
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2011-04-03

Look Before You Leap: An Adaptive Processing
Strategy For Multi-Criteria Decision Support
Queries
Shweta Srivastava
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Srivastava, Shweta, "Look Before You Leap: An Adaptive Processing Strategy For Multi-Criteria Decision Support Queries" (2011). Masters
Theses (All Theses, All Years). 190.
https://digitalcommons.wpi.edu/etd-theses/190

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/190?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Look Before You Leap: An Adaptive Processing Strategy For

Multi-Criteria Decision Support Queries

by

Shweta Srivastava

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

April 2011

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor George T. Heineman, Reader

Professor Craig E. Wills, Head of Department

Abstract

In recent years, we have witnessed a massive acquisition of data and increasing need to

support multi-criteria decision support (MCDS) queries efficiently. Pareto-optimal also

known as skyline queries is a popular class of MCDS queries and has received a lot of

attention resulting in a flurry of efficient skyline algorithms. The vast majority of such

algorithms focus entirely on the input being a single data set. In this work, we provide an

adaptive query evaluation technique — AdaptiveSky that is able to reason at different

levels of abstraction thereby effectively minimizing the two primary costs, namely the

cost of generating join results and the cost of dominance comparisons to compute the

final skyline of the join results. Our approach hinges on two key principles. First, in the

input space – we determine the abstraction levels dynamically at run time instead of

assigning a static one at compile time that may or may not work for different data

distributions. This is achieved by adaptively partitioning the input data as intermediate

results are being generated thereby eliminating the need to access vast majority of the

input tuples. Second, we incrementally build the output space, containing the final

skyline, without generating a single join result. Our approach is able to reason about the

final result space and selectively drill into regions in the output space that show promise

in generating result tuples to avoid generation of results that do not contribute to the

query result. In this effort, we propose two alternate strategies for reasoning, namely the

Euclidean Distance method and the cost-benefit driven Dominance Potential method for

reasoning. Our experimental evaluation demonstrates that AdaptiveSky shows superior

performance over state-of-the-art techniques over benchmark data sets.

2

Contents

1 Introduction 7

2 Background: The SKIN Approach 11

3 Motivation For An Adaptive Framework 14

4 Our Proposed AdaptiveSky Framework 19

5 Technical Details 22

6 Decision Making Components 24

7 Output Region Generator 29

8 The Adaptor 31

9 Experimental Evaluation 34

10 Related Work 43

11 Conclusion 45

12 Future Work 46

3

List of Figures

2.1 Macro-Level Processing: Avoid Join and/or Skyline Costs 12

3.1 Effect of varying δs on the output space 16

4.1 Adaptive Evaluation Framework . 19

4.2 Effects of Region Selection . 20

5.1 Adaptive Evaluation Framework . 22

6.1 Heuristics used by Region Selector . 26

7.1 Output Region Generator . 29

8.1 How Input Partitions are combined to form Output Region by applying

Mapping Functions . 32

8.2 Step 1: Repartition the input partitions that form the selected output region 32

9.1 Effect Partition Size δ on SKIN executed on Correlated data set 35

9.2 Effect Partition Size δ on SKIN executed on Independent data set 36

9.3 Effect Partition Size δ on SKIN executed on Anti-Correlated data set . . 37

9.4 Effects of Threshold on AdaptiveSky executed on Correlated data set . . 38

9.5 Effects of Threshold on AdaptiveSky executed on Independent data set . 39

4

9.6 Effects of Threshold on AdaptiveSky executed on Anti-Correlated data

set . 39

9.7 Execution Time comparisons between AdaptiveSky and SKIN in Corre-

lated data . 40

9.8 Execution Time comparisons between AdaptiveSky and SKIN in Inde-

pendent data . 40

9.9 Execution Time comparisons between AdaptiveSky and SKIN in Anti-

Correlated data . 41

9.10 No. of combined objects and dominance comparison count between SKIN

and AdaptiveSky for Correlated data set 41

9.11 No. of combined objects and dominance comparison count between SKIN

and AdaptiveSky for Independent data set 42

9.12 No. of combined objects and dominance comparison count between SKIN

and AdaptiveSky for Anti-Correlated data set 42

5

List of Tables

2.1 Notations Used In This Work . 11

6

Chapter 1

Introduction

Real-time applications, ranging from Internet aggregators, business intelligence to data

warehouse systems, need for supporting complex multi-criteria decision support (MCDS)queries.

The intuitive nature of specifying a set of user preferences has made Pareto-optimal (or

skyline) queries a popular class of MCDS queries [2]. Unlike traditional queries, whose

goal is to return only exact matches, skyline queries return a set of non-dominated results

meaning each result is better than the others in at least one criterion.

Recently, we have witnessed a flurry of techniques [1, 2, 11] that evaluate skyline

queries over a single homogeneous data set. The common assumption of viewing skyline

as an operator on top of the traditional SPJ select project join queries applied on homoge-

neous data sets is rather limiting since a vast majority of MCDS applications in practice

do not operate on just a single source. Instead, they require to (1) access data from dis-

parate sources via joins, and (2) combine several attributes across these sources through

possibly complex user-defined functions to characterize the final composite product (as

substantiated below).

Supply-Chain Management. A manufacturer in a supply chain aims to maximize profit,

market share, etc., and minimize overhead, delays, etc. This is achieved by structuring an

7

optimal production and distribution plan through the evaluation of various alternatives.

Q1: SELECT R.id, T.id, (R.uPrice + T.uShipCost) as tCost,

(2 * R.manTime + T.shipTime) as delay

FROM Suppliers R, Transporters T WHERE R.country=T.country AND

P1’ in R.suppliedParts AND R.manCap >=100000

PREFERRING LOWEST(tCost) AND LOWEST(delay)

Q1 identifies the suppliers that can produce “100K” units of the part “P1” and cou-

ples them with transporters that deliver it. The preference is to minimize both total cost

(tCost) as well as delays (delay). In this work, we target such queries which combine the

skyline and mapping functions over the join, here known as SkyMapJoin (SMJ) queries.

Internet Aggregators. The rapid increase in the number of on-line vendors has resulted

in Internet aggregators such as Froogle1 for durable goods, and Kayak2 for travel services,

are fast growing in popularity. Aggregators access and combine data form several sources

to produce complex results that are then pruned by the skyline operation. Consider the

query Q2 , where the user is planning a holiday in Europe visiting both Rome and Paris.

The user has different preferences in each leg of the journey. For instance since Rome

is an ancient city, the user is willing to walk twice as much in Rome than in Paris. In

addition, the user has a cumulative goal of minimizing the total cost of the trip.

Q2: SELECT R.id Rome,T.id Paris, (R.price + T.price) as cost,

(2 * R.distance + T.distance) as distance

FROM RomeHotels R, ParisHotels T

PREFERRING LOWEST(tCost) AND LOWEST(tDistance)

In addition to there are numerous other applications in the field of drug discovery, and

query relaxation where queries with a similar skeleton structure is encountered. In this
1http://froogle.google.com/shoppinglist, 2www.kayak.com

8

work we target queries involving both skyline and mapping operations over disparate data

sources, known as SkyMapJoin queries introduced by [12, 13].

State-of-the-art Techniques. Existing techniques view the skyline operation as an add-

on after the join and thus follow a join-first skyline-later (JF-SL) paradigm [2]. JFSL

divides query evaluation into two steps, namely first produce all possible join results,

and second perform skyline evaluation over the entire join results. This approach misses

several optimization opportunities. JFSL spends precious resources in producing join

results that may not belong to the final skyline result set. Further more it also bears

the cost of comparing all the unwanted join objects. In [13] we introduced a method

called SKIN that leverages this opportunity by considering both skyline dominance and

mapping function transformation as part of the join processing logic. SKIN applies a

partition-based solution has been shown to outperform existing methods in some case as

much as several orders of magnitude. SKIN however suffers from the deficiency that it

pre-determines, from empirical results, the level of abstraction. While this is critical for

the success of SKIN, it is extremely difficult to decide a priori. In this we show that a bad

abstraction level can hinder the performance of an otherwise efficient framework.

Our Proposed Solution. In this work, we propose AdaptiveSky that successfully lever-

ages the strengths of SKIN while at the same time alleviates its weaknesses by being

dynamic in its decision making. AdaptiveSky works on two data space namely, the input

space – containing the input tuples and an output space containing the intermediate join

results – some of which belong to the final skyline result. AdaptiveSky rests on key prin-

ciple of “look before you leap” and our intuition can be summarized as follows. First, do

not jump into generating numerous intermediate results. Instead, at run-time dynamically

determine level of abstraction at which the input space needs to be investigated. Second,

build the output space from a higher-level abstraction of regions to lower-level abstrac-

tions of mapped join results. This can be done heterogeneously across both spaces instead

9

of uniform level of abstraction over the input or output space. The main contributions of

our approach can be summarized as follows: (1) We propose AdaptiveSky that provides

an adaptive execution strategy for evaluating SkyMapJoin queries. (2) We present two

alternate strategies, a naiive euclidean distance method and the other more complex cost-

vs-benefit driven dominance potential method. These strategies aid AdaptiveSky in fur-

ther exploring the input space based on the feedback from the abstract output space. (3)

Our experimental evaluation demonstrates that AdaptiveSky shows superior performance

over state-of-the-art techniques.

10

Chapter 2

Background: The SKIN Approach

In this chapter, we briefly discuss the fundamental aspects of the SKIN approach proposed

in our prior work [13]. The key idea is to have two fixed layers of abstraction, namely

macro-level processing and micro-level processing. Table 2.1 summarizes the notation

used here.

Table 2.1: Notations Used In This Work
Notation Meaning

IRi Input grid in R
IR Set of all input grids in R
rf tg Join result, rf ∈ R; tg ∈ T
Ri,j Region of output space that map the join results from the input partitions [IRi , ITj]

R Set of all regions in the output space
LOWER(X) Lower-bound point of a region or partition
UPPER(X) Upper-bound point of a region or partition

Macro Level Processing. The aim of this step is to perform query execution at a higher

granularity and generate the abstract output space. For this, SKIN assumes the input is

uniformly partitioned into equi-sized grids also known as partitions. For a pair of input

partitions, one from each table IRa ∈ R and ITb ∈ T , we determine: (1) if tuples in

these partitions produce at least one join result, and (2) once generated the region of

the output space into which the generated join results will fall (denoted as Ra,b). To

11

illustrate, assume that the domain values of the join attributes are finite and known. In

such a scenario, for each input partition we maintain a list of domain values of the join

attribute(s) for the tuples mapped into that particular partition. Therefore, if two partitions

share at least one join domain value we can guarantee that their join will result in at least

one join result. The full treatment of joins is described in [13]. output regions which are

guaranteed to be populated for further processing.

A

B

CR 1,2 R 4,1

R 3,1

D

d

g

F

K

LR 1,3

a

b

c e

G

E

H

f

J
I

j

i

k
l

tcost

delay

Output Partitions dominated by S

Regions dominated by S

Potential Combined Partitions

pes

pes

Lower Bound

Upper Bound Not in Spes

Upper Bound in Spes

pessimistic skyline ()Spes

h

R 2,1

Figure 2.1: Macro-Level Processing: Avoid Join and/or Skyline Costs

Example: Tuples in the input partition (a.k.a. grid) from Supplier (R), IR1 with bounds

[(0, 4)(1, 5)], when joined with tuples in input partition IT2 [(0, 4)(1, 5)] from Transporter

(T), will result in join results that will fall in the region bounded by the lower-bound point

b(3, 5) and the upper-bound point B(6, 7) in Figure 2.1. This output region is denoted as

R1,2.

In our motivating queryQ1, the preference is to minimize all skyline-dimensions. In a

pessimistic scenario for each output regionRi,j , all the intermediate join and then mapped

results would lie on the upper-bound point of Ri,j . SKIN introduces the notion of the

pessimistic output skyline, denoted as Spes to identify the dominated output regions.

12

Any region in Ri,j ∈ R if ∃s ∈ Spes such that s �P LOWER(Ri,j) then no intermediate

result rf tg ∈ Ri,j can be contained in the output skyline. Thus, the pessimistic skyline

limits the comparisons of output regions generated to only those regions that belong to

Spes.

Micro Level Processing. Having eliminated all possible higher abstractions, this step

executes tuple level joins and performs tuple level dominance comparisons to give the

resulting skyline. While SKIN has introduced its own method, one can practically use

any state-of-the-art approach to compute skyline over joins.

13

Chapter 3

Motivation For An Adaptive

Framework

The fundamental approach in SKIN is to solve the skyline problem at a higher level of

abstraction before solving it at the expensive level of individual tuples. In this section,

we take look closer at the pros and cons of applying the reasoning at a static abstraction

level. Based on this analysis we then propose our strategy to successfully address SKIN’s

drawbacks.

Cost of Macro Level Processing: This phase incurs the cost of comparing every

output region that is generated with all regions that lie in the pessimistic skyline across

all skyline dimensions. This is found to be O(Ntotal · |Spes| · d), where Ntotal is the total

number of output regions generated, |Spes| is the number of regions in the pessimistic

skyline and d is the number of attributes in the skyline result as stated by the users query.

For the sake of simplicity we consider that d attributes from each relation combine to

form d skyline attributes as in Q1. If ki is the number of partitions that each of the

dimensions in the input is divided into, then the total number of partitions (or grids) in

each relation is kdi . Therefore, Ntotal = σk2di where σ is the join factor. Next, the cost of

14

computing the pessimistic skyline is O(k4di · d). Thus, the total cost of performing macro

level processing is the cost of creating the output regions and maintaining the pessimistic

skyline maintaining |Spes| which is given as follows:

O

(
σk2di · σk2di · d

)
+O

(
k4di · d

)
= O

(
k4di · d

)
(3.1)

Cost of Micro Level Processing: This phase incurs the cost of processing an output

region at the level of individual tuples. This includes creating combined objects from the

two input partitions IRa and ITb that form output region Ra,b and subsequently performing

skyline comparisons on these objects to produce the final skyline result set. The cost

incurred during micro-level-processing for processing a single output region Ra,b is as

follows:

Cost(Ra,b) = Cjoin(Ra,b) + Cmap(Ra,b) + Csky(Ra,b)

= O(σ · n2) +O(σ · n2 · d) +O(σ · n4 · d) = O(σ · n4 · d)
(3.2)

where n = |IRa | = |ITb | in a uniform distribution. Therefore the cost of materializing

all Nremain output regions is Nremain · Cost(Ra,b). Here Nremain is the number of output

regions that remain to be materialized after pruning all dominated regions during macro

level processing.

Next, we shed light on the dependencies on some of the important factors that affect

adversely the execution cost of SKIN. First, it is evident that the total number of regions

created, Ntotal, depends on ki which in turn is determined by the partition size δ that the

input is uniformly divided into. Second, |Spes| mainly depends on the data distribution.

Third, the cardinality n of each input partition. As described above, macro level process-

ing is quadratic in the number of partitions ki while micro level processing is quadratic

15

in the number of tuples in each partition n. Therefore to reduce the total cost the goal

should be to minimize both ki and n. However, these two values are inversely propor-

tionate to one another i.e. in an independent distribution, fewer number of tuples in a

partition means that each partition covers a smaller area and therefore number of parti-

tions are higher than a scenario where the number of tuples are high. From this analysis it

is evident that if we try to decrease costs of micro level processing by reducing n the cost

of performing macro level processing increases and vice versa. Since a reduction of both

cannot be achieved at the same time, one of the goals in this work is to strike the right

balance between n and ki.

0 1 2 3 4 5 6

5

1

2

3

!"

6

d1

R 1

R 2

R 3

R 4

d2

!"#$%&%

0 1 2 3 4 5 6

R 1,1

R 1,2

R 1,4

R 1,3
R 2,3 R 2,4

R 3,1

R 2,1 R 2,2 R 4,1 R 4,2

R 4,3 R 4,4 R 3,2
R 3,3

5

1

2

3

!"

6

!"#$%'%

R 1

R 2

R 3

R 4
d1

d2

(a) Output space with pre-determined δ (b) Output space with smaller δ

0 1 2 3 4 5 6

R 1,1

R 1,2 R 1,3

R 1,4

R 4,1 R 4,2

R 4,3 R 4,4

R 1

R 2

R 3

R 4

!"#$%(%

5

1

2

3

!"

6

d1

d2

(c) Output space with heterogeneous δ

Figure 3.1: Effect of varying δs on the output space

We will now show with the help of case examples how selecting an appropriate δ can

affect the cost of skyline computation.

Case I - Larger δ in SKIN (Static Approach) Let Figure 3.1.a denote the output

16

space after macro-level processing where Ntotal = Nremain in other words the regions are

fairly large and no region can be eliminated by macro-level processing. For this example,

SKIN will have to bear an additional cost to perform macro level processing without

seeing any of its benefits. In addition, since the regions are at a higher granularity the cost

of micro level processing is going to be high as the number of tuples in its partitions nwill

be high (assuming independent distribution). The question is to find out if it is possible

to change the granularity of the partitions reduce the overall cost.

Case II - Smaller δ SKIN (Static Approach) Figure 3.1.b shows us the same output

space with smaller regions. This implies that the δ used to partition datasets R and T is

smaller as compared to that used in Case I. In this scenario, several output regions are

completely dominated and therefore can be safely eliminated. Although more number of

regions go into micro level processing as compared to Case I, their respective cardinality

is smaller which implies that the cost of processing each one of them have been drastically

reduced. However, this reduction of cost has not come without shedding extra resources.

Macro level processing has to do more work to generate increased number of regions and

perform more number of skyline comparisons to maintain the pessimistic skyline Spes as

compared to Case I. It is also evident that attaining the right granularity of output regions

is an important factor in achieving effective elimination and reduced costs. In other words

determining the most appropriate level of abstraction a-priori is an ideal scenario. How-

ever selection of a correct δ for partitioning the input side without any knowledge of the

output remains a challenging problem and therefore SKIN assumes that a δ is given a

priori.

Case III - Heterogeneous δ AdaptiveSky Approach In the previous example the

additional cost of maintaining Spes may not be worth bearing if it does not translate into

more benefit. Furthermore for certain data distribution, lower granularity of input parti-

tions does not necessarily increase the pruning capacity of all output regions in the same

17

proportion. In other words for some areas in the output space making smaller regions

may not reap any benefits of elimination. In Figure 3.1.c that represents Case III the first

visual difference that comes is that unlike Cases I and II, where all regions were of the

same size, here the regions are of variable size. Output regions of heterogeneous sizes are

a result of heterogeneously partitioned input space. In Case III, while the area eliminated

is the same as Case II, the cost of macro level processing is lower since the number of

total output regions created and compared for elimination are fewer. Since the cost of

macro level processing is affected quadratically by the number of input partitions, this is

a considerable cost savings.

The two key observations of the above analysis are as follows. First, finer granularity

output regions increase elimination potential thereby reducing the subsequent micro level

processing costs. However the associated overhead can be cost prohibitive. Thus it is

important to find the right granularity of regions. That is, small enough to be able to

eliminate other regions and large enough to keep its cost low. Second, since the static

approach has no feedback mechanism it keeps making incorrect choices in partitioning.

A feedback driven approach is crucial to in deciding which areas in the output and input

spaces to drill into thereby limiting the cost incurred while increasing pruning capacity.

We complement our framework with two heuristic-based reasoning techniques.

18

Chapter 4

Our Proposed AdaptiveSky Framework

!"#$%&'()('*+$%#(,,-./*

!" #"!"#$%&'()$* *+,+$!-&(.'/*

!-#$%&'()('*+$%#(,,-./*

"0"+1-)(*$(",%.-./*

01/,(+.,$2&,3&,$!3+.'4$
5'//676/8.$!9):6;'$

!':'.,'<$='>6-;4$
01/,(+.,$2&,3&,$/3+.'4$$
5'//676/8.$!9):6;'$

?6;+:$+1/,(+.,$
-&,3&,$/3+.'$

%&'()$='/&:,*

!"#$%&'()*+

Figure 4.1: Adaptive Evaluation Framework

In this section, we present a brief overview of our adaptive evaluation framework

called AdaptiveSky as illustrated in Figure 4.1. Our proposed framework builds on top

of SKIN making it δ insensitive by empowering its macro-level processing to arrive at

the right granularity or in other words heterogeneous δ depending on the result distribu-

tion in the output space. The macro-level processing takes as input the datasets (R and

T), the preference query and a coarse δ (for instance δ = 50). Next, the adaptive rea-

soning module looks ahead into the coarse grained output space to iteratively pick the

next output region to zoom in. The selected region when made finer will result in the

19

maximum pruning among all its peers. Armed with this knowledge, the macro-level pro-

cessing creates smaller output regions by repartitioning its associated input partitions and

updating the output space. This iterative process continues till the abstract processing

cannot yield more pruning and the overhead costs outweighs its benefits from elimina-

tion. At this point, the output space is shipped for micro level processing. In a nutshell,

we adapt selected areas of the output space over several iterations to obtain maximum

possible pruning in a course abstraction of the output space to minimize the cost of micro

level processing.

In the following discussion, we introduce four components added to the framework

for adaptive reasoning that attempt to address two key questions that our approach poses:

(1) which output region to zoom into. and (2) when to stop abstract-level processing and

initiate micro-level processing.

0 1 2 3 4 5 6

5

1

2

3

4

6
d1

R 1 R 3

R 4

d2

R 2,1 R 2,2
R 2,3 R 2,4

R 2

0 1 2 3 4 5 6

5

!"

#"

$"

%"

6

R 1,1

R 2

R 3

R 1,2 R 1,3

R 1,4

R 4

R 2,1
R 2,3 R 2,4

d1

d2

(a) Region R2 selected for repartitioning (b) Region R1 selected for repartitioning

Figure 4.2: Effects of Region Selection

Region Selector. In each iteration, this component selects the next most-beneficial re-

gion to adapt. Figure 4.2.a motivates the importance of selecting regions in an appropriate

order consider the following example. If we employed a random selection process and

pick region R2, after repartitioning we added to the space R2,1, R2,2, R2,3 and R2,4. Since

R2,2 is the only region completely dominated by another region (R2,3), it is eliminated.

In contrast, let us assume we choose R1 instead, as it is evident in Figure 4.2.b that on

20

repartitioning R1 more of the output space can be pruned. In next section, we present the

two metrices that are used in selecting the next region for further processing. They are

the euclidean distance metric and the cost-vs-benefit driven dominance potential metric .

Threshold Analyzer addresses the second problem of keeping regions small enough

to facilitate more elimination but large enough to keep the cost of repartitioning low. The

threshold analyzer uses the cardinality of the participating input partitions of a region

as a good metric to stop repeated macro-level processing. The reasoning is that a small

but dense output region has more potential for pruning therefore worthwhile for further

investigation. Once all output regions reach the threshold limit the micro-level processing

takes over.

Output Region Generator is a part of macro-level processing that updates output

space after every feedback provided by the abstract reasoning. It first combines input

partitions based on their join attributes by applying mapping functions. Next, it maintains

the pessimistic skyline and eliminates regions based on dominance comparisons.

Adaptor component does the actual work of creating smaller output regions. It repar-

titions the input partitions of the selected region and sends the newly created input parti-

tions to the output region generator. This process continues in an iterative manner until

all regions have not reached the threshold size. The reason why we adapt the input space

is because if we simply divide output regions without considering the input space, there is

no way of knowing whether a dominating region will not be empty when we start micro-

level processing. In case a dominating region is empty, it might end up eliminating a

region that could have potential skyline candidates resulting in an incorrect result set.

21

Chapter 5

Technical Details

We will now begin discussing our framework in greater technical depth. In this section

we describe the control and data flow among the components introduced in the previous

section. In the following three sections we will discuss each component individually in

technical detail.

!"

#$%&$%"'()*+,"-(,(./%+."

0(1*2*+,""

3/4(."

52"6$($("(7&%89" :(2"

;+"

52"%<.(2<+=>"7(%9"
:(2"

3*1.+"?(@(="A.+1(22*,)"

;+"

B>/&%(."

;(C"5,&$%"A/.DD+,2"

B>>".()*+,"%+"E,/="+$%&$%".()*+,"=*2%"F+."
3*1.+"?(@(="&.+1(22*,)"

G*,/="+$%&$%".()*+,"=*2%"
F+."3*1.+"?(@(="
&.+1(22*,)"

H483/&I+*,"'(2$=%2"

H%/.%"

B>>2".()*+,2"%+"&.*+.*%8"6$($("

G*,/="?*2%"+F"
'()*+,2"

H(=(1%(>"
'()*+,"

5,&$%"F.+7"A.(J&.+1(22+."

A.*+.*%8"K$($("

Figure 5.1: Adaptive Evaluation Framework

22

Figure 5.1 illustrates the control and data flow in our proposed framework. As part

of macro-level processing the output region generator creates an abstract output space

starting with the coarse δ. These generated regions are stored in a central priority queue

that we refer to as P based on the metric chosen by the region selector. The value for

a given region indicates pruning benefits in the output space than another region. The

region selector sends the output region at the top of the queue to the threshold analyzer.

The job of the analyzer is to verify on the basis of the metric chosen for itself whether or

not the region has crossed the threshold. If the region is within the threshold, it is sent to

the Adaptor to repartition its input cells and passes it on to the output region generator.

This process is repeated till no regions need to investigated. In the scenario where the

selected region has crossed the threshold, it is removed from the queue. This indicates

that the overhead cost of adapting the region is more than its benefits. This region is now

transferred to a list called Rfinal that is eventually passed on to micro-level processing

at the end of all iterations. Now that the region has been removed other regions will get

an opportunity to be investigated. This process continues till the queue becomes empty.

This indicates that all regions have crossed the threshold and will no longer provide more

benefits from pruning than the overhead cost of repartitioning. At this point Rfinal is

passed on to micro-level processing for computing the final skyline result set. We will

now describe the technical details of each component of our framework.

23

Chapter 6

Decision Making Components

In the following discussion, we describe the two decision making components of our

framework in technical depth. These components are the region selector and threshold

analyzer. While the region selector decides which output region to adapt, the job of the

threshold analyzer is to decide when to stop abstract-level processing and initiate micro-

level processing.

Region Selector : Before diving into the details of how the Region Selector works let

us understand how it impacts the cost of the entire adaptive process. In order to repartition

a region, its input partitions are repartitioned using a smaller δ. The cost of this repartition-

ing can be given as O((nR
a ·d)+(nT

b ·d)) where nR
a and nT

b are the number of tuples in the

input partitions IRa and ITb respectively (Refer Table 1 for notations). Thereafter the cost

of combining input partions to create new output regions is O(σk2dnew · d) = O(Nnew · d)

where Nnew is the number of new output regions created after repartitioning, knew is the

number of new partitions that each dimension of existing partition is divided into using

the new partition size δnew. Having created the regions they now need to be compared

for elimination. The cost of comparing Nnew with the pessimistic skyline, Spes, for elim-

ination can be modeled as O(Nnew · |Spes| · d). Now consider if all output regions of

24

a given iteration, lets call it NfPrevious were to be re-partitioned in the following one,

the total cost of generating an entirely new output space with finer granularity would be

O(NfPrevious · ((|IRa | · d) + (|ITb | · d)) + (Nnew · d) + (Nnew · |Spes| · d)+)).

By the above analysis it is evident that fewer the number of regions repartitioned,

lesser is the overhead cost. The region selector selects the output regions that would give

maximum benefits of elimination. In doing so, it uses certain characteristics or metrics

associated with the region that provides knowledge of its pruning capacity. This technique

is a cost saver for the following two reasons. One, by repartitioning only selected regions

in iteration i+1, all resources spent on generating the output space in the previous iteration

i is not lost. Two, in any given iteration no resources need be spent on regions that will

result in zero or limited number of regions being eliminated.

We shall now discuss how the region selector goes about selecting the right regions

and provide us cost savings. At the end of the one pass scan all regions from Rtemp

and Spes are added to the priority queue P that is part of the region selector component.

These are the regions that have remained un-dominated and will now be considered for

repartitioning. In every iteration one region will be selected to be repartitioned. In order

to make this selection we rank all regions based on certain parameters or metrics. In this

work we use alternate metrices, namely eudlidean distance and dominance potential. In

the remainder of this section we shall discuss the intent behind each of these metrices,

understand their computation and maintenance within the framework and anaylze the

costs incurred in doing so.

Euclidean Distance This metric is based on the fundamental intuition behind skylines:

a point closer to the origin has greater probablity of dominating another point farther

away from the origin than vice-versa. In Figure 6.1.a euclidean distance is applied on

the output space and region R1 is selected for repartitioning. The euclidean distance of

region R1 is computed as the euclidean distance of between the lower bound of region

25

(a) Euclidean Distance heuristic (b) Output scenario where Euclidean distance is not effective

(c) Dominance Potential Heuristic

Figure 6.1: Heuristics used by Region Selector

R1 or LOWER(R1) (Refer table 1 for notations) and the origin. The cost of computing

the distance is constant for a given input of d dimensions and mapping functions. As the

distance of a region from the origin is never going to change their is no overhead cost

of maintaining this metric. The only cost incurred is the cost of adding these regions in

every iteration which is given by O
(
log(|N |)

)
where N is the number of regions to be

added to the queue in that iteration.

Dominance Potential As nearness to origin is an intuitive metric and does not take into

account any cost based metric, it may not always be correct. Figure 6.1.b shows a scenario

in which Euclidean distance would have selected region R1 for repartitioning. However,

6.1.c shows that choosing R3 over R1 will prune more area. Therefore we have come up

with the dominance potential driven metric that takes into account the number of regions a

given region can potentially dominate. Although we have introduced two metrices in this

26

work, one can plugin any metric that can help order the regions and reduce costs. We will

now look into the details of this metric to understand how it is computed and what are the

overhead costs associated with their maintenance. Dominance potential is defined as the

number of regions dependent on it. Higher the number of dependents higher is the region’s

dominance potential. A regionR1 is said to be dependent on regionR2 if LOWER(R2)�

LOWER(R1) and UPPER(R2) � UPPER(R1). Here region R2 becomes a dependee of

R1. We will now discuss the computation of this metric and its maintenance cost. When

the output space is computed for the first time each region is compared with every other

region to create a list of dependents and dependees for every region. Based on count of the

dependents list the regions are stored in P to determine their priority for selection. The

cost incurred in the first iteration is O(N2
f · d) where Nf is the number of regions after

all possible elimination in the first iteration. Thereafter, in subsequent iterations, the one

pass scan of the output region generator is replaced by a Dependent Region Elimination

Scan. Like the one pass scan, this too is performed after the incremental maintenance of

Spes. However, in this case, instead of comparing all output regions with Spes we com-

pare the dependents of the region with the newly created regions. Whenever a dependent

region is eliminated, we create a ripple effect such that the count of all dependents and

dependees of this eliminated region is reduced by one. The cost of performing this main-

tenance operation for a selected region is Ndep(O(Ndependent + Ndependee)) where Ndep

is the number of dependents of the region and Ndependent and Ndependee are the number

of dependents and dependees of the eliminated region. In the process of comparing new

regions to their parent region’s dependents their own dependent list is generated. The cost

of computing dependents of these newly created regions is O(Ndep ·Nnew ·d) where Nnew

is the number of new regions that remain un-dominated by Spes. The benefit obtained

from this exercise is O(Ndep · Cost(Ra,b)) where Cost(Ra,b) is the cost of performing

micro-level processing on a region.

27

Threshold Analyzer. This is the second decision making component of our frame-

work. Once a region is selected, the threshold analyzer component verifies it against the

threshold value. In this work, we define threshold in terms of the cardinality input parti-

tions of a region. If the cardinality of the input partitions is smaller than the threshold the

output region is removed from the priority queue. It is then passed on to the adaptor for

repartitioning its input partitions. There is practically no cost over head in maintaining

this metric value.

28

Chapter 7

Output Region Generator

Figure 7.1: Output Region Generator

Output Region Generator accomplishes the operations of eliminating dominated output

regions with the help of the pessimistic skyline, Spes. It incrementally maintains the

pessimistic skyline and at the same time eliminates regions that are dominated by Spes.

29

Figure 7.1 illustrates the control flow in the Output Region Generator. Any region that

is not part of Spes but remains un-dominated is stored in a temporary output region list

called Rtemp. The first pass generates output regions and performs incremental Spes

maintenance. By incremental maintenance we mean the following. Each newly generated

region is only compared with regions in Spes to check whether it is going to be eliminated.

If it is not then, there is a possibility that it may be added to Spes. Furthermore, it is also

possible that it displaces an output region from Spes to Rtemp. At the end of this first pass

we get the final Spes as all newly generated regions have been compared against it. At this

point there may be some output regions in Rtemp that are by now completely dominated

but are still not eliminated because they were never compared to the incoming regions.

The second pass which we call the one pass scan identifies these dominated regions and

eliminates them by performing dominance comparisons between all regions inRtemp with

Spes.

30

Chapter 8

The Adaptor

This component is reponsible for repartitioning the selected regions. In order to under-

stand the process let us first revisit how a region is formed in the first place. Consider

figure 8.1 that shows two input partitions IR and IT . These two partitions need to be

joined using the following mapping functions:

fx : R.distance+ T.distance = tdistance and fy : R.price+ T.price = tprice

Applying the above mapping functions to IR and IT we obtain the output regionR1 as

shown in Figure 8.1. Thus we perform the join operation at a higher level of abstraction.

Now that we have revisited how regions are formed will start understanding how re-

gions are adapted? Consider that during one of the iterations region R1 created above is

selected for adapting or repartitioning. Below are the 2 steps taken to adapt the region:

Step 1: To divide a region first divide its input partitions

Inorder to divide the partitions we first need to determine a smaller δ. For the sake of

simplicity in this work we have chosen the new δ also called δ’ to be half of the previous

δ . i.e. δ’ = δ/2. Note that now that we have built a framework, any complex metric for

selecting δ’ can be plugged into this. After repartitioning the new input partitions that are

created are shown in Figure 8.2.b.

31

Figure 8.1: How Input Partitions are combined to form Output Region by applying Map-
ping Functions

(a) Input partitions before repartitioning (b) Input partitions after repartitioning

Figure 8.2: Step 1: Repartition the input partitions that form the selected output region

Note that since R1 is now adapted, we delete it from memory. However that does

not imply that the original input partitions of R1 can also be deleted. We store the child

partitions in a hierarchical structure. This is done for the following reasons. Each input

partition in relation R combines with all input partitions of region T to create output

regions. Therefore it is possible that even after elimination of regions an input partition

IR may still belong to more than one output region. Let us assume that the Decision

Maker selects one of the regions R1 to which IR belongs. Now, there may be another

region R2 that still refers to IR. Therefore it cannot be removed from the system. Also, if

susbequently R2 is selected for repartitioning it need not re-create the child partitions of

32

IRa , but can directly access its children created earlier.

Step 2: Combine all child partitions to form new but smaller output regions

This step is performed by the Output Region Generator but for the sake of continuity

it is important to discuss it here. As we discussed in Section 2, these newly created input

partitions will join based on the join attributes. For simplicity if we assume that all input

partitions combine with one another in both data sets, we get a new set of output regions

to replace the repartitioned parent region.

Having discussed out framework in technical depth we will now analyze its perfor-

mance with respect to SKIN.

33

Chapter 9

Experimental Evaluation

In this section, we verify the effectiveness of our proposed AdaptiveSky approach in com-

parison to the SKIN. A detailed comparison of SKIN against state-of-the-art techniques

can be found in our recently published work [13].

Experimental Platform. All experiments were conducted on a Linux machine(s)

with AMD 2.6GHz Dual Core Opteron CPUs with 8 GB of memory. The algorithms were

implemented in Java. In our analysis we use the total execution time as the comparison

metric.

Benchmark Data. We conduct our experiments using data sets generated by [2]– de-

facto standard for stress testing skyline algorithms. The data sets contain three extreme

attribute correlations, namely independent, correlated, or anti-correlated. For each data

set (R and T), we vary the number of skyline dimensions d while keeping the cardinality

N constant at [500K]. The attribute values are real numbers in the range of [1–100]. The

join selectivity σ is varied in the range [10−3–10−1]. We set |R| = |T | = N .

Experimental Analysis of SKIN: Effect of δ We first experimentally show the ef-

fects of varying partition sizes δ on SKIN approach. As illustrated earlier in Section ??

the effectiveness of SKIN greatly depends on the ratio between the tuple-level vs. the

34

1e+01

1e+02

1e+03

1e+04

1e+05

5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Correlated; 0.1 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

1e+01

1e+02

1e+03

1e+04

5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Correlated; 0.01 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(a) σ = 0.1 (b) σ = 0.01

1e+00

1e+01

1e+02

1e+03

5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Correlated; 0.001 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(c) σ = 0.001

Figure 9.1: Effect Partition Size δ on SKIN executed on Correlated data set

abstract-level granularity. Figures 9.1, 9.2 and 9.3 show the execution time of SKIN for

correlated, independent and anti-correlated data sets respectively for varying join selec-

tivities. Smaller partition sizes result in many sparsely populated input partitions, and

therefore the overhead costs of macro-level processing will out-weigh its benefits. This

is evident for all three distributions. Alternatively, as δ is increased the execution costs

of macro-level processing is reduced, reflected by the dip in execution time. Larger δ

however may only marginally reduce the number of combined objects generated but will

increase the number of combined objects to be compared against the output space. This

is depicted by the slow rise in execution costs as δ increases. Results in Figures 9.1, 9.2

and 9.3 imply that SKIN is only as good as its δ.

Experimental Analysis of AdaptiveSky: Effect of threshold

In this experiment, we study the effect of varying the threshold value on AdaptiveSky

approach. Besides the threshold we vary (1) data distributions, (2) dimensions d and (3)

join factor σ. For a given dimension d, data distribution, join factor σ and cardinality

35

1e+02

1e+03

1e+04

1e+05

 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Independent; 0.1 Selectivity

3 dimensions
4 dimensions
5 dimensions

1e+02

1e+03

1e+04

1e+05

5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Independent; 0.01 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(a) σ = 0.1 (b) σ = 0.01

1e+01

1e+02

1e+03

1e+04

1e+05

5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Independent; 0.001 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(c) σ = 0.001

Figure 9.2: Effect Partition Size δ on SKIN executed on Independent data set

N=500K, we measure the normalized execution time for each threshold. A meaningful

stopping condition is at the heart of any iterative technique. In this work the threshold

value is used as our stopping condition. In this evaluation we have presented threshold

as a percentage of the size of the input data sets that are participating in the join query.

When the cardinality of input partitions of an output region is less than threshold% of |N |

then the output region is no longer considered for repartitioning. In Figures 9.4, 9.5 and

9.6 AdaptiveSky displays consistent performance across the selected threshold values for

each data distribution.

AdaptiveSky vs. SKIN. Next, we compare SKIN against our proposed AdpativeSky

approach. In the case of SKIN we have measured its execution time with two δ. SKIN (H)

is measured with a high performing due to a good pick of δ while SKIN (L) is measured

with a low performing sub-optimal δ. This is to show that SKIN’s performance is solely

dependent on the selected δ and can be easily surpassed if not selected on the basis on em-

pirical knowledge. Figures 9.7,9.8, and 9.9 compare the execution time of AdaptiveSky

36

1e+02

1e+03

1e+04

1e+05

1e+06

 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Anti-Correlated; 0.1 Selectivity

3 dimensions
4 dimensions
5 dimensions

1e+02

1e+03

1e+04

1e+05

1e+06

 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Anti-Correlated; 0.01 Selectivity

3 dimensions
4 dimensions
5 dimensions

(a) σ = 0.1 (b) σ = 0.01

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 5 10 15 20 25 30 35 40 45

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Delta

Effect of Delta on SKIN; Distribution-Anti-Correlated; 0.001 Selectivity

3 dimensions
4 dimensions
5 dimensions

(c) σ = 0.001

Figure 9.3: Effect Partition Size δ on SKIN executed on Anti-Correlated data set

vs. SKIN for varying dimensions d[3− 5], data distributions and join selectivities.

For correlated data , AdaptiveSky performs greater than 1 order of magnitude faster

than SKIN (L) irrespective of dimensions. In the case of SKIN (H), as the dimensions

increases picking an uniform delta affects performance making the AdaptiveSky approach

1 order of magnitude faster. For independent distribution and d = 3, AdaptiveSky is found

to be at most 1 order of magnitude faster than low performing SKIN (L). In comparisons

to SKIN (H) and d = 3, the adaptive approach is 1.5 folds faster. In the case of d = 5, the

adaptive approach is about 20% faster than SKIN (L) and marginally better than SKIN

(H). For anti-correlated data, AdaptiveSky performs markedly better than SKIN (L) while

being comparable to SKIN’s performance when an optimal δ is chosen.

No. of combined objects generated and No. of dominance comparisons. In Figures

9.10, 9.11 and 9.12 we have compared the number of combined objects between Adap-

tiveSky and high performing SKIN. The observations are in line with what would be

expected from the execution time comparisons. For correlated distribution AdaptiveSky

37

0e+00

5e+01

1e+02

2e+02

2e+02

2e+02

3e+02

0.01 1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Correlated; 0.1 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

0e+00

2e+01

4e+01

6e+01

8e+01

1e+02

1e+02

1e+02

2e+02

2e+02

2e+02

0.01 1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Correlated; 0.01 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(a) σ = 0.1 (b) σ = 0.01

0e+00

2e+01

4e+01

6e+01

8e+01

1e+02

1e+02

1e+02

2e+02

2e+02

0.01 1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Correlated; 0.001 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(c) σ = 0.001

Figure 9.4: Effects of Threshold on AdaptiveSky executed on Correlated data set

has been able to minimize both parameters by 1-2 orders of magnitude thus resulting in

significant performance gain as shown in 9.7. In case of independent and anti-correlated

data sets both high performing SKIN and AdaptiveSky perform neck to neck. In this ex-

periment too the No. of combined objects generated and No. of dominance comparisons

are at similar levels for d = 4 and d = 5.

Experimental Conclusions. The main findings of our performance study can be summa-

rized as follows: (1) our AdaptiveSky is robust to all three distributions. (2) AdaptiveSky

outperform the low performing SKIN (L) in many cases by several orders of magnitude.

It also outperforms the high performing SKIN (L) for correlated data sets. (3) Our pro-

posed approach has made the process independent of a pre-determined δ that is shown to

have a very high impact on performance.

38

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

3e+04

4e+04

1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Independent; 0.1 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

0e+00

5e+02

1e+03

2e+03

2e+03

2e+03

3e+03

1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Independent; 0.01 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(a) σ = 0.1 (b) σ = 0.01

0e+00

1e+02

2e+02

3e+02

4e+02

5e+02

6e+02

1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Independent; 0.001 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(c) σ = 0.001

Figure 9.5: Effects of Threshold on AdaptiveSky executed on Independent data set

0e+00

5e+04

1e+05

2e+05

2e+05

2e+05

1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Anti-Correlated; 0.1 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Anti-Correlated; 0.01 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(a) σ = 0.1 (b) σ = 0.01

1e+01

1e+02

1e+03

1e+04

1.0 2.0 3.0 4.0

Ex
ec

ut
io

n
Ti

m
e

% Threshold

Effect Of Threshold; 3d, Distribution-Anti-Correlated; 0.001 Selectivity

Dimension = 3
Dimension = 4
Dimension = 5

(c) σ = 0.001

Figure 9.6: Effects of Threshold on AdaptiveSky executed on Anti-Correlated data set

39

1e+01

1e+02

1e+03

1e+04

1e+05

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Correlated; 0.1 Selectivity

Adaptive PB-SMJ ED
Adaptive PB-SMJ DP

SKIN(H)
SKIN(L)

1e+00

1e+01

1e+02

1e+03

1e+04

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Correlated; 0.01 Selectivity

AdaptiveSky-ED
AdaptiveSky-DP

SKIN(H)
SKIN(L)

(a) σ = 0.1 (b) σ = 0.01

1e+00

1e+01

1e+02

1e+03

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Correlated; 0.001 Selectivity

Adaptive PB-SMJ ED
Adaptive PB-SMJ DP

SKIN(H)
SKIN(L)

(c) σ = 0.001

Figure 9.7: Execution Time comparisons between AdaptiveSky and SKIN in Correlated
data

1e+02

1e+03

1e+04

1e+05

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Independent; 0.1 Selectivity

Adaptive PB-SMJ ED
Adaptive PB-SMJ DP

SKIN(H)
SKIN(L)

1e+02

1e+03

1e+04

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Independent; 0.01 Selectivity

Adaptive PB-SMJ ED
Adaptive PB-SMJ DP

SKIN(H)
SKIN(L)

(a) σ = 0.1 (b) σ = 0.01

1e+01

1e+02

1e+03

1e+04

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Independent; 0.001 Selectivity

Adaptive PB-SMJ ED
Adaptive PB-SMJ DP

SKIN(H)
SKIN(L)

(c) σ = 0.001

Figure 9.8: Execution Time comparisons between AdaptiveSky and SKIN in Independent
data

40

1e+03

1e+04

1e+05

3 4 5

Ex
ec

ut
io

n
Ti

m
e

Dimension

Comparison of Algorithms; Distribution-AntiCorrelated; 0.1 Selectivity

Adaptive PB-SMJ ED
Adaptive PB-SMJ DP

SKIN(H)
SKIN(L)

1e+02

1e+03

1e+04

1e+05

3 4 5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

[L
og

 S
ca

le
]

Dimension

Comparison of Algorithms; Distribution-Anti-Correlated; 0.01 Selectivity

AdaptiveSky-ED
AdaptiveSkyDP

SKIN(H)
SKIN(L)

(a) σ = 0.1 (b) σ = 0.01

1e+01

1e+02

1e+03

1e+04

3 4 5

Ex
ec

ut
io

n
Ti

m
e

Dimension

Comparison of Algorithms; Distribution-Anti-Correlated; 0.001 Selectivity

AdaptiveSky-ED
AdaptiveSkyDP

SKIN(H)
SKIN(L)

(c) σ = 0.001

Figure 9.9: Execution Time comparisons between AdaptiveSky and SKIN in Anti-
Correlated data

(a) σ = 0.1 (b) σ = 0.01

(c) σ = 0.001

Figure 9.10: No. of combined objects and dominance comparison count between SKIN
and AdaptiveSky for Correlated data set

41

(a) σ = 0.1 (b) σ = 0.01

(c) σ = 0.001

Figure 9.11: No. of combined objects and dominance comparison count between SKIN
and AdaptiveSky for Independent data set

(a) σ = 0.1 (b) σ = 0.01

(c) σ = 0.001

Figure 9.12: No. of combined objects and dominance comparison count between SKIN
and AdaptiveSky for Anti-Correlated data set

42

Chapter 10

Related Work

Skyline Algorithms over Single Relation. The majority of research on skylines has

focused on the efficient computation of a skyline over a single set [1, 2, 11].

Skyline Algorithms over Disparate Sources. In the context of returning meaningful

results by relaxing user queries, [8] presented various strategies that follow the join-first,

skyline-later (JF-SL) paradigm (see Section ??). This approach does not consider map-

ping functions. In fact, it is shown to be effective only for correlated data where the

combined-object generation can be stopped early [2] confirming the findings presented

in [8]. [5, 6] proposed SSMJ (Skyline Sort Merge Join) technique to handle skylines over

join by primarily exploiting the principle of skyline partial push-through. This approach

suffers from the following three drawbacks. First, SSMJ is only benefitial when the lo-

cal level pruning decisions can successfully prune a large number of objects, like skyline

friendly data sets such as correlated and independent data sets or very high selectivity [14].

Second, since they do not have any knowledge of the mapped output space, similar to JF-

SL, SSMJ is unable to exploit this knowledge to reduce the number of dominance com-

parisons. Third, the guarantee that objects in the set-level skyline of an individual table

clearly contribute to be in the output no longer holds here. This is so because they do not

43

consider mapping functions which can affect dominance characteristics. Following the

principles proposed in [6], [7] recently have proposed extensions in Postgres to support

for a variety of preference queries.

Adaptive techniques in Skylines. [15] proposes an adaptive algorithm for controlling the

degree of parallelism and the required network traffic while computing skyline result in

a distributed environment. [3] too addresses the skyline computation for single data sets

in a distributed environment but for higher dimensional data sets. They use dimension

reduction techniques to reduce the dimensions to 1 single dimension. These techniques

however limit themselves to processing skylines over a single data set.

Top-K or Ranked Queries retrieve the best K objects that minimize a user-defined scor-

ing function to name a few [4, 9, 10]. That is, from a totally ordered set of objects such

queries fetch the top K objects, where the ordering criterion is a single scoring function.

In contrast, the skyline operator returns a set of non-dominated objects based on multiple

criteria in a multi-dimensional space and from a strict partially ordered set of objects.

Therefore, the objects returned by Top-K may not be part of the skyline [11], or vice

versa.

44

Chapter 11

Conclusion

The efficient evaluation of skyline over disparate sources is burdened by two primary

component cost factors, namely the cost of generating the intermediate join results and the

cost of dominance comparisons to compute the final skyline of join results. State-of-the-

art techniques handle this by primarily relying on making local pruning decisions at each

source, and do not consider scenarios when attributes across these sources through user-

defined mapping functions to characterize the final result. Although SKIN overcomes

these drawbacks, it suffers from the dependence of its performance on a pre-determined

abstraction level which may lead to poor performance if chosen level is poor. In this

work, we proposed AdaptiveSky that dynamically chooses the abstraction level of output

spaces based on knowledge of their pruning capacity. This helps in attaining a balance

between the benefits of effective elimination in the output space and the cost of adapting

abstraction levels. We demonstrate the superiority of our approach over SKIN confirming

the effectiveness of our methodology.

45

Chapter 12

Future Work

One of the key challenges that we address to achieve effective elimination is which otuput

region should be selected and how it should be repartitioned. In our current approach the

’which’ question is answered by the Euclidean distance and Dominance potential meth-

ods of selection. Another, parameter that could play an important role in determining

the effectiveness of elimination in skewed data sets is the data population of the regions

being eliminated. Let us assume that, according to the Dominance Potential method we

select region Ra,b for repartitioning and that Ra,b’s dependent count is Ndep. In a uniform

distribution the number of output ojects pruned by the elimination of these Ndep is pro-

portional toNdep, i.e. O(Ndep ·(σ) ·nR
a ·nT

b). However this is not the case in a skewed data

set like an anti-correlated one. In such data sets if the dependent regions being pruned

are scarcely populated, the cost of repartitioning the region may not be worth the small

benefit achieved. Therefore, for such scenarios having a Data Population based metric for

the priority queue could be a viable option.

In our approach the second question of ’how’ to repartition is addressed by consider-

ing δnew to be 1/2(δ) for a given partition. This is a rather simplistic approach to address

the issue. A more sophisticated and effective method of determining a new δ could be as

46

follows. Instead of having a uniform δnew for all dimensions of the parent partition, we

could have a different δnew for each dimension. Inorder to find δnew for each dimension

we need to maintain the minimum partition size such that the new region dominates all its

dependent regions in that dimension. On one hand it may increase the computation cost

for maintaining this minimum size, however it will also gaurantee that by repartitioning a

region once, all its dependents are eliminated.

Another opportunity of optimization is to to use data structures different than the

priority queue for selecting regions. Because the purpose is basically to retrieve the best

region in that particular iteration a Heap could be used for better performance.

An important area of improvement is using this framework for higher dimensions.

Currently our framework only supports 3 to 5 dimensions. However by using some hier-

archical grid based data structures specially made for higher dimension data like X-trees,

our AdaptiveSky framework could be extended for higher dimensions.

So far we have been focussing more on the algorithmic side of the framework. An

important improvement that can be made to this framework is on its design. Inorder

to get the maximum benefits of a plug and play model for using a variety of metrices

applying a components based design is the best way forward.

Acknowledgment

This work is supported by the National Science Foundation under Grant No. IIS-0633930

and CRI-0551584. I thank Dr. Donald Kossmann for the synthetic data generator, which

is the de-facto benchmark data sets for skyline evaluation. I also thank Professor Elke A.

Rundensteiner and Venkatesh Raghavan for their invaluable inputs, unending support and

guidance.

47

Bibliography

[1] I. Bartolini, P. Ciaccia, and M. Patella. Salsa: computing the skyline without scan-

ning the whole sky. In CIKM, pages 405–414, 2006.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages

421–430, 2001.

[3] L. Chen, B. Cui, H. Lu, L. Xu, and Q. Xu. isky: Efficient and progressive skyline

computing in a structured p2p network. In ICDCS, pages 160–167, 2008.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.

In PODS, pages 102–113, 2001.

[5] W. Jin, M. Ester, Z. Hu, and J. Han. The multi-relational skyline operator. In ICDE,

pages 1276–1280, 2007.

[6] W. Jin, M. Morse, J. Patel, M. Ester, and Z. Hu. Evaluating skylune in the presence

of equi-joins. In ICDE, pages 249–260, 2010.

[7] M. Khalefa, M. F. Mokbel, and J. Levandoski. Prefjoin: An efficient preference-

aware join operator. In ICDE, 2011, To Appear.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join and selection

queries. In VLDB, pages 199–210, 2006.

48

[9] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: Query algebra and op-

timization for relational top-k queries. In SIGMOD Conference, pages 131–142,

2005.

[10] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting incremen-

tal join queries on ranked inputs. In VLDB, pages 281–290, 2001.

[11] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm

for skyline queries. In SIGMOD Conference, pages 467–478, 2003.

[12] V. Raghavan and E. A. Rundensteiner. Progressive result generation for multi-

criteria decision support queries. In ICDE, pages 733–744, 2010.

[13] V. Raghavan, S. Srivastava, and E. Rundensteiner. Skyline and mapping aware join

query evaluation. Information Systems (2011), To Appear. Technical Report: WPI-

CS-TR-09-03.

[14] D. Sun, S. Wu, J. Li, and A. K. H. Tung. Skyline-join in distributed databases. In

ICDE Workshops, pages 176–181, 2008.

[15] G. Valkanas and A. N. Papadopoulos. Efficient and adaptive distributed skyline

computation. In SSDBM, pages 24–41, 2010.

49

	Worcester Polytechnic Institute
	Digital WPI
	2011-04-03

	Look Before You Leap: An Adaptive Processing Strategy For Multi-Criteria Decision Support Queries
	Shweta Srivastava
	Repository Citation

	tmp.1530275769.pdf.bWLAx

