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Abstract 

 

In this thesis the focus was on the design, fabrication, and tests of the feeding networks 

individually and within an array system.  The array feeding network is a corporate-fed type 

utilizing equal-split, stepped-multiple sections of the conventional Wilkinson power divider in 

microstrip form with a unique topology.  The feeding network was specifically designed for a 

broadside relatively small linearly-polarized wideband UHF non-scanning array for directed 

power applications that uses an array radiator with a new volumetric ribcage dipole 

configuration.  The array has a large impedance bandwidth and consistent front lobe gain over 

the wide frequency band. Theoretical and experimental results describing the performance of the 

array feeding network and the array are presented and discussed.    
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1.  Introduction 

 

The use of three-port power dividers is especially important for antenna array systems that utilize 

a power-splitting network, such a corporate or parallel feed system.  The corporate feed is simply 

a device that splits power between n output ports with a certain distribution while maintaining 

equal path lengths from input to output ports.  It can be implemented with n-way power splitters 

where three-port power dividers are commonly used.  The flexibility of the two-way divider's 

feed structure allows use of multiple stepped-sections to achieve power division with the 

capability of wideband operation.  The bandwidth is primarily limited by the match of the 

radiating elements, although using high-isolation power dividers reduces the dependence on the 

match of the loads.  

 The history of the three-port power divider began in 1960 when Wilkinson [1] described a 

device that separated one signal into n equal signals of equal phase and amplitude.  Theoretically 

perfect isolation between all output ports was achieved at one center frequency.  In 1965, hybrid 

with arbitrary amplitude difference of the output signals was presented by Parad and Moynihan 

[2].  A perfect three-port hybrid property was again achieved at one frequency.  In 1968, Cohn 

[3] presented a class of equal-power dividers with isolation and matching at any number of 

frequencies.  Further, in 1971 Ekinge [4] described three-port hybrids made up of n sections in 

cascade, where each section is composed of two coupled lossless transmission lines of electrical 

length Φ and an intermediate isolation resistor.  The analysis of both Ekinge and Cohn were 

similar.  However the difference was that Cohn considered the equal power-split three-port 

hybrid, while Ekinge discussed the three-port hybrid of an arbitrary number of splits.  Since that 

time, research on three-port hybrids has continued.   
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One limitation of the corporately fed array is space usage that the feeding network requires.  The 

designer is often faced with challenge of choosing a topology for the 2-way divider that reduces 

the total size of the feeding network layout and also avoids the coupling between the two 

impedance transformers.  Therefore, careful optimization of the individual 2-way power divider 

topology needs be included in the design of the feeding network.   

 The main objective of this thesis is to design, investigate, and analyze a corporate feeding 

network of custom Wilkinson power dividers that can be used with any arbitrary radiator in an 

antenna array.  Although the corporate-fed network can be used for any type of radiator, a new 

type of volumetric radiator [5] is investigated that provides improved gain and bandwidth.   
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Part 1:  

Wilkinson divider design of an array corporate fed-network 

 

2.  Problem statement 

2.1. Goal 

 

The goal of Part 1 of this thesis is to analyze and design an equal-split Wilkinson power divider 

using stepped multiple sections of the conventional Wilkinson divider to achieve 2:1, 4:1, and 

8:1 power division. The microstrip design was optimized for operation over the UHF band, 

specifically 0.5-1 GHz, and utilized in a corporate-feeding network for an antenna array.  

Further, the designs were fabricated from low-cost materials but have the capability for use in 

high power applications using enhanced components.      

 

2.2. Approach 

 

The design approach builds from three-port network theory and derivation of scattering 

parameters of the Wilkinson divider, and then investigates different microstrip topologies using 

Agilent ADS and Ansoft HFSS simulation software for design optimization.  Microstrip design 

considerations are also discussed especially in relation to the choice of an appropriate substrate 

for fabrication.  The experimental results for the design prototype are also shown and discussed. 
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2.3. Expected results 

 

The return loss, insertion loss, coupling, and isolation between ports were evaluated to determine 

the optimized final design.  A minimal return loss of -10 dB or better over the band and isolation 

between output ports is a critical design requirement.   Also, approximately -3 dB coupling (half 

of the power) between input and output ports for each stage is anticipated.  The frequency 

response of the 4:1 and 8:1 dividers is expected to have a wider bandwidth than seen in the 2:1 

Wilkinson resulting from the use of additional cascaded 0.25λ sections.   
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3.  Introduction and background 

3.1. Three-port networks 

 

Three-port network power dividers with one input and two outputs have a scattering matrix with 

the following nine independent elements: 

 

 


















333231

232221

131211

SSS

SSS

SSS

S                                                                                     (1) 

 

For reciprocal networks the [S] matrix is symmetric and )( jiij SS  .  Ideally, to avoid any loss of 

power, the network would be lossless and matched at all ports.   When all ports are matched 

)0( iiS  and the reciprocal matrix reduces to [6] 

 

 


















0

0

0

3231

2321

1312

SS

SS

SS

S                                                                                     (2) 

 

3.2. Ideal network assumption 

 

Following the analysis in [7], for the lossless network the scattering matrix is unitary and leads to 
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Which results in  

 

00

00

0

2312

*

23

13

*

1213

12







SSS

SSS

S

                                                                                                               (5)

 

 

This asserts that 0|||| 2

23

2

13  SS and therefore contradicts 1|||| 2

32

2

31  SS .  If the three-port 

network is allowed to be lossy it can be reciprocal and matched at all ports.   

 

3.3. Passive three-port power dividers (advantages and disadvantages) 

 

Three commonly used passive three-port power dividers are the T-junction divider, the resistive 

divider, and the Wilkinson divider.  The advantages and disadvantages of these three dividers are 

summarized in Table 3 below [7]. 
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Table 1: Comparison of passive power dividers. 

Passive power divider Advantage Disadvantage 

T-junction  Lossless 

 Not matched at all ports 

 No isolation between 

output ports 

Resistive 
 Can be matched at all 

ports 

 No isolation between 

output ports 

 Poor power handling, 

limited by resistor 

tolerances 

 Lossy 

Wilkinson 

 Lossless (if matched at 

all ports) 

 High isolation 

 

 

 Reflected power is 

dissipated through 

isolation resistor if 

mismatched 

 

The Wilkinson divider can meet the ideal three-port network conditions (if it is matched at all 

ports) being lossless, reciprocal, matched.  Therefore, the Wilkinson divider is the best choice in 

the above comparison and will be used in the optimized design of the corporate-fed network for 

the array. 
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4.  Wilkinson divider theory 

4.1. Transmission line circuit 

 

The Wilkinson power divider is a three-port network that is lossless when the output ports are 

matched; where only reflected power is dissipated.  Input power can be split into two or more in-

phase signals with the same amplitude.  For a two-way Wilkinson divider using 
4

 impedance 

transformers having a characteristic impedance of 
02Z  and a lumped isolation resistor of 02Z  

with all three ports matched, high isolation between the output ports is obtained [1].  The design 

of an equal-split (3 dB) Wilkinson is often made in stripline or microstrip form; all designs 

considered in this thesis are microstrip, as shown below in Fig. 1(a).  The equivalent 

transmission line circuit is shown in Fig. 1(b).   

 

 

Fig. 1:  The Wilkinson power divider taken from [7]. (a) An equal-split Wilkinson power divider 

in microstrip form.  (b) Equivalent transmission line circuit. 
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Design for center frequency of 0.75 GHz and  500Z requires the isolation resistor to be 

1002 0Z and the impedance of the quarter-lambda transmission line split section to be

 7.702 0Z . 

 

 

4.2. Derivation of scattering parameters  

 

The S-parameter matrix for the Wilkinson power divider can be found using even-odd mode 

analysis which uses circuit symmetry and superposition [7].  As a first step the circuit in Fig. 

1(b) is redrawn with all impedances normalized to the character impedance 0Z and redrawn as 

shown in Fig.2. 

 

 

Fig. 2: The Wilkinson power divider circuit taken from [7] in normalized and symmetric form. 
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There is no current flow between the r/2 resistors or the short circuit between the inputs of the 

two transmission lines at port 1.  Therefore the circuit above can be bisected and separated into 

two systems, even and odd (Fig. 3 (a) and (b) respectively).  Each system can be then analyzed 

separately. 

 

Fig. 3: Bisection of the circuit of Fig. 2 taken from [7]. (a) Even-mode excitation.  (b) Odd-mode 

excitation. 

4.2.1. Even-mode analysis 

 

First the input impedance at Port 2 of the circuit in Fig. 3 (a) is checked where 2Z  

 

)(1
2

2
2

matchedZ e

in                                                                                                             (6)  
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Then voltages at port 2 and port 1 are found 

 

1

1
)1(

)1(

01

02












jVVV

VjVV

e

e

                                                                                                          (7)      

2

22

22

01 jVV e 






                                                                                                                              (8) 

 

4.2.2. Odd-mode analysis 

 

The input impedance at port 2 of Fig. 3 (b) is found again as 

 

)(1
2

2
2

matchedZ o

in                                                                                                              (9) 

 

Voltages at port 2 and port 1 are 

 

)(00

1

02

groundvirtualV

VV o




                                                                                                            (10) 

 

The S11 in the circuit shown below in Fig. 4 (a) and its bisection (b) are used. 
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Fig. 4:  Analysis of the Wilkinson divider (from [7]) to find S11.  (a) Terminated Wilkinson 

divider.  (b) Bisection of the circuit in (a).  

 

When ports 2 and 3 are terminated with matched loads, there is no current flow through the 

normalized isolation resistor and it can be removed.  The input impedance at port 1 is then 

 

1
2

2
2

Z                                                                                                                                (11)
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4.2.3. Summary of scattering parameters 

 

The S-parameters are thus:  

 

011 S
 

 

03322  SS
 

 

2/
22

11
2112 j

VV

VV
SS

oe

oe







 

 

2/3113 jSS    

 

03223  SS  

0inZ at port 1  (12) 

 

Output matched for even/odd modes  (13) 

 

 

symmetry due to reciprocity  (14) 

 

 

symmetry of ports 2 and 3  (15) 

 

due to short or open at bisection  (16) 

 

  

Therefore, the S-matrix can be written as: 

 

 



















00

00

0

2

1

j

j

jj

S                                                                                                                      (17) 
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4.3. Figures of merit 

 

The performance of the Wilkinson divider/coupler is commonly evaluated by the following 

figures of merit [8]: 

||log20][

||log20][

||log20][||log20][

2323

1212

222111

SdBIL

SdBCP

SdBRLandSdBRL







 

return loss at ports 1 and 2  (18) 

coupling between ports 1 and 2  (19) 

isolation between ports 2 and 3  (20) 

 

4.4. Frequency response of an equal-split divider 

 

The frequency response of the equal-split Wilkinson divider is shown in Fig. 5 below.  The 

figures of merit discussed in the previous section are shown over the band from 0.5 to 1 GHz, 

return loss, isolation, and coupling. 

 

Fig. 5: Frequency response of an equal-split Wilkinson power divider. 
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The above plot was generated in Agilent ADS using ideal transmission line components to model 

the Wilkinson divider.  The frequency response over the band 0.5-1 GHz has -3dB coupling and 

return loss and isolation approaching negative infinity at center frequency which coincides with 

the Wilkinson S-matrix previously derived.  
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5.  Microstrip design considerations 

 

There are some important design considerations when choosing an appropriate material for the 

microstrip substrate.  The important factors are size, higher-order modes, surface wave effects, 

dielectric loss, and power handling (such as dielectric strength and thermal conductivity). 

 

   

 

Fig. 6:  Diagram of a microstrip line. 
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5.1. Topology 

 

At lower frequencies such as L-band and below, size can become significant as lambda becomes 

large.  Therefore, a topology that reduces the substrate area is beneficial.  In the design of the 

Wilkinson divider, three topologies for the quarter-lambda split transmission line section were 

considered: the conventional straight split section, a circular split section, and an elliptical split 

section.  The elliptical split transmission line design reduces the size the most but requires close 

spacing between transmission lines in the quarter lambda section.  Because the close spacing of 

the lines did not allow them to be sufficiently decoupled from each other, this topology was 

rejected, though the use of coupled lines in the design of Wilkinson dividers by calculation of 

even and odd mode impedances has been investigated by [9]. The circular and straight line 

quarter lambda split sections are shown in Fig. 7 below.  These two topologies will be compared 

in simulation.   
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Fig. 7: Straight split design vs. circular split the circular design reduces size by 10 mm in length 

and width of substrate. 

 

 

At a design center frequency of 0.75 GHz, the size of the substrate is approximately 90 mm x 90 

mm when using the circular split design.  In comparison to the 100 mm x 100 mm straight split 

design, this is a size reduction of 10 mm in the length and width of the substrate.  This size 

reduction can be improved by further optimization. 
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5.2. Higher-order modes 

 

To avoid excitation of higher-order modes in a microstrip the operating frequency used in design 

should be kept below the cutoff frequency for the first higher-order mode.  The expression for 

cutoff frequency in a microstrip line is given as [10] 

 hW

c
f

r

c
8.02 




                                                                                                                  (21) 

The following plot of Fig. 8 shows the curves of cutoff frequency versus microstrip substrate 

thickness for three common substrates, Teflon, Rogers Duroid 6002 , and FR-4.  Microstrip trace 

widths of 1 mm, 3 mm and 6 mm were chosen, 6 mm being the widest trace used in the 

Wilkinson divider design corresponding to the 50Ω impedance strip. 

 

 

Fig. 8: Cutoff frequency versus substrate thickness for three substrate materials, Teflon, Rogers 

Duriod 6002, and FR-4.  The microstrip trace width is 6 mm (50Ω impedance). 
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The cutoff frequency of the first higher-order mode does not appear until 10 GHz and above for 

a 125 mil thickness substrate of any of the three materials shown. The highest frequency used in 

the Wilkinson design is 1 GHz, which is far below the limitation of 10 GHz.  FR-4 could be 

chosen since it is commonly used in printed circuit board fabrication and is a low cost substrate.  

The figure below shows the cutoff frequency of the first higher-order mode for the microstrip 

trace widths of 1 mm, 3 mm, and 6 mm of FR-4. 

 

 

Fig. 9: Cutoff frequency versus substrate thickness for three microstrip trace widths, 1 mm 2 

mm, and 3 mm of FR-4, microstrip trace width of 6 mm (50Ω impedance). 
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5.3. Surface waves 

 

The next microstrip design consideration is the lowest surface wave mode coupling to the quasi-

TEM mode of the microstrip, which becomes significant at the threat frequency given by [10]: 

12

tan 1






r

r
s

h

c
f




                                                                                                                       (22) 

At this frequency the phase velocities of the two modes are close.  The threat frequency versus 

substrate thickness for the same three materials considered in the previous section, Teflon, 

Rogers Duriod 6002, and FR-4, is shown in Fig. 10. The widest microstrip trace width (50Ω 

impedance) is again used. 

 

 

Fig. 10: Threat frequency versus substrate thickness for the lowest surface wave mode coupling 

to the quasi-TEM mode for the three materials, Teflon, Rogers Duroid 6002, and FR-4.  The 
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maximum microstrip trace width in the Wilkinson design of 6 mm was used (50Ω trace 

impedance). 

 

 Threat frequency at 125 mils thick substrate is above 15 GHz.  As before when considering 

excitement of higher-order modes the design frequency of 1 GHz, it is well below the threat 

frequency.  As a rule of thumb, the lower bound between the cutoff frequency of the first higher-

order mode and the threat frequency for surface wave coupling to the quasi-TEM mode is 

selected for the maximum allowable operating frequency of design.  All three of the substrate 

materials are acceptable for design.  Although lossy, FR-4 is the most common and readily 

available material for printed circuit board fabrication and also low cost.  Therefore, it has been 

chosen as the microstrip substrate material for this Wilkinson power divider design.  The 

MATLAB script computing the effects of higher order modes and surface wave affects is 

included in Appendix I. 

 

5.4. Losses 

 

There are three types of losses that are considered when designing a microstrip line: conductor 

loss, dielectric loss, and radiation loss.  Magnetic losses play a role in magnetic substrates such 

as ferrites and are not presented.  The following expressions are used to approximate the 

conductor loss and dielectric loss [11]. 
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tan

1
dQ                                                                                                                                  (24) 

 

The total Q-factor can be expressed as a sum of the component Q factors and are inversely 

proportional to resistance.  The total loss is the inverse total Q: 

 

rdct QQQQ

1111
                                                                                                                      (25) 

 

In the Wilkinson divider design, the most significant loss will be the dielectric-induced loss of 

FR-4, which is inversely proportional to the loss tangent.  The loss tangent of FR-4 is 

approximately 0.02 much higher than low loss substrates such as Teflon which has a loss tangent 

of 0.001.  FR-4 is commonly used due to its low cost, that makes it a good choice for use in a 

prototype corporate feeding network. 

 

5.5. Power handling 

 

High-power capability in microstrip design depends on both peak power handling capacity and 

average power handling capacity of the microstrip line.  The peak power is proportional to the 

breakdown voltage of the substrate (dielectric breakdown).  The peak power handling capacity is 

given as [12]:  
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c

PEAK
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V
P

2

2

0                                                                                                                                 (26)  

 

which is proportional to the square of the dielectric breakdown voltage and inverse of twice the 

characteristic impedance of the line.  FR-4 has a dielectric breakdown voltage of approximately 

75 kV for 125 mil thickness (Appendix II: Data sheets).  Given that the highest impedance in the 

Wilkinson design is 70.7Ω for the quarter-lambda split section, the peak power handling is quite 

sufficient for design specifications.  A 64-element antenna array is powered by delayed pulses so 

the average power to the feeding network is within the average power handling capability of the 

microstrip.  A detailed coverage of average power handling capacity is shown in [13] and 

MATLAB script following the methodology described there  is used to calculate the average 

power handling capacity for FR-4 for different temperatures (Appendix I: Microstrip average 

power handling).  The limiting factor is not be the microstrip, but the N-type connectors: most 

available connectors are rated at 10 kW peak power and 0.6 kW average power. 
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6.  Numerical simulation 

 

Ansoft HFSS version 12 and Agilent ADS 2009 were used to simulate the 2:1, 4:1, and 8:1 

Wilkinson power dividers.  Comparison of simulation results between numerical solvers allowed 

for verification of design performance.  All simulations in Ansoft HFSS were run on a 48-

processor server which aided the optimization of design topology.  Two design topologies were 

simulated for the 2:1 divider, the straight quarter-lambda split section and the circular quarter-

lambda split section. 

 

6.1.  2:1 divider simulation results (straight design) 

 

The straight quarter-lambda split section 2:1 divider is being the conventional Wilkinson divider 

design was modeled first.  Figures 11 and 12 show the 2:1 model in ADS and HFSS. 
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Fig. 11: ADS transmission line model of 2:1 Wilkinson divider (straight quarter-lambda split 

section). 

The ADS model shown in Fig. 11 is matched terminated to 50Ω at all ports.  The microstrip 

transmission line segments are chosen to match the HFSS 3D model as closely as possible using 

microstrip T-junctions , tapered lines, and straight transmission lines.  The microstrip substrate 

characteristics for FR-4 were included in the model as well. 
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Fig. 12: HFSS model of 2:1 Wilkinson divider (straight quarter-lambda split section). 

 

Shown in Fig. 12 is the conventional Wilkinson design for 2:1 equal-split power division using 

straight quarter-lambda microstrip lines.  This 3D model was constructed in Ansoft HFSS and 

the topology was optimized by running parametric sweeps for the best frequency response. 
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Table 2:  Ansoft HFSS simulation profile, 2:1 straight design. 

Solution frequency 0.75 GHz 

Iterative convergence Good: 10-12 passes 

Final meshes, tetrahedral 20328 

Memory used by FEM solver 665 MB 

Total solution time 1m 18s 

 

 

Fig. 13: Convergence plot of iterative steps for 2:1 straight design Wilkinson. 

 

The simulation profile of the straight design 2:1 Wilkinson divider is given in Table 2.  For the 

solution frequency of 0.75 GHz and 12 adaptive passes the final mesh had 20,328 tetrahedra, 

using 665 MB peak RAM.  The total solution time was 1 minute and 18 seconds.  The iterative 
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convergence of the adaptive meshing in Fig 13 shows good convergence at the 10
th

 - 12
th

 

iteration. 

 

 

 
 

Fig. 14: Frequency response of 2:1 Wilkinson divider, ADS (top) and HFSS (bottom). 

 

The frequency response for return loss, isolation, and coupling are shown in Fig. 14, comparing 

the ADS simulation results with HFSS.  Both plots are similar showing good agreement between 

models.  There is some difference in 22S , the reflection coefficient at the output port.  This is 
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most likely caused by the tapered line and junction at the isolation resistor to the output port 

which is better modeled in HFSS or using a 2D planar EM solver like Agilent's Momentum.  The 

Ansoft HFSS model results are more accurate than the ADS model in this case, though both 

model results show agreement with the ideal frequency response for an equal-split Wilkinson 

divider. 

 

6.2.  2:1 divider simulation results (circular design) 

 

The circular topology design was simulated in ADS using microstrip curve segments to model 

the circular quarter-lambda split section and also for the S-shape terminating microstrip traces at 

the output ports that follow the isolation resistor (Fig. 15).  The microstrip characteristics of the 

FR-4 substrate were included in the simulation model parameters.  Other than the addition of 

microstrip curve segments, the tapered line segments were removed. 

 

Fig. 15: ADS transmission line model of 2:1 Wilkinson divider (circular quarter-lambda split 

section). 
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The HFSS model in Fig. 16 shows the optimized circular design.  The size of this design was 

acceptable for the 2:1 divider contribution to the total array feeding network size and further 

optimization of size was not necessary, though reduction of the lengths of the output port traces 

was done to decrease the substrate area. 

 

 

 

 

Fig. 16: HFSS model of 2:1 Wilkinson divider (circular quarter-lambda split section). 

 

Table 3:  Ansoft HFSS simulation profile, 2:1 circular design. 

Solution frequency 0.75 GHz 

Iterative convergence Good, 9-12 passes 

Final meshes, tetrahedral 39187 

Memory used by FEM solver 1.3 GB 

Total solution time 1m 36s 
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Fig. 17: Convergence plot of iterative steps for 2:1 circular design Wilkinson. 

 

The simulation profile of the circular design 2:1 Wilkinson divider is given in Table 3.  For the 

solution frequency of 0.75 GHz and shows good convergence with 9-12 adaptive passes the final 

mesh had 39187 tetrahedra, using 1.3 GB memory.  The total solution time was 1 minutes and 36 

seconds.  The iterative convergence of the adaptive meshing in Fig. 17 shows acceptable 

convergence at the 9
th

 iteration.  For better convergence the iterative steps can be increased 

beyond 12, although the error between S-parameters is reduced slightly with additional passes, 

the solution with only 12 passes is sufficient for analysis and is used.   
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Fig. 18: Frequency response of 2:1 Wilkinson divider, ADS (top) and HFSS (bottom). 

 

Both HFSS and ADS plots of Fig. 18 show excellent agreement with each other and with 

theoretical curves.  The same difference in the reflection coefficient at output ports between ADS 

and HFSS is seen, which is attributed to the tapering at the output port microstrip lines.  The 

frequency response of the circular design is quite similar to the theoretical one, and an additional 

advantage is the reduction of substrate size compared to the straight design. 
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6.3. Advantages of the circular topology 0.25λ TL section 

 

In the microstrip design consideration section, the three topologies for the quarter-lambda split 

section were introduced and their respective advantages and disadvantages were discussed.  

While the elliptical design was rejected earlier, the straight and circular designs were simulated 

for the 2:1 Wilkinson and compared in the previous sections.  Here a summary of the advantages 

and disadvantages is shown for the three microstrip design topologies considered.  The final 

decision to proceed with the circular topology was a result of the necessity to reduce the size of 

the substrate and the good simulation results achieved for this design.   
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Table 4: Summary of topology advantages and disadvantages. 

Wilkinson microstrip topology Advantage Disadvantage 

Straight 

 Simplest topology 

 Easy design 

 Low tetrahedra in final 

mesh 

 Faster simulation time 

 Uses maximum amount 

of space 

Elliptical 

 Maximum substrate size 

reduction 

 Lines are not sufficiently 

decoupled 

 Requires calculation of 

coupled line impedances 

Circular 

 Sufficiently decoupled 

lines, reduced size 

substrate 

 More tetrahedral in the 

final mesh 

 More iterative steps for 

convergence 

 Longer simulation time 
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6.4. 4:1 divider simulation results 

 

The same procedure used in the simulation of the 2:1 dividers was used for the 4:1.  The models 

were made by cascading two stages of 2:1 dividers to form a 4:1 divider.  The ADS and HFSS 

4:1 Wilkinson divider models and simulation results are shown in Fig. 19, 20, 21, and Table 5. 

 

 

Fig. 19: ADS transmission line model of 4:1 Wilkinson divider (circular quarter-lambda split 

section). 

 

The optimized 4:1 HFSS design of cascaded 2:1 dividers, are shown in Fig. 20.  
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Fig. 20: HFSS model of 4:1 Wilkinson divider (circular quarter-lambda split section). 

 

 

Table 5:  Ansoft HFSS simulation profile, 4:1 circular design. 

Solution frequency 0.75 GHz 

Iterative convergence Good, 8-12 passes 

Final meshes, tetrahedral 111760 

Memory used by FEM solver 3.7 GB 

Total solution time 22m 55s 
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Fig. 21: Convergence plot of iterative steps for 4:1 circular design Wilkinson. 

 

The HFSS simulation profile for the 4:1 divider shows good convergence in 8-12 passes, 111760 

tetrahedra, 3.7 GB memory required, and a total simulation time of 22 minutes and 55 seconds. 
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Fig. 22: Frequency response of 4:1 Wilkinson divider, ADS (top) and HFSS (bottom). 

 

HFSS and ADS plots of Fig. 22 show excellent agreement with each other and with theoretical 

curves.   
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6.5. 8:1 divider simulation results 

 

The ADS and HFSS 8:1 Wilkinson divider models and simulation results are shown in Fig. 23, 

24, 25, and Table 6. 

 

  

Fig. 23: ADS transmission line model of 8:1 Wilkinson divider (circular quarter-lambda split 

section). 
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Fig. 24: HFSS model of 8:1 Wilkinson divider (circular quarter-lambda split section 

 

Table 6:  Ansoft HFSS simulation profile, 8:1 circular design. 

Solution frequency 0.75 GHz 

Iterative convergence Good, 8-12 passes 

Final meshes, tetrahedral 238397 

Memory used by FEM solver 8.14 GB 

Total solution time 51m 35s 
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Fig. 25: Convergence plot of iterative steps for 8:1 circular design Wilkinson. 

 

The HFSS simulation profile for the 4:1 divider shows good convergence in 8-12 passes, 238397 

tetrahedra, 8.14 GB memory required, and a total simulation time of 51 minutes and 35 seconds. 
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Fig. 26: Frequency response of 8:1 Wilkinson divider, ADS (top) and HFSS (bottom). 

 

The HFSS and ADS plots of Fig. 26 show good agreement. 
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6.6. Simulation result summary 

 

The ADS and HFSS simulation results agree well and follow the theoretical curves.  As 

expected, the output power for each divider split section is half the input power, 12S = -3dB for 

the 2:1, 12S = -6dB for the 4:1, 12S = -9dB for the 8:1, with good accuracy using lossy FR-4.  The 

dielectric induced loss for each divider at the 1 GHz (highest frequency in design) was 

approximately 0.1-0.2 dB for the 2:1, 0.25 dB for the 4:1, and 0.5 dB for the 8:1.  This result is 

quite good, since FR-4 is common and easily available from any PCB fabricator, and also lower 

cost than other substrates.   The 4:1 and 8:1 dividers had an increased bandwidth compared to the 

2:1 dividers, which was a predicted result from using cascaded multiple-stepped sections.  

Overall, the frequency response showed low return loss, low coupling, and high isolation.  The 

following plots of Fig. 27 show the simulated behavior of the three series Wilkinson dividers 

used in the hardware prototype. 
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Fig. 27: Simulated behavior of three series Wilkinson dividers used in hardware prototype. The 

loss is given by the deviation of 12S  from the theoretical dashed line.  
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7.  Divider hardware fabrication 

 

The 4:1 divider was designated to be the master divider of the corporate feeding network and 

receiving the most power.  Therefore, it was planned to be custom-built using a thicker substrate 

and copper traces with different type of connector at the input design for high power.  The 2:1 

and 8:1 power dividers were fabricated using 125-mil thick, FR-4 substrate and 2 ounce copper 

traces.  These were all manufactured by Advance Circuits located in Aurora, CO.  A 125W 

power RF isolation chip resistor of 100Ω impedance was used for all dividers, ordered from 

Florida RF.  The connectors used for each port were N-type female to PCB mount, these were 

rated for 10 kW peak power and 0.6 kW average power and made by Amphenol Connex ( see 

Appendix II: Data sheets for all hardware specifications).  The dimensions and pictures of the 

final prototype of the 2:1 and 8:1 dividers are shown below [14].   
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Fig. 28: 2:1 Wilkinson divider drawing with dimensions. 

 

 

 
 

Fig. 29: 8:1 Wilkinson divider drawing with dimensions. 
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For timing reasons, the 4:1 divider was built in the same manner as the 2:1 and 8:1.  This was 

acceptable since it allowed the array to be completed and tested at low power while the high-

power 4:1 master divider could be built later.  The completed 2:1, 4:1, and 8:1 microstrips are 

shown in Figs. 30-32. 

 

 

 

 

Fig. 30: 2:1 power divider, without connectors and chip resistors soldered. 
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Fig. 31: 4:1 power divider, without connectors and chip resistors soldered. 

 
 

 

Fig. 32: 8:1 power divider, without connectors and chip resistors soldered.  
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8.  S11 measurement of 2:1 divider 

 

Return loss of the 2:1 divider was measured with an Agilent network analyzer using 50Ω 

terminations at the output ports.  The losses in the cable connected between the 2:1 divider and 

the network analyzer were calibrated.  The setup is shown in the Fig. 33.  The return loss for the 

8:1 and 4:1 dividers were not measured because of the time constraint on construction of the 64-

element array which was being constructed in parallel with the Wilkinson dividers.   

 

 

Fig. 33: Return loss measurement setup for the 2:1 divider: 50Ω terminations at output ports; 

input port connected to an Agilent network analyzer. 
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Fig. 34:  Return loss plot of the 2:1 divider, simulated vs. measured. 

 

Measured and simulated return losses are shown in Fig. 34.  The measured return loss has a shift 

upward of approximately 500 MHz from the simulated result.  The cause of the shift in 

resonance frequency was the larger isolation chip resistor used in place of the one originally 

designed for.  The original 2:1 divider design was optimized for a 3 x 5 mm isolation chip 

resistor, but the cost of this size resistor was significantly higher than a 6 x 10 mm one.  So, the 

larger isolation resistor was used for the prototype design.  
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8.1. Effect of increased isolation resistor size on S11 

 

The effect of the larger isolation resistor on the resonance of 11S is shown in the plot below.  

When the isolation resistor length is increased from 5 mm to 10 mm in the HFSS divider model, 

the 0.25λ split transmission line segment (100 mm at 750 MHz) is indirectly reduced to 

approximately 90 mm.  The reduced λ causes a center frequency shift to 800 MHz. 

 

 

Fig. 35: Simulated return loss plot showing shift in resonance in HFSS model from 5 mm length 

isolation resistor to 10 mm length isolation resistor. 

 

 

 



53 

 

9.  Application of Wilkinson dividers for an array corporate-fed network 

 

Corporate-fed networks are used to provide power splits of
n2 , such as n = 2, 4, 6… and so on, 

and are commonly used in arrays of dipoles [15].  For an antenna array, this type of feed is more 

general and versatile because it provides the designer more control over the amplitude and phase 

of each element [16]. The feeding network that was constructed using the 2:1, 4:1, and 8:1 

Wilkinson dividers designed earlier for the 64-element antenna array corporate feed is shown in 

Fig. 36.   The array is divided into 4 sub-arrays having 16 elements in each 4x4 module.   Within 

each module, each individual element is fed by two 8:1 power dividers, which in turn are fed by 

one 2:1 divider.   Each module is fed by a master 4:1 power divider.  In total the feed network is 

composed of one 4:1 master divider, four 2:1 dividers, and eight 8:1 dividers.  
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Fig. 36:  Corporate feeding network for the 64-element array with 2:1, 8:1, and 4:1 Wilkinson 

power dividers. 

 

The rear side of one quadrant of the array shows the feeding network for 16 elements (Fig. 37).  

Two 8:1 dividers fed by one 2:1 divider which will connect to the master 4:1 divider when the 

remaining three quadrants are attached.  
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Fig. 37: One 16-element quadrant of the array showing two 8:1 Wilkinson dividers fed by one 

2:1 Wilkinson divider. 

 

The entire 64-element array feeding network is shown in the Fig. 47.  All four 16-element 

quadrants are held together within a frame and mounted on a stand that allowed azimuth and 

elevation directional scanning.   
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10.  Summary 

 

Analysis and design of an equal-split Wilkinson power divider using stepped multiple sections of 

the conventional Wilkinson divider for 2:1, 4:1, and 8:1 power division was investigated.  

Important microstrip design considerations were taken when selecting the appropriate substrate.  

Although lossier than other choices (Teflon and Rogers), FR- 4 material was ultimately used: 

FR-4 is commonly used, readily available, and low cost.  Comparison between ADS and HFSS 

simulation models allowed for an optimized circular Wilkinson power divider design to be 

realized.  Hardware fabrication and S11 measurement results were discussed.  Lastly, the 

application of the Wilkinson divider as a corporate-feed network for antenna arrays was shown. 
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11.  Future work 

 

The monolithic microwave integrated circuit (MMIC) technique has motivated the size reduction 

of circuits, which three-port power dividers are important components.  The move towards 

smaller size dividers presents design issues where the coupling between the two impedance 

transformers becomes significant.  Design topologies that employ coupled lines can be used to 

reduce the size of the dividers [9] and additional quarter-lambda impedance transformer stages 

(multi -section inline hybrids) can be added to increase the bandwidth of the divider [17].    

Further, power dividers and their conventional structures have traditionally been symmetric with 

matched conditions assumed in the design, which brings the need of matching networks when 

these symmetric components are integrated with other elements in microwave integrated circuits.  

Asymmetric structures with arbitrary termination impedances are beneficial since they allow 

elimination of these matching networks.  Design equations for asymmetric three-port power 

dividers with arbitrary impedance terminations have been derived for equal and unequal power 

division by Ahn [18].  The design of asymmetric three-port power dividers is a current area of 

development.  
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Part 2:  

Design of an 8x8 wideband ribcage-dipole array for directed power 

applications 

 

12. Theoretical gain pattern of a finite 2D array 

12.1. Gain of the main beam 

 

The directive gain of a large finite mutually-coupled 2D phased array with M by N regularly-

spaced elements is determined by the expression first suggested by Hannan and repeatedly cited 

by Hansen and others.  Namely, with reference to Fig.38,  

 

  yxddA
A

MND  ,cos
4

,
2





                         (27) 

 

Here,  is the wavelength,  is the scan elevation angle. This equation was suggested based on 

the "natural guess" that the directivity of the large array is exactly equal to the directivity of the 

large (compared to the wavelength) aperture. The directivity of the uniform-distribution aperture 

with the impingent electric field in the free space exactly coincides with Eq. (27). Furthermore, 

since the effective area of an element should be proportional to its projected area in the direction 

of interest, the element gain should have a cosine variation with the angle in Eq. (27). Based on 

this intuitive reasoning, Eq. (27) has been stated.  
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Despite the lack of initial theoretical justification it was shown by Oliner and Malech (and also 

mentioned by Hansen) that Eq. (27) can be proved for slots and dipoles. For the case of a non-

scanning array pointing at zenith, 0 , so that Eq. (27) can be used to predict the gain in dB at 

zenith (at broadside) in the form    

 

dB
4

log10
2100 








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

 yxdd
MND                      (28) 

 

 

Fig. 38: Array geometry and unit cell dimensions.  

 

12.2. Array factor and directivity 

 

The amplitude pattern (array factor for isotropic radiators) of the scanning array in Fig. 38 is 

conveniently expressed in terms of direction cosines in Fig. 38.  It is given by  
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where,   

 mnI  are (real) excitation weights; 1mnI  with no taper; 

 x  and 
y  are the polar angles from the array axis (direction cosines) shown in Fig. 38; 

  x  and 
y  are the progressive phase shifts between elements. 

 

When scanning at zenith, the direction cosines of the radius vector specifying scan direction 

(beam maximum) xscos  and 
yscos  are both equal to zero. 

 

 After some manipulations, the result from Eq. (29) is reduced to the form, 

  

  yryxrx NdyMdx
y

y

x

x
AF 

2

1
,

2

1
,

sinsin
,             (30) 

 

which is the Fraunhofer scalar diffraction pattern of the corresponding rectangular aperture.  
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12.3. Gain of the individual element 

 

For vector fields or the array fields, Eq. (30) has to be further augmented with the pattern of an 

individual element. This step is omitted though since the dipole pattern close to zenith is very 

uniform, and since only the main beam of the large 88 array is of interest.    

 

12.4. Total directive gain 

 

The array scanning at zenith is considered. Combining the results of subsections 12.1 to 12.3 the 

directive gain of the array is obtained in the form 

yryxrx
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1
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1
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
    (31)   

 

For the E-plane scan (xz-plane in Fig. 1) deg90 x , deg90y  , and Eq. (31) simplifies to  
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For the H-plane scan (yz-plane in Fig. 38) deg90 y
, deg90x  , and Eq. (31) simplifies 

to  

 





sin

2

1
dB,

sin4
log10

2

2100 ry

yx
Ndy

y

ydd
NMD 























                                               (33)   



62 

 

12.5. Application 
 

The geometry of the unit cell in the array under study is shown in Fig. 39.  The radiator is a 

ribcage dipole with a conical matching network close to the antenna feed to be connected to a 

balun.  The overall size of the radiator is slightly less than the size of the unit cell.  

 

 

 

Fig. 39: The array unit cell on the size of 240 mm by 240 mm. 

 

In the particular case of the 88 array, with reference to Fig. 38, the following parameters in Eqs. 

(32) and (33) are used: 

 

fck

ddN ryrx

/,/2

mm,240,64

0




              (34) 

 

Fig. 41 shows the theoretical gain pattern for the array described by Eq. (33) at 500 MHz and 1 

GHz, respectively.  
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12.6. Comparison between theory and numerical simulations 

 

The numerical simulations have been carried out for the array of center-fed ribcage dipoles (see 

the next section) with Ansoft HFSS v. 12. The spacing from the ground plane was 150mm.  Fig. 

40 shows the array structure. The solution was obtained with the PML box and used about 

100,000 tetrahedra. Fig. 41 shows numerical directive gain (dashed curve) versus theoretical gain 

(Eq. (33) – solid curve) in the H-plane at two frequencies of interests.  

 

The theoretical and numerical data agree quite well. This confirms the estimates used to predict 

the behavior of the hardware prototype considered in the following text.   

 
 

 

 

Fig. 40: Modeling of an 88 array of dipoles on the total size of 1.961.96 m.  
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Fig. 41: Theory versus numerical simulations of a 64-element array of dipoles shown in Fig. 40.  

 
 
 
 
 

13.  Array hardware 

13.1. Radiator 

 

As a single radiator the ribcage dipole shown in Fig. 42a has been chosen. Compared to other 

equivalent designs – the blade dipole in Fig. 42b and the droopy dipole in Fig. 42c -  the ribcage 

dipole is more versatile. It has been shown that, among other possible dipole configurations it 

combines the advantages of both the blade dipole and the droopy dipole – the wider impedance 

bandwidth typical for the blade dipole and the better pattern uniformity over the frequency band 

typical for the droopy dipole.  

  



65 

 

 

Fig. 42: Ribcage dipole versus its competitors: b) - the planar blade dipole; and c) - the droopy 

dipole (from reference [5]).    

 

13.2. Balun 

 

A tapered microstrip balun shown in Fig. 43 has been employed. The use of this type of balun is 

common for broadband linearly-polarized dipoles over a ground plane. The balun is printed on a 

125 mil thick FR4 (using thick copper traces) and is soldered to a N-type male connector in the 

ground plane. The microstrip trace itself is either tapered or not. The typical trace width is 5-

6mm.  

Different tapering profiles including triangular, exponential, and Chebyshev's profiles have been 

investigated, but a significant improvement in the impedance bandwidth compared to the simple 

triangular profile was not found.       



66 

 

Compared to the center-fed ribcage dipole, the isolated ribcage radiator with the balun may be 

optimized for a slightly lower or a similar impedance bandwidth.    

 

Fig. 43: Microstrip tapered balun and its dimensions (from reference [5]).   

 

 
 

13.3. Radiator with balun 

 

Two isolated radiators including the printed balun shown in Fig. 44 have been tested prior to 

arrays assembly. Fig. 44 shows a comparison between simulations and experiments - the return 

loss measurements (calibrated 8722ETR Agilent network analyzer). The agreement is 

satisfactory, but not perfect. The difference in the middle of the band can be partially explained 

as a detuning effect of two Teflon posts seen in Fig. 44. These posts have not been considered in 

the simulations. When the posts are removed, a better agreement is obtained.    
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13.4. Feeding network with Wilkinson dividers 

 

Corporate-fed networks are used to provide power splits of 
n2 , such as n = 2, 4, 8… and so on.  

For an antenna array, this type of feed is more general and versatile because it provides the 

designer more control over the amplitude and phase of each element. For the 64-element antenna 

array a corporate feed network is constructed using 2:1, 4:1, and 8:1 Wilkinson dividers, shown 

in Fig.45.   The array is divided into 4 sub-arrays having 16 elements in each 4x4 module.   

Within each module, each individual element is fed by two 8:1 power dividers, which in turn are 

fed by one 2:1 divider.   Then, each module is fed by a master 4:1 divider.  In total the feed 

network is composed of one 4:1 master divider, four 2:1 dividers, and eight 8:1 dividers.   
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Fig. 44: Top – a ribcage dipole antenna.  Bottom left - comparison between simulations and 

experiment (indoor measurement).  Bottom right - comparison between simulations and 

experiment (outdoor measurement) - showing return loss of the isolated ribcage above 

300300mm ground plane. The thick curves indicate simulations; thin curves – experiment 

(Courtesy of Physical Sciences Inc.).   
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Fig. 45: Corporate-feeding network used for the 64-element antenna array. 

 

13.5. Array assembly 

 

The array is mounted on a 2D controlled mast shown in Fig. 46. The digitized motor controller 

allows for mechanical scanning in both azimuth and elevation plane, to within ±45 degrees.  The 

array itself was built as a combination of four 4×4 individual blocks as shown in Fig. 45 and then 

tuned for the maximum impedance bandwidth.  
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Fig. 46: Front view of the 64-element array (Courtesy of Physical Sciences Inc.). 

 

 

Fig. 47: Array assembly. Back view with the feeding network (Courtesy of Physical Sciences 

Inc.). 
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14.  Array measurements 

 

14.1. Return loss of the array 

 

The return loss of the array measured at the output of the 4:1 power divider is shown in Fig. 48 

that follows. The array has a slightly better impedance bandwidth than initially simulated (Ansoft 

HFSS v. 12). This may be explained by extra loss in the feeding network, which become 

especially important at higher frequencies.  

 

 

Fig. 48: Return loss of the array measured at the output of the 4:1 power divider. 
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14.2. Measurement calibration: Path loss estimates 

 

Horn-to-horn measurements were taken at 500 MHz and 1 GHz outside of the Physical Sciences 

Inc. (PSI) building in North Andover, Massachusetts to calibrate the path and investigate the 

effects of ground reflections on the antenna gain.  

 

The measurements of the directive gain have been performed in house, using a setup with two, 

A.H. Systems Inc. wideband ridged horns (AHS-570), shown in Fig. 49 for calibration purposes.  

 

 

Fig. 49: Horn measurement setup at Physical Sciences Inc. (Courtesy of Physical Sciences Inc.) 

 

The transmitting horn was set on the building's roof and the receiving horn was set in the parking 

lot in the arrangement shown above.  Both horns stand 2 meters high when supported by tripod.  
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The height of the receiving horn was varied by 6 cm increments and the received power was 

measured using an Agilent spectrum analyzer (E4402B ESA-E).  Minimum and maximum 

values were taken because of the rapidly changing values shown on the spectrum analyzer.  The 

minimum, maximum, and mean values are shown in Tables 7 and 8 that follow.  

 

The results given in Tables 7 and 8 indicate that the gain remains nearly constant at 500 MHz 

and 1 GHz when the height is varying, MATLAB code in Appendix I: Path loss estimation 

received power.  The height of the receiving horn was varied sufficiently for one cycle of 

interference pattern at 500 MHz and two cycles at 1 GHz, so the effect of reflections appears to 

be minimal (on the order of ±1dB or less in pattern distortion) because of the stable gain values 

recorded. 

 

Table 7: Received power at 500 MHz for increments of R. 

R (m) Max (dBm) Min (dBm) Mean (dBm) 

mR 32.330   -53.46 -57.02 -55.24 

mR 34.331   -53.23 -56.94 -55.09 

mR 37.332   -53.42 -56.72 -55.07 

mR 40.333   -52.24 -56.91 -54.58 

mR 43.334   -52.92 -56.03 -54.48 

mR 45.335   -52.73 -56.18 -54.46 

mR 48.336   -53.21 -56.13 -54.67 

mR 51.337   -53.42 -56.11 -54.77 
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mR 53.338   -53.33 -56.82 -55.08 

mR 56.339   -53.03 -56.72 -54.88 

mR 59.3310   -53.01 -56.84 -54.93 

 

 

 

Table 8: Received power at 1 GHz for increments of R. 

R (m) Max (dBm) Min (dBm) Mean (dBm) 

mR 32.330   -48.75 -52.36 -50.56 

mR 34.331   -48.92 -52.38 -50.65 

mR 37.332   -48.75 -52.46 -50.61 

mR 40.333   -48.76 -52.38 -50.57 

mR 43.334   -46.87 -52.12 -49.50 

mR 45.335   -47.98 -51.20 -49.59 

mR 48.336   -47.65 -51.38 -49.52 

mR 51.337   -48.72 -52.22 -50.47 

mR 53.338   -48.79 -52.06 -50.43 

mR 56.339   -48.88 -52.43 -50.66 

mR 59.3310   -48.93 -52.56 -50.75 
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14.3. Gain calibration with two horns  

 

To calculate the absolute antenna gain from the received power measurements, measurements 

with two horns first were performed first, and then used the following expression:  

 
horn/dBmArray/dBmHornArray PPGG                          (35) 

where   

 
ArrayG  - sought array directive gain at a given frequency (dB) 

 HornG  - calibrated second horn gain at a given frequency from datasheet (dB) 

 
Array/dBmP  - measured array received power (dBm) 

 Horn/dBmP  - measured second horn received power (dBm) 

This estimate does not depend on the input power to the measurement setup.  

 

14.4. Gain measurement results 

 

The received power of the antenna array was measured after the horn-to-horn calibration.  The 

array was mounted and positioned such that the face of the array was directed toward the roof of 

the PSI building.  The phase center of the array was  approximately 2 meters above the ground.  

The horn on the roof facing the array was excited with 20 dBm power.  The array was then 

connected to the spectrum analyzer and rotated horizontally by 5 degree steps and scanned a total 

of 45 degrees.  At each 5 degree step, the received power of the array was recorded.  
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Fig. 50: Measured vs. numerical simulation - H-plane directive gain at 500 MHz. 

 

 

Fig. 51: Measured vs. numerical simulation - H-plane directive gain at 1000 MHz. 
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15. Discussion and conclusions 
 

The array performance follows well theoretical prediction and assures that the array realized gain 

is at least 20 dB over the frequency band of interest (MATLAB code in  Appendix I: Theoretical 

and measured array gain pattern) . The gain degradation compared to the theory in Fig. 50 at 1 

GHz is due to feeding network losses, which become especially important at the upper band 

edge. The corresponding losses include the losses of the 4:1, 2:1, and 8:1 Wilkinson dividers in 

Figs. 30-32. Their performance was simulated in Ansoft HFSS; it is shown in Fig. 27 that 

follows. The estimated divider loss at 1 GHz is 0.7+1+2=3.7dB. Another 1.5 dB is coming from 

cable adapters; the sum of those two numbers convincingly explains the deviation between 

theory and experiment in Fig. 50.  Using a low loss substrate instead of the 130 mil FR4 would 

allow one to reduce the realized gain loss by about 3 dB.  
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Appendix I MATLAB Script 
 

 

Theoretical and measured array gain pattern 

 
%Theoretical and measured array gain pattern  

  
clc;clear all; 

  
FullData1           = csvread('HFSS_Gain_Hplane_500MHz.CSV'); 
FullData2           = csvread('HFSS_Gain_Hplane_1000MHz.CSV'); 

  
Theta_500           = FullData1(:,1); 
Theta_1000          = FullData2(:,1); 
Gain_dB_500         = FullData1(:,2); 
Gain_dB_1000        = FullData2(:,2); 
X1 = vertcat(Theta_500(91:180,1)-360,Theta_500(1:91,1)); 
Y1 = vertcat(Gain_dB_500(91:180,1),Gain_dB_500(1:91,1)); 
X2 = vertcat(Theta_1000(91:180,1)-360,Theta_1000(1:91,1)); 
Y2 = vertcat(Gain_dB_1000(91:180,1),Gain_dB_1000(1:91,1)); 

  
%   finite array directive gain  pattern 
f1   = 0.5e9;  
f2   = 1.0e9; 
M   = 8; 
N   = 8; 
dx  = 0.24; 
dy  = 0.24; 
%   dimensionless parameters and angle theta 
lambda1 = 3e8/f1; 
lambda2 = 3e8/f2; 
drx1 = 2*pi*dx/lambda1; 
dry1 = 2*pi*dy/lambda1; 
drx2 = 2*pi*dx/lambda2; 
dry2 = 2*pi*dy/lambda2; 
theta0 = [-90:1:90];            % deg 
theta  = theta0*pi/180 + eps;   % rad 
%   directive gain 
y1 = 0.5*N*dry1*sin(theta); 
D1 = 10*log10(N*M*4*pi*dx*dy/lambda1^2*(sin(y1)./y1).^2); 
y2 = 0.5*N*dry2*sin(theta); 
D2 = 10*log10(N*M*4*pi*dx*dy/lambda2^2*(sin(y2)./y2).^2); 
%   plot 

  
figure 
plot(theta0, D1, 'r', 'LineWidth', 2); grid on; hold on;  
plot(X1,Y1, 'b', 'LineWidth', 2) 
title('H-plane gain at 500 MHz, theory (red) vs. numerical (blue)'); 
xlabel('\theta, \circ') 
ylabel('Gain, dB') 
axis([-90 90 min(Gain_dB_500) max(Gain_dB_500)]) 
set(gca,'XTick',-90:20:90) 
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grid on 

  
figure 
plot(theta0, D2, 'r', 'LineWidth', 2); grid on; hold on;  
plot(X2,Y2, 'b', 'LineWidth', 2) 
title('H-plane gain at 1000 MHz, theory (red) vs. numerical (blue)'); 
xlabel('\theta, \circ') 
ylabel('Gain, dB') 
axis([-90 90 min(Gain_dB_1000) max(Gain_dB_1000)]) 
set(gca,'XTick',-90:20:90) 
grid on 
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Path loss estimation received power 
 
 
%Path loss estimation received Power 

  
clear all; clc; 
PT = (10^(15/10))/1000 %    ok 
GT = 10^(7.5/10) 
GR = 10^(7.5/10) 
f0 = 0.5e9; 
c0 = 3e8;  
lambda = c0/f0; 
R = [ 33.3204,   33.3466,   33.3728,   33.3991,   33.4256,   33.4521,   

33.4786,   33.5053,   33.5321,   33.5589,   33.5859 ]; 
PR = (GT*GR*PT*(lambda^2))./(4.*pi.*R).^2 
PR_dBm = 10*log10(1000*PR) 
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Microstrip average power handling  

 

 
% AVERAGE AND PEAK POWER-HANDLING CAPABILITY OF MICROSTRIP LINE 
% Analysis taken from :Bahl, I.J. and K.C. Gupta, " Average Power Handling 

Capability of 
% Microstrip Lines," IEE Jour. on Microwaves, Optics and Acoustics, January, 

1979 
% Adapted for MATLAB by Daniel Harty, November, 06, 2009 
% FR4 substrate with characteristic impedances of Z01 = 50 Ohm (input/output 

ports), Z02 = 70.71 Ohm (quarter-wave line) 
clear all;clc; 
format long; 
pc = 1.724e-8;                                                                              

% Resistivity of copper strip conductor, Ohm-m 
e0 = 1/(36*pi*1e9);                                                                         

% electric permittivity of free space 
u0 = 4*pi*1e-7;                                                                             

% magnetic permeability of free space 
c0 = 299792458;                                                                             

% speed of light in a vacuum 
f = 0:1e6:2e9;                                                                              

% Operational frequency range 
LOSS_TAN = 0.015;                                                                           

% Loss tangent of substrate (FR4) 
LAMBDA_0 = c0./f;                                                                           

% Free space wavelength 
D_B = 1000;                                                                                 

% Dielectric breakdown voltage (FR4), V/mil 
Kd = 0.36;                                                                                  

% Thermal conductivity of substrate (FR4), W/mC 
Ka = 0.0240;                                                                                

% Thermal conductivity on air, W/mC    
Tmax = 140;                                                                                 

% FR4 maximum substrate operating, deg C 
Tamb = 25;                                                                                  

% Ambient temperature, deg C                            
SIGMA_c = 5.813e7;                                                                          

% Conductivity of copper strip conductor, S/m @ 20 deg C 
MIL_d = 125;                                                                                

% Height of substrate, mil 
MIL_c = 2.4;                                                                                

% Thickness of microstrip line, mil 
V0 = D_B*MIL_d;                                                                             

% Maximum voltage the line can withstand 
Z01 = 50;                                                                                   

% Characteristic impedance Z01 of microstrip line, Ohms 
Z02 = 70.17;                                                                                

% Characteristic impedance Z02 of microstrip line, Ohms 
t = 0.0254*MIL_c*1e-3;                                                                      

% Thickness of microstrip line, m   
h = 0.0254*MIL_d*1e-3;                                                                      

% Substrate height, m 
eps_r = 4.4;                                                                                

% Static relative dielectric constant of FR4  
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A1 = (Z01./60).*(sqrt((eps_r+1)./2))+((eps_r-

1)./(eps_r+1)).*(0.23+0.11./eps_r);    
W1 = h.*(8.*exp(A1)./(exp(2.*A1)-2));                                                       

% Width of microstrip line, m 
A2 = (Z02./60).*(sqrt((eps_r+1)./2))+((eps_r-

1)./(eps_r+1)).*(0.23+0.11./eps_r);    
W2 = h.*(8.*exp(A2)./(exp(2.*A2)-2));                                            
eps_r_ = Kd./Ka;                                                                            

% Ratio of thermal conductivity of the dielectric to that of air 
C1_ = ((eps_r_-1)./(4.6)).*((t./h)./(sqrt(W1./h))); 
C2_ = ((eps_r_-1)./(4.6)).*((t/h)./(sqrt(W2./h))); 
eps_re1_ = (eps_r_+1)./2 + ((eps_r_-1)./2).*((1+12./(W1./h)).^(-1/2)) - C1_ ;               

% Effective relative permittivity, eps_r_ = Kd/Ka  
eps_re2_ = (eps_r_+1)./2 + ((eps_r_-1)./2).*((1+12./(W2./h)).^(-1/2)) - C2_ ;  
We1_h = W1./h + (1.25./pi).*(t./h).*(1 + log((2.*h)./t));                                   

% (W/h)>(1/2*pi) 
We2_h = W2./h + (1.25./pi).*(t./h).*(1 + log((2.*h)./t));     
Z01_ = ((120.*pi)./(sqrt(eps_re1_))).*((We1_h) + 1.393 + 0.667.*log(We1_h 

+1.444)).^(-1);   % Characteristic impedance of microstrip in Ohms, eps_r_ = 

Kd/Ka 
Z02_ = ((120.*pi)./(sqrt(eps_re2_))).*((We2_h) + 1.393 + 0.667.*log(We2_h 

+1.444)).^(-1); 
Za01 = (Z01_.*sqrt(eps_re1_)); 
Za02 = (Z02_.*sqrt(eps_re2_));    
We1 = (120.*pi.*h)./Za01;                                                                    

% Equivalent width of the strip 
We2 = (120.*pi.*h)./Za02; 
C1 = ((eps_r-1)./(4.6)).*((t./h)./(sqrt(W1./h))); 
C2 = ((eps_r-1)./(4.6)).*((t./h)./(sqrt(W2./h))); 
eps_re1 = (eps_r+1)./2 + ((eps_r-1)./2).*((1+12./(W1./h)).^(-1/2)) - C1;                     

% Effective relative permittivity, eps_r = 4.4  
eps_re2 = (eps_r+1)./2 + ((eps_r-1)./2).*((1+12./(W2./h)).^(-1/2)) - C2;  
Rs = sqrt(pi*f*u0*pc); 
B = h; 
W1_ = W1 + ((1.25.*t)./pi).*(1 + log((2.*B)./t)); 
W2_ = W2 + ((1.25.*t)./pi).*(1 + log((2.*B)./t)); 
Y1 = (1 +(h./W1_).*(1 + ((1.25.*t)./(pi.*W1)) + 

(1.25./pi).*log((4.*pi.*W1)./t))); 
Y2 = (1 +(h./W2_).*(1 + ((1.25.*t)./(pi.*W2)) + 

(1.25./pi).*log((4.*pi.*W2)./t))); 
alpha_c1 = (6.1e-5).*((Rs.*Z01.*eps_re1)./h).*((W1_./h) + 

((0.667.*(W1_./h))./((W1_./h) + 1.444))).*Y1;% Conductor attenuation 

constant, dB/unit length 
alpha_c2 = (6.1e-5).*((Rs.*Z02.*eps_re2)./h).*((W2_./h) + 

((0.667.*(W2_./h))./((W2_./h) + 1.444))).*Y2; 
alpha_d1 = 27.3.*(eps_r./(eps_re1)).*((eps_re1-1)./(eps_r-

1)).*(LOSS_TAN./LAMBDA_0);             % Dielectric attenuation constant, 

dB/unit length 
alpha_d2 = 27.3.*(eps_r./(eps_re2)).*((eps_re2-1)./(eps_r-

1)).*(LOSS_TAN./LAMBDA_0);  
DELTA_Pc1 = 1-exp(-0.2303*alpha_c1);                                                        

% Conductor loss in the line when 1 W of power is incident, W/m 
DELTA_Pc2 = 1-exp(-0.2303*alpha_c2); 
DELTA_Pd1 = 1-exp(-0.2303*alpha_d1);                                                        

% Dielectric loss in the substrate when 1 W of power is incident, W/m 
DELTA_Pd2 = 1-exp(-0.2303*alpha_d2);      
Weff_01 = (377*h)/(Z01*sqrt(eps_re1)); 
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Weff_02 = (377*h)/(Z02*sqrt(eps_re2)); 
fp1 = Z01/(2*u0*h); 
fp2 = Z02/(2*u0*h); 
Weff_f1 = W1 + (Weff_01 - W1)./(1 +(f./fp1).^2); 
Weff_f2 = W2 + (Weff_02 - W2)./(1 +(f./fp2).^2); 
DELTA_T1 = (h/Kd)*((DELTA_Pc1/We1)+DELTA_Pd1./(2*Weff_f1));                                 

% Rise in temperature per Watt, deg C/W 
DELTA_T2 = (h/Kd)*((DELTA_Pc2/We2)+DELTA_Pd2./(2*Weff_f2));  
Pavg1 = (Tmax-Tamb)./DELTA_T1;                                                              

% Maximum average power for microstrip line, <W> 
Pavg2 = (Tmax-Tamb)./DELTA_T2;  
Pp1 = (V0^2)/(2*Z01_) 
Pp2 = (V0^2)/(2*Z02_) 
figure 
semilogy(f./1e6,Pavg1,'k','LineWidth', 3) 
hold on 
semilogy(f./1e6,Pavg2,'k','LineWidth', 3) 
title(['Maximum average power-handling capability for Z_0_1 and Z_0_2 

microstrip lines'],'FontSize',18 ) 
xlabel(['Frequency, MHz'],'FontSize',18 ) 
ylabel(['Maximum Average Power, W'],'FontSize',18 ) 
grid on 

  
figure 
semilogy (f./1e6,DELTA_T1,'k','LineWidth',3) 
hold on 
semilogy(f./1e6,DELTA_T2,'k','LineWidth',3) 
title(['Strip conductor temperature rise per unit power flow, Z_0_1 and Z_0_2 

microstrip lines'],'FontSize',18) 
xlabel(['Frequency, MHz'],'FontSize',18) 
ylabel(['\DeltaT, deg C/W'],'FontSize',18 ) 
grid on 
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Surface wave effects and higher order modes in microstrips 
 
 
 
% Calculation of surface wave effects and higher order modes in microstrip 
% substrates 
clear all; clc; 
W = 6e-3; 
h = 0e-3:1e-4:5e-3; 
c = 299792458; 
eps_r = [2.1 3.2 4.4] 
figure 
hold on 
grid on 
for i=1:3 
fc = c./(sqrt(eps_r(i)).*(2*W+0.8.*h)); 
if i == 1 
    plot(h/1e-3,fc/1e9,'b','LineWidth',2) 
elseif i == 2 
    plot(h/1e-3,fc/1e9,'g','LineWidth',2) 
else 
    plot(h/1e-3,fc/1e9,'r','LineWidth',2) 
end 
end 
line([1.5748 1.5748],[0 20],'LineWidth', 2); 
line([3.175 3.175],[0 20],'LineWidth', 2); 
title('Cutoff frequency vs. substrate thickness (1st higher order mode)') 
xlabel('Substrate thickness h, mm') 
ylabel('Cutoff Frequency f_c, GHz') 

  
h = 1e-3:1e-4:5e-3; 
figure 
hold on 
grid on 
for i=1:3 
fc = c*atan(eps_r(i))./(sqrt(2).*pi.*h.*sqrt(eps_r(i)-1)); 
if i == 1 
    plot(h/1e-3,fc/1e9,'b','LineWidth',2) 
elseif i == 2 
    plot(h/1e-3,fc/1e9,'g','LineWidth',2) 
else 
    plot(h/1e-3,fc/1e9,'r','LineWidth',2) 
end 
end 
line([1.5748 1.5748],[0 75],'LineWidth', 2); 
line([3.175 3.175],[0 75],'LineWidth', 2); 
axis([1 5 0 75]) 
title('Threat frequency vs. substrate thickness (lowest surface wave mode)') 
xlabel('Substrate thickness h, mm') 
ylabel('Threat Frequency f_s, GHz') 

  
h = 0e-3:1e-4:5e-3; 
figure 
grid on  
hold on 
eps_r = 4.4; 
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W = [1e-3 3e-3 6e-3]; 
for i=1:3 
fc = c./(sqrt(eps_r).*(2*W(i)+0.8.*h)); 
if i == 1 
    plot(h/1e-3,fc/1e9,'b','LineWidth',2) 
elseif i == 2 
    plot(h/1e-3,fc/1e9,'g','LineWidth',2) 
else 
    plot(h/1e-3,fc/1e9,'r','LineWidth',2) 
end 
end 
line([1.5748 1.5748],[0 80],'LineWidth', 2); 
line([3.175 3.175],[0 80],'LineWidth', 2); 
title('Cutoff frequency vs. substrate thickness (1st higher order mode)') 
xlabel('Substrate thickness h, mm') 
ylabel('Cutoff Frequency f_c, GHz') 
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Appendix II Data Sheets 
 

Type N connectors 
 

Named after Paul Neill of Bell Labs after being developed in the 1940's, the Type N offered the 

first true microwave performance. The Type N connector was developed to satisfy the need for a 

durable, weatherproof, medium-size RF connector with consistent performance through 11 GHz.  

 

There are two families of Type N connectors: Standard N (coaxial cable) and Corrugated N 

(helical and annular cable). Their primary applications are the termination of medium to 

miniature size coaxial cable, including RG-8, RG-58, RG-141, and RG-225. RF coaxial 

connectors are the most important element in the cable system. Corrugated copper coaxial cables 

have the potential to deliver all the performance your system requires, but they are often limited 

by the performance of the connectors. 

 

Intermodulation distortion, a major concern in today's communications systems, is consistently 

low with corrugated cable connectors. Typical performance is -125 dBm (-168 dBdc). In-house 

IMD measurement capability gives Amphenol the unique ability to understand the effects of 

connector design elements on IMD generation and to design the best performing connectors in 

the industry. Self-flaring designs are easily attached with standard hand tools in the field, and are 

highly resistant to pull off and twist off. All corrugated cable connectors are optimally matched 

to their cables for low VSWR and insertion loss. 

 

Features & Benefits  

 
 Accommodates a wide range of medium to miniature-sized RG coaxial cables in a 

rugged medium-sized design 
 

 Broad line of Military (M39012), Industrial (UG) and Commercial (RFX) grade 

products available, giving customers choices in weighing cost versus performance 

benefits 
 

 Meets many customer application demands with plug styles available in straight and 

right angle and jack styles available in panel mount, bulkhead mount, and receptacle 

 

Applications  

 
 Antennas  Base stations  Broadcast 
 Cable assemblies  Cellular  Components 
 Instrumentation  Microwave Radio  Mil-Aero  
 PCS  Radar  Radios 
 Satcom  Surge Protection  WLAN 
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Type N Standard Specifications 

 

Electrical 

Impedance 50 Ω 

Frequency Range 0 - 11 GHz 

Voltage Rating 1,500 volts peak 

VSWR MIL-C-39012 straight connectors: 1.3 max 0-11 GHz 

MIL-C-39012 right angle connectors: 1.35 max 0-11 

GHz 

Dielectric Withstanding 

Voltage 

2,500 volts rms 

Insulation Resistance 5,000 MΩ minimum 

Center Contact Resistance 1.0 mΩ 

Outer Contact Resistance 0.2 mΩ 

RF Leakage -90 dB minimum at 3 GHz 

Insertion Loss .15 dB maximum at 10 GHz 

 

Mechanical 

Mating 5/8-24 threaded coupling 

Braid or Jacket Cable 

Affixment 

All crimps: hex braid crimp 

Clamps: screw-thread nut and braid clamp 

Center Conductor Cable 

Affixment 

Crimp: crimp or solder 

All others: solder only 

Captivated Contact All crimps unless specified otherwise 

Cable Retention Crimps: 60-120 lbs 

Clamps: 30-70 lbs 

 

Material 

Male Contacts Brass, silver or gold plated 

Female Contacts Phosphorous bronze or beryllium copper, silver or gold 

plated 

Other Metal Parts Brass with ASTROplate® finish; M39012 has silver 

finish  

Insulators TFE, copolymer of styrene or glass-TFE (hermetic 

seal) 

Weatherproof Gaskets Silicone rubber of synthetic rubber 

Crimp Ferrule Copper 

 

Environmental 

Temperature Range TFE: -65°C to +165°C 
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Weatherproof All series N with gaskets are weatherproof 

Hermetic Seals Pass helium leak test of 2x10-8 cc/sec 

Pressurized Shock Compression seal MIL-STD-202, method 213 

Vibration MIL-STD-202, method 204, test condition B 

Moisture Resistance MIL-STD-202, method 106 

Corrosion MIL-STD-202, method 101, test condition B 

Temperature Cycling MIL-STD-202, method 102, test condition C 

Altitude MIL-STD-202, method 105, test condition C 

 

Millitary 

MIL-C-39012 

MIL-A-55339 

Where applicable 

Note: These characteristics are typical but may not apply to all connectors.  

 

Corrugated Type N Specifications 

 

Electrical 

Impedance 50 Ω 

Frequency Range 11.0 GHz 

Return Loss 33 dB (1-2 GHz) 

28 dB (2-3 GHz) 

Operating Voltage Maximum 707 rms 

Dielectric Withstanding Voltage 2,000 vdc 

Insulation Resistance 5,000 MΩ minimum 

Insertion Loss .05 frequency GHz 

Shielding Effectiveness Minimum 125 dB 

Peak Power Maximum 10 kW 

Average Power Maximum .60 kW 

3rd Order IM Product Typical -125 dBm (-168 dBc) 

 

Mechanical 

Mating MIL-STD-348 

Inner Attachment Method Solder or captivated 

Outer Attachment Method Compression 

Assembly Torque 18/22 lb-ft (25/30 N-m) 

Coupling Torque 15.00 lb-in (1.70 N-m) 

Coupling Nut Retention Force 100.00 lbs (444.80 N) 

Connector Durability 500 cycles, 12 cycles/minute 
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Material 

Body Brass, silver plated 

Outer Contacts Brass, silver plated 

Inner Contacts Beryllium copper, gold plated 

Other Metal Parts Brass, silver plated 

Insulators TFE 

Gaskets Silicone rubber 

 

Environmental 

Temperature Range Operating: -40°C to +150°C 

Storage: -70°C to +100°C 

Thermal Shock MIL-STD-202, method 107, test condition A-1 

Immersion IEC 529, IP68 

Vibration MIL-STD-202, method 204, test condition B 

Corrosion MIL-STD-202, method 101, test condition B 

Mechanical Shock MIL-STD-202, method 213, test condition I 

Note: These characteristics are typical but may not apply to all connectors.  
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Power divider isolation chip resistor 
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FR-4 substrate 
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