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Abstract

With the advent of computers and the information age, vast amounts of data gener-

ated in a great deal of science and industry fields require the statisticians to explore

further. In particular, statistical and computational problems in biology and medicine

have created a new field of bioinformatics, which is attracting more and more statis-

ticians, computer scientists, and biologists.

Several procedures have been developed for tracing the source of fecal pollution in

water resources based on certain characteristics of certain microorganisms. Use of this

collection of techniques has been termed microbial source tracking (MST). Most of

the current methods for MST are based on patterns of either phenotypic or genotypic

variation in indicator organisms. Studies also suggested that patterns of genotypic

variation might be more reliable due to their less association with environmental

factors than those of phenotypic variation. Among the genotypic methods for source

tracking, fingerprinting via rep-PCR is most common. Thus, identifying the specific

pollution sources in contaminated waters based on rep-PCR fingerprinting techniques,

viewed as a classification problem, has become an increasingly popular research topic

in bioinformatics.

In the project, several statistical methods for classification were studied, including

linear discriminant analysis, quadratic discriminant analysis, logistic regression, and
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k-nearest-neighbor rules, neural networks and support vector machine. This project

report summaries each of these methods and relevant statistical theory. In addition,

an application of these methods to a particular set of MST data is presented and

comparisons are made.
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Chapter 1

Introduction

1.1 Motivating Application: Microbial Source Track-

ing

Although the Clean Water Act (CWA) was enacted in 1972, the water quality of many

of the nation’s lakes, rivers and streams still do not meet the CWA’s goal of “fishable

and swimmable waters.” A wide array of pollutant classes including temperature

(i.e., thermal pollution), sediment, pathogens, nutrients, metals, dissolved oxygen,

pH, pesticides and other organic chemicals can result in water quality impairment.

Among the numerous ways in which waterways can be damaged, contamination from

pathogenic microorganisms is the most serious for waters used for human recreation,

drinking water and aquaculture. Moreover, waters contaminated with human feces are

generally regarded as posing a greater risk to human health because they are more

likely to contain human—specific enteric pathogens than are waters contaminated

with animal feces [1].
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The Total Maximum Daily Load (TMDL) for each pollutant class in impaired waters

has been established to determine the maximum pollutant load that a water body can

receive and still meet water quality standards. TMDLs provide the basis for estab-

lishing water quality controls and establish waste load allocations among point and

non-point pollutant sources. Non-point sources are continuous sources of pollution to

water quality, such as agricultural runoff after a rain event or unrestricted access of

livestock and wildlife to rivers and streams. Other sources such as sewage treatment

plants with a leak problem are considered point sources.

Most methods currently used to monitor microbiological TMDLs in watersheds de-

pend on culturing bacterial indicator organisms such as fecal coliforms, Escherichia

coli (E. coli) or fecal enterococci, because they tend to occur in the same sources as

pathogenic organisms (e.g., fecal material), are present in greater densities, and are

usually easier to identify than the microbial pollutants. Recently, several procedures

for tracing the source of fecal pollution based on certain characteristics of these indi-

cator organisms have been developed. Use of this collection of techniques has been

termed microbial source tracking (MST). Most of the current methods for MST are

based on patterns of either phenotypic or genotypic variation in indicator organisms.

Phenotypic methods focus on morphological differences between different lineages

of bacteria and traits that may have been acquired from exposure to different host

species or environments. These methods traditionally target multiple antibiotic resis-

tance (MAR) patterns, cell surface or flagella antigens, or biochemical tests designed

to identify variations in the utilization of various substrates that may be found within

a particular host environment. However, some studies have suggested that phenotypic

methods may be unreliable due to the fact that the organisms adapt to their environ-

ment. Thus, it is possible that patterns of phenotypic variation might be associated

more with environmental factors than with the pollutant source [2].
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Since genotypic profiles may be more stable than phenotypic profiles and are capable

of discriminating between different animal sources, DNA-based fingerprinting tech-

niques are increasingly being applied to MST. Particularly, genetic methodologies can

be used to differentiate lineages of bacteria found within animal hosts with two as-

sumptions. One is that within a species of bacteria, there are members or subgroups

that have become more adapted to a particular host or environment for various rea-

sons, including differences in pH, availability of nutrients, and receptor specificity.

The other is that once these organisms become adapted to a particular environment

and establish residency, the progeny produced by subsequent replications will be ge-

netically identical. As a result, over time a group of organisms within a particular

host or environment should possess a similar or identical genetic fingerprint, which

will differ from those organisms adapted to a different host or environment. Specific

genotypic methods used include ribotyping, length heterogeneity–PCR (LH–PCR)

and terminal-restriction fragment length polymorphism (T–RFLP), repetitive PCR

(rep–PCR), denaturing gradient gel electrophoresis (DGGE), pulsed–field gel elec-

trophoresis (PFGE) and amplified fragment length polymorphism (AFLP) [3].

By now, all these approaches have been used with different levels of success in the

United States. Most of them have only been tested in a limited number of watersheds,

and many require further development before they can be considered appropriate for

source tracking of fecal contamination. However, among the phenotypic methods for

source tracking antibiotic resistance analysis (ARA) appears to be the most practical

approach in small watersheds primarily because it is relatively inexpensive and simple

to execute. Among the genotypic methods for source tracking, fingerprinting via rep-

PCR is most common.
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1.2 Statistical Methodology for Classification

The challenge arising from MST is to identify the specific pollution sources in contam-

inated waters. This task is viewed as a classification problem with various categorical

predictor variables and with the response variable as well as the class variable. Thus,

in this section, we introduce statistical methodology for classification to solve the

problem.

With the advent of computers and the information age, statistical problems have

exploded both in size and complexity. Vast amounts of data generated in many

science and industry fields require the statistician to make sense of all. Particularly,

challenges in the areas of data storage, organization and searching have led to the new

field of data mining. In addition, statistical and computational problems in biology

and medicine have created another new field, bioinformatics.

1.2.1 Clustering and Classification

Statistical learning involves extracting important patterns and trends from data for

the purpose of understanding what the data say. It plays a critical role in the fields of

statistics, data mining and artificial intelligence, intersecting with areas of engineer-

ing and other disciplines. Actually, the challenges in learning from data have led to a

revolution in the statistical sciences. These problems can be roughly categorized as ei-

ther clustering (unsupervised) or classification (supervised). Clustering, or grouping,

is distinct from classification. Cluster analysis is a more primitive technique since no

assumptions are made allowing for the number of groups or the group structure. Its

task is to describe the associations and patterns among a set of input measures and

there is no measurement of the outcome. This can be done on the basis of similarities
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or distances (dissimilarities) and the inputs required are similarity measures or data

from which similarities can be computed. However, classification methods focus on

a known number of groups, and the operational objective is to predict the value of

an outcome measure and assign new observations to one of these groups based on a

number of input measures. The whole training stage is guided by the presence of the

outcome variable. The following classification examples are extracted from various

application fields including biology and medicine:

1. Given some demographic, diet and clinical measurements for a patient with a

coronary heart disease, predict whether he or she will have a heart attack in

half a year.

2. From some digitized face images, identify a special criminal being captured by

police.

3. On the basis of some supermarket sales performance measures and economic

data in the passing twenty years, predict the sales potential of it in1 month

from now.

4. From the infrared absorption spectrum of a diabetic patient’s blood, estimate

the amount of glucose in the blood of the patient.

5. identify the criminal in the special database of potential people from multiple

features, such as face image, height, weight, accent, left-handed, and so on [4].

Typically, for such problems, we have an outcome measurement, usually quantitative

(like sales of a supermarket) or categorical (like heart attack/no heart attack), to

predict based on a set of features (like diet and clinical measurements). We also have

a set of training data, where we observe the outcome and feature measurements for
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a set of objects (such as people). With this data we build a prediction model, or

classifier, which will be employed to predict the outcome for new unseen objects. In

general, we wish to find an optimal classifier that accurately predicts an outcome.

1.2.2 Discrimination and Classification

As previously mentioned, the problems of learning from data can be roughly divided

into two categories: clustering and classification. Sometimes, researchers in this field

also propose some ideas based on discrimination (separation) and classification (al-

location). In particular, discrimination and classification are multivariate techniques

concerned with separating distinct sets of objects or observations and allocating new

objects or observations to previously defined groups.

Discriminant analysis is rather exploratory in nature. It is a separation procedure

that employs discrimination techniques on a one-time basis in order to investigate

observed differences when casual relationships are not well understood. More clearly,

the goal of discrimination is to describe, either graphically or algebraically, the dif-

ferential features of objects or observations from several known populations, and find

discriminants functions whose numerical values are such that the populations are

separated as much as possible.

Classification procedures are less exploratory in the sense that they ordinarily require

more problem structure than discrimination does, and lead to well-defined rules by

which new objects can be assigned correctly. Thus, the goal of classification is to sort

objects or observations into two or more labeled classes. The emphasis is to derive

a rule that can be used for optimally assigning new objects or observations to the

labeled classes.
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However, in practice, discrimination and classification frequently overlap, and the

distinction between them becomes blurred. For example, a function that separates

objects may serve as a classifier, and, conversely, a rule that classifies objects may

suggest a discriminatory procedure.

1.2.3 Overview of Classification

The examples of classification described in Section 1.2.1 have several common char-

acteristics. For each, there is a set of variables defined as inputs which have some

influence on one or more outputs; the objective is to use the inputs to predict the

values of the outputs. In the statistical literature, the inputs are often called the pre-

dictors, or more classically, the independent variables, while the outputs are called

the responses, or more classically, the dependent variables.

In these examples, we have qualitative and quantitative input variables. As a result,

the types of methods used for prediction can also be categorized into three classes

based upon the types of input variables: quantitative, qualitative, or both. The

outputs also vary in nature among these examples in the same way.

Specifically, there are three kinds of outputs for them: quantitative, qualitative, or

ordered categorical. For quantitative outputs where some measurements are bigger

than others and measurements close in value and similar in nature, regression is

conventionally used to denote the prediction procedure. However, for qualitative

outputs where there is no explicit ordering in the classes and often descriptive labels

rather than numbers are used to denote the classes, classification is conventionally

employed for the prediction procedure. The third variable type is ordered categorical,

such as small, medium and large, where there is an ordering between the values,

but no quantitative measurement is appropriate. In particular, qualitative variables
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also referred to as categorical or discrete variables as well as factors are represented

numerically by codes, especially when there are only two classes like “survived” or

“died”, which are represented by a single binary digit or bit as 0 or 1, or else by -1 and

1, sometimes referred to as targets. For more than two classes case, the most useful

and commonly used coding is via dummy variables: a p-level qualitative variable is

represented by a vector of p binary variables or bits, only one of which is “on” at a

time.

Typically, we denote an input variable by the symbol X. If X is a vector, its compo-

nents can be accessed by subscripts Xi. Quantitative outputs are denoted by Y, and

qualitative outputs by G. The generic aspects of a variable are referred to uppercase

letters such as X, Y or G and observed values are written in lowercase. For example,

the jth observed value of X is written as xj, where xj is again a scalar or vector. Gen-

erally, vectors will not be bold except when they have N components, and matrices

are represented by bold uppercase letters. For example, a set of N input k–vectors

xj, j = 1, ..., N is represented by the N × k matrix X. In addition, all vectors are

assumed to be column vectors, the jth row of X is xT
j , the transpose of xj.

Now, we can loosely state classification as follows: given an input vector X, make a

good prediction of the output G (or Y), denoted by Ĝ (or Ŷ), which should take

values in the same set G (or R) associated with G (or Y). For a two–class G, we

can denote the binary coded target as Y, and then treat it as a quantitative output.

For example, if Ŷ lies in [0, 1], then we can assign to Ĝ the class label according to

whether ŷ > 0.5. This idea may also generalize to K-level qualitative outputs case.

One of the key steps in classification analysis is to construct prediction rules based

on training data which are typically denoted by (xi, yi) or (xi, gi), i = 1, ..., N . There

are many methods developed for this goal, including linear methods for regression,
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linear methods for classification, kernel methods, boosting methods, neural networks,

support vector machines, nearest–neighbors, prototype methods, etc. Among them,

the linear model fit by least squares and the k-nearest–neighbor prediction rule are

simple but powerful.

1.3 Data Description

As mentioned previously, elevated fecal coliform levels are found in many watersheds

due to sources that include inadequate septic systems, run–off from pastures and ma-

nure treated agricultural land, and wildlife. And rep–PCR DNA fingerprinting has

been shown effective for identifying sources of fecal contamination by DNA finger-

prints generated using the polymerase chain reaction (PCR) and whole E. coli cells.

The motivation of this method is based on such consideration below: fingerprints from

E. coli strains isolated from local streams or lakes may be identified by comparison

to our fingerprint database of E. coli strains isolated from known human and animal

sources.

The data analyzed in the project are rep–PCR finger printings with BOX primers (i.e.,

BOX–PCR fingerprinting). They come from the Nakatsu Lab at the Department of

Agronomy of Purdue University. To get the E. coli, manure samples were taken

from several different animals. Most of the animals were from Indiana, but a few

samples from California. Then rep–PCR fingerprinting was done for all the E. coli,

using the Box primer. It’s also referred to as Box–PCR fingerprinting. Specifically,

the original data involves 40 bands (variables) and 680 samples. The corresponding

categories, pollution sources, to theses samples are: pig, cow, human, chicken, turkey,

dog, deer, quail, raccoon, carnivore, rabbit, coyote, chipmunk, squirrel, rat, duck,
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goose, cat, and sewage. For the convenience of making an efficient comparison among

those methods described in the project, the data eventually analyzed are achieved by

eliminating the samples corresponding to minor categories. The 441 samples involved

in the data belong to 5 categories: chicken (58), cow (151), human (33), pig (62), and

sewage (137).

In order to get a better idea about the data, several plots are created based on

them. One is the histogram plot of sample means for each of the 40 bands (Figure

1.1). The plot displays a bimodal distribution indicating that most bands are either

present in most samples or absent in most samples, with relatively few bands being

present in between 20 and 80% of samples. A second plot (Figure 1.2) displays the

correlation structure. It denotes the correlation coefficients between each pair of the

40 bands with different darkness levels at points—dark corresponds to -1 and light

corresponds to 1. The plot shows that there is no special correlation structure in the

data. The last plot is a multidimensional scaling (MDS) plot (Figure 1.3) representing

40-dimensional data in 2-dimensional space, in which 5 hosts: chicken (58), cow (151),

human (33), pig (62), and sewage (137). are indicated by the 5 colors: black, red,

green, blue, and purple, respectively.

After describing the statistical methods for classification in Chapter 2 and Chapter

3, we apply them to these data and make a comparison of the classification results in

Chapter 4.
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Figure 1.1: Histogram of the proportion of samples, each of the forty bands is present
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Figure 1.2: Plot of correlation structure
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Figure 1.3: MDS plot (Euclidean distance)
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Chapter 2

Classical Statistical Methods for

Classification

2.1 Overview

Several statistical models for prediction and classification have been developed and

applied in many areas of science, finance and industry. Among them are linear models

and k–nearest–neighbor methods. Since these are two quite different kinds of simple,

but powerful, classical prediction methods, we discuss them in detail in this chapter.

2.2 Linear Models

In Chapter 1, it’s easy to find that the predictor G(x) takes values in a discrete space

G , thus we can divide it into a set of regions labeled according to the classes. If

the boundaries of these regions are linear, the corresponding classification methods
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are called linear methods. In general, there are several different ways in which linear

decision boundaries can be obtained, including linear regression, logistic regression,

and linear discriminant analysis.

2.2.1 Linear Regression

Given a vector of inputs X = (X1, X2, ..., Xp), we predict the output Y via the model:

Ŷ = β̂0 +
p∑

i=1

Xiβ̂i.

For convenience of notation, include the constant variable X0 = 1 in X = (X0, X1, ..., Xp),

then the linear model can be written in vector form as

Ŷ = Xβ̂

where Ŷ is a M -vector, and β̂ is a M × (p + 1) matrix of coefficients. Then in

the (p + 1)-dimensional input-output space, (X, Ŷ) represents a hyperplane and the

function f(X) = Xβ̂ is linear.

Among many different methods of fitting the linear model to a set of training data,

the most popular is the method of least squares: we try to minimize the residual sum

of squares

RSS(β) =
N∑

i=1

(yi − xiβ)2

to get the corresponding coefficient β. After differentiating with respect to β, we can

obtain the unique solution

β̂ = (XTX)−1XTy,

and the fitted value at the jth input xj is ŷj = f̂(xj). Now, we can fit the lin-
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ear regression models to the class indicator variables and classify to the largest fit.

For example, the decision boundary between class i and j is that set of points for

which ŷi(x) = ŷj(x), that is, the set x : (β̂i0 − β̂j0) + (β̂i − β̂j)
T x = 0, an affine set

or hyperplane. We classify x to the class with the largest value for its discriminant

function.

2.2.2 Linear Discriminant Analysis

Assume fm(x) is the group-conditional density function of X in group G = m, and

πm is the prior probability of group m with
∑M

m=1 πm = 1. Then Bayes theorem can

be applied to obtain the group posteriors Pr(G|X), which correspond to the optimal

classification results with the lowest error rates among all classification techniques:

Pr(G = m|X = x) =
fm(x)πm∑M
l=1 fl(x)πl

.

Linear discriminant analysis (LDA) is the best classification method for Normal-

distributed data

fm(x) =
1

(2π)(p/2)|Σm|1/2
e−1/2(x−µm)T Σ−1

m (x−µm),

it assumes that the groups have a common covariance matrix Σm = Σ∀m. In order

to obtain the linear discriminant functions, or the decision boundaries between two

different groups, we consider the two-group cases first.
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By computing the log-ratio of two group posteriors, we see that

log
Pr(G = k|X = x)

Pr(G = l|X = x)
= log

fk(x)

fl(x)
+ log

πk

πl

= log
πk

πl

− 1/2(µk + µl)
T Σ−1(µk − µl)

+xT Σ−1(µk − µl).

Since the assumptions are the two groups have a common covariance matrix and

data have a Normal distribution, it’s easy for us to get the equation above that is

linear in x and indicates the decision boundary between group k and l is linear in

x (a hyperplane in high dimensional space). The conclusion can be generalized for

any pair of groups, which means that the decision boundaries among different groups

are all linear and correspond to the linear discriminant functions with the following

format:

δk(x) = xT Σ−1µk − 1/2µT
k Σ−1µk + log πk (2.1)

and

G(x) = arg max
k

δk(x)

Where three parameters πk, µk, and Σ can be estimated by using the training data

with a Normal distribution: π̂k = Nk/N , Nk is the number of group-k observations;

µ̂k =
∑
gi=k

xi/Nk;

Σ̂ =
K∑

k=1

∑
gi=k

(xi − µk)(xi − µk)
T /(N −K).

Where gi denotes the group of observation i.
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2.2.3 Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) arises in the classification cases with fewer

assumptions compared with linear discriminant analysis (LDA). If the covariance

matrix for each group, Σ, is not the same one, then the convenient cancellations in

(2.1) will not occur and the quadratic terms in x will remain. (2.2) may be changed

into quadratic discriminant functions (QDA):

δk(x) = −1/2 log |Σk| − 1/2(x− µk)
T Σ−1

k (x− µk) + log πk. (2.2)

It’s quadratic in x and implies that the decision boundaries between each pair of

groups are not linear.

The estimates for parameters in (2.3) are similar to those in (2.2) except that the

covariance matrix should be separately estimated for each group. Although the num-

ber of parameters needed to be estimated dramatically increases in high dimensional

space, both LDA and QDA performs well on various classification tasks. A known

and widely cited example as a proof for this is the STATLOG project [5], in which

LDA was among the top 3 classifiers for 7 of the 22 datasets, QDA was among the

top 3 for 4 datasets, and one of the pair among the top 3 for 10 datasets. Actually,

the performances of LDA and QDA are similar, but QDA is the preferred approach

with more convenience than LDA. Some statisticians have proposed their explanation

for the two simple classification tools’ popularity: not because the data are almost

Normal or for LDA the covariance matrices are almost equal, but the data can only

support simple decision boundaries like linear or quadratic, and the estimates for the

parameters in the models are stable. It’s a bias variance trade-off: Maybe the liner

decision boundary is not appropriate, but the bias can be estimated with much lower

variance than more exotic ones. Of course, for QDA, which has many parameters to
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be estimated,the explanation is less believable.

As for the computations for LDA and QDA, we can simplify them by diagonalizing

Σ̂ or Σ̂k, especially for the latter: first, compute the eigendecomposition for each

Σ̂k = UkDkU
T
k , here Uk is p× p orthonormal and Dk is a diagonal matrix of positive

eigenvalues dkl; then the components for δk(x) (2.3) are the following:

(x− µ̂k)
T Σ̂−1

k (x− µ̂k) = [UT
k (x− µk)]

TD−1
k [UT

k (x− µk)]

log |Σ̂k| = Σl log dkl.

Specifically, the LDA classifier may be defined by:

1. Sphere the data according to the common covariance estimate Σ̂ = UDUT ,

which means x can be transformed to X? in the following way:

X? ← D−1/2UTX.

2. Classify to the closest group and modulate the effect of the group prior proba-

bilities πk.

In summary, the data with Normal distribution and common covariance are optimally

be classified by linear decision boundaries, and the procedure can be finished with the

steps above. In addition, LDA is the optimal classification approach for data with a

Normal distribution. If the data don’t have a Normal distribution, then all the linear

methods including LDA, linear regression, QDA, separating hyperplane, and logistic

regression are very similar except for some specific requirements for applications, for

example, LDA assumes a common covariance matrix exists, but QDA doesn’t, and
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so on. Particularly, for two-class classification problems, LDA has the same power as

linear regression methods.

2.2.4 Logistic Regression

As for the logistic regression model, which arises from the desire to model the posterior

probabilities of the M classes via linear functions in x, while at the same time ensuring

that they sum to one and remain in [0,1]. The form of the model is

log
Pr(G = 1|X = x)

Pr(G = M |X = x)
= β10 + βT

1 x

log
Pr(G = 2|X = x)

Pr(G = M |X = x)
= β20 + βT

2 x

...

log
Pr(G = M − 1|X = x)

Pr(G = M |X = x)
= β(M−1)0 + βT

M−1x.

Simple calculations lead to

Pr(G = m|X = x) =
exp(βm0 + βT

mx)

1 +
∑M−1

l=1 exp(βl0 + βT
l x)

,

m = 1, . . . ,M − 1,

P r(G = M |X = x) =
1

1 +
∑M−1

l=1 exp(βl0 + βT
l x)

,

and we can testify they sum to one. Particularly, we denote the probabilities Pr(G =

m|X = x) = pm(x; θ), θ = β10, β1, . . . , β(M−1)0, βM−1 is the entire parameter set.

In the case of M = 2, there is a single linear function. The first two examples given

in Chapter 1 (Section 1.2.1) can be solved with the simple model, which is widely

employed in biological applications where binary responses, two classes, occur quite
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often. It’s also the reason why we select it to be one of methods for MST studies.

2.3 Nearest Neighbor Methods

Nearest-neighbor methods use those observations in the training set closest in input

space to unlabeled sample x to obtain its category Ŷ . Among a variety of pattern

recognition algorithms, k nearest neighbor classifier (k-NN) is a nonparametric anal-

ysis method which has been proved very successful in many fields. It is described in

more detail in this section. Consider the two-group case (Human and Nonhuman) of

microbial source tracking (MST) described in Chapter 1. For either linear classifiers

or quadratic classifiers, in order to discriminate between the two groups a decision

function is needed to build in such a way that the error is as small as possible. But

for k nearest neighbor, that discrimination problem can be solved in a different way.

2.3.1 Distances for Pairs of Units

Before discussing k nearest neighbor methods in detail, it’s necessary to introduce

about the measure of “distances” or “closeness” for pairs of units. Generally, the

Euclidean distance and the city-block distance metrics depicted below are employed

to calculate distances between two p-dimensional units X′ = [x1, x2, . . . , xp] and Y′ =

[y1, y2, . . . , yp] :

(1) Euclidean distance

d(x,y) =
√

(x1 − y1)2 + · · ·+ (xp − yp)2 =
√

(x− y)′(x− y)
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unit BiologC1 BiologC3 BiologC4 BiologC5 BiologC7

a 1 1 1 1 0
b 1 1 1 1 0
c 1 1 1 1 0
d 1 1 1 1 0
e 1 1 0 1 0
f 1 1 0 1 1

Table 2.1: Carbon utilization data

(2) City-block distance

d(x,y) =
p∑

i=1

|xi − yi|

However, sometimes units can not be represented by meaningful p–dimensional mea-

surements, but compared with each other on the basis of the presence or absence

of certain features by introducing a binary variable, which assumes the value one if

the feature is present and the value zero otherwise. To make the explanation easier,

consider small subset of n=6 units possessing p=5 features selected from microbial

source tracking (MST) data:

For unit e and f , there are four 1–1 matches, one 0-0 match, and one 0-1 mismatch.

Assume xej be the binary value of the jth binary feature on the unit e and xfj be the

binary value of the jth binary feature on the unit f, j = 1, 2, . . . , 5. Then the squared

Euclidean distance

5∑
j=1

(xej − xfj)
2 = (1− 1)2 + (1− 1)2 + (0− 0)2 + (1− 1)2 + (0− 1)2 = 1

corresponds to the number of mismatches between unit e and f . In order to use it

reasonably to measure the similarity or closeness, several schemes for defining sim-

ilarity coefficients have been proposed, which specify differential weights of the 1–1
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1(unitf ) 0(unitf ) Totals
1(unite) a b a+b
0(unite) c d c+d
Totals a+c b+d p=a+b+c+d

Table 2.2: Contingency table for Carbon utilization measurement

matches and the 0–0 matches. Actually, the frequencies of matches and mismatches

for two units can be shown in the following contingency table: In this table, a denotes

the frequency of 1–1 matches, b is the frequency of 1–0 matches, c is the frequency

of 0–1 matches, and d is the frequency of 0-0 matches. It’s easy to find that for unit

e and unit f in our sample, a = 3, b = 0, c = 1, d = 1. With an application to mi-

crobial source tracking (MST), several common similarity coefficients Sij =Similarity

Between Objects i and j, defined in terms of the frequencies in the contingency table

above are [6]:

1. Dice [7]: 2a
2a+b+c

2. Jaccard [8]: a
a+b+c

3. Matching Coefficient [9]: a+d
p

4. Ochiai [10]: a√
(a+b)(a+c)

5. Jeffrey’s X [11]: a
2

(
1

a+b
+ 1

a+c

)

Where p is the number of binary features. For instance, if the Dice similarity coeffi-

cient is employed and the equal weights are given to all the matches, the similarity

number for unit e and f can be calculated as:

a + d

p
= (3 + 1)/(3 + 0 + 1 + 1) = 4/5.
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In the same way, the similarity numbers for pairs of units in the sample selected at the

beginning of this subsection can be computed and displayed in the 6 × 6 symmetric

matrix 

1

1 1

1 1 1

1 1 1 1

4/5 4/5 4/5 4/5 1

3/5 3/5 3/5 3/5 4/5 1


Thus, this matrix indicates such conclusion as unit e is least similar to any other unit

and unit a, b, c, and d are the same with each other [6].

2.3.2 K Nearest Neighbor Classifier

Based on the computation of distances for pairs of units above, let’s go back the k

nearest neighbor classifier (k–NN). Assume each unit in the selected Carbon sample

except for unit c has been labeled H (Human) or N (Nonhuman)—unit a, b, and d are

labeled H and unit e and f are labeled N—and we need to classify unit c into H or N:

What the k nearest neighbor classifier does is to select the k nearest neighbors around

the unit c and use them to assign a label to unit c. First, an appropriate k needs to

be chosen for the specific problem, which is a tough task because too large (or too

small) k may result in non generalizing classifiers. In general, the optimal k can be

found by employing the leave–one–out method on the training set with independent

test sets for accurate error estimation and comparison of different k nearest neighbor

classifiers required. Just for instance, let’s assume k = 3 for this case. Second, the

key idea of k nearest neighbor method is that determining the group of the unlabeled

25



unit can be done according to a majority voting rule which states that the label to

be assigned should be the one that occurs the most among the neighbors. Here, from

the 6×6 symmetric matrix of the similarity coefficient, the three nearest neighbors of

unit c is unit a, b and d, which are all labeled H, thus unit c is assigned by k nearest

neighbor approach into group H, the majority label among its three nearest neighbor.

k–nearest–neighbor classifier [12] takes much time to get final classification results

and has some computational considerations. However, it is still a good tool with

some improvements, like invariant metrics and tangent distance [13], and adaptive

nearest–neighbor selection [14].

2.4 Summary

We have described two techniques for classification in Section 2.2 and 2.3: the stable,

but biased, linear models and less stable, but often less biased, class of k–nearest–

neighbor rules. It seems that with a reasonably large set of training data we should

be able to find a fairly large neighborhood of observations close to any x and average

them, thus we could always approximate the theoretically optimal conditional expec-

tation by k–nearest–neighbor averaging. However, our intuition is not correct in high

dimensions with the phenomenon commonly referred to as the curse of dimensional-

ity [15]. In particular, the class of nearest–neighbor methods can fail in at least two

ways:

1. If the dimension of the input space is high, the nearest neighbors need not be

close to the target point, which can result in large errors;
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2. If special structure is known to exist, it can be used to reduce both the bias and

the variance of the estimates.

These are also the reasons why we anticipate using other classes of models for f(x),

specifically designed to overcome the dimensionality problems. In particular, support

vector machines methods described in Chapter 3 are developed specifically for this

purpose.
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Chapter 3

Neural Networks and Support

Vector Machine

3.1 Introduction

Chapter 2 describes linear models and k-nearest-neighbor procedures, two simple but

important procedures for classification. Many variants of the two methods have been

developed separately and have been the most popular techniques used in the areas

of statistics, data mining, and artificial intelligence. Neural networks and support

vector machines are among them.

3.2 Neural Networks

Neural networks have been shown to compete well with the best learning methods

on many problems, and are especially effective in problems where prediction instead
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of interpretation is the goal and a high signal-to-noise ratio and settings exist. The

central idea of neural networks techniques is to extract linear combinations of the

inputs as derived features, and then model the target as a nonlinear function of these

features. That is, neural network models consist of sums of nonlinearly transformed

linear models.

3.2.1 Overview

The original idea of neural networks came from psychologists and neurobiologists [14]

who tried to explore neurons’ computational analogues and the name “neural net-

work” derived from the fact that they were developed as models for the human brain

first. It has been developed separately in statistics [16] and artificial intelligence [17]

fields based on essentially identical models. Researchers in these fields defined a neu-

ral network as a set of connected input/output units where a flexible weight is given

to each connection. The weights are repeatedly adjusted by training the neural net-

work, a phase is generally called neural network learning or connectionist learning, so

that the input samples can be classified into a correct category. Each unit represents

a neuron, and the connections represent synapses.

Particularly, from the views of statisticians, the neural network is a useful tool for

nonlinear statistical model. The central idea of neural networks is to extract linear

combinations of the inputs as derived features, and then model the outputs as non-

linear functions of these features. As a powerful learning method, neural networks

have various applications in many fields. The most important advantage of neural

networks is their high tolerance to noisy data and ability to predict new (unlabeled)

observations. However, they require long training time and are not suitable for some

applications where speed is emphasized. They also require more empirical knowledge
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or experiences to determine the network topology or “structure” where lots of pa-

rameters, like the number of the layers, the number of units in the input layer, the

number of hidden layers, the number of units in each hidden layer, and the number

of units in the output layer. The other disadvantage is their poor interpretability

for the reason that it’s hard for people to explain the symbolic meaning behind the

learned weights. Fortunately, several algorithms have developed to extract rules from

the neural networks. A graph corresponding to the content above is shown in Figure

3.1.

Figure 3.1: An example of multilayer feed-forward neural networks with one hidden
layer, seven input units, and three output units

It has been known that normalizing the input values to make them fall between 0.0

and 1.0 will speed up the learning phase. Especially discrete-valued features may be

encoded in such way below.

31



*Figure 3.1 An example of multilayer feed-forward neural networks with one hidden

layer, seven input units, and three output units*

1) If X = (x0, x1, x2), then three input units will be used to represent X in the neural

networks.

Input Units x0 x1 x2

I0 1 0 0

I1 0 1 0

I2 0 0 1

2) If O = O1, O2, then one output unit will be enough to represent O in the neural

networks.

Output Units Class I Class II

O1 0 1

O2 1 0

In addition, the initial values of the weights may also affect the resulting accuracy.

Once a network has been trained and its accuracy is not considered acceptable. It’s

common to repeat the training process with different network topology or a different

set of initial weights. About the learning phase, the back propagation algorithm pro-

posed in the 1980s is the most popular neural network algorithm, which is performed

on multi-layered feed-forward networks. Specifically, the back propagation algorithm

can be performed by iteratively processing a set of training samples, and then com-

paring the network’s prediction for each sample with the actual known class label.

For each training sample, the weights are modified for the purpose of minimizing the

mean squared error between the two class labels. Such modifications are made in the

“backwards” direction: from the output layer, through each hidden layer down to the
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first hidden layer. In general, although not guaranteed, it is supposed that the weight

will converge and the training phase stops at that point.

3.2.2 Vanilla Neural Net

The most widely used neural network model is the “Vanilla” neural net, sometimes

called the single hidden layer back–propagation network, or single layer perceptron.

It is a two–stage classification model and generally can handle multiple quantitative

responses in a seamless fashion. Let’s consider K–class classification, then there

are K units at the top of the network diagram shown in Figure 3.1 and K target

measurements Yk, k = 1, . . . , K, each being coded as a 0–1 variable for the kth class.

And the target Yk is modeled as a function of linear combinations of the derived

features Zm,

Zm = σ(α0m + αT
mX), m = 1, . . . ,M,

Tk = β0k + βT
k Z, k = 1, . . . , K,

fk(X) = gk(T ), k = 1, . . . , K,

where Z = (Z1, Z2, . . . , ZM), and T = (T1, T2, . . . , Tk). Usually, the activation function

σ(v) is chosen to be the sigmoid σ(v) = 1/(1 + e−v). In addition, we denote the

complete set of unknown parameters in the model, often called weights, by θ:

α0m, αm; m = 1, 2, . . . ,MM(p + 1)weights,

β0k, βk; k = 1, 2, . . . , KK(M + 1)weights.
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and the corresponding classifier is G(x) = arg maxkfk(x). In order to make the model

fit the training data well, we use either squared error or cross–entropy (deviance):

R(θ) = −σN
i=1σ

K
k=1yik log fk(xi),

to seek values of the weights.

Back–propagation algorithm is the generic approach to minimizing R(θ). It’s per-

formed by a forward and backward sweep over the network, keeping track only of

quantities local to each unit—typically it will be stopped before getting the global

minimizer of R(θ) to avoid overfitting. The two–pass procedure has also been called

the delta rule [18]. It can be implemented efficiently on a parallel architecture com-

puter because each hidden unit passes and receives information only to and from

units that share a connection. As a result, the advantages of back–propagation are

its simple and local nature although it can be very slow. Moreover, there are several

issues that should be considered in training neural networks, such as starting values,

overfitting, scaling of the inputs, number of hidden units and layers, and so on.

3.3 Support Vector Machines

If two classes are linearly separable, the optimal separating hyperplane separates the

two classes and maximizes the distance to the closest point from either class. It

can be extended to the non-separable case, where the classes overlap. The tech-

niques employed to determine the optimal separating hyperplanes when two groups

are linearly non-separable, the support vector machines (SVMs), are developed by

Vapnik [19]. Support vector machines produce nonlinear boundaries by construct-

ing a linear boundary in a large, transformed version of the feature space. They
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rely on preprocessing the data to represent patterns in a high dimension-typically

much higher than the original feature space. With an appropriate nonlinear mapping

function to a sufficiently high dimension, data from two groups can be separated by

a hyperplane, that is, the one with the maximum distance from the nearest train-

ing patterns, and the support vectors are those nearest patterns with the maximum

distance b from the optimal hyperplane. [20]

3.3.1 Support Vector Classifier

The aim of support vector classification is to devise a computationally efficient way of

learning good separating hyperplanes in a high dimensional feature space. The good

hyperplane can be understood as optimizing the generalization boundaries. Different

generalization boundaries and corresponding algorithms include: one can optimize

the maximal margin, the margin distribution, the number of support vectors, and so

on.

The simplest model of support vector machines, SVMs, is the maximal margin clas-

sifier. As a starting point for the analysis and construction of more complex SVMs,

although it can not be used in many practical problems—for noisy data, there may

be almost no linear separation in the feature space except for overfitting the data by

employing very powerful kernels, it is the easiest algorithm to understand and forms

the main building block for advanced SVMs. Thus the description for this classifier

below is crucial for understanding SVM theory.

Assume the training data consist of N pairs (x1, y1), (x2, y2), . . . , (xN , yN), with xi ∈

<p and yi ∈ {−1, 1}. Then a hyperplane can be defined by

{x : f(x) = xT β + β0 = 0, }
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where β is a unit vector: ||β|| = 1. And the corresponding classification rule is

G(x) = sign[xT β + β0].

It can be shown that f(x) above gives the signed distance from x to the hyperplane

f(x) = xT β + β0 = 0

and there exists a function

f(x) = xT β + β0

with yif(xi) > 0∀i. Now the maximal margin classifier problem can be treated as an

optimization problem

max
β,β0,||β||=1

C subject to yi(x
T
i β + β0) ≥ C, for i = 1, . . . , N (3.1)

Where, the distances between either of the two groups and the hyperplane are both

C units. Hence the width of 2C units is the margin.

Actually, the usual way of describing the support vector criterion for separable data

is

min
β,β0

||β|| subject to yi(x
T
i β + β0) ≥ 1, for i = 1, . . . , N. (3.2)

And C = 1/||β||. For this convex optimization problem with quadratic criterion and

linear inequality constraints, there are several ways to solve it.

Now, assume the groups overlap in feature space, then what we can do to deal with

such cases is to maximize ||C|| with allowing for some points to be on the wrong side
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of the margin. The constraint in (3.1) can be modified in two ways:

yi(x
T
i β + β0) ≥ C − ξi, or yi(x

T
i β + β0) ≥ C(1− ξi), (3.3)

Where the slack variables ξ = (ξ1, . . . , ξn), and ∀i, ξi ≥ 0,
∑N

i=1 ξi ≤constant. Since

the second way results in the standard support vector classifier, we will use it solve

our problem. In addition, an explanation for it is given here: The value ξi is the

proportional amount by which the prediction f(xi) = xT
i β + β0 is on the wrong

side of its margin, by bounding the sum of ξi, i = 1, . . . , N , the total proportional

amount of predictions fall on the wrong side of their margin can also be bounded. For

example, bounding Σξi at a constant C means bounding the total number of training

misclassifications at C since misclassifications occur when ξi > 1. Similarly, we define

the support vector classifier for non-separable cases in the usual way

min||β||+ subject to

 yi(x
T
i β + β0) ≥ C(1− ξi) ∀i,

ξi ≥ 0, Σξi ≤ constant.
(3.4)

From the definition, we can find an attractive property of support vector classifiers:

the points well inside their group boundaries do not contribute much to the bound-

aries’ building. It is obviously different from linear discriminant analysis (LDA).

3.3.2 Discussion about Support Vector Machine

We have introduced how to find linear boundaries in the input feature space with

the support vector classifier. As mentioned at the beginning of this section, with

more advanced support vector classifiers, we can make the classification process more

flexible by enlarging the feature space using mapping functions such as polynomials,
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Gaussians, splines, or other basis expansions. The choice of the mapping functions is

often determined by the designers’ knowledge of the problem domain, but the rule of

thumb here is: with the transformation, data that are not linearly separable in original

feature space can be well separated by linear boundaries in the enlarged space. Once

the mapping functions hm(x), m = 1, . . . ,M are selected, we just need to employ

the same process as before to fit the support vector classifier with transformed input

feature h(xi) = (h1(xi), h2(xi), . . . , hM(xi)), i = 1, . . . , N , and produce the nonlinear

boundary function in the original feature space

f̂(x) = h(x)T β̂ + β̂0.

Then we can obtain the corresponding classifier, it is

Ĝ(x) = sign(f̂(x)).

There is one additional point that should be made. The dimensionality of the mapped

feature space can be arbitrarily high, infinite in some cases, which may lead to two

disadvantageous situations: on one hand, the computations can become prohibitive

by computational resources; on the other hand, with sufficient mapping functions, the

data can be separable, but overfitting may occur at the same time. Essentially, what

the SVM classifier is solving is a function–fitting problem associated with a particular

criterion and regularization form, similar to smoothing splines techniques [21].

38



Chapter 4

Application to Microbial Source

Tracking

4.1 Overview

In this chapter, we apply linear discriminant analysis, k-nearest-neighbor, logistic

regression, neural networks and support vector machine approaches to the BOX-

PCR data described in Chapter 1. This is done for both a two group and a five group

case and we conclude with discussion.

4.2 Two Group Classification

It is easier for statisticians to do two-group classification than three or more groups.

On the other hand, in Chapter 1, we mentioned that for MST, waters contaminated

with human feces are generally thought as putting greater risk to human health than
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Host Human Nonhuman Total Error rate
Human 14 19 33 0.5758
Nonhuman 106 302 408 0.2598

Total 120 321 441
Error rate 0.8833 0.0592 0.2834

Table 4.1: Confusion matrix for linear discriminant analysis with equal priors. Row
labels indicate true host and column labels indicate predicted host.

Host Human Nonhuman Total Error rate
Human 4 29 33 0.8788
Nonhuman 7 401 408 0.0172

Total 11 430 441
Error rate 0.6364 0.0674 0.0816

Table 4.2: Confusion matrix for linear discriminant analysis with proportional priors.
Row labels indicate true host and column labels indicate predicted host.

the other pollutants. As a result, in this section, We only consider about two cate-

gories, human and nonhuman, in the data. The classification results corresponding

to each method mentioned above are shown with the confusion matrix below. For

each of them, row labels denote true host and column labels denote predicted host.

Host Human Nonhuman Total Error rate
Human 11 22 33 0.6667
Nonhuman 14 394 408 0.0343

Total 25 416 441
Error rate 0.5600 0.0529 0.0816

Table 4.3: Confusion matrix for 1-nearest-neighbor method based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.
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Host Human Nonhuman Total Error rate
Human 1 32 33 0.9697
Nonhuman 1 407 408 0.0025

Total 2 439 441
Error rate 0.5000 0.0729 0.0748

Table 4.4: Confusion matrix for 5-nearest-neighbor method based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.

Host Human Nonhuman Total Error rate
Human 0 33 33 1
Nonhuman 0 408 408 0

Total 0 441 441
Error rate 0.0748 0.0748

Table 4.5: Confusion matrix for 10-nearest-neighbor method based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.

Host Human Nonhuman Total Error rate
Human 7 9 16 0.5625
Nonhuman 26 399 425 0.0612

Total 33 408 441
Error rate 0.0794

Table 4.6: Confusion matrix for logistic regression analysis based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.
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Host Human Nonhuman Total Error rate
Human 0 33 33 1
Nonhuman 0 408 408 0

Total 0 441 441
Error rate 0.0748 0.0748

Table 4.7: Confusion matrix for two group classification by support vector machines
based on hold-one-out cross-validation. Row labels indicate true host and column
labels indicate predicted host.

Host Human Nonhuman Total Error rate
Human 27 6 33 0.1818
Nonhuman 0 408 408 0.0000

Total 27 414 441
Error rate 0.0000 0.0145 0.0136

Table 4.8: Confusion matrix for two group classification by a neural network with 2
nodes. Row labels indicate true host and column labels indicate predicted host.

Host Human Nonhuman Total Error rate
Human 31 2 33 0.0606
Nonhuman 0 408 408 0.0000

Total 31 410 441
Error rate 0.0000 0.0049 0.0045

Table 4.9: Confusion matrix for two group classification by a neural network with 3
nodes. Row labels indicate true host and column labels indicate predicted host.

Host Human Nonhuman Total Error rate
Human 32 1 33 0.0303
Nonhuman 0 408 408 0.0000

Total 32 409 441
Error rate 0.0000 0.0024 0.0023

Table 4.10: Confusion matrix for two group classification by a neural network with 4
nodes. Row labels indicate true host and column labels indicate predicted host.
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Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 33 3 8 9 5 58 0.4310
Cow 2 107 12 24 6 151 0.2914
Human 3 7 15 3 5 33 0.5455
Pig 5 6 12 33 6 62 0.4677
Sewage 7 12 25 13 80 137 0.4161

Total 50 135 72 82 102 441
Error rate 0.3400 0.2074 0.7917 0.5976 0.2157 0.3923

Table 4.11: Confusion matrix for linear discriminant analysis based on hold-one-out
cross-validation with equal priors. Row labels indicate true host and column labels
indicate predicted host.

Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 34 4 3 9 8 58 0.4138
Cow 1 127 5 10 8 151 0.1589
Human 6 8 8 2 9 33 0.7576
Pig 5 17 4 29 7 62 0.5323
Sewage 6 20 8 10 93 137 0.3212

Total 52 176 28 60 125 441
Error rate 0.3462 0.2784 0.7143 0.5167 0.2560 0.3401

Table 4.12: Confusion matrix for linear discriminant analysis based on hold-one-out
cross-validation with priors proportional to host representation in training data. Row
labels indicate true host and column labels indicate predicted host.

4.3 Five Group Classification

Since in the data described in Chapter 1, we totally have five specific categories, not

only human and nonhuman. In this section, we consider about the classification of

these five hosts: chicken, cow, human, pig and sewage, with the same approaches as

Section 4.2. The classification results corresponding to each method are also shown

by the confusion matrix below. For each of them, row labels denote true host and

column labels denote predicted host.
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Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 36 8 3 6 5 58 0.3793
Cow 7 124 4 8 8 151 0.1788
Human 5 5 12 1 10 33 0.6364
Pig 3 17 5 28 9 62 0.5484
Sewage 7 17 11 16 86 137 0.3723

Total 58 171 35 59 118 441
Error rate 0.3793 0.2749 0.6571 0.5254 0.2712 0.3500

Table 4.13: Confusion matrix for 1-nearest-neighbor method based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.

Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 31 11 0 8 8 58 0.4655
Cow 0 133 2 8 8 151 0.1192
Human 2 14 2 3 12 33 0.9394
Pig 4 25 2 23 8 62 0.6290
Sewage 8 28 7 10 84 137 0.3869

Total 45 211 13 52 120 441
Error rate 0.3111 0.3697 0.8462 0.5577 0.3000 0.3800

Table 4.14: Confusion matrix for 5-nearest-neighbor method based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.

Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 27 12 1 6 12 58 0.5345
Cow 0 136 0 7 8 151 0.0993
Human 1 18 1 2 11 33 0.9697
Pig 5 29 0 21 7 62 0.6613
Sewage 4 34 3 9 87 137 0.3650

Total 37 229 5 45 125 441
Error rate 0.2703 0.4061 0.8000 0.5333 0.3040 0.3800

Table 4.15: Confusion matrix for k-nearest-neighbor method based on hold-one-out
cross-validation with k equaling 10. Row labels indicate true host and column labels
indicate predicted host.
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Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 34 8 4 4 5 55 0.5000
Cow 4 121 13 17 17 172 0.0397
Human 2 3 6 5 3 19 1.0000
Pig 8 8 2 25 9 52 0.7258
Sewage 10 11 8 11 103 143 0.3504

Total 58 151 33 62 137 441
Error rate 0.414 0.1987 0.8182 0.5968 0.2482 0.3447

Table 4.16: Confusion matrix for logistic regression analysis based on hold-one-out
cross-validation. Row labels indicate true host and column labels indicate predicted
host.

Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 29 7 0 9 13 58 0.5000
Cow 1 127 2 5 16 151 0.1589
Human 3 10 5 1 14 33 0.8485
Pig 2 17 0 32 11 62 0.4839
Sewage 2 20 2 5 108 137 0.2117

Total 37 181 9 52 162 441
Error rate 0.2162 0.2983 0.4444 0.3846 0.3333 0.3200

Table 4.17: Confusion matrix for five group classification by support vector machines
based on hold-one-out cross-validation. Row labels indicate true host and column
labels indicate predicted host.

Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 55 1 0 1 1 58 0.0172
Cow 12 134 0 1 4 151 0.0000
Human 14 0 0 12 7 33 0.0303
Pig 35 1 0 22 4 62 0.0000
Sewage 11 7 0 6 113 137 0.0073

Total 127 143 0 42 129 441
Error rate 0.0000 0.0070 0.0000 0.0000 0.0078 0.0023

Table 4.18: Confusion matrix for five group classification by neural network with 2
nodes. Row labels indicate true host and column labels indicate predicted host.
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Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 50 2 0 5 1 58 0.1379
Cow 0 146 1 2 2 151 0.0331
Human 14 0 3 8 8 33 0.9091
Pig 1 8 0 43 10 62 0.3065
Sewage 1 4 0 28 104 137 0.2409

Total 66 160 4 86 125 441
Error rate 0.2424 0.0875 0.2500 0.5000 0.1680 0.2154

Table 4.19: Confusion matrix for five group classification by neural network with 3
nodes. Row labels indicate true host and column labels indicate predicted host.

Host Chicken Cow Human Pig Sewage Total Error rate
Chicken 52 4 0 1 1 58 0.1034
Cow 0 146 3 1 1 151 0.0331
Human 3 3 14 5 8 33 0.5758
Pig 1 8 2 49 2 62 0.2097
Sewage 1 2 3 3 128 137 0.0657

Total 57 163 22 59 140 441
Error rate 0.0877 0.1043 0.3636 0.1695 0.0857 0.1179

Table 4.20: Confusion matrix for five group classification by neural network with 4
nodes. Row labels indicate true host and column labels indicate predicted host.
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4.3.1 Discussion

For this particular data, none of the classifiers evaluated via cross-validation was

clearly superior. The one method that was not evaluated via cross-validation was the

neural network. Therefore, results in those tables should be viewed with suspicion.

With additional time, this project could have pursued various other topics and de-

tailed analyses. In particular, detailed simulation studies and theoretical comparisons

between methods would be valuable. In addition, classifiers which specifically target

data structures commonly found in microbial source tracking data could be explored.
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Appendix: R code

R (version 1.9.0) was used extensively in this project to perform calculations and gen-

erate plots. R is a language and environment for statistical computing and graphics,

which is available as free software under the terms of the Free Software Founda-

tion’s GNU General Public License in source code form. R can be downloaded at:

http://www.r-project.org.

R can be extended via packages available through the Comprehensive R Archive Net-

work (CRAN) family of Internet sites covering a very wide range of modern statistics.

The following is a list of the CRAN packages used in this project.

CRAN Package Statistical methods

class k-nearest neighbor classification

e1071 Support vector machines

MASS Linear discriminant analysis and Quadratic discriminant analysis

nnet Neural networks

stats Multidimensional scaling

The remaining pages in this appendix document the R code used in this project.
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##################################################

# Reading the data into R and defining variables #

##################################################

MST<-read.csv("BNecoli.csv")

# n=441 by p=40 binary matrix of MST fingerprint data

x<-MST[,-c(1,2)]

# Class variable with five levels:

# (Chicken, Cow, Human, Pig and Sewage)

cl<-MST[,2]

cl<-as.factor(cl)

# Class variable with two levels: Human and Nonhuman

cl2<-array("Nonhuman",dim=length(cl))

cl2[cl=="Human "]<-"Human"

cl2<-as.factor(cl2)

################

# Data summary #

################

# Histogram of variable means (proportions)

jpeg(filename = "hist.jpg", width = 480, height = 480,

pointsize = 12, quality = 75, bg = "white")

hist(apply(x,2,mean),main="",xlab="")

dev.off()

# Plot of correlation structure

jpeg(filename = "corr.jpg", width = 480, height = 480,

pointsize = 12, quality = 75, bg = "white")

image((cor(x))[40:1,],axes=FALSE)

dev.off()

50



# Multidimensional scaling plot (Euclidean distance)

colorvar<-array(6,dim=length(cl))

colorvar[cl=="Chicken"]<-1

colorvar[cl=="Cow"]<-2

colorvar[cl=="Human "]<-3

colorvar[cl=="Pig"]<-4

mdsdata<-cmdscale(dist(x),k=2)

jpeg(filename = "mds.jpg", width = 480, height = 480,

pointsize = 12, quality = 75, bg = "white")

plot(mdsdata,col=colorvar,pch=16,xlab="",ylab="")

dev.off()

######################################

# Linear discriminant analysis (LDA) #

######################################

## Two-group case

z<-lda(x, cl2, prior=rep(0.5,2), CV=TRUE) # LDA with equal priors

z<-lda(x, cl2, CV= TRUE) # LDA with proportional priors

# Confusion matrix and error rate computation

q<-table(cl2,z$class)

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)
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## Five-group case

z<-lda(x, cl, prior=rep(0.2,5), CV=TRUE) # LDA with equal priors

z<-lda(x, cl, CV= TRUE) # LDA with proportional priors

# Confusion matrix and error rate computation

q<-table(cl,z$class)

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

sum(errors)/sum(Total)

#########################################

# Nearest Neighbor Classification Rules #

#########################################

## Two-group case

z<-knn.cv(x, cl2, k=1) # 1-NN classification rule

z<-knn.cv(x, cl2, k=5) # 5-NN classification rule

z<-knn.cv(x, cl2, k=10) # 10-NN classification rule

# Confusion matrix and error rate computation

q<-table(cl,z)

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)
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## Five-group case

z<-knn.cv(x, cl, k=1) # 1-NN classification rule

z<-knn.cv(x, cl, k=5) # 5-NN classification rule

z<-knn.cv(x, cl, k=10) # 10-NN classification rule

# Confusion matrix and error rate computation

q<-table(cl,z)

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

###################################

# Logistic discriminant functions #

###################################

## Two-group case

x<-as.matrix(x)

phat<-array(dim=length(cl2))

for(i in 1:length(cl2)){

i<-1

y<-class.ind(cl2)[-i,1]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

temp<-glm(y~.,data=w,family="binomial")

yhat<-sum(temp$coeff*c(1,x[i,]))

phat[i]<-exp(yhat)/(1+exp(yhat))

}
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## Five-group case

phat1<-array(dim=length(cl))

for(i in 1:length(cl)){

y<-class.ind(cl)[-i,1]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

temp<-glm(y~.,data=w,family="binomial")

yhat<-sum(temp$coeff*c(1,x[i,]))

phat1[i]<-exp(yhat)/(1+exp(yhat))

}

phat2<-array(dim=length(cl))

for(i in 1:length(cl)){

y<-class.ind(cl)[-i,2]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

temp<-glm(y~.,data=w,family="binomial")

yhat<-sum(temp$coeff*c(1,x[i,]))

phat2[i]<-exp(yhat)/(1+exp(yhat))

}

phat3<-array(dim=length(cl))

for(i in 1:length(cl)){

y<-class.ind(cl)[-i,3]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

temp<-glm(y~.,data=w,family="binomial")

yhat<-sum(temp$coeff*c(1,x[i,]))

phat3[i]<-exp(yhat)/(1+exp(yhat))

}

phat4<-array(dim=length(cl))

for(i in 1:length(cl)){

y<-class.ind(cl)[-i,4]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

temp<-glm(y~.,data=w,family="binomial")

yhat<-sum(temp$coeff*c(1,x[i,]))

phat4[i]<-exp(yhat)/(1+exp(yhat))

}
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phat5<-array(dim=length(cl))

for(i in 1:length(cl)){

y<-class.ind(cl)[-i,5]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

temp<-glm(y~.,data=w,family="binomial")

yhat<-sum(temp$coeff*c(1,x[i,]))

phat5[i]<-exp(yhat)/(1+exp(yhat))

}

# Confusion matrix and error rate computation

phat<-cbind(phat1,phat2,phat3,phat4,phat5)

maxphat<-apply(phat,1,max)

maxphat5<-cbind(maxphat,maxphat,maxphat,maxphat,maxphat)

y<-class.ind(cl)

q<-t(maxphat5==phat)%*%y

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

#################################

# Support vector machines (SVM) #

#################################

# Reinitialize data after logistic discrimination

x<-MST[,-c(1,2)]

cl<-as.factor(MST[,2])

cl2<-array("Nonhuman",dim=length(cl))

cl2[cl=="Human "]<-"Human"

cl2<-as.factor(cl2)
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## Two-group case

Ghat<-cl2

for(i in 1:length(cl2)){

y<-cl2[-i]

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

attach(w)

temp<-svm(y~.,data=w)

Ghat[i]<-predict(temp,as.data.frame(x[i,]))

}

# Confusion matrix and error rate computation

q<-table(cl2,Ghat)

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

## Five-group case

Ghat<-cl

for(i in 1:length(cl)){

#i<-1

y<-cl[-i]

#xalt<-x

xalt<-x[-i,]

w<-as.data.frame(cbind(y,xalt))

attach(w)

temp<-svm(y~.,data=w)

Ghat[i]<-predict(temp,as.data.frame(x[i,]))

}
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# Confusion matrix and error rate computation

q<-table(cl,Ghat)

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

###################

# Neural networks #

###################

## Two-group case

targets <- class.ind(cl2)

mst.nnet <- nnet(x, targets, size=2, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

mst.nnet <- nnet(x, targets, size=3, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

mst.nnet <- nnet(x, targets, size=4, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

# Confusion matrix and error rate computation

q<-table(cl2,max.col(predict(mst.nnet, x)))

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

sum(errors)/sum(Total)
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## Five-group case

targets <- class.ind(cl)

mst.nnet <- nnet(x, targets, size=2, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

mst.nnet <- nnet(x, targets, size=3, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

mst.nnet <- nnet(x, targets, size=4, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

mst.nnet <- nnet(x, targets, size=5, rang=0.5, decay=5e-4,

abstol=5e-200, maxit=10000)

# Confusion matrix and error rate computation

q<-table(cl,max.col(predict(mst.nnet, x)))

errors<-q-diag(diag(q))

Total<-apply(q,2,sum)

colerrors<-apply(errors,2,sum)

rowtotal<-apply(q,1,sum)

rowerrors<-apply(errors,1,sum)

q<-cbind(q,rowtotal,round(rowerrors/rowtotal,4))

q

Total

round(colerrors/Total,4)

sum(Total)

sum(errors)/sum(Total)
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