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Abstract

In this thesis, the Method of Moments has been applied to calculate capacitance between

two arbitrary 3D metal conductors or a capacitance matrix for a 3D multi-conductor system.

Capacitance extraction has found extensive use for systems involving sets of long par-

allel transmission lines in multi-dielectric environment as well as integrated circuit package

including three-dimensional conductors located on parallel planes. This paper starts by

reviewing fundamental aspects of transient electro-magnetics followed by the governing dif-

ferential and integral equations to motivate the application of numerical methods as Method

of Moments(MoM), Finite Element Method(FEM), etc. Among these numerical tools, the

surface-based integral-equation methodology - MoM is ideally suited to address the prob-

lem. It leads to a well-conditioned system with reduced size, as compared to volumetric

methods. In this dissertation, the MoM Surface Integral Equation (SIE)-based modeling

approach is developed to realize electrostatic capacitance extraction for 3D geometry. MAT-

LAB is employed to validate its efficiency and effectiveness along with design of a friendly

GUI.

As a base example, a parallel-plate capacitor is considered. We evaluate the accu-

racy of the method by comparison with FEM simulations as well as the corresponding

quasi-analytical solution. We apply this method to the parallel-plate square capacitor and

demonstrate how far could the undergraduate result ′C = A ∗ ε/d’ be from reality. For the

completion of the solver, the same method is applied to the calculation of line capacitance

for two- and multi-conductor 2D transmission lines.
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Chapter 1

Introduction

1.1 Motivation of This Work

Ever since 1970’s, increased interest existed in the computation of the capacitance coeffi-

cients in multi-conductor systems[62, 56, 26, 33]. With the development of very large-scale

integration (VLSI) in the realm of high-speed digital and microwave circuits, faster and

more accurate calculations for the capacitance and inductance matrices of complex multi-

conductor structures in multilayer media is in demand[53, 29, 68]. The knowledge of the

self and coupling capacitance can help the designer to optimize the layout of the circuit.

For example, the interconnection of delay time caused by parasitic RC (resistance and ca-

pacitance) or to make a more accurate estimation of capacitance for the design of better

motion sensors. In some cases, knowledge of the coupling parameters is absolutely critical.

For example, coupling coefficients are essential in predicting the amount of cross-talk noise

in high-density coupled interconnect lines. Hence, parasitic parameter extraction turns to

be a key factor and needs to be investigated thoroughly.

Advances in integrated circuit technology in the microwave region also necessitate a

sophisticated analysis, design, and construction of transmission lines[35, 62, 64, 6]. All elec-

trical parameters required for a complete characterization of a set of low-loss transmission

lines are obtainable based on the calculation of the static capacitance of transmission line

system[14]. For a transmission line, only one cross-section of the line is usually of inter-
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est, which is perpendicular to the z-axis. The field and charge distribution remains the

same for any cross-section. Thus transmission line model is always solved in 2D case. The

analysis of microcircuit interconnections has also been performed by transmission line tech-

niques which can be solved as 2D problem. However, with the development of complicated

circuit package and conductor geometry, 3D capacitance extraction is necessary for many

applications. Two typical examples of complicated three-dimensional structures, for which

capacitance strongly affects performance, are dynamic memory cells and the chip carriers

commonly used in high-density packaging[70]. All these reasons have increased interest in

computationally efficient procedures for determining capacitance of general two-dimensional

or three-dimensional structures.

The useful result of an electromagnetic field analysis for a static configuration or a

uniform transmission line is often a prediction of the capacitance and inductance. The

usual procedure is to: first, determine the relevant charge or field flux density by solving

a boundary value problem, and then integrate the density to get the total charge or flux.

Finally, capacitance is the ratio of total charge to applied voltage, and inductance is the

ratio of magnetic flux (linkages) to current [23]. Field calculation is not a limitation and

is undesirable as long as the rigorous field analysis can be carried through in closed form

[15, 21]. However, in many important problems most conductors are irregular in shapes and

finite in dimension which is sufficiently complicated that an analytical closed-form solution

is not obtainable. Since an electromagnetic field can be determined by a differential equation

or integral equation formulation, the most straightforward way to obtain an approximate

solution of the integral equation is through direct application of numerical techniques[67].

1.2 Comparison of Differential Equation Method and Inte-

gral Equation Method

Many numerical methods have been applied to extract the electrical parameters of the

interconnects and packages. These methods can be generally classified into two categories:

differential equation methods and integral equation methods. The common features of these

methods include discretization of the unknown function, approximations, and the solution
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based on matrix solution techniques. The approximations result in inaccuracies[20].

The differential equation methods, such as Finite Element Method(FEM) and Finite

Difference Method(FDM)[20] divide an interconnect cell into meshes and lead to a large

scale sparse matrix equation. Two types of basis functions used in FEM are node-based

and edge-based. Node-based functions are commonly used for simplicity of analysis. The

numerical calculation of electrostatic fields requires the solution of a large set of coupled

linear equations, one for each active node in the solution volume which require the set up

of boundary condition for the whole solution volume. [46][47] present an accurate and effi-

cient method for extraction of parasitic capacitance in sub micron integrated circuits. The

method uses a 3-D finite element model in which the conductor charges are approximated

by a piece-wise linear function on a web of edges located on the surface of the conductors.

This yields a system of Green’s function integral equations that is solved by a novel ap-

proximate matrix inversion technique. [69]also gives a 3D capacitance extraction utilizing

FDM method. Though the compressed storage technique and some efficient sparse matrix

equation solvers maybe applied, the solving process is still time-consuming and needs vast

memory resources.

The integral equation methods, such as the Method of Moments(MoM) and the Bound-

ary Element Method(BEM), divides the surfaces of conductors and the interfaces of dielec-

tric layers into meshes and lead to a comparatively smaller but full matrix. This procedure

is robust [37]and has many advantages over finite difference or finite element schemes, in-

cluding good conditioning, reduction in dimensionality, and the ability of treating arbitrary

regions. However, when the number of conductors and dielectric layers increase, the anal-

ysis procedure will also be too costly in terms of computing time and memory needs due

to high cost of working with large dense matrix. Therefore, while the numerical solution

of the IE delivers good performance in the a two-dimensional analysis[54], its application

in three-dimensional capacitance extraction have been limited to small problems. Solutions

have been obtained for problems involving infinite dielectric regions [49, 18] by using Green’s

function techniques similar to those used in the two-dimensional calculations.

It is well known that none of these methods is the most efficient in all cases. [20]

listed the qualitative comparison of computational methods. And [38] generalized different
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application conditions for FEM and MoM ,

• The MoM is more convenient for open problems than the FEM, and vice verse,

• The MoM/SIE is well suited for wire and plate structures, while the MoM/VIE and

the FEM are well suited for dielectric structures

• The MoM matrices are always full. while the FEM matrices are sparse:

• The MoM is more efficient in the case of small problems, while FEM is more efficient

in the case of large problems

However, these application rules are not always correct.

As we can see from above, all the algorithms suffer from at least one limitation. In

order to overcome this difficulty, Hybrid method combined differential methods and inte-

gral methods. The result was a good trend for 3D capacitance extraction development

to keep good accuracy with enlarged application range of 3D geometries For example,[65]

presents a new algorithm of coupling computation of BEM and the finite difference method

(FDM) to avoid a significant error that occurrs if some dielectrics do not contain a conduc-

tor. This algorithm still uses BEM for dielectrics which contain conductors, but employs

FDM for those without. The numerical results indicate that this algorithm reduces calcu-

lation error greatly. [68] utilizes the element-by-element (EBE) technique in finite element

method (FEM) for the solution of electric field, together with preconditioned conjugate

gradient (PCG) solver for solving large matrix equation. It can be used for fast parameter

extraction of multi-layer and multi-conductor interconnects in VLSI circuit. Compared to

some reference solutions, both the memory requirement and the CPU time are significantly

reduced while maintaining a relatively high accuracy.



5

1.3 Application and Development of MoM in Electromag-

netic problem

1.3.1 General formulations of MoM

The MoM is a powerful and versatile numerical method for the solution of partial integral

equations. A global overview can be found in[20]. Applications of MoM to electromagnetics

are discussed in many recent papers since 1970’s. Before we go any further, we will give the

general formulations of MoM.

Considering the inhomogeneous equation:

ς(f) = g (1.1)

where ς is a linear operator, g is known and f is to be determined, we shall now perform

the two essential steps.

1. Let f be expanded in a series of functions:

f =
∑

ansn (1.2)

where an are constant. The set snis called expansion function, or basis functions.

Note that for an exact solution, the summation should be taken to ∞ , but has to be

truncated in practice.

2. It is assumed that a suitable inner product has been defined for the problem. Now,

we define a set of weighting functions, or testing functions, ω1, ω2,··· ,ωN in the range

of ζ, and take the inner product of the previous equation with ω1, ω2,··· ,ωN .∑
αn 〈ωm, ςf1〉 = 〈ωm, g〉 (1.3)

The system can now be written in matrix form as:

[Amn] [an] = [gm] (1.4)

where [Amn] =


〈ω1, ςf1〉 〈ω1, ςf2〉 · · ·

〈ω2, ςf1〉 〈ω2, ςf2〉 · · ·

· · · · · · . . .

 , [an] =


a1

a2

a3

 , [gm] =


〈ω1, ςf1〉

〈ω2, ςf1〉
...





6

If the matrix [Amn] is not singular, the unknowns αnare simply given by:

[an] = [Amn]−1 [gmn] (1.5)

and the original function f can be reconstructed using Eq.(1.2). We can now

generalize the following definitions:

The basis functions used previously are defined as:

sn =


1 if x belongs to the interval n

0 otherwise

(1.6)

The testing (or weighting functions):

Point matching = taking Dirac functions δ as testing functions.

The advantage of the MoM over purely numerical methods is that there is still a large

part that remains analytic like the Green’s functions [20]. Yet, it remains a numerical

method based on a matrix inversion technique and therefore, convergence issues need to be

examined. The convergence of the MoM is closely related to the choice of basis functions

and, although to a lesser extends, to the choice of testing functions. There are essentially

two families of basis functions: entire domain basis functions yielding a good convergence of

the method without mesh process and sub-domain basis functions rely on a proper meshing

of the geometry giving more flexibility of the geometry[39]. Finally, we can mention that

point matching, which is easy to grasp and straightforward to implement, may not yield an

optimal convergence. In most of the applications, the Galerkin technique is better, which

consists in choosing the same testing functions as the basis functions[27]. This applies to

both sub-domain and entire domain functions.

1.3.2 Development of MoM

MoM involves a good amount of preprocessing of Maxwell’s equations because it makes

use of the Green’s function[20]. It’s proposed as a surface-based integral-equation method-

ology. It leads to a well-conditioned system with reduced size, as compared to volumetric

methods [38], but the system of equations generated is inherently dense, thereby creating
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a time and memory bottleneck. Several fast iterative techniques have been developed to

efficiently sore and solve a MoM system with linear time and memory complexity. All these

methods, including QR-based approaches[37][22], fast-multipole methods (FMMs) [44], and

FFT-based techniques [50] etc.

[37]gave the QR-based fast iterative solver (IES3) which adopts a binary tree multi-

level decomposition of the geometry and consequent low-rank compression of the MoM

sub-matrices which represent the interaction between well-separated geometrical regions.

This scheme is particularly attractive for circuit problems.[22]presents an improved matrix-

compression technique for fast iterative solution of such dense systems, which applies QR de-

composition on multilevel Oct-tree-based interaction sub-matrices. It combined the regular-

tree structure of the fast-multipole method with the rank-revealing QR-based matrix-

compression scheme to achieve superior time and memory efficiency. As is demonstrated by

the numerical-simulation results presented herein, the new algorithm is found to be faster

and more memory efficient than both existing QR-based methods and FastCap. The fast

multipole method (FMM) [24], while originally developed for particle simulation problems,

can be combined with iterative techniques to solve the dense integral equation matrices that

arise from the Laplace equation. Parameter extraction programs such as FastCap[44] and

FastHenry[36] use the FMM for accelerating the dense matrix-vector products required by

an iterative solver. FastCap and FastHenry[44, 43] employ the FMM that was originally

developed for particle simulation problems.

Focusing on decreasing the load for computer to do the matrix calculation, several other

methods based on MoM were presented. One of the most powerful methods for the efficient

MoM solution is the multilevel fast multipole algorithm (MLFMA)[12][25, 59, 58] [17], which

marries the fast multipole method (FMM) [24]and a multi-level multi-grid interpolation con-

cept [9]. It can largely reduce the computational complexity and memory requirement of the

matrix calculation. Another powerful method for the efficient MoM solution is the adaptive

integral method[10] (AIM) that has been developed by Bleszynski et al., [8]. Compared to

the conventional MoM, AIM reduces computational complexity and memory requirement

with the aid of auxiliary basis functions and fast Fourier transform (FFT) that is used in

the Precorrected-FFT method[50] . The AIM has been successfully applied to the anal-
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ysis of scattering by, and radiation from, arbitrarily shaped three-dimensional and planar

structures [60, 41, 8]. Refer[10] apply the AIM to calculate the capacitance matrix for an

arbitrarily shaped 3D structure and the memory requirement and computational complexity

proved its effectiveness of computing capacitance of an arbitrarily shaped 3D structure. The

solutions introduced in Refer[10] considerably reduce storage requirements for the matrix

of coefficients without unduly increasing computation complexity, allowing the treatment of

three-dimensional conductors on multiple planes and Refer[29] presented a new capacitance

extraction method named Dimension Reduction Technique for 3D VLSI interconnects. It

converts a complex 3D problem into a series of cascading simple 2D problems.

1.4 Problem statement

Given different choice, any EM or RF problem can be solved, in principle, using full

Maxwell’s equations; subject to the corresponding boundary conditions. However, in many

cases the solution of full Maxwell’s equations is very cumbersome. Based on application

environment, different simplifications can be made that yield an almost identical result.

Therefore, in numerical modeling applications, different EM and RF software packages use

different approximations depending on a specific problem under study[19]. For example:

magnetostatic and eddy-current models for power electronics[28], electrostatics model for

transmission lines[12], electrostatics model for semiconductor modeling or full wave solution

for antenna modeling[57], etc.

Until now, several commercial as well as public domain tools such as TMA’s Raphael(based

on Finite Difference Method (FDM)), Ansoft’s SPICELINK(based on Finite Element Method

(FEM)) and MIT’s FastCap (based on multipole accerated Boundary Element Method

(BEM)) are available to calculate the statistic capacitance of various interconnects. Then,

considering the transmission line, since the transverse electric fields of a TEM mode (the

fields in the xy-plane whilst the wave propagates along the z-axis) are curl-free (have the

electric potential) and satisfy Laplace’s equation in the domain with no charges[14], sim-

ilar observation is valid for the transverse magnetic fields, with the charges residing on

metal conductors, the Laplace’s equation for the corresponding electric potential ϕ is trans-
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formed to the well-known Poisson’s equation. This circumstance allows us to find the static

capacitance per unit length between two or more conductors using established numerical

or analytical electrostatic techniques. The analytical techniques are based on conformal

mapping in 2D space (transformation to a complex plane and contour reduction) - see, for

example, Ref.[14].

Therefore, the task of this paper is to utilize MoM to calculate the capacitance matrix of

arbitrarily shaped conductors embedded in multiple dielectric regions with a static model.

The multi-conductor system is analyzed under different conditions. It could be situated

over a finite or infinite ground plane, or could be between two ground planes. The solution

is useful for finding characteristic impedance or equivalent circuits of microstrip junctions

as well as discontinuities and for vias connecting conductors located in various dielectric

regions. Some of the conductors may be of finite volume and others may be infinitely thin.

Even though a large volume of literature exists to analyze an infinitely long transmission

line, there are very few satisfactory procedures to solve for the equivalent circuits of junctions

and vias connecting conductors located in various dielectric layers.

1.5 Chapter Abstract

In Chapter 2, the Maxwell’s equation is reviewed and Green’s function is presented to

show the relation between charge density and potential for the conductor. Also, certain

boundary condition is explained as basis to solve the system including dielectric layers.

In Chapter 3, principle of MoM is reviewed then the formulation of the IE solution

is developed. MoM equations of multi-conductor system under different conditions are

discussed and the evaluation of the capacitance coefficient matrix is considered.

In Chapter 4, MoM solution is implemented with MATLAB code. Fig.(1.1) shows its

general information. Results of several numerical examples are provided to do the compari-

son with analytical solution or existing numerical solution utilizing other numerical method.

Furthermore, numerical facts influencing the effectiveness and accuracy are generalized.
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Figure 1.1: Solving Poisson’s Equation for Complex 3D Structures
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Chapter 2

Full Wave Equations and Static

Approximation

This chapter reviews the Maxwell equations in the context of modeling the electro-

magnetic behavior of a metallic structure. Starting from the full wave equations and its

simplified forms, potential formulations are reviewed which require fewer unknowns to be

solved than the full set of Maxwell equations. The quasi-static approximation is motivated

and the static approximation is presented. Basic field theory is given in order to clarify

which field variables are mandatory in order to clarify which further simplifications could

be carried out. When possible, respective field solutions are introduced. While Numerical

methods are treated in chapters to follow, they will reference back to the theory presented

here.

2.1 Maxwell’s equations

2.1.1 Dynamic Case

The most fundamental equations of classical electrodynamics are the Maxwell equations

which consist of a system of coupled partial differential equations. Consider a medium

with electric permittivity ε and magnetic permeability µ and with no (fictitious) magnetic

current density. The sources are given by (volumetric) conduction current density J and by
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volumetric electric charge density ρ. Then, Maxwell’s equations for electric field intensity
−→
D and magnetic field intensity

−→
B have the form [67]

Gauss’ law for electric field

∇ ·
−→
D = ρ (2.1)

Faraday’s law

∇×
−→
E = −∂

−→
B

∂t
(2.2)

Gauss’ law for magnetic field (no magnetic charges)

∇ ·
−→
B = 0 (2.3)

Ampere’s law modified by displacement currents

∇×
−→
H = −∂

−→
D

∂t
+
−→
J (2.4)

Material relations as Eq.(2.5)exist which relate the magnetic flux density to magnetic field,

electric displacement current to electrical field and electric current density to electric field

−→
B = µ

−→
H,
−→
D = ε

−→
E,
−→
J = σ

−→
E (2.5)

where µ is the relative permeability, ε is the relative permittivity, σ is conductivity.

Eqs.(2.1)-(2.4) together with Eq.(2.6), is the basic set of equations of classical electricity

and magnetism, governing all electromagnetic phenomena in the range of frequencies from

zero through the highest-frequency radio waves and in the range of sizes above atomic size.

2.1.2 Phasor form

Considering the majority of engineering applications utilize steady state AC fields vary-

ing sinusoidally in time, and also that transients or time variations of other forms which

by the method of Fourier analysis[30] maybe considered a superposition of such steady-

state sinusoids of different frequency, there is advantages to use the complex exponential

form
(
ejωt

)
. As Eq.(2.6)shows, the time periodic behavior of all field variables f is assumed.



13

f(−→r , t) = <[f̂(−→r )ejωt] (2.6)

Note that only the real part of the phasor representation has a physical meaning and the

complex number carries the phase information. Therefore, to find the frequency domain

solution, formally the set of Eq.(2.1)-(2.4) are easily changed over by replacing ∂
∂tby jω:

∇ ·
−→
D = ρ (2.7)

∇×
−→
E = −jω

−→
B (2.8)

∇ ·
−→
B = 0 (2.9)

∇×
−→
H = −jω

−→
D +

−→
J (2.10)

The basic prerequisite for such a substitution is the linearity of Maxwell’s equations.

2.1.3 Quasi-static Case

The quasi-static case differs from the fully dynamic case only by its neglect of the

displacement current. It happens when:

σ � ωε (2.11)

Eq.(2.11) is fulfilled in conducting media for even high frequencies, because ε0 = 8.85 ·

10−12[F/m] is a small number and the electrical conductivity of metals is typically σ >

107[S/m]. Within this approximation, the time derivative of the displacement current

∂D/∂t in Eq.(2.4) is discarded leading to

∇×
−→
H =

−→
J (2.12)

and that Eq.(2.1)-(2.3)are still holding. Since the divergence of the curl of a vector is zero,

we see from that in the quasi-static case,

∇ ·
−→
J = 0 (2.13)
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The quasi-static approximation reduces the mathematical complexity of the Maxwell equa-

tions and leads to results with sufficient accuracy. It is used for time-varying fields in many

conducting media. This is because, for good conductors, the conduction current greatly

exceeds the displacement current for frequencies that usually concern us(right up to X-ray

frequencies). A good example of this is the calculation of time-varying magnetic fields

in iron cores, the so-called “eddy-current” problem[32]. This has practical applications in

electric motors, generators, magnetic recording heads, and solenoid actuators.

2.1.4 Static Case

In the static case, both the electric displacement current and the time-varying magnetic

flux density are neglected, which means in static approximation all time dependence of the

Maxwell equations Eq.(2.1)-(2.4) is neglected. In the frequency domain this corresponds

to ω = 0. Furthermore, since there is no phase delay due to alternating current, all field

variables become real. Note that electric and magnetic fields are completely decoupled[19].

In this case Eq.(2.2) becomes:

∇×
−→
E = 0 (2.14)

In addition to these equations, Eq.(2.1),(2.3)and Eq.(2.13) still hold. Static field calculations

are made wherever the dictates of physical reality permit, because, as we will see below,

they are of relative simplicity compared to dynamic and quasi-static calculations, As an

example, many calculations in the magnetic fields of magnets are static calculations.

2.2 Use of potentials

In order to determine the field generated by a given source: like antennas, waveguides,

cavity excitations, etc, the solution is easier to obtain if we introduce auxiliary vector

potential function Φ(electric potential) and
−→
A magnetic vector potential[31].

The magnetic vector potential
−→
A is defined with Eq.(2.11)

−→
B = ∇×

−→
A (2.15)
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It fulfills Eq.(2.2) automatically, because ∇ · (∇ × f) = 0 for any vector field . Equation

(2.15), however, does not yield a unique definition for
−→
A , because the gradient of a scalar

field ∇Φ can be added without change of the curl of the sum. Useful definitions of
−→
A

depend on respective approximations of the Maxwell equations and are given below[?].

From Eq.( 2.7) and (2.11) it follows that

∇×
−→
E = −jω∇×

−→
A (2.16)

The curl operator is applied to both sides of Eq.(2.16). The difference between fields
−→
E

and
−→
Acan hence be only the gradient of a scalar field, e.g. ∇Φ,

−→
E = −jω

−→
A −∇Φ (2.17)

2.3 Solution to Maxwell equation

Electromagnetic fields at a point may be determined using Faraday’s law Eq.(2.1) Am-

pere’s law Eq.(2.3), constitutive relations, and boundary conditions directly which is fol-

lowed in the finite-difference time-domain(FDTD) method[20]. However, the most conve-

nient approach to determine the steady state fields is to solve the wave equations, which

are derived from Eq.(2.6).

2.3.1 Full wave solution

With Eq.(2.1) and material relation Eq.(2.5) it follows that;

∇ ·
−→
E = −jω∇ ·

−→
A −4Φ =

ρ

ε
(2.18)

Note that during derivation of Eq.(2.18), the dielectric permittivity has been set constant

in space. In order to solve for a complete field distribution, solutions in domains with

each constant dielectric permittivity have to be matched at the domain boundaries. For

matching conditions cf. [31]. With use of the vector identity[19], the curl of the magnetic

field in Eq.2.4can be written as
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∇×
−→
H =

1

µ
(∇∇

−→
A −4

−→
A ) (2.19)

Note that in Eq.(2.19) the magnetic permeability has been set constant as assumed in Sec.

2.1. Eq.(2.4) is reformulated with Eq.(2.17) and (2.2).

∇∇
−→
A −4

−→
A = µ

−→
J + µε(ω2−→A −∇Φ) (2.20)

The Helmholtz Theorem states that vector fields are defined when both curl and divergence

are defined. Here, the ”Lorentz Gauge” as [31]

∇ ·
−→
A = −jωεµΦ (2.21)

is a useful definition of the divergence of . Eq. (2.18)simplifies to

4Φ + ω2εµΦ = −ρ
ε

(2.22)

and Eq.(2.20) becomes

4
−→
A + µεω2−→A = −µ

−→
J (2.23)

Equations (2.22) and (2.23) are both inhomogeneous Helmholtz equations with one and

three components, respectively. Solutions can be obtained with use of Green’s function G

(4+ k2)G(−→r ,
−→
r′ ) = −4πδ(−→r −

−→
r′ )) (2.24)

Where , k2 = ω2εµ, δ stands for the delta-function and

G±(−→r ,
−→
r′ ) =

e±j
−→
k |−→r −

−→
r′ |

| −→r −
−→
r′ |

(2.25)

In Eq.(2.25) the plus-minus sign denotes expanding and contracting waves respectively.

This can be deduced from the full solution in time, which is given by

G±(−→r ,
−→
r′ ) = G±(−→r ,

−→
r′ )ejωt (2.26)
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With the ”plus” sign and increasing time, the phase argument +k(−→r −
−→
r′ )+ωt stays constant

when the distance −→r −
−→
r′ decreases. Hence the ”plus”-sign corresponds to incoming waves.

The ”minus”-sign leads to inverse behavior and hence corresponds to outgoing waves. Since

initially fields are zero at infinity, only outgoing waves and hence only the ”minus” sign is

considered during the following analysis.

The full inhomogeneous solution of Eq.(2.22) is calculated by superposition of Green’s

functions,

Φ(−→r ) =
1

4π

∫
V

ρ(
−→
r′ )e−j

−→
k |−→r −

−→
r′ |

| −→r −
−→
r′ |

d3
−→
r′ (2.27)

The same holds for the three solutions (one for every coordinate direction) of Eq. (2.23)

Ai(
−→r ) =

1

4π

∫
V

Ji(
−→
r′ )e−j

−→
k |−→r −

−→
r′ |

| −→r −
−→
r′ |

d3
−→
r′ (2.28)

Where i = x, y, z denotes the respective coordinate direction. When current and charge

densities are given, computation of a field solution with Eq.(2.27) and (2.28) is straight

forward. However, since the electromagnetic contact behavior is typically characterized by

S-parameters or impedance values, current and charge densities have to be computed too,

when either the electric potentials at contacts or the total conductor currents are known.

In order to solve for the three unknown components of
−→
J (−→r )and the unknown field

ρ(−→r ), four additional equations are required. The current density
−→
J (−→r )can be calculated

with Eq.(2.17) and material relation Eq.(2.5). The charge density ρ(−→r )can be calculated

from the continuity equation

∇
−→
J (−→r ) + jωρ(−→r ) = 0 (2.29)

which always has to be fulfilled[55]. Use of Eq.(2.29) however introduces a coupling into

Eq.(2.27) and (2.28). Therefore these equations cannot be solved independently.

2.3.2 Simplified solution

The quasi-static approximation reduces the mathematical complexity of the Maxwell

equations and leads to results with sufficient accuracy, when certain conditions are met as
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we discussed in section 2.1.3. To get simplified solution with quasi-static approximation, we

must follow the same steps as we did in Sec.2.3.1. The simplification leads to a difference

in Eq.(2.20),

∇∇
−→
A −4

−→
A = µ

−→
J (2.30)

Here, the ”Coulomb Gauge”[31]∇·
−→
A = 0 is better suited for adjustment of∇

−→
A Equation(2.18)then

reduces to

∆Φ = −ρ
ε

(2.31)

as Poisson’s equation and Eq.(2.30) becomes

∆
−→
A = −µ

−→
J (2.32)

Both equations are inhomogeneous Laplace equations and can be solved with use of Green’s

functions

4
−→
G(−→r ,

−→
r′ ) = −4πδ(−→r −

−→
r′ ) (2.33)

where in this case
−→
G(−→r ,

−→
r′ ) = 1

|−→r −
−→
r′ |

.

The difference between Eq.(2.25) and Eq.(2.33) is the missing retardation term e−jk|
−→r −
−→
r′ |

; which accounts for the wave propagation delay in case of the full wave solution. Since there

is no wave propagation delay within the quasi-static approximation, the wave velocity ap-

pears to be infinite. Obviously this approximation yields good results when the wavelength

is large compared to the conductor dimensions.

As in the previous section, fields Φ and
−→
Acan be calculated directly when charge and

currents are known,

Φ(−→r ) =
1

4π

∫
V

ρ(
−→
r′ )

| −→r −
−→
r′ |

d3
−→
r′ (2.34)

and for the three coordinate directions separately
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Ai(
−→r ) =

1

4π

∫
V

Ji(
−→
r′ )

| −→r −
−→
r′ |

d3
−→
r′ (2.35)

where i = x, y, z denotes the respective coordinate direction.

One more simplification can be applied when considering that electric and magnetic field

are ”basically” decoupled within this approximation[48].Generally electric and magnetic

fields are coupled, because one field can be determined from the other by Eq.(2.2) and

(2.4). However when time derivatives become smaller due to small coupling, this task

becomes increasingly difficult to perform (by means of measurements or from numerical

simulation results). It is therefore a common engineering approach [48] to simulate (and

measure) electric and magnetic field independently. Note, that still only limited theoretical

foundation is available for this decoupling behavior in case of general geometries. When

applying the static approximation as we stated in section 2.1.4, the electric and magnetic

fields are completely decoupled. The electric field can be characterized with capacitance

values as in the quasi-static approximation.

2.3.3 Boundary Relation

In a sigle medium the electric field is continuous. However, at the boundary between two

different media, the electric field may change abruptly both in magnitude and direction.

It is of great importance in many problems to know the relations of the fields at such

boundaries. These boundaries are discussed in many books. Boundary problem is discussed

in two parts: the relation between the fields tangent to the boundary and the fields normal

to the boundary. The tangential components of the electric field are the same on both sides

of a boundary between two dielectrics. Meanwhile, by using flux density
−→
D , we can get

Eq.(2.36)from Gauss’s law,

Dn1 −Dn2 = ρs (2.36)

Where Dn1 denotes the average flux density normal to the upper side of boundary in

medium1 and Dn2 denotes the average flux density normal to the bottom side of boundary

in medium2, ρs denotes the surface charge desity on the boundary. ρs is usually zero at a
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dielectric-dielectric boundary unless charge has been placed there by mechanical means, as

by rubbing. If the boundary is free from charge, ρs=0 and Eq.(2.36) reduces to

Dn1 = Dn2 (2.37)

If medium 2 is conductor, Eq.(2.37) reduces to

Dn1 = ρs (2.38)

It is important to note that ρs in these relations refers to actual electric charge separated

by finite distances from equal quantities of opposite charge and not to surface charge due

to polarization.

2.4 Electric Field and Capacitance

This section describes the calculation of the electric field and capacitance[31][40]. With

appropriate boundary conditions, the electric field can be described with a capacitance

value. Several ways are presented to compute a capacitance value. When
−→
B = 0 it follows

from Eqs.(2.15) and (2.17) that
−→
A = 0 . The electric field can now be calculated from the

scalar potential alone.

−→
E = −∇Φ (2.39)

From Eq.(2.27) it is known that Φ depends entirely on ρ . For an over-all characterization

of the field for a given potential the capacitance

C =
Q

V
(2.40)

can be used. In Eq.(2.40) Q denotes the total conductor charge and V denotes the respective

constant potential between conductor and infinity. The total conductor charge can be

calculated with Gauss’ law

Q =

∫
S
−ε∇ΦdS (2.41)
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Where S is a closed surface around the conductor and dS denotes the outward normal on

S . Because of the constant conductor potential, inside conductors ρ = 0. This is true

for frequencies where metals serve as electric conductors. Conductors are separated by

insulators where also ρ = 0. Therefore the Laplace equation Eq. (2.31) has to be solved

with Φ = 1V on the conductor surface and 0V at infinity

4Φ(−→r ) = 0 (2.42)

Note that with non-constant dielectric permittivity Eq. (2.41) becomes [31]

∇ε(−→r )∇Φ(−→r ) = 0 (2.43)

The capacitive behavior of a multi-conductor system is described by a capacitance matrix

C with

CV = Q (2.44)

In Eq.(2.44), V denotes the vector of conductor potentials and Q denotes the vector of

total conductor charges. Capacitance matrix entries Cijcorrespond to charges accumulated

on conductor j , when an electric potential of 1V is applied to conductor i and all other

conductors are kept at zero potential. Note that only the inverse relation Eq.(2.27) between

charge and potential is available directly. In fact, there are two other interrelated definitions

of the capacitance matrix for multiconductor lines. Here, we consider only the so-called

Maxwellian capacitance matrix explained as above [56][64].

Written Eq.(2.44) to matrix form as Eq.(2.45), the ijth element of the Maxwell capaci-

tance matrix is the free charge on the ith conductor when the potential of the jth conductor

is 1V and all other conductors are grounded. In [64], the elements of the Maxwellian ca-

pacitance matrix are called coefficients of capacitance. All coefficients of capacitance in

Eq.(2.45) are determined directly from the MoM analysis which will discussed in the next

chapter.
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Q1 = C11V1 + C12V2 + · · ·+ C1NVN

Q2 = C21V1 + C22V2 + · · ·+ C2NVN (2.45)

· · ·

Q3 = CN1V1 + CN2V2 + · · ·+ CNNVN

The inductance matrix Lij is called . According to Ref. [14], the ijth element of L is the

magnetic flux passing between a unit length of the ith conductor and the lower ground

plane when one ampere of net z-directed electric current flows on the jth conductor and

there is no net z-directed electric current on any of the other conductors. Here, z is the

coordinate perpendicular to the xy plane. It can be shown that :

L = µ0ε0 [C0]
−1 (2.46)

where C0 is the ground capacitance matrix in vacuum of the same transmission line with

the dielectric being removed.

According to [5], entries in the capacitance matrix C have the following features:

1. Since Eq.2.45 is symmetric in i and j, also C is symmetric, i.e. Cij = Cji.

2. Cij > 0∀i. When conductor i is placed at some positive potential and all other

conductors are placed at zero potential, conductor i must carry a positive charge.

3. Cij < 0∀j 6= i. When all other conductors are placed at zero potential, they must

carry a negative charge. Hence, all entries in C generally are non zero. Conductors

can be shielded by covering them with a material with high dielectric permittivity.

4.
∑

j Cij ≥ 0∀i. The sum of capacitance matrix entries in row i equals the sum of

all conductor charges, when 1V electric potential is applied to conductor i and 0V

is applied to all other conductors. Between conductors, the electric displacement

current is divergence free. Hence the sum of flux integrals Eq(2.31) is zero, when

there exists an outer boundary around the system of conductors with no electric field

penetration. The sum is greater than zero, when electric field flux emanates towards
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infinity. When the sum of row entries vanishes, the capacitance matrix is singular,

because one column can be determined from the other columns.

5. C is positive definite, because the electric field energy 1
2V

TCV > 0∀V 6= 0.

6. When different conductor i and j are electrically connected and thus a new conductor

with index is formed, the reduced capacitance matrix C̃ can be computed by setting

potentials and all other conductor potentials to 0V . The new diagonal entry can be

calculated from the total conductor charge. It is given by C̃λλ = Cii+Cjj +Cij +Cji.

Off diagonal entries are given by Cλk = Cik + Cjk.

Similar to calculation of electric field and capacitance, magnetic field and inductance can

be deduced based on Equations stated in above sections. Also for multi-conductor system,

entries in the inductance matrix L have the similar features as capacitance matrix C[40]
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Chapter 3

Static Capacitance Extraction By

Means of Moment of Method

After the basic review of the Maxell equation in Chapter2, this chapter will present a

method to compute the electrostatic capacitance matrix for a multi-conductor system in free

space or multiple dielectric regions. We will follow a classic references text refer[49, 56, 16,

61], which will be compared to finite element method currently widely used by commercial

software packages such as HFSS Ansoft and Amaze. The formulation is obtained by using a

free-space Green’s function in conjunction with total charge on the conductor-to-dielectric

interfaces and polarization charge on the dielectric-to-dielectric interfaces. The solution is

effected by the method of moments using triangular sub-domains with piecewise constant

expansion functions and point matching for testing.

As stated in Chapter1, the basic difference between the analysis of transmission lines

and junctions of lines, vias, etc., is that for the former case we are solving a two-dimensional

problem and, for the latter case, we are solving a three-dimensional problem. In this chapter

we will include MoM application to both 2D and 3D geometry. This chapter is organized

as follows: Section 3.1 describes the method to calculate the potential integral reuqired

in MoM. Section 3.2 describes the MoM equations for modeling the pure metal structure

in free space. Section 3.3 describes the MoM equations for the conductors embedded in

dielectric layers with proper boundary conditions for Dielectric-to-dielectric interface and
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conductor-to-dielectric interface. Section 3.4 makes a conclusion of MoM modeling for

multi-conductor system and propose possible numerical improvement for current modeling.

Numerical results are presented for some typical multi-conductor systems in chapter 4.

3.1 Calculation of potential integrals involving the scalar Green

function and its gradient

Evaluations of the integrals involving the Green’s function kerne1 and its derivative are

important in the numerical implementation of the electric-field integral equations (EFIE)[51,

66, 4]. Ever since 1970’s, Green’s function-integral equation approach [52, 35, 49] has been

used explicitely to find the capacitance coefficients for a system of irregular finite conductors

on a dielectric sheet. There are two parts to the Green’ function-integral equation approach

considered herein: the first deals with a derivation of Green’s functions for a desired math-

ematical model; the second solves the integral equation by a discretization procedure in

which a solution for a large number of unknowns is required - a significant limitation. This

approach, however, allows treatment of rather complex finite geometric configurations that

are useful in the design of modern thin circuits. Different method are used to solve the

integral equation.

Over the past several decades, many approaches have been presented[49, 51, 66, 23, 16, 4]

to handle double surface potential integrals, based on triangular basis functions. [49] follows

the integral transformation whose mathematic objective is to reduce a difficult problem in

the original domain to a simpler form[20]. It utilized Fourier integral expression to express

Green’s function. One may construct the desired Green’s functions by superposition in this

way. Solution can be found for different cases easily considering different boundary condi-

tion for different dielectric regions and ground plane. [51] presented a complete analytical

integration to eliminate the need for special treatment of the singular integrals which arise

for the diagonal elements of the matrix. It also sidesteps the question of what order numeri-

cal quadrature is required to integrate over any given triangular-shaped region. Preliminary

tests have indicated that analytical evaluation of the integrals is also more efficient than

numerical integration. However, this solution has limitations when the triangle forms a
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right angle which needs to be solved in another way. [66] gives a detailed analysis about the

integral calculation for uniform and linear source distributions on polygonal and polyhedral

domains. Correspoding analytic solution are given in detail for reference. As an extension

of [23], [61] presents a semi-analytical method for computing the quasi-static double surface

potential integrals, arising in the boundary integral (BI) models of electrically very small

objects and for static electromagnetic-field computation.

In this paper, we prefer to use the simplest midpoint numerical integration for singular

potential integrals, even though the analytical integration, or a more accurate numerical

integration, are both possible for the static 2D or 3D problem[6, 3]. The analysis assumes

a uniform charge over each subarea, the results should approach the theoretical value if

the number of subareas are increased indefinitely. However, the computation time increases

very rapidly for large number of subareas. Thus adaptive mesh refinement is applied to

improve the accuracy of integral caculation with more basis functions (fine mesh) in the

domains with large charge density and less basis functions (coarse mesh) in the domains

with small charge density while still keep the higher efficiency acquired from one-point

integral method. Midpoint numerical integration will fail for singular self-coupling terms as

you will see from section 1.2.2, so the analytical solution generalized in [16] will be used.

Although it is generally true that the use of smoother basis functions enhances the

convergence of the solution for closed surfaces with continuous normals, for general abritrary

shaped surfaces having corners or edges where the charge may be singular, the lack of

continuity of the simple pulse functions turns out to be an advantage since pulses actually

model the singular behavior better.

3.2 MoM application to Metal geometry in free space

As simple start of electrostatic modeling for multi-conductor system, in this section, the

MoM equation for a pure metal system with finite-ground or ground at infinite distance

is derived and solved for the EFIE, utilizing the pulse function as basis function, and δ

function as testing fuction. Also there are concerns for the ground plane in multi-conductor

systems. There are three cases:
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1. Multi-Conductor systems with finite-ground

2. Multi-Conductor systems above infinity ground

3. Multi-Conductor systems with ground in finite distance

In this chapter, all of them will be discussed but the numerical results will be only given

under condition (1) and (3).

There are different ways to deal with these conditions:

1. By meshing both plates(i,e, meshing everything ,which is of course always possible in

finite region). This will yield bigger matrix and more unknown values in the MoM

equation

2. By using the image theory, and declaring the new problem is equivalent to the one of a

unique plate on top of a ground plane. In this case, we only have to change the Green’s

function to take the ground plane into account, and we keep less number of unknowns

in MoM eqautions. When possible, this solution is better because computationally

less expensive (analytically more expensive)

Basically, a general trend is to have a Green’s function that represents as much as possible

of the environment and to mesh only those parts that are external to the environment. This

is in fact the reason why people are looking for Green’s functions in layered media, periodic

media, etc.

3.2.1 MoM equations

Consider a multi-conductors system with a finite common ground in free space as shown

in Fig.3.1. Since in metal conductors, charges only reside on their surfaces, but not in the

volume, with reference to Fig3.1a, the surface integral in Eq.(2.34) over the metal surface

S = S1 + S2 + · · · + SN need to be solved. Following by two steps of MoM decribed in

section 1.3.1:

1. Mesh the structure: divide the surface into N trangles. Triangluar mesh is picked for

its versatility to construct random shape geometry.
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Figure 3.1: Surface triangular mesh

2. Expand unknown surface charge density intoN known basis function sn(r) .

ρs(
−→r ) =

N∑
n=1

ansn(−→r ) (3.1)

with unknown coefficients an and pulse basis function sn(−→r ) which is equal to one

for triangle n and equals zero for all other triangles of the surface. In other words,

we consider a piecewise-constant charge distribution with unknown coefficients - the

staircase distribution. And average charge distribution is asummed for every triangle.

The first step of MoM is to substitute expansion Eq.(3.1) into Eq.(2.34) and interchange

summation and integration. This gives

ϕspec(
−→r ) =

N∑
n=1

∫
Sn(
−→
r′ )

4πε0 | −→r −
−→
r′ |

dS′ (3.2)

ϕspec denotes the electrostatic potential, the integration variable
−→
r′ , in Eq.(3.2) belongs to

surface S = S1 + S2 + · · ·+ SN , whereas the observation variable −→r , belongs to the same

surface too. To obtain this system, we additionally multiply both sides of Eq.(3.2) by every

basis function s1(
−→r ), s2(

−→r ), · · · , sN (−→r ), and then integrate the resulting expression one

more time over the surface S. These steps give Eq.(3.3)
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V =

∫
S
ϕspec(

−→r )s1(
−→r )dS

=

N∑
n=1

an

{∫
S

∫
S

(
1

4πε0

s1(
−→r )sn(−→r )

|−→r −
−→
r′ |

)
dS

′
dS

}
=

N∑
n=1

anZ1n (3.3)

One can see that Eq. 3.3 could be compactly written in the form of a system of linear

equations:


V1

V2

· · ·

VN

 =


Z11 Z12 · · · Z1N

Z21 · · · · · · Z2N

· · · · · · · · · · · ·

ZN1 ZN2 · · · ZNN

 ·

a1

a2

· · ·

aN


ZMN =

1

4πε0

∫
Sm

∫
Sn

sm(−→r )sn
−→
(r)

| −→r −
−→
r′ |

dS′dS (3.4)

Vm =

∫
Sm

ϕm(−→r )sm(−→r )dS

This is the MoM matrix for 3D metal structure for unknown coefficients an and at times

symmetric matrix Z is the MoM matrix. Thus, the MoM method solves the system of linear

equations Eq.(3.4).

3D application can be easily converted to 2D electrostatic model. As presented previ-

ously, for a transmission line, since charge is uniformly distributed along the line, only one

cross-section of the line is usually of interest, which is perpendicular to the z-axis. The

field and charge distribution remains the same for any cross-section. The surface integral

in Eq.(2.34) over the metal surface S = S1 + S2 + · · · + SN will become the edge integral

over the contour l = l1 + l2 + · · ·+ lN covering the cross section of all the conductors in the

system. We know, from electrostatics, that any line with a charge uniformly distributed

along the line will create the electric potential

ϕ(−→r ) = −ρlln |
−→r −

−→
r′ |

2πε0
(3.5)

where ρl is the charge density per unit length. Then, integral given by Eq.(2.34) is reduced

to a contour integral
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ϕspec(
−→r ) = −

∫
l

ρl(
−→
r′ )ln | −→r −

−→
r′ |

2πε0
dl′ (3.6)

For 2D problem, edge basis function is used. The entire contour l is divided into N small

straight segments (edges) and unknown charge density ρl is expanded into N known basis

functions sn(−→r ). Then, following the same steps for 3D geometry, we will acquire the

results as:


V1

V2

· · ·

VN

 =


Z11 Z12 · · · Z1N

Z21 · · · · · · Z2N

· · · · · · · · · · · ·

ZN1 ZN2 · · · ZNN

 ·

a1

a2

· · ·

aN


ZMN =

1

2πε0

∫
l

∫
l
sm(−→r )sn(−→r )ln | −→r −

−→
r′ | dl′dl (3.7)

Vm =

∫
l
ϕspec(

−→r )sm(−→r )dl

As introduced previously, the present MoM method is called the Galerkin method; it

uses the special testing procedure (second integration) plus the same basis and testing

functions. In another, simpler MoM formulation (collocation or point matching), we just

pick up N discrete versions of Eq.(3.6), say, for every edge midpoint and thus arrive at

another complete system of N MoM equations, which may be very similar to the present

one.

3.2.2 Integral calculation

The elements of the MoM matrix are expressed in the form of double integrals; those

integrals should be evaluated either numerically or analytically. As explained in Sec.3.1, we

use the simplest midpoint numerical integration.

1. For 3D geometry, in Eq.(3.4), when m 6= n ,the simplest midpoint numerical integra-

tion can be used to solve the non-singular terms in MoM matrix, it gives

Zmn ∼=
AmAn

4πε0 | −→cm −−→cn |
, Vm ∼= Amϕspec(

−→cm) (3.8)
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where Ai,
−→ci are triangle area and center of the triangle, respectively. The approx-

imation given by Eq.(3.8) fails when m = n . In this case, we use the analytical

integration[16] presents analytical formulas for MoM self-coupling terms involving the

scalar Green function of free space. It can be used for near-field calculations of elec-

tric and magnetic source currents, especially for the calculation of method of moments

(MoM) matrix elements due to the solution of surface integral equations.

The singular contributions of all necessary integrals can be reduced to∫ ∫
S′

1

| −→r −
−→
r′ |

dS′,
∫ ∫

S′ λ
′ 1

|−→r −
−→
r′ |
dS′∫ ∫

S′
λ′∇ 1

| −→r −
−→
r′ |

dS′,
∫ ∫

S′ ∇ 1

|−→r −
−→
r′ |
dS′ (3.9)

where λj are the simplex coordinates or normalized area coordinates on the source

triangle. Since the singular contributions of all necessary integrals can be reduced to

Zmm =

∫
S

∫
S

(
1

4πε0

sm(−→r )sm(−→r )

| −→r −
−→
r′ |

)dS′dS

=
1

4πε0

∫ ∫
S

1

| −→r −
−→
r′ |

dS′dS (3.10)

we only consider the singular self-conpling terms of Eq.(3.10) for arbitrary linear

source distributions on the trianle

I =
1

4A2

∫ ∫
S

∫ ∫
S

1

| −→r −
−→
r′ |

dS′dS (3.11)

Because we consider self-coupling tems, we can write

−→r = λ1(
−→r1 −−→r2) + λ2(

−→r2 −−→r3) +−→r3 ,
−→
r′ = λ′1(

−→r1 −−→r3) + λ′2(
−→r2 −−→r3) +−→r3 (3.12)

Therefore:

−→r −
−→
r′ = (λ1 − λ′1)(−→r1 −−→r3) + (λ2 − λ′2)(−→r2 −−→r3) (3.13)

The −→ri are the corners of the triangle. Integral over the triangle area can be easily
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solved with the coordinate transformation. Then we get:

I =
log( (a−b+

√
a
√
a−2b+c)(b+

√
a
√
c)

(−b+
√
a
√
c)(−a+b+

√
a
√
a−2b+c))

6
√
a

+

+
log( (−b+c+

√
c
√
a−2b+c)(b+

√
a
√
c)

(−b+
√
a
√
c)(b−c+

√
c
√
a−2b+c))

6
√
c

(3.14)

+
log( (a−b+

√
a
√
a−2b+c)(−b+c+

√
c
√
a−2b+c)

(b−c+
√
c
√
a−2b+c)(−a+b+

√
a
√
a−2b+c))

6
√
a− 2b+ c

with a = (−→r3 −−→r1) · (−→r3 −−→r1), b = (−→r3 −−→r1) · (−→r3 −−→r2), c = (−→r3 −−→r2) · (−→r3 −−→r2)

Thus the solution to the MoM matrix is

Zmm =

∫
S

∫
S

(
1

4πε0

sm(−→r )sm(−→r )

| −→r −
−→
r′ |

)dS′dS

=
A2
m

πε0
· 1

4A2
m

∫ ∫
S

1

| −→r −
−→
r′ |

dS′dS =
A2
m

πε0
· I (3.15)

2. For 2D geometry, apply mid-point integral to Eq.(3.7), we get

Zmn = −hmhnln |
−→cm −−→cn |

2πε0
, Vm ∼= hmϕspec(

−→cm) (3.16)

where hn,
−→cn are edge length and midpoint edge position, respectively. Note that

Eq.(3.16) predicts that our MoM matrix will be identical with that for the point

matching, to within edge length multiplication. The multiplication by hm in Eq.(3.16)

may be omitted for both Zmn, Vm .

Similar to case 1, the approximation given by Eq.(3.16)fails when m = n. In this case,

we still use the analytical integration. Without loss of generality we assume that an

edge under test is located along the x-axis, starting with x = 0. This gives

Zmm =
1

2πε0

∫ hm

0

∫ hm

0
ln | −→r −

−→
r′ | dx′dx = −h

2
m(ln(hm)− 1.5)

2πε0
(3.17)

if we use integration by parts. The accuracy of self-term calculations is critical for the

MoM method when the number of unknowns (edges) is small. For a large number of

unknowns, the importance of self-terms diminishes.
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3.2.3 Charge Conservation Law

As presented in 2.4, the elements of the capacitance matrix can easily be determined

once a relationship has been established between the charge density of the conductors and

the potential of the conductors.

It is customary to choose the potential of the reference conductor (ground plane) being

equal to zero. All other conductors may have different nonzero potentials. Another problem

that need to be considered is the charge conservation equation which states the condition of

total charge being equal to zero is not explicitly imposed into the above MoM equation set.

Also this is not present in some textbooks [19]. However, a simple numerical experiment

with a transmission line having two non-equal conductors will show that this condition

will fail, even though such an effect may initially have no visible influence on the static

capacitance obtained by the MoM method - see below. In case of two equal conductors,

or for a conductor above an infinite ground plane calculated by the method of images, the

condition of zero net charge will be indeed satisfied automatically.

In order to satisfy this condition in every case, we will use the approach suggested in

Ref. [6]. Namely, we divide each of Eq.(3.7) by the corresponding surface area (in 2D case,

it’s edge length ), then subtract the last row of Eq.(3.7) (which corresponds to the last

segment on the reference conductor) from the others, and finally replace this last equation

by the charge conservation law, in the form


V1

V2

· · ·

0

 =


Z11 Z12 · · · Z1N

Z21 · · · · · · Z2N

· · · · · · · · · · · ·

h1 h2 · · · hN

 ·

a1

a2

· · ·

aN

 (3.18)

3.3 MoM approach to conductor with dielectric layer

After an initial excitement about the simple static MoM application for metal conduc-

tors, a more difficult and realistic application is to include the dielectric into consideration.

The method described below will follow classic references [66, 56, 43].
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While the metal conductors have only free surface density , on metal surfaces, in the

presence of dielectric, the conditions is complicated for the existence of polarized charge

on metal-dielectric interface and dielectric-dielectric interface and thus possesses an extra

bound surface charge density. In this section, an integral representation of the Green’s func-

tions for the desired mathematical model is presented in which ground planes are assumed

at finite distances from the dielectric sheet. However, in chapter4 final results are obtained

only for the case in which ground planes are at infinity.

Modeling multi-conductor transmission lines in a multilayered board is different from

modeling multi-conductor transmission lines embedded in multilayered board. Thus, differ-

ent conditions need to be discussed separately in this section.

3.3.1 Poisson’s equation

The dielectric can possess the bound surface charge density but does not have the

volume polarization currents since the problem is static in nature. Therefore, according

to equivalence principle, the dielectric material could be removed and replaced by those

charges. The Poisson’s equation Eq.(2.31) remains the same, with the exception of the

fact that instead of the free charge density on metal surface one should consider the total

charge density either on metal-dielectric surface or on a dielectric-dielectric interface. The

electric potential is now caused by total charges on metal-dielectric and dielectric-dielectric

interfaces. One thus has [64, 56, 6]

4ϕspec = −ρtotal
ε0

(3.19)

where ρtotal is the total surface (or line) charge density on an interface. Note that Eq.(3.19)is

indeed reduced to the classic result[19]

4ϕspec = −
ρf
ε0εr

(3.20)

if we replace the total charge density by free charge density on the metal-dielectric surface,

4ϕspec = −
ρf
εr

(3.21)
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Except the change for charge density, ϕspec(
−→r )in above equation is again given on metal

conductors but not on the dielectric-dielectric interfaces. Other variables are explained in

above section. We therefore need to extend the present formulation by the corresponding

boundary conditions at metal-dielectric interface and dielectric-dielectric interface.

The normal component of an electric displacement
−→
D ,

−→
D = ε0εr

−→
E (3.22)

must be continuous at a dielectric-dielectric interface. This is an extra boundary condition

that is used to complete the system of MoM equations as explained in Chapter2.

3.3.2 Multi-conductor transmission line in a multilayered dielectric re-

gion above infinity ground plane

Consider a system of multiconductor transmission lines in a multilayered dielectric region

above a ground plane with the uppermost dielectric extends to y = +∞ or an upper ground

plane. An arbitrary number Nc of perfect conductors are embedded in an arbitrary number

Nd of dielectric layers. Let’s say the permittivity of the jth dielectric layer is εj . A lower

ground plane extended from x = −∞ to x = +∞ is present. (In the first case, the

brick geomery is with an infinite-ground plane) Nominally, the upper ground place and the

dielectric layers also extend from x = −∞ to x = +∞ which will be truncated at a finite

value in the numerical analysis similar to the first case.

A total charge ρT is assumed on the conductor-to-dielectric interfaces and the Nd −

1 dielectric-to-dielectric interfaces. The conductor-to-dielectric interfaces consist of the

surface of the Nc conductors and the upper ground plane, if present. The jth dielectric-to-

dielectric interface is defined as the plane of constant y where the dielecric layers εj and εj+1

meet. In the other case, if conductors lie on this plane, then the jth dielectric-to-dielectric

interface is the portion of this plane not occupied by conductors.

Here, we started to analyze this system with the first case- the uppermost dielectric

extends to y = +∞. At any point −→r in the xy plane and above the lower ground plane.

The potential ϕspec is due to the combination of ρT and the image of ρT about the lower
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ground plane. Hence with Eq.(3.6 ), we get

ϕspec(
−→r ) =

1

4πε0

J∑
j=1

∫
Sj

ρT (
−→
r′ )

 1

| −→r −
−→
r′ |
− 1

| −→r −
−→
r̂′ |

 dS′ (3.23)

where Sj is the surface area of the jth interface, dS
′

is the differential element of area at r
′

on Sj and
−→
r̂′ is the image of ~r′about the lower ground plane. Accordingly

J = J1 + J2 (3.24)

where J1 = Nc , J2 = Nd − 1.

Since the electric field is given in Chapter2 as
−→
E (−→r ) = −∇ϕ(−→r ). Substituteing it for

ϕspec in Eq.(3.23), and assuming that −→r is not on any of the interfaces {Sj} so that the

∇operator may be taken under the integra sign, we obtain:

−→
E (−→r ) =

1

4πε0

J∑
j=1

∫
Sj

ρT (
−→
r′ )[

−→r −
−→
r′

| −→r −
−→
r′ |3

−
−→r −

−̂→
r′

| −→r −
−̂→
r′ |3

]dS′ (3.25)

Taking the limt of Eq.(3.25) as −→r approaches the interface Sj at −→r . We obtain the following

formula for
−→
E (−→r ) valid on Sj :

−→
E±(−→r ) =

1

4πε0

J∑
j=1

∫
Sj

ρT (
−→
r′ )[

−→r −
−→
r′

| −→r −
−→
r′ |3

−
−→r −

−̂→
r′

| −→r −
−̂→
r′ |3

]dS′ ±−→n ρT (−→r )

2ε0
(3.26)

where −→r on Si i = 1, 2, · · · , J , −→n is the unit vector normal to Sj at −→r .

The side of Sj toward which −→n points is called the positive side of Sj corresponding to
−→
E+ in Eq(3.26) while the side of Sj away from which −→n points is called the negative side

of Sj corresponding to
−→
E− , in Eq(3.26),

∫
Sj

denotes principal value of the integral over Sj .

On each conductor-to-dielectric interface, the potential is constant. Denoting the po-

tential on the ith conductor-to-dielectric interface by Vi we obtain

ϕspec(
−→r ) = Vi (3.27)

where ri is on Si, i = 1, 2, · · · , J1.

Then subsituttion of Eq.(3.27) for ϕspec(
−→r ) in Eq.(3.23) yeilds
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1

4πε0

J∑
j=1

∫
Sj

ρT (
−→
r′ )

 1

| −→r −
−→
r′ |
− 1

| −→r −
−→
r̂′ |

 dS′ = Vi (3.28)

where ri is on Si, i = 1, 2, · · · , J1.

For dielectric-to-dielectric surface, boundary condition shown in Eq(3.23) needed to be

considereded. Under such condition, we got:

εi−J1E
+(−→r ) · −→n = εi+1−J1E

−(−→r ) · −→n (3.29)

where −→r on Si i = J1 + 1, J2 + 2, · · · , J

In Eq(3.29), εi−J1 and E+(−→r ) are, respectively, the permittivity and electric field on

the upper side of Sj . Moreover, εi+1−J1 and E−(−→r ) are respectively the permittivity and

electric field on the lower side of Sj . Substitution of Eq(3.26) for
−→
E±(−→r ) in Eq(3.29), after

divided by (εi−J1 − εi+1−J1)

(εi−J1 + εi+1−J1)

2ε0(εi−J1 − εi+1−J1)
ρT (−→r ) +

1

4πε0

J∑
j=1

∫
Sj

ρT (
−→
r′ )[

−→r −
−→
r′

| −→r −
−→
r′ |3

−
−→r −

−̂→
r′

| −→r −
−̂→
r′ |3

] · −̂→n dS′ = 0 (3.30)

−→r on Si i = J1 + 1, J2 + 2, · · · , J

Eq.(3.28) and Eq.(3.30) are a set of J integral equations in the unknown total charge

ρT on the interfaces whose patches are (Sj j = 1, 2 · · · , J)

There are special conditions when some of the conductors may be of finite cross section,

and others may be infinitely thin strip. The boundary condition can be simplified for those

conditions. Regardless of this, the free charge Q per unit length on the conductor is given

by[56]

Qi =

∫
Si

ρF (−→r )dS, i = 1, 2, · · ·Nc (3.31)

where dS is the differential element of length at −→r on Si. Development of the Moment

solution based on current model. In this section, the integral equations (3.28) and (3.30)

are solved numerically for ρT by means of the method of moments. A solution ρT to Eq(3.28)
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and (3.30) is sought in the form

ρT (−→r ) =
N∑
n=1

ρTnsn(−→r ) (3.32)

where {sn(−→r ), n = 1, 2, · · · , N} are unit pulse functions which cover {Sj , j = 1, 2, · · · , J}

and σTn is the unknown coefficients.

V1 =

∫
S
ϕspec(

−→r )s1(
−→r )dS

=

N∑
n−1

ρTn


∫
S

∫
S

1

4πε0

 1

| −→r −
−→
r′ |
− 1

| −→r −
−→
r̂′ |

 dS′dS

 =

N∑
n=1

ρTnZ1n

V1 =

∫
S
ϕspec(

−→r )s1(
−→r )dS

=

N∑
n−1

ρTn


∫
S

∫
S

1

4πε0

 1

| −→r −
−→
r′ |
− 1

| −→r −
−→
r̂′ |

 dS′dS

 =

N∑
n=1

ρTnZ1n

· · ·

VN1 =

∫
S
ϕspec(

−→r )sN (−→r )dS

=
N∑
n−1

ρTn


∫
S

∫
S

1

4πε0

 1

| −→r −
−→
r′ |
− 1

| −→r −
−→
r̂′ |

 dS′dS

 (3.33)

=
N∑
n=1

ρTnZN1n

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 =
∑

ρTn


∫
S

∫
S

(
1

4πε0
(
| −→r −

−→
r′ |

| −→r −
−→
r′ |3

− |
−→r −

−→
r̂′ |

| −→r −
−→
r̂′ |3

) · −→n )dS′dS


+

∑
ρTn

{
(εi−J1 − εi+1−J1)

2ε0(εi−J1 − εi+1−J1)

}
=

N∑
n=1

ρTnZN1+1n

...

0 =
∑

ρTn


∫
S

∫
S

(
1

4πε0
(
| −→r −

−→
r′ |

| −→r −
−→
r′ |3

− |
−→r −

−→
r̂′ |

| −→r −
−→
r̂′ |3

) · −→n )dS′dS


+

∑
ρTn

{
(εi−J1 − εi+1−J1)

2ε0(εi−J1 − εi+1−J1)

}
=

N∑
n=1

ρTnZNn

Now let {sn(−→r ), n = 1, 2, · · · , N1} be the pulse on {Sj , j = 1, 2, · · · , J1} and let

{sn(−→r ), n = N1 + 1, N1 + 2, · · · , N} be the pulse on {Sj , j = J1 + 1, J1 + 2, · · · , J}. Sub-
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stituting Eq.(3.32) for ρT in Eq.(3.28) and Eq.(3.30), then interchange summation and in-

tegration. Then, we will follow the Galerkin method stated in Sec.3.2.1. We thus multiply

both sides of Eq.(3.28) and (3.30) by every basis function, s1(
−→r ), s2(

−→r ), · · · , sN (−→r ), and

then integrate the resulting expression one more time over the surface S which composed by

{S1, S2, · · · , SJ}. These steps result in the system of MoM equations in the form shown as

Eq(3.33). The first part of the equation are for the metal-dielectric interface. It’s the same

as Eq(3.6) for metal geometry. The second part are those for dielectric-to-dielectric surface.

In this paper, Metal-dielectric method is only realized for 2D problem as shown in Sec.3.3.3.

3.3.3 2D Multiconductor transmission line in a multilayered dielectric

region with finite-ground plane

Consider a multi-conductor systems with a finite-ground plane. Thus in Eq(3.6), we

don’t need to apply the image theory to source point. Combined with Eq.(3.17) for the case

with 2D Multiconductor transmission line in a multilayered dielectric region with finite-

ground plane, the solution Eq. (3.28) and (3.30) will be simplifed to:

1

2πε0

J∑
j=1

∫
ρT (
−→
r′ )ln | −→r −

−→
r′ | dl′ = Vi (3.34)

(εi−J1 + εi+1−J1)

2ε0(εi−J1 − εi+1−J1)
ρT (−→r )− 1

2πε0

J∑
j=1

∫
ρT (
−→
r′ )

−→r −
−→
r′

| −→r −
−→
r′ |2

· −̂→n dl′ = 0 (3.35)

In this case, the impedance matrix for MoM also changed to

Zmn =

∫ ∫
l
(

1

2πε0
ln | −→r −

−→
r′ |)dl′dl (3.36)

where m = 1, 2, · · · , N1

Zmn = −
∫ ∫

l
(

1

2πε0
· |
−→r −

−→
r′ |

| −→r −
−→
r′
· −→n )dl′dl +

(εi−J1 − εi+1−J1)

2ε0(εi−J1 − εi+1−J1)
(3.37)

where m = N1 + 1, N1 + 2, · · · , N
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The elements of the MoM matrix are again expressed in the form of double integrals;

those integrals should be evaluated either numerically or analytically. For the reasons

discussed yet in Section 3.1, we prefer to use the simple midpoint numerical integration.

The midpoint integration gives

Zmn ≈ −
hmhnln | −→cm −−→cn |

2πε0
, Vm ≈ hmϕspec(−→cm) (3.38)

For the elements of the impedence matrix with metal edges. Simultaneously, for the elements

of the impedance matrix with the dielectric edges, one has,

Zmn ≈ (εi−J1 − εi+1−J1)
hmhn((−→cm −−→cn) · −→nm

2πε0 | −→cm −−→cn |2
− (εi−J1 + εi+1−J1)

2ε0
hm (3.39)

Vm ≈ hmϕspec(
−→cm)

where hn,
−→cn are edge length and the midpoint edge position, respectively.

The approximation given by Eq.(3.38) and Eq.(3.39) again fails when m = n. In this

case, we use the analytical integration which gives Eq.(3.40) and (3.41). For the metal edges

Znn = −
∫ hn

0

∫ hn

0

ln | x− x′ |
2πε0

dxdx′ = −h
2
n(ln(hn)− 1.5)

2πε0
(3.40)

If we use integration by parts. The accuracy of self-term calculations is critical for the

MoM method when the number of unknowns (edges) is small. For the dielectric self-terms,

the term with the unit normal will give exactly zero, due to zero dot product, so that one

simply has

znn ≈ −
(εi−J1 − εi+1−J1)

2ε0
hn (3.41)

3.4 Conclusion

It has been demonstrated in this paper that the static charge distribution on a charged

conductor of arbitrary shape can be numerically determined by a method of moments

approach. In the approach used here, the surface of the conductor is approximated by

planar triangular patches. In contrast to other patch shapes, they have the advantages
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of simplicity, generality, and of complete flexibility in their placement. In the model used

here the charge is assumed to be constant within each planar triangle region, yielding a

piecewise constant or pulse representation of the charge on the conducting surface. The

integral Eq.(3.23) and (3.26) for the total charge at the surfaces of conductors embedded in

multiple dielectric, regions and on the dielectric-to-dielectric interfaces are simple in concept.

The singular kernels considered is the 3-D Green’s function for the static case. The solution

obtained by the method of moments is also simple shown as Eq.(3.33). Numerical results

in Chapter4 shows that this type of solution is both versatile and accurate. Improvement

in the rate of convergence can be obtained by using adaptive refinement, but at the cost of

considerable complication.
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Chapter 4

MATLAB Implementation and

Numerical results

Aiming at calculating the capacitance matrix for the transmission line and interconnect

structures involving multiple layers of irregularly shaped conductors imbedded in different

dielectric materials, MATLAB was used to implement the 2D MoM Metal-Dielectric Al-

gorithm and 3D Metal algorithm. Computed numerical results are compared to analytical

results as well as results from commercial software, such as Ansoft HFSS, Field Precision

Package.

4.1 GUI Design with MATLAB

To realize the MoM in MATLAB, we designed a friendly interface called MoMtool to

integrate the function introduced in Chapter 3. Fig.(4.1) is the MainMenu for MoM tool

including 2D/3D mesh generation, 2D/3D capacitance extraction solver and Mesh/Charge

reviewer.

As shown in Fig.(4.2), triangular mesh is picked in MoM tool and the common way of

doing this originated from old NASTRAN program written in late 1960s. It is demonstrated

by Eq.(4.1). First, we create a 3×N array of 3D (or 2D) nodes, P. Next, we create a 4×M

array of triangle vertexes, t. Each vertex is an index into the array of nodes. The last row
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Figure 4.1: MainMenu

Figure 4.2: 2D Mesh Interface
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Figure 4.3: 3D Mesh Interface

of array t is the domain number which indicates the domain a given triangle belong to.

P =


0.1 0.2 0.1 0

0.2 0.3 0.2 · · · 0

0.3 0 0 0.5



t =


1 3 2 115

2 4 7 162

3 5 9 · · · 138

1 1 2 2

 (4.1)

Such a way of mesh representation is straightforwardly extended to a 3D case: the array

of triangles, t, is replaced by an array of tetrahedra, T, with four vertexes instead of three.

MATLAB can also do a 3D mesh generation.

For 2D problems, the user can specify the primitives in terms of parameters. struct2d.m
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in 2D solver interface shown in Fig.(4.2). GUI itself has no built-in limit on the number

of values that each parameter may take on. Since 3D solver is only designed for Metal 3D

structure, the simulated object used for 3D structure is defaulted as metal. The 3D mesh

interface shown in Fig.(4.3) is used to construct 3D geometry based on 2D mesh.

There are two main limitations of the MoMtool.

1. The user is limited to ten differently-shaped primitives, while a primitive can be cloned

at different locations; clones have the same shape, dimensions, and orientation.

2. 2D solver works for metal conductors embeded in different dielectric layers while 3D

solver is only designed for metal conductor system in free space without common

boundary.

4.2 Matrix calculation in MATLAB

As we know from Eq.(3.1) and Eq.(3.3), two major parts in MATLAB solver of MoM

is to solve impedance matrix Z and unknown coefficient matrix a. We already presented

analytical solution for Z under a case in Chapter3. After the calculation of Z, a is the

solution of linear Eq.(3.3) which is solved as a = (Z \V )
′

where Z is a N ×N square matrix

and V is a column vector with N components. In MATLAB implementation, left matrix

divide ’\’ is utilized.

Considering the solution to a general linear eqation denoted by X = A \B, the specific

algorithm used depends upon the structure of the coefficient matrix A. To determine

the structure of A and select the appropriate algorithm, MATLAB software follows this

precedence[2]:

1. If A is sparse and diagonal, X is computed by dividing by the diagonal elements of

A.

2. If A is sparse, square, and banded, then banded solvers are used.

3. If A is upper or lower triangular matrix, then X is computed quickly with a backsub-

stitution algorithm for upper triangular matrices, or a forward substitution algorithm
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for lower triangular matrices. The check for triangularity is done for full matrices by

testing for zero elements and for sparse matrices by accessing the sparse data struc-

ture. If A is a full matrix, computations are performed using the Basic Linear Algebra

Subprograms (BLAS) routines.

4. If A is a permutation of a triangular matrix, then X is computed with a permuted

backsubstitution algorithm.

5. If A is symmetric, or Hermitian, and has real positive diagonal elements, then a

Cholesky factorization is attempted. If A is found to be positive definite, the Cholesky

factorization attempt is successful and requires less than half the time of a general

factorization. Nonpositive definite matrices are usually detected almost immediately,

so this check also requires little time.

6. If A is sparse, then MATLAB software uses CHOLMOD to compute X.

7. If A is not sparse but is symmetric, and the Cholesky factorization failed, then MAT-

LAB solves the system using a symmetric, indefinite factorization.

8. If A is Hessenberg, but not sparse, it is reduced to an upper triangular matrix and

that system is solved via substitution

9. If A is square and does not satisfy criteria 1 through 6, then a general triangular

factorization is computed by Gaussian elimination with partial pivoting.

10. If A is not square, then Householder reflections are used to compute an orthogonal-

triangular factorization

Because of the use of charge conservation law, impedance matrix Z lost the symmetirc

property acquired from the double integral analytical solution. Thus Z is square and does

not satisfy criteria 1 through 6, Gaussian elemination with partial pivoting will be chosen.

4.3 Mesh refinement and Convergence discussion

As stated in Chapter1, locally or adaptively refined meshes are necessary to simulate

applications involving multi-scale phenomena in the geosciences. In particular, for situations
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with complex geometries or domain boundaries, meshes with triangular or tetrahedral cells

demonstrate their superior ability to accurately represent relevant realistic features which

need complex data structure implemented[7]. In order to better account for a correct charge

distribution and accurate capacitance, adaptive mesh refinement is also applied in MoMtool.

To facilitate mathematical efficiency in dynamic local refinement, two distinct steps need

to be considered:

1. An efficient refinement strategy leads to locally and highly dynamically refined but

consistent meshes.

2. A refinement criterion needs to capture the phenomenon of interest efficiently during

run-time.

After these two steps, one also needs to consider the data structures which are also the

normal considerations for adaptive mesh refinement, especially for complex structure. They

are needed to support the dynamic hierarchical characteristic of the mesh refinement as well

as the linear data access pattern preferred by numerical computations.

In MoM, which is based on integral equations but not on the differential equations, the

error at any point is directly affected by all other calculated results and the adaptive mesh

refinement becomes more complicated. However, some methods have been proposed which

are beyond the scope of the present basic analysis. In next two subsections, adaptive mesh

refinement and corresponding convergence criterion using in MoMtool will be discussed.

4.3.1 Adaptively refined mesh

In MoMtool, there are two kinds of refinement methods for 2D and 3D problems.

For 2D case, charge distribution is on the edge. After targeted edges are picked, we

subdivide every such edge into two equal sub-edges. This procedure roughly halves the

highest total charges and thus makes the total charges more uniform.

For 3D metal case, the charge is distributed on the surface. Refer [7] presented a simple

way as triangular bisecion of a marked edge to refine the triangular mesh similar to edge-

divided method. Several other methods to refine cells are commonly used, regular triangular

refinement for one, which intersects triangle by bisecting each edge.
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Figure 4.4: Trangle rendering using adaptive subdivision

As for MoMtool proposed in this paper, since we use mid-point integral strategy, instead

of bisection, we choose triangle rendering using adaptive subdivision [34]shown in Fig.(4.4).

It proved more efficient than other previous solutions and allowed the maintenance of any

degree of accuracy. If a triangle is considered for refinement, the original triagle will be

divided to 9 sub-trianles of equal area. Assume that the charge density of all sub-triangles

is a constant, then the original integral can be written as,

∫
Tm

g(−→r )dS =
Am
9

9∑
k=1

g(
−→
cck) (4.2)

where cck(k = 1, ..., 9) is the center of the 9 sub-triangles and Am is the area of original

triangle. This algorithm is extremly simple as it states that the refinement is to be repeated

for all those elements that either are considered for refinement from the error estimation

procedure or contain hanging nodes. In MoMtool, the algorithm terminates when the

program reach demanded refinement step.

After mesh refinement, we update structure mesh and the voltage vector as shown in

the script mom2d md.m and mom3d md.m. We then run the MoM procedure again (the

solver script has a loop versus the iteration number), find the new MoM solution, calculate

a new error, and make another subdivision.

An unsolved question remains: how to pick the element needed to be refined. According

to Ref.[3], the goal of adaptive mesh refinement in electrostatics is to make sure that the total
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charge on every sub-element stays the same. It means we need to have more basis functions

(fine mesh) in the domains with large charge density and less basis functions (coarse mesh)

in the domains with small charge density since these domains will perhaps hardly contribute

to capacitance anyway. Based on this standard, we set up refinement criterion as follows:

After the initial MoM solution is obtained, we check the total charge per edge/triangle

surface given by the array field output.charge of MATLAB structure output, then we find

25% of edges/surfaces that have the highest total charge (highest areas):

charge = abs(output.charge);

[dummy, index] = sort(charge)

index = index(round(0.75 ∗ end) : round(1.00 ∗ end)) (4.3)

The selection standard given above may have a disadvantage that elements near the

corners are refined too fine, whilst other elements are virtually not refined. Since the

solution is singularly close to the corners, those new elements are likely again to have

maximum total charges, etc. To reduce this effect we tried to refine 25% of elements with

the charge from 0% to 95% of highest instead of 25% of elements with the highest total

charge. The corresponding changes are made:

charge = abs(output.charge);

[dummy, index] = sort(charge)

index = index(round(0.70 ∗ end) : round(0.95 ∗ end)) (4.4)

However, this iteration process resulted in a failure, despite the very good convergence

curve behavior. We can see it by performing a simple numerical experiment. It is suspected

that one reason can be the presence of very large and very small edges as neighbors.

4.3.2 Convergence standard

To evaluate the performance of refined mesh, we need an integral quantity that will give

us the criterion for the relative convergence or the relative error. Since we do not know the
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exact solution, the relative convergence is the only information that we may use with regard

to the solution accuracy. Usually, an energy criterion is used, for the electric and magnetic

fields. An appropriate substitute in capacitance extraction may be the static capacitance

itself: we define the relative error at every mesh refinement step n as

∆S =
Cn − Cn−1

Cn
(4.5)

Unfortunately, Eq.(4.5) does not work well for multiconductor lines. When multiple partial

capacitances exist, instead, we will use the power (or energy) criterion. One thus has

Eq.(4.6) instead of Eq. (4.5),

∆S =
Pn − Pn−1

Pn
(4.6)

where Pn denote energy or power. Here, the total electrostatic energy on the line or

triangle surface can be easily got once we know the charge distribution following Eq.(4.7)

W =
1

2
CV 2 =

1

2
Re

[∫
s
V εrρtotaldS

]
(4.7)

Thus, we can apply power convergence criterion. This criterion is implemented in the

MATLAB script mom2d md.m (subfolder codes) and mom3d md.m (subfolder codes). We

could refine the mesh multiple times. As a result, we will have a relative solution error,

which is a function of the iteration number. If this function approachs to zero as the

iteration number increases, the resulting solution is expected to be reasonably accurate.

One can see that error behavior is not monotonic; similar non-monotonic behavior may

be also observed in the commercial software, e.g. in Ansoft HFSS. When the number of

elements to be refined becomes larger, the convergence curve generally may become more

smooth. Quadline model is presented in Sec.4.4.3. The convergence curve created by MoM

keeps good agreement with the results we get from HFSS. Convergence figure of 3D parallel

capacitor is also presented in Sec.4.5.3



51

Figure 4.5: Coupled micro-strips

Table 4.1: Results comparison of coupled micro-strip line

Ref [64] Ref [63] Ref [62] MoMtool

C11 9.165e-11 9.017e-11 9.224e-11 9.3343e-11

C12 -8.220e-012 -8.259e-12 -8.504e-12 -8.7733e-012

C21 -8.220e-012 -8.259e-12 -8.504e-12 -8.7733e-012

C22 9.165e-11 9.017e-11 9.224e-11 9.3343e-11

4.4 2D Numerical examples

In this section, 2D numerical results are presented for transmission line. The result of

the present analysis compared well with that available in literature as well as numerical

results from commercial software package.

4.4.1 Coupled micro-strip line

Consider a pair of coupled micro-strips touching a dielectric slab over a conducting plane

as shown in Fig.4.5

The left-hand conductor is conductor 1. The right-hand conductor is conductor 2.

Table 4.1 compares our computed results with those of Refer[64], Refer[62] and [63]. For

comparison, the results have been changed to farads per meter. For our results, we used

0.5 as triangle size and adaptive refine step setup as 10. Then a mesh with 1254 triangles

and the convergence curve shows as Fig.4.5.
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Figure 4.6: Coupled stip line

Table 4.2: Results comparison of coupled strip line

Ref[64] Refer[62] MoMtool

C11 6.364e-11 6.307e-11 6.3450e-11

C12 -5.931e-12 -5.866e-12 -5.9069e-12

C21 -5.931e-12 -5.866e-12 -5.9069e-12

C22 6.364e-11 6.307e-11 6.3450e-12

4.4.2 Coupled strip line between parallel conducting planes

Fig. shows an example of coupled strip line ( micro-strip line two ground planes).

The left-hand conductor is conductor 1. The right-hand conductor is conductor 2. There

are two ways to build this model considering the upper ground plane. One is to truncate

the upper ground plane at a finite width. Another approach is to replace the upper ground

plane with a dielectric layer with much higher permittivity as discussed in [63]. MoMtool

used the first method to build the model like brick structure. Simulated triangle size is 0.5

and 1440 triangles generated. Results are compared in Table4.2

4.4.3 Quadliine

A realistic example for multi-conductor transmission line would be a simple quad-

transmission line used for the Dyson balun which has been widely used for standard dipoles

and other symmetric antennas[42]. For the Dyson balun, it is not always convenient to use

the coaxial connecters, a simple quad-transmission line vertical element can replace those

coaxial cables for a turnstile while keeping the good isolation. The quad line includes a

central rectangular solid metal conductor bar (copper or brass) – ground; four adjacent mi-
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(a) 3D Quad-line model in Ansoft (b) 2D Quad-line model in MoMtool

Figure 4.7: Quad-line moedel in Ansoft and MoMtool

crostrip transmission lines sharing the same ground. There are three steps for this example:

simulation with Ansoft HFSS11, Simulation with MoM tool and comparison between these

two. In Ansoft, 3D model is built shown in Fig.4.7 and the line geometry of transmission

line with four signal conductors and one ground conductor is built in MoMtool shown in

Fig.4.7.

The line is supposed to work as two (weakly coupled) differential lines, with two pairs of

opposite conductors. As for transmission line, we first calculated its impedance with these

two models. Fig.4.8 shows the error percentage of impedance between 3D model and 2D

model. It’s within 3 percent.

To check the effectiveness of the adaptive refinement implemented in MoMtool we made a

comparision between the convergence curve of Ansoft and MoMtool under certain condition

shown in Fig.4.9.

As we can see from above results, even though MoMtool employed 2D solver for trans-

mission line model, it still keeps good accuracy. Since 2D model has much less mesh elements

compared to 3D volume integral method, MoMtool is more efficient for certain models. As

the final step of Quad-line simulation, we can easily get its capacitance matrix. It’s given

as
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Figure 4.8: An error between Ansoft 3D results and MoMtool 2D results

(a) Convergence of Ansoft with 20 passes

(b) Convergence of MoMtool with 10 passes

Figure 4.9: Convergence comparison between Ansoft andMoMtool (eps r=8, d/w=0.363)
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Figure 4.10: Parallel-plate square capacitor

C =


0.1802× 10−9 −0.0067× 10−9 −0.0067× 10−9 −0.0010× 10−9

−0.0067× 10−9 0.1802× 10−9 −0.0010× 10−9 −0.0067× 10−9

−0.0067× 10−9 −0.0010× 10−9 0.1802× 10−9 0.1802× 10−9

−0.0010× 10−9 −0.0067× 10−9 −0.0067× 10−9 0.1802× 10−9


4.5 3D numerical example

To testify the effectiveness of 3D MoM stated in Chapter 3, the basic and typical exam-

ple, Parallel-plate Square Capacitor is chosen. This model consists of two parallel square

conductors in free space as Fig.4.10.

In basic electrostatics, the formula for the capacitance of parallel-plate capacitors is

derived as Eq.(4.8) ,

C =
εS

d
(4.8)

where S = w2,w is the width of square plate and d is the seperation between two plate.

Eq.(4.8) is only for the case that the spacing between the electrodes is very small compared

to the length or width of the plates and the electric charge density on the plates is uniform

therefore the fringing fields at the edges can be neglected[27]. However, when the separation

is wide, the formula for very small separation does not provide accurate results.

In this section, we will discuss and compare the numerical results we got from AMAZE
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using Finite Element Method, refer[[45]] using Boundary Element Method and MoMtool.

The simulations are done with different distance and surface area for the conductor plate.

Index b = d/w is used as aspect ratio to study the effect of fringe field in following sections.

Larger b represents stronger influence of fringing fields.

4.5.1 AMAZE - Finite Element Method

As presented in Chapter1, finite element method has wide application in electromagnetic

area. It has been used by commercial software like HFSS Ansoft. But Ansoft has limitation

in finding charge solution. In this chapter, we will introduce another commercial software

- AMAZE from Field Precision software package which also utilize FEM and provide full

eletrostatic model analysis including charge distribution.

Written by Stanley Humphries, Field Precision creates advanced finite-element software

for electromagnetics. Unitized 2D and 3D packages cover a broad range of applications

including electrostatics, magnet design, induction heating, charged-particle devices, per-

manent magnet assemblies, electromagnetic radiation, microwave devices, pulsed power

systems and RF heating of biological media[1]. We utilized the following programs from

the package:

MetaMesh Divides solution spaces into conformal, hexahedron elements with unique ma-

terial identities to match system geometries that you specify.The output file of

MetaMesh provides geometric information to the AMAZE solution programs

(HiPhi, Magnum, OmniTrak, RFE3 and HeatWave) or the GamBet Monte-

Carlo program.

Hiphi Calculates electrostatic fields in arbitrary three-dimensional systems. The pro-

gram generates either dielectric or conductive solutions. In dielectric- type so-

lutions, regions in the solution-space may represent electrodes, dielectrics and

space-charge density. In conductive-type solutions, the regions correspond to

electrodes or resistive media.

Phiview Generates plots and calculates field quantities from HiPhi solution files. It is

capable of full numerical-analysis of specified field solution from Hiphi. With
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regards to charge analyze function, it can be used to compute the volume of

regions by taking Gaussian 12 integrals over individual hexahedron elements and

give the energy and charge distribution. Also, it provides the surface integral

values in response to the commanded region.

HiPhi has several advanced technical capabilities[1], but when FEM is applied open bound-

ary problems[20]including planer transmission lines and circuits based on them, antennas,

scatterers and so on, the boundary walls must be placed to limit the size of the problem

domain without affecting its characteristics. Two approaches are available to deal with this.

One of the commonly used approaches is to apply perfectly matched layer(PML) or analyti-

cal absorbing boundary conditions (ABC) at the walls of the device. Analysis of planar lines

using this hybird approach has been reported [13]. Another approach - conformal transfor-

mation has been employed frequently to determine the characteristics of transmission lines,

and discontinuities in them. The advantage of this approach is that the analytical solution

based on conformal transformation leads to design equations. An open geometry like that

of planar lines is transformed into a closed geometry. The limitation of this method is that

it provides solution for the static fields only [20].

However, in AMAZE boundary points have a fixed potential that is not affected by the

potential at neighboring nodes. For electrostatic problems, node potentials on the boundary

can be set to one of two conditions[1],

• Dirichlet condition where the electric field lines are normal to such a surface.

• Neumann condition where the electric field is parallel to the boundary.

Since in MoMtool, the parallel-plate square capacitor is treated as open boundary problem,

we need to set up FEM model in the same way for the comparision purpose. As we discussed

above, the charge distribution on the surface of two parallel plates is not uniform considering

the fringe-effect which is shown in Fig.4.10. Thus, the first problem we need to solve is the

optimized size of boundary box so that the simulation results from FEM full presented

fringe-effect without being influenced by boundary condition.

Simulation is done with boundary box with different size in ratio to the size of capacitor

which here is w = 40mm, d = 10mm, th = 2mm . Fig.4.12 shows the simulation results.
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(a) Boundary box 40mm X 20mm X 40mm

(b) Boundary box 600mm X 105mm X 600mm

Figure 4.11: Electric field of Parallel-plate Square Cpacitor in FEM

Figure 4.12: Boundary study of FEM
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It’s clear that capacitance value became stable and convergent to certain value after the

boundary box is triple size of object. Further explaination needed to be made here is about

the way HiPhi used to calculate the capacitance.

There are two ways for us to calculate the capacitance for multi-conductor systems once

the field solution is known in HiPhi. One approach is to employ the automatic surface

integral routines in PhiView to calculate induced charge. You must be cautious in applying

surface integrals. The accuracy of the method declines significantly when electrodes have

sharp corners where the electric field is effectively undefined. Also the surface integral is

largely influenced by mesh size. For these situations we can get better results with volume

integral methods that are less sensitive to local field interpolation errors. For a simple

two-electrode system, the volume integral of field energy is related to the capacitance by

Eq.(4.7), therefor we can get capacitance easily with the field energy integral. It is not

difficult to extend this concept to multiple electrodes.

Another problem in AMAZE that we need to pay attention to is ResTarget index. It

is the accuracy tolerance for the iterative matrix solution of the finite-element equations.

HiPhi uses an iterative technique based on corrections that reduce the error in electrostatic

potential at a point compared to predictions from values at neighboring nodes. The residual

is an average of the relative errors over all nodes in the solution space during an iteration.

This command sets a target value for the residual. The program stops if the error drops

below the value. For good accuracy, the relative residual should be less than 10−6. If the

value of ResTarget is too low, the program may not converge because of roundoff errors. In

this case, you can terminate a solution manually if you are running HiPhi in the interactive

mode by using the Stop command. Default value: ResTarget = 5.0 × 10−7.

After clarifying all the parameters we needed for simulation, the test simulation is done

for parallel-plate-capacitor with different b = d/w. Results is shown in Fig.4.13

4.5.2 Analytic solution based BEM

Refer[45]gives an analytical solution to the caculation of capacitance of parallel square

capacitor including fringe effect based on BEM numerical solutions. The mathematical

formulation of the BEM is given in [11]. The parallel-plate square capacitors in an infinite
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Figure 4.13: Capacitance of Parallel-plate capacitor using FEM model

space are divided into several boundary segments with equal area. In the general BEM,

electrode plates are not always divided into boundary elements with equal area, but in

this problem the equal division makes the numerical procedure of calculation easy and

efficient. Here, the simplest approximation for the surface density charge in a boundary

element is adopted. It is assumed that charge density is constant for each element (constant

element method). The charge distribution on the plates of a parallel-plate square capacitor

is computed. The fringe field is no longer negligible when b = 1, Applying repression

analysis to the data of capacitance CBEM - the numerical value computed by the BEM, a

simple empirical expression is derived for the index represent fringe field effect,


CSN = (1 + 2.343 · b0.891) · C when 0.1 ≤ b < 1.0

CSN = (1 + 2.343 · b0.992) · C when 1.0 ≤ b ≤ 10.0

(4.9)

Capacitance result from BEM is shown in Fig.4.14

4.5.3 MoMtool

Fig.4.15 shows the mesh geometry constructed in MoMtool. The left figure is the initial

mesh and the right figure is the mesh after adaptive refinemnet. The refinement steps are

defined as 3 (currently limited by the memory of MATLAB). It gives information about

the charge distribution on the conductor surface because of the refinement cretiria we are
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Figure 4.14: Capacitance of Parallel-plate capacitor using BEM model

Table 4.3: Capacitance of Parallel-plate Capacitor

b d(mm) w(mm) C(pF ) CSN−BEM (pF ) Camaze−FEM (pF ) CMoM (pF )

1 40 40 0.3542 1.1840 1.1854 1.3007

0.5 20 40 0.7083 1.6033 1.8431 1.7424

0.25 10 40 1.4167 2.3818 2.6431 2.6029

0.125 5 40 2.8333 3.8743 4.2633 4.2751

0.0625 2.5 40 5.6667 6.7893 7.3797 7.6705

0.03125 1.25 40 11.3337 12.5441 14.5910 13.6700

using. The objective of the refinement is to have average charge distribution for each mesh

element.

Charge distribution corresponding to mesh in Fig.4.15 is shown in Fig.4.16.

To fully compare the results of above three methods, Table4.3 listed the results and

Fig.4.17 shows the result of FEM, BEM and MoM tool compared to basic electrostatics

formula. It’s very straight forward to see how the influence of fringing fields at the edges

changed corresponding to different spacing.

Fig.4.18 shows the error percentage between MoMtool and FEM, MoMtool and BEM’s

analytic formula. Error between MoM and BEM keeps average value as 9% and slowly

decreased with the increase of spacing between two plates. This is in consistent with the

fact that both MoM and BEM are integral method which holds similar priciples to solve

open-boundary problem. Meanwhile, the error between MoMtool and FEM is changing from
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(a) Initial mesh (b) Refined mesh with MoMtool

Figure 4.15: Parallel-plate Capacitor defined in MoMtool

Figure 4.16: Charge density distribution of Parallel-plate Capacitor
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Figure 4.17: Capacitance of Parallel-plate Capacitor

Figure 4.18: Error between different numerical results

lower than 2% to 6% correspoding to increased spacing which is also resonable considering

we are using the same boundary box for different spacing. With the increase of the spacing,

the boundary box will have stronger influence on the electric field in solution volume.

As the last step, the data from MoMtool is processed. Curve fitting is employed to find

the parameters of a semi-empirical parallel-plate capacitor model as Fig.4.19 shows, and

possibly to improve the model itself. The criterion is the smallest RMS error. The final

version of our analytical approximation reads

CMoM = (1 + 2.83 · b0.832) · C (4.10)
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Figure 4.19: Curve fitting based on MoM result

where C is the capacitance calculated from Eq.(4.8). Since the thickness of plate has

significant influence on the calculation of capacitance especially with relative small spacing

shown in Fig.B.1, this solution can only be applied to parallel-plate square capacitor with

2mm thickness.

4.6 Conclusion

MoMtool employs surface integral method is an effective tool for capacitance extraction

of 2D transmission line and 3D metal conductor system. The program is capable of finding

the static surface charge density distribution and capacitance of any open or closed charged

body having no intersecting surfaces. For the numerical examples, we have compared the

capacitance matrices of an infinitely long transmission line in 2D case with that of finite-

length transmission line in 3D case. We also compared our results for 3D parallel-plate

capacitor with FEM method and made a conclusion that MoMtool is more convenient

and efficient for open-boundary problems. The approach could easily be extended to treat

intersecting surfaces and to treat the problem of determining the charge distribution when

a neutrally charged object is immersed in a static electric field.
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Chapter 5

Conclusion

A 3-D capacitance extraction algorithm based on Method of Moments is described.

It employs simple integral calculation techniques combined with adaptive mesh refinement

which leads to faster and relatively accurate solution for arbitrary 3D geometry. The method

is implemented in a MATLAB–based MoMtool with a user-friendly interface. MoMtool

has been applied to capacitance calculations of 3D parallel-plate capacitor and results are

compared to analytic solution from simple eletrostatic formula and numerical results from

AMAZE utilizing Finite Element Method. It show that even though the MoMtool utilizes

single-point Gaussian integration with lower order basis funtion, MoMtool provides satisfied

accuracy with error smaller than 5The results also testified the edge effects of parallel-plate

capacitor increase in importance as the size of the plates is decreased compared with the

spacing. Compared to FEM, the MoM is an ideal formulation for open boundary radiating

structures. A major advantage of the MoM above field-based methods such as the FEM

is that the free-space region between structures does not have to be discretised, this leads

to faster caculation speed for simple geometry. For complex geometry with more mesh

elements, solving dense non-sparse MoM matrix will create a time and memory bottleneck.

Therefore, the current research interest in MoM focus on fast iterative techniques developed

to efficiently sore and solve a MoM system with linear time and memory complexity as seen

in QR-based approaches,FMM, and FFT-based techniques etc. Also a combination of MoM

and FEM would offer the advantages of each in the appropriate regions.
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Appendix A

List of Abbreviation
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Table A.1: List of Abbreviation

MoM Method of Moments

FEM Finite Element Method

SIE Surface Integral Equation

VLSI Very Large-scale Integration

FDM Finite Difference Method

BEM Boundary Element Method

IE Integral Equation

VIE Volume Integral Equation

EBE Element-by-Element

PCG Preconditioned conjuate gradient

FMM Fast-multiple methods

FFT Fast Fourier Transform

MLFMA Multilevel fast multiple algorithm

AIM Adaptive integral method

EM ElectroMagnetic

RF Radio Frequency

TEM Transverse Electromagnetic

EFIE Electric-field integral equations

BI Boundary Integral

BI Boundary Integral
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Appendix B

Capacitance of Parallel-plate

Square Capacitor
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Figure B.1: Capacitance of Parallel-plate square capacitor
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