
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2009-01-16

An Inertial-Optical Tracking System for
Quantitative, Freehand, 3D Ultrasound
Abraham Myron Goldsmith
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Goldsmith, Abraham Myron, "An Inertial-Optical Tracking System for Quantitative, Freehand, 3D Ultrasound" (2009). Masters Theses (All
Theses, All Years). 107.
https://digitalcommons.wpi.edu/etd-theses/107

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/107?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu


An Inertial-Optical Tracking System for Quantitative,
Freehand, 3D Ultrasound

by

Abraham Myron Goldsmith

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical Engineering

December 2008

APPROVED:

Dr. Peder C. Pedersen

Dr. Cosme Furlong

Dr. Edward Clancy

Dr. Thomas L. Szabo

Dr. Fred J. Looft

Department of Electrical and Computer Engineering





Abstract

Three dimensional (3D) ultrasound has become an increasingly popular medical imaging tool

over the last decade. It offers significant advantages over Two Dimensional (2D) ultrasound,

such as improved accuracy, the ability to display image planes that are physically impossible

with 2D ultrasound, and reduced dependence on the skill of the sonographer. Among 3D

medical imaging techniques, ultrasound is the only one portable enough to be used by first

responders, on the battlefield, and in rural areas.

There are three basic methods of acquiring 3D ultrasound images. In the first method, a

2D array transducer is used to capture a 3D volume directly, using electronic beam steering.

This method is mainly used for echocardiography. In the second method, a linear array

transducer is mechanically actuated, giving a slower and less expensive alternative to the

2D array. The third method uses a linear array transducer that is moved by hand. This

method is known as freehand 3D ultrasound.

Whether using a 2D array or a mechanically actuated linear array transducer, the po-

sition and orientation of each image are known ahead of time. This is not the case for

freehand scanning. To reconstruct a 3D volume from a series of 2D ultrasound images, as-

sumptions must be made about the position and orientation of each image, or a mechanism

for detecting the position and orientation of each image must be employed. The most widely

used method for freehand 3D imaging relies on the assumption that the probe moves along

a straight path with constant orientation and speed. This method requires considerable

skill on the part of the sonographer. Another technique uses features within the images

themselves to form an estimate of each image’s relative location. However, these techniques

i



are not well accepted for diagnostic use because they are not always reliable. The final

method for acquiring position and orientation information is to use a six Degree-of-Freedom

(6 DoF) tracking system. Commercially available 6 DoF tracking systems use magnetic

fields, ultrasonic ranging, or optical tracking to measure the position and orientation of a

target. Although accurate, all of these systems have fundamental limitations in that they

are relatively expensive and they all require sensors or transmitters to be placed in fixed

locations to provide a fixed frame of reference.

The goal of the work presented here is to create a probe tracking system for freehand

3D ultrasound that does not rely on any fixed frame of reference. This system tracks the

ultrasound probe using only sensors integrated into the probe itself. The advantages of such

a system are that it requires no setup before it can be used, it is more portable because

no extra equipment is required, it is immune from environmental interference, and it is less

expensive than external tracking systems.

An ideal tracking system for freehand 3D ultrasound would track in all 6 DoF. However,

current sensor technology limits this system to five. Linear transducer motion along the skin

surface is tracked optically and transducer orientation is tracked using MEMS gyroscopes.

An optical tracking system was developed around an optical mouse sensor to provide

linear position information by tracking the skin surface. Two versions were evaluated. One

included an optical fiber bundle and the other did not. The purpose of the optical fiber

is to allow the system to integrate more easily into existing probes by allowing the sensor

and electronics to be mounted away from the scanning end of the probe. Each version was

optimized to track features on the skin surface while providing adequate Depth Of Field

(DOF) to accept variation in the height of the skin surface.

Orientation information is acquired using a 3 axis MEMS gyroscope. The sensor was

thoroughly characterized to quantify performance in terms of accuracy and drift. This data

provided a basis for estimating the achievable 3D reconstruction accuracy of the complete

system. Electrical and mechanical components were designed to attach the sensor to the

ultrasound probe in such a way as to simulate its being embedded in the probe itself.

An embedded system was developed to perform the processing necessary to translate

ii



the sensor data into probe position and orientation estimates in real time. The system

utilizes a Microblaze soft core microprocessor and a set of peripheral devices implemented

in a Xilinx Spartan 3E field programmable gate array. The Xilinx Microkernel real time

operating system performs essential system management tasks and provides a stable software

platform for implementation of the inertial tracking algorithm.

Stradwin 3D ultrasound software was used to provide a user interface and perform the

actual 3D volume reconstruction. Stradwin retrieves 2D ultrasound images from the Terason

t3000 portable ultrasound system and communicates with the tracking system to gather

position and orientation data. The 3D reconstruction is generated and displayed on the

screen of the PC in real time. Stradwin also provides essential system features such as

storage and retrieval of data, 3D data interaction, reslicing, manual 3D segmentation, and

volume calculation for segmented regions.

The 3D reconstruction performance of the system was evaluated by freehand scanning

a cylindrical inclusion in a CIRS model 044 ultrasound phantom. Five different motion

profiles were used and each profile was repeated 10 times. This entire test regimen was

performed twice, once with the optical tracking system using the optical fiber bundle, and

once with the optical tracking system without the optical fiber bundle. 3D reconstructions

were performed with and without the position and orientation data to provide a basis for

comparison.

Volume error and surface error were used as the performance metrics. Volume error

ranged from 1.3% to 5.3% with tracking information versus 15.6% to 21.9% without for the

version of the system without the optical fiber bundle. Volume error ranged from 3.7% to

7.6% with tracking information versus 8.7% to 13.7% without for the version of the system

with the optical fiber bundle. Surface error ranged from 0.319 mm RMS to 0.462 mm RMS

with tracking information versus 0.678 mm RMS to 1.261 mm RMS without for the version

of the system without the optical fiber bundle. Surface error ranged from 0.326 mm RMS to

0.774 mm RMS with tracking information versus 0.538 mm RMS to 1.657 mm RMS without

for the version of the system with the optical fiber bundle.

The prototype tracking system successfully demonstrated that accurate 3D ultrasound

iii



volumes can be generated from 2D freehand data using only sensors integrated into the

ultrasound probe. One serious shortcoming of this system is that it only tracks 5 of the 6

degrees of freedom required to perform complete 3D reconstructions. The optical system

provides information about linear movement but because it tracks a surface, it cannot

measure vertical displacement. Overcoming this limitation is the most obvious candidate

for future research using this system. The overall tracking platform, meaning the embedded

tracking computer and the PC software, developed and integrated in this work, is ready to

take advantage of vertical displacement data, should a method be developed for sensing it.

iv



Acknowledgements

I would like to thank professor Peder C. Pedersen for his financial, academic, and personal

support. His guidance played a crucial role in my success. I would also like to thank

professor Cosme Furlong for his assistance in the development of the optical tracking system

and professor Thomas Szabo for his myriad contributions to this effort.

For developing and making available the Stradwin 3D ultrasound software, I would like

to thank Dr. Andrew Gee, Dr. Graham Treece, and Dr. Richard Prager, of the University

of Cambridge in England. A special thanks to Dr. Treece for providing personal support

and building a special version of Stradiwn to aide my experiments.

The ultrasound phantom used for the performance testing was loaned to us, free of

charge, by CIRS Inc.

Last, but not least, I would like to thank Pat Morrison from the Atwater Kent shop and

Neil Whitehouse from Higgens Laboratories for teaching me how to use machine tools. I

could never have built this system without them.

v



vi



Contents

1 Introduction 1

1.1 3D Ultrasound Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 2D Array Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Mechanically Actuated 1D Array Transducers . . . . . . . . . . . . . . 3

1.1.3 Manually Actuated 1D Array Transducers . . . . . . . . . . . . . . . . 4

1.2 Motivation for Development of a Novel Tracking System for Freehand 3D

Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Overview of a Freehand 3D Ultrasound System . . . . . . . . . . . . . . . . . 7

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 3D Visualization Platforms 11

2.1 CustusX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Stradwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Stradwin User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Stradwin Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Electrical and Optical System Components 23

vii



3.1 Gyroscopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Gyration MG1101a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Analog Devices ADIS16255 . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Analog Devices ADIS16350 . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Linear Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 ST Microelectronics LIS3LV02DL 3-Axis Linear Accelerometer . . . . 30

3.3 Optical Linear Motion Sensors, Lenses, and Optical Fiber Bundles . . . . . . 31

3.3.1 Avago ADNS-2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Avago HDNS-2100 Optical Mouse Lens . . . . . . . . . . . . . . . . . 32

3.3.3 Elmo QT288 Objective Lens . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4 Schott Acid Leached Fiber Bundle . . . . . . . . . . . . . . . . . . . . 34

3.3.5 Edmund’s Optical Fiber Optic Rod . . . . . . . . . . . . . . . . . . . . 34

4 Test Platforms 37

4.1 Data Acquisition Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 PICDEM FS-USB Demonstration Board . . . . . . . . . . . . . . . . . 38

4.1.2 MG1101a Gyroscope Physical Interface . . . . . . . . . . . . . . . . . 40

4.1.3 ADIS16255 Gyroscope Physical Interface . . . . . . . . . . . . . . . . 42

4.1.4 ADNS-2610 Optical Mouse Sensor Physical Interface . . . . . . . . . . 42

4.1.5 EK3LV02DQ Linear Accelerometer Evaluation Module . . . . . . . . . 44

4.2 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 MG1101a Gyroscope Communication Firmware . . . . . . . . . . . . . 45

4.2.2 ADNS-2610 Optical Mouse Sensor Communication Firmware . . . . . 45

4.2.3 ADIS16255 Gyroscope Communication Firmware . . . . . . . . . . . . 49

4.3 Aerotech ADRS-200 Rotation Table and Soloist CP Servo Controller . . . . . 53

4.4 HP7255A XY Plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Data Collection and Analysis Software . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Universal Serial Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



4.5.2 User Level USB Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.3 Device Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.4 Matlab Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Gyroscope Experiments 65

5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Static Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.2 Dynamic Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Static Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Dynamic Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Accelerometer Experiments 93

6.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Optical System 109

7.1 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Previous Work on Optical Tracking with the ADNS-2610 Optical Mouse Sensor111

7.3 Optical Tracking Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Experiments to Quantify the Optimal Dimensions of the Optical System . . . 118

7.4.1 Direct Imaging Configuration . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.2 Indirect Imaging with the Schott Fiber Bundle . . . . . . . . . . . . . 132

7.4.3 Indirect Imaging with the Edmunds Fiber Bundles . . . . . . . . . . . 139

7.4.4 Tracking Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5 Final Optical System Implementation . . . . . . . . . . . . . . . . . . . . . . 154

7.5.1 Direct Imaging Configuration . . . . . . . . . . . . . . . . . . . . . . . 155

7.5.2 Indirect Imaging Configuration . . . . . . . . . . . . . . . . . . . . . . 156

ix



8 Inertial Navigation 159

8.1 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2 Orientation Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.3 Vector Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.4 Time Propagation of the DCM . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9 Prototype System Implementation 169

9.1 Sensor Interface Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.1.1 ADIS16350 Carrier Board . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.1.2 ADNS-2610 Carrier Board . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.1.3 Sensor Module to Demo Board Cable . . . . . . . . . . . . . . . . . . 176

9.2 Microblaze Embedded System . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.2.1 Synchronous Serial Engine . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.3 Navigation Computer Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10 Performance Testing 191

10.1 Test Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.3 Segmentation Technique and Performance Metrics . . . . . . . . . . . . . . . 199

10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.4.1 Volume Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.4.2 Surface Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

11 Conclusion 217

11.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Appendices 225

A 5DOF 3D Ultrasound User’s Guide 227

x



B CustusX-WPI Users Guide 245

C Gyration MG1101a Specifications 269

D Analog Devices ADIS16250 Specifications 271

E Analog Devices ADIS16350 Specifications 273

F Avago ADNS-2610 Specifications 275

G ST Microelectronics LIS3LV02DL Specifications 277

H Edmunds Fiber Optic Bundle Specifications 279

xi



xii



List of Figures

1.1 Internal (a) and external (b) views of a Siemens 4Z1c 2D array transducer. [1] 3

1.2 External type mechanical actuator for 3D ultrasound imaging . . . . . . . . . 4

1.3 A Siemens 7CF2 ultrasound transducer with internal mechanical actuator [2] 5

1.4 Common types of motion generated by mechanical actuation and correspond-

ing 3D image volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Illustration of a freehand 3D ultrasound scan [3] . . . . . . . . . . . . . . . . 6

1.6 Block Diagram of the prototype freehand 3D ultrasound system . . . . . . . . 8

2.1 Layout of the CustusX user interface . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Artificial volume data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 CustusX volume reconstruction with position information . . . . . . . . . . . 17

2.4 CustusX volume reconstruction without position information . . . . . . . . . 17

2.5 Layout of the Stradwin user interface . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Basic structure of a Coriolis vibratory gyroscope [4] . . . . . . . . . . . . . . 25

3.2 Illustration of displacement caused by Coriolis acceleration [4] . . . . . . . . . 25

3.3 Gyration MG1101a dual-axis MEMS CVG [5] . . . . . . . . . . . . . . . . . . 26

3.4 Analog Devices ADIS16255 single-axis MEMS CVG evaluation module [6] . . 27

3.5 Analog Devices ADIS16350 [7] . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Analog Devices ADIS16350 Tri-Axis MEMS CVG block diagram [8] . . . . . 29

3.7 Basic structure of a linear MEMS accelerometer [9] . . . . . . . . . . . . . . . 29

3.8 Actual structure of a MEMS accelerometer [9] . . . . . . . . . . . . . . . . . . 30

xiii



3.9 LIS3LV02DL Tri-Axis linear accelerometer evaluation module . . . . . . . . . 31

3.10 Conceptual arrangement of optical mouse system components [10] . . . . . . 32

3.11 Avago Technology ADNS-2610 optical motion sensor . . . . . . . . . . . . . . 33

3.12 Avago HDNS-2100 optical mouse lens [11] . . . . . . . . . . . . . . . . . . . . 33

3.13 Elmo QT288 micro lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.14 Schott acid leached fiber bundle . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.15 Edmund’s Optical rigid optical conduit . . . . . . . . . . . . . . . . . . . . . . 35

4.1 High level block diagram of the test system . . . . . . . . . . . . . . . . . . . 39

4.2 PICDEM FS-USB demonstration board [12] . . . . . . . . . . . . . . . . . . . 40

4.3 MG1101a evaluation module . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 MG1101a to PIC18F4550 interface schematic . . . . . . . . . . . . . . . . . . 41

4.5 ADIS16255 to PIC18F4550 interface schematic . . . . . . . . . . . . . . . . . 42

4.6 ADNS-2610 carrier PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Schematic for the ADNS-2610 to PIC18F4550 interface board . . . . . . . . . 44

4.8 ADNS-2610 command formats . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9 ADNS-2610 inter-command timing . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Flowcharts for the basic ADNS-2610 serial communication routines . . . . . . 48

4.11 ADNS-2610 image retrieval flow chart . . . . . . . . . . . . . . . . . . . . . . 50

4.12 ADIS16255 DIN sequence [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.13 ADIS16255 low level timing diagram [13] . . . . . . . . . . . . . . . . . . . . . 52

4.14 Flowcharts for the ADIS16255 single read and write transactions . . . . . . . 54

4.15 The ADRS-200 rotation table and SoloistCP servo controller . . . . . . . . . 55

4.16 The HP7255A XY plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.17 Major host software components . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.18 USB topology [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.19 The USB physical layer [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.20 USB device architecture[15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 MG1101a static test velocity data summary . . . . . . . . . . . . . . . . . . . 67

xiv



5.2 ADIS16255 static test velocity data summary . . . . . . . . . . . . . . . . . . 68

5.3 MG1101a static test position data . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 ADIS16255 static test position data . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Components of gyroscope drift rate [16] . . . . . . . . . . . . . . . . . . . . . 71

5.6 MG1101a static test position data summary . . . . . . . . . . . . . . . . . . . 74

5.7 ADIS16255 static test position data summary . . . . . . . . . . . . . . . . . . 74

5.8 MG1101a Velocity, 1◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.9 MG1101a Position, 1◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.10 ADIS16255 Velocity, 1◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.11 ADIS16255 Position, 1◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.12 MG1101a Velocity, 3◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.13 MG1101a Position, 3◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.14 ADIS16255 Velocity, 3◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.15 ADIS16255 Position, 3◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.16 MG1101a Velocity, 5◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.17 MG1101a Position, 5◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.18 ADIS16255 Velocity, 5◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.19 ADIS16255 Position, 5◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.20 MG1101a Velocity, 10◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.21 MG1101a Position, 10◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.22 ADIS16255 Velocity, 10◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.23 ADIS16255 Position, 10◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.24 MG1101a Velocity, RateRamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.25 MG1101a Position, RateRamp . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.26 ADIS16255 Velocity, RateRamp . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.27 ADIS16255 Position, RateRamp . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Diagram of the effect of gravity on a single axis accelerometer . . . . . . . . . 94

6.2 Diagram of the effect of gravity on a 3 axis accelerometer . . . . . . . . . . . 95

xv



6.3 Unprocessed acceleration data from the x-axis accelerometer . . . . . . . . . . 97

6.4 Fast Fourier transform of the unprocessed x-axis accelerometer data . . . . . 98

6.5 Transfer function of the linear phase FIR filter applied to the acceleration data 98

6.6 Acceleration data after filtering to remove high frequency content . . . . . . . 99

6.7 Velocity obtained by integrating the filtered accelerometer data . . . . . . . . 99

6.8 Position obtained by twice integrating the filtered accelerometer data . . . . . 100

6.9 Effect of subtracting the data mean . . . . . . . . . . . . . . . . . . . . . . . . 101

6.10 Effect of subtracting only the static bias . . . . . . . . . . . . . . . . . . . . . 103

6.11 Effect of subtracting the static and dynamic bias . . . . . . . . . . . . . . . . 104

6.12 Estimate of dynamic bias present in the accelerometer data . . . . . . . . . . 105

7.1 Graphical representation of illumination and sample angle . . . . . . . . . . . 112

7.2 Experimental setup for MTF and LPCR testing . . . . . . . . . . . . . . . . . 114

7.3 Graphical representation of LPCR [17] . . . . . . . . . . . . . . . . . . . . . . 115

7.4 Experimental MTF of the fiber bundles . . . . . . . . . . . . . . . . . . . . . 116

7.5 Conceptual view of the direct configuration . . . . . . . . . . . . . . . . . . . 118

7.6 Conceptual view of the indirect configuration . . . . . . . . . . . . . . . . . . 119

7.7 Common experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.8 USAF 1951 test pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.9 Common experimental apparatus with axes defined . . . . . . . . . . . . . . . 121

7.10 Axial Adjuster (A1 & A2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.11 Imager Assembly (IA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.12 Short end fiber carrier (E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.13 Long end fiber carrier (E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.14 Elmo lens carrier (E3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.15 0.062 in diameter fiber carrier (E4) . . . . . . . . . . . . . . . . . . . . . . . . 123

7.16 0.125 in diameter fiber carrier (E5) . . . . . . . . . . . . . . . . . . . . . . . . 123

7.17 Graphical representation of ID and OD . . . . . . . . . . . . . . . . . . . . . 125

7.18 Graphical representation of ID . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xvi



7.19 Graphical representation of OD . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.20 5 turn direct imaging coarse image series (50 mm-70 mm) . . . . . . . . . . . 127

7.21 6 turn direct imaging coarse image series (2 5mm-70 mm) . . . . . . . . . . . 127

7.22 7 turn direct imaging coarse image series (20 mm-70 mm) . . . . . . . . . . . 127

7.23 8 turn direct imaging coarse image series (10 mm-40 mm) . . . . . . . . . . . 127

7.24 9 turn direct imaging coarse image series (10 mm-30 mm) . . . . . . . . . . . 127

7.25 10 turn direct imaging coarse image series (10 mm-30 mm) . . . . . . . . . . 127

7.26 11 turn direct imaging coarse image series (10 mm-25 mm) . . . . . . . . . . 128

7.27 12 turn direct imaging coarse image series (10 mm-25 mm) . . . . . . . . . . 128

7.28 9 turn direct imaging fine image series (15 mm-25 mm) . . . . . . . . . . . . 130

7.29 10 turn direct imaging fine image series (15 mm-22 mm) . . . . . . . . . . . . 130

7.30 11 turn direct imaging fine image series (12 mm-20 mm) . . . . . . . . . . . . 130

7.31 12 turn direct imaging fine image series (10 mm-20 mm) . . . . . . . . . . . . 130

7.32 LPCR vs Object Distance (OD) for direct imaging system . . . . . . . . . . . 131

7.33 ROI vs. Object Distance (OD) for direct imaging system . . . . . . . . . . . 131

7.34 Graphical representation of imager-fiber distance . . . . . . . . . . . . . . . . 132

7.35 Image series acquired during the imager-fiber distance test . . . . . . . . . . . 133

7.36 Detail drawing of the imager-fiber interface . . . . . . . . . . . . . . . . . . . 135

7.37 1 turn, Schott fiber, coarse image series (30 mm-70 mm) . . . . . . . . . . . . 135

7.38 2 Turn, Schott fiber, coarse image series (20 mm-70 mm) . . . . . . . . . . . 136

7.39 3 Turn, Schott fiber, coarse image series (15 mm-70 mm) . . . . . . . . . . . 136

7.40 4 Turn, Schott fiber, coarse image series (10 mm-40 mm) . . . . . . . . . . . 136

7.41 3 Turn, Schott fiber, fine image series (20 mm-30 mm) . . . . . . . . . . . . . 136

7.42 4 Turn, Schott fiber, fine image series (15 mm-25 mm) . . . . . . . . . . . . . 136

7.43 5 Turn, Schott fiber, fine image series (15 mm-25 mm) . . . . . . . . . . . . . 137

7.44 5 Turn, Schott fiber, fine image series (10 mm-20 mm) . . . . . . . . . . . . . 137

7.45 6 Turn, Schott fiber, fine image series (10 mm-20 mm) . . . . . . . . . . . . . 137

7.46 7 Turn, Schott fiber, fine image series (10 mm-20 mm) . . . . . . . . . . . . . 137

7.47 LPCR vs Object Distance for indirect imaging system . . . . . . . . . . . . . 138

xvii



7.48 LPCR vs Object Distance for indirect imaging system . . . . . . . . . . . . . 138

7.49 Graphical representation of Image Distance . . . . . . . . . . . . . . . . . . . 140

7.50 0.062 in diameter, 3,012 element fiber 4 turn image series . . . . . . . . . . . 142

7.51 0.062 in diameter, 3,012 element fiber 5 turn image series . . . . . . . . . . . 142

7.52 0.062 in diameter, 3,012 element fiber 6 turn image series . . . . . . . . . . . 142

7.53 0.062 in diameter, 3,012 element fiber 7 turn image series . . . . . . . . . . . 142

7.54 0.062 in diameter, 3,012 element fiber 8 turn image series . . . . . . . . . . . 143

7.55 0.062 in diameter, 3,012 element fiber 9 turn image series . . . . . . . . . . . 143

7.56 0.062 in diameter, 3,012 element fiber 10 turn image series . . . . . . . . . . . 143

7.57 0.062 in diameter, 3,012 element fiber 11 turn image series . . . . . . . . . . . 143

7.58 LPCR vs Object Distance for indirect imaging system . . . . . . . . . . . . . 144

7.59 ROI vs. OD for indirect imaging system with Edmunds 0.062 in diameter fiber144

7.60 0.125 in diameter, 3,012 element fiber 4 turn image series . . . . . . . . . . . 145

7.61 0.125 in diameter, 3,012 element fiber 5 turn image series . . . . . . . . . . . 145

7.62 0.125 in diameter, 3,012 element fiber 6 turn image series . . . . . . . . . . . 145

7.63 0.125 in diameter, 3,012 element fiber 7 turn image series . . . . . . . . . . . 145

7.64 0.125 in diameter, 3,012 element fiber 8 turn image series . . . . . . . . . . . 146

7.65 0.125 in diameter, 3,012 element fiber 9 turn image series . . . . . . . . . . . 146

7.66 0.125 in diameter, 3,012 element fiber 10 turn image series . . . . . . . . . . . 146

7.67 0.125 in diameter, 3,012 element fiber 11 turn image series . . . . . . . . . . . 146

7.68 LPCR vs Object Distance for indirect imaging system with Edmunds 0.125 in

diameter, 3,012 element fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.69 ROI vs. OD for indirect imaging system with Edmunds 0.125 in diameter,

3,012 element fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.70 0.125 in diameter, 50,419 element fiber 4 turn image series . . . . . . . . . . . 148

7.71 0.125 in diameter, 50,419 element fiber 5 turn image series . . . . . . . . . . . 148

7.72 0.125 in diameter, 50,419 element fiber 6 turn image series . . . . . . . . . . . 148

7.73 0.125 in diameter, 50,419 element fiber 7 turn image series . . . . . . . . . . . 148

7.74 0.125 in diameter, 50,419 element fiber 8 turn image series . . . . . . . . . . . 149

xviii



7.75 0.125 in diameter, 50,419 element fiber 9 turn image series . . . . . . . . . . . 149

7.76 0.125 in diameter, 50,419 element fiber 10 turn image series . . . . . . . . . . 149

7.77 0.125 in diameter, 50,419 element fiber 11 turn image series . . . . . . . . . . 149

7.78 LPCR vs Object Distance for indirect imaging system with Edmunds 0.125 in

diameter, 50,419 element fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.79 ROI vs. OD for indirect imaging system with Edmunds 0.125 in diameter,

50,419 element fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.80 Direct configuration tracking performance . . . . . . . . . . . . . . . . . . . . 154

7.81 Exploded view of the prototype direct tracking assembly . . . . . . . . . . . . 156

7.82 HDNS-2100 lens before and after modification . . . . . . . . . . . . . . . . . . 156

7.83 Exploded view of the prototype indirect tracking assembly . . . . . . . . . . . 158

8.1 A simple inertial navigation example . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 The body reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.1 Diagram of the prototype freehand 3D ultrasound system . . . . . . . . . . . 170

9.2 Diagram of the electronic components of the prototype system. . . . . . . . . 171

9.3 Picture of the ADIS16350 carrier PCB . . . . . . . . . . . . . . . . . . . . . . 172

9.4 ADIS16350 Carrier PCB Schematic . . . . . . . . . . . . . . . . . . . . . . . . 173

9.5 FFC connection between the ADIS16350 carrier PCB and the ADNS-2610

carrier PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.6 Picture of the ADNS-2610 carrier PCB . . . . . . . . . . . . . . . . . . . . . . 175

9.7 ADNS-2610 Carrier PCB Schematic . . . . . . . . . . . . . . . . . . . . . . . 176

9.8 Digilent Spartan-3 1600E Demonstration Board . . . . . . . . . . . . . . . . . 178

9.9 Block diagram of the microblaze embedded system . . . . . . . . . . . . . . . 180

9.10 Synchronous Serial Engine block diagram . . . . . . . . . . . . . . . . . . . . 184

9.11 ADIS16350 SPI Timing Diagram [8] . . . . . . . . . . . . . . . . . . . . . . . 185

10.1 Reference coordinate system relative to the ultrasound phantom . . . . . . . 193

10.2 Sample test 1 motion profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

xix



10.3 Sample test 2 motion profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.4 Sample test 3 motion profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

10.5 Sample test 4 motion profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

10.6 Sample test 5 motion profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.7 Stradwin manual segmentation process . . . . . . . . . . . . . . . . . . . . . . 200

10.8 3D volume reconstruction with and without position information . . . . . . . 202

10.9 Comparison of volume accuracy with and without position information for

the direct imaging Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 208

10.10Comparison of volume accuracy with and without position information for

the indirect imaging Configuration . . . . . . . . . . . . . . . . . . . . . . . . 209

10.11Comparison of volume accuracy for the direct and indirect imaging configu-

rations, with position information . . . . . . . . . . . . . . . . . . . . . . . . . 209

10.12Comparison of surface accuracy with and without position information for

the direct imaging configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 212

10.13Comparison of surface accuracy with and without position information for

the indirect imaging configuration . . . . . . . . . . . . . . . . . . . . . . . . 213

10.14Comparison of surface accuracy for the direct and indirect imaging configu-

rations with position information . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.15Test 3 reconstructions using the indirect and direct imaging systems . . . . . 216

xx



List of Tables

4.1 User level USB protocol packet formats . . . . . . . . . . . . . . . . . . . . . 61

4.2 Microchip Low-Level USB Communication API implemented in mpusbapi.dll. 62

4.3 High-Level USB Communication API implemented in adis_usb_ctrl.dll. . 63

5.1 Comparison of static velocity test results . . . . . . . . . . . . . . . . . . . . . 69

5.2 Bias and angular random walk statistics . . . . . . . . . . . . . . . . . . . . . 73

5.3 Position data summary statistics, 100 trials, 60s per trail . . . . . . . . . . . 75

5.4 MG1101a dynamic test velocity data summary . . . . . . . . . . . . . . . . . 88

5.5 MG1101a dynamic test ending position data summary . . . . . . . . . . . . . 88

5.6 ADIS16255 dynamic test velocity data summary . . . . . . . . . . . . . . . . 88

5.7 ADIS16255 dynamic test ending position data summary . . . . . . . . . . . . 89

5.8 Rate ramp velocity data summary . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Rate ramp position data summary . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Optical terminology and abbreviations . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Fiber bundles tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Objective lenses tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4 Components of the optical experiment apparatus . . . . . . . . . . . . . . . . 124

7.5 Summary of direct imaging experimental results . . . . . . . . . . . . . . . . 128

7.6 Tracking performance and repeatability of a standard optical mouse on leather

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xxi



9.1 Pinout of the sensor module cable . . . . . . . . . . . . . . . . . . . . . . . . 177

9.2 Serial communication protocol used between the navigation computer and

the PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.3 SSE register addresses and ADIS16350 read commands . . . . . . . . . . . . . 189

10.1 Segmentation volume data for direct imaging configuration with position cor-

rection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.2 Segmentation volume error data for direct imaging configuration with position

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.3 Segmentation volume data for indirect imaging configuration with position

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.4 Segmentation volume error data for indirect imaging configuration with po-

sition correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.5 Segmentation volume data for direct imaging configuration without position

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.6 Segmentation volume error data for direct imaging configuration without po-

sition correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.7 Segmentation volume data for indirect imaging configuration without position

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.8 Segmentation volume error data for indirect imaging configuration without

position correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10.9 Surface accuracy data for direct imaging configuration with position correction210

10.10Surface accuracy data for direct imaging configuration without position cor-

rection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.11Surface accuracy data for indirect imaging configuration with position cor-

rection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10.12Surface accuracy data for indirect imaging configuration without position

correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

10.13Possible effects of 0.5 mm error in the radius or length of a cylinder . . . . . 215

xxii



List of Acronyms

2D Two Dimensional
3D Three Dimensional
ADC Analog to Digital Converter
API Application Programming Interface
ASCII American Standard Code for Information Interchange
CCD Charge-Coupled Device
CCP Capture and Compare
CK Clock
CMOS Complementary MetalâĂŞOxideâĂŞSemiconductor
CS Chip Select
CT Computed Tomography
CVG Coriolis Vibratory Gyroscope
DCM Direction Cosine Matrix
DLL Dynamic Link Library
DoF Degree of Freedom
DOF Depth Of Field
DSP Digital Signal Processor
DT Data
DUT Device Under Test
EEPROM Electronically Erasable and Programmable Read Only Memory
EP USB End Point
FFC Flat Flex Cable
FFT Fast Fourier Transform
FIR Finite Impulse Response
FIT Fixed Interval Timer
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FW Firmware
GPIO General Purpose Input Output
HID USB Human Interface Device
HP-GL Hewlett-Packard Graphics Language
HW Hardware
I/O Input / Output
I2C Inter-Integrated Circuit

xxiii



IC Integrated Circuit
ICP Iterative Closest Point
ID Image Distance
IDE Integrated Development Environment
INS Intertial Navigation System
ISR Interrupt Service Routine
JTAG Joint Test Action Group
LED Light Emitting Diode
LMB Local Memory Bus
LPCR Line Profile Contrast Ratio
LPF Low Pass Filter
LSI Linear Shift Invariant
LVDS Low Voltage Differential Signaling
MEMS Microelectromechanical Systems
MISO Master In Slave Out
MMU Memory Management Unit
MOSI Master Out Slave In
MRI Magnetic Resonance Imaging
MSSP Master Synchronous Serial Port
MT Modulation Transfer
MTF Modulation Transfer Function
NA Numerical Aperture
OD Object Distance
PC Personal Computer
PCB Printed Circuit Board
PLB Processor Local Bus
PLL Phase Locked Loop
POSIX Portable Operating System Interface
PROM Programmable Read Only Memory
PWM Pulse Width Modulator
RAM Random-Access Memory
RISC Reduced Instruction Set Computing
RMS Root Mean Square
ROM Read Only Memory
RTV Room Temperature Vulcanizing
RX Receive
SCK Serial Clock
SCL Serial Clock
SDA Serial Data
SDIO Serial Data Input Output
SDO Serial Data Out
SPI Serial Peripheral Interface
SQUAL Surface Quality
SS Slave Select
SSE Synchronous Serial Engine
SW Software
TPI Threads Per Inch

xxiv



TTL Transistor-Transistor Logic
TX Transmit
UART Universal Asynchronous Receiver Transmitter
USART Universal Synchronous Asynchronous Receiver Transmitter
USB Universal Serial Bus
USB-IF Universal Serial Bus Implementers Forum
VHDL VHSIC Hardware Description Language
XMK Xilinx Micro Kernel
XPS Xilinx Platform Studio

xxv





Chapter 1

Introduction

Conventional two dimensional (2D) ultrasound imaging has been an important medical

imaging tool for over three decades. It has several advantages over other medical imaging

modalities such as X-Ray, Computed Tomography (CT), and Magnetic Resonance Imaging

(MRI). First, ultrasound produces a real time image. Second, ultrasound does not utilize

ionizing radiation or strong magnetic fields. This makes ultrasound safer that MRI and CT.

Third, ultrasound is much more portable than other medical imaging techniques. Finally,

ultrasound is much less expensive.

Two dimensional ultrasound also has several disadvantages when compared to other

medical imaging modalities. First, the image quality is generally poorer than other imaging

techniques. This is because acoustic signals are strongly attenuated by human tissue and

because of the complex interference between the acoustic wave and the soft tissue. Second,

the types of images that can be captured with 2D ultrasound are limited. In most cases the

transducer is held on the skin surface, which makes it impossible to image in planes that

are parallel to the skin surface. X-Rays have a similar limitation in some cases, but CT

and MRI can generate a 2D image on an arbitrary plane. Lastly, ultrasound has limited

penetration into the body. It cannot be used to image the brain or lungs because bone and

air-filled tissues severely attenuate the acoustic signal.

During a typical 2D ultrasound examination, the sonographer captures a set of 2D

1



images. These images are later reviewed by a doctor. Doctors often want to measure features

in the images, such as the dimensions of tumors or cysts. Making good measurements of

three dimensional (3D) structures using 2D ultrasound images is difficult. The relative

position and orientation of each 2D image is not known, which means that quantitative

measurements outside of each image plane are generally not possible. In practice, it is the

skill of the sonographer that bridges this gap. He or she must take great care to follow the

correct procedure for a particular examination and to acquire good images. The repeatability

of measurements made this way is therefore limited because, despite the best effort of the

sonographer, no two scans are exactly identical.

1.1 3D Ultrasound Acquisition Methods

Three dimensional ultrasound was proposed as a way to address some of the shortcomings

of 2D ultrasound, listed previously. 3D volumes can be resliced to create 2D images in an

arbitrary plane, which eliminates the restrictions imposed by the need to image through the

skin surface. 3D ultrasound can also be used to make accurate measurements. Assuming

that the 3D image is generated accurately, the measurement process is less dependent on

the skills of the sonographer. Measurements can be made directly in the 3D image, which

eliminates the ambiguity caused by the unknown relationship between individual 2D images

from a standard 2D examination. Repeatability increases for the same reason.

There are three basic techniques for acquiring 3D ultrasound images. They are described

in the following sections.

1.1.1 2D Array Transducers

The most direct method for acquiring a 3D ultrasound image is to use a 2D array transducer.

2D array transducers generally produce the highest resolution 3D images and can do so

at the highest rate. A state of the art 2D array transducer manufactured by Siemens is

pictured in Figure 1.1. These types of transducers are used primarily in echocardiography

for functional analysis of the heart. It is very difficult to manufacture large arrays because

2



of the large number of electrical connections and interference between the elements. The

largest commercially available 2D arrays have approximately 3000 elements. This limits the

size of the 3D image that they are capable of capturing. Because of the high level of electrical

integration required and the difficulty of manufacturing them, 2D array transducers are also

very expensive when compared to traditional 1D linear array transducers.

(a) (b)

Figure 1.1: Internal (a) and external (b) views of a Siemens 4Z1c 2D array transducer. [1]

1.1.2 Mechanically Actuated 1D Array Transducers

The second method of creating 3D ultrasound images is mechanical actuation of a 1D linear

array transducer. Like traditional 2D ultrasound scanning, this method collects a sequence

of 2D images. The mechanical actuator forces the images to be in fixed orientations and

positions, which allows the individual 2D images to be accurately reassembled into a single

3D image. In the earliest mechanical scanning implementations, a 1D linear array transducer

was mounted in an external actuator. An example of an external mechanical actuator is

illustrated in Figure 1.2. The probe motion and the shape of the resulting 3D image is

illustrated in Figure 1.4 (b). These mechanisms tended to be quite bulky and were never

well accepted in the clinical environment.

More recently, probes have been developed with integral mechanical actuators, as il-

lustrated in Figure 1.3. The probe is held stationary while the transducer moves through

an arc inside the housing. The probe motion and the shape of the resulting 3D image is

illustrated in Figure 1.4 (a). This approach solves the problem of bulkiness but the size of

the 3D image that can be acquired is limited by the travel of the mechanical actuator in

3



Figure 1.2: External type mechanical actuator for 3D ultrasound imaging

both cases.

1.1.3 Manually Actuated 1D Array Transducers

The third method of generating 3D ultrasound images is similar to the second technique,

but with the mechanical actuator replaced by a human. A 1D linear array transducer is

used to capture a sequence of 2D images, while a sonographer moves the probe over the

region of interest. This acquisition technique is commonly referred to as freehand scanning.

One advantage of this approach is that it does not place any constraints on the size of

the 3D image. Another advantage is the low cost, as only software is required. Ideally, a

freehand 3D ultrasound system should be able to create 3D images of arbitrary size and

shape. The challenge of freehand 3D acquisition is that the relative position and orientation

of the individual 2D images is no longer fixed, as illustrated in Figure 1.5. The images

are no longer guaranteed to be parallel, equally spaced, and aligned, the way they were in

Figure 1.4 (b). This variation makes 3D image reconstruction in freehand 3D ultrasound

much challenging than it is for the other methods of 3D image acquisition.

Accurate 3D image reconstruction for freehand acquisition requires information about

the position and orientation of each 2D image in the data set. The simplest way to do

this is to assume that the sonographer keeps the probe orientation fixed and moved in a

4



Figure 1.3: A Siemens 7CF2 ultrasound transducer with internal mechanical actuator [2]

Figure 1.4: Common types of motion generated by mechanical actuation and corresponding 3D
image volumes

5



Figure 1.5: Illustration of a freehand 3D ultrasound scan [3]

straight path, at a fixed rate. The 3D image is then assembled by stacking the images one

on top of another. Obtaining undistorted 3D images is thus very dependent on the skill of

the sonogrpaher. Furthermore, the requirement that the probe’s orientation remain fixed

during the scan is a serious drawback of this approach. It limits the types of scans that can

be performed to those that are relatively straight and flat.

Tracking systems can be used to overcome these limitations by recording the position and

orientation of the probe during the scan. The 2D images are then inserted into the 3D image

using that data, in order to generate an accurate image. There are several commercially

available 6 Degree of Freedom (6 DoF) tracking systems that are suitable for this purpose.

Most use either a magnetic field, such as the Ascension Flock of Birds, or optical emitters

and reflectors, such as the Northern Digital Polaris, for tracking. Both of these technologies

are quite accurate but both can be difficult to use in the clinical setting. Tracking systems

based on magnetic fields are sensitive to metals and optical systems require line of sight.

All of these tracking systems also require that the transmitter or receiver (whichever is not

attached to the probe) remain at a fixed location relative to the probe.

The last method used to build a 3D image from a sequence of 2D images acquired by

freehand scanning uses speckle decorrelation. Speckle is a type of noise present in ultrasound

images, caused by interference from scattering among unresolved scatterers in the tissue.

As long as successive images are close together, much of the tissue scanned to generate each

image will be common to both. As a result, the correlation between the speckle patterns

in successive images tends to move from high to low as the physical distance between the

6



images increases. This technique can be used to estimate the position and pose of two

image planes relative to one another using only image processing. Although this technique

does overcome the need for a tracking system, it has several important drawbacks. The

scan direction must remain consistent throughout the scan because the algorithm can only

estimate the spacing between two images. The algorithm also cannot account for angular

variation between images in the sequence. Another problem is that the characteristics of

speckle vary for different types of tissue.

1.2 Motivation for Development of a Novel Tracking

System for Freehand 3D Ultrasound

The goal of this work is to create a tracking system for freehand 3D ultrasound imaging

that is completely contained within the ultrasound probe. Such a system should be able

to generate accurate 3D ultrasound images without the constraints of other 3D ultrasound

imaging techniques and without the limitations and cost associated with external tracking

systems. One of the Ultrasound Research Laboratory’s ongoing projects is the development

of a ruggedized, mobile ultrasound system for use in remote or rural areas, by first respon-

ders, and on the battlefield. The tracking system developed in this work will allow the

capabilities of the portable system to be extended to include 3D imaging.

1.3 Overview of a Freehand 3D Ultrasound System

A freehand 3D ultrasound system is composed of 3 basic parts. There is a 2D ultrasound

imaging system, a 5 DoF tracking system, and 3D image reconstruction software. In our pro-

totype system, a Personal Computer (PC) is used as a host for the reconstruction software.

Ultrasound images are generated with a Terason 3000 ultrasound system. It consists of the

ultrasound transducer and a beamformer, which is connected to the PC using an IEEE 1394

bus, otherwise known as firewire. Software from Terason runs in the background on the PC

to control the transducer and beamformer electronics and to make image frames available

7



to other applications. The tracking system consists of sensors mounted on the ultrasound

transducer and an embedded computer system. The embedded computer system and the

firmware running on it form the navigation computer that processes the raw sensor output to

generate estimates of the transducer position and orientation. Linear motion along the skin

surface is tracked optically. Microelectromechanical System (MEMS) gyroscopes are used

to measure angular rate of change along three orthogonal axes. The navigation computer

transmits the tracking information to the PC using a serial port. The 3D reconstruction

software combines the 2D ultrasound images with the position information to reconstruct

3D images in real time, as well as providing a user interface for the system. In this system,

Stradwin 3D ultrasound software running on the PC performs this function. Figure 1.6 is a

high level block diagram of the system.

Figure 1.6: Block Diagram of the prototype freehand 3D ultrasound system

8



1.4 Thesis Outline

Chapter 2 describes two visualization tools that were evaluated for use in 3D reconstruction

and system control. The basic functionality of the programs is covered as well as

evaluation of reconstruction performance.

Chapter 3 is an overview of major components of the system. It is intended to serve as

a quick reference that allows the reader to find basic information quickly without

searching the entire document.

Chapter 4 describes the test systems that were developed for sensor evaluation. The hard-

ware, firmware, motion platforms, and PC software used for testing is explained.

Chapter 5 describes experiments performed to evaluate MEMS gyroscopes and the results

of those experiments.

Chapter 6 describes experiments performed on MEMS accelerometers and the results of

those experiments.

Chapter 7 describes the experiments performed and apparatus developed to optimize the

optical system and the prototype optical tracking devices that were constructed.

Chapter 8 is a basic introduction to inertial navigation. The basic terminology of inertial

navigation is presented along with the necessary mathematical concepts. A detailed

explanation of the navigation algorithm is also presented.

Chapter 9 describes the prototype freehand 3D ultrasound system that was constructed.

The first half of the chapter is dedicated to the sensor interface electronics and the

embedded computer system. The second half of the chapter describes the navigation

computer firmware.

Chapter 10 covers performance evaluation results. The first part of chapter describes the

test procedure. Then the error metrics are introduced and data analysis methods are

described. Finally, the results are presented.

9



Chapter 11 is the conclusion. The results of the work are discussed along with avenues for

further research.

10



Chapter 2

3D Visualization Platforms

A 3D visualization platform is a computer program that can display 3D data graphically.

In our application this was ultrasound data. In addition to just displaying the ultrasound

data, the visualization platform in our application served several other purposes. It was

responsible for integrating image data from ultrasound software, position and orientation

data from an external tracking system, and implementing the user interface.

The prototype uses the Terason t3000 imaging system to generate the ultrasound image

data. The data is made available as a series of bitmaps, at a rate of between 5 and 30 frames

per second. The data is accessed via ActiveX controls. The Terason executable runs in the

background as a server, controlling the t3000 hardware. Client programs make requests

for ultrasound data through the ActiveX interface. Position information is generated by

an inertial-optical tracking system, which is described in greater detail in Chapter 9. User

interface data is provided by the visualization platform itself. Examples of this type of data

include controls for starting and stopping acquisition, ultrasound probe settings, view angle,

etc.

To create a prototype system, only a minimal subset of the features typically found

in commercial ultrasound systems are required. First, the visualization platform must be

capable of storing a sequence of 2D images as a single 3D data set. This just means that

the program must support 3D data. Second, the visualization platform must be capable

11



of rendering views of 3D data. Ideally, real-time visualization should be supported, such

that the 3D volume is displayed on the screen as it is being acquired. However, this is

not a strict requirement for a prototype. Third, the visualization platform must support a

basic user interface that provides acquisition control, probe settings, and a means of saving

and retrieving data. Lastly, the visualization platform must support position data input

for the purpose of creating physically accurate 3D volumes. The program must have an

algorithm that allows it to insert 2D image data into a 3D volume in such a way that the

data is in the correct physical location with respect to the rest of the data in the volume.

This particular requirement is the most difficult one to meet. Although there are several

commercial 3D ultrasound imaging systems in existence today, they use proprietary software

that only works with specific equipment and is not available to be licensed for outside use.

Over the course of this work two different visualization platforms were evaluated CustusX

and Stradwin. CustusX was created by SINTEF, a Norwegian research group working in

the field of imaging and visualization. They were contracted to produce a version of their

Custus software to meet the requirements of the prototype system. This program is known

as CustusX. Stradwin is a software package produced by researchers in the medical imaging

group, within the machine intelligence laboratory, at Cambridge University in England. It

was created as a research tool, specifically for 3D ultrasound applications. Best of all, it is

free.

2.1 CustusX

CustusX is a 3D visualization tool developed by SINTEF, an independent research group

headquartered in Trondheim, Norway. It is based on the ITK and VTK toolkits from Insight.

CustusX renders 2D views of 3D data such as that generated by ultrasound scanners. Dr.

Pedersen contracted SINTEF to build a custom version of CustusX to run on WindowsXP

(it was originally developed for platforms running XFree86 and Xorg). This version was to

serve as the visualization front end for a portable 3D ultrasound system.

12



Figure 2.1: Layout of the CustusX user interface. (1) is the Volume Browser, (2) is Transfer
Function, and (3) is the Volume Display

2.1.1 User Interface

This section briefly describes the CustusX interface. Please see the CustusX User’s Guide,

which is included in Appendix B, for a complete description.

The screen is divided into 3 sections, as illustrated in Figure 2.1:

1. Volume Browser

The Volume Browser displays a list of volumes that are currently loaded into memory. New

volumes can be loaded by clicking on File, Open, Load Volume Data or by right clicking

within the Volume Browser and selecting Load Volume Data. Volumes can also be copied

and deleted using these two menus.

13



2. Transfer Function

The Transfer Function display allows the user to adjust how the data is displayed. By

adjusting the curve the user can change the relative intensities of the discrete data values

within the volume. The color that is assigned to a particular intensity value can be modified

as well as the alpha, or transparency, value. By altering the alpha value assigned to different

voxel intensities the user can make unimportant regions of the volume, that might otherwise

obscure important features, less visible or invisible.

3. Volume Display

Once loaded, the dataset appears in the Volume Browser. The user may right click on the

name of the dataset in the Volume Browser and select ‘Show Volume in Scene,’ in order to

view the rendered volume in the Volume Display. The mouse can then be used to manipulate

the position and orientation of the rendered data in the Volume Display.

2.1.2 Data Acquisition

CustusX’s biggest weakness is that is does not support a direct interface to either an ul-

trasound transducer or a 6 DoF position sensing device. It was the intent of the original

collaboration agreement that these features be developed jointly between WPI and SINTEF.

WPI and SINTEF agreed on an Application Programming Interface (API) that would

allow the data collection routines to be implemented outside of the CustusX application.

WPI would provide Windows Dynamic Link Library (DLL) that implemented the functions

in the API. CustusX would then handle the reconstruction, rendering, and user interface

functionality. For evaluation purposes, the first version of the DLL was designed to read

ultrasound data from a series of bitmap images and position data from a series of text files.

CustusX would request a new piece of ultrasound image data using the Get_Image() API

call and new position data using the Get_Position() API call. Once called, Get_Image()

would open the next in a series of sequentially named bitmap images, retrieve the intensity

values, and return a pointer to the data to CustusX. Get_Position() would open the next in

14



a series of sequentially named text files containing the position and pose information. The

data was then returned to CustusX in a structure defined in the API.

The requirement that the user be able to control the beginning and end of data acqui-

sition was overlooked in the original specification. Although it may have been possible to

implement this feature almost entirely in the DLL, the API specification made this very dif-

ficult. Because the API only provided Get_Image() and Get_Position() functions to access

data, the application required prior knowledge about the total number of data frames to

acquire and the frequency with which to acquire them. This, in turn, would have required

modifications to the CustusX user interface. In order to support WPI’s need to evaluate

CustusX’s reconstruction performance, SINTEF produced two alpha versions that were hard

coded to acquire 200 and 400 data frames, respectively.

It turned out that CustusX already supported a far more powerful method for evaluating

reconstruction performance. The portion of ITK that deals with format specific file Input /

Output (I/O) is known as MetaIO. MetaIO supports an expansive array of medical imaging

file formats for multidimensional data. It also supports importing custom data types via

metadata provided in either the header of the data file or in a separate text file. SINTEF

implemented an extension to the MetaIO library that enabled it to process position data

along with the image data. Since the acquisition method implemented in the DLL was

really just a very limited subset of the features already included in CustusX, the DLL was

abandoned as a means of evaluation in favor of the MetaIO approach.

2.1.3 Evaluation

In order to verify that CustusX was correctly reconstructing volumes, it was necessary to

devise a method for evaluation. A number of Matlab scripts were written that could generate

sequences of bitmap images and text files containing artificial position information. Each

image contained a single 2D slice of a 3D volume. As illustrated in Figure 2.3, the evaluation

volume contained a 3D rectangle. Each pixel in each 2D slice is represented by 8 bits. The

background of each 2D slice has an intensity value of 0 and the object has an intensity

value of 255. Between 2D images in the sequence, the position of the object relative to the

15



Figure 2.2: Artificial volume data

background was varied. The magnitude of the variation was then written to a corresponding

text file. These artificial datasets were generated in groups of 200 and 400 sequential images

to work with the two versions of CustusX.

Figure 2.2 illustrates the raw image sequence from the artificial volume data. The x

and y coordinates are displayed in each image frame. The z coordinate is the equivalent

of the sequence number. The sequence begins in the upper-left hand corner and proceeds

row-wise from left to right, terminating in the lower right hand corner. CustusX’s vol-

ume reconstruction with and without position information is shown in Figures 2.3 and 2.4

respectively.

The testing demonstrated that CustusX was able to correctly reconstruct 3D volumes

using a combination of 2D images and position information. The evaluation also provided

a lot of information about the overall maturity and usability of the program. CustusX was

buggy and crash prone. Certain actions would cause the program to crash predictably while

other crashes seemed more random in nature. For example, CustusX would crash without

any error message when it was not able to allocate memory. Given that the original Unix

16



Figure 2.3: CustusX volume reconstruction with position information

Figure 2.4: CustusX volume reconstruction without position information

17



version of Custus was stable enough to be used in the operating room, it seems reasonable

to ask what makes CustusX so unstable. Since the volume reconstruction algorithms are

the same, the problems most likely lie in the way CustusX interacts with the Windows

memory manager and the graphics hardware. Both of these are substantially different

between Windows and Unix. The lack of documentation was also a serious issue. Many of

the features detailed in the user’s guide were discovered by trial and error. Other features

were only revealed after multiple emails and phone calls with SINTEF.

18



2.2 Stradwin

Stradwin is an experimental software tool developed specifically for freehand 3D ultrasound.

It was developed by the Medical Imaging Group at the University of Cambridge in Cam-

bridge, England. Stradwin is capable of interfacing directly with a Terason ultrasound and

imaging system via Terason’s ActiveX controls. Stradwin also interfaces directly with many

commercial 6 DoF sensor systems, such as the Polhemus Patriot and Fastrak, Northern

Digital Polaris, and the Ascension Flock of Birds. In addition, Stradwin incorporates a cali-

bration facility, real-time volume data display, manual segmentation, volume measurement,

volume reslice, uses and open file format, and has complete documentation. It is freely

available for download from the Medical Imaging Group’s website1.

2.2.1 Stradwin User Interface

The Stradwin user interface is comprised of several windows containing controls and visu-

alization tools. There are 3 main windows, illustrated in Figure 2.5:

1. The Tasks Window

The Tasks Window is used to configure the 3D reconstruction software. It has multiple

tabs that provide the following functions: template save and restore, recording settings,

probe calibration, isocenter configuration, pointer configuration, pointer calibration, probe

pressure correction, drawing options, and landmarks.

2. The Image Window

The Image Window is where the volume data is displayed. It is separated into 3 parts.

The top left portion displays individual ultrasound images, the top right portion shows the

location of all features (individual ultrasound images, landmarks, segmentations, etc) in 3D

space. The bottom portion of the Image Window can either be divided into two to show

two orthogonal reslices, or used as a single large window displaying a reslice plane at any

orientation.
1http://mi.eng.cam.ac.uk/~rwp/stradwin/

19

http://mi.eng.cam.ac.uk/~rwp/stradwin/


Figure 2.5: Layout of the Stradwin user interface. (1) is the Tasks Window, (2) is the Image
Window, and (3) is the Visualization Window

3. The Visualization Window

The Visualization Window controls what is displayed in the lower portion of the Image

Window. It has multiple tabs that provide the following functions: orthogonal display,

reslice display, isocenter display, panorama display, and pressure display.

2.2.2 Data Acquisition

Stradwin acquires data directly from the ultrasound system and the tracking system. Ul-

trasound data can be acquired directly from a Terason t2000 or t3000 ultrasound imaging

system or through a video capture device. Stradwin also supports acquisition of raw RF

data using a Gage CompuScope analog data acquisition card and any ultrasound system

with accessible analog RF lines, using the Terason t2000 or t3000 with the appropriate

ActiveX control, or using a Diasus ultrasound system from Dynamic Imaging Ltd. Strad-

20



win supports the following position systems: the Polhemus Fastrak and Patriot, Northern

Digital Polaris, and the Ascension MiniBird, LaserBird and Flock of Birds sensors.

These features made Stradwin ideally suited for the proof of concept system. However,

there was one small complication. For the prototype tracking system to communicate with

Stradwin, it would have to emulate the RS232 communication protocol used by the Polhemus

Fastrak. Luckily, the developers were very supportive of this approach. All of the supported

position sensing systems communicate with the PC via RS232; the developers suggested

using the Fastrak protocol and supplied all of the necessary documentation.

2.2.3 Stradwin Evaluation

Stradwin has been the subject of numerous journal articles. In [18], the creators describe

how Stradwin works internally. It discusses the image reconstruction algorithm, the acqui-

sition process, and the visualization techniques employed. The segmentation and surface

reconstruction algorithm is documented in [19],[20], and [21]. These articles fully document

the reconstruction algorithms and their performance. In addition to inspiring confidence,

this fact also relieved us of having to design our own experiments to show that it works.

Chapter 10 deals with the use of Stradwin as an experimental tool. This includes capturing

data and also manual segmentation of that data. Appendix A is a user’s manual for the

prototype, which contains a more detailed description of Stradwin and its use. The Strad-

win help file is also an excellent reference. It is available from the help menu within the

program and also online2.

2http://mi.eng.cam.ac.uk/~rwp/stradwin/docs/intro.htm

21

http://mi.eng.cam.ac.uk/~rwp/stradwin/docs/intro.htm


22



Chapter 3

Electrical and Optical System

Components

During the course of this work two fundamentally different approaches to probe tracking were

investigated: a fully inertial implementation and a hybrid, inertial-optical implementation.

The two approaches require different sets of sensors, but also have some components in

common. The following section briefly describes all of the important sensors and components

that were utilized, so that the reader can find this information without having to search

through the entire paper.

There are two types of quantities that must be measured by the prototype the tracking

system. These are linear displacement and angular displacement. There are many types

of sensors for measuring linear displacement. Linear accelerometers are one type that was

evaluated. Optical mouse sensors are another.

There are fewer available options for measuring angle. The simplest method is to use a set

of two or three linear accelerometers to measure the force of gravity and then derive the angle

using basic trigonometry. Unfortunately, this method requires that the only force acting

on the accelerometers is gravity. They are therefore unsuitable for use in any application

where the sensor will be moved during measurement. The most promising devices for this

23



application are MEMS angular rate gyroscopes. Angular rate gyroscopes measure angular

rate of change, which is then integrated to give angular position. These devices posses the

required accuracy, are small enough to be embedded in a transducer, and are inexpensive

enough to be practical.

3.1 Gyroscopes

Many MEMS gyroscopes belong to a class of angular rate sensors known as Coriolis Vi-

bratory Gyroscopes (CVGs). Although the physical structure of the device varies between

manufacturers, all MEMS gyroscopes rely on a phenomenon know as Coriolis acceleration

to measure rotational rate. Both of the gyroscopes evaluated in this work utilize an etched

silicon structure.

The Coriolis force is a fictitious force, which arises from observing an object’s motion

from within a rotating reference frame. It is called fictitious because it is not part of

Newton’s laws of motion. Real forces are always caused by the interaction of two objects.

The second object is nonexistent for fictitious forces. The Coriolis force exists only to

explain the apparent motion of objects due to acceleration of the reference frame. Coriolis

acceleration is caused by moving an object radially in a rotating reference frame [22].

In a CVG, a proof mass is tethered to a reference frame by silicon springs, as illustrated

in Figure 3.1. The reference frame is tethered to the substrate by silicon springs as well,

but at 90◦with respect to the proof mass springs. The proof mass is driven to resonate at

a fixed frequency. During rotation, the Coriolis acceleration experienced by the proof mass

is translated into a displacement of the reference frame with respect to the substrate, as

illustrated in Figure 3.2. The displacement is measured capacitively. The rotational position

of the sensor is derived by integrating the output of the gyroscopes with respect to time.

By using three orthogonal gyroscopes, transducer orientation can be tracked in all three

rotational degrees of freedom.

MEMS angular rate gyroscopes are a relatively new sensor technology. Most of the first

generation devices provided an analog output that required signal conditioning and digitizing

24



Figure 3.1: Basic structure of a Coriolis vibratory gyroscope [4]

Figure 3.2: Illustration of displacement caused by Coriolis acceleration [4]

before use in a digital tracking system. The second generation, which have become available

in the last year or two, often have more advanced features such as a digital interface,

integrated signal processing, and others that make system integration much simpler. This

class of sensor was highly desirable because they greatly simplify the system design.

Two CVGs were selected for evaluation: the Gyration MG1101a and the Analog Devices

ADIS16255. The MG1101a is a 2-axis MEMS CVG. The Analog Devices ADIS16255 is a

single-axis MEMS CVG. These two sensors are described in the following sections.

While the ADIS16255 and MG1101a evaluations were in progress, Analog Devices re-

leased the preliminary specification for the ADIS16350. This device offers a 3-axis gyroscope

and a 3-axis linear accelerometer in a single package. The high level of integration promised

to greatly simplify the overall system. Unfortunately, it would only be available near the

end of this research. Communication with Analog Devices confirmed that the sensor ele-

25



Figure 3.3: Gyration MG1101a dual-axis MEMS CVG [5]

ment in the ADIS16350 and the ADIS16255 is identical. Based on this information, the

ADIS16255 was evaluated and its performance was assumed to be representative of that of

the ADIS16350.

3.1.1 Gyration MG1101a

The MG1101a, pictured in Figure 3.3, is a dual-axis angular rate gyroscope manufactured

by Gyration, which was recently acquired by Movea SA. It features a dynamic range of

±500◦/s, analog bandwidth of 14.5 Hz, Inter-Integrated Circuit (I2C) digital interface, 29 Hz

digital sampling rate, integrated voltage and temperature sensors, and internal EEPROM

for calibration data. Two key figures of merit are the rate noise of 0.18◦/s and the drift rate

of 2◦/s. The complete specifications can be found in Appendix C.

3.1.2 Analog Devices ADIS16255

The ADIS16255, pictured in Figure 3.4, is a single-axis angular rate gyroscope manufactured

by Analog Devices. It features user selectable dynamic ranges of ±320◦/s, ±160◦/s and

±80◦/s, 50 Hz analog bandwidth, selectable digital sampling rate between 0.129 Hz and

256 Hz, temperature compensation, integrated voltage and temperature sensing, optional

26



Figure 3.4: Analog Devices ADIS16255 single-axis MEMS CVG evaluation module [6]

digital filtering, a Serial Peripheral Interface (SPI) digital interface, bias calibration, and

an integrator for angle estimation. As with the MG1101a, the critical Figures of merit are

the rate noise of 0.48◦/s Root Mean Square (RMS) and drift of 3.6◦/
√
hr. The complete

specifications can be found in Appendix D.

3.1.3 Analog Devices ADIS16350

The ADIS16350, pictured in Figure 3.5, is a highly integrated inertial sensor. It includes

three orthogonal angular rate gyroscopes, three orthogonal linear accelerometers, three em-

bedded temperature sensors, and supply voltage monitoring. The sensor elements are fully

integrated with the Analog to Digital Conversion (ADC) hardware, Digital Signal Processor

(DSP), and a SPI serial port, as illustrated in Figure 3.6.

The ADC block has three dynamic range settings: ±75◦/s, ±150◦/s, and ±300◦/s. The
sampling rate is also adjustable over a wide range from 0.413 Hz to 819.2 Hz. The analog

signal conditioning electronics have an fixed bandwidth of 350 Hz for all sensor elements.

The DSP implements several advanced features that make this device particularly attractive.

Offset and scale factor correction registers allow error compensation to be applied in the

device. The DSP also implements a Finite Impulse Response (FIR) filter that is adjustable

from 2 to 64 taps in power of two step sizes, which correspond to a -3 dB cutoff point

between the full 350 Hz analog bandwidth and approximately 8 Hz. One of the most

innovative features is the linear acceleration compensation, which uses the signals from the

linear accelerometers to correct the output of the gyroscopes. The noise in the rate output

27



Figure 3.5: Analog Devices ADIS16350 [7]

signal (rate noise) is specified as 0.6◦/s and the drift is specified as 4.2◦/
√
hr, with the

largest dynamic range setting and no digital filtering. The complete specifications can be

found in Appendix E.

3.2 Accelerometers

3.2.1 Linear Accelerometers

MEMS linear accelerometers have been available for much longer than MEMS gyroscopes.

As expected, there are a much wider range of these devices available, and they are tailored

specifically for a number of applications. There are many different physical structures

employed, but most of them rely on the same basic principle. A free floating beam is

etched into the surface of the surface of a silicon chip and tethered to the substrate by

springs, which are also etched. Fingers are attached to the beam perpendicular to the

sensitive axis. The free-floating fingers are interleaved with fixed fingers, which are attached

to the substrate, as illustrated in Figure 3.7. Figure 3.8 is a high magnification image of an

actual MEMS linear accelerometer.

Each set of fingers forms a differential capacitor. When acceleration is applied along the

sensitive axis the spacing between the fingers changes. The resulting change in capacitance

is then converted into an electrical signal and in some cases, a digital quantity. The spring

constant of the silicon springs and the mass of the beam determine the sensitivity of the

28



Figure 3.6: Analog Devices ADIS16350 Tri-Axis MEMS CVG block diagram [8]

Figure 3.7: Basic structure of a linear MEMS accelerometer [9]

29



Figure 3.8: Actual structure of a MEMS accelerometer [9]

device and also govern the ruggedness and physical size of the sense element.

This application favors sensitivity over a large dynamic range. Also, the accelerometers

need to work in the presence of gravity which requires a dynamic range larger than gravi-

tational acceleration. Like the CVGs that were selected for evaluation, accelerometers that

offered high levels of integration were highly desirable.

3.2.2 ST Microelectronics LIS3LV02DL 3-Axis Linear Accelerom-

eter

The LIS3LV02DL is a 3-axis linear accelerometer manufactured by ST Microelectronics. It

is a 3-axis device featuring a SPI compatible digital serial interface, ±2 g and ±6 g dynamic

range and corresponding sensitivities of 0.00957 m/s
2

LSB and 0.02882 m/s
2

LSB , respectively. It

also integrates signal processing functions like digital high and low pass filters and angle

estimation. The EK3LV02DQ evaluation kit, pictured in Figure 3.9, provides a simple

Hardware (HW) and Software (SW) platform for evaluating the device’s capabilities. The

complete specifications can be found in Appendix G.

30



Figure 3.9: LIS3LV02DL Tri-Axis linear accelerometer evaluation module

3.3 Optical Linear Motion Sensors, Lenses, and Optical

Fiber Bundles

Optical sensing was also evaluated as method for measuring linear displacement. The only

sensors that satisfy the requirements of the prototype are those used in optical mice. These

sensors are very inexpensive while supporting high sensitivities. They use a Light Emitting

Diode (LED) or a laser diode to illuminate the tracking surface and a small Charge Coupled

Device (CCD) array to capture low resolution images at a very high rate. Lenses are used

to focus light onto the surface and then onto image sensor. Figure 3.10 illustrates the

conceptual arrangement of the components.

The optical mouse sensor continuously captures images of the tracking surface. Surface

features are extracted and tracked through the image sequence. Because there is a fixed

relationship between the area of the image sensor and area on the tracking surface, the

distance traveled in the x and y dimensions can be determined. The exact algorithms

used for tracking are trade secrets, but the literature suggests that they are based on edge

detection and phase correlation [23]. The ADNS-2610 was evaluated extensively in [24]

and was shown to meet the accuracy requirements of ultrasound image registration. It

was also integrated into a demonstration freehand 3D ultrasound system that was able to

generate accurate reconstructions in the presence variable scan rate, in the x linear DoF,

and deviation from a straight line scan path, in the y linear DoF.

31



Figure 3.10: Conceptual arrangement of optical mouse system components [10]

3.3.1 Avago ADNS-2610

The Avago ADNS-2610, pictured in Figure 3.11, is a low-cost, small form factor, optical

mouse sensor. It provides a simple digital interface via a two wire, SPI serial port. It

has a resolution of 400 counts/in and can sense rates of motion up to 12 in/s. The device

also supports image capture. Image capture is important in this application because it

provides a mechanism for calibrating of the overall optical system. Although its performance

specifications are some of the lowest in Avago’s product lineup, the ADNS-2610 has been

proven adequate for this application. Carsten Poulsen’s evaluation demonstrated accuracy

within 1% of the expected values. The complete specifications can be found in Appendix F.

3.3.2 Avago HDNS-2100 Optical Mouse Lens

The Avago HDNS-2100 optical mouse lens is designed specifically for use with the ADNS-

2610 optical mouse sensor. It is made from injection molded plastic and it includes locating

features that ensure proper alignment between the lens and the sensor, the lens and the

mouse housing, and spacing between the sensor and the tracking surface. The ADNS-2610

32



Figure 3.11: Avago Technology ADNS-2610 optical motion sensor

has a very small aperture through which light can enter. In order to direct light into

the device the HDNS-2100 has a very low Numerical Aperture (NA). When assembled as

specified by Avago, it has a nominal magnification of 1.0 and depth of field of ±.5mm.

Figure 3.12: Avago HDNS-2100 optical mouse lens [11]

3.3.3 Elmo QT288 Objective Lens

The Elmo QT288 micro lens, pictured in Figure 3.13, is intended to be used in conjunction

with Elmo’s 1
4 in diameter CCD video camera. It features an 8 mm focal length, an aperture

ratio of 1:2.8, and a 90 mm -∞ Depth Of Field (DOF). The QT288 is composed of multiple

aspheric lenses combined in such as way as to minimize chromatic and monochromatic

aberrations. Prior work indicated that simple lenses, composed of just one or two pieces

of glass, were inadequate when coupled with an optical fiber. This lens has high enough

optical quality to be used with digital cameras in the mega-pixel range.

33



Figure 3.13: Elmo QT288 micro lens

3.3.4 Schott Acid Leached Fiber Bundle

The Scott acid leached fiber bundle possesses a number of unique features. One of its

primary uses is in endoscopes and as such, it is extremely flexible, as illustrated in Figure

3.14. It is composed of 18,000 individual glass fibers, each of which is 7.6 µm in diameter,

and it has a NA of 0.38. Irene Gouverneur did a preliminary investigation that showed that

this fiber has excellent imaging performance when coupled with the Elmo lens [17].

3.3.5 Edmund’s Optical Fiber Optic Rod

Fiber optic rods, also know as image conduits, are composed of many individual fibers

embedded in a rigid medium such as glass or epoxy. Several examples are pictured in Figure

3.15. Three types offered by Edmund’s Optical as standard products were evaluated: a 3,012

element 0.062 in diameter rod, a 3,012 element 0.125 in diameter rod, and a 50,419 element

0.125 in diameter rod. All samples were one inch in length. The complete specifications can

be found in Appendix H. These image conduits were investigated in [24] and discounted,

but as shown in Chapter 7, they can be made to work.

34



Figure 3.14: Schott acid leached fiber bundle

Figure 3.15: Edmund’s Optical rigid optical conduit

35



36



Chapter 4

Test Platforms

Three types of sensors were evaluated for inclusion in the tracking system: MEMS gy-

roscopes, MEMS accelerometers, and optical trackers. To test them, it was necessary to

develop a test platform that could communicate with each of the sensors, generate test

stimuli, collect and store data, and analyze that data. Each class of sensor required a

different type of stimulus: rotational motion for the gyroscopes and linear motion for the

accelerometers and optical trackers. Furthermore, the individual sensors had different elec-

trical specifications and communications interfaces. These competing requirements made it

difficult to find a single test platform that could support all of the sensors.

The high level structure of the system is illustrated in Figure 4.1. A Windows PC

was used to control the individual system components. Matlab was utilized extensively

to automate the test process. A PICDEM FS-USB demonstration board was connected

to the PC over Universal Serial Bus (USB) and interfaced with each sensor using either a

SPI or I2C serial port. Test data was transferred to and from the sensors over the serial

interfaces and then forwarded to the PC over the USB link. The rotary and linear motion

platforms also connected to the PC. As indicated by the dotted line in Figure 4.1, the

SoloistCP servo drive (Aerotech Corp.) was configured via USB, but did not require real-

time control during testing. The solid line connecting the EK3LV02DQ linear accelerometer

evaluation module and the PC indicates that USB was used to transfer real-time test data.

37



The solid line connecting the HP7255A XY plotter also indicates that it required real-

time communication during tests. However, in this case, the communications channel was

implemented using RS232.

Because the optical tracking sensors needed to be evaluated as part of a larger optical

system, the details of those tests and test apparatus are presented separately in Chapter

7. However, the data acquisition system described here was used for that testing. For that

reason, the details of the electrical interface and the firmware required to control it are

presented here.

4.1 Data Acquisition Hardware

The core of the sensor evaluation system was a PICDEM FS-USB demonstration board from

Microchip Technology Inc. The board is pictured in Figure 4.2. It features a PIC18F4550

microcontroller with a full-speed USB interface and a broad feature set, suitable for inter-

facing with all of the sensors we planned to evaluate. Each of the sensors required different

serial port hardware for communication, and none of them could be connected directly to a

PC’s serial port. The PICDEM FS-USB demonstration board was used as the common tool

for communicating with the individual sensors and then relaying that data to the host PC.

The following sections will describe the PICDEM FS-USB demonstration board in greater

detail and then document the electrical interfaces between it and the individual sensors that

were evaluated.

4.1.1 PICDEM FS-USB Demonstration Board

The PICDEM FS-USB demonstration board provides an impressive feature set given its $60

price. It features a full-speed, USB 2.0 compliant interface, RS232, high General Purpose

I/O (GPIO) pin count, multiple power supply options, and a PIC18F4550 microcontroller

operating at a maximum clock frequency of 48 MHz. The microcontroller itself has many

useful features including a Universal Synchronous-Asynchronous Receiver-Transmitter (US-

ART), SPI serial port, I2C serial port, a multi-channel ADC, and multiple Capture and

38



PC

SPI

I2C
SPI

ADRS-200 SoloistCP HP7255A

EK3LV02DQ

ADIS16255 MG1101a

ADNS-2610

RS232

PICDEM FS-USB

Rotational Motion
Test Platform

Linear Motion
Test Platform

Optical Tracking

Figure 4.1: High level block diagram of the test system

39



Figure 4.2: PICDEM FS-USB demonstration board [12]

Compare (CCP), Pulse Width Modulation (PWM), and timer modules. This particular

tool was selected for several reasons. First, purchasing a demonstration board saved a lot

of time when compared to building one from scratch. Support for all major serial interface

standards was also very important because all of the sensors identified for evaluation had

digital front-ends utilizing some type of serial interface. In addition, early in the course of

this work it appeared that the proof-of-concept system would use CustusX for 3D visual-

ization and reconstruction. Had that been the case, the acquisition system would not have

been required to do any signal processing, and the PICDEM board would have been useful

in the prototype system as well.

4.1.2 MG1101a Gyroscope Physical Interface

The MG1101a gyroscope uses an I2C serial interface, which is a two-wire, multi-master

serial bus. The MG1101a evaluation module provided access to the I2C Receive (RX) and

Transmit (TX) signals as well as power and ground on a 4 x 0.100 in header. The MG1101a

evaluation module is pictured in Figure 4.3. A four conductor ribbon cable was constructed

to connect the demonstration board to the PICDEM board.

The I2C implementation used in this system is very simple. The PIC18F4550 acts as the

master and the MG1101a acts as the slave. The PIC’s RB0 and RB1 pins are connected to

40



Figure 4.3: MG1101a evaluation module

Figure 4.4: MG1101a to PIC18F4550 interface schematic

the Serial Data (SDA) and Serial Clock (SCL) signals of the I2C bus, as are the SDA and

SCL pins of the MG1101a. These two signals are pulled up to the +5 v supply of the PIC

with 3 kΩ resistors. A linear voltage regulator converts +5 v from the PICDEM board to

the +3.3 v required by the MG1101a. Even though the MG1101a uses a +3.3v supply, its

SDA and SCL pins are +5 v tolerant, which simplifies the interface by eliminating the need

for a level translator. The circuit schematic is presented in Figure 4.4.

41



Figure 4.5: ADIS16255 to PIC18F4550 interface schematic

4.1.3 ADIS16255 Gyroscope Physical Interface

The ADIS16255 gyroscope has a SPI serial interface. SPI is four-wire, full duplex, syn-

chronous serial bus. The PIC18F4550 acts as the bus master and the ADIS16255 acts as

a slave. The schematic for the interface between them is illustrated in Figure 4.5. The

PIC’s RB0, RB1, RB3, and RC7 are connected to the Serial Data In (SDI), Serial Clock

(SCK), Chip Select (CS), and Serial Data Out (SDO) SPI bus signals, respectively. On the

ADIS16255 side of the bus the SDO signal is connected to the SDI pin and the SDI signal

is connected to the SDO pin. The ADIS16255 requires a +5 v supply which eliminates the

regulator that was required for the MG1101a. The SPI electrical specification does not call

for pull-up resistors and they are also absent in Figure 4.5.

4.1.4 ADNS-2610 Optical Mouse Sensor Physical Interface

Unlike the other sensors, the ADNS-2610 optical mouse sensor requires a number of external

components to function. It is possible to modify the Printed Circuit Board (PCB) of an

optical mouse for use with the PICDEM based acquisition system, but the physical dimen-

sions of the mouse PCB make it difficult to use in conjunction with the rest of the optical

test apparatus. A small PCB, pictured in Figure 4.6, was designed to allow the sensor and

its auxiliary components to fit in the available space. It also has features that allow it to

42



Figure 4.6: ADNS-2610 carrier PCB

interface with devices other than the PICDEM board. Components are populated based on

the intended application. Figure 4.7 is a schematic of the interface between the ADNS-2610

and the PIC18F4550. U2 is an open-drain, non-inverting buffer Integrated Circuit (IC) that

is compatible with a wide range of I/O voltage standards, such as Transistor-Trasistor Logic

(TTL) and Complimentary Metal Oxide Semiconductor (CMOS). It allows the ADNS-2610,

which requires a +5 v supply, to interface with systems using an equal or lower signaling

voltage. In Figure 4.7, that voltage is specified as +3.3 v, however, U2 is actually compatible

with voltages down to +1.8 v. That can be accomplished by applying the lower signaling

voltage to J2-3 instead of +3.3 v. For instance, to connect to the PICDEM board, +5 v

should be applied to J2-3. The Field Programmable Gate Array (FPGA) board that the

final system is implemented on has a maximum I/O voltage of +3.3 v, in which case +3.3 v

must be supplied on J2-3, as illustrated in Figure 4.7.

The ADNS-2610 optical mouse sensor uses a half-duplex synchronous serial interface.

The serial interface does not conform to a specific standard, but it is generic enough to be

connected to most microcontroller serial ports. The PIC18F4550 acts as the master and the

ADNS-2610 acts as the slave. The PIC’s RC7 and RC6 pins are connected to the Data (DT)

and Clock (CK) bus signals, respectively. The DT signal is connected to the ADNS-2610’s

Serial Data I/O (SDIO) pin and the CK signal to the SCK pin.

43



Figure 4.7: Schematic for the ADNS-2610 to PIC18F4550 interface board

4.1.5 EK3LV02DQ Linear Accelerometer Evaluation Module

The LIS3LV02DL 3-axis linear accelerometer was tested using the EK3LV02DQ evaluation

module. The evaluation module has a USB interface and came with software that allowed

data to be collected directly. No additional hardware or software was required.

4.2 Firmware

The acquisition system’s firmware is written in C for the Microchip C18 compiler. The base

Firmware (FW) was provided by Microchip, including the USB stack. The system was used

to interface with 6 different sensors, 3 of which (the ADI iMEMS devices) were the same

with respect to the PIC interface. Each different sensor interface required different serial

port configurations and different serial communications routines. The rest of the FW is

common. Because only one sensor would be attached to the acquisition system at any given

time, three separate versions of the code were developed rather than attempt to make the

sensor interface configurable during execution.

The following sections document the firmware that was developed for the PICDEM FS-

44



USB board. The FW for communicating with each sensor will be treated individually.

The FW that handles the communication between the PICDEM board and the PC will

be discussed in Section 4.5. Please note that the LIS3LV02DL linear accelerometer was

obtained as part of the EK3LV02DQ USB based evaluation module that was already fully

programmed. Therefore, it will not be covered in this section.

4.2.1 MG1101a Gyroscope Communication Firmware

The FW that handled communication with the MG1101a Gyroscope was the simplest. This

was due largely to the fact that most of timing in the I2C protocol is either handled in

hardware or defined explicitly in the protocol. All of the low level communications routines

were provided in the PIC C18 API, which also simplified the programming task.

The MG1101a is logically separated into two distinct devices: the gyroscope and an

Electronically Erasable Programmable Read Only Memory (EEPROM). The EEPROM is

1024 bytes long and the first 16 bytes are used to store calibration constants that are loaded

at the factory. The rest of EEPROM is available for user data. When the MG1101 is first

powered up, the calibration data must be read out of the EEPROM and then loaded into

the gyroscope. The I2C protocol embeds the address of the target slave device in the first

byte of the serial transaction. The address of the EEPROM is 0x50 and the address of

the gyroscope is 0x57. To load the calibration constants into the gyroscope, the PIC FW

performs 16 sequential reads to memory addresses 0x00 through 0x0F of the EEPROM. The

FW then performs 16 sequential writes to addresses 0x00 through 0x0F of the gyroscope.

During normal operation, the PIC’s TMR0 is used to provide an interrupt every 33ms.

The Interrupt Service Routine (ISR) performs a 2 byte read to retrieve the angular rate

data and then stores the result until the host PC requests it.

4.2.2 ADNS-2610 Optical Mouse Sensor Communication Firmware

The ADNS-2610 communication routines are also relatively simple. It uses a half-duplex

serial interface and it does not need to be polled frequently. Each serial transfer consists of

a command phase and a data phase. A single byte is transferred in each phase. Bit 0 of

45



(a) Write

(b) Read

Figure 4.8: ADNS-2610 command formats

the command byte indicates whether the command is a read or a write, and bits 1-7 are the

register address, as illustrated in Figure 4.8. Write commands can be followed immediately

by the data byte. However, read commands require a pause of at least 100 µs between the

command and data phases. There are also additional timing requirements for sequential

writes, writes followed by reads, and reads followed by anything, as illustrated in Figures

4.9(a), 4.9(b), and 4.9(c), respectively.

Polled serial communication is implemented using a timer to generate synchronous in-

terrupts. The PIC’s TMR0 is configured to interrupt every 100 ms. The TMR0 ISR then

performs a read from the DELTA_X and DELTA_Y registers of the ADNS-2610. The required

intra and inter-command timing is generated using the delay() functions provided by the

Microchip C18 API [25]. Write commands are only utilized for device control and do not oc-

cur during normal operation. Figure 4.10(a) illustrates the write process and Figure 4.10(b)

illustrates the read process.

Another important feature of the ADNS-2610 is its ability to capture an image of the

surface it is tracking. This feature was used extensively in the design and testing of the

optical system. The image capture process and the normal tracking functions cannot take

place simultaneously. In order to start an image acquisition, a write command is issued

46



(a) Write after write

(b) Read after write

(c) Anything after read

Figure 4.9: ADNS-2610 inter-command timing

47



(a) Write (b) Read

Figure 4.10: Flowcharts for the basic ADNS-2610 serial communication routines

48



to the PIXEL_DATA register. This is followed by 324 consecutive reads of the PIXEL_DATA

register to retrieve the 18x18 pixels. It is important to note that the ADNS-2610 requires

a significant period of time between these successive reads, more than is suggested by the

minimum sequential read timing specified in Figure 4.9. The exact delay period was never

quantified experimentally, but a delay of 833 µs works. The process is further complicated

by the fact that 324 bytes is more than can be accommodated in a single transfer to the

USB host and is also larger than the Random Access Memory (RAM) available in the PIC

at runtime. The solution is illustrated in Figure 4.11, where a static counter is used to break

the process into multiple parts.

4.2.3 ADIS16255 Gyroscope Communication Firmware

The ADIS16255 communication routines are more complicated than those of the ADNS-

2610. This is due to the complicated serial protocol employed. The ADIS16255 uses a full

duplex SPI serial link with a clock frequency of 2 MHz. The PIC’s Master Synchronous

Serial Port (MSSP) is configured as a SPI master. None of the module’s internal clock

generation methods yield an acceptable transmission frequency so TMR2 is used as the

clock source with a period of 2 cycles of the master clock. The PIC’s RB3 I/O pin is used

as a CS, also known as a Slave Select (SS) signal.

The ADIS16255 uses a 16 bit serial data format as illustrated in Figure 4.12. The first

half of the word is a command byte and the second is a data byte. Bit 7 of the command

byte defines whether the command is a read or a write. Bits 0-6 define which register the

command will access. For read commands, the value of the data byte is not important

because it is not used by the device. For write commands, the data byte contains the data

to be written. The ADIS16255 has 16 bit registers that are byte addressable. This means

that two write commands are required to change the state of an entire register. Because

the interface is full duplex, each time a byte is transmitted a byte is also received. That

byte is dependent on the previous command and may or may not be useful data. If the

previous command was a read command, then the two bytes clocked in when the subsequent

command is issued contain the data from the addressed register. Regardless of which byte

49



Figure 4.11: ADNS-2610 image retrieval flow chart

50



Figure 4.12: ADIS16255 DIN sequence [13]

of a register is addressed by a read command, the entire 16 bit contents of the register will

be transferred during the subsequent command. If the previous command was a write, the

data returned during the current command has no meaning. The net result is that two 16

bit transfers are required to complete all commands other than a single-byte write.

There is an additional complication in the interface between the ADIS16255 and PIC.

The PICs MSSP, like most SPI serial ports, treats each transfer as a single 8 bit transaction.

The ADIS16255 SPI serial port utilizes 16 bit transactions and does not directly support

single byte transfers. The waveform in Figure 4.12 makes no provision for a pause between

the first and second bytes of the transfer, but the PIC is not capable of transmitting two

bytes back-to-back without inserting at least one idle CS cycle in between. As a result,

the automatic features of the PICs MSSP must be bypassed, and many of the functions

controlled directly by the FW. The PIC’s MSSP would normally drive CS automatically

but in this situation that would result in CS going high after only a byte. Therefore, the

CS signal is connected to one of the PICs GPIO pins and controlled directly by the FW.

Luckily, the ADIS16255 serial port does not care about the relative timing of each bit in

a given transfer. Once activated by a falling edge on CS, all that is required are 16 rising

edges of SCK and a rising edge on CS to complete the transfer. This fact was demonstrated

experimentally but it was also confirmed by an Analog Devices application engineer.

Both the ADIS16255 and the PIC clock data out on the falling edge of SCK, and clock

data in on the rising edge of SCK. When combined with the requirement that SCK idle high,

as illustrated in Figure 4.13, this means that none of the PIC’s MSSP operating modes are

directly compatible with the ADIS16255. To circumvent the problem, the PIC FW changes

51



Figure 4.13: ADIS16255 low level timing diagram [13]

the operating mode of the MSSP at the beginning and end of each 16 bit transfer. Prior

to the start of a transfer, the MSSP is set so that SCK idles high. To begin a transfer, CS

is driven low, SCK is set to idle low, and data is written to the MSSP transmit register.

The next SCK falling edge clocks out the first data bit. The FW polls the MSSP and when

the first byte transfer is complete, the second byte is immediately written. Since the PIC

is executing instructions six times faster than the SCK frequency, there is no interruption

in the 16 bit frame, as seen by the ADIS16255. The second byte is transferred the same

way as the first and when the transfer is complete, the MSSP mode is again switched so

that SCK idles high. The FW then drives CS high to complete the transfer. The process is

illustrated in Figure 4.14.

There are two communication modes implemented in the FW. The first is used when

configuring the ADIS16255 and essentially treats the MSSP as if it were an asynchronous

interface. Register writes consist of a single 16 bit transaction, as illustrated in Figure

4.14(a). Register reads consist of two 16 bit transactions, as illustrated in Figure 4.14(b).

The first transfer issues the read command and the second is a dummy command whose

only purpose is to clock in the data from the previous read. This is inefficient but necessary.

The second mode is utilized when the ADIS16255’s angular rate output is being actively

sampled. In this mode, TMR0 is configured to interrupt every 3.906 ms. The ISR then

performs a single 16 bit read transaction. Because the read command is always the same

in this mode, the FW takes advantage of the full-duplex nature of the interface. The data

that is clocked in by the PIC is the data from the previous command. In this way, read

commands can be performed effectively with only a single read transaction. The only caveat

52



is that a read command must be issued before activating the TMR0 interrupt, so that the

first data read is valid.

4.3 Aerotech ADRS-200 Rotation Table and Soloist CP

Servo Controller

An Aerotech ADRS-200 rotation table, in conjunction with an Aerotech SoloistCP servo

controller, were used to provide test stimulus for the MEMS gyroscopes. The ADRS-200

is pictured in Figure 4.15(a) and the SoloistCP in Figure 4.15(b). The ADRS-200 is a

very high quality machine incorporating a direct-drive, slotless, brushless servomotor and

a 10,000 cnt/rev encoder. The SoloistCP is a combination servo controller and amplifier.

This combination allows the ADRS-200 to achieve an accuracy of greater than 300 µrad and

a repeatability of 20 µrad. The slotless motor design allows the table to rotate at very low

angular velocities with very little variation. This was a critical feature for our tests because

we were primarily interested evaluating gyroscope performance below 10◦/s.

The SoloistCP servo controller came with a PC based Integrated Development Environ-

ment (IDE) that was used to develop the motion programs used for testing. A detailed

explanation of the specific motion profiles can be found in Chapter 5. Once the programs

were complete they were downloaded to the controller and stored in its non-volatile memory.

In order to eliminate the need for operator participation during the tests, an automatic

triggering mechanism was developed. The SoloistCP has a number of digital and analog

inputs. The status of these inputs can be queried during program execution. An output

port on the PIC was connected to one of the inputs on the SoloistCP. The state of the PIC

output can be changed by sending it the appropriate command over USB. Each motion

program starts by polling the value of the trigger input. When the voltage on the input

changes from 5 v to 0 v, the program proceeds. When the program is complete, it goes back

to the beginning and waits for another trigger. This allows a Matlab script to synchronize

the motion program with the data acquisition system. In this way, a test can be looped

indefinitely without human interaction.

53



(a) Write (b) Read

Figure 4.14: Flowcharts for the ADIS16255 single read and write transactions

54



(a) (b)

Figure 4.15: The ADRS-200 rotation table and SoloistCP servo controller

55



4.4 HP7255A XY Plotter

The HP7255A XY plotter, pictured in Figure 4.16, was used as the linear motion platform

for testing the MEMS linear accelerometers. The Device Under Test (DUT) was mounted

to the plotter arm so that it would experience the same motions that the plotter pen

went through. Commands were sent to the plotter over an RS-232 interface. The plotter

accepts HP Graphics Language (HP-GL), which is a simple, American Standard Code for

Information Interchange (ASCII) based protocol. Matlab scripts were used to send the

command sequence necessary to produce a particular motion profile. More information

regarding the actual profiles used during testing can be found in Chapter 6.

Figure 4.16: The HP7255A XY plotter

4.5 Data Collection and Analysis Software

A WindowsXP PC was used to interface with the system components, automate the test

process, and record and store the data. Matlab was used to collect data from the data

acquisition system as well as to control the motion platforms. A DLL and kernel mode

device driver were developed to enable Matlab to communicate with the data acquisition

system over USB. The HP7255A plotter was controlled directly using Matlab’s built in serial

56



I/O functionality.

The hierarchy of host PC software is illustrated in Figure 4.17. At the lowest level,

kernel mode drivers interface directly with the PC hardware. For the RS232 serial port

this functionality is included in the Windows operating system. Matlab can then access the

serial port directly as illustrated by the arrows on the right hand side of Figure 4.17. The

USB dataflow is illustrated on the left hand side of Figure 4.17. The mchpusb.sys device

driver, provided by Microchip, implements the kernel mode code that actually interacts

with the USB hardware. The code in mchpusbapi.dll implements the user mode routines

that are called by user applications. In this case, the user mode application is another DLL,

adis_usb_ctrl.dll, that implements the high level USB communications protocol that is

used to control the test system and transfer data. At the top level, a Matlab script provides

the overall test automation functionality.

In order to understand how the interface between the PC and the PICDEM board was

implemented, some familiarity with USB is required. The following section provides a brief

introduction to the USB protocol.

Figure 4.17: Major host software components

57



Figure 4.18: USB topology [14]

4.5.1 Universal Serial Bus

The data acquisition system communicates with a PC using the USB. A large portion of

the effort that went into the development of this system was concentrated on the microcon-

troller firmware and Windows device drivers that were required to link the two. The brief

introduction to USB presented here is intended to provide some context for the firmware

and software descriptions that follow.

USB is a high speed serial interface specification for computers and computer peripherals.

The USB Implementers Forum, Inc. (USB-IF)1 is responsible for maintaining the USB

standard. The USB specification covers all aspects of the interface including mechanical

requirements, electrical specifications, the protocol layer, bus topology, device framework,

and host hardware and software. The specification is presently at revision 2.0.

The USB connects USB devices with the USB host [14]. In any USB system there
1http://www.usb.org/

58

http://www.usb.org/


can be only one host, also known as the host controller. The host controller is composed of

hardware, firmware, and/or software. USB devices are further broken down into classes, such

as hub, Human Interface Device (HID), printer, mass storage device, etc. Fundamentally,

however, there are only two device classes: Hubs and Functions. The USB host contains a

hub, known as the root hub, from which all other connections originate. The overall bus

topology is illustrated in Figure 4.18.

The physical layer of USB is very simple. It consists of a single cable composed of four

conductors. Two of these are for +5 v and GND. The specification guarantees that at

least 100 mA and at most 500 mA of current can be supplied over the cable. The other

two conductors form a differential pair that is used for the actual data transmission, as in

Figure 4.19.

Figure 4.19: The USB physical layer [14]

USB is a polled architecture. All data transfers are host initiated. A connection between

a host and a device is known as a pipe. The device side of a host-device pipe is called an

End Point (EP). EPs are enumerated sequentially and are composed of an In EP and an

Out EP. The In EP is for data that is to be transferred from the device to the host. The Out

EP is for data that is to be transferred from the host to the device. All devices are required

to implement at least one endpoint (EP0). The host-device connection to EP0 is known

as the Default Control Pipe, which is used to initialize the device and for device control.

Other EPs may be defined for a particular device, but may never exceed 15 in number, in

addition to EP0. This arrangement is illustrated in Figure 4.20.

The USB specification describes four types of data transfers. The bus itself is capable

of supporting a wide variety of communication regimes, from streams, which do not even

guarantee data delivery, to transfers with guaranteed delivery and latency. Control transfers

are used to configure a device when it is attached and for other device specific purposes.

59



Figure 4.20: USB device architecture[15]

Bulk data transfers are used to transfer relatively large chunks of data that do not have a

temporal pattern. Interrupt data transfers are used for time sensitive data that must be

delivered reliably. Isochronous transfers use a pre-negotiated amount of USB bandwidth

with a pre-negotiated delivery latency.

4.5.2 User Level USB Protocol

The FW for host communication is common to all variants of the PIC FW. This allowed

a common set of communication tools to be utilized on the PC side of the USB bus. As

previously stated, all of the low-level FW for managing the USB HW was provided by

Microchip. A custom user-level protocol was built on top of the existing USB driver stack.

The user-level protocol is based on 64 byte packets. Each packet is equivalent to a single

USB interrupt transfer. The first byte of each packet contains a command code and the

second byte contains the length of the payload. Even though the packets are always 64 bytes

long, the amount of meaningful data can vary. The content of the remaining 62 bytes is

dependent on the command. The commands, along with their packet formats, are listed in

Table 4.1. The host PC is always the initiator of a transaction. The PC sends a command

60



to the PIC and the PIC responds according to the command issued.

Table 4.1: User level USB protocol packet formats

CMD LEN D[0] ... ... ... ... ... D[61]

CAL_DATA OUT 0x38 0x01 XX XX XX XX XX XX XX
IN 0x38 0x40 D[0] D[1] D[2] ... D[15] XX XX

RD_GYRO OUT 0x39 0x01 XX XX XX XX XX XX XX
IN 0x39 0x40 PKT CNT D[0]_H D[0]_L ... D[CNT-1]_H D[CNT-1]_L

GET_IMAGE OUT 0x40 0x01 XX XX XX XX XX XX XX
IN 0x40 0x40 D[0] ... ... ... ... ... D[61]

GYRO_CMD OUT 0x41 0x01 CMD DATA XX XX XX XX XX
IN 0x41 0x40 RES_H RES_L XX XX XX XX XX

ADIS_CFG OUT 0x42 0x01 CMD DATA XX XX XX XX XX
IN 0x42 0x40 VOLT_H VOLT_L TEMP_H TEMP_L XX XX XX

ADNS_DATA OUT 0x43 0x01 CMD DATA XX XX XX XX XX
IN 0x43 0x40 STATUS DY DX SQUAL PMAX PMIN PSUM

TRIGGER OUT 0x44 0x01 STATE XX XX XX XX XX XX
IN 0x44 0x40 STATE XX XX XX XX XX XX

XX: Don’t Care ...: Sequential Enumeration

The PIC’s USB engine has a block of shared RAM that is used as a buffer for sending

and receiving data. The data packet structures are implemented as 64 byte long arrays that

exist in this shared memory. The arrays must not be accessed by the FW while the USB

engine is operating on them. Because the host communication is not synchronized with the

sensor communication, contention can occur between the USB engine and an ISR trying to

write sensor data into the buffer. A double buffering mechanism is employed to avoid this.

In this scheme, two 64 byte arrays are declared in the shared memory. The FW and the

USB engine each access these buffers through a separate pointer. From the perspective of

either, there appears to be only one buffer. In reality, the two pointers are never pointing

to the same block of data, so the USB engine is working on one buffer while the FW is

working on the other. When the USB engine completes a transfer, it swaps the contents of

each pointer. This allows the system to tolerate variation in the host polling rate, as well

as managing potential contention between the USB engine and the FW.

4.5.3 Device Driver

A custom device driver allowed Matlab to communicate with the test electronics over the

USB interface. The device driver has three parts, a DLL and .sys file that provide an

API for transferring data over USB, and a DLL that implements the high level protocol

for configuring and transferring data from the test system. The low-level USB API was

provided by Microchip and used without modification. The protocol level DLL was based

61



Table 4.2: Microchip Low-Level USB Communication API implemented in mpusbapi.dll.

DWORD MPUSBGetDLLVersion( Returns the version # of the DLL
void)

DWORD MPUSBGetDeviceCount( Returns the number of devices with matching VID&PID
CHAR *pVID_PID) a string containing the PID&VID value of the target device

HANDLE MPUSBOpen( Returns the handle to the endpoint pipe with matching
VID&PID

DWORD instance, Instance number of the device to open
CHAR *pVID_PID, A string containing the PID&VID value of the target device
CHAR *pEP, A string of the target endpoint to open
DWORD dwDir, Specifies the direction of the endpoint
DWORD dwReserved) Future use

DWORD MPUSBRead( Read data from the specified pipe and return status code
HANDLE handle, Identifies the endpoint pipe to be read
VOID *pData, Points to the buffer that receives the data read from the pipe
DWORD dwLen, Specifies the number of bytes to be read from the pipe
DWORD *pLength, Points to the number of bytes read
DWORD dwMilliseconds) Specifies the time-out interval, in milliseconds

DWORD MPUSBWrite( Write data to the specified pipe and return status code
HANDLE handle, Identifies the endpoint pipe to be read
VOID *pData, Points to the buffer that receives the data read from the pipe
DWORD dwLen, Specifies the number of bytes to be read from the pipe
DWORD *pLength, Points to the number of bytes read
DWORD dwMilliseconds) Specifies the time-out interval, in milliseconds

DWORD MPUSBReadInt( Read data from the specified pipe using the interrupt transfer
mode and return status code

HANDLE handle, Identifies the endpoint pipe to be read
VOID *pData, Points to the buffer that receives the data read from the pipe
DWORD dwLen, Specifies the number of bytes to be read from the pipe
DWORD *pLength, Points to the number of bytes read
DWORD dwMilliseconds) Specifies the time-out interval, in milliseconds

BOOL MPUSBClose( Closes a given handle
HANDLE handle) Identifies the endpoint pipe to be read

on Microchip code but was almost entirely custom. It was developed in Microsoft Visual

Studio.

The Microchip USB API handles all of the low-level Windows system calls necessary

to actually control the USB hardware. The mchpusb.sys file is registered with Windows

using the supplied mchpusb.inf file and implements the kernel mode functions necessary

to directly control the PC hardware. Mchpusbapi.dll implements the API functions that

a user mode application can call to setup the hardware and transfer data. The member

functions and their parameters are listed in Table 4.2. The file Mchpusb.h is included in the

user application, in this case another DLL, to define the API functions that are imported

when the DLL is loaded.

Adis_usb_ctrl.dll implements the user level control and transfer protocol that allows

Matlab to communicate with the test system. An important feature of Adis_usb_ctrl.dll

62



Table 4.3: High-Level USB Communication API implemented in adis_usb_ctrl.dll.

VOID ADIS_Init_USB_Connection( Initializes the driver and loads mchpusbapi.dll
VOID)

VOID ADIS_Close_USB_Connection( unloads mchppusbapi.dll
VOID)

UNSIGNED INT ADIS_Generic_Xfer( Transmits a generic 64 byte packet to the target and returns
the response

UNSIGNED CHAR *rx_buffer, Pointer to a pre-allocated buffer for the response packet
UNSIGNED CHAR *tx_buffer, Pointer to buffer containing the packet to transmit
DWORD tx_len) Number of bytes within the packet that contain useful data

UNSIGNED INT ADIS_Config( Configures the target to begin acquiring data continuously
UNSIGNED CHAR CMD, Device register address that will be polled during the test
UNSIGNED CHAR DATA, Device register address that will be polled during the test
UNSIGNED CHAR cnt_MSB, Unused
UNSIGNED CHAR cnt_LSB) Unused

VOID ADIS_Test( Executes a test run. Function will stream data from the tar-
get, format it, cast it to float, and return it in the buffer
supplied by the caller

FLOAT *data_buffer, Pointer to a pre-allocated buffer to hold the result data
DWORD buffer_length, Number of samples to aquire
DWORD sps, Specifies the sampling rate. Used for logging purposes only
FLOAT scale_factor, Specifies the conversion factor between the integer sample

value and the FP rate
INT offset) Unused

is that the functions it exports adhere to the C calling convention, which is necessary for

Matlab to load it. The API is illustrated in Table 4.3. ADIS_Init_USB_Connection()

must be called before any communication can occur. This function loads Mchpusbapi.dll

so that the low-level communications routines are available. The ADIS_Generic_Xfer()

function is used to send and receive arbitrary USB packets. This function allows the caller

to build a 64 byte packet, send it to the target, and receive the raw response. In this way,

the high level protocol can be implemented at the Matlab script level. The advantage of this

is that the high-level protocol can be modified without having to also modify and recompile

adis_usb_ctrl.dll.

Implementation of the user protocol at the script level worked fine for most tasks. How-

ever, during real-time data acquisition, Matlab was not fast enough to parse the packets

without dropping some of them. ADIS_Test() is used to receive data from the target during

an actual test run. Matlab allocates a block of memory large enough to accommodate the

entire test record and passes ADIS_Test() a pointer to it. ADIS_Test() then manages the

transfers, formats the individual data samples, converts them to real-world floating point

values, and returns control the Matlab script. The advantage of this is that the data for-

matting and type casting operations occur at the speed of native C++ and the overhead of

63



calling into the DLL for every packet is eliminated.

4.5.4 Matlab Scripts

A library of Matlab scripts was developed to aide in the test process. The scripts were

developed using a layered approach. At the lowest level, basic scripts handled specific

tasks like sending a generic packet to the data acquisition system or initializing the USB

connection. Scripts at the middle level aggregated multiple, low-level scripts to perform more

complex tasks like capturing an image from the ADNS-2610 tracking sensor or triggering

the rotation table. The highest level Matlab scripts were used to automate repetitive tasks

like performing the same test many times in a row, storing all of the data, and analyzing it.

64



Chapter 5

Gyroscope Experiments

The purpose of these tests was to characterize the MG1101a and ADIS16255 MEMS angular

rate gyroscopes. The tests are broken down into two types: static tests and dynamic tests.

The static tests were designed to evaluate the gyroscopes output noise while the sensor is at

rest as well as the bias present in the output signal. The dynamic tests evaluate the same

parameters in the presence of angular motion. The static and dynamic test data were then

compared to test for the presence of motion dependent effects.

5.1 Procedure

5.1.1 Static Performance Tests

The sensor under test is mounted to the rotation table, described previously in Section 4.3,

and held stationary. A series of 100 tests were performed and each test had a duration of

60s. At the beginning of each trial the sensor output was recorded for 5s. The mean of

that data was calculated using (5.1), where N is the number of samples and ωi, i ∈ [1, N ]

are the individual angular rate samples. The mean is then used as an estimate of the bias.

The bias, b , is then subtracted from each subsequent sample, ωri, of the 60s test run, as

given in (5.2). The bias corrected angular velocity data, ωci, is then integrated using (5.3)

65



to calculate angular position.

b = 1
N

N∑
i=1

ωi (5.1)

ωci = ωri − b (5.2)

5.1.2 Dynamic Performance Tests

The sensor under test is mounted to the rotation table. A series of 100 tests were performed

and each test had a duration of 21 s, where the first 5 s are used to determine the bias and

the subsequent 16 s are recorded as the actual data. Before any testing was performed, the

motion controller was initialized with the appropriate motion program. At the beginning

of each trial the sensor output was recorded for 5 s. The mean of that data was calculated

using (5.1). The mean value, b, was then used to correct subsequent angular rate samples,

ωri, yielding corrected angular rate values, ωci, as shown in (5.2).

The angular displacement after the Nth sample, θN , was calculated from the corrected

angular rate samples, ωci, where fs is the sampling rate, using (5.3).

θN = 1
fs

N∑
i=1

ωci (5.3)

Equations 5.2 and 5.3 can also be combined into a more compact form as in 5.4.

θN = 1
fs

N∑
i=1

(ωri − b) (5.4)

66



5.2 Results and Discussion

5.2.1 Static Test Results

Angular Velocity Measurements

Figures 5.1 and 5.2 summarize the angular velocity data obtained by recording the gyroscope

output while the gyroscope was stationary. 100 trials were conducted, each of which had

a duration of 60 s. Since the gyroscopes were stationary, noise was the only component

present in the output signal.

RMS noise is a measure of the magnitude of the AC noise in the angular velocity. The

RMS noise for each trial, indicated by the “+” in Figures 5.1 and 5.2, was calculated by

summing the squared difference between each corrected angular velocity sample, ωci, and the

mean of all the corrected angular velocity samples, ωc, dividing by the number of samples,

N , and then taking the square root, as shown in (5.5).

Figure 5.1: MG1101a static test velocity data summary

67



Figure 5.2: ADIS16255 static test velocity data summary

RMS Noise =

√√√√ 1
N

N∑
i=1

(ωci − ωc)2 (5.5)

The standard deviation, σ, is calculated using the same equation form as was used to

compute the RMS noise. However, the standard deviation is a more general term and is

defined separately in (5.6).

σ =

√√√√ 1
N

N∑
i=1

(Xi −X)2 (5.6)

The ωci and ωc terms in (5.5) are equivalent to the Xi and X terms, respectively, in

(5.6). The overall mean of the RMS noise, σ, is the average RMS noise for all trials. It was

calculated using equation 5.7, where N is the number of trials and RMSi is the RMS noise

value for an individual trial.

σ = 1
N

N∑
i=1

RMSi (5.7)

In Figures 5.1 and 5.2, the lines pointed out by (1), (2), and (3) represent the +1σ, −1σ,

68



Table 5.1: Comparison of static velocity test results

MG1101a ADIS16255
RMS Noise 0.1824 0.5325
Mean (◦/s) 0.0013 -0.0041
Range of RMS Noise (◦/s) 0.0165 0.0164

and mean value of each experiment, respectively. The MG1101a exhibited better noise

performance than the ADIS16255 did. Neither sensor exhibited any significant variation in

RMS noise from run to run. The velocity noise of the ADIS16255 could be reduced by using

the built-in filtering function. However, the MG1101a does not have that feature, so only a

comparison of the basic features was performed.

The RMS noise of the MG1101a is specified as 0.18◦/s nominally. This corresponds

exactly to the experimental results. The ADIS16255 specifies a typical RMS noise value of

0.48◦/s which is in line with the observed value of 0.5325◦/s.

Angular Position

The static angular position data illustrated in Figure 5.3 for the MG1101a and Figure 5.4

for the ADIS16255 was derived from the static angular velocity data using (5.3).

Analysis of the position data provides insight into the accuracy that will be achievable in

the prototype tracking system. The noise sources present in the postition signal are known

collectively as drift rate. They are represented graphically in Figure 5.5.

69



Figure 5.3: MG1101a static test position data

Figure 5.4: ADIS16255 static test position data

70



Figure 5.5: Components of gyroscope drift rate [16]

Drift rate is the component of gyroscope output that is functionally independent of input

rotation. It is expressed as an angular rate in ◦/s [16]. Drift rate has many components.

Of the components listed, we are primarily interested in bias and random drift. Elastic

restraint drift only occurs in mechanical gyroscopes. Other environmental effects, such as

supply voltage and temperature, were held constant during testing and are therefore ignored.

Acceleration-sensitive drift is a component of the overall drift rate that is correlated with

linear acceleration. MEMS gyroscopes are only sensitive to linear acceleration in plane with

the sensitive axis. In our testing the only linear acceleration present was gravity and it was

oriented perpendicular to the sensitive axis.

Equation (5.8) models overall drift rate at sample i (di) as the sum of the systematic

drift rate at sample i (dsi) and the random drift rate at sample i (dri), for the static test

series. Based on the assumptions made in the previous paragraph, systematic drift rate is

equivalent to bias for these tests. This allows (5.8) to be restated with the bias at sample i

(bi) substituted for systematic drift rate, as in (5.9).

di = dsi + dri (5.8)

71



di = bi + dri (5.9)

Bias is the average, over a specified period of time, of gyroscope output that has no

correlation with input rotation or acceleration. It is expressed here in ◦/s. Bias instability

is the random variation in bias over a specified period of time and it is also expressed in
◦/s [16]. The bias (bi) has both a systematic (bs) and a random component (bri). The

systematic component is sensitive to supply voltage and temperature. Because these two

factors were held constant during testing, the systematic bias is represented as a constant

in the bias model presented in (5.10) below.

bi = bs + bri (5.10)

Bias and bias instability are both important factors influencing the accuracy of the overall

system.

Random drift rate is the random, time-varying component of the overall drift rate. When

integrated, random drift results in angular random walk [16], which is the other major source

of inaccuracy in this system. Random walks are zero-mean Gaussian stochastic processes

with a standard deviation that grows as the square root of time. The 1σ value of the angular

random walk is typically used to quantify the random drift rate of a sensor in ◦/
√
hr. If

the bias estimate is completely correct and the bias does not change over the course of

the trial, the mean of the angular velocity should be completely attributable to random

drift. In reality, however, the bias does change over the course of each trial. This makes

it difficult to quantify the magnitude of the bias instability and drift rate as two separate

error terms. Going by the strict definition of bias, it will be presented here as the mean

of the gyroscope’s output over the entire test run, calculated using (5.1) where N is the

sample rate in samples per second multiplied by the test duration (60 s). The variation in

bias between trials can then be represented as the standard deviation of all the bias values

calculated for the individual trials. The standard deviation is calculated using (5.6), again

with N equal to the total number of samples in the trial. The resulting values are listed in

72



Table 5.2: Bias and angular random walk statistics

MG1101a ADIS16255
Bias Instability (◦/s, 1σ) 0.0458 0.0446
Std. Dev. of Angular Random Walk (◦/s) 0.0037 0.0024

row one of Table 5.2.

As stated previously, quantifying the random drift rate by direct inspection of the gy-

roscope’s output is difficult because there is no clear way to distinguish between random

variations in bias and the overall drift. Angular random walk provides an alternative. The

first step in quantifying angular random walk is subtracting the bias from the gyroscope

output on a sample by sample basis. This is done using (5.2), where the bias, b, now rep-

resents the mean of the entire time series. The time series is then integrated using (5.3).

The resulting data contains only the position variations that are the result of random drift

in the gyroscope’s output.

Angular random walk is a stochastic process. Therefore, its standard deviation can

be utilized as a measure. By calculating the standard deviation of each position series

(derived in the paragraph above) and then taking the mean over all 100 trials, a statistical

representation of the random variation in position that is due only to random drift in the

gyroscope’s output can be derived. Finally, this result is expressed as a rate by dividing by

the test duration. The resulting values are listed in row two of Table 5.2.

Ultimately, the overall accuracy of the system is set by the aggregate of all the error

sources. A simple way of quantifying this is to look at the std. dev. of the static position

data. The standard deviation of the entire data set at time i is given by (5.6), where N is

the number of individual trials (100). For each time sample time i, the standard deviation

encompasses approximately 68% of the data. Put another way, if we repeat this test, there

is a 68% chance that the estimated position will fall within the ±1σ value at sample time

i. It is also informative to look at the maximum and minimum values of the data as

absolute bounds on the error. The maximum, minimum, mean and standard deviation are

represented graphically in Figure 5.6 for the MG1101a and Figure 5.7 for the ADIS16255.

73



Figure 5.6: MG1101a static test position data summary

Figure 5.7: ADIS16255 static test position data summary

74



Table 5.3: Position data summary statistics, 100 trials, 60s per trail

MG1101a ADIS16255
Maximum Ending Position (◦) 6.7468 7.8600
Maximum Error Growth Rate (◦/s) 0.1146 0.1330
Minimum Ending Position (◦) -7.7074 -6.2486
Minimum Error Growth Rate (◦/s) -0.1356 -0.1043
Std. Dev. of Ending Positions (◦, 1σ, 68% Confidence) 2.7506 2.6738
Std. Dev. of Ending Positions (◦, 2σ, 95% Confidence) 5.5012 5.3477
Overall Drift Rate (◦/s, 1σ, 68% Confidence) 0.0454 0.0448
Overall Drift Rate (◦/s, 2σ, 95% Confidence) 0.0909 0.0895
Mean of Ending Positions 0.0800 -0.2470

For the metrics identified above, it is also useful to convert them to rates such that

the values of the maximum, minimum, and standard deviation can be estimated for any

arbitrary test duration. This is done by fitting a 1st order polynomial to the data of the

form:

p(x) = p1x+ p0 (5.11)

The slope of that line, p1, is the rate of growth corresponding to that particular parame-

ter. The values of the maximum, minimum, std. dev., and their corresponding growth rates

are summarized in Table 5.3 for both the ADIS16255 and MG1101a. Overall conclusions as

to which gyroscope is more suitable for this application will be presented at the end of this

chapter, after the results of the dynamic tests are presented and discussed.

5.2.2 Dynamic Test Results

Dynamic tests were performed at ±1◦/s, ±3◦/s, ±5◦/s, and ±10◦/s. Each trial had a

duration of 16 s and 100 trials were performed at each angular velocity. Each test began

with a 5 s initial bias calibration. Then the Aerotech ADRS-200 rotation table remained

idle for 1 s, moved in the negative direction at the specified rate for 1 s, remained idle

for 1 s, moved in the positive direction at the specified rate for 2 s, remained idle for 1 s,

moved in the negative direction at the specified rate for 2 s, remained idle for 1 s, moved

in the positive direction at the specified rate for 2 s, remained idle for 1 s, moved in the

negative direction at the specified rate for 1 s, and then idled for the remainder of the test.

75



The same profile was used for all of the tests, the only thing that changed was the angular

velocity. A rate-ramp test was also performed. The rate-ramp test began with a 5 s initial

bias calibration. Then the table remained idle for 1 s, moved in the negative direction at

1◦/s for 2 s, remained idle for 1 s, moved in the negative direction at 2◦/s for 2 s, remained

idle for 1 s, moved in the negative direction at 3◦/s for 2 s, remained idle for 1 s, moved in

the negative direction at 4◦/s for 2 s, remained idle for 1 s, moved in the positive direction

at 10◦/s for 2 s, and, finally, remained idle for 2 s.

76



Test Results for ω = 1◦/s

Figure 5.8: MG1101a Velocity, 1◦/s

Figure 5.9: MG1101a Position, 1◦/s

77



Figure 5.10: ADIS16255 Velocity, 1◦/s

Figure 5.11: ADIS16255 Position, 1◦/s

Figure 5.8 and Figure 5.10 illustrate the velocity profile used in all of the dynamic tests.

These particular tests were performed with an angular rate of ±1◦/s. Although Figure

78



5.10 appears much noisier than Figure 5.8, the positive, negative, and idle periods of the

motion profile are clearly evident. Figure 5.9 and Figure 5.11 illustrate the angular position

estimates corresponding to the motion profile. The position estimates are calculated from

the rate output of the gyroscopes using (5.3).

79



Test Results for ω = 3◦/s

Figure 5.12: MG1101a Velocity, 3◦/s

Figure 5.13: MG1101a Position, 3◦/s

80



Figure 5.14: ADIS16255 Velocity, 3◦/s

Figure 5.15: ADIS16255 Position, 3◦/s

81



Test Results for ω = 5◦/s

Figure 5.16: MG1101a Velocity, 5◦/s

Figure 5.17: MG1101a Position, 5◦/s

82



Figure 5.18: ADIS16255 Velocity, 5◦/s

Figure 5.19: ADIS16255 Position, 5◦/s

83



Test Results for ω = 10◦/s

Figure 5.20: MG1101a Velocity, 10◦/s

Figure 5.21: MG1101a Position, 10◦/s

84



Figure 5.22: ADIS16255 Velocity, 10◦/s

Figure 5.23: ADIS16255 Position, 10◦/s

85



Test Results for the Rate Ramp Tests

Figure 5.24: MG1101a Velocity, RateRamp

Figure 5.25: MG1101a Position, RateRamp

86



Figure 5.26: ADIS16255 Velocity, RateRamp

Figure 5.27: ADIS16255 Position, RateRamp

87



Table 5.4: MG1101a dynamic test velocity data summary

Rate
(◦/s)

Std Dev
Positive

Std Dev
Negative

Std Dev
Static

Range
Positive

Range
Negative

Range
Static

Mean
Positive

Mean
Negative

Mean
Static

1 0.1892 0.1943 0.2007 0.3102 0.2536 0.3041 0.9944 -0.9913 0.0003
3 0.1959 0.2067 0.2027 0.2327 0.2168 0.2686 2.9755 -2.9766 0.0022
5 0.2141 0.2266 0.2072 0.2406 0.2466 0.2740 4.9684 -4.9461 0.0035
10 0.1954 0.2029 0.2022 0.3161 0.3741 0.3044 9.9008 -9.9043 -0.0016

Table 5.5: MG1101a dynamic test ending position data summary

Ending Positions
Rate (◦/s) Std Dev Mean Range
1 0.6046 0.0012 3.4256
3 0.5490 -0.0183 2.5185
5 0.6797 0.0956 2.8476
10 0.7255 -0.0872 4.5026

Discussion

The dynamic tests were performed for two main purposes. First, the angular velocity data

was analyzed to quantify the sensor noise in the presence of real motion. Second, the angular

position data was analyzed to quantify the effects of bias and drift on the accuracy of the

angular position estimate. These results were also compared to the results of the static tests

as a means of evaluating the correlation between angular velocity and the noise and position

error terms.

Table 5.4 and Table 5.6 summarize the results of the dynamic angular velocity tests.

As illustrated in Figure 5.8, Figure 5.10, Figure 5.12, Figure 5.14, Figure 5.16, Figure 5.18,

Figure 5.20, and Figure 5.22, these tests consisted of a series of forward and reverse motions

at a fixed rate of ±1◦/s , ±3◦/s , ±5◦/s , and ±10◦/s respectively. Each trial had a

duration of 16 s and 100 trials were performed in each test series. For each test, the data

was separated into positive, negative, and static sections. For each section the standard

Table 5.6: ADIS16255 dynamic test velocity data summary

Rate
(◦/s)

Std Dev
Positive

Std Dev
Negative

Std Dev
Static

Range
Positive

Range
Negative

Range
Static

Mean
Positive

Mean
Negative

Mean
Static

1 0.5250 0.5294 0.5296 0.2649 0.2728 0.2242 1.0089 -1.0101 0.0053
3 0.5232 0.5334 0.5333 0.2176 0.2885 0.2813 3.0197 -3.0269 0.0049
5 0.4825 0.5289 0.5302 0.2574 0.2850 0.2808 4.8016 -5.0513 -0.0036
10 0.4398 0.4336 0.4249 0.1287 0.1598 0.1874 9.8403 -10.1297 0.0024

88



Table 5.7: ADIS16255 dynamic test ending position data summary

Ending Positions
Rate (◦/s) Std Dev Mean Range
1 0.6494 0.0153 3.6538
3 0.6766 0.0254 3.7036
5 0.6476 -1.0904 3.3911
10 0.4346 -1.2419 1.2626

deviation, range, and mean was calculated across all 100 trials. Here, standard deviation is

equivalent to RMS noise. The range is the amplitude of the noise and the mean is the actual

angular rate that the sensor recorded. The results of these calculations are summarized for

the MG1101a and ADIS16255 in Table 5.4 and Table 5.6 respectively.

The results of the static velocity testing indicated that the MG1101a has an average RMS

noise of about .18◦/s (Table 5.1). The ADIS16255 has an average RMS noise of about .53◦/s

(Table 5.1). The RMS noise values derived from the dynamic velocity data agree well with

these figures. Direction and angular rate do not have an effect on the noise. It is important

to note that, unlike the static tests, the rotation table could be contributing some of the

measured noise. However, because we have no way to record that noise independent of the

sensors, it must be assumed that all of the noise comes from the sensor itself. The fact that

the measured noise still agrees with the static noise values indicates that the contribution

of rotation table itself is negligible.

Table 5.5 and Table 5.7 summarize the results of the dynamic angular position tests.

The end position data is derived from the velocity data by summation using (5.3).The

calculated positions are illustrated in Figure 5.9, Figure 5.11, Figure 5.13, Figure 5.15,

Figure 5.17, Figure 5.19, Figure 5.21, and Figure 5.23. For each angular velocity tested,

the standard deviation, range, and mean of the derived ending position were calculated.

These metrics define the distribution of outcomes and thus the accuracy of the sensor can

be defined. Using the drift rate from Table 5.3, it is possible to calculate the expected

drift for the dynamic tests. The value of 0.045◦/s is used as an approximation for the drift

rate derived for both sensors, since the actual results were very close. By multiplying the

drift rate by the duration of a test run, the standard deviation of the position error can be

predicted for any test. Comparing the expected value, derived from the static test data, to

89



Table 5.8: Rate ramp velocity data summary

Std. Dev.
-1◦/s

Std. Dev.
-2◦/s

Std. Dev.
-3◦/s

Std. Dev.
-4◦/s

Std. Dev.
+10◦/s

Std. Dev.
Static

MG1101a 0.1964 0.1943 0.1919 0.1923 0.1972 0.1920
ADIS16255 0.5277 0.5280 0.5317 0.5343 0.5334 0.5241

Mean
-1◦/s

Mean
-2◦/s

Mean
-3◦/s

Mean
-4◦/s

Mean
+10◦/s

Mean
Static

MG1101a -1.0034 -1.9976 -2.9985 -4.0002 9.8478 -0.0107
ADIS16255 -0.9988 -1.9832 -2.9789 -3.9686 9.8943 0.0024

Range
-1◦/s

Range
-2◦/s

Range
-3◦/s

Range
-4◦/s

Range
+10◦/s

Range
Static

MG1101a 0.8900 0.8756 0.8550 0.8441 0.8778 0.8647
ADIS16255 3.1089 3.2161 3.2198 3.2637 3.2549 3.1663

Table 5.9: Rate ramp position data summary

Std Dev Mean Range
MG1101a 0.7433 -0.0598 3.6608
ADIS16255 0.7196 -0.1477 4.1752

the experimental result, derived from the dynamic test data and summarized in Table 5.5

and Table 5.7, we can verify that the drift rate is independent of the motion of the sensor.

The single speed dynamic tests each lasted 16s. The expected standard deviation of the

calculated ending position is 0.73◦. The duration of the rate ramp experiment was 18s, so

the expected standard deviation of the calculated ending position is 0.82◦. Table 5.5 lists

the actual standard deviation of the ending positions for the dynamic tests performed on

the MG1101a, and Table 5.7 lists the same for the ADIS16255. The MG1101a demonstrated

some variation, but was at or below the predicted value in all cases. The ADIS16255 behaved

more predictably and was also below the prediction in all cases. The standard deviation of

the ending positions for the 10◦/s test was only half of the predicted value and appears to

be an outlier.

One phenomenon was observed that could not be explained. The ADIS16255 appeared

to develop some type of bias during the 5◦/s and 10◦/s tests (Table 5.7). This resulted in

a mean ending position of about −1◦ in both cases when it should have been 0◦. This

behavior was not observed with the MG1101a. It was also not observed in the dynamic tests

performed on the ADIS16255 at lower angular rates. The mean of the ending position in the

rate ramp test is approximately −.15◦ which is significant. However, without understanding

the underlying mechanism it is difficult to conclude whether there is common root cause. The

90



tests were repeated to verify that the observations were correct, and they were repeatable.

5.3 Conclusion

Overall, the MG1101a and ADIS16255 met or exceeded their specifications. The test results

show very little difference between the two. For both sensors, the standard deviation of

the positional uncertainty will grow at a rate of approximately 0.045◦/s and the absolute

positional uncertainty will grow at a rate of 0.23◦/s. Therefore, assuming a test duration of

10 s, the positional uncertainty will be within 0.45◦ 68% of the time, within 0.9◦ 95% of the

time, and always within 2.3◦. In the absence of a clear difference, the choice of sensor must

be made based on the other features and the ease with which it can be intergrated with the

rest of the system. The descriptions from Chapter 3 show that the ADIS16255 has a much

richer feature set than the MG1101a. In addition, it was assumed that the test results for

the ADIS16255 would be representitve of the ADIS16350. The ADIS16350 is a complete 6

DoF intertial sensor that would greatly simplify the overall system. For these reasons, the

ADIS16350 was selected.

For 3D ultrasound imaging the acceptable error is that amount of error which does not

result in the assignment of data to the incorrect voxel. Previous work [24] has shown the

acceptable error to be approximately 0.5◦, at a scanning depth of 10 cm. Based on the

results of this testing the probability of meeting that requirement is approximately 0.68

for any individual scan. The worst case error was found to be 2.3◦, which could cause a

reconstruction error of up to 3 voxels. It is important to note that this error would be

spread out across the volume such that there would be three, single voxel errors distributed

through the reconstructed volume as opposed to having a single, three voxel error in one

location.

91



92



Chapter 6

Accelerometer Experiments

The purpose of the accelerometer tests was to determine if it was possible to use linear

accelerometers as a means of tracking position. The test apparatus is described in Section

4.1.5 and Section 4.4. In order to estimate position using acceleration measurements it is

necessary to integrate the acceleration signal twice; the integral of acceleration is velocity

and the integral of velocity is position.

In addition to sensing acceleration caused by physical motion, linear accelerometers also

sense the acceleration due to gravity. It is therefore necessary to subtract the component due

to gravity from the observed acceleration prior to integration. To calculate the gravitational

acceleration experienced by the sensor, one must have knowledge of the orientation of the

sensor with respect to gravity. Using the definition of the inner product, given in (6.1), it

is possible to resolve the gravitational acceleration acting on an arbitrary axis.

Figure 6.1 illustrates this in the case of a single axis accelerometer, where θ is the

angle between the accelerometer’s sensitive axis, xb and horizontal, xi. The gravitational

acceleration observed by the sensor, gb, is given by (6.2). If it is known that the sensor is

stationary, then (6.2) can be reformulated to calculate the angle, θ, as shown in (6.3).

~A · ~B ≡ | ~A|| ~B| cos θ (6.1)

93



Figure 6.1: Diagram of the effect of gravity on a single axis accelerometer

gs = ~A · ~B = | ~Xb|| ~Gi| cos(−π2 − θ)

gs = | − g| cos(−π2 − θ)

gs = −g sin(θ)

(6.2)

θ = sin−1(−gs
g

) (6.3)

A 6 DoF tracking system has three linear degrees of freedom and the 5 DoF tracking

system presented here has two linear degrees of freedom. The analysis in the preceding

paragraph can be expanded to cover these cases. Consider three accelerometers oriented

orthogonally with respect to one another, defining the body frame of reference, as in Figure

6.2. As in the previous case, it is necessary to express gravitational acceleration with respect

to the body frame of reference, xb, yb, and zb. However, there are now three degrees of

freedom in orientation instead of one: the pitch angle, ρ, is defined as the angle of the xb

axis relative to ground, the roll angle, φ, is defined as the angle of the yb axis relative to

ground, and theta, θ, is the angle of the zb axis relative to gravity. It is important to note

that these are not equivalent to the Euler angles that are often used to represent orientation.

Equations (6.4) express the gravitation acceleration measured by each accelerometer axis

given these angles, derived using the previous result. However, the presence of more than one

sensitive axis allows a significant improvement to be made. The sin and cos functions are not

94



Figure 6.2: Diagram of the effect of gravity on a 3 axis accelerometer

linear, particularly as θ approaches 0◦and 90◦respectively. Using the Pythagorean theorem,

as expressed in equation (6.5), the angles can be expressed as the ratio of the magnitudes

of two sides of a right triangle using the tangent function. Equations (6.6) exploit this to

yield functions that are much more linear. These equations can also be restated to derive

the angles if it is known that the sensor is stationary, as in equation (6.7).

gxb = −g sin(ρ) gyb = −g sin(φ) gzb = −g cos(θ) (6.4)

|~G| =
√
g2
xb + g2

yb + g2
zb (6.5)

gxb√
g2
yb + g2

zb

= tan (ρ) gyb√
g2
xb + g2

zb

= tan (φ)

√
g2
xb + g2

yb

gzb
= tan (θ) (6.6)

ρ = tan−1

 gxb√
g2
yb + g2

zb

 φ = tan−1

(
gyb√

g2
xb + g2

zb

)
θ = tan−1


√
g2
yb + g2

zb

gxb

 (6.7)

If the goal is to track position over time using accelerometers, as it was in these tests,

knowledge of the initial pose is critical. When the sensor is stationary the acceleration

measured along each sensor axis is attributable only to gravity. Therefore, (6.7) can be used

to determine the initial pose.

95



6.1 Procedure

The testing performed on the LIS3LV02DL linear accelerometer was not intended to char-

acterize the device’s performance. Rather, the goal of these tests was to determine if MEMS

accelerometers generally could be used to measure linear displacement in the tracking sys-

tem. The EK3LV02DQ evaluation module was mounted to the print head of the HP7255A

XY plotter, as illustrated in Figure 4.16. The plotter was commanded to move approxi-

mately 11cm in the positive x direction and then 11cm in the negative x direction. Only the

data for the x-axis was used, the y and z data were ignored. The plotter allows the velocity

to be controlled directly via a HP-GL command and was set to 1 cm/s to simulate a typical

motion of a human hand during ultrasound scanning. The acceleration of the plotter head

is not directly controllable and no effort was made to control it via microstepping or some

other method.

6.2 Results and Discussion

Figure 6.3 illustrates the accelerometer output for the movement described in the previous

section. The period from 3 to 14 s corresponds to a forward movement of 11 cm at a rate

of 1 cm/s. The period from 16 s to 27 s is the reverse movement. It is immediately obvious

that the stepper motors produce an enormous amount of noise. A sharp positive spike at

the beginning and a sharp negative spike at the end of the forward motion, such as those

visible in Figure 6.6, are expected. Although these spikes are partially visible, they are

largely obscured by the noise.

The Fast Fourier Transform (FFT) of the accelerometer data is illustrated in Figure

6.4. The large spikes are the result of the step frequency of the stepper motors and their

harmonics. Since the acceleration caused by the motors should have a mean of zero, the

noise should not have a large effect on calculated velocity and position. However, the noise

does make it harder to visualize the data.

Figure 6.6 is a plot of the acceleration data after the application of the FIR Low Pass

96



Figure 6.3: Unprocessed acceleration data from the x-axis accelerometer

Filter (LPF) shown in Figure 6.5. Now the expected spikes in acceleration are clearly visible.

There are also a few spikes that were not expected. These are most likely the result of some

imperfection in the experimental apparatus. It is also important to notice that there is

a bias in the data. This bias appears to be composed of both a constant and a variable

component. The constant component is most likely a slight misalignment of between the

x-axis of the sensor and the force of gravity. The variable component appears to be the

result of variation in the alignment of the plotter arm across its stroke. The bias is slightly

higher between 15 and 25 s, which corresponds to the farthest distance between the plotter

arm and the origin. The misalignment may be intrinsic to the device or it may be the result

of the added weight of the cable pulling on the arm. Regardless of the source, the bias must

be dealt with prior performing the integration. Failing to do so results in errors much larger

than the true motion, as demonstrated in the next graphs.

Figure 6.7 illustrates both the expected velocity, in green, and velocity calculated as

the first integral of the acceleration, in blue. As expected, a constant acceleration bias is

reflected as a constant slope in the velocity. Notice that the positive and negative velocity

are still visible.

97



Figure 6.4: Fast Fourier transform of the unprocessed x-axis accelerometer data

Figure 6.5: Transfer function of the linear phase FIR filter applied to the acceleration data

98



Figure 6.6: Acceleration data after filtering to remove high frequency content

Figure 6.7: Velocity obtained by integrating the filtered accelerometer data

99



Figure 6.8: Position obtained by twice integrating the filtered accelerometer data

Figure 6.8 shows the expected position in green and calculated position in blue. As

expected, the acceleration bias results in a position error that grows with the square of time.

The maximum displacement was expected to be 0.11 meters and the absolute displacement

at the end of the experiment should be 0. Although present, the effect of the motion is not

even visible in the calculated position because the bias effects dominate.

One way of dealing with the bias in the acceleration data is to subtract the mean from

each sample. As illustrated in Figure 6.9, the calculated velocity and position are now much

closer to the expected result, in green. However, the mean is clearly not a good estimate of

the bias because it does not take into account the fact that there are multiple components.

Lumping the bias into a single term and subtracting gives the appearance of motion when

the device is in fact at rest, as can be seen in between 0 and 3 s and 16-25 s in the middle

graph.

Another method for dealing with the bias is to remove only the static component. The

static component of the bias term is estimated as the mean of the acceleration from 0-3s,

when the sensor is at rest. The bias estimate is then subtracted from all the subsequent

samples of acceleration data. The resulting calculated velocity is now much closer to the

100



(a)

(b)

(c)

Figure 6.9: Effect of subtracting the data mean From each sample on the estimated velocity and
position. The blue line is actual data and the green line is expected data.

101



expected velocity, at least in terms of its shape. The effects of the dynamic bias term

are evident in the slope of the velocity curve between 10-25s in figure Figure 6.10(b). As

illustrated in Figure 6.10(c), the dynamic bias still dominates the actual movement in the

calculated position.

Figure 6.11 illustrates the results of attempting to compensate for both static and dy-

namic bias. The static bias compensation is carried over from the previous section. The

dynamic bias is estimated as 0 at the beginning and end of the run (0-4 s and 27-34 s)

because the bias here should have been accounted for by the static bias estimate. The

maximum value of the dynamic bias is the mean of the acceleration between 14-17 s, which

corresponds to a period of no motion where the plotter head is at its maximum displacement.

Figure 6.12 illustrates the estimated dynamic bias. The mean value here is interpreted as

a variation in the effect of gravity between the origin of the plotter arm and its maximum

extension. This is most likely caused by an imperfection in the apparatus or the weight of

the cable twisting the arm slightly as it extends. The complete dynamic bias estimate is

shown in green in Figures 6.11(a), 6.11(b), and 6.11(c). This method is clearly better than

the previous attempt but it is still inadequate.

102



(a)

(b)

(c)

Figure 6.10: Effect of subtracting only the static bias from the accelerometer data prior to
integration. The blue line is actual data and the green line is expected data.

103



(a)

(b)

(c)

Figure 6.11: Effect of subtracting the static and dynamic bias From the accelerometer data prior
to integration. The blue line is actual data and the green line is expected data.

104



Figure 6.12: Estimate of dynamic bias present in the accelerometer data

6.3 Conclusion

The preceding experiments illustrate that position estimates based on measurement of linear

acceleration are extremely sensitive to small errors. This is primarily because of the need to

integrate the output twice to estimate position from the acceleration measurements. Even

in situations where the sensitive axis of the accelerometer is nearly perpendicular to gravity,

small misalignments can cause gravity to be the dominant term in the estimated position.

The magnitude of gravity relative to the magnitudes of the accelerations we are trying to

measure is so great that it is difficult to overcome.

Equation (6.8a) expresses the acceleration measured by the xb accelerometer as the sum

of the acceleration caused by motion and the component of gravitational acceleration along

that axis, gtx. The gravity term is expanded in equation (6.8b) to the sum of the true

gravitational acceleration, gx, and an error term, ε. As described earlier, the estimate of

gravitational acceleration must be subtracted from the overall acceleration to yield the true

105



acceleration, at, resulting in equation (6.8c).

ax = am + gtx (6.8a)

ax = am + (gx + ε) (6.8b)

at = am + ε (6.8c)

Equation (6.9) demonstrates the effect of the error in the acceleration measurement on

the estimated velocity. The constant error term in the acceleration estimate becomes a

linear error term in the velocity estimate.

vx =
∫

(ax + εx) dt = axt+ εxt (6.9)

When the second integral of acceleration is taken to arrive at the position estimate,

the constant acceleration error becomes a squared error term in the position estimate, as

illustrated in (6.10).

px =
∫∫

(ax + εx) dt =
∫

(ax + εx) tdt = 1
2 (ax + εx) t2 (6.10)

Suppose that the only source of error in the tracking system is quantization error. If the

accelerometer has 10 bits of precision and a full-scale range of ±2 g, or 39.6 m/s2, each bit

represents 0.00391 g or 0.03831 m/s2. The largest possible quantization error is 1
2 LSB. On

average, ε will be equal to 1
4 LSB, or 0.00958 m/s2. Thinking only in terms of acceleration, it

is clear that an error of 9.58 mm/s2 is unacceptably large in a system that requires sub-mm

accuracy. Carrying this error through the integrations results in an accumulated velocity

error of 0.0958 m/s and an accumulated position error of 0.4789 m after only 10 s.

This analysis represents an unrealistic scenario for using accelerometers to track posi-

tion. In a real world system the orientation will be changing along with the position. The

gravitational component of acceleration along each axis will have to be estimated using

the integrated outputs of the gyroscopes. Not only are the gyroscopes less accurate than

106



the initial orientation estimates made using the accelerometers directly, Chapter 5 showed

that they suffer from serious drift errors. The ADIS16255 demonstrated a 1σ drift rate of

0.045◦/s. An error in the angle estimate of 0.045◦, as would be likely after only 1 s, results

in an error of 0.0078 m/s2 in the gravity estimate. After 10 s, this gravity error will result

in a position error of 0.385 m. This error is in addition to that attributable to quantization

errors in the accelerometers.

The results of this testing indicate that neither MEMS accelerometers nor MEMS gyro-

scopes posses the accuracy and stability necessary to construct a sub-mm accurate inertial

tracking system.

107



108



Chapter 7

Optical System

The optical system provides linear position information to the tracking system. To accom-

plish this, the ADNS-2610 optical mouse sensor is used to track features on the skin surface.

The final goal is to integrate it directly into an ultrasound transducer. The prototypes

presented here are small enough for this purpose. Because we do not have the means to

manufacture our own transducer housings easily, the prototypes attach to the outside of

the housing. In the future, the components of the prototypes can be integrated into the

transducer, thereby achieving seamless integration.

Using the ADNS-2610 to track the skin surface presented several challenges that had

to be addressed. First, when used as intended, the combination of the ADSN-2610 and

the HDNS-2100 mouse lens has very limited depth of field. This means that the distance

from the front of the lens to the tracking surface has to stay in a very small range for the

surface to be in focus. Second, the HDNS-2100 mouse lens is not available in a form that

can be easily integrated in to the system proposed here. However, there are no suitable

replacements for it because of its unique characteristics. Third, there is very little room at

the end of a typical ultrasound transducer in which to put the sensor and optics. For this

reason, we decided to experiment with optical fiber bundles that would allow that ADNS-

2610 to be mounted away from the end of the transducer. Lastly, because of the small scale

of the components involved, it was very difficult to assemble a test apparatus, and later a

109



prototype, that could hold the mechanical tolerances necessary to make the system work.

The following chapter documents the development of the optical tracking system from initial

concept through working prototype.

Carsten Poulsen first demonstrated the effectiveness of the ADNS-2610 optical mouse

sensor as a tracking device for 3D ultrasound in his master’s thesis [24]. His initial prototype

did not include an optical fiber bundle and was used to successfully to produce 3D ultrasound

volumes. He then developed an optical tracking system based on an optical conduit and

two plano-convex lenses, as a means of moving the image sensor away from the skin surface.

Although that system was able to acquire identifiable images, it was unable to track reliably

on the skin surface.

Irene Gouverneur picked up where Carsten left off. She analyzed the performance char-

acteristics of the ADNS-2610 image sensor as well as several types of optical fiber and

several lenses. The results allowed her to find an optimal combination of commercially

available components for this application. At the end of her work she demonstrated that

these components were able to track on simulated skin surfaces [17].

The work presented here builds upon the efforts of both Carsten and Irene. The results

validate both the initial concept of tracking the skin surface with an optical mouse sensor

and the idea of using several lenses in conjunction with an optical fiber bundle to allow the

image sensor to be moved away from the skin surface.

7.1 Definition of Terms

There are a number common terms in the field of optics with which the reader may not be

familiar. These terms are used extensively in the following section and they are defined in

Table 7.1 for the benefit of the reader.

110



Table 7.1: Optical terminology and abbreviations

Term Abbreviation Definition
Image Distance ID Distance from the back of the Elmo lens to the front surface

of the mouse lens
Object Distance OD Distance from the front of the Elmo lens to the tracking surface
Region of Interest ROI Physical area that is within view of the image sensor
Depth of Field DOF Range of object distances over which the optical system re-

mains in focus
Contrast Ratio CR The difference between the maximum and minimum pixel val-

ues, divided by their sum
Line Profile Contrast Ratio LPCR Contrast ratio calculated using the values sampled by follow-

ing a straight line through an image

7.2 Previous Work on Optical Tracking with the ADNS-

2610 Optical Mouse Sensor

Irene Gouverneur performed a number of different experiments to identify an objective lens

and an optical fiber bundle that would meet the requirements of the tracking system. The

requirements were that the system include a flexible optical fiber bundle, the components

be small enough to fit in an ultrasound transducer, and that it deliver enough contrast and

resolution to the image sensor that it was able to track reliably. In order to characterize

the components more completely, many of the experiments utilized a Pixelink PL-A781 6.6

megapixel camera instead of the 324 pixel ADNS-2610.

The fist experiment studied the effects of illumination type and intensity. This experi-

ment did use the ADNS-2610 to capture images, to ensure that the illumination system was

optimized for the final application. A 50 mW, 620 nm red LED of the type specified for use

with the ADNS-2610, and a 3.5 mW, 635 nm laser diode were selected for evaluation. The

results indicated that the LED provided superior image quality.

The effects of illumination angle were also investigated. The illumination angle is the

angle between light rays emitted from the illumination source and the line perpendicular to

the surface being imaged, as illustrated in Figure 7.1. When light rays reflect off of a rough

surface at an angle, shadows are created. It is these shadows that provide the image contrast

necessary for the ADNS-2610 identify and track surface features. This experiment quantified

the image contrast over a range of illumination angles. The Pixelink camera was used for

111



Figure 7.1: Graphical representation of illumination and sample angle

Table 7.2: Fiber bundles tested

Name Material Manufacturer Diameter Elements
Clad Rod 1 Glass Schott 2 mm 1459
Clad Rod 2 Glass Schott 2 mm 25200
Acid Leached Fiber
Bundle

Glass Schott 1. 5mm 18000

Plastic Fiber Bundle Plastic Mitsubishi 2.5 mm 6000
GRIN Rod Glass NSG America 2 mm NA
Sumitomo Glass Sumitomo 2 mm 50000
5 mm OD Glass Unknown 5 mm Unknown

this purpose because its higher resolution provided better contrast data. Irene concluded

that an illumination angle of 50◦and a sample angle of 30◦provided the best image contrast.

The two previous experiments laid the foundation for the evaluation of the lenses and

fiber bundles. Several different lenses (L2 in the following descriptions) and fiber bundles

were selected to provide a good sample of what was commercially available, within the

system’s space limitations. The lenses that were tested are listed in Table 7.3 and the fiber

bundles are listed in Table 7.2.

The experimental apparatus is illustrated in Figure 7.2. Light from the LED was focused

onto the sample at an illumination angle of 30◦. This angle was selected, rather than the

experimentally determined optimum of 50◦, because of physical constraints in the apparatus.

112



Table 7.3: Objective lenses tested

Name Focal Length Diameter
Elmo QT282AS 2.2 mm 5 mm
Elmo QT288 8 mm 5 mm
Elmo QT3515 15 mm 5 mm

Single Achromatic 7.5 mm 5 mm

The objective lens (L2), image guide, coupling lens (L3), and imager, were arranged as

shown. Tests were conducted with both the Pixelink camera and the ADNS-2610 imager.

L3 was an Olympus 4x lens for the Pixelink camera or the HDNS-2100 optical mouse lens

for the ADNS-2610.

Modulation Transfer Function (MTF) and Line Profile Contrast Ratio (LPCR) were

used as the performance metrics. The MTF is the magnitude response of the optical system

to sinusoids of different spatial frequencies. In frequency domain image analysis, an image

can be considered to be composed of plane waves. A Linear Shift Invariant (LSI) optical

system images a sinusoid as another sinusoid [26]. For a number of reasons, the imaging

process decreases the modulation depth, M, of the image relative to the original object. The

modulation depth, M, is defined as the amplitude of the irradiance level divided by the bias

level, as illustrated in (7.1).

M = Amax −Amin
Amax +Amin

(7.1)

Because M is dependent on the difference between Amax and Amin, it is a measure of contrast.

The Modulation Transfer (MT) is the ratio of modulation in the image to that of the object.

MT is frequency dependent, and represented as a function of spacial frequency, it becomes

the MTF. This is stated mathematically in (7.2), where ξ represents the spatial frequency.

MTF (ξ) = Mimage(ξ)
Mobject

(7.2)

MTF is particularly convenient because a system’s overall MTF is the product of the MTFs

of the system’s individual components. This allows the components to be characterized

separately which simplifies testing.

As the name implies, LPCR is also a metric that is based on image contrast. It is the

113



Figure 7.2: Experimental setup for MTF and LPCR testing

ratio of maximum to minimum image intensity taken over a line, as in (7.3). Figure 7.3 is

a graphical representation of the LPCR. In these experiments, the LPCR was calculated

using an element of the USAF-1951 test pattern. The pattern alternates between black and

white. An ideal optical system imaging a pattern of total black and total white will achieve

a LPCR of 1.

LPCR = Imax − Imin
Imax + Imin

(7.3)

The first set of tests evaluated the MTF of the lenses by themselves. Images of the

USAF test pattern were taken using the individual lenses and the Pixelink camera. Then

PixelScope OpticStudio software was used to calculate the experimental MTF. First, L3

was tested. L3 was not one of the lenses that was being considered for the final system. L3

was necessary to couple light exiting the fiber bundle into the Pixelink camera. Without

first deriving the MTF of L3 it would be impossible to derive the MTF of the fiber bundles

alone. Next, the MTF of the objective lenses was derived. The data indicated that the

Elmo F8 had the best MTF and the single achromatic lens had the worst MTF.

Because it had the best MTF, the Elmo F8 lens was used as the objective lens for

114



Figure 7.3: Graphical representation of LPCR [17]

evaluating the MTF of the fiber bundles. The GRIN fiber bundle did not use any objective

lens because, in fibers of this type, the material’s index of refraction is manipulated to create

a lens within the fiber itself. As before, images were acquired using the Pixelink camera

and the MTF was calculated using the PixelScope OpticStudio software. The results are

illustrated in Figure 7.4.

From the group of fibers initially evaluated, only the Schott 12 µm and acid leached fiber

bundles were selected for more detailed analysis. This was primarily because of the limited

flexibility of the other fiber bundles. In the next test series, the contrast was evaluated using

both the USAF test pattern and a piece of leather that mimicd the skin surface. The LPCR

was calculated for each sample. The experiment was performed with both the Pixelink

camera and the ADNS-2610 tracking sensor. The results indicated that the 12 µm fiber

bundle performed slightly better than the acid leached bundle but the acid leached bundle

was selected for the final test series because it was the most flexible.

The final set of tests were performed to evaluate the tracking performance of the overall

system. The experiment was performed using the Elmo F8 objective lens, the Schott acid

115



Figure 7.4: Experimental MTF of the fiber bundles

leached fiber bundle, the HDNS-2100 optical mouse lens, and the ADNS-2610 tracking

sensor. The experimental setup was similar to that illustrated in Figure 7.2, with the

exception that the illumination angle was 50◦and the sample angle was 0◦. Although the

optimal contrast was achieved at a viewing angle of 30◦, the angle must be 0◦for tracking.

If the tracking surface is at an angle with the imager, surface features in the near field will

appear to move faster than objects in the far field. This condition prevents the imager

from tracking. The leather sample was used as a tracking target to simulate tracking the

skin surface. Tracking performance was evaluated at surface magnifications of 1.38x and

2.7x. The optical system was held fixed while the target was moved back and forth using

a linear translation table. The tests were performed using ±5 mm and ±10 mm step sizes.

The mean and the standard deviation of the detected movement were used as performance

metrics. The results indicated that the tracking system had good repeatability at both

magnifications.

116



7.3 Optical Tracking Configurations

The work performed by Irene Gouverneur provided clear evidence that an optical tracking

system including an optical fiber bundle was feasible. The next step was to develop a

miniaturized system that could attach to the outside of a transducer. The initial prototype

had to attach to the outside of the transducer because we could not fabricate our own

transducer with the features necessary to accommodate the tracking components internally.

However, one of the goals of the prototype was to demonstrate the feasibility of placing

those components inside the transducer. Therefore, it was important to make the system

as small as possible.

Since earlier attempts to integrate an optical fiber bundle had failed, there was some

concern that if this attempt also failed, it would hinder the development of the overall

tracking system. To mitigate this risk, two different versions of the optical tracking system

were developed and evaluated. In the first version, all of the components are mounted

close together, at the end of the transducer. This arrangement is illustrated conceptually in

Figure 7.5. LED light reflects off the skin surface and is coupled directly into the ADNS-

2610 through the mouse lens and the objective lens. It will be referred to as the direct

imaging configuration henceforth. The second version of the optical system includes an

optical fiber bundle. In this version, LED light reflects off the skin surface and gets coupled

into the optical fiber by an objective lens. The optical fiber transports the light away

from the end of the transducer, to the remotely mounted mouse lens and image sensor,

as illustrated in Figure 7.6. This version of the system will be referred to as the indirect

imaging configuration.

Based on the results of Irene Gouverneur’s work, the Schott fiber bundle was initially

selected for the indirect imaging configuration because of its performance as well as its

superior flexibility. However, that flexibility also made it very fragile and very expensive.

Over the course of our experiments it became damaged, as described in Section 7.4.3, and we

were forced to select a different fiber. Three standard fibers were selected and ordered from

Edmunds Optical. The fibers were not flexible like the Schott fiber, but they were available

117



in much shorter lengths. The short length made it possible to integrate them despite their

rigidity. The first was a 0.062 in diameter fiber with 3,012 elements. The other two were

0.125 in in diameter; one was the standard resolution model with 3,012 elements and the

other was the high resolution model with 50,419 elements. Please refer back to Sections

3.3.4 and 3.3.5 for visual comparison.

Figure 7.5: Conceptual view of the direct configuration

7.4 Experiments to Quantify the Optimal Dimensions

of the Optical System

The goal of these experiments was to derive optimal values for the physical dimensions of

the optical system. Two distinct sets of tests were performed; one for the direct imaging

configuration and one for the indirect imaging configuration.

An experimental apparatus was developed to facilitate these experiments, illustrated

in Figure 7.7. It was primarily composed of ThorLabs optical cage components mounted

on an aluminum plate. There were also some components that had to be custom built to

accommodate the Elmo lens and the fiber bundles. The LED is not pictured in the figures.

Its position with respect to the target was constant for all of the experiments. The test

target used in these experiments was the USAF 1951 test pattern, illustrated in Figure 7.8.

118



Figure 7.6: Conceptual view of the indirect configuration

Table 7.4 contains a description of each component along with its abbreviation. The

abbreviations will be used throughout this section and are common with the figures. All

dimensions are in mm unless otherwise specified.

119



Figure 7.7: Common experimental apparatus

Figure 7.8: USAF 1951 test pattern

120



Figure 7.9: Common experimental apparatus with axes defined

Figure 7.10: Axial Adjuster (A1 & A2)

121



Figure 7.11: Imager Assembly (IA)

Figure 7.12: Short end fiber carrier (E1)

Figure 7.13: Long end fiber carrier (E2)

122



Figure 7.14: Elmo lens carrier (E3)

Figure 7.15: 0.062 in diameter fiber carrier (E4)

Figure 7.16: 0.125 in diameter fiber carrier (E5)

123



Table 7.4: Components of the optical experiment apparatus

Component Name Abbrev. Reference
Figure

Definition

Z-Axis Translation
Stage

TZ 7.7 Used to vary the position of the target along the z-axis

X-Axis Translation
Stage

TX 7.7 Used to vary the position of the target along the x-axis

Imager Assembly IA 7.11 This component is composed of 3 distinct parts: a 2.5 mm
threaded insert, the ADNS-2610 sensor, and the mouse lens

Optical Mouse lens L1 7.11 HDNS-2100 Plastic lens with very low numerical aperture that
is designed to be used with ADNS-2610

Elmo Lens L2 7.14 QT288 0.250 in micro video camera lens marketed by Elmo,
Inc.

Schott Fiber Car-
rier

E1 7.12 Custom machined threaded insert used to mount the end of
the optical fiber with the short steel sleeve

Schott Fiber Car-
rier

E2 7.13 Custom machined threaded insert used to mount the end of
the optical fiber with the long steel sleeve

Elmo Lens Carrier E3 7.14 Custom machined threaded insert used to mount the Elmo
lens

0.062 in Diameter
Fiber Carrier

E4 7.15 Custom machined threaded insert used to mount the 0.062 in
diameter optical fiber

0.125 in Diameter
Fiber Carrier

E5 7.16 Custom machined threaded insert used to mount the 0.125 in
diameter optical fiber

Axial Alignment
Adjuster

A1 7.7 A1 is used to house and align the IA with E1 in experiments
that include the fiber, unused otherwise

Axial Alignment
Adjuster

A2 7.7 Used to align E2 and E3 in experiments that include the fiber,
used to align IA with E3 otherwise

7.4.1 Direct Imaging Configuration

There are two free parameters in the direct imaging configuration: the Image Distance (ID),

and the Object Distance (OD). The experiments performed on this system configuration

were devised to quantify the Region of Interest (ROI), DOF, and LPCR for all practical

combinations of ID and OD. The term practical here means that the physical quantities of

ID and OD are small enough to fit in a transducer and the ROI is sized properly for viewing

features on the skin surface. The physical significance of ID and OD is illustrated in Figure

7.17, and with respect to the experimental apparatus in Figure 7.18 and Figure 7.19.

Derivation of Minimum Image Distance

The goal of the first experiment was to derive the minimum ID for the combination of L1

and L2. L2 is specified as having a focal length of 8 mm which should correspond to the

ID in Figure 7.18. However, initial tests indicated that this was not the case. The ID was

derived experimentally by shining the LED directly into L2 at a distance of approximately

124



Figure 7.17: Graphical representation of ID and OD

Figure 7.18: Graphical representation of ID with respect to the experimental apparatus

50 mm. A white piece of paper was taped to the back of A2 such that point of focus could

be observed. The ID was then varied by threading E3 into and out of A2. The minimum

ID was identified as the distance at which the point of light projected onto the paper was

smallest. The minimum ID was found to be between 3.8 mm and 4 mm.

125



Figure 7.19: Graphical representation of OD with respect to the experimental apparatus

Derivation of Coarse Operational Ranges for ID and OD

The goal of this experiment was to define the broad operational ranges for ID and OD.

There are many more possible combinations than there are functional combinations. This

test was designed to rapidly identify ranges for each parameter, within which the system

provided acceptable image quality. In these tests, “acceptable image quality” was a com-

pletely subjective measure. That is, focus was determined by visual inspection. Please refer

back to Table 7.4 for definitions of the abbreviations used in the descriptions that follow.

The experimental apparatus is illustrated in Figure 7.19. E3 is threaded completely into

A2 from the front. The IA is fully threaded into A2 from the back. The USAF target is

mounted on TX. ID is controlled by threading E3 in or out, as illustrated in Figure 7.18.

OD is controlled by sliding A2 on the rails, along the z-axis, as illustrated in Figure 7.19.

At the beginning of the test, TX and the y height are adjusted to optically center group

0, element 1 of the test pattern. The optical axis of the IA and E3 are then aligned by

inspecting test images and adjusting the xy knobs on A2 such that all pixels contain useful

data.

The experiment itself consisted of varying the ID in 1-turn increments, and for each

126



increment, varying the OD over a range of 60 mm in 5 mm increments. An image was

recorded at each step. The ID was varied over the range from 5 turns (E2 threaded out 5

revolutions CCW from 0) to 12 turns and the OD was varied between 70 mm and 10 mm.

Some variations were excluded when it was obvious that they would not yield useful data.

The resulting images are illustrated in Figure 7.20, Figure 7.21, Figure 7.22, Figure 7.23,

Figure 7.24, Figure 7.25, Figure 7.26, and Figure 7.27.

Figure 7.20: 5 turn direct imaging coarse image series (50 mm-70 mm)

Figure 7.21: 6 turn direct imaging coarse image series (2 5mm-70 mm)

Figure 7.22: 7 turn direct imaging coarse image series (20 mm-70 mm)

Figure 7.23: 8 turn direct imaging coarse image series (10 mm-40 mm)

Figure 7.24: 9 turn direct imaging coarse image series (10 mm-30 mm)

Figure 7.25: 10 turn direct imaging coarse image series (10 mm-30 mm)

Two clear trends are evident in the images. First, as the OD increases, so does the ROI.

Second, as the ID increases the DOF decreases.

The lines in element 1, group 0 of the USAF 1951 test pattern are 0.5 mm wide. With

this information it is possible to estimate the ROI at the ID where the image focus appeared

127



Figure 7.26: 11 turn direct imaging coarse image series (10 mm-25 mm)

Figure 7.27: 12 turn direct imaging coarse image series (10 mm-25 mm)

optimal. Table 7.5 lists the number of turns, corresponding physical ID, and approximate

ROI for each test series. Since one of the design objectives was to miniaturize the system,

only the test runs that achieved focus at relatively short ODs were selected for further

experiment. In addition, a relatively small ROI, on the order of 1 mm2, was required to

track on the skin surface. The tests that met these criteria were series 9, 10, 11, and 12.

Table 7.5: Summary of direct imaging experimental results

Series ID (mm) OD (mm) ROI (mm2)
5 7.33 60 6
6 7.96 50 5
7 8.60 35 4.5
8 9.23 30 3.6
9 9.87 20 2.5
10 10.50 15 1.8
11 11.14 15 1.8
12 11.77 15 1.8

128



Derivation of Fine Operational Ranges for ID and OD

This experiment built on the results of the previous experiment. ODs between 5 mm and

25 mm and IDs between 9 and 12 turns were studied in greater detail. The experimen-

tal apparatus was the same. However, in this experiment the OD was varied in 0.5 mm

increments using TZ, instead of in 5 mm increments by moving A2.

One test series was run for each combination of ID (in number of turns) and nominal

OD of interest. At the start of each series E3 was set to the desired ID. TZ was then set to

5 mm, which is half of its end-to-end travel. A2 was adjusted so that the distance from the

target to the end of L2 was equal to the desired nominal OD. TZ was then set to 1 0mm

(decreasing the OD by 5 mm) to begin the test.

The experiment itself consisted of moving the target away from L2 in 0.5 mm increments

and acquiring an image at each step. For each image, the LPCR was calculated using (7.3).

The ROI was also calculated for each image with sufficient focus. The DOF for each test

series was calculated by estimating the range of OD over which the image remains in focus.

This can only be done effectively by visual inspection.

The images acquired during the testing are presented below in Figures 7.28, 7.29, 7.30,

and 7.31. The OD of each image increases from right to left and top to bottom.

Figure 7.32 illustrates the experimental relationship between OD and LPCR for each

ID tested. The data indicate that contrast improves as the ID increases. Although all

of the trials achieved good contrast, the highest contrast was achieved with the largest

ID. However, the DOF was largest when the ID was smallest. Figure 7.33 illustrates the

experimental relationship between OD and ROI for each ID tested. As is Figure 7.32, large

values of ID perform better at small ODs. ROI and ID seem to have an inverse relationship,

since the largest ROI was achieved in the trial with the smallest ID.

129



Figure 7.28: 9 turn direct imaging fine image series (15 mm-25 mm)

Figure 7.29: 10 turn direct imaging fine image series (15 mm-22 mm)

Figure 7.30: 11 turn direct imaging fine image series (12 mm-20 mm)

Figure 7.31: 12 turn direct imaging fine image series (10 mm-20 mm)

130



Figure 7.32: LPCR vs Object Distance (OD) for direct imaging system

Figure 7.33: ROI vs. Object Distance (OD) for direct imaging system

131



7.4.2 Indirect Imaging with the Schott Fiber Bundle

The indirect imaging configuration is more complicated than the direct one. In addition

to the ID and OD, the optimal spacing between the mouse lens and the end of the optical

fiber needed to be determined. These tests were initially performed with the Schott fiber

bundle and they were later repeated using the three rigid fibers from Edmunds Optical.

The experimental apparatus was different in the latter tests, but the protocol remained

consistent throughout.

Derivation of Imager-Fiber Spacing

The goal of this experiment was to investigate the spacing required between the fiber bundle’s

image surface and the mouse lens. Figure 7.34 illustrates this dimension. The imager-fiber

spacing must be known and optimized prior to investigating the other unknowns in the

system. If this dimension is incorrect, the images acquired will always be out of focus.

Figure 7.34: Graphical representation of imager-fiber distance

The experimental apparatus was similar to that used in the direct imaging experiments.

The end of the fiber with the short sleeve was mounted in E1. The opposite end of the fiber

was mounted in E2. A1 was used to control the alignment of the IA and E1. A2 was used

to hold E2 stationary while the LED was shone directly into it.

E1 and the IA were both threaded into A1 completely. E1 was threaded out of A1 in

132



half rotation increments, each of which increased the imager-fiber distance by 0.3175 mm.

An image was recorded at each distance and this process continued until the imager’s entire

DOF had been traversed. This determination was made by direct inspection of the images.

The image sequence is presented in Figure 7.35.

Figure 7.35: Image series acquired during the imager-fiber distance test

The focus is best around 5.5 turns, which corresponds to a distance of 3.4925 mm between

L1 and the surface of the optical fiber. This is very close to 3.37 mm, which is the nominal

distance from the lens surface to the object image, derived from information provided in

the L1 datasheet. All images between 4.5 and 6 turns exhibit reasonable focus. This

corresponds to 0.95 mm of travel and agrees well with the ±0.5 mm DOF, also specified in

133



the L1 datasheet. The agreement between the experimental result and the predicted result,

based on the L1 specifications, helps confirm the validity of the overall test protocol.

A round, black region is apparent at the edge of all the images in Figure 7.35. It is

caused by the diameter of the fiber. The ROI of the imager and L1 combination is specified

as 1 mm2 nominally. The diameter of the fiber bundle is also about 1 mm. The radial

distance from the center of the image to the corner is
√

2
2 mm, while the radial distance to

the outer diameter of the fiber bundle is 0.5 mm. This is illustrated in Figure 7.36. Simply

put, the surface area of the fiber is smaller than the region of interest of the imager and L2

combination, at the specified image distance.

There is another important feature to note in these images and the ones to follow. The

outline of the fiber is not round as one would expect and there are some dark spots protruding

into the surface. After cleaning the fiber and inspecting the ends under a microscope it was

determined that these features were the result of broken fibers in the bundle. These most

likely occurred during handling. The remarkable flexibility of the Schott fiber bundle makes

it very fragile and therefore very difficult to handle. Despite the damage, it was decided to

continue with the testing in the hope that another fiber could be procured from Schott.

Derivation of Coarse Operational Ranges for ID and OD

This experiment was exactly the same as that described in Section 7.4.1. The goal of this

experiment was to define the broad operational ranges for ID and OD. The experimental

apparatus was also very similar to that illustrated in Figure 7.19, except that there were

two adjusters, A1 and A2. A1 was used to align the imager assembly, IA, and the end of

the fiber, housed in E1, as illustrated in Figure 7.34. This alignment was determined in the

previous experiment and held fixed for the remaining experiments. A2 aligned the Elmo

lens carrier, E3, with the other end of the fiber, housed in E2. E2 was threaded completely

into A2 from the back. E3 was completely threaded into A2 from the front. The USAF

target was mounted on TX. The ID was controlled by threading E2 in or out. The OD was

controlled by sliding A2 on the rails, along the z-axis.

At the beginning of the test, TX and the y height were adjusted to optically center

134



Figure 7.36: Detail drawing of the imager-fiber interface

group 0, element 1 of the test pattern. The optical axis of the E3 and E2 were then aligned

by inspecting test images and adjusting the xy knobs on A2 such that all pixels contained

useful data.

The experiment itself consisted of varying the ID in 1-turn increments and for each

increment, varying the OD over a range of 60 mm in 5 mm increments. An image was

recorded at each step. The ID was varied over the range from 5 turns (E3 threaded out 5

revolutions CCW from 0) to 12 turns and the OD was varied between 70 mm and 10 mm.

Some variations were excluded when it was obvious that they would not yield useful data.

The resulting images are illustrated in Figures 7.37, 7.38, 7.39, and Figure 7.40. The OD

increases from left to right in the image sequences.

Figure 7.37: 1 turn, Schott fiber, coarse image series (30 mm-70 mm)

135



Figure 7.38: 2 Turn, Schott fiber, coarse image series (20 mm-70 mm)

Figure 7.39: 3 Turn, Schott fiber, coarse image series (15 mm-70 mm)

Figure 7.40: 4 Turn, Schott fiber, coarse image series (10 mm-40 mm)

Derivation of Fine Operational Ranges for ID and OD

The procedure for this experiment was the same as that described in Section 7.4.1. The

images from the previous experiment were inspected to identify operating ranges that should

be investigated. The images recorded during the experiment are illustrated in Figures 7.41,

7.42, 7.43, 7.44, 7.45, and 7.46.

Figure 7.41: 3 Turn, Schott fiber, fine image series (20 mm-30 mm)

Figure 7.42: 4 Turn, Schott fiber, fine image series (15 mm-25 mm)

136



Figure 7.43: 5 Turn, Schott fiber, fine image series (15 mm-25 mm)

Figure 7.44: 5 Turn, Schott fiber, fine image series (10 mm-20 mm)

Figure 7.45: 6 Turn, Schott fiber, fine image series (10 mm-20 mm)

Figure 7.46: 7 Turn, Schott fiber, fine image series (10 mm-20 mm)

Figure 7.47 illustrates the experimental relationship between OD and LPCR for each ID

tested. Like the results from the experiments on the direct imaging configuration, the data

indicate that as the ID increases the maximum contrast ratio achieved in the experiment

also increases. Conversely, the DOF decreases as the ID increases. Higher contrast ratios

were achieved at smaller ODs.

Figure 7.48 illustrates the experimental relationship between OD and ROI for each ID

tested. The data indicate that as the OD increases, so does the ROI. Likewise, for a fixed

OD, increasing the ID also increases the ROI. This is exactly the expected behavior.

137



Figure 7.47: LPCR vs Object Distance for indirect imaging system

Figure 7.48: LPCR vs Object Distance for indirect imaging system

138



7.4.3 Indirect Imaging with the Edmunds Fiber Bundles

After the initial testing to quantify the parameters of the direct and indirect imaging systems

was complete, the next step in the testing was to evaluate the tracking performance of the

two systems. However, during the course of that testing it was discovered that the indirect

imaging system with the Schott fiber bundle did not track well. The combination of the

damage to the fiber bundle and the fact that the fiber diameter was not large enough to

occupy all of the imager’s field of view, as discussed in Section 7.4.2, were undoubtedly the

causes.

The original Schott fiber bundle was provided free of charge because it was a quality

reject. Schott did not have another to give us and because they do not have standard

products, we were unable to procure another. After exploring possible alternatives it was

decided to attempt to reevaluate the rigid fibers from Edmunds Optical. These types of

fibers had been tested previously without success but based on the insights gained from the

most recent round of tests, it was felt that they could be made to work. The downside to

this course of action was that these types of fibers can only be bent by heating them to very

high temperatures, which means they are more difficult to integrate into a prototype system.

However, in a commercial system the rigid fiber would undoubtedly be the preferred choice,

both because of their mechanical robustness and because they are approximately 100 times

less expensive.

Three types of rigid fiber bundles were evaluated, all of which were one inch long and

came from Edmunds Optical: a 0.062 in diameter 3,012 element bundle, a 0.125 in diameter

3,012 element bundle, and a 0.125 in diameter 50,419 element fiber bundle. Not all of the

testing was repeated for these fibers. The data from the tests on the imager fiber spacing,

presented in Section 7.4.2, remained valid for these fibers. In addition, the results on the

previous coarse operational testing had provided enough insight into the general ranges of

ID and OD. Based on those results the coarse range tests were not repeated.

All of the test procedures were exactly the same as those previously described in Section

7.4.2. There was a slight difference in the apparatus owing to the significant difference

139



between the Schott fiber and the Edmunds fibers. Because they were only an inch long, a

single carrier was fabricated that completely contained the fiber. One was fabricated for the

0.062 in diameter fiber, as illustrated in Figure 7.15, and another was fabricated for the two

0.125 in diameter fibers, as illustrated in Figure 7.16. The two adjusters, A1 and A2, were

threaded all the way onto the fiber carriers. The ID and imager fiber spacing could then

be adjusted by threading E2 or the IA in and out, respectively. The axial alignment was

performed exactly as previously described. The new apparatus had no effect on the process

of manipulating the OD, as this was performed using TZ. The apparatus used to evaluate

the indirect imaging configuration with the Edmunds fiber bundles is illustrated in Figure

7.49.

Figure 7.49: Graphical representation of Image Distance and imager-fiber distance for the Ed-
mund’s fibers

Since the procedures and apparatus have already been described in detail, the test data

for all three of the fiber bundles will be presented in the next few pages. Figures 7.50,

7.51,7.52, 7.53, 7.54, 7.55, 7.56, and 7.57 illustrate the test images for the 0.062 in diameter

fiber bundle. Figure 7.58 is the plot of LPCR versus OD for the 0.062 in diameter fiber and

Figure 7.59 is the plot of ROI versus OD.

Figures 7.60, 7.61,7.62, 7.63, 7.64, 7.65, 7.66, and 7.67 illustrate the test images for the

140



0.125 in diameter standard resolution fiber bundle. Figure 7.68 is the plot of LPCR versus

OD for the 0.125 in diameter standard resolution fiber and Figure 7.69 is the plot of ROI

versus OD.

Figures 7.70, 7.71,7.72, 7.73, 7.74, 7.75, 7.76, and 7.77 illustrate the test images for the

.125 in diameter high resolution fiber bundle. Figure 7.78 is the plot of LPCR versus OD

for the .125 in diameter high resolution fiber and Figure 7.79 is the plot of ROI versus OD.

The results discussed as a group at the end of this section.

141



Edmunds 0.062 in Diameter, 3,012 Element, Fiber Bundle

Figure 7.50: 0.062 in diameter, 3,012 element fiber 4 turn image series

Figure 7.51: 0.062 in diameter, 3,012 element fiber 5 turn image series

Figure 7.52: 0.062 in diameter, 3,012 element fiber 6 turn image series

Figure 7.53: 0.062 in diameter, 3,012 element fiber 7 turn image series

142



Figure 7.54: 0.062 in diameter, 3,012 element fiber 8 turn image series

Figure 7.55: 0.062 in diameter, 3,012 element fiber 9 turn image series

Figure 7.56: 0.062 in diameter, 3,012 element fiber 10 turn image series

Figure 7.57: 0.062 in diameter, 3,012 element fiber 11 turn image series

143



Figure 7.58: LPCR vs Object Distance for indirect imaging system with Edmunds 0.062 in
diameter fiber

Figure 7.59: ROI vs. OD for indirect imaging system with Edmunds 0.062 in diameter fiber

144



Edmunds 0.125 in Diameter, 3,012 Element, Fiber Bundle

Figure 7.60: 0.125 in diameter, 3,012 element fiber 4 turn image series

Figure 7.61: 0.125 in diameter, 3,012 element fiber 5 turn image series

Figure 7.62: 0.125 in diameter, 3,012 element fiber 6 turn image series

Figure 7.63: 0.125 in diameter, 3,012 element fiber 7 turn image series

145



Figure 7.64: 0.125 in diameter, 3,012 element fiber 8 turn image series

Figure 7.65: 0.125 in diameter, 3,012 element fiber 9 turn image series

Figure 7.66: 0.125 in diameter, 3,012 element fiber 10 turn image series

Figure 7.67: 0.125 in diameter, 3,012 element fiber 11 turn image series

146



Figure 7.68: LPCR vs Object Distance for indirect imaging system with Edmunds 0.125 in
diameter, 3,012 element fiber

Figure 7.69: ROI vs. OD for indirect imaging system with Edmunds 0.125 in diameter, 3,012
element fiber

147



Edmunds 0.125 in Diameter, 50,419 Element, Fiber Bundle

Figure 7.70: 0.125 in diameter, 50,419 element fiber 4 turn image series

Figure 7.71: 0.125 in diameter, 50,419 element fiber 5 turn image series

Figure 7.72: 0.125 in diameter, 50,419 element fiber 6 turn image series

Figure 7.73: 0.125 in diameter, 50,419 element fiber 7 turn image series

148



Figure 7.74: 0.125 in diameter, 50,419 element fiber 8 turn image series

Figure 7.75: 0.125 in diameter, 50,419 element fiber 9 turn image series

Figure 7.76: 0.125 in diameter, 50,419 element fiber 10 turn image series

Figure 7.77: 0.125 in diameter, 50,419 element fiber 11 turn image series

149



Figure 7.78: LPCR vs Object Distance for indirect imaging system with Edmunds 0.125 in
diameter, 50,419 element fiber

Figure 7.79: ROI vs. OD for indirect imaging system with Edmunds 0.125 in diameter, 50,419
element fiber

150



The data indicate that the three fibers have nearly identical performance. All of the

fibers achieve a LPCR of about 0.7. This is slightly lower than was achieved with the direct

imaging configuration, but still produces images with subjectively high contrast. The same

trends that were observed in the direct imaging configuration test results are visible in this

data. Figures 7.58, 7.68, and 7.78 indicate that DOF and ID have an inverse relationship.

Figures 7.59, 7.69, and 7.79 indicate that ID is also inversely related to ROI. The inverse

relationship between DOF and ID is desirable because a large DOF is an advantage when

tracking on rough surfaces and a small ID will help keep the prototype optical system small.

The relationship between ID and ROI is more problematic. A ROI between 1.5 mm and

2 mm is desirable but that limits the ID to a range of approximately 6.5 mm to 9mm.

Ultimately, the choice of ROI should be governed by the characteristics of the tracking

surface. There must be enough features within the ROI for the sensor to track reliably. The

tests described in the following section deal with this issue.

7.4.4 Tracking Experiments

This section describes a set of experiments that were designed to test the tracking accuracy

and repeatability of the direct tracking configuration. It was clear from the preceding test

results that the direct imaging configuration was achieving acceptable contrast in the range

of IDs and ODs that were required to fit it into a transducer housing. This test was meant

to prove that good contrast translated into good tracking performance. Another purpose of

this test was to derive the factor necessary to scale the raw counts output by the sensor into

a physical quantity, in this case mm, for different operating points. Due to time constraints,

this test was never performed on the indirect imaging configuration. In the previous tests,

the direct imaging configuration achieved contrast ratios of about 0.8 in the range of ID and

OD that meet the space requirements. In that same range, the indirect imaging configuration

achieved contrast ratios of about 0.7. Although not identical, the values are close enough

that the tracking performance of the direct imaging configuration should also apply to the

indirect imaging configuration.

The experimental apparatus was similar to that described in section 7.4.1. Figures 7.32

151



and 7.33 were inspected and for each ID, 3 ODs were selected for evaluation. The three ODs

were selected to correspond to the beginning, middle, and end of the range over which the

system demonstrated good contrast for that particular operating point. This was determined

by examining the LPCR graph as well as the raw images. It was important to reference the

raw images because there are some cases where the contrast value is high but the actual

focus is poor. This resulted in 12 distinct experiments.

The tracking target was a piece of leather which was meant to simulate the skin surface.

It was attached to the front face of TZ. At the beginning of each trial the apparatus was

adjusted to the desired ID and OD. Sample images were then taken to verify that the system

was in focus. Then the Surface Quality (SQUAL) value was read out of the image sensor and

recorded. SQUAL is a value that is calculated internally by the ADNS-2610 that represents

the number of identifiable features that are visible to the sensor. The value of SQUAL

ranges from 0 to 128, with higher values corresponding to better tracking. The test itself

consisted of moving TX forward 10mm and then back 10 mm, in 1 mm increments. After

each increment the measured distance, in raw counts, was read out of the image sensor and

recorded. For each of the 12 experiments 5 trials were performed.

As a control experiment, a real optical mouse was modified so that it could be rigidly

mounted to the test apparatus. The bottom of the mouse was brought into contact with

the leather strip so that the mouse’s optics would be in focus. The SQUAL value was

read out of the image sensor and then 5 trials were performed as outlined in the previous

paragraph. The experiment allowed a direct comparison to be made between the accuracy

and repeatability of the image sensor when used as it was designed to be, with that of the

image sensor when use in our direct imaging configuration.

The SQUAL value read out of the image sensor in the optical mouse configuration was

83. 83 is a good value and means that the image sensor was able to identify a large number of

trackable features. Table 7.6 lists the tracking result for each trial. The mean is the average

number of counts measured for each 1mm increment. The STD is the standard deviation

of the number of counts recorded per increment over each trial. It is evident that the image

sensor is quite capable of tracking on the leather sample when used in the standard optical

152



mouse configuration. The mean was nearly identical over the 5 trials which demonstrates

that there is good repeatability. Each trial has a standard deviation of between 1.38 and 1.53

which shows that the tracking result was also very repeatable between individual increments.

It is important to note that, because the motion was performed manually, there was some

variation from increment to increment. Given that each count was approximately equal to

0.054 mm, the STD result seems very reasonable.

Table 7.6: Tracking performance and repeatability of a standard optical mouse on leather sample

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
Mean (cnt/mm) 19.25 19.24 19.18 19.20 19.20
STD (cnt/mm) 1.53 1.38 1.39 1.53 1.53

Figure 7.80(a) illustrates the experimental results for all of the tests performed on the

direct imaging configuration. The values represented in the graph are the average number

of counts per increment averaged over all 5 trials. It is clear that overall, decreasing OD

increases the number of counts registered. This corresponds well with the previous experi-

mental results, where it was shown that the area visible to the image sensor decreases with

OD. The physical explanation is that the number of counts registered is relative to the size

of the viewable area. When the viewable area is 1 mm2, a feature that moves 1 mm appears

to cross the entire field of view. When the viewable area is 4 mm2 the same physical motion

only crosses half of the field of view. Since the algorithm running in the sensor assumes that

the ID and OD are fixed, as they would be in an optical mouse, varying these dimensions

results in differences in the perceived motion, even when the absolute motion is constant.

Figure 7.80(b) illustrates the standard deviation of the number of counts for all test

performed. The value represented by each bar is average over all trials of the standard

deviation of each trial individually. There is no apparent correlation between the standard

deviation and either the ID or the OD. This is the expected result and it indicates a high

degree of repeatability.

153



(a) Average counts per increment for the direct imaging configuration

(b) Standard deviation of counts per increment for the direct imaging config-
uration

Figure 7.80: Direct configuration tracking performance

7.5 Final Optical System Implementation

In order to build a working prototype of the entire 3D ultrasound system it was necessary

to design and fabricate both the direct and indirect versions of the optical tracking system

154



in a form that could be attached to a transducer. This required that they be as small as

possible and rugged enough to protect the optical components. The testing described earlier

in this section provided the information required to set the critical optical dimensions of the

assemblies. The rest of the dimensions were then determined. Size was the primary driving

factor but other considerations included ease of assembly and manufacturability.

7.5.1 Direct Imaging Configuration

Figure 7.81 is an exploded view of the entire direct imaging assembly. The housing was

machined from aluminum to have an ID of 11.55 mm and OD of 15 mm. Aluminum was

chosen because it is easy to machine and can be machined to very tight tolerances, unlike

many plastics. The Elmo lens is inserted from the bottom and the LED is inserted from the

side. Because we had only one Elmo lens and it needed to be tested in several assemblies

it was held in place with Room Temperature Vulcanizing (RTV) silicone adhesive. There

are features in the housing that match the flanges in both the lens and the LED to hold

them in the correct position. The face into which the LED is inserted is designed to put

the LED at a 50◦ angle with the tracking surface. This is the angle that was identified

as optimal by Irene Gouverneur in [17]. Not pictured in the diagram is the small plastic

window that fits in the relieved area at the base of the housing. The window is necessary

to keep ultrasound transmission gel from fouling the lens. Both polycarbonate and acrylic

were tested and found to work. The window was held in place with RTV silicone because it

had to be easily removable and because of the excellent sealing characteristics of RTV. The

entire lower face of the housing is rounded along the edge to keep it from catching on the

surface being scanned.

As illustrated in Figure 7.82, the standard HDNS-2100 optical mouse lens had to be

machined to make it fit the assembly. The finished dimension is approximately 5 mm

square, to match the top of the housing. The top of the housing has a 1mm chamfer cut

at 45◦. The chamfer matches the contour of the lens and forces it to be centered with

the optical axis of the housing. The 8 pins of the ADNS-2610 optical mouse sensor are

carefully bent to point up instead of down. This allows a small PCB, not pictured here, to

155



Figure 7.81: Exploded view of the prototype direct tracking assembly

be mounted on top of the sensor. this arrangement makes the assembly significantly smaller

than if the sensor was mounted in its intended orientation. The sensor, mouse lens, and

LED were held in place with epoxy.

7.5.2 Indirect Imaging Configuration

Figure 7.83 is an exploded view of the entire indirect imaging assembly. The main housing

is very similar to that of the direct imaging assembly. It is machined in aluminum, the LED

Figure 7.82: HDNS-2100 lens before and after modification

156



illumination angle is 50◦, and the lower edge is rounded to keep it from catching on the

scanning surface. Unlike the main housing of the direct imaging configuration, the main

housing of the indirect imaging assembly was designed to be adjustable. The optical fiber

is mounted inside the fiber carrier. The exterior of the fiber carrier and the interior of

the main housing each have 40 Threads Per Inch (TPI) threads that allow the ID to be

adjusted. The Elmo lens is glued into the lens carrier with RTV silicon. The lens carrier

also has 40 TPI threads, which allow the OD to be adjusted. Mounting the optical fiber

inside a carrier allows all three of the optical fibers that were evaluated in this chapter to

be tested in the prototype tracking system without having to machine a complete housing

for each one. Instead, a separate carrier was machined for each fiber and they could be

swapped without even removing the housing from the probe.

The upper housing is where the ADNS-2610 optical tracking sensor and HDNS-2100

mouse lens mount. The upper housing does not attach rigidly to the fiber carrier because

the fiber carrier rotates when it is adjusted. In order to allow the x and y axes of the sensor

to align with the x and y axes of the probe, the upper housing must be allowed to rotate

freely. The chamfer at the top of the fiber carrier matches the one in the bottom of the

upper housing. The purpose of this feature is twofold. First, it forces the optical axes of the

two parts to self align. Second, it sets the correct spacing between the end of the optical

fiber and mouse lens. Once all of the adjustments were made, the upper housing was lightly

glued to the fiber carrier to hold it in place. Like the direct configuration, the top surface

of the upper housing also has a chamfer, which aligns the optical axis of the HDNS-2100

mouse lens.

157



Figure 7.83: Exploded view of the prototype indirect tracking assembly

158



Chapter 8

Inertial Navigation

The inertial navigation algorithm tracks the real world position and orientation of the ul-

trasound transducer based on inputs from the sensors. Our tracking system is a modified

version of what is traditionally called a strapdown Inertial Navigation System (INS). A

traditional strapdown INS uses a set of 3 orthogonal accelerometers and 3 orthogonal gy-

roscopes to track position and orientation over time. The term “strapdown” refers to the

fact that the sensor package is rigidly attached to the object being tracked, in contrast with

other implementations such as stable platform systems.

Inertial navigation relies on the laws of classical mechanics. When a force acts on a body

an acceleration results. This acceleration can be measured using an accelerometer and suc-

cessively integrated to calculate change in velocity and position. In order to navigate using

the acceleration measurements, it is necessary to keep track of the direction in which the ac-

celerometers are pointing. The body’s rotational motion can be measured using gyroscopes

and this information is used to keep track of the orientation of the accelerometers. The

orientation information can then be used to resolve the accelerations, which are measured

in the body’s inertial reference frame, into the real world coordinate system, before they are

integrated. This process is illustrated in Figure 8.1. The real world coordinate system is

represented by the set of axes labeled x y, the body being tracked is the gray box, and the

body’s inertial reference frame is represented by the set of axes labeled x’ y’. Drawings (a)

159



and (b) represent the simple case, where the body’s axes are perfectly aligned with the real

world axes. A force acting along the body’s x-axis causes the body to move from (x0, y0)

to (x1, y1) in the real world. If a navigation system reported the position of the body in

(b) as the second integral of the acceleration measured along the body’s x-axis, it would

be correct in this case. However, as illustrated in (c) and (d), this is not generally the

case. Displacement resulting from a force acting only along the body’s x-axis is expressed

as displacement along both the x and y-axis in the real word coordinate system.

Figure 8.1: A simple inertial navigation example. In (a) and (b), a force acting along the x’-axis
causes acceleration only along the x-axis. In (c) and (d), a force acting along the x’-axis causes
acceleration along both the x and y axes.

160



8.1 Reference Frames

The above explanation demonstrates the need to define the various coordinate systems, or

reference frames, that an INS must deal with. The reference frames described here are

those necessary to understand how the prototype tracking system’s navigation algorithm

functions. In a typical INS, such as one would find in an aircraft, there are several others.

The inertial reference frame is the coordinate system that the sensor readings are ex-

pressed in. It is also known as the body reference frame because it remains fixed with respect

to the body being tracked. The yaw, pitch, and roll angles are defined relative to the body

reference frame around the z, y, and x axes, respectively. Figure 8.2 illustrates an example

of a body reference frame.

The navigation reference frame is the coordinate system that the sensor measurements

must be resolved in. In a traditional INS the axes of the navigation reference frame would

have their origin at the location of the INS and would be aligned with north, east, and

local vertical. The prototype tracking system uses a slightly different definition that is

functionally equivalent. Because the prototype system has no way of knowing the which

way north is, the positions it reports are always relative to the starting point of a scan.

That means that the origin of the navigation reference frame is fixed at the starting point

of the scan and its axes are aligned with those of the body reference frame at the start of

the scan.

The Stradwin reference frame is the coordinate system that Stradwin uses internally. It

has no physical significance but it does affect how data is displayed on the screen. Suppose

that the prototype system’s navigation frame has its z-axis aligned with local vertical and

the probe is moved straight down the x-axis. This motion would appear horizontal to the

operator, but depending on how Stradwin’s reference frame is aligned, it might appear to

be vertical motion on the computer screen. Stradwin reads operating parameters from a file

at start up, and some of those parameters define the relationship between the navigation

reference frame and Stradwin’s internal reference frame.

161



Figure 8.2: The body reference frame

8.2 Orientation Representations

The orientation of one coordinate system relative to another coordinate system can be

represented as a Direction Cosine Matrix (DCM). In (8.1), C is a DCM that relates the body

reference frame, denoted by the subscript b, back to the navigation reference frame, denoted

by the superscript n. In the following explanation, DCMs will always be represented by C.

For DCMs only, the superscript position denotes the target reference frame of the transform

and the subscript position denotes source reference frame of the transform. Therefore, Cn
b

is the transform “from” the body reference frame “to” the navigation reference frame. The

element in the ith row and jth column is the cosine of the angle between the i-axis of the

reference frame and the j-axis of the body frame [27].

Cn
b =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (8.1)

Another method of representing the orientation of one coordinate system with respect

to another is with Euler angles. In this representation, the transformation is expressed as 3

rotations: a rotation through angle ψ around the z-axis, a rotation through angle θ around

the new y-axis, and a rotation through angle φ around the new x-axis. Each of these Euler

rotations can be represented by a DCM, as in (8.2), (8.3), and (8.4).

162



C1 =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (8.2)

C2 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (8.3)

C3 =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 (8.4)

Equation (8.5) illustrates that the complete transformation from the navigation frame to

the body frame is the product of these three matrices. The reverse transformation, from the

body reference frame to the navigation reference frame, is the transpose of (8.5), equation

(8.6). Equation (8.7) is the complete DCM in terms of Euler angles.

Cn
b = C3C2C1 (8.5)

Cb
n = Cn

b
T = CT1 CT2 CT3 (8.6)

Cb
n =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinψ cos θ cosφ cos θ

 (8.7)

Conversion from DCM to Euler angles is accomplished using the equations in (8.8).

163



φ = arctan
[
c32

c33

]
θ = arcsin [−c31]

ψ = arctan
[
c21

c11

] (8.8)

It is worth mentioning, for the sake of completeness, that there is a third common way

of representing orientation, known as a quaternion. However, quaternions were not used in

this work and therefore will not be covered.

8.3 Vector Transformation

The first goal of the tracking system is to track position over time. To do this, it is necessary

to transform a displacement vector in the body reference frame to a displacement vector

in the navigation reference frame. In physical terms, the displacements that are measured

by the optical tracker on the probe have to transformed into displacements relative to the

navigation reference frame, which is ultimately defined by the starting position of the probe.

The transformation is accomplished by taking the product of the DCM and the displacement

vector, as in (8.9).

rn = Cn
brb (8.9)

8.4 Time Propagation of the DCM

The second goal of the tracking system is to keep track of the probe orientation over time.

At the beginning of a scan, the body reference frame and the navigation reference frame are

assumed to be perfectly aligned. The DCM representing this state is the identity matrix, I.

A single angular rate sample can be represented as a vector of rotations that represent the

turn rate of the body reference frame relative to the navigation reference frame, expressed

in the body reference frame, as in (8.10). When attached to the quantities ω, Ω, and σ,

164



the superscript denotes the reference frame the quantity is expressed in and the subscript

denotes the object referred to by the quantity. For example, ω is a general turn rate vector,

ωnb is the turn rate of the body reference frame relative to the navigation reference frame,

and ωb
nb is the turn rate of the body reference frame relative to the navigation reference

frame and expressed in the body reference frame. To update the DCM to reflect the latest

angular rate sample, it is necessary to solve the matrix differential equation in (8.11). Ωb
nb

is a skew symmetric matrix formed from the elements of the turn rate vector defined by

(8.10) [27].

ωb
nb = [ ωx ωy ωz ]T (8.10)

Ċn
b = Cn

bΩb
nb (8.11)

Ωb
nb =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (8.12)

A single iteration of the algorithm can be considered to take place over the interval tk to

tk+1. The DCM at time tk+1 can then be expressed as (8.13). For notational convenience,

Cn
b will be abbreviated as C for the remainder of this chapter. Assuming that the turn rate

vector, ωb
nb remains fixed in space over the update interval, which is true as long as that

interval is small, the integral of the skew symmetric turn rate matrix is [σx], as in (8.14).

σ is an angle vector that relates the orientation of the body frame at time k to k + 1. The

magnitude and direction of σ are such that rotating the body frame an angle equal to the

magnitude of σ about σ produces the rotation of the body reference frame from time k to

k + 1.

Ck+1 = Ck exp
∫ tk+1

tk

Ωb
nbdt (8.13)

165



∫ tk+1

tk

Ωb
nbdt = [σx] (8.14)

The expanded form of σ and its magnitude are defined in (8.15) and (8.16), respectively.

The expanded form of [σx] is defined in (8.17).

σb
nb = [ σx σy σz ]T (8.15)

σb
nb =

√
(σ2
x + σ2

y + σ2
z) (8.16)

[σx] =


0 −σz σy

σz 0 −σx
−σy σx 0

 (8.17)

Using the result in (8.14), (8.13) can be reduced to (8.18). The exponential function, ex,

is defined for square matrices and results in a matrix with the same dimensions as that in

the exponent. Knowing this, (8.18) reduces to the product of two rotation matrices, as in

(8.19).

Ck+1 = Ck exp [σx] (8.18)

Ck+1 = CkAk (8.19)

Since Ck is the DCM at time k, Ak must be the DCM that transforms a vector in the

body reference frame at time k + 1 to a vector in the body reference frame at time k. In

order to solve (8.19) we must find an expression for Ak. The exponential of a square matrix

is defined by the power series in (8.20).

eX =
∞∑
k=0

1
k!X

k (8.20)

166



Equation (8.21) shows the expansion of the first few terms of the series. Equation (8.21) is

further simplified in (8.22).

Ak = I + [σx] + [σx]2
2! + [σx]3

3! + [σx]4
4! + ... (8.21)

[σx]2 =


−(σ2

y + σ2
z) σxσy σxσz

σxσy −(σ2
x + σ2

z) σyσz

σxσz σyσz −(σ2
x + σ2

y)


[σx]3 = −(σ2

x + σ2
y + σ2

z)[σx]

[σx]4 = −(σ2
x + σ2

y + σ2
z)[σx]2

...

Ak = I + [σx] + [σx]2
2! − σ2[σx]

3! − σ2[σx]2
4! + ...

= I +
[
1− σ2

3! + σ4

5! − ...
]

[σx] +
[

1
2! −

σ2

4! + σ4

6! − ...
]

[σx]2

(8.22)

By representing the power series this way, (8.21) can be expressed with only the first and

second powers of [σx], as in (8.23). This is desirable because it reduces the amount of

computation required between each angular rate sample.

Ak = I + a1[σx] + a2[σx]2

a1 = 1− σ2

3! + σ4

5! − ...

a2 = 1
2! −

σ2

4! + σ4

6! − ...

(8.23)

It is therefore possible to solve for the DCM after each new angular rate sample arrives

by solving (8.23) for Ak and then applying (8.19). The accuracy of the algorithm, and also

the amount of computation time required, is determined by the number of power series terms

that are included in the computation of Ak. As long as σ remains small, a small number

167



of terms are necessary to accurately calculate Ak. This means that there is a trade off

between maximum turn rate, sampling frequency, and computational complexity. A system

with a high maximum turn rate will either have to sample at a higher rate or perform more

computation than a system with a low maximum turn rate, to achieve the same accuracy.

168



Chapter 9

Prototype System

Implementation

This chapter provides a detailed description of the prototype freehand 3D ultrasound system.

The prototype system has several major components, which are illustrated in Figure 9.1. A

PC provides the user interface and high level system control. The Stradwin software package

implements real-time 3D volume reconstruction and visualization. Underneath Stradwin,

Terason software controls the transducer electronics and the interface for grabbing image

frames from the hardware. The ultrasound system is a Terason t3000 that connects to the

PC using firewire. The t3000 supports many different probe modules but only a 7L3 linear

array probe was used in this work. The position and orientation tracking system, or naviga-

tion computer, is implemented in a Xilinx Spartan 3E FPGA using a Microblaze soft-core

embedded system. Two custom PCBs were developed to physically mount and electrically

interface with the ADNS-2610 and ADIS16350 tracking sensors. Firmware running on the

Microblaze embedded system implements an inertial tracking algorithm that converts raw

sensor data into estimates of the ultrasound transducer’s position and orientation, which

are transmitted to the PC using the RS232 serial port. Both versions of the optical system

were tested with the prototype.

169



Figure 9.1: Diagram of the prototype freehand 3D ultrasound system

The individual sensors have already been described in Chapters 5 and 7. Stradwin is

documented in Chapter 2. A users guide for the prototype system is included in Appendix

A. With these components already documented, only the sensor interface electronics, the

navigation computer hardware, and the navigation computer firmware remain. The first

part of this chapter describes the design of the sensor interface electronics and the embedded

system that forms the hardware part of the navigation computer. The second half of the

chapter is dedicated to describing the firmware part of the navigation computer.

170



9.1 Sensor Interface Electronics

A custom PCB was designed for each of the two sensors used in the tracking system. Each

PCB provides an electrical interface between the sensor and the navigation computer as well

as mechanical features to mount the sensors to the PCBs and the PCBs to the ultrasound

probe. In addition, a cable was fabricated to connect the sensor PCBs to the Spartan 3E

demonstration board. These components are illustrated in Figure 9.2.

Figure 9.2: Diagram of the electronic components of the prototype system.

9.1.1 ADIS16350 Carrier Board

The ADIS16350 Carrier Board provides an electrical interface to the ADIS16350 inertial

sensor, mechanical features for mounting the sensor to the PCB and the PCB to the ul-

trasound probe, and a mechanism for user input and output. It is pictured in Figure 9.3

without the ADIS16350 mounted. The PCB has several important mechanical features.

The mounting hole pattern of the ADIS16350 was designed into the PCB so that it could be

rigidly attached with #4-40 screws. Additional holes were placed in the middle and outer

corners so that the PCB could be attached to the ultrasound probe. The overall size of the

board was kept to minimum so that the entire assembly would fit on the probe.

Electrically, the ADIS16350 carrier board is quite simple. The schematic is illustrated

in Figure 9.4. Signals from the demo board enter the carrier board through J1, which is

a Hirose DX10G1M-26SE(50). The +5 v supply comes in on pins 11 and 12 and ground

171



Figure 9.3: Picture of the ADIS16350 carrier PCB

returns on pins 5, 6, 13, 16, 20, and 26. Capacitor C7 provides bulk capacitance to supply

current during electrical transients. A tantalum capacitor was selected because of its low

internal resistance. D1 and D2 are red and green LEDs, respectively. Single ended signals

from the FPGA drive the two NFETs, Q1 and Q2, which act as current switches to turn

the LEDs on and off. The LEDs are used as system status indicators. SW1 and SW2 are

momentary pushbutton switches that allow the operator to provide input to the system. J4

and J5, which are connected to the same nets as the switches, are provided so that switches

could also be mounted remotely if desired.

Low Voltage Differential Signaling (LVDS) was employed to extend the range that the

serial I/O signals can travel down the cable linking the demo board and ADIS16350 carrier

board. The FPGA supports this signaling standard directly but the carrier board required

LVDS receiver and driver ICs to complete the link. U1 and U2 are LVDS receivers; U1 has

4 channels and U2 has 2 channels. U3 is a two channel LVDS driver. The LVDS standard

specifies that the cable maintain 100 ohm differential impedance and that the circuit be ter-

minated with a 100 ohm resistor at the receiver. R1, R2, R3, R4, and R5 are the LVDS termi-

nation resistors. The receivers convert the differential input signals to 5 volt TTL compatible

172



Figure 9.4: ADIS16350 Carrier PCB Schematic

outputs. The ADIS16350’s serial inputs, labeled ADIS16350_CS, ADIS16350_SCK, and

ADIS16350_DIN are routed to J2, the ADIS16350’s electrical connector, which is a Samtec

CLM-112-02-L-D. The ADIS16350’s serial output, labeled ADIS16350_DOUT, is routed

from J2 to U3, the LVDS driver, where its converted from 5 v TTL to LVDS, and trans-

mitted back to the demo board. The ADNS-2610’s serial inputs, labeled ADNS2610_SCK

and ADNS2610_MOSI, are routed to J3. The ADNS-2610’s serial output, labeled

ADNS2610_MISO, is routed from J3 to U3, where it is converted to LVDS and transmitted

back to the demo board.

A Flat Flex Cable (FFC) is used to connect the ADIS16350 carrier PCB to the ADNS-

2610 carrier PCB, which is described in the next section. J3 is a 2 in long, 0.5 mm pitch

173



FFC connector, Molex part number 21020-0053, that matches the 6 circuit FFC, Molex part

number 52746-0670. The FFC connection is pictured in Figure 9.5. The FFC was chosen

because of the size of the connectors and because its thin flat profile allowed it to be taped

to the transducer handle where it would be out of the way

Figure 9.5: FFC connection between the ADIS16350 carrier PCB and the ADNS-2610 carrier
PCB

9.1.2 ADNS-2610 Carrier Board

The ADNS-2610 carrier board was designed to provide an electrical interface to the ADNS-

2610 optical mouse sensor and to mount the external components it requires to function.

It is pictured in Figure 9.6. In order to make the optical tracking assembly as small as

possible it was important to keep the size of this board to a minimum. It is just slightly

larger than the footprint of the sensor itself. The board was designed to have the sensor

mounted backwards. To mount the sensor the pins must be bent 180◦from their nominal

position. This arrangement minimizes the size of the PCB by allowing components to be

mounted underneath the sensor, where a hole would normally be located for the optical

aperture. The boards were ordered from a vendor that had a minimum PCB size that was

larger than the size required for components. The ground and power planes were kept out

of the excess area so that it could be removed with a saw. The excess area is the lighter

region on the lower left hand side of Figure 9.6.

The ADNS-2610 carrier board’s schematic is illustrated in Figure 9.7. J2 is the FFC

connector, Molex part number 52559-0672, that connects the ADNS-2610 carrier to the

174



Figure 9.6: Picture of the ADNS-2610 carrier PCB

ADIS1630 carrier. Pin 6 is the +5 v supply and pins 2 and 3 are ground. U1 is the

ADNS-2610, X1 is a 24 MHz surface mount resonator, and Q1 is a PNP transistor that

supplies the current to drive the LED. J1 is a single row 2 x 0.100 in header that is used to

connect the LED, which is mounted remotely. The ADNS-2610 is designed to use a two wire

serial interface in which a single wire is used to send and receive serial data. However, the

Microblaze SPI port has separate data in and data out connections, Master In Slave Out

(MISO) and Master Out Slave In (MOSI). For data to be exchanged with the ADNS-2610,

MISO and MOSI must both be connected to the ADNS-2610’s SDIO pin. This is a problem

because when MOSI is idle it is driven high. The result is contention between the driver

in the Microblaze SPI port and the driver in the ADNS-2610. U2 is a dual NFET that is

used to implement an open drain non-inverting buffer. The buffer breaks the contention by

isolating MOSI from SDIO. The output of this buffer does not actively drive high, it is only

pulled up by the 4.7 kohm resistor. The buffered version of MOSI is connected to SDIO

and MISO. The current sinking capability of the driver in the ADNS-2610 is large enough

to overcome the pullup resistor, which allows it to take control of the bus.

175



Figure 9.7: ADNS-2610 Carrier PCB Schematic

9.1.3 Sensor Module to Demo Board Cable

A cable connects the Spartan 3 demo board to the ADIS16350 carrier board. The cable

itself is 2 m long and has 16 100 ohm differential impedance twisted pairs of 24 AWG solid

copper wire. One end connects to J3 on the demo board using a Hirose FX2BA-100SA-

1.27R connector. The side that attaches to the ADIS16350 carrier board uses a Hirose

DX40M-26P connector. Table 9.1 is a pin to pin connection table for the cable.

176



Table 9.1: Pinout of the sensor module cable

ADIS16350
carrier board
pin #

Signal Name Spartan 3E
board J3 pin
#

FPGA pin #

1 ADIS16350_CS_n A20 D11
2 ADIS16350_CS_p A21 C11
3 ADNS2610_MOSI_n A16 F8
4 ADNS2610_MOSI_p A17 E8
5 GND B2 -
6 GND B5 -
7 ADNS2610_SCK_n A8 D5
8 ADNS2610_SCK_p A9 C5
9 ADIS16350_DIN_n A24 E12
10 ADIS16350_DIN_p A25 F12
11 +5v A49 -
12 +5v A50 -
13 GND B24 -
14 ADIS16350_SCK_n A10 A6
15 ADIS16350_SCK_p A11 B6
16 GND A46 -
17 LED1 A13 F7
18 SW1 A15 C7
19 SW2 A12 E7
20 GND A48 -
21 LED2 B47 D7
22 ADNS2610_MISO_n A22 F11
23 ADNS2610_MISO_p A23 E11
24 ADIS16350_DOUT_n A6 B4
25 ADIS16350_DOUT_p A7 A4
26 GND A48 -

177



9.2 Microblaze Embedded System

The heart of the tracking system is the Spartan 3E 1600 development board manufactured by

Digilent Incorporated. This board was selected because it was one of the few demonstration

boards available that supported the largest, in terms of logic gates and memory, Spartan

3E FPGA. The Spartan 3E family of FPGA was selected because it is a low cost FPGA

with features specifically targeted for embedded processing applications. Other important

features of the demonstration board are the RS232 connector, configuration Programmable

Read Only Memory (PROM), and an expansion connector for cabling to the sensor module.

The board is pictured in Figure 9.8.

Figure 9.8: Digilent Spartan-3 1600E Demonstration Board

The Xilinx Embedded Platform Studio (XPS) toolsuite was used to develop an embed-

ded system in which to implement the tracking system. Figure 9.9 is a block diagram of the

system. At the center is a Microblaze 32 bit Reduced Instruction Set Computing (RISC)

microprocessor. The Microblaze utilizes a Harvard Architecture, which means that the in-

178



struction and data memory address spaces are separate. The processor itself has many

configuration options that affect its capabilities, performance, size in the FPGA, and max-

imum operating frequency. The version used in this design was optimized for speed at the

expense of size. The size is larger because the speed optimized version features a five stage

pipeline as opposed to a three stage pipeline in the size optimized version. A deeper pipeline

reduces the delay between stages and therefore increases the maximum operating frequency.

Several optional functional units were included in the processor. These were the Floating

Point Unit (FPU), barrel shifter, 32 bit integer multiplier, and pattern comparator. The

floating point unit was critical because Stradwin required the position and orientation values

to be single precision floating point values. The overhead incurred by doing the floating point

processing in software would have prevented the system from operating in real time. The

other functional units were also included to improve processing performance. Two major

options that were not included were caches and a Memory Management Unit (MMU). If

the system utilized the external memories available on the demo board, a cache would have

improved performance because the external memories cannot be accessed in a single clock

cycle. However, all of the memory used in the system is implemented in block RAM inside

the FPGA. The block RAM operates at the same frequency as the processor so there is no

advantage to including a cache. A MMU is unnecessary because the entire application fits

in memory and memory protection is not required.

The processor implements two different types of bus to connect to other system compo-

nents. The Local Memory Bus (LMB) is a high speed bus that is optimized to have single

cycle latency to local memories. The LMBs are represented by the orange and red lines in

the diagram, for the data and instruction memory spaces, respectively. The Processor Local

Bus (PLB) is a more general purpose interconnect. It supports multiple masters, burst and

block transfers, timeouts, multiple wait states, and many other features that make it flexible

enough to connect with a wide variety of devices. The PLB is the bus that connects the

processor to the peripherals. It is represented by the green line in the diagram. Unlike the

LMBs, there is only one PLB that spans both the instruction and data memory spaces.

This is only possible because the PLB supports multiple masters. In this implementation,

179



Figure 9.9: Block diagram of the microblaze embedded system

180



the PLB is never accessed from the instruction memory space because there is no memory

attached to the PLB that could hold instructions. All of the accesses to the PLB are from

the data memory space and they are all for memory mapped I/O to the peripherals.

There are two 64k blocks of memory in the system. Both blocks are implemented in

on-chip block RAM which allows the processor to access the memory in a single clock cycle.

The RAM blocks and their associated interface controllers appear above the processor in

Figure 9.9. The interface controllers are responsible for address decoding, byte steering, and

physically connecting the bus signals to the RAM interface signals. The first RAM block

is shared between the instruction and data memory spaces and the second block is mapped

only to the data memory space. The memory system is configured this way because the

blocks can only be configured in power of two sizes. As the FW was being developed a

point was reached when the executable code would no longer fit in a 32k block. In order to

not waste the unused part of a 64k block connected only to the instruction address space,

the block was connected to both. This works because the block RAMs in Xilinx FPGAs

are dual ported. If a block RAM were shared between two data memory spaces, as in a

block RAM shared between two separate processors, there would be the potential for data

consistency issues. However, because the instruction memory space is read-only, that is not

a problem in this system.

Many different peripherals were included in the system. With the exception of the

Synchronous Serial Engine (SSE) block, all of them were included in the XPS development

environment. Most are connected to the PLB and are accessed through the data memory

space but some have no bus connections. All of the blocks in Figure 9.9 that are not the

processor and memory can be considered peripherals. There are two digital I/O blocks in

the system, one for input and one for output. The digital input block is used to read the

state of the two push buttons located on the ultrasound probe. The digital output block

is used to drive the two status LEDs located on the ultrasound transducer and to drive

the trace port. The trace port signals were connected to J16 on the demo board. These

signals were used to verify system timing during firmware development. Individual pins

were assigned to each thread so that the order of thread execution could be observed on an

181



oscilloscope. Two RS232 UART blocks are included in the system. The block labeled Host

Port was used to communicate with the Stradwin program running on the host PC. The

block labeled Data port was used as a secondary interface to configure and stream data out

of the system without interrupting the connection to Stradwin. The Data Port was used

primarily as debug tool. The block labeled XPS SPI is an 8 bit SPI serial port. It was

used to communicate with the ADNS-2610 optical mouse sensor. The block labeled SSE is

a custom designed peripheral that was used to interface with the ADIS1350 inertial sensor.

It will be covered in greater detail later in this chapter. The timer block implements two 32

bit timers. The timers are used by the firmware where timing more precise than the kernel’s

software timers was required.

The debug module connects the Microblaze’s debug port to the FPGA’s Joint Test Action

Group (JTAG) interface. A JTAG bus connects to the FPGA and the PROM on the demo

board and is bridged to the PC over USB. This provides a means of programming them and

also allows the PC to control the processor’s execution remotely. The debug module allows

breakpoints and watchpoints to be set, memory initialization, code download, and single

stepping the processor, all of which are critical for firmware development.

The interrupt controller block allows multiple interrupt sources to share the single in-

terrupt input to the processor. Each interrupt source can be individually enabled and

configured for polarity. Priority is set by the order in which the individual signals are con-

nected to the interrupt controller’s input port. The blue line in Figure 9.9 illustrates the

interrupt connections present in the system.

The remaining blocks are not connected to any of the system busses. Their configuration

is set in the XPS tool and fixed during synthesis. There are two Fixed Interval Timer (FIT)

blocks. The first is used to provide a periodic interrupt for the XMK kernel tick. This timer

sends the interrupt controller and interrupt request every 100 ms. The second is used to

trigger the thread that polls the ADNS-2610. It interrupts every 20 ms. The reset block

brings the various system components out of reset in the correct order. A Digital Clock

Manager (DCM) is a digitally controlled Phase Locked Loop (PLL) that is permanently

embedded in the FPGA. DCMs are used for clock management and implement advanced

182



features like phase and duty cycle adjustment, clock multiplication and division, and skew

compensation. The DCM block is used to configure the hardware. In this application it was

used to increase the 50 MHz clock provided by the crystal on the demo board to 66 MHz

for increased performance. The DIFF Input and DIFF Output blocks provide access to

the FPGA’s LVDS input and output buffers, respectively. They basically just provide a

mechanism for informing the synthesis tool that a signal represented by single net in the

design needs to be converted to a differential signal at the I/O pad. LVDS I/O was used

on all of the serial signals used to communicate with the sensors. This will be explained in

greater detail later in this chapter.

9.2.1 Synchronous Serial Engine

The ADIS16350 inertial sensor is designed to interface with a 16 bit SPI serial port. This

proved to be a problem because the SPI serial port that Xilinx provides with XPS is an 8

bit device. It is possible to interface the 8 bit port to the 16 bit port by breaking each 16

bit transfer into two consecutive 8 bit transfers. The ADIS16350 is polled at a rate of just

over 819.2 Hz and every time it is polled twelve 16 bit words are transferred. Using the

8 bit serial port, this requires 24 transactions per sample period, which results in 19660 8

bit transfers per second. The processing overhead incurred by the XMK kernel’s interrupt

system and the time spent polling between 8 bit transfers proved to be too great to both

handle communication and service all of the other system tasks in real time.

A custom serial port was developed in VHSIC Hardware Description Language (VHDL)

to solve the problem. The SSE was designed to interface directly to the Microblaze’s PLB

just like the standard peripherals that come with XPS. XPS has a wizard that allows the

user to specify the parameters of the bus interface and then generates VHDL template files

that the user then customizes to fit his or her needs. Figure 9.10 is a block diagram of the

SSE.

The PLB interface block on the left is the module that was generated by XPS. The block

then provides data in and data out busses, select signals, and read and write enables to the

user logic. The PLB interface also implements the interrupt and reset control logic. Interrupt

183



Figure 9.10: Synchronous Serial Engine block diagram

status and enable resisters inside the PLB interface control how interrupts generated by the

user logic are handled. The SSE has only one interrupt, which is generated whenever a

transfer completes. The interrupt pulse is latched into the interrupt status register and if

the corresponding bit is set in the interrupt enable register, the signal is forwarded to the

system interrupt controller. The PLB interface’s reset register can be used to send a reset

signal to the SSE hardware.

This design uses set of registers as the connection between the PLB and the user logic.

The control register block consists of 4 32 bit registers named Control, Baud Count, Sample

Count, and Frame Count. Only bits 31 to 29 of the control register are used; 31 is the

mode select bit, 30 is the enable bit, and 29 is the reset bit. The three count registers are

used to set the overflow value of the three timers in the system: the Sample Timer, the

Frame Timer, and the Baud Clock Generator. The Sample Timer sets the overall sampling

rate. The value written to the Sample Count register should be the result of dividing the

system clock frequency by the desired sampling rate. To sample the ADIS16350 at its

maximum rate of 819.2 Hz, the count value should be 66.667 MHz / 819.2 Hz = 81,381, or

0x00013DE5 in hex as is would be written to the register. The Frame Timer sets the time

between the start of individual 16 bit transfers within a sample period and is equivalent to

tDATARATE in Figure 9.11, which is a timing diagram from the ADIS16350 datasheet. The

minimum allowable tDATARATE is 40 µs. To set Frame Timer to 40 µs we use the same

184



procedure as before, and arrive at 2666.66, or 0x00000A6B in hex as it would be written

to the register. The Baud Clock Generator generates State Clock, which is the clock that

drives the Transceiver State Machine, and the Baud Clock, which clocks data into and out

of the shift registers. The ADIS16350 data sheet specifies that the maximum frequency of

the SPI clock is 2 MHz. The value written to the Baud Count register should be the result

of dividing the system clock frequency by twice the desired SPI clock frequency. To generate

a 2 MHz SPI clock, 66.667 MHz is divided by 4 MHz to get the a baud count value of 17,

or 0x00000011 in hex as it would be written to the Baud Count register.

Figure 9.11: ADIS16350 SPI Timing Diagram [8]

The TX Register file and the RX Register file are used to store the outgoing and incoming

data, respectively. They are mapped to the same physical addresses which means that data

cannot be read from the TX Register File. Reading from the TX Register File is equivalent

to reading from the RX Register File. The Control Registers, however, can be read back.

The Master State Machine module controls the overall behavior of the SSE. The SSE is

active when the Enable bit, bit 30, of the Control Register is set. The SSE has two modes

of operation. In single transfer mode the SSE will transfer a single 16 bit data word. This

mode is useful for configuration of the ADIS16350, when the user only wants to read or

write a single register in the ADIS16350. In this mode, the transmit data should be written

185



to TX Register(0) and the receive data will be stored in RX Register(0). When the cycle is

complete the Master State Machine asserts the interrupt signal which is then processed in

the PLB interface. Single transfer mode is active when the mode bit of the control register

is set to 1.

The second mode of operation is continuous mode. In continuous mode, the SSE will

automatically transfer a series of sixteen 16 bit words and do so every time the Sample Timer

overflows. This mode allows all of the sensor’s output registers to be polled continuously.

In each sample period, the contents of each TX Register are transmitted sequentially from

0 to 15. The received data is stored in each RX Register, from 0 to 15. After all 16 transfers

are complete the Master State Machine asserts the Interrupt signal which is then processed

in the PLB interface. Continuous transfer mode is active when the mode bit of the control

register is set to 0.

9.3 Navigation Computer Firmware

The navigation computer firmware runs on the Microblaze embedded system described in

the previous section. The primary function of the firmware is to implement the inertial nav-

igation algorithm described in Chapter 8. In addition, the firmware transfers data from the

sensors, responds to requests for position and orientation data from the PC, and implements

several testing and debugging features.

The Xilinx Micro Kernel (XMK) operating system is the foundation of the firmware

system. XMK is a Portable Operating System Interface (POSIX) compliant operating

system that Xilinx provides free of charge with XPS. It provides basic services such as

memory management, interrupt management, multithreading, inter-thread communication

mechanisms, and thread synchronization mechanisms such as semaphores and mutexes.

Xilinx also provides drivers for all of peripherals that are included in XPS, such as the UART,

interrupt controller, SPI serial port, and GPIO module. The source code for the XMK

kernel and the application code are written in C. There are GCC C/C++ cross compilers

and associated tools that are used to compile firmware for the Microblaze processor. This

186



includes ports of the C/C++ standard libraries.

The system tasks are divided between four threads. One of these is used for system

initialization and the other three are used during normal operation. Each of the three main

threads has an ISR associated with it that causes the thread to be scheduled in response to

an event. Priority scheduling is employed to make sure that critical tasks take precedence

over less critical ones. When the system first starts, the initialization thread is the only

thread known to the scheduler. Its priority does not matter because it there are no other

threads to compete with. It performs basic system initialization tasks then creates the other

system threads. After it completes it returns to the kernel and never executes again.

The fastrack_protocol_stack thread manages communication with the Stradwin soft-

ware running on the host PC and it has the lowest execution priority. The UART mod-

ule dedicated to host communication is configured to interrupt when a character is re-

ceived. The UART ISR does nothing more than acknowledge the interrupt and post() to

a semaphore called sem_fastrack. After performing some basic initialization tasks, the

fastrack_protocol_stack thread enters an infinite loop and wait()s on the sem_fastrack

semaphore. When the XMK kernel sees the post() to sem_fastrack, the

fastrack_protocol_stack thread is scheduled to execute after any higher priority threads

in the ready queue.

The navigation computer communicates with Stradwin by emulating the serial protocol

used by the Ascension Fastrack, a commercially available 6 DoF tracking device. The

fastrack_protocol_stack thread only implements the subset of the Fastrack protocol

that is actually used by Stradwin. Of the rest of the commands in the protocol, some

were redefined to implement debug and test features, and the rest are unused. All of

the commands are ASCII characters sent from the PC to the navigation computer. The

response, if there is one, is sent from the navigation computer to the PC. The format of the

response varies depending on the command. Table 9.2 documents the protocol commands

and response formats. Quantities in quotes are ASCII characters and brackets are used to

indicate that the value at a particular position is variable. For values that are not ASCII,

the type is indicated in the definition of the field.

187



Table 9.2: Serial communication protocol used between the navigation computer and the PC

Command Name Request Response
Status ‘S’ ‘29S0000000000000000000000000000000000000000000000000000’
Position ‘P’ ‘000’[X0-3][Y0-3][Z0-3][A0-3][P0-3][R0-3]‘00’

[X0-3] = X Position, float32
[Y0-3] = Y Position, float32
[Z0-3] = Z Position, float32
[A0-3] = Yaw Angle, float32
[P0-3] = Pitch Angle, float32
[R0-3] = Roll Angle, float32

Reset Data Port ‘R’ NONE
LED on/off ‘L’[‘R’|‘G’][‘0’|‘1’] NONE

[‘R’|‘G’] - ‘R’ = red, ‘G’ = green
[‘0’|‘1’] - ‘0’ = off, ‘1’ = on

Get Image ‘I’ [SQUAL][D0...D323]
[SQUAL] = value of SQUAL register, uchar
[D0...D323] = raw pixel data, uchar

Enable / Disable Tracking ‘T’[‘E’|‘D’] NONE
[‘E’|‘D’] - ‘E’ = disable, ‘D’ = disable

Raw Gyro Command ‘GA’[addr][data] [D0][D1]
[addr] = ADIS16350 register address, uchar [D0] - LSB of result, uchar
[data] = ADIS16350 register data, uchar [D1] - MSB of result, uchar

Gyro normal / program mode ’‘GB’[‘N’|‘P’] NONE
[‘N’|‘P’] - ‘N’ = normal mode, ‘P’ = program mode

Gyro Precision Calibrate ‘GC’ [Xg0-3][Yg0-3][Zg0-3][Xa0-3][Ya0-3][Za0-3]
[Xg0-3] - X gyro offset, float32
[Yg0-3] - Y gyro offset, float32
[Zg0-3] - Z gyro offset, float32
[Xa0-3] - X accelerometer offset, float32
[Ya0-3] - Y accelerometer offset, float32
[Za0-3] - Z accelerometer offset, float32

Data Port ‘D’[‘0’|‘1’][‘A’|‘B’] NONE
[‘0’|‘1’] - ‘0’ = off, ‘1’ = on
[‘A’|‘B’] - ‘A’ = none, ‘B’ = raw

The mouse_comm_thread manages communication with the ADNS-2610 optical mouse

sensor. It has the middle priority, which means that it can preempt the

fastrack_protocol_stack thread but not the other thread. When the mouse_comm_thread

first starts it configures the SPI serial port that is used to communicate with the ADNS-

2610 and initializes the sensor. It then enters an infinite loop and wait()s on the sem_mouse

semaphore. This thread uses two timers. One of the system’s FIT timers is configured

to interrupt every 20 ms. When the interrupt occurs the ISR acknowledges the inter-

rupt and post()s to the sem_mouse semaphore. This causes the scheduler to place the

mouse_comm_thread in the ready queue to be executed. One of the system’s general purpose

timers is configured to have a period of 105 µs, which is the minimum time the ADNS-2610

requires between a read and the subsequent transfer. The serial communication routines

use the timer to meet this requirement by starting the timer and then polling its interrupt

flag.

When the mouse_comm_thread executes, it reads the ADNS-2610’s Delta_X and

Delta_Y registers, converts the raw binary values to floating point, scales them to mm,

and calls the update_position() function to convert the movement from the probe reference

188



Table 9.3: SSE register addresses and ADIS16350 read commands

Address Name Value Comment
0xCA000018 TXRX[0] 0x00000200 read gyro supply voltage
0xCA000020 TXRX[1] 0x00000400 read x gyro rate
0xCA000024 TXRX[2] 0x00000600 read y gyro rate
0xCA000028 TXRX[3] 0x00000800 read z gyro rate
0xCA00002C TXRX[4] 0x00000A00 read x acceleration
0xCA000030 TXRX[5] 0x00000C00 read y acceleration
0xCA000034 TXRX[6] 0x00000E00 read z acceleration
0xCA000038 TXRX[7] 0x00001000 read x temp
0xCA00003C TXRX[8] 0x00001200 read y temp
0xCA000040 TXRX[9] 0x00001300 read z temp
0xCA000044 TXRX[10] 0x00003C00 read status
0xCA000048 TXRX[11] 0x00003C00 read status
0xCA00004C TXRX[12] 0x00003C00 read status
0xCA000050 TXRX[13] 0x00003C00 read status
0xCA000054 TXRX[14] 0x00003C00 read status
0xCA000058 TXRX[15] 0x00003C00 read status

frame to the navigation reference frame. The update_position() function implements the

coordinate transformation part of the navigation algorithm, which was described in Chapter

8.3. The result of the transformation is a motion vector that describes the linear motion

of the probe over the last sample interval, expressed in the navigation frame of reference.

The transformed motion vector is then added to a running sum that keeps track of the

probe’s position relative to the start of the scan. After the position update is complete, the

mouse_comm_thread goes back to wait()ing until the next interrupt occurs.

The gyro_comm_thread handles communication with the ADIS16350 gyroscope and im-

plements the DCM update part of the inertial navigation algorithm. It has the highest

priority in the system which means it can only be preempted by interrupts. When the

thread first starts it configures the SSE and initializes the ADIS16350. The SSE has 16 TX

Command registers that store the SPI commands used to read data from the ADIS16350’s

sensor data registers. Table 9.3 lists the register names, absolute addresses, and the actual

binary command values. Only the first ten command slots are used for real data. The last

six are filled with the read status command to prevent invalid commands from being issued.

After initializing the SSE, the gyro_comm_thread enters an infinite loop and wait()s on the

sem_sspi semaphore.

Once every sample period, which is approximately every 1.2 ms, the SSE interrupts to

signal that new data is available. The ISR copies the result data from the SSE’s RX regis-

189



ters to a buffer in main memory, acknowledges the interrupt, and post()s to the sem_sspi

semaphore. The gyro_comm_thread is immediately scheduled by the kernel because it has

the highest priority. The thread first checks if it is in calibration mode or not. If it is in

calibration mode it calls the calibrate() routine, otherwise it continues down the normal ex-

ecution path. When not in calibrate mode, the raw angular rate values from the ADIS16350

are converted to floating point and scaled to real units. Then update_rotation_matrix() is

called to perform the DCM update. The DCM update algorithm was described previously

in Chapter 8.4. After the DCM has been updated the values of the equivalent Euler angles

are computed using (8.8). This is necessary because Stradwin requires that the orientation

be represented as Euler angles. When the conversion is complete, the gyro_comm_thread

goes back to wait()ing on sem_sspi.

9.4 Calibration

Before every scan the operator must calibrate the system to compensate for the zero offset

and bias in the gyroscopes and to reset the position and orientation to zero. A detailed

description of this process is available in Appendix A, what is presented here is a description

of the algorithm. The routine averages the sensor output over 2500 samples and stores the

result individually for each of the gyroscopes. During normal operation the offset value is

subtracted from each new sample before it is used by the INS algorithm. After the last

calibration sample has been received, the position and orientation values are reset. The

position values reset to zero and the DCM resets to the identity matrix.

190



Chapter 10

Performance Testing

The purpose of these tests was to evaluate the tracking and 3D volume reconstruction

performance of the overall system. A set of tests were devised to provide performance

information on individual motion axes. The tests were performed separately on the direct

and indirect version of the tracking system so that the performance of the two versions could

be compared. Each test was carried out by scanning a CIRS model 044 ultrasound phantom.

The phantom contains inclusions of known sizes and positions that were compared with the

test results. Data was acquired using Stradwin 3D ultrasound software. Stradwin was also

used to manually segment the inclusions. The volume of the segmented inclusions and the

accuracy of the segmented 3D surface were compared against the ground truth to yield the

performance estimates.

10.1 Test Apparatus

The test apparatus was composed of the tracking system, a Terason t3000 Firewire ultra-

sound system with a 7L3 linear array transducer, Stradwin 3D ultrasound software, and a

CIRS model 044 ultrasound resolution phantom. During testing, Stradwin communicated

with the tracking system to get position and orientation information, while simultaneously

acquiring ultrasound images from the Terason system. Stradwin displayed the data in real

191



time, stored it for later analysis, and was also used to perform the manual segmentations

necessary to analyze the data.

The CIRS model 044 ultrasound phantom is composed primarily of a water based poly-

mer called zyrdine. This polymer was designed to have ultrasound propagation character-

istics very similar to that of soft tissue. The phantom has 4 groups of cylindrical targets

with dimensions of 1.5 mm x 2.4 mm, 3 mm x 3 mm, 3 mm x 6 mm, and 12 mm x 18 mm.

The targets range in depth from 10 mm to 150 mm. The 12 mm x 18 mm target group at a

depth of 15 mm was used for this testing. A single cylindrical inclusion, with an attenuation

of -6 dB compared to the surrounding medium, was used for all tests.

The surface of the CIRS phantom is quite smooth and prevented the tracking system

from functioning. A random pattern was printed on a sheet of plastic like that used for

overhead transparencies. A thin layer of ultrasound gel was applied to the phantom and

then the plastic sheet was placed over it, in such a way as to ensure that there were no

air bubbles trapped between the plastic and the surface of the phantom. Side by side

comparison indicated that the presence of the plastic did not have a significant impact on

the quality of the ultrasound images. The tracking pattern is visible on the surface of the

phantom in Figure 10.1.

10.2 Experimental Procedure

The experiments were designed to evaluate the tracking system’s performance in individual

degrees of freedom. In addition, the overall motion of the probe during any particular test

was limited so as to mimic the motion the probe might undergo during a typical scan in

a clinical environment. It is important to note that, because the scanning was performed

by hand, there was always some variation present in each degree of freedom. However,

great care was taken so that the variation was primarily in the degree of freedom being

tested. Five different tests were devised, each isolating a particular type of motion. Each

test was repeated ten times to provide a basis for statistical analysis. The test suite was

performed individually on the direct and indirect versions of the tracking system. Figure

192



10.1 illustrates the degrees of freedom that were tested with respect to the probe and the

phantom.

Figure 10.1: Reference coordinate system relative to the ultrasound phantom. The x and y axes
illustrated here correspond with those used throughout the testing.

193



The following tests were performed:

• Test 1 consisted of uniform movement along the y-axis. The yaw and pitch angles as

well as the position along the x-axis were held as close to constant as possible. Figure

10.2(a) illustrates the scan path. The yellow box represents the transducer and the

gray box represents the inclusion in the phantom. The scan starts at point A and ends

at point B. The yellow boxes with the dashed borders represent the intermediate probe

positions. They are evenly spaced in this figure to illustrate that the rate of change

along the y-axis was relatively uniform. Figure 10.2(b) is a graph of the probe’s x, y,

and z position for each image frame in the dataset. The blue line in Figure 10.2(b)

demonstrates that the linear motion in test 1 was primarily in the Y direction. Figure

10.2(c) is a graph of the probe’s yaw, pitch, and roll angle versus image frame number.

The rotational motion indicated by this plot was not intentional and represents the

operator’s best effort not to rotate the probe.

(a) Graphical representation of the test 1 scanpath

(b) Test 1 linear motion profile (c) Test 1 rotational motion profile

Figure 10.2: Sample test 1 motion profiles

194



• Test 2 consisted of movement along the y-axis at a variable rate. The yaw and pitch

angles as well as the position along the x-axis were held as close to constant as possible.

Point A in Figure 10.3(a) represents the probe position at the start of the scan and

point B represents the probe position at the end of the scan. Here, the dashed boxes

representing the intermediate probe positions are unevenly spaced to illustrate that

the rate of change along the y-axis was variable. The variation is also visible in Figure

10.3(b), where 3 distinct slopes are present in the plot of y position. As in the previous

example, the rotational motion illustrated in Figure 10.3(c) was not intentional.

(a) Graphical representation of the test 2 scanpath

(b) Test 2 linear motion profile (c) Test 2 rotational motion profile

Figure 10.3: Sample test 2 motion profiles

195



• Test 3 consisted of uniform movement along the y-axis combined with variation in

position along the x-axis. The yaw and pitch angles were held as close to constant as

possible. Point A in Figure 10.4(a) represents the starting position of the probe and

point B represents the ending position of the probe. The dashed boxes representing

the intermediate probe positions are shifted up and down along the x-axis as the scan

progresses, to illustrate the motion of the probe. The x-axis variation also appears

as the green line in Figure 10.4(b), in addition to the y-axis variation present in the

previous examples. Once again, the rotational motion indicated by Figure 10.4(c) was

incidental.

(a) Graphical representation of the test 3 scanpath

(b) Test 3 linear motion profile (c) Test 3 rotational motion profile

Figure 10.4: Sample test 3 motion profiles

196



• Test 4 consisted of uniform movement along the y-axis combined with variation in

the pitch angle. The yaw angle and the position along the x-axis were held as close

to constant as possible. Figure 10.5(a) is a 3D version of the previous scan path

illustrations. The yellow box represents the probe, which moves from point A to

point B over the course of the scan. The boxes with the dashed outlines represent

the intermediate position of the probe, and illustrate the angular motion about the

probe’s pitch axis. Figure 10.5(b) illustrates that the linear motion in this test was

predominantly in the y direction and was relatively constant. The variation in pitch

angle is also indicated by the green line in Figure 10.5(c).

(a) Graphical representation of the test 4 scanpath

(b) Test 4 linear motion profile (c) Test 4 rotational motion profile

Figure 10.5: Sample test 4 motion profiles

197



• Test 5 consisted of movement along both the x and y axes combined with variation in

the yaw angle. The pitch angle was held as close to constant as possible. As illustrated

in 10.6(a), the path of the probe was curved as it moved from point A to point B. The

boxes with the dashed outlines illustrate the rotation of the probe at different points

during the scan. The y and x variation are also clearly visible in Figure 10.6(b), as

the green and blue lines, respectively. The variation in yaw angle is illustrated by the

blue line in Figure 10.6(c).

(a) Graphical representation of the test 5 scanpath

(b) Test 5 linear motion profile (c) Test 5 rotational motion profile

Figure 10.6: Sample test 5 motion profiles

At the beginning of each test run the system was calibrated to compensate for the

gyroscope bias and to reset the position and orientation of the tracking system to zero. When

198



the calibration was complete Stradwin was set to record data and the test run commenced.

Once the data displayed on the screen indicated that the entire inclusion had been scanned

the test was terminated and the data saved.

10.3 Segmentation Technique and Performance Metrics

Two metrics were used to rate the reconstruction performance of the system: volume ac-

curacy and surface accuracy. The volume accuracy metric compares the volume of the

segmented region to the known volume of the inclusion in the CIRS phantom. The surface

accuracy metric describes how closely the surface of the segmented region matches a ref-

erence surface. In this case, the reference surface is an artificially generated surface with

dimensions matching those of the inclusion in the CIRS phantom.

The first step in calculating both metrics was to manually segment the data. This was

performed within Stradwin. Contours were drawn around the region of interest on the

original B-scans. This process is illustrated in Figure 10.7(a), where the white points were

placed by hand and the yellow lines connecting them are generated automatically. This

process was repeated every few image frames. Figure 10.7(b) illustrates a series of contours

prior to surface generation. Once the desired region was contoured, the operator clicked the

Update All command to have Stradwin fit a surface around the contours. Stradwin offers

several levels of smoothing strength that can be applied to the surface. The "Very Little"

setting was used for this work to preserve as many of the segmented features as possible

while still maintaining the smoothness of the circular contours. Figure 10.7(c) illustrates the

surface that was generated to match the contours drawn in Figure 10.7(b). Since a contour

was not drawn on every B-scan, it was possible that the automatically generated contour

did not match the underlying structure well. As illustrated in Figure 10.7(d), the outline

of the surface appears on the b-scans that were not contoured by hand. This allowed the

operator to review the surface and make corrections as necessary.

The volume enclosed within the surface is displayed in the Stradwin user interface.

The volume of each segmentation was recorded and compared to the known volume of the

199



(a) Contour drawn on an individual B-
scan

(b) Complete sequence of contours
prior to surface generation

(c) Surface generated to fit contours (d) Intersection of the 3D Surface with
a 2D B-scan

Figure 10.7: Stradwin manual segmentation process

inclusion, which was calculated using the well known formula for the volume of a cylinder

in (10.1).

V olume of Cylinder = π · radius2 · length = (6mm)2 · 18mm = 2035.75mm3 = 2.035ml

(10.1)

The difference between the segmented volume and that of the ground truth was then

represented as an error percentage relative to ground truth using (10.2).

% Error =
∣∣∣∣Segmented V olume−Ground Truth V olumeGround Truth V olume

∣∣∣∣ · 100 (10.2)

200



By itself, volume accuracy is not enough to quantify reconstruction performance. This is

because two different objects of equal volume would achieve a perfect volume accuracy. J.D.

Quatararo developed the surface accuracy metric to deal with this issue [28]. The surface

accuracy metric characterizes the degree of similarity between two objects by comparing the

RMS distance between points on their surfaces. The two surfaces are first aligned using the

Iterative Closest Point (ICP) algorithm. The IPC algorithm finds the affine transformation

between the two point sets that minimizes the squared distance between points in the

segmentation result and the ground truth. The transformation is then applied to the data

[29].

To compute the surface accuracy, the Euclidean distance from every point in the seg-

mentation result, Si, to every point in the ground truth point set, Gi, is calculated and the

smallest one is recorded. This is expressed as an equation in (10.3), where dist(x, y) is the

Euclidean distance given by (10.4).

di = minj∈J (dist(Si, Gj)) (10.3)

dist(a, b) =
√

(xA − xb)2 + (yA − yb)2 + (zA − zb)2 (10.4)

The average RMS distance between the surfaces is then calculated using (10.5).

RMS =

√√√√1
I

I∑
i=1

d2
i (10.5)

To perform the calculation, the two objects must each be reduced to a set of points on the

surface of the object. A ground truth cylinder was generated with dimensions corresponding

to the known size of the inclusion in the CIRS phantom. The segmentations that were

performed in Stradwin were exported as VRML files. These files contain the list of x, y, and

z coordinates that are required for the calculation as well as a lot of other information. A

Matlab script was used to parse the VRML files, pull out the data, and write out new files

in the correct format.

201



In order to provide a basis for comparison, the volumes were also reconstructed without

using the tracking information. To make the comparison fair, the assumption was made that

each image was equally spaced between the true starting and ending positions. Otherwise,

Stradwin would have placed each image on top of one another. All other degrees of freedom

were held constant. Figure 10.8 illustrates the relationship between the scanplanes of the

same piece of data, reconstructed with (10.8(a)) and without (10.8(b)) the position and

orientation information. After reconstruction, these volumes were manually segmented and

processed for volume and surface accuracy in the same manner as the volumes that were

reconstructed with position information

(a) (b)

Figure 10.8: 3D volume reconstruction with and without position information

202



10.4 Results

The results of the testing are presented here in tabular form. The data is split between

that recorded using the direct imaging configuration and that recorded using the indirect

imaging configuration. The difference is that the indirect version uses a fiber bundle in

the optical system and the direct version does not. Please refer back to Section 7.3 for

more information. For each version of the system, the absolute volume, volume error as a

percentage of the ground truth volume, and surface accuracy are presented.

10.4.1 Volume Accuracy

Tables 10.1 and 10.3 contain the raw volume data in ml for the direct and indirect imaging

configurations respectively. Tables 10.2 and 10.4 represent the difference between that data

and the ground truth as a percentage. The last 2 rows of each table lists the mean and

standard deviation independently for each of the five tests performed.

Table 10.1: Segmentation volume data for direct imaging configuration with position correction

Trial Test 1
(ml)

Test 2
(ml)

Test 3
(ml)

Test 4
(ml)

Test 5
(ml)

1 2.044 1.982 1.996 2.034 1.790
2 2.047 2.085 1.986 1.954 2.031
3 1.977 1.931 1.852 2.102 1.956
4 2.051 1.971 1.835 2.165 2.203
5 2.038 2.172 2.102 1.941 2.002
6 1.973 1.919 1.941 2.089 1.864
7 2.063 1.934 2.288 2.065 1.863
8 2.046 2.116 2.193 2.130 2.036
9 2.007 2.035 2.019 1.902 1.995
10 1.990 1.964 2.001 1.976 1.938
Mean 2.024 2.011 2.021 2.036 1.968
STD 0.034 0.087 0.141 0.089 0.116

203



Table 10.2: Segmentation volume error data for direct imaging configuration with position cor-
rection

Trial Test 1
(%)

Test 2
(%)

Test 3
(%)

Test 4
(%)

Test 5
(%)

1 0.405 2.640 1.953 0.086 12.072
2 0.553 2.419 2.444 4.016 0.233
3 2.886 5.146 9.026 3.254 3.918
4 0.749 3.181 9.861 6.349 8.216
5 0.110 6.693 3.254 4.654 1.658
6 3.082 5.735 4.654 2.616 8.437
7 1.338 4.998 12.391 1.437 8.486
8 0.503 3.942 7.724 4.630 0.012
9 1.412 0.037 0.823 6.570 2.002
10 2.247 3.525 1.707 2.935 4.802
Mean 1.329 3.832 5.384 3.655 4.983
STD 1.070 1.922 4.051 2.034 4.127

Table 10.3: Segmentation volume data for indirect imaging configuration with position correction

Trial Test 1
(ml)

Test 2
(ml)

Test 3
(ml)

Test 4
(ml)

Test 5
(ml)

1 2.115 2.215 2.137 2.106 2.299
2 2.169 2.268 2.020 1.818 2.376
3 2.089 2.351 2.155 2.149 2.217
4 2.005 2.063 1.901 2.064 2.015
5 2.075 2.148 2.095 2.153 2.289
6 2.009 2.146 2.026 2.074 2.035
7 2.119 2.343 2.136 1.859 2.252
8 2.183 2.097 1.985 2.258 2.215
9 2.128 2.087 2.010 2.066 2.081
10 2.121 2.180 1.947 2.162 2.076
Mean 2.101 2.190 2.041 2.071 2.186
STD 0.059 0.103 0.087 0.136 0.125

204



Table 10.4: Segmentation volume error data for indirect imaging configuration with position
correction

Trial Test 1
(%)

Test 2
(%)

Test 3
(%)

Test 4
(%)

Test 5
(%)

1 3.893 8.805 4.973 3.451 12.931
2 6.545 11.408 0.774 10.696 16.714
3 2.616 15.486 5.858 5.563 8.903
4 1.511 1.338 6.619 1.388 1.019
5 1.928 5.514 2.910 5.759 12.440
6 1.314 5.416 0.479 1.879 0.037
7 4.089 15.093 4.924 8.682 10.623
8 7.233 3.009 2.493 10.917 8.805
9 4.531 2.517 1.265 1.486 2.223
10 4.188 7.086 4.360 6.202 1.977
Mean 3.785 7.567 3.466 5.602 7.567
STD 2.012 5.053 2.189 3.610 5.852

Tables 10.5 and 10.7 contain the raw volume data of the reconstructions performed with-

out position data, for the direct and indirect imaging configurations respectively. Tables

10.6 and 10.8 represent the difference between that data and the ground truth as a percent-

age. The last 2 rows of each table lists the mean and standard deviation independently for

each of the five tests performed.

205



Table 10.5: Segmentation volume data for direct imaging configuration without position correction

Trial Test 1
(ml)

Test 2
(ml)

Test 3
(ml)

Test 4
(ml)

Test 5
(ml)

1 1.676 1.687 1.679 2.013 1.540
2 1.567 1.728 1.712 1.722 1.940
3 1.792 1.616 1.545 1.666 1.969
4 1.660 1.360 1.585 1.927 1.871
5 1.589 1.806 1.675 1.701 1.744
6 1.508 1.692 1.597 1.576 1.776
7 1.455 1.533 1.622 1.625 1.630
8 1.506 1.642 1.580 1.960 1.542
9 1.603 1.639 1.645 1.184 1.577
10 1.529 1.766 1.615 1.722 1.589
Mean 1.589 1.647 1.625 1.710 1.718
STD 0.100 0.127 0.052 0.237 0.166

Table 10.6: Segmentation volume error data for direct imaging configuration without position
correction

Trial Test 1
(%)

Test 2
(%)

Test 3
(%)

Test 4
(%)

Test 5
(%)

1 17.672 17.131 17.524 1.118 24.352
2 23.026 15.117 15.903 15.412 4.704
3 11.974 20.619 24.107 18.163 3.279
4 18.458 33.194 22.142 5.342 8.093
5 21.945 11.286 17.721 16.444 14.331
6 25.924 16.886 21.552 22.584 12.760
7 28.528 24.696 20.324 20.177 19.931
8 26.022 19.342 22.387 3.721 24.254
9 21.258 19.489 19.194 41.840 22.535
10 24.893 13.251 20.668 15.412 21.945
Mean 21.970 19.101 20.152 16.021 15.618
STD 4.899 6.257 2.552 11.642 8.132

206



Table 10.7: Segmentation volume data for indirect imaging configuration without position cor-
rection

Trial Test 1
(ml)

Test 2
(ml)

Test 3
(ml)

Test 4
(ml)

Test 5
(ml)

1 1.990 1.793 1.810 1.623 2.103
2 2.011 1.717 1.615 2.033 2.247
3 1.813 1.988 1.705 2.133 2.460
4 1.734 1.713 1.660 1.687 1.680
5 1.696 1.824 1.813 1.911 1.964
6 1.468 1.790 1.685 1.707 1.836
7 1.699 1.910 1.773 1.925 2.373
8 1.914 1.754 1.847 1.883 2.035
9 1.790 1.858 1.829 1.629 2.053
10 1.770 1.985 1.830 1.729 2.132
Mean 1.788 1.833 1.757 1.826 2.088
STD 0.160 0.101 0.083 0.176 0.235

Table 10.8: Segmentation volume error data for indirect imaging configuration without position
correction

Trial Test 1
(%)

Test 2
(%)

Test 3
(%)

Test 4
(%)

Test 5
(%)

1 2.247 11.924 11.089 20.275 3.303
2 1.216 15.658 20.668 0.135 10.377
3 10.942 2.346 16.247 4.777 20.840
4 14.823 15.854 18.458 17.131 17.475
5 16.689 10.402 10.942 6.128 3.525
6 27.889 12.072 17.230 16.149 9.812
7 16.542 6.177 12.907 5.440 16.566
8 5.981 13.840 9.272 7.503 0.037
9 12.072 8.732 10.156 19.980 0.847
10 13.054 2.493 10.107 15.068 4.728
Mean 12.145 9.950 13.708 11.259 8.751
STD 7.837 4.948 4.086 7.229 7.444

207



Figures 10.9 and 10.10 compare the volume accuracy of reconstructions performed with

and without position information, for the direct and indirect imaging configurations respec-

tively. For the direct imaging configuration the percent volume error ranged between 1.3%

and 5.3% with the position information, versus 15.6% to 21.9% without. This represents a

3.1x improvement in the worst case (test 5) and 16.5x improvement in the best case (test

1). For the indirect imaging configuration the percent volume error ranged between 3.7%

and 7.6% with the position information, versus 8.7% to 13.7% without. This represents a

1.2x improvement in the worst case (test 5) and 4.0x improvement in the best case (test 3).

Figure 10.11 compares the volume accuracy of segmentations performed on data from

direct and indirect imaging configurations. This comparison provides information on how

the two configurations performed relative to each other. With the exception of test 3, the

direct imaging configuration outperformed the indirect configuration by 2-4%.

Figure 10.9: Comparison of volume accuracy with and without position information for the direct
imaging Configuration

208



Figure 10.10: Comparison of volume accuracy with and without position information for the
indirect imaging Configuration

Figure 10.11: Comparison of volume accuracy for the direct and indirect imaging configurations,
with position information

209



10.4.2 Surface Accuracy

Tables 10.9 and 10.10 list the surface accuracy data for the direct imaging configuration,

with and without position information. Tables 10.11 and 10.12 list the surface accuracy

data for the indirect imaging configuration, with and without position information. Figures

10.12 and 10.13 present the same data in graphical form. As expected, the reconstructions

performed with the position information had significantly lower RMS surface error than

those done without position information. This true for both the direct and indirect imaging

configurations.

Table 10.9: Surface accuracy data for direct imaging configuration with position correction

Trial Test 1
(mm)

Test 2
(mm)

Test 3
(mm)

Test 4
(mm)

Test 5
(mm)

1 0.283 0.318 0.546 0.349 0.411
2 0.332 0.365 0.396 0.369 0.289
3 0.323 0.340 0.389 0.398 0.553
4 0.291 0.290 0.365 0.462 0.462
5 0.338 0.374 0.266 0.424 0.476
6 0.349 0.378 0.477 0.337 0.437
7 0.314 0.394 0.447 0.334 0.612
8 0.318 0.363 0.312 0.464 0.350
9 0.332 0.264 0.423 0.384 0.302
10 0.312 0.295 0.354 0.374 0.730
Mean 0.319 0.338 0.397 0.390 0.462
STD 0.021 0.044 0.081 0.047 0.139

210



Table 10.10: Surface accuracy data for direct imaging configuration without position correction

Trial Test 1
(mm)

Test 2
(mm)

Test 3
(mm)

Test 4
(mm)

Test 5
(mm)

1 0.622 0.746 1.768 0.423 0.881
2 0.754 0.622 1.105 0.638 0.510
3 0.526 0.786 1.617 0.674 0.471
4 0.716 0.994 1.316 0.535 0.523
5 0.780 0.609 1.293 0.681 0.754
6 0.853 0.787 1.195 0.919 0.656
7 0.938 0.904 1.212 0.771 0.774
8 0.767 0.732 0.867 0.476 1.077
9 0.872 0.712 0.792 1.039 1.099
10 0.830 0.666 1.447 0.626 0.814
Mean 0.766 0.756 1.261 0.678 0.756
STD 0.122 0.120 0.304 0.191 0.223

Table 10.11: Surface accuracy data for indirect imaging configuration with position correction

Trial Test 1
(mm)

Test 2
(mm)

Test 3
(mm)

Test 4
(mm)

Test 5
(mm)

1 0.307 0.397 1.002 0.395 0.693
2 0.423 0.409 0.459 0.539 0.773
3 0.253 0.748 0.605 0.408 0.594
4 0.339 0.289 0.427 0.344 0.338
5 0.305 0.330 0.334 0.481 0.571
6 0.306 0.372 0.349 0.355 0.396
7 0.325 0.615 1.007 0.405 0.451
8 0.345 0.379 1.139 0.516 0.370
9 0.309 0.303 1.388 0.393 0.339
10 0.352 0.475 1.026 0.377 0.273
Mean 0.326 0.432 0.774 0.421 0.480
STD 0.044 0.145 0.380 0.067 0.169

211



Table 10.12: Surface accuracy data for indirect imaging configuration without position correction

Trial Test 1
(mm)

Test 2
(mm)

Test 3
(mm)

Test 4
(mm)

Test 5
(mm)

1 0.400 0.625 1.767 0.638 0.442
2 0.400 0.698 1.213 0.440 1.327
3 0.495 0.402 1.333 0.476 0.884
4 0.623 0.638 1.591 0.656 0.713
5 0.680 0.618 1.193 0.509 0.460
6 0.950 0.523 1.149 0.690 1.095
7 0.685 0.411 2.377 0.445 0.650
8 0.481 0.596 2.236 0.498 0.507
9 0.572 0.450 1.916 0.762 0.426
10 0.598 0.424 1.797 0.735 0.447
Mean 0.588 0.538 1.657 0.585 0.695
STD 0.164 0.110 0.439 0.124 0.314

Figure 10.12: Comparison of surface accuracy with and without position information for the
direct imaging configuration

212



Figure 10.13: Comparison of surface accuracy with and without position information for the
indirect imaging configuration

Figure 10.14 compares the surface accuracy of the direct and indirect imaging configura-

tions with position information. The graph indicates that, with the exception of test 3, the

direct configuration outperformed the indirect configuration by a small margin. This result

agrees well with the volume error data presented previously, where the direct configuration

outperformed the indirect configuration by a 2-4% margin.

213



Figure 10.14: Comparison of surface accuracy for the direct and indirect imaging configurations
with position information

10.5 Discussion

The data indicate that reconstructions using data from the tracking system were significantly

more accurate than those that did not use the tracking information. Overall, the two

versions of the tracking system were quite comparable. Although there was a 2-4% difference

between them using volume accuracy as the metric, their relative performance using the

surface accuracy metric was very close. The discrepancy can most likely be explained by

the dimensionality of the metrics. The volume is measured in ml or mm3, with 1 ml being

equal to 1000 mm3. The surface accuracy is measured in mm. Inspection of Figure 10.14

indicates that the difference in surface accuracy was about 0.5 mm on average, excluding

test 3. Table 10.13 lists the possible effects of a 0.5 mm error in either the radius or length

of the cylinder. The first line of the table is the ground truth volume.

As one would expect, variations in the radius have a more significant impact than varia-

tions in length. Table 10.13 indicates that the small differences in surface accuracy between

the two versions of the tracking system could easily account for the larger relative difference

214



Table 10.13: Possible effects of 0.5 mm error in the radius or length of a cylinder

Radius (mm) Length (mm) Volume (mm3) Volume (ml) % Volume Error
6.0 18.0 2035.75 2.035 0.0
5.5 18.0 1710.59 1.711 16.0
6.5 18.0 2389.18 2.389 17.4
6.0 17.5 1979.20 1.979 2.7
6.0 18.5 2092.30 2.092 2.7

in volume error. Because surface accuracy is an RMS value, a 0.5 mm error is unlikely to

be entirely positive or negative, as was assumed in this example. It is more likely that the

error would be distributed more evenly between positive and negative values. In that case,

the volume errors in column five of Table 10.13 would be smaller and closer to the 2-4%

range observed in the volume error measurements.

Figure 10.14 indicates that there is a serious discrepancy in performance between the

direct and indirect versions of the system for test 3. However, this difference is only observed

using the surface accuracy metric. The volume accuracy data for test 3 does not indicate

such a large disparity. This is a situation where, because of the characteristics of the test,

volume accuracy fails as a performance metric. Test 3 consisted of linear motion in both

the y and x directions. Although the motion was some of the most severe, in a relative

sense, it was not the kind that would significantly alter the volume. Because the transducer

remained perpendicular to the cylindrical inclusion for the entire scan, the cross sectional

area of the inclusion in the individual images remained constant. Figure 10.15 illustrates

test 3 reconstructions performed using the direct and indirect versions of the system. The

volumes are very similar but the surfaces are not.

Although figure 10.15 illustrates an extreme example, the indirect configuration was

clearly less accurate than the direct version. Because the orientation sensors were the same

in both cases the difference must be in the optics. This conclusion is supported by the fact

that the larger performance disparity was in test 3, which also had the most linear motion.

It is likely that the indirect imaging system was not as well calibrated as the direct imaging

system. The indirect imaging system is also much more complex than the direct version.

As a result, it is not surprising that it did not perform as well. The contrast of the overall

215



(a) (b)

Figure 10.15: Test 3 reconstructions using the indirect and direct imaging systems

system was not as good and there were more places where small errors could be introduced.

There is another source of error that affected both versions of the optical tracking system.

Both versions were mounted on the outside of the ultrasound transducer, which means that

they were approximately 1 cm away from the center of rotation of the transducer’s pitch

axis. As a result, when the pitch angle varied, the distance between the optical tracker

and the tracking surface also varied. This distance affects the magnification of the optical

system. The scale factor that relates raw sensor output to a physical distance is a function

of magnification. Therefore, pitch variation can cause errors in the distance measured by

the sensor. This problem can be solved in future implementations by moving the optical

tracker inside the transducer housing so that the axis of the optical system is aligned with

the pitch axis’ center of rotation.

216



Chapter 11

Conclusion

In this thesis, a freehand 3D ultrasound system was developed. The system functions in

real time and the ultrasound probe is tracked in 5 DoF using only sensors attached directly

to it. Early in the work, a great deal of time was spent testing linear accelerometers and

MEMS gyroscopes. The linear accelerometer testing proved that a fully inertial 6 DoF

tracking system was not possible. The gyroscope experiments provided the drift rate data

that was needed to understand what kind of tracking performance was attainable. The

miniaturized optical tracking system is one of the major accomplishments of this work.

The optical system was rigorously characterized which allowed the optimal operating point

to be identified. Fine mechanical components were then fabricated to house and align the

optical components. Another major accomplishment is the implementation of the navigation

computer. An embedded computer system composed of both standard and custom logic was

developed to meet the performance requirements. The firmware running on the embedded

computer implemented the inertial navigation algorithm.

This work has demonstrated that it is feasible to implement a tracking system for free-

hand 3D ultrasound in which all of the sensors are contained within the ultrasound probe.

Although the components were mounted on the outside of the probe in the prototype, the

sensors are clearly small enough to fit inside the probe if the transducer housing were slightly

modified. The prototype also achieved the goal of being inexpensive. It cost less than $1000

217



to construct the prototype and that cost would be significantly reduced if mass produced.

Commercial tracking systems typically cost several thousand dollars.

The ADIS16350 proved to be a good choice for the angular sensing device. It would have

been nearly impossible to fabricate a 3-axis gyroscope in a package that size ourselves. In

addition, the digital interface greatly simplified the overall hardware design. The sensor’s

accuracy is more than adequate for our application, but its drift rate limits the duration

of a scan to between 10 and 20 seconds with reasonable accuracy. However, there are

no competitive products that have significantly better performance in this respect. We

can therefore say that the angular drift performance of our system is near the maximum

achievable using only gyroscopes, with the current technology. Another important thing to

remember is that an average ultrasound scan only lasts between 10 and 20 seconds, so the

drift problem does not seriously detract from the system’s usefulness.

Both versions of the optical tracking system were able to track the skin surface effectively.

However, the version with the optical fiber did not perform as well as the version without

it. Based on the data in Chapter 7, I believe that the performance with the fiber can be

made to match the performance of the version without the optical fiber, with additional

refinement of the calibration constants. The contrast data between the two versions is quite

similar and visual inspection of the experimental images confirms that they have comparable

image quality. One major source of error in both systems is the fact that the optical axis

is not aligned with the pitch axis of the probe. This is because the optical tracker had to

be mounted externally. As the pitch angle varies, so does the object distance, which causes

the magnification to vary. Since the factor that relates distance as measured by the optical

sensor to a physical distance is a function of magnification, pitch variation induces errors

in the measured linear movement. This problem can be easily addressed by moving the

tracking sensor inside the transducer housing, aligned with the pitch axis.

Using an FPGA to implement the navigation computer provided a great deal of flexibility

during the implementation process. It was difficult to anticipate all of the resources that

would be required. The Xilinx EDK allowed peripheral modules and Microblaze processor

features to be added to the system as necessary. The ability to implement custom hardware

218



in the FPGA was critical to the success of this project. The overhead of communicating with

the ADIS16350, using the 8 bit SPI peripheral supplied by EDK, would have prevented the

system from operating in real time. Because an FPGA was used, I was able to implement a

custom serial port that handled most of the communication without processor intervention.

The XMK real time operating system was another critical tool. The navigation computer

had to perform many tasks in parallel and in real time. The XMK provided solid multi-

threaded firmware framework that allowed me to concentrate on intricacies of the tracking

algorithm itself.

This system would not have worked without the Stradwin 3D ultrasound software that

was used for system control and 3D reconstruction. Without it we would have essentially

had to write our own reconstruction software from scratch. Our experience with CustusX,

described in Chapter 2, illustrates just how challenging that would have been. Without

Stradwin, this work would have resulted in a bare tracking system. With Stradwin, I was

able to construct a freehand 3D ultrasound system that functions in real time.

11.1 Future Work

The most obvious shortcoming of the prototype tracking system is that it tracks in only

5 degrees of freedom. Therefore, sensor technologies capable of adding the 6th degree of

freedom are natural choices for further research. I wish I could suggest some candidates,

but I am not optimistic that anything short of a fully inertial tracking system will be able

to achieve this goal.

The development of a probe that fully integrates the transducer and all of the tracking

sensors would greatly improve the system performance. This is true because of the optical

phenomenon explained in the previous section and also because having all of the sensors

permanently fixed in position would allow for much better system level calibration. Such a

housing would also allow from much greater freedom of movement and allow the system to

be effectively tested on human subjects.

Gyroscope drift compensation is another area that can be improved by further work.

219



Even when a scan is taking place, gravity is the dominant force sensed by the linear ac-

celerometers. The gravity vector can be used to estimate the orientation of the probe and

is not subject to drift like the gyroscopes are. A more advanced drift compensation algo-

rithm should be able to use the data from the accelerometers to improve the overall angular

accuracy.

220



Bibliography

[1] G. Frey and R. Chiao, “4z1c real-time volume imaging transducer,” 2008.

[2] “Acuson s2000 ultrasound system transducers,” 2008.

[3] J. Beutel, J. M. Fitzpatrick, S. Horii, Y. Kim, H. Kundel, M. Sonka, and R. V. Metter,

Handbook of Medical Imaging. SPIE Press, 2000.

[4] J. Green and D. Krakauer, “New iMEMS angular-rate-sensing gyroscope,” Analog Di-

alogue, vol. 37, 2003. Analog Dialogue is a journal published by Analog Devices.

[5] Gyration, Inc., Minatec BHT, 7 parvis Louis Neel, 38040 Grenoble cedex 09, France,

MicroGyro MG1101, March 2005. Document# DE01300-001

[6] Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106,

iSensor Evaluation Tools, June 2008. Marketing Presentation.

[7] “Analog devices’ breakthrough mems sensor brings sophisticated motion and navigation

control to industrial applications,” June 2007. Press Release.

[8] Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106,

ADIS16350 Tri Axis Interial Sensor, June 2007. Document# D06070-0-3/07(B)

[9] H. Weinberg, “Dual axis, low g, fully integrated accelerometers,” Analog Dialogue,

vol. 33-1, 1999. Analog Dialogue is a journal published by Analog Devices.

[10] Avago Technologies, Pte., 350 W. Trimble Rd. Bldg. 90, San Jose, CA, 95131, Under-

standing Optical Mice, January 2006. An Avago White Paper.

221



[11] Avago Technologies, Pte., 350 W. Trimble Rd. Bldg. 90, San Jose, CA, 95131, Agilent

HDNS-2100 Solid-State Optical Mouse Lens, April 2001.

[12] Microchip Technology, Inc., 2355 West Chandler Blvd., Chandler, AZ 85224-

6199, PICDEM FS-USB Demonstration Board User’s Guide, November 2004.

Document# DS51526A

[13] Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA

02062-9106, ADIS16255 Programmable Low Power Gyroscope, March 2007.

Document# D06070-0-3/07(B)

[14] USB Implementers Forum, Inc., 5440 SW Westgate Dr., Portland, OR 94221, Universal

Serial Specification Revision 2.0, April 2000.

[15] C. Peacock, “Usb in a nutshell.” November 2002.

[16] IEEE, 3 Park Avenue, New York, NY 10016-5997, IEEE Standard for Inertial Sensor

Terminology, November 2001.

[17] I. Gouverneur, “Miniaturization of a flexible imaging system for a 3d ultrasound posi-

tioning sensor,” Master’s thesis, Worcester Polytechnic Institute, 2007.

[18] R. Prager, A. H. Gee, and L. Berman, “Stradx: Real-time acquisition and visualization

of freehand 3d ultrasound,” Medical Image Analysis, 1998.

[19] R. Prager, A. H. Gee, and L. Berman, “Surface interpolation from sparse cross-sections

using region correspondence,” Tech. Rep. CUED/F-INFENG/TR342, Cambridge Uni-

versity Engineering Department, Trumpington Street, Cambridge CB2 1PZ, England,

March 1999.

[20] J. C. Carr, J. L. Stallkamp, M. M. Fynes, A. H. Gee, R. Prager, G. M. Treece, C. Over-

ton, and L. Berman., “Design of a clinical free-hand 3d ultrasound system,” in Medical

Imaging 2000 (Ultrasonic Imaging and Signal Processing), vol. 3982, SPIE, 2000.

[21] R. W. Prager, R. N. Rohling, A. H. Gee, and L. Berman, “Rapid calibration for 3-d

freehand ultrasound,” Ultrasound in Medicine and Biology, 1998.

222



[22] R. A. Serway, Physics for Scientists and Engineers. Brooks Cole, 7 ed., 2007.

[23] F. S. Rovati, P. Gardella, P. Zambotti, and D. Pau, “Spatial-temporal motion esti-

mation for image reconstruction and mouse functionality with optical or capacitive

sensors,” in Consumer Electronics, International Conference On, ICCE, 2003.

[24] C. Poulsen, “Development of an optical positioning system for 3d ultrasound,” Master’s

thesis, Worcester Polytechnic Institute, 2005.

[25] Microchip Technology, Inc., 2355 West Chandler Blvd., Chandler, AZ 85224-6199,

MPLAB C18 Compliler Libraries, November 2004. Document# DS51297F

[26] G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems.

SPIE - The International Society for Optical Engineering, 2001.

[27] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology. American

Institute of Aeronautics and Astronautics, Inc., 2004.

[28] J. Quatararo, “Semi-automated segmentation of 3d medical ultrasound images,” Mas-

ter’s thesis, Worcester Polytechnic Institute, 2008.

[29] P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256, 1992.

223



224



Appendices

225





Appendix A: 5DOF 3D Ultrasound User’s Guide

227



5DOF 3D Ultrasound User’s

Guide

Abraham Goldsmith

Worcester Polytechnic Institute

Deptartment of Electrical Engineering

100 Institute Rd

Worcester, MA 01609





1

1 Introduction

This document decribes the configuration and use of the 5DOF 3D ultrasound acquisition

system. The system is composed of a WindowsXP PC, a Terason t3000 firewire ultra-

sound probe system, Strawin 3D ultrasound acquisition software, Inertial Measurement

Unit (IMU), and Spartan3E-1600 Demonstration board.

2 Scope

This document assumes that the reader already understands 3D ultrasound conceptually

and the process of acquiring ultrasound data more generally. Only tasks specific to the

configuration and operation of Stradwin and the 5DOF tracking system are dealt with. The

use of the Stradwin and Terason software is covered insofar as it directly pertains to acquir-

ing data. For more detailed information the user is directed to their respective websites,

which are listed in Section 8. In addition, this guide does not deal with programming the

developemnt board with the the netlist and system firmaware for the tracking system, at-

tachment of the IMU and optical tracker to the probe, or low-level calibration. These are

all very complicated topics that are well outside the scope of this document.

3 Requirements

The following sytem components must be available to proceed:

• A PC running WindowsXP SP2 with a P4 processor and 4Gb of RAM. It may or may

not be possible to use a computer with lower specs. This is the only setup that was

tested so I will treat its specifications as the minimum.

• A Terason t3000 ultrasound system and at least 1 probe module. The probe should

have the IMU and optical tracking assembly already attached, as in Figure 5.

• A Spartan-3E 1600E Development board, pictured in Figure 1. This board was manu-

factured by Digilent Inc (www.digilentinc.com). They appear to have discontinued



2 3 Requirements

Fig. 1: Spartan3E-1600 Demonstration Board

the 1600E model and now only sell a version with the a lower gate-count FPGA, so

don’t break that one!



3

4 Stradwin Installation

This section descibes the initial installation of Strawin. It is intended to help users who

need to setup a new system from scratch. Users who have access to a preconfigured system

can skip this section.

1. The first step is to aquire a copy of the Stradwin installation package. The creators

of stradwin made a special version for use with this system. It includes a few display

modifications that make the system easier to work with but are not absolutely required.

The custom version is on the data DVD, otherwise, download the latest Stradwin

package from the Stradwin website.

2. Double click the .msi file and follow the instructions. Choose the default setting for

everything.

3. On the desktop, find the shortcut named Stradwin 3.4 or Stradwin 3.5 and delete

it.

Fig. 2: Create New Shortcut

4. On the desktop, right click and select new → shortcut



4 4 Stradwin Installation

5. Browse to c:\Program Files\Stradwin and select stradwin.exe or just enterC:\Program

Files\Stradwin\stradwin.exe directly into the box. Click next and enter a name

for the new shortcut.

Fig. 3: Edit Shortcut Properties

6. Right click on the shortcut and select properties. In the box labeled Target, add

“dir=C:\Program Files\Stradwin” so that the entire line reads “C:\Program

Files\Stradwin\stradwin.exe” dir=“C:\Program Files\Stradwin”.

7. Copy the vertical.swt file into the C:\Program Files\Stradwin directory. Verti-

cal.swt is not part of the Stradwin package. It is the file that configures Stradwin to

work with the particular probe, image size, and IMU orientation used in this system.

The text contents of the file are in Appendix A if you do not have access to a digital

copy of the file.



5

5 Physical Connections

This section describes all of the electrical connections between the PC, t3000 ultrasound

probe, Spartan development board, and IMU.

5.1 Spartan Development Board

Fig. 4: Spartan Development Board Connections

Plug the external power supply into J20. Connect the RS232 serial cable to J9 on the

board and into the PC’s COM port. A USB to RS232 adapter can also be used to connect

the RS232 cable to the PC on systems that do not have a RS232 COM port. Connect the

probe cable to the IMU on one end and to J3 on the Spartan Dev. board.

5.2 Terason t3000 Ultrasound Probe

Plug the t3000 base module into the PC’s firewire port. If you are using a laptop you may

need to either plug in an external power source or use the inline power splice cable. Then

plug the probe into the base module and lock it into place.



6 5 Physical Connections

5.3 Ground Strap

Connect the earth ground harness to the probe, as in Figure 5 and instert the plug into

a 3 prong AC outlet. It is important to be sure that the outlet is grounded. If you don’t

connect the earth ground you risk serious damage to the electronics should an ESD event

occur.

Fig. 5: ESD Strap Connection



7

6 Configuration

1. Start the terason control program (ultrasound.exe) and configure the probe as de-

sired. When finished, minimize the window. Typically, the Terason application can

be launched from the start menu by selecting Start → Programs → Terason →
Terason.

2. Double click on the Stradwin desktop shortcut, created during the installation step,

to start Stradwin. The Terason application window will disappear but that is ok.

Fig. 6: Template Selection Tab

3. On the left side of the tradwin window, select the Templates tab, shown in Figure

6, and then double click on vertical.swt. If no files are visible you can browse to

another location by clicking on the Choose templates folder. You should see a

screen appear that looks like Figure 7. Click OK.



8 6 Configuration

Fig. 7: Template Selection Warning

4. If Stradwin was able to communicate with the tracking system, it should say Fastrak

Initialized along the bottom of the screen, as in Figure 8. You can now click on

the Record tab and configure the acquisition parameters. You should see the image

source and the tracking system listed as in Figure 9. If you PC is powerful enough

you can vary the frame rate. Otherwise, set it maximum and take what you can get.

Set the live display limit to 5Hz to limit associated workload. Leave everything else

in its default state.



9

Fig. 8: Stradwin Position Initialization Message

Fig. 9: Stradwin Image and Position Sources Identified after Configuration



10 7 Acquisition

7 Acquisition

Once you have configured the software you are ready to begin acquiring ultrasound data.

The first step in this process is to calibrate the tracking system. When the Spartan-3E

demonstation board is first powered on the red LED will be illuminated, indicating that

the system has not been calibrated. The system can be calibrated at any time by pressing

button 2 and holding the probe perfectly still until the green LED comes on. The orientation

that the probe is held in during the calibration process will be the zero reference for all the

angular measurements and the position of transducer during calibration will be the zero

position reference. The red and green LEDs and button 2 are indicated in Figure 10.

Fig. 10: Transducer Calibration State Indicators and Calibrate button

1. Click the Live Display button in the upper left hand corner of the screen to begin

displaying live data. You should now see the current B-scan in the left-upper portion

of the display and the sensor poition and coordinate axes displayed in the upper-right

hand portion of the display, as illustrated in Figure 11.

2. The system must be calibrated prior to each acquisition session. Hold the probe

perpendicular to the surface being scanned and hit button 2 on the probe, as shown



11

Fig. 11: Stradwin Live Image Display

in Figure 10. The calibration process begins as soon as the button is pressed. It is

very important that the probe remain still until the green LED comes on; any motion

will be included in the gyroscope bias estimates, which will result in inaccurate data.

Calibration can be confirmed by inpecting the probe orientation in the Probe Position

Window. Depending on the state of the system prior to calibration, the image frame

may not be at the origin in the Probe Position Window. If the live display is active

the image frame may jump back to the origin when calibration is complete.

3. Once the calibration is complete you are ready to aquire data. You should begin

aquiring as soon as possible after the calibration. Gyroscope bias accumumulates

with time and leads to errors in the reported position and orientation of the probe.

As a rule of thumb, the length of acuision should be limited to 20s after calibration.

Press the Record button to start acquisition. It is the red button to the right of

the Live Display button, pictured in Figure 11. The Raw B-Scan window will now

display each new image frame as it is recorded. The transducer position and pose,

along with a white frames indicating the relative position of each image frame, will be



12 8 Additional Resources

displayed in the Probe Position Window.

4. To stop acquisition, click on the Record button again. Live image and position

infomation will continue to be displayed while the live display mode is active. In order

to work with your new data you will need to exit live display mode. To do so, click on

the Live Display button again. Once you have done this the Probe Position Window

will display only a series of white frames inicating the relative positions of the recorded

image frames. The data in the Raw B-Scan window represents the currently selected

image.

5. Before you do anything else, you will probably want to save your data. To do this, go

to File → Save. Now you can interact with your data using one of the several visual-

ization modalities built into stradwin. For more information please see the Stradwin

documentation, which is availble in the Stradwin help file as well as on the Stradwin

website.

8 Additional Resources

• Offical Stradwin website: http://svr-www.eng.cam.ac.uk/~rwp/stradwin/

• Offical Terason website: http://www.terason.com/

• Complete documentation and schematics for the Spartan 3E-1600 Development Board:

http://www.digilentinc.com/Products/Detail.cfm?Prod=S3E1600&Nav1=Products&Nav2=

P



13

A Vertical.swt

RES_BUF_WIDTH 512
RES_BUF_HEIGHT 512
RES_POS_REC true
RES_BUF_RF false
RES_RF_VECTORS 127
RES_RF_SAMPLES 3336
RES_END_HEADER
RES_VID_CARD TERASON Terason
RES_VID_PORT 2
RES_VIDEO_STANDARD 0
RES_POS_DETECT FASTRAK
RES_SERIAL_PORT COM6
RES_SERIAL_SPEED 115200
RES_POLARIS_PORT 0
RES_POLARIS_POINTER 0
RES_TEMP_CALIB 0
RES_BUF_DOPPLER false
RES_AUTO_CORRECT_POS true
RES_VID_XPOS 0
RES_VID_YPOS 0
RES_VID_RATE 20
RES_VID_MOVE_THRESH 0.030000
RES_VID_GREY_THRESH 24
RES_VID_CHROMA_THRESH 20
RES_CAL_DATE 01152008
RES_CAL_PROBE 12LV3
RES_CAL_DEPTH 3.000000
RES_XTRANS 0.0
RES_YTRANS 2.5
RES_ZTRANS 0.00
RES_AZIMUTH -90.000000
RES_ELEVATION 0.000000
RES_ROLL -90.0000
RES_XSCALE 0.009766
RES_YSCALE 0.009766
RES_RF_DISPLAY BSCAN
RES_RF_DUAL_DISPLAY false
RES_RF_PROBE_NAME
RES_RF_PROBE 0
RES_RF_VECTOR_OFFSET 0
RES_RF_SAMPLE_OFFSET 0
RES_RF_SCALE 0.010000
RES_RF_FREQ 0
RES_RF_FOCUS 0
RES_RF_FOCII 1
RES_RF_TX_FIRE 1.500000
RES_TX_POLARITY true
RES_RF_FRAME_SYNC 2.500000
RES_FRAME_POLARITY false
RES_STRAIN_SUBSAMPLE 5
RES_STRAIN_ALGORITHM 1
RES_STRAIN_EWEIGHTING 1
RES_STRAIN_PWEIGHTING 1
RES_STRAIN_LOGCOMPRESS false
RES_STRAIN_LATERAL true
RES_STRAIN_ELEVATIONAL false
RES_STRAIN_HALF_CYCLES 6



14 A Vertical.swt

RES_STRAIN_WINDOW_2D true
RES_STRAIN_WINDOW_3D false
RES_STRAIN_SKIP_PIXELS 6
RES_STRAIN_DIFF_2D true
RES_STRAIN_DIFF_3D false
RES_STRAIN_DROPOUTS 5
RES_STRAIN_TRACK_FROM_ZERO false
RES_STRAIN_TRACK_FROM_TOP true
RES_STRAIN_DIFF_OFFSET 10
RES_STRAIN_GRADIENT_2D true
RES_STRAIN_GRADIENT_3D false
RES_STRAIN_WEIGHTING false
RES_STRAIN_POSTFILTER_ALGORITHM 1
RES_STRAIN_FILTER_RANGE 5
RES_STRAIN_PERSISTENCE 20
RES_STRAIN_NORMALISE 3
RES_STRAIN_NORM_RANGE 2
RES_STRAIN_NORM_SCALE 45
RES_STRAIN_NOISE 50



244



Appendix B: CustusX-WPI Users Guide

245



CustusX-WPI User’s Guide

Abraham Goldsmith
1/14/07



Table Of Contents

1 Introduction                                                                                                                         .....................................................................................................................  3  
2 System Requirements                                                                                                         .....................................................................................................  3  
3 Installation                                                                                                                           .......................................................................................................................  3  
4 User Interface                                                                                                                      ..................................................................................................................  4  

4.1  Volume Browser                                                                                                           .......................................................................................................  6  
4.2 Transfer Function                                                                                                           .......................................................................................................  7  
4.3 Volume Display                                                                                                             .........................................................................................................  9  
4.4 Cuts                                                                                                                              ..........................................................................................................................  10  
4.5 Saving and Opening Scenes                                                                                         .....................................................................................  10  

5 Data Import                                                                                                                       ...................................................................................................................  11  
5.1 MetaIO                                                                                                                         .....................................................................................................................  11  
5.2 6DOF Extension to MetaIO                                                                                         .....................................................................................  11  
5.3 WPI DLL                                                                                                                     .................................................................................................................  11  

6 Data Export                                                                                                                       ...................................................................................................................  12  
7 Appendix A: MetaIO Reference                                                                                      .................................................................................  13  
8 Appendix B: Matrix Representation of Frame Position and Orientation                   ...............  20  

2



1 Introduction

CustusX is a 3D visualization tool developed by SINTEF; an independent research group 
headquartered in Trondheim, Norway. It is based on the ITK and VTK toolkits from 
Insight. CustusX renders 2D views of 3 dimensional data such as that generated by 
ultrasound scanners. Dr. Peder Pedersen contracted SINTEF to build a custom version of 
CustusX to run on windows (it was originally developed for platforms running XFree86 
and Xorg). This version was to serve as the visualization frontend for portable 3D 
ultrasound system.
This document describes the features and functionality of CustusX as of  January, 2007. 
At the time of writing the program supports several data import modes, visualization, and 
a single data export mechanism. It is still very rough, with many unhandled exceptions 
and frequent crashes.

2 System Requirements

• P4 2.0 GHz or better
• 1Gb RAM or greater
• Graphics hardware supporting OpenGL 2.0
• Windows XP
• 10Mb Free hard disk space

3 Installation

CustusX is provided as a self-installing windows installer package (.msi). Double 
clicking on the .msi file will invoke the installer which will guide the user through a 
series of dialogues. The only real option is the installation location. The program can be 
uninstalled through the Add and Remove Programs option in the Windows Control 
Panel.

3



4 User Interface

All operations are performed from within the graphical user interface shown below.

The screen is divided into 3 sections: 
1. Volume Browser
2. Transfer Function
3. Volume Display

The Volume Browser displays a list of volumes that are currently loaded into memory. 
The Transfer Function controls allow the user to adjust the visualization parameters. 
The actual controls are only displayed when at least one volume is loaded. In the image 
above no volumes are loaded so all sections of the screen appear blank. The Volume 
Display visualizes the data according to the settings in the Transfer Function section.

4

1

2

3



From the main screen the user can import a volume in one of two ways:
• File -> Import Volume
• By right clicking in the Volume Browser and selecting Import Volume

                           

In either case, the user will be presented with a standard browser window. Specifics about 
what file types can be opened are provided in section 5.  Browse to the location of the 
file(s), select it, and hit the open button.

If the file selected was the first in a series of separate .txt and .bmp files, a warning will 
be displayed. Hit OK to continue.

5



4.1  Volume Browser

After the volume has been read in, its name will appear in the Volume Browser. The 
name assigned depends on the import mode used. Data imported with a .mhd header file 
will use the name of the .mhd file. Data imported using the WPI dll will be assigned 
names sequentially, starting with im1.

There are a number of actions that can be performed on a volume once it has been loaded. 
They can be accessed by right clicking on the name ff the volume in the Volume 
Browser. The available actions are:

• Show Volume in Scene – This option will render the volume and display it in the 
Volume Display

• Show Volume in UltraSim – This option does nothing
• Edit Volume Name – This option allows the user to change the volume name 

displayed in the Volume Browser
• Delete Volume – This option removes the volume from memory and removes its 

name from the list of loaded volumes in the Volume Browser
• Duplicate Volume – This option makes a copy of the selected volume. Warning: 

This action causes the program to crash.
• Make Rescaled Subvolume – This option allows the user to make a rescaled 

copy of the original volume. The user can select from a list of predefined scaling 
ratios or select Custom to define their own.

6



Selecting Show Volume in Scene causes the Transfer Function and Volume Display 
sections to become active.

4.2 Transfer Function

Once a volume has been displayed the Transfer Function section can be used to alter the 
display. The graph titled RGBA Transfer Function is basically a histogram. For some 
volumes vertical bars can be seen representing the relative number of voxels containing a 
particular value. For others, no bars are visible. I do not know why this happens. The X 
or horizontal axis represents intensity values with the lowest values on the left and the 
highest values on the right. The Y or vertical axis represents transparency. High values 
correspond to low transparency. The red line defines the transparency of the surface 
mapped to each intensity value.

7



            

The greyscale, red (R), green (G), and blue (B) intensities and the alpha (A, means 
transparency) are displayed in the lower left hand corner of the Transfer Function view 
when the cursor is positioned over the histogram. Left mouse clicking on the histogram 
adds adjustment points to the transfer function. Right mouse clicking on the adjustment 
points allows them to be dragged to a new location.

Below the transfer function histogram is the color bar. The color bar is used to assign 
colors to particular intensity values. Like the histogram, new points can be added to the 
color bar by right mouse clicking over the bar and points can be moved by right clicking 
and dragging. The Presets dropdown box provides some predefined color configurations 
and an editor that allows them presets to be altered.

8



4.3 Volume Display

The rendering is displayed in the Volume Display area of the screen. There are a number 
of ways to manipulate the view:

• Left clicking and dragging in this area the image can be rotated in any direction
• Holding the shift key while left clicking and dragging moves the center of rotation
• Holding the CTRL key while left clicking and dragging rotates the image about 

the center of rotation along the axis pointing straight into the screen only.
• Clicking and dragging with both the left and right buttons simultaneously zooms 

in and out. This can also be accomplished with the mouse scroll wheel, if present.
• View -> Nearest Neighbor Texture Filtering toggles between the two texture 

filtering modes.

9



4.4 Cuts

    

Cuts are used crop volumes to isolate areas if interest. When a volume is being actively 
displayed, cut mode is activated by right mouse clicking on the name of the volume in the 
Volume Browser and selecting Cut in Volume. The mouse cursor will now turn into a 
set of crosshairs when moved over the Volume Display. Left click and drag the 
crosshairs around the area of interest. When the mouse button is released the area of the 
volume outside of the line will be cropped off.

4.5 Saving and Opening Scenes

A CustusX session can be saved at any time by selecting File -> Save Scene. A browser 
window will open allowing the operator to select the name and location of the folder 
containing the data. A saved scene contains all currently loaded volumes, subvolumes, 
and display settings. A saved session can be loaded at any time by selecting File -> Open 
Scene.

10



5 Data Import

5.1 MetaIO

CustusX uses the MetaIO medical image file IO library, which is integrated into ITK. 
This library supports a wide variety of standard medical imaging formats. It also supports 
importing custom data types via a header file describing the data to be imported. For a 
complete guide to data import using MetaIO please refer to the documentation in 
appendix A. Import header file examples can be found in appendix XXX.

5.2 6DOF Extension to MetaIO

CustusX also implements an extension to the MetaIO library that allows data to be 
imported along with information about the orientation of the probe, the position of each 
2D slice in the volume with respect to the starting point, and mask that can be used to 
crop off unwanted portions of each 2D scan as the volume is reconstructed. The 
additional information is described by individual ASCII files as follows:

• .raw – A file containing a series of 2D images stored as raw binary data
• .mha / .mhd – Describes the layout of the data in the .raw file
• .msk – A raw 2D image used to mask out a section of each input image
• .cal – An ASCII file containing a 4x4 transformation matrix describing the 

relationship between the ultrasound probe and the image
• .pos – An ASCII file containing a series of 3x4 transform matrixes (they are 

actually 4x4 but the last line row is always 0 0 0 1 so it is omitted) that describe 
the position and orientation of the probe. Please see appendix B for a complete 
description of the matrixes. There do not need to be the same number of position 
matrixes as there are images in the source volume.

To use this import mode, select the .pos file instead of the .mhd file when importing the 
volume. All the files must have the same name up to the extension.

5.3 WPI DLL

CustusX also supports an import mode that was developed specifically for WPI. The 
original goal was to develop a method for dynamically acquiring a variable number of 
image frames directly from an ultrasound scanner. SINTEF and WPI agreed on an API 
that would allow CustusX to read in an arbitrary number of frames as if they were files. 
The functionality was implemented in a dynamically linked library by WPI.

At the time of writing this feature only works as a proof of concept. Instead of actually 
acquiring ultrasound image frames, the dll opens a sequence of bitmap files and passes 
the image data to CustusX. Each bitmap has a corresponding text file that describes the 

11



position of the frame with respect to the first frame in the sequence. CustusX uses this 
data to construct a 3D volume. The number of frames read in is fixed to 200 to avoid the 
difficulty of implementing a mechanism for starting and stopping image acquisition. It 
turns out that the MetaIO import mechanism also provides this functionality and much 
more. For this reason, it is recommended that the user use only the MetaIO import 
method.

6 Data Export

Data can be exported from CustusX using the File -> Save Scene feature described in 
section 4.4. When a scene is saved a directory is created containing all of the data. An 
XML file describes all of the data and display settings and each volume is stored in an 
individual raw data file. The raw data files are organized in a brick-of-bytes arrangement 
which can be imported into most other software tools as long as the user provides 
information about the dimension, voxel spacing, and data type. Most of this information 
is in the XML file but the data type is not. CustusX uses 16 bit intensity values. That 
means that even if the volume had 8 bit samples when it was initially imported into 
CustusX, it will have 16 bit samples when it is exported. It is also important to note that 
color and transparency information cannot be exported for use with other programs. The 
raw data files contain only the raw intensity values. If position information was used 
during the import process the exported volume will contain the reconstructed volume, not 
the original image slices.

12



7 Appendix A: MetaIO Reference 

 This material is taken directly from the MetaIO Users Manual

MetaIO
Medical Image I/O Made Simple

Abstract
Our goal was to create a simple, flexible, cross-platform image file format that supported medical image
application development.
This meant that the image file format and its associated image I/O library had to support:

1. Image acquisition information essential to the correct processing and alignment of medical images 
(e.g., voxel/element size and spacing; and image position and orientation)

2. MSB (Most-significant-bit = Mac/Sun) and LSB (Least-significant-bit = PC) byte ordering
3. Arbitrary atomic pixel types (char, unsigned char, short, float, etc.)
4. N dimensional data
5. Image data stored in one file or in one file per sub-dimensional (e.g., N-1) slice
6. Text-based headers that are easily read and edited
7. Optionally storing data in a file(s) separate from the header to simplify conversion to/from other 

formats

MetaImage is the text-based tagged file format for medical images that resulted. We have now extended 
that file format to support a variety of objects that occur in medicine such a tubes (for vessels, needles,
etc.), blobs (for arbitrary shaped objects), cubes, spheres, etc. The complete library is known at MetaIO.
The central code of MetaImage/MetaIO is quite stable. MetaImage has been in use for several years by a
wide range of research at UNC, Chapel Hill. New features are occasionally added, but backward
compatibility will always be maintained.
Current info on MetaObjects is available from
http://caddlab.rad.unc.edu/technologies#metaObjects

Obtaining MetaIO
MetaIO is being distributed over the WWW by its developers in the CADDLab at UNC:
http://caddlab.rad.unc.edu/technologies#metaObjects
MetaIO is also being distributed with the National Library of Medicine’s Insight Tookit (ITK) for medical
image segmentation and registration:
http://www.itk.org

Installing The MetaIO Package
MetaIO is a hierarchy of C++ classes and functions. We have yet to find a modern C++ compiler that does
not compile MetaIO. Know compatible compilers include G++ v2.95 and beyond (and probably
previous), Microsoft Visual C++ 6.0, Sun’s CC on Solaris 2.6 and beyond, Intel compiler and compilers on
other workstations including HPs, SGIs, and Alpha systems. Please contact us (Stephen R. Aylward,
aylward@unc.edu, Julien Jomier mailto:jomier@unc.eduor via http://caddlab.rad.unc.edu) if you encounter
any incompatibilities between our code and your compiler.

13



The hierarchy of the software in the stand-alone MetaIO package is as follows:

MetaIO/
doc/
tests/

The top level contains the source files, the header files, and the CMakeLists.txt file that is used by the
CMake program to compile MetaIO. This document and the MetaObjects www pages are in the doc
directory. A sequence of simple tests is available in the tests directory.

The hierarchy of the software in the ITK distribution is as follows:
Insight/Code/Utilities/MetaIO/

      doc/
      tests/

Insight/Code/IO/
Insight/Examples/
MetaImageReadWrite/
MetaImageViewer/
MetaImageColorViewer/
MetaImageImporter/

The files in Insight/Code/Utilities exactly match those in the stand-alone MetaIO package. Routines to
wrap metaImage so that it can be accessed via the itkImageIO Object Factory are in /Insight/Codc/IO. The
details of the Examples are provided later in this documents.

MetaImage as a stand-alone package
If you downloaded MetaIO separate from Insight, you must also download and install CMake from
www.CMake.org. That www site provide details regarding installing CMake and using it to compile
another program. Follow those directions to create the MetaIO library and tests.
A minimal description of the process is presented next.

1. Install CMake
2. On Windows:

a. Run CMake.exe
b. In the source directory field, browse to the top-level of the MetaIO directory
c. In the binary directory field, enter the path and name of the source directory, but add “-

VC++” to the directory name (this assumes that you are compiling using VC++, 
otherwise add an equally descriptive name for the directory to store the binaries in such 
as “MetaIO-bcc” or Borland).

d. Press the “configure” button. It will ask if you want to create the binary directory, press 
“yes.”

e. Specify your compiler in the pull-down menu field.
f. Press the “configure” button a second time, and then press “okay” to generate the 

Makefiles for your compiler (e.g., MetaIO.dsw and related files for VC++) in the binary 
directory.

3. On *nix/Cygwin machines:
a. At an appropriate spot, create a directory “MetaIO-g++” or give it an equally descriptive 

name based on your compiler
b. “cd MetaIO-g++”
c. Run “ccmake <path to MetaIO source directory>”
d. Press “g” to generate the makefiles for your compiler in the binary directory.

14



To use MetaIO in your stand-alone programs:

1. add the MetaIO directory to your include paths,
2. add “#include <metaImage.h>” to the top of the your file that performs your image IO,
3. add the MetaIO binary directory to your link paths, and
4. link with the MetaIO library.

See the files in MetaIO/tests for examples of how to read/write MetaImages and other MetaObjects.

MetaIO with the NLM’s Insight toolkit (ITK)
If you have downloaded and are installing MetaIO as part of the Insight toolkit, follow the standard
installation procedure of Insight. This will create the MetaIO library and the ITK specific wrapping,
examples and tests. Certain examples, such as the MetaImageViewer, also require FLTK (a cross-platform
user interface library available from http://fltk.org). Install FLTK and then ITK to have every MetaIO
example built. Numerous other ITK examples also rely on FLTK.

See the file /Insight/Examples/MetaImageReadWrite for a working example on how to develop a program
using MetaImage for IO. Work is underway to add access to other MetaObjects (e.g., tubes, spheres, etc.)
via ITK’s SpatialObjects in /Insight/Code/SpatialObject.

Quick Start: Data conversion via MetaHeaders
This section assumes that you have some data that you wish to process using an application that reads
MetaImages. This section gives examples on how “convert” your data to the MetaImage format.

For uncompressed data (i.e., data stored in a raw format as is often done for DICOM, BMP, and PNG
formats), “conversion” to MetaImage is actually just a matter of specifying a MetaImage Headerfile (a
“MetaHeader”) that describes and points to the file(s) containing your data.

For compressed data (i.e., data stored in JPEG or GIF formats), you must first convert your data to a 
noncompressed format. Currently, no data compression methods are supported by MetaImage, but adding
support for .gz, RLE, and other compression formats is high on our To-Do list. One of the most robust
image conversion software packages is ImageMagick (http://www.imagemagick.org/; Unix and PC
versions available). It has an application called “convert” that handles most of the popular 2D image
formats.

IF YOU HAVE INSTALLED METAIO AS PART OF ITK, USE THE PROGRAM
Insight/Examples/MetaImageImporter. IT WILL ASK A SERIES OF QUESTIONS AND PRODUCE A
METAIMAGE HEADER FOR YOU.

15



Reading a Brick-of-Bytes
A “brick of bytes” is a volume of image data stored in a single file possibly with preceding and trailing
non-image data.

To correctly load these images, the minimal information that you need to know is:

1. Number of dimensions
2. Size of each dimension
3. Data type
4. Name of the data file

For example, let’s say the data was 3 dimensional, had 256 x 256 x 64 voxels, used an unsigned short to
represent the value at each voxel, and was stored in the file “image.raw”. The resulting MetaHeader (our
naming convention would call this file “image.mhd”) file would read

ObjectType = Image
NDims = 3
DimSize = 256 256 64
ElementType = MET_USHORT
ElementDataFile = image.raw (this tag must be last in a MetaImageHeader)

That’s it, but this assumes quite a bit about the image data. Specifically, it assumes

1. There are not any non-image data bytes (header data) at the beginning of the image data file 
“image.raw”.

2. The voxels are cubes – the distance spanned by and between a voxel in each coordinate direction 
is 1 “unit”, e.g., 1x1x1mm voxel size and voxel spacing

3. The byte-order of the data in image.raw matches the byte ordering native to the machine the 
application is running on (e.g., PC’s use LSB ordering and Suns/Macs use MSB ordering).

If these assumptions are false, the data will not be loaded correctly by the application. To fix these
problems….

1. To skip the header bytes in the image data file, use
HeaderSize = X
where X is the number of bytes to skip at the beginning of the file before reading image data. If
you know there are no trailing bytes (extra bytes at the end of the file) you can specify
HeaderSize = -1
and MetaImage will automatically calculate the number of extra bytes in the data file, assume
they those bytes are at the head of the data file, and automatically skip them before beginning to
read the image data.

2. To specify the spacing of the voxels, use
ElementSpacing = X Y Z
where X is the distance between of the centers of the voxels along the x-dimension, Y is the
spacing in the y-dimension, and Z is the spacing in the z-dimension. Therefore, to specify a
1x1x3mm voxel spacing, use
ElementSpacing = 1 1 3

NOTE: If ElementSpacing is not specified, it is assumed to be equal to ElementSize. If neither is
specified, both are assumed to be 1.

16



3. To specify a voxel size, use
ElementSize = X Y Z
where X Y Z represent the size in the x, y, and z-dimensions respectively.

NOTE: If ElementSize is not specified, it is assumed to be equal to ElementSpacing. If neither is
specified, both are assumed to be 1.

4. To specify a particular byte ordering, use
ElementByteOrderMSB = True
or
ElementByteOrderMSB = False
MSB (aka big-endian) ordering is common to SPARC and Motorola processors (e.g.,
Macintoshes). LSB (aka little-endian) ordering is common to Intel processors (e.g., PC
compatibles).

Putting it all together, to “convert” a file containing the image data in a continuous block at the end of the
file, specify the header

ObjectType = Image
NDims = 3
DimSize = 256 256 64
ElementType = MET_USHORT
HeaderSize = -1
ElementSize = 1 1 3
ElementSpacing = 1 1 1
ElementByteOrderMSB = False
ElementDataFile = image.raw

17



Reading DICOM and Other One-Slice-Per-File Data Formats
If the data is split to be one slice per file, as is done with DICOM data, only the ElementDataFile tag’s
option needs to change.

Since the MetaLibrary cannot automatically parse DICOM headers, those headers must be skipped and the
user must specify the image dimensions and other essential image information. For DICOM files, the
MetaLibrary must automatically calculate the header size of each file (luckily for almost every type of
DICOM object in common use, the image data is stored at the end).

To specify which files comprise the volume, they can be specified as an ordered list in the MetaHeader
using the ElementDataFile=LIST option. The filenames should be listed at the end of the MetaHeader, after
the ElementDataFile option, and the filenames should be separated by whitespace:

ObjectType = Image
NDims = 3
DimSize = 512 512 100
ElementType = MET_USHORT
HeaderSize = -1
ElementSize = 1 1 3
ElementSpacing = 1 1 1
ElementByteOrderMSB = False
ElementDataFile = LIST
filenameOfSlice1
filenameOfSlice2
filenameOfSlice3
filenameOfSlice4
.
. (one hundred filenames must be specified to specify the 100 slices in the volume)
.

The second way of specifying a series of files can be used if the filenames are numerically
distinguished. That is, the files names should be able to be specified using a numeric substitution into a 
c-style printf-string, for a range of values. In pseudo-code:

for i=numBegin to numEnd step numStep
sprintf(sliceName, “baseName.%03d”, i);

end

The parameters of this system are numBegin, numEnd, numStep, and the c-style printf string (e.g.,
“baseName.%03d”). The begin, end, and step parameters appear in order after the c-style printf string:

ObjectType = Image
NDims = 3
DimSize = 512 512 100
ElementType = MET_USHORT
HeaderSize = -1
ElementSize = 1 1 3
ElementSpacing = 1 1 1
ElementByteOrderMSB = False
ElementDataFile = baseName.%03d 1 100 1

This MetaImage will cause the files “baseName.001” to “baseName.100” to be read to create a 100-slice
volume.

18



In this case, because of the overlap of the slices, it may be helpful to only consider every-other slice in the
volume. Changing the slice spacing and the ElementDataFileNumStep enacts this…

ObjectType = Image
NDims = 3
DimSize = 512 512 50
ElementType = MET_USHORT
HeaderSize = -1
ElementSize = 1 1 3
ElementSpacing = 1 1 2
ElementByteOrderMSB = False
ElementDataFile = baseName.%03d 1 100 2

19



8 Appendix B: Matrix Representation of Frame Position 
and Orientation

This information is taken from Wikipedia, the internet encyclopedia, at: 
http://en.wikipedia.org/wiki/3D_projection

Data necessary for projection

Data about the objects to render is usually stored as a collection of points, linked together 
in triangles. Each point is a set of three numbers, representing its X,Y,Z coordinates from 
an origin relative to the object they belong to. Each triangle is a set of three such points. 
In addition, the object has three coordinates X,Y,Z and some kind of rotation, for 
example, three angles alpha, beta and gamma, describing its position and orientation 
relative to a "world" reference frame.

Last comes the observer (or camera). The observer has a set of three X,Y,Z coordinates 
and three alpha, beta and gamma angles, describing the observer's position and the 
direction in which it is pointing.

All this data is usually stored using floating point values, although many programs 
convert them to integers at various points in the algorithm to speed up the calculations.

First step: world transform

The first step is to transform the point's coordinates, taking into account the position and 
orientation of the object they belong to. This is done using a set of four matrices: (The 
matrix we use is column major, i.e. v' = Matrix*v, the same in OpenGL but different in 
Directx).

                                                                                          — object translation

   — rotation about the x-axis

20



   — rotation about the y-axis

   — rotation about the z-axis.

The four matrices are multiplied together, and the result is the world transform matrix: a 
matrix that, if a point's coordinates were multiplied by it, would result in the point's 
coordinates being expressed in the "world" reference frame.

Note that unlike multiplication between numbers, the order used to multiply the matrices 
is significant; changing the order will change the results too. When dealing with the three 
rotation matrices, a fixed order is good for the necessity of the moment that must be 
chosen. The object should be rotated before it is translated, since otherwise the position 
of the object in the world would get rotated around the centre of the world, wherever that 
happens to be.

World transform = Translation × Rotation

To complete the transform in the most general way possible, another matrix called the 
scaling matrix is used to scale the model along the axes. This matrix is multiplied to the 
four given above to yield the complete world transform. The form of this matrix is:

   — where sx, sy, and sz are the scaling factors along the three co-
ordinate axes.

Since it is usually convenient to scale the model in its own model space or co-ordinate 
system, scaling should be the first transformation applied. The final transform thus 
becomes:

World transform = Translation × Rotation × Scaling

21



(as in some computer graphics books or programming API's such as DirectX, it uses 
matrices with translation vectors in the bottom row, in this scheme, the order of matrices 
would be reversed.)

final result of Translation × x × y × z × Scaling

Note with respect to CustusX: In most cases 1:1 scaling will be used. The scaling factors 
can be set to 1 removed from the equation above.

22



268



Appendix C: Gyration MG1101a Specifications

269



270



Appendix D: Analog Devices ADIS16250 Specifications

271



272



Appendix E: Analog Devices ADIS16350 Specifications

273



274



Appendix F: Avago ADNS-2610 Specifications

275



276



Appendix G: ST Microelectronics LIS3LV02DL Specifications

277



278



Appendix H: Edmunds Fiber Optic Bundle Specifications

279


	Worcester Polytechnic Institute
	Digital WPI
	2009-01-16

	An Inertial-Optical Tracking System for Quantitative, Freehand, 3D Ultrasound
	Abraham Myron Goldsmith
	Repository Citation


	Introduction
	3D Ultrasound Acquisition Methods
	2D Array Transducers
	Mechanically Actuated 1D Array Transducers
	Manually Actuated 1D Array Transducers

	Motivation for Development of a Novel Tracking System for Freehand 3D Ultrasound
	Overview of a Freehand 3D Ultrasound System
	Thesis Outline

	3D Visualization Platforms
	CustusX
	User Interface
	Data Acquisition
	Evaluation

	Stradwin
	Stradwin User Interface
	Data Acquisition
	Stradwin Evaluation


	Electrical and Optical System Components
	Gyroscopes
	Gyration MG1101a
	Analog Devices ADIS16255
	Analog Devices ADIS16350

	Accelerometers
	Linear Accelerometers
	ST Microelectronics LIS3LV02DL 3-Axis Linear Accelerometer

	Optical Linear Motion Sensors, Lenses, and Optical Fiber Bundles
	Avago ADNS-2610
	Avago HDNS-2100 Optical Mouse Lens
	Elmo QT288 Objective Lens
	Schott Acid Leached Fiber Bundle
	Edmund's Optical Fiber Optic Rod


	Test Platforms
	Data Acquisition Hardware
	PICDEM FS-USB Demonstration Board
	MG1101a Gyroscope Physical Interface
	ADIS16255 Gyroscope Physical Interface
	ADNS-2610 Optical Mouse Sensor Physical Interface
	EK3LV02DQ Linear Accelerometer Evaluation Module

	Firmware
	MG1101a Gyroscope Communication Firmware
	ADNS-2610 Optical Mouse Sensor Communication Firmware
	ADIS16255 Gyroscope Communication Firmware

	Aerotech ADRS-200 Rotation Table and Soloist CP Servo Controller
	HP7255A XY Plotter
	Data Collection and Analysis Software
	Universal Serial Bus
	User Level USB Protocol
	Device Driver
	Matlab Scripts


	Gyroscope Experiments
	Procedure
	Static Performance Tests
	Dynamic Performance Tests

	Results and Discussion
	Static Test Results
	Dynamic Test Results

	Conclusion

	Accelerometer Experiments
	Procedure
	Results and Discussion
	Conclusion

	Optical System
	Definition of Terms
	Previous Work on Optical Tracking with the ADNS-2610 Optical Mouse Sensor
	Optical Tracking Configurations
	Experiments to Quantify the Optimal Dimensions of the Optical System
	Direct Imaging Configuration
	Indirect Imaging with the Schott Fiber Bundle
	Indirect Imaging with the Edmunds Fiber Bundles
	Tracking Experiments

	Final Optical System Implementation
	Direct Imaging Configuration
	Indirect Imaging Configuration


	Inertial Navigation
	Reference Frames
	Orientation Representations
	Vector Transformation
	Time Propagation of the DCM

	Prototype System Implementation
	Sensor Interface Electronics
	ADIS16350 Carrier Board
	ADNS-2610 Carrier Board
	Sensor Module to Demo Board Cable

	Microblaze Embedded System
	Synchronous Serial Engine

	Navigation Computer Firmware
	Calibration

	Performance Testing
	Test Apparatus
	Experimental Procedure
	Segmentation Technique and Performance Metrics
	Results
	Volume Accuracy
	Surface Accuracy

	Discussion

	Conclusion
	Future Work

	Appendices
	5DOF 3D Ultrasound User's Guide
	CustusX-WPI Users Guide
	Gyration MG1101a Specifications
	Analog Devices ADIS16250 Specifications
	Analog Devices ADIS16350 Specifications
	Avago ADNS-2610 Specifications
	ST Microelectronics LIS3LV02DL Specifications
	Edmunds Fiber Optic Bundle Specifications

