche in vivo, but the requirements for its intracellular survival 

remain undefined 
97

. Virulent Mtb can replicate within the hostile environment of macrophages, 

and survive in poorly acidified phagosomes that fail to fuse with lysosomes 
98

.  

The genome of Mtb shows the presence of 12 metal transporting P-type ATPases. Homologs of 

these ATPases have been identified in other pathogenic and symbiotic organisms. This proves 

that metals are required for interactions within the complex host-pathogen environments. Mtb 

genome also encodes SODs and other metal requiring enzymes, which are pumped into the 

noxious environment of the phagolysosome to protect the bacillus. Copper, zinc and manganese 

are known to be the metal co-factors in SODs that convert superoxide radicals to hydrogen 

peroxide. Iron is known to be present in catalase that converts peroxide into water and oxygen. 

Thus metal seems to play a very important role in host-pathogen interactions. We hypothesized 

that the SODs and catalases could be pumped into the phagolysosome by the bacillus through the 

Sec system. The unfolded enzymes would then refold using metals that are available in the 

surrounding region. We also think that the 12 P-type ATPases in Mtb are responsible for the 

transfer of the metal component of these enzymes. To elucidate the substrate for the ctp proteins 

in Mtb, we have used various bioinformatic approaches to identify the transmembrane metal 

binding sites and the metal coordinating residues. We have also tried to classify them into the 

different subgroups in the P-type ATPase family.   

Substrate specificity determines the role of the P-type ATPases in the cell. Previous studies 
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involving P-type ATPases have shown that the region before the cytoplasmic loop containing the 

DKTGT sequence has conserved amino acids that determine its subtype and metal specificity. 

Bioinformatic analysis indicates that the ATPases of subgroups P1, P1B, P2, and P3 are present in 

Mtb. In addition to these P1B5 was identified in other Mycobacteria other than Mtb. 

 Genome wide transposon mutagenesis studies indicate three Ctps important for virulence. i.e. 

ctpC, G and F 99 95. Genomic organization also supports the hypothesis that some of these 

proteins may also be involved in host pathogen interactions. A possible function can be deduced 

for these ATPases using the conserved residues that were identified in the TM helices after 

sequence alignment. It can be deduced that Mtb has at least three copper transporting ATPases; 

ctpA, B ad V. However copper chaperones were not identified in the search conducted. Analysis 

of the N and C terminal domains did not show proof of metal binding domains, for regulatory 

interactions with the protein. ctpC looks like a copper ATPase in all its helices except for H8 

where it looks like a mutated copper transporter, with the methionine residue replaced with a 

histidine. ctpG resembles the rare P-type ATPase previously classified as the P1B6 subgroup. 

Previously no proteins from Mycobacteria were found in P1B5 subgroup. However there are some 

proteins from this genus (other than Mtb) that were found to belong to the P1B5 subgroup. ctps E, 

F, H and I belong to the P2 ATPases. They have to yet be classified into subgroups. Purified 

proteins have to be analyzed to understand their actual substrate specificity, however we did E. 

coli based assays to determine their putative role. Our results with the E. coli showed that the 

possible substrate could either be Copper or Cadmium. However pNPP analysis done on pure 

protein showed that the cobalt and manganese inhibited the assay, suggesting that these metals 

could possibly activate their ATPase activity. Activation of pNPP assay by Cu
+
 and Zinc could 

not be explained by the assay used. 
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ctpC could be present on the surface of Mtb to efflux metals like Co or Cu that could be useful to 

act as metal co-factors in the SODs. This could help Mtb to survive better in the toxic 

environment of the phagolysosome. Data obtained from growth curves suggest that Copper and 

Cobalt as possible substrates for CtpC. A more conclusive ATPase assay must be performed to 

elucidate the true nature of the heavy metal substrate for this transporter. These experiments thus 

provide clues of the possible substrate for ctpC. 
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