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Abstract

We report the results of a series of crowd-sourced user studies in the formal-methods

domain. Specifically, we explore the efficacy of the notion of “minimal counterex-

ample” — or more colloquially, “minimal bug report” — when reasoning about

logical specifications. Our results here suggest that minimal counterexamples are

beneficial some specific cases, and harmful in others. Furthermore, our analysis

leads to refined hypotheses about the role of minimal counterexamples that can be

further evaluated in future studies. User-based evaluation has little precedent in

the formal methods community. Therefore, as a further contribution, we discuss

and analyze our research methodology, and offer guidelines for future user studies

in formal methods research.
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Chapter 1

Introduction

When users are trying to understand specifications, such as protocols, policies, and

software designs, seeing concrete examples of their spec can be quite useful. Model-

finders are tools that produce these concrete examples (models). These tools are

useful for many applications. Suppose a software engineer is curious about their

design, and would like to see implementations possible under their type hierarchy.

Or, a security officer is concerned about holes in their access policy, and wants to

see situations in which unauthorized persons gain entry. Maybe a network admin

notices some erroneous packet forwarding behavior, and hopes to isolate the policy

issue by looking at different instances of the general issue. Model finding enables

users to better understand their respective specifications. An expanded discussion

of this can be found in section 2.1.

Model-finding research focuses on improving the performance, informativeness,

and usability of these tools. Generating models is quite difficult, as it is undecidable

in general. Input interaction and output presentation are important to make these

tools usable. We are not concerned with computational efficiency in this work.

While we do tackle usability issues, they are auxiliary to our contributions. Our
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research focuses on the informativeness of the output of these tools.

Specifications have a large, often infinite number of models. Considering the

number is too large for any person to exhaustively explore, some obvious questions

arise. Which subset of these models should be presented? What order should this

subset be shown in? How can users explore this possibly infinite space of models?

How do users best understand the information presented in these models? Current

model-finders typically do not address these questions. Two exceptions are our

previous research contributions and the associated tools, Aluminum and Razor (see

section 2.2.4). In this work, we are concerned with exploring the first question:

which models should be presented.

Mathematical considerations and intuition about what may be helpful to users

directed the development of our previous work on Aluminum and Razor, and model-

finding research in general. Formal methods researchers often conduct case studies

consisting of hand picked examples tested with a small set of users, sometimes

only consisting of the researchers themselves. This method of evaluation leaves

the burden of calculating bias on the consumers of this research. While full user

evaluations that report biases are possible to conduct, the expert population is small.

Acquiring a sample size large enough to yield a fruitful statistical analysis is quite

unlikely. Expanding the population outside the realm of expertise could make the

analysis feasible. However, presenting such formal logic to non-experts is a non-

trivial task. Our contributions are discussed in detail below, and are evaluated in

chapter 7.
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1.1 Contributions

1.1.1 User Model Preference and Performance

Models can be classified in any number of ways. Since we are concerned with the

informativeness of models, we classify models by the amount of information they

contain. Informally, one can think of this by the size of the models. Minimal models

are the smallest, or contain the least information. That is, they only contain the

information necessary to answer the question the model-finder was asked. A formal

discussion of models, information, and minimality can be found in section 2.2. We

find a significant split preference among users for minimal, and relatively larger

models. Minimal models appeals to those concerned with only necessary entities,

while larger models provide a sense of confidence. User model performance is a more

objective judgment. While our results are not conclusive, our partial evaluation

suggests that minimal models do benefit users performing specification refinement

tasks, particularly for more difficult tasks.

1.1.2 Sources of Variance in User Studies

The formality of and matching syntax between the specification and model being

presented each directly affect user ability. As each of these increase, the user per-

formance increases. We report how these sources impact the ability to abstract

knowledge, answer questions, and perform refinement tasks for both expert and

non-expert users. The phrasing of the first order variables and relations has an es-

pecially drastic effect on non-experts. They bring predetermined knowledge to these

experiments, which may relate to the naming conventions chosen. This can cause

users to jump to possibly false conclusions without even absorbing the first-order

information presented. This effect is the worst in simple tasks, as the solution is

easy to figure out.

3



Chapter 2

Preliminaries

In this chapter we cover the logical background necessary to understand the concepts

of model finding, minimality, and model-finder interactions discussed in this work.

2.1 Model Finding

Suppose a user writes a specification T , which defines a software artifact, such as a

product design, network protocol description, or access-control policy. The user is

curious whether the logical consequences of T match their expectations. To explore

this, the user provides their specification along with a sentence, T ∪ σ, to a model

finder. The tool produces models, which illustrate the logical consequences of T

and σ. For example, take this simple first-order specification and query.

∃a. Object(a); (2.1)

∀o. Object(o) ⇒ File(o) ∨ Folder(o); (2.2)

∀d. Folder(d) ⇒ ∃c. Object(c) ∧ InFolder(c, d); (2.3)

∀o. F ile(o) ∧ Folder(o) ⇒ Falsehood; (2.4)

4



σ ≡ ∃f1, f2. Folder(f1) ∧ Folder(f2) ∧ InFolder(f1, f2);

This specification defines a simple computer file-system. The first sentence reads

“there exists an Object a.” The second reads “for all o, if o is an Object, then o is

a File or a Folder.” The third sentence reads “for all d, if d is a Folder, then there

exists an Object c, and c is InFolder d.” The fourth reads “for all o, if o is a File and

a Folder, that is not allowed (Falsehood).” Suppose the user provided the following

query along with this specification.

Object(a) Folder(a)

Object(b) Folder(b) InFolder(b, a)

Object(c) Folder(c) InFolder(c, b)

Object(d) File(d) InFolder(d, c)

This model consists of four elements and eleven facts. The four left facts specify

that a, b, c, and d are file system objects. The middle four facts say that there are

three folders (a, b, c) and one file (d). The three right facts describe the file system

structure. The file d happens to be in folder c, which is in folder b, which is in folder

a.

These facts are by no means arbitrary. A model finder chooses them to satisfy

the given first-order specification T and sentence σ. To elaborate, the first line of

the spec requires Object(a) to be true. Because of this, either File(a) or Folder(a)

needs to be true. In this case, the tool chose Folder(a). This causes yet another

logical consequence. The folder needs a new Object(b) to be inside of Folder(a). The

same process happens for b and c. For d, the tool chooses File(d), which produces

no further logical consequences. The query happens to already be satisfied, so no

further action is taken.

5



In general, model finders generate these satisfying instances using well founded

algorithms [36]. If a model M satisfies a specification T , we write M |= T . We

define the class of models of T as C(T ). In general, model finding is undecidable.

For instance, the previous specification could be satisfied by an infinite chain of

folders. The algorithm in that case would always choose the new Object to be a

Folder to satisfy line 3 of the theory. To terminate, most model finders perform

bounded searches.

2.2 Minimality

Specifications have a large, often infinite number of satisfying models, each of which

conveys a particular amount of information. The size of a model defines the amount

of information it contains. Minimal models are the models smallest in size. The

formal definitions of this notion are discussed below. The number of minimal models

is often infinite, so a further question is which minimal models do we present first

to maximize coverage. This is future work.

2.2.1 Homomorphisms

We can define the relationship between information in models using homomor-

phisms. An arbitrary homomorphism h : |M| → |N| is a map from the domain

of M to N, such that for every relation R and tuple 〈e1...en〉 of elements of |M|,

if M |= R[e1...en], then N |= R[h(e1)...h(en)]. An injective homomorphism is ex-

actly an abitrary homomorphism where h is a one-to-one function. That is, for

every element ei in the domain of N, there is exactly one element eM, such that

h(eM) = ei.

[@@ Each of these notions of homomorphism ] defines a pre-order on models:

6



M � N, if there is exists some homomorphism from |N| to |M|. [@@ We write]

M ≈ N to mean M� N and N�M.

2.2.2 Minimal models

A model M is minimal for a class C(T ) of models if for every model N in C(T ),

M� N implies M ≈ N.

2.2.3 Model Coverage

The cone of a model, Cone(M), is the set of all models N, such that M � N.

Observe that the cones of the minimal models cover the space of all models. That

is, the minimal models act as a set of support for all other models. With this set of

support, we can now explore all possible models by starting at a minimal one, and

augmenting them with additional facts.

2.2.4 Minimal Model Finders

Aluminum [29] is a tool built on top of Alloy [18] that produces minimal models

under injective homomorphisms. Razor [34] produces minimal models under stan-

dard homomorphisms. Both tools enable exploration through the minimal models

and set of support to any other model.

2.3 Refinement Tasks

Quite often users have specific concerns about a specification T they have written.

A user states their concern as an assertion σ. The negation of assertion is provided

to a model finder. Given T ∪ ¬σ, the tool attempts to find a model in which the

assertion does not hold true under the specification. Any model found acts as a
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counterexample to the failing assertion. If the tool finds no models, the assertion is

true for models up to the set bound. Although, it is possible a model exists past

these bounds. Setting sufficiently large bounds addresses this; however, the bounds

is a burden placed on the user. Luckily, Jackson’s [18] small scope hypothesis states

that if a counterexample exists, there most likely is a one with small size. To

the extent that this, empirical, assertion holds, the user gains confidence in their

assertion if the tool doesn’t find (bounded) counterexamples.

In general, a refinement task consists of the following steps:

Input: User provides T and σ

Feedback: Tool produces model M |= T ∪ ¬σ, if one exists (in the case that σ is

NOT entailed by T )

Trace: User conjectures which part of T requires refinement.

Edit: User edits T to try to nullify the counterexample M.

2.3.1 Alloy Example

Let us run through a refinement task for the following Alloy class grading policy. The

specification defines two types of people (Students and Professors), classes, assign-

ments. Classes have a set of student assistants and a single instructor. Assignments

have an associated class and a set of assigned students. A person can grade an

assignment if they are a student assistant, or the instructor. The assertion states

that none of the assigned students should be able to grade their own assignment.

Alloy produces a counterexample with several classes, professors, students, and

assignments. Among all these facts, a student happens to be assigned to an assign-

ment for a class they are an assistant for! That set of facts should have directed you
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abstract sig Person {} (2.1)

sig Student extends Person {} (2.2)

sig Professor extends Person {} (2.3)

sig Class { (2.4)

assistant for : set Student, (2.5)

instructor of : one Professor (2.6)

} (2.7)

sig Assignment { (2.8)

associated with : one Class, (2.9)

assigned to : some Student (2.10)

} (2.11)

pred CanGrade(s : Person, a : Assignment) { (2.12)

s in a.associated with.assistant for (2.13)

or s in a.associated with.instructor of (2.14)

} (2.15)

assert NoOneCanGradeTheirOwnAssignment { (2.16)

all s : Person | all a : Assignment | (2.17)

CanGrade[s, a] implies not s in a.assigned to (2.18)

} (2.19)

checkNoOneCanGradeTheirOwnAssignment (2.20)

Figure 2.1: Gradebook Specification
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towards line 13, which should have and not s in a.assigned to added to it. Alloy

fails to produce further counterexamples after this refinement is made.
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Chapter 3

Background

The following chapter details the motivation of our contributions discussed in the

introduction, challenges reaching those findings, our method of achieving those re-

sults, and any relevant, non-mathematical definitions.

3.1 Motivation

The formal methods community in general does not focus on user evaluations.

Hahnle, in his note in the Automated Reasoning Newsletter [15], remarks “Our

community currently focuses on theoretical analyses, on empirical evaluations, and

on systems’ competitions. But hardly any attention is given to user evaluations.”

The statement aligns with our motivations.

User evaluation is a well established scientific method; however, it has not gained

wide acceptance in the formal methods community. In his note, Hahnle remarks

about his own paper being rejected from a top formal methods conference on the

grounds of not being technical enough. A particular reviewer questioned whether

“Is it really necessary to know the exact hypothesis of the evaluation, or which

hypothesis can be rejected using which kind of test?” Hahnle replies, “Why, yes of
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course! Or else you are just claiming nonsense! You could just as well ask ‘Is it really

necessary to prove soundness using all this complex mathematical stuff?”’ This

evaluation method is a well-respected staple in other scientific disciplines such as

human computer interaction, visualization, life sciences, social sciences, psychology,

and medicine. It is time for user studies to find their place in the formal methods

community.

3.2 Challenges

Formal methods researchers usually conduct case studies consisting of hand picked

examples tested with a small set of experts. Conducting larger scale case studies

with more examples, i.e. user studies, in a formal setting poses several difficulties.

In most contexts, the small number of available experts will not be a large enough

sample to measure effects confidently. In the worst case, the scarcity of data could

obfuscate trends that lead to interesting hypotheses to be tested.

A straightforward way to subvert this issue is to not survey just experts. How-

ever, most of the research and tools to be evaluated are not intelligible to laymen in

their original form. To present formal methods tasks to non-experts is a non-trivial

task. Furthermore, making this information presentable to everyday people has its

own side effects. Without the underlying logical structure, non-experts can interpret

the information however they please. Both of these major challenges are discussed

below.

3.2.1 First-Order Information Translation

Translating a first-order specification and model, then presenting it to a person com-

pletely unfamiliar with logic is not easy. While first-order information can be read
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in English, it is challenging to fully mechanize such a syntactic manipulation. One

could rely on the first-order logic grammar to guide the translation. However, the

result usually will not read like natural language. A logician could overcome this

syntactic awkwardness, but a non-expert lacks the knowledge to fill in the missing

context. Thus, a human translation step is required. This handwork adds the miss-

ing context. Unfortunately, it also adds bias. Addressing this bias is compounded

by the chosen natural language phrasing.

3.2.2 Presented Translation Phrasing

The hand-picked context and chosen phrasing adds bias to non-expert experiments.

We suggest that non-experts process first-order information differently than logi-

cians. They are most likely unaware of the structure that once existed, and the

semantics behind it. To them, the model-finding task looks like a regular word

problem. The particular phrasing of the first-order elements, relations, and so-forth

also influence the study. We believe non-experts reading first-order information like

word problems. They most likely have the natural language semantics in mind in-

stead of the first order ones, due to their lack of experience writing the specification.

Choosing an arbitrary context influences the study. This can be solved by eval-

uating several context choices, but that will increase cost and vulnerability of the

user evaluation. Instead, a context that accurately reflects what a trained logician

understands during their model-finding task should be found. While this addresses

one side-effect of the translation, the real-world phrasing of the problem still poses

problems. This can be solved similarly to the first problem. Except, the more de-

sirable solution, to use a single justifiable phrasing, is no longer viable. Intuitively,

the original phrasing should be the proper phrasing. However, the original phrasing

does not have the same effect on non-experts as it does on logicians. Unfortunately,
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multiple trials with phrasing variations must account for this bias.

3.3 Approach

We set out to evaluate our minimal model definitions and address these challenges

in tandem. Through iterative refinement, we measured the effect of the above biases

in the form of variance. By identifying sources of variance in each of our experiment

trials, we garnered an understanding of how non-experts process various transla-

tions and phrasings we presented them. We surveyed non-expert participants on

Amazon’s Mechanical Turk, a popular crowd sourcing tool. For further details on

our reasons for surveying Mechanical Turkers, see section 8.2.

3.3.1 Minimality User Preference and Performance

We presented non-experts our translated and phrased refinement tasks, paying care-

ful attention to the effects of the translation and phrasing. Given a particular re-

finement task, we constructed a translated and phrased version. This non-expert

version was then split into minimal and non-minimal variants. To avoid bias, the

non-minimal models were the default output from the tool originating the refinement

task. The set of minimal models was always static from the previous definitions.

Applicability of Refinement Tasks

Table 3.1 shows the results of a multiple choice question answered by 18 experts

in one of our preliminary studies. The study is discussed in greater detail in the

later chapters. The table shows the frequency how experts used models in their

respective tools. A chi-squared test found a significant difference in the frequencies

for the third task with a p-value of 0.047. The third task, using a model to suggest
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additional constraints required in a specification, was exactly what a refinement task

is defined as. While we cannot claim the universal applicability of this task, it is at

least popular among experts in the model finding community.

Often Sometimes Rarely

Help find the source of a behavior or bug in a spec-

ification

5 6 3

Suggest additional properties to check of a specifi-

cation

5 7 2

Suggest additional constraints required in a speci-

fication

10 2 2

Identify unexpected relationships between parts of

a specification

5 5 4

Foster human confidence in the behavior of a spec-

ification

7 2 5

Table 3.1: Expert Preference Survey - Question 4 Results

3.3.2 Mitigating Challenges

By collecting data at each step of the non-expert task, we reconstructed how the

user interacted, parsed, comprehended, and acted upon the first-order information

we presented. From this data, we searched for trends that may exemplify effects

caused by the above challenges. If any effects were discovered, they are dealt with

to remove bias in the next iteration. This process was repeated until no such bias

was found; that is, the non-expert results reflected the expert results.
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3.4 Definitions

The following definitions are paraphrased from Intuitive Statistics [26].

3.4.1 Studies

Subject and Treatment

A treatment is an experiment with a particular configuration of independent and

dependent variables. A subject, also known as a respondent, is a person being

surveyed who completes a certain treatment.

Independent and Dependent Variables

Variables are the types of data recorded from respondents during an experiment.

An independent variable is the part of a study changed for each treatment. The

values of Dependent variables are expected to change depending on the treatment.

Within and Between Subjects Experiments

There are two common ways to run experiments. A between-subjects study consists

of treatments with disjoint groups of respondents. That is, each respondent only

sees one treatment. A within-subjects study consists of respondents given a set

of treatments. That is, each respondent sees multiple treatments with adjusted

independent variables.
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3.4.2 Results

Parametric and Non-Parametric Data

Parametric data fits a normal distribution: the data matches the shape of a standard

bell curve. Parametric, or normal data is preferred, because it enables a greater

range of statistical testing. Non-parametric data does not fit a bell curve, and thus

more sophisticated tests much be used to analyze the data. These tests usually

have very specific conditions and assumptions. They also make it more difficult to

achieve large median and mean differences.

3.4.3 Analysis

Shapiro Test

This test can be used to analyze whether data truly fits a normal distribution.

Friedman Test

This test is performed on matched groups of ordinal data. Ordinal data can be

categorized into consecutively numbered bins. For example, preferential ranks where

respondents vote for their first, second, third, etc. choice is ordinal data. The test

confirms whether there is a significant difference in the ordinal data. Following the

previous example, a positive test would suggest a particular option is preferred over

the others.

Chi-Squared Test

The chi-squared test compares data for independence. That is, if one or more groups

differs from the other groups. This test has many applications because most data
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can be manipulated to be proper input for this test. It is also often used to test

whether experimental data defers from the expected result.

Mann-Whitney U Test

A Mann-Whitney U test is used to test whether two groups of between-subjects

non-parametric data differ. This test is a non-parametric version of the well-known

t-test for unpaired data. Since it compares medians instead of means as the t-test

does, it usually has less of a chance of achieving significance.
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Chapter 4

Results: User Model Preference

Both expert and non-expert users of model-finders fail to agree on which models

should be presented. However, there is significant split preference for minimal,

and relatively large models. Minimal models appeals to those concerned with only

necessary entities, while larger models provide a sense of confidence. Moreover, the

same exact bi-modal preference is exhibited in both expert and non-expert users.

4.1 Expert Preference Study

We surveyed 18 experts from the Alloy-B-and-Z (ABZ) 2012 conference and Brown

University. The survey consisted of a few general model-finder usage questions, and

three analysis tasks. Each analysis task consisted of three specifications, each with

a set of five models. The users reviewed a specification, chose which models they

would prefer to see first, and explained their model choice. The specifications were

presented by type hierarchy, relations, and factual constraints for brevity and quick

comprehension. Due to small sample size, the results reported in this section lack

confidence. However, since these are venerable model-finding users, their opinions

still hold weight. Also note, their hypotheses are later confirmed in the crowd-
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sourced study discussed later in this chapter.

4.1.1 Addressbook

Figure 4.1 specifies the types of an address book that maps names to targets, which

can be an address, an alias, or a group of targets. Constraints are also provided to

restrict 1. cyclic lookups, 2. aliases to a one-to-one mapping, and 3. empty address

books.

Figure 4.1: Addressbook Specification

The models in figure 4.2 can be categorized as follows. The first and fifth models

are minimal. The third model is medium sized, while the second and fourth models

are large. Medium and large are informal and relative terms.
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Figure 4.2: Addressbook Models

For this specification, there is no discernible preference for a particular model. It

is worth noting that these are exploratory models; no assertion was provided along

with the spec. This note affected our crowd-sourced results, and we suggest the same

conclusion: without a specific task given, respondents do not decide preference under

the same criteria.
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Model # Model Type Voted to See First

1 Minimal 57.14%

2 Large 37.5%

3 Medium 42.86%

4 Large 42.86%

5 Minimal 57.14%

Table 4.1: Addressbook Preference Results

4.1.2 Gradebook

Figure 4.3 specifies a grading policy that consists of students, professors, classes, and

assignments. Particular students are assigned as TAs. Only TAs and the Professor

can grade assignments.

Figure 4.3: Gradebook Specification

The models in figure 4.4 can be categorized as follows. Models 1, 2, and 3 are

minimal, while models 4, and 5 are large. Additionally, models 1, 3, and 5 exhibit

an interesting problem. In these models, students submitting for the assignment can
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grade it. While no assertion is given, this problem violates grading policy intuition,

or common sense.
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Figure 4.4: Gradebook Models
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Table 4.1.2 denotes the percentage of experts who marked each model as being

useful to see first. The models are also marked with “Problem” if it exhibits a

Teaching Assistant able to grade their own assignment. This was not provided as

an assertion, but it is intuitively considered a problem by the researchers, and most

participants.

Model # Model Type Voted to See First

1 Minimal Problem 74.13%

2 Minimal 50%

3 Minimal Problem 50%

4 Large 28.57%

5 Large Problem 66.67%

Table 4.2: Gradebook Preference Results

For this specification, the problem models are explicitly preferred. However,

there is no clear preference between minimal and non-minimal problem models.

The larger, non-problem models are seen as the least useful. As with the last task,

there was no assertion provided to expose these particular models as a problem.

This notion was merely intuitive for both the researchers and participants.

4.1.3 Conference Manager

Figure 4.5 specifies a paper review system. The specification for this system includes

the following axioms: Papers have a non-empty set of authors. Reviews are for a

non-empty set papers. A review is written by one reviewer.
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Figure 4.5: Conference Manager Specification

The models in figure 4.6 can be categorized relative to the first minimal model.

The fifth model has only a few extra facts. Models 2 and 4 have a slightly more

extra facts. The third model has many more facts than the first model.
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Figure 4.6: Conference Manager Models

Table 4.1.3 denotes the percentage of experts who marked each model as being

useful to see first. The models are additionally categorized by the type and quantity

of additional information it provides over the minimal counterpart, as described

above.
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Model # Model Type Voted to See First

1 Minimal 57.14%

2 Some new binary relation tuples 33.33%

3 Many new binary relation tuples 28.57%

4 Some new binary relation tuples 33.33%

5 Few new binary relation tuples 83.33%

Table 4.3: Conference Manager Preference Results

In this specification, a non-minimal example is explicitly preferred. Furthermore,

the model is only slightly larger than the minimal one. The even larger examples

begin to decrease in preference. While there were no comments explicitly mentioning

sources of confusion, there seems to be an information overload issue as more binary

facts are added to the minimal model.

4.2 Initial Crowd-sourced Preference Study

We sought out to replicate this bi-modal preference with a sample size that could

produce confident results. In the initial following crowd-sourced study, we presented

40 non-experts the addressbook specification, informally translated and rephrased

as a phonebook. The users were then asked to analyze a set of models. Finally,

they ranked each model in distinct consecutive order. The informal translation and

phrasing of the addressbook specification is shown in figure 4.7.
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Figure 4.7: Phonebook Specification

The models the respondents had to rank can be seen in figure 4.8. Similar to the

expert study, each model exhibited a particular interesting property allowed by the

specification. Example 1 is classified as the normal model, because it keeps in line

with user intuition and the general expectation from the specification. Example 3

has two aliases (names) that resolve to the same address (phone number). Example

4 has a missing address in the lookup for the alias Jack, as this is not explicitly

denied in the specification. Example 5 is exhibits the same issue as the previous

example, except using a cyclic reference. Again, this was not explicitly denied in

the phonebook specification above. The final example is a union of all the previous

examples.

29



Figure 4.8: Phonebook Models

The next table displays the voting data for the models ranked by preference.

Each example listed in the leftmost column. For each example, the number of votes

for each ranking is listed, as well as a shorthand name for the descriptions included

above.
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Example Type vs Rank Tally 1st 2nd 3rd 4th 5th

Normal 16 17 2 5 0

Shared Number 15 12 12 0 0

Empty Reference 1 4 10 12 6

Cyclic Lookup 0 1 6 12 12

Complex Combination 8 6 5 3 12

Table 4.4: Unguided User Preference

Without an explicit assertion to test, each respondent ranked the models ac-

cording to their own criteria. Some defined preference based on model size. Others

preferred those with interesting properties, such as cyclic lookups or missing refer-

ences. Without an assertion to guide their intuition, the respondents came up with

their own. Thus, the rankings above hold no significance. Giving the respondents

an explicit task should resolve this issue.

4.3 Followup Crowd-sourced Preference Study

In the followup study, we gave 200 non-experts a refined informal translation and

phrasing, as well as explicit assertion to check. The respondents were then asked

to rank the models based on their usefulness for understanding the problem in the

specification. Given this explicit refinement task, their rankings significantly reflect

what the experts exhibited in the ABZ study.
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Figure 4.9: Catalog Specification

As seen in figure 4.9, we changed the phrasing to a catalog table of contents.

The phonebook was not a good domain for some of the allowed properties of the

addressbook specification, such as cycles, shared addresses, and alias lookups that

do not end in addresses. Additionally, the assertion did not make much sense in the

phonebook phrasing. The assertion is “every alias must end in a valid address.” A

phonebook name listing that does not end in a phone number does not seem like

a plausible specification mistake. However, a catalog with a missing page listing

is a plausible specification issue. The issue of phrasings came up in many of our

studies. Phrasing variations of logical statements is known to have an impact on

user performance [6]. We fully discuss this finding in results chapter 6.
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Figure 4.10: Catalog Models
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We also changed the models to all be counterexamples varying in size, instead

of models exhibiting properties that may or may not be possible according to the

specification. This change was done to keep the models consistent with the newly

added assertion, as well as directly evaluate preference for particular model sizes,

such as minimal models. The resulting models can be seen in figure 4.10. Each

model varies in size, the number of bugs present, and the size of the bugs. Bugs are

defined as portions of the model exhibiting a failure of the assertion. In this case, a

bug is an item lookup that does not end in a page number. The number of failing

lookups and the size of the failing lookups varies for each model presented. The

categorization of each model can be seen in the results discussion.

Model Size Model Problem Type Round 1 Round 2 Round 3

Medium 1 Medium Bug 16 n/a n/a

Large 2 Large Bugs 35 44 66

Large 1 Minimal Bug 25 30 n/a

Minimal 1 Minimal Bug 53 55 63

Table 4.5: Guided User Preference

Table 4.5 shows the ranked preference data run through an Instant Runoff Voting

simulation. In each round, the contending models had their top votes counted. The

least preferred model was removed from the running. Then, the ranks are changed

based on the missing model. The top votes are then recalculated for each model until

a winner is chosen. Each round was tested for rank differences using a Friedman

test. The first two rounds achieved a p < .05. However, the difference in ranks

for round 3 are not significant. The large model 1 and the minimal model 3 are

essentially tied in preference. This can be seen by the minuscule difference in votes

for round 3 in the table.
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Chapter 5

Results: First-Order Information

Translation and Syntax

Our results have uncovered two factors that can be obstacles for users of formal

methods tools. First, excessively informal translations from mathematical specifi-

cation to natural language cause confusion. We suggest that without full syntactic

representation in the translation, useful keywords are lost, and the reader loses grasp

of the big picture. Second, inconsistent syntax between the specification and model

translations obfuscates the connections between the two. For instance, if a relation

is translated to one natural language fragment in the specification, but a different

fragment in the model, the user will not know those two phrases are talking about

the same thing. Together, these problems cause both global and local information

loss.

Our earlier crowd-sourced studies assumed that any level of formality would be

too burdensome for non-experts to handle. However, as our results in sections 5.1,

5.2, and 5.3 show, the informality yielded wholly inconsistent results; that is, the

equivalent to statistically random data. These results suggested that even non-
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expert participants benefit from tasks that avoid ambiguity. This finding motivated

our approach in section 5.2.

Beyond decreasing ambiguity, the results suggested another option for mitigating

noise in these studies: to improve the interface participants use to take the experi-

ment. As we increased formalism while paying careful attention to HCI concerns, the

variance in the results began to stabilize. We arrived at a translation method to plain

English that produces consistent enough to measure effectively. The method is a

two-step pipeline. Step one mechanically translates from first-order logic to pseudo-

natural-language: a set of sentences consisting of natural language fragments that

are not grammatically correct. Step two manually massages out any grammatical

inconsistencies, without destroying the existing syntax. The translation pipeline is

evaluated in chapter 7, and is one of two major contributions to future studies.

5.1 Initial Crowd-sourced Preference Study

In our original preference study on Mechanical Turk, we measured non-experts’

ability to analyze models. Both the models and the addressbook specification were

presented as informal English translations. As shown in figure 6.1, most respon-

dents could not describe abstract properties the models exhibited, even when given

a concrete list of properties to choose from. For instance, example 3 showed a

translated model with two person listings having the same phone number. Very

few respondents provided a similar description to the last sentence. A majority

of the respondents also did not indicate, via a yes/no questions, that they learned

something about the specification from looking at the example.

The following table shows the mean positive response for each question category

for the examples (see section A.2 for detailed descriptions). The first two examples
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only asked whether the model met the specification requirements or not. The last

four examples only asked if anything was learned about the specification due to it.

Each of the free-form responses were graded leniently by a single coder. A proper

description is described as loosely explaining the situation exhibited in the example.

Example # Correct SAT Answer Possibly Learned Proper Description

Generally High Low Very Low

1 90% - -

2 90% - -

3 - 27.5% 12.5%

4 - 32.5% 12.5%

5 - 22.5% 17.5%

6 - 50% 2.5%

Table 5.1: Analysis & Property Learning Ability

With just this study, there are several possible explanations for this. One is

that the participants just did not understand the examples. However, even with-

out explicit instructions, an overwhelming majority of respondents could figure out

whether model 1 or 2 satisfied the specification. Another explanation is the lack of

explicit instructions or assertion to verify. This is the refinement we made in our

next study.

5.2 Followup Crowd-sourced Preference Study

In the follow-up study, respondents were given an explicit assertion to check, to ad-

dress the participants’ inability to describe abstract properties. They had to analyze

models as well as isolate the problem in the specification. The specification had 3

37



possible sentences that originated the counterexamples presented. The respondents

chose one of those lines, and then explained their choice. An explanation was con-

sidered correct if it mentioned the empty alias issue in the addressbook specification.

In this case, a perfect response mentioned that the 3rd sentence used a qualifying

“may” which enabled aliases to be empty. An acceptable response just had to men-

tion that aliases referenced can not be missing. A wrong response failed to mention

anything regarding missing aliases.

In the following table, the average subject ability to properly pick apart examples

is displayed. Also included are structural information about each model. The size

describes the number of facts in the model, whereas the the type loosely describes

the bugs the subjects were meant to highlight. In general, more bugs, or larger bugs,

means the respondent had to highlight more of the example.

Model Size Type Mean Proper Model Highlighting

Teaching Example Medium 1 Medium Bug 72%

Model 1 Large 2 Large Bugs 82%

Model 2 Large 1 Minimal Bug 77%

Model 3 Minimal 1 Minimal Bug 90%

Table 5.2: Counterexample Comprehension Rates

The next table describes the specification refinement portion of the study. This

binomial table shows the number of users that did/did not select the problematic

portion of the specification and also gave a good/bad explanation of the problem.

Again, the explanations were graded leniently by one coder. Any free-form response

that even remotely referenced parts of the problem were given a good score.
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Good Explanation of bug Bad Explanation of bug

Marked the buggy line 80 44

Did not mark the buggy line 6 70

Table 5.3: Model to specification Abstraction Ability

Figure 5.3 shows a binomial table comparing their multiple choice answer to

the quality of their explanation. The explanations were graded as described above.

Most respondents who failed to isolate the bug gave poor explanations. However,

even those who did choose the correct line only had a 65% chance to give a decent

explanation, even with leniency in grading. The informality of the presentation

exhibits a disconnect between the correct responses, and level of understanding.

5.3 Initial Crowd-sourced Performance Study

Even after making the specification, assertion, and models more precise in the first

performance study, the informal approached yielded inconsistent results. Respon-

dents were shown a single model which they analyzed, and then were asked to

choose a specification fix from four possible options. We conducted a between sub-

jects study on the addressbook specification using 4 different model types and 3

different phrasings.
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Model Type Catalog Webpage Mail Averaged

Minimal 62.5% 40% 44% 48.98%

Larger Context 44% 18.75% 57.89% 40.36%

Multiple Bugs 50% 23.07% 69.5% 47.55%

Valid and Buggy 43.75% 38.89% 54.17% 45.61%

Table 5.4: Addressbook Across Phrasings

The percentage of correct fixes chosen for each equal sample is shown in table

6.2. Looking at the averaged percent of correct responses across phrasings, we see

that respondents had a 50:50 chance of answering the question correct, regardless of

which model they were presented. Statistically speaking, these results are no better

than a random generation of data. While there are multiple possible causes at this

point, we decided to address informality, and redid this study with a significant

increase in formalism. As reported in the next section, the more formal approach

was a success.

5.4 Followup Crowd-sourced Performance Study

In the followup study, we presented the same specifications comparing minimal and

non-minimal models, except with a formal translation and interaction environment.

We attempted to gather data within subjects. To elaborate, each respondent was

given the same specification twice: once with a minimal models, once with control

models. In order to present the same specification again, we rephrased the specifi-

cation for one of the tasks. One possible issue with rephrasing the specification is

that participants will recognize the variation. However, in the informal studies, we

saw phrasing confusing the respondents. We hoped this effect would carry over and
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obfuscate the similarities in the task.

The next table shows the within-subjects data for each specification task. Differ-

ent groups were exposed to the two possible orderings, and phrasings of each task:

resulting in four total permutations per task. To clarify, the first row shows results

for subjects given the addressbook specification, with the rephrased control task

first, and the original phrased minimal task second. The difference of the mean and

median number of attempts is taken from the same subject sample. That is, the

within subject data for both the control and minimal task were subtracted from each

other. Positive values indicate the control attempts were greater than the minimal

attempts For example, in the first row, both the mean and median are positive. This

means that users required fewer guesses to reach the correct answer with minimal

models.

Surprisingly, the phrasing did not obfuscate anything. As shown in table 6.3, the

respondents appeared to recognize the specification the second time around,perhaps

due to a decrease in the differential when the control is shown second. In each

study, grouped by specification, being presented second has a significant impact on

the difference in attempts needed to finish the task. Put simply, the second time

a specification is presented, the respondent needs many less attempts, regardless of

the model variant. The syntactic confusion and inconsistency that existed in the

previous informal studies is no longer present, because of the ordering effect. To

elaborate, if participants can recognize a rephrased specification the second time and

solve the task in less attempts, they recognized the syntactic equivalence between

the phrasings. That, along with the rest of the results, suggests informality was

indeed the cause of the confusion and inconsistent results.
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specification Shown Second Phrasing Kept Median C-M Mean C-M

Addressbook Minimal Minimal 2 1.172

Addressbook Control Minimal 0 .546

Addressbook Minimal Control .5 .16

Addressbook Control Control 1 .077

Gradebook Minimal Minimal 1 .484

Gradebook Control Minimal 0 -.16

Gradebook Minimal Control 1 .828

Gradebook Control Control -1 -.784

Bad Worker Minimal Minimal 3 1.114

Bad Worker Control Minimal -2 -.857

Bad Worker Minimal Control 2.5 .584

Bad Worker Control Control -2 -.857

Other Groups Minimal Minimal 1 .286

Other Groups Control Minimal -2 -.1571

Other Groups Minimal Control 2 1.139

Other Groups Control Control 0 -1.314

Table 5.5: Within-Subjects Differential; “C-M” means “Control minus Minimal”
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Chapter 6

Results: Translation Phrasing

Semantics and User Intuition

Some phrasings of the translated specification combines poorly with the users pre-

conceived knowledge. The phrasing effects how the respondents approach their

problem solving. Experts understand the difference between the English phrasing

used, and the logical structure of the specification. However, non-experts do not

understand the difference, or even realize that there is an inherent mathematical

structure underneath. Instead, we suggest they approach these tasks as everyday

word problems, bringing their real world intuition into every response. This can

have quite an insidious effect on results, regardless of the formality in presentation.

Throughout the studies, the chosen real world semantics of the first order spec-

ification have been an issue, especially with non-expert samples. We stopped using

the phonebook phrasing of the addressbook specification after the study in section

6.1 because it was generally confusing. In a later study discussed in section 6.2,

we measured several phrasings and found them to have a much larger effect than

the models being presented. Even after fixing the translation formality discussed
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in chapter 5, phrasing had a huge impact on our results, as reported in section 6.3.

While we do not have a convenient solution to this problem, we contribute that

phrasing should be treated delicately and reported as a part of bias meta-analysis.

6.1 Initial Crowd-sourced Preference Study

In our first Mechanical Turk study, we gave 40 respondents a specification, and

some examples to analyze. Even without an explicit assertion, and a fairly infor-

mal specification, they had some notion of satisfiablity. The specification was the

addressbook phrased as an everyday phonebook, and was presented as such. For

the first two models, the respondents had to answer whether the model satisfied the

specification or not.

Example # Correct SAT Answer Possibly Learned Proper Description

1 90% n/a n/a

2 90% n/a n/a

3 n/a 27.5% 12.5%

4 n/a 32.5% 12.5%

5 n/a 22.5% 17.5%

6 n/a 50% 2.5%

Table 6.1: Analysis & Property Learning Ability

The first model satisfied the specification, while the second one did not. In

both cases, 36 of the 40 respondents correctly marked the models. However, their

responses to the rest of the questions, as detailed in chapter 5, shows that they did

not respond according to just the spec. They answered the question based on their

understanding of a real world phonebook, not the specification presented.
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6.2 Initial Crowd-sourced Performance Study

In the first performance study, phrasing was the only discernible effect measured in

the data from thousands of Mechanical Turkers. Rephrasing the specification into

a different real world scenario had a huge impact on user performance in this study.

A particular phrasing caused some respondents to bring in their own thoughts on

what they think is right and wrong, regardless of the specification and assertion

presented.

The following table illustrates the population percentage that properly identified

the problem in the specification, for the particular model type and phrasing they

were exposed to. The minimal model type is as defined in section 2.2. The others are

various non-minimal models that were roughly categorized by the unnecessary facts

they contained. Their classification is not relevant to the data being reported. We

gave separate populations three different phrasings of the addressbook: a catalog

table of contents, webpage with links, and a postal mail system.

Model Type Catalog Webpage Mail Averaged

Minimal 62.5% 40% 44% 48.98%

Larger Context 44% 18.75% 57.89% 40.36%

Multiple Bugs 50% 23.07% 69.5% 47.55%

Valid and Buggy 43.75% 38.89% 54.17% 45.61%

Table 6.2: Addressbook Study Across Phrasings

Each column dictates a different rephrasing of the addressbook specification.

The final column is simply an average of the other three columns. For instance,

row one states that 62.5% of participants properly identified the problem in the

specification for the catalog rephrasing of the addressbook translation. This can be
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further compared to the 40% correctness for the webpage phrasing, and the 44% of

the mail phrasing. The average correctness given a minimal model was 48.98%.

For each phrasing, the real world scenario had a drastic impact on how the

non-expert perceived the information. For example, in the mail phrasing, empty

addressbook aliases were translated as missing post offices. To a non-expert, this

failure of the assertion is much more alarming in the mail phrasing compared to the

other phrasings. Furthermore, the different scenarios exhibited no effect on the re-

sults, as seen in the final column. The final column averages across phrasings, which

accounts for any biasing effect introduced by any particular phrasing. Accounting

for the phrasing effect shows that each group of participants had a mean correct

response of 50%. The phrasing introduced so much noise that the results without

this effect are equivalent to flipping a coin.

6.3 Followup Crowd-sourced Performance Study

Even with increased formalism, phrasing has significant effects on user performance.

In the followup performance study, hundreds of Mechanical Turkers were given a

specification, assertion, models of a certain type, and had to pinpoint the part of

the spec causing the assertion to fail. Even with the formal translation, and the

respondents recognizing rephrases within the same study, phrasing had an impact

on the number of attempts it took to trace the problem. Additionally, the effect

was more intense the easier the task was. Formality did not appear to help many

respondents use the models, because their response time suggests they only read the

specification quickly and began to answer.

Table 6.3 shows the within-subjects grouped data for each specification task.

Different groups were exposed to the two possible orderings, and phrasings of each
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task: resulting in four total permutations per task. To clarify, the first row shows

results for subjects given the addressbook specification, with the rephrased control

task first, and the original phrased minimal task second. The difference of the mean

and median number of attempts is taken from the same subject sample. That is, the

within subject data for both the control and minimal task were subtracted from each

other. Positive values indicate the control attempts were greater than the minimal

attempts.

Spec Shown Second Phrasing Kept Median C-M Mean C-M

Addressbook Minimal Minimal 2 1.172

Addressbook Control Minimal 0 .546

Addressbook Minimal Control .5 .16

Addressbook Control Control 1 .077

Gradebook Minimal Minimal 1 .484

Gradebook Control Minimal 0 -.16

Gradebook Minimal Control 1 .828

Gradebook Control Control -1 -.784

Bad Worker Minimal Minimal 3 1.114

Bad Worker Control Minimal -2 -.857

Bad Worker Minimal Control 2.5 .584

Bad Worker Control Control -2 -.857

Other Groups Minimal Minimal 1 .286

Other Groups Control Minimal -2 -.1571

Other Groups Minimal Control 2 1.139

Other Groups Control Control 0 -1.314

Table 6.3: Within-Subjects Differential; “C-M” means “Control minus Minimal”
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Looking at the even and odd pairs of rows in each specification, one can see the

drastic disparity in the difference in attempts for only a change in phrasing. The

specifications are also sorted by difficulty, from hardest (Addressbook) to easiest

(Other Groups). As the difficulty increases, the consistent favoring of minimality

increases. The phrasing impact only seems to obfuscate the true effects of the

independent variables for easier tasks.

The following table is merely a restructuring of the data above. Instead of

comparing the first task given to a single subject to the second task given, we

removed the second task from the data set. This was removed due to the ordering

effect discussed in chapter 5. Then, the data is treated as unpaired groups of task

results between subjects. That is, each subject only contributed one task result to

each category.

Specification Model Type Unit Mean Median

Addressbook Control # Attempts 4.375 5

Addressbook Minimal # Attempts 4.154 5

Addressbook Control Seconds Taken 82 56

Addressbook Minimal Seconds Taken 88 69

Gradebook Control # Attempts 3.594 3

Gradebook Minimal # Attempts 2.492 2

Gradebook Control Seconds Taken 97 58

Gradebook Minimal Seconds Taken 93 81

Table 6.4: Between-Subjects Performance Results

These tasks are being solved in about a minute and a half, as shown in table

7.1. Gradebook, the easier task, takes a reasonable number of attempts to solve

48



in this time, while the harder task, Addressbook, takes almost twice the attempts.

Seeing as the respondents took the same amount of time, suggests they are not

carefully reading the models and using that information to solve the problem. The

gradebook could be solved reasonably because of the intuitive property of the bug.

While addressbook, a more mathematical structured specification, was difficult to

understand at first glance, causing the respondents to almost exhaust the possible

options.
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Chapter 7

Evaluation: Study Framework and

Minimality Performance

The results chapters reported issues with our earlier studies that we claim to have

addressed in our final study iteration. Chapter 5 reported that excessively informal

translations from mathematical specification to natural language caused confusion,

and inconsistent syntax between the specification and model translations obfus-

cates the connections between the two. Our final study uses a two-stage translation

pipeline driven by these findings to address the syntax issue. Chapter 6 reported that

phrasing of the specification combines poorly with the users’ preconceived knowl-

edge. While we did not offer a general solution to this problem, the final study avoids

the semantic issue by using the original spec phrasing. This is a bias, and our study

would have been conducted with multiple phrasings if we achieved significant re-

sults with large effect sizes in our final user evaluation. Our final user evaluation

is discussed in section 7.1. Whether our final user evaluation truly addressed the

issues reported in the results is discussed in section 7.2.
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7.1 Minimality Performance

We conducted two final performance studies. One with crowd-sourced users given

our translated model-finder facsimile. The other with experts given our model-finder

facsimile, sans translations.

7.1.1 Followup Crowd-sourced Performance Study

We surveyed hundreds of Mechanical Turkers to measure the effectiveness of par-

ticular model types for refining specifications. They were given a specification, an

assertion that is failing, a set of counterexamples of a particular model type, and

some possible problem portions of the specification to isolate. Unlike the previ-

ous surveys, we formalized the translation from first order relational logic to plain

English. The results for both specifications are reported in the following table.

The following table is merely a restructuring of the data above. Instead of

comparing the first task given to a single subject to the second task given, we

removed the second task from the data set. This was removed for reasons described

in the results chapters. Then, the data is treated as unpaired groups of task results

between subjects. That is, each subject only contributed one task result to each

category.
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Specification Model Type Unit Mean Median

Addressbook Control # Attempts 4.375 5

Addressbook Minimal # Attempts 4.154 5

Addressbook Control Seconds Taken 82 56

Addressbook Minimal Seconds Taken 88 69

Gradebook Control # Attempts 3.594 3

Gradebook Minimal # Attempts 2.492 2

Gradebook Control Seconds Taken 97 58

Gradebook Minimal Seconds Taken 93 81

Table 7.1: Between-Subjects Performance Results

For both tasks, users took less attempts on average to trace the problem in the

specification when given minimal models. The mean difference was not significant for

the addressbook task. However, the mean and median difference for the gradebook

task was significant. A Shapiro-wilk test was performed to confirm that the data is

non-normal. Then, a Mann-Whitney’s U test was performed to test the difference

between the two unpaired minimal and control groups. The difference in the number

of attempts to trace the problem in the specification is significant to 99.8%, with a

medium effect size of 0.275.

7.1.2 Expert Performance Study

We surveyed two dozen Brown undergraduates highly familiar with Alloy. We sought

to measure their ability to trace and fix problems in specifications when given an

unaltered refinement tasks. They were also given a specification, an assertion that

is failing, a set of counterexamples of a particular model type. However, they were
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allowed to freely edit the specification, as they did not require a simplified presen-

tation format due to their experience.

This table is the dual to the between-subjects data from the previous study.

Each expert only saw one task each, therefore the results are between subjects.

Again, the mean and median attempts used / time taken to fix the specification are

reported.

Specification Model Type Unit Mean Median

Addressbook Control # Attempts 2.765 2

Addressbook Minimal # Attempts 2.867 3

Addressbook Control Seconds Taken 2462 410

Addressbook Minimal Seconds Taken 4966 295

Gradebook Control # Attempts 2.294 2

Gradebook Minimal # Attempts 2.267 2

Gradebook Control Seconds Taken 5608 347

Gradebook Minimal Seconds Taken 340 387

Table 7.2: Expert Performance Results

While there are some small differences in the number of attempts, none of them

turned out to be significant. Even the more notable differences in time taken to

complete the task are statistically insignificant. This is an exemplary case of a small

sample size producing insignificant trends- the very reason we began developing this

framework.

53



7.2 Practical Study Framework

In the previous section, we reported results from our final two performance studies:

one crowd-sourced, one with experts. The experiments are exactly the same, except

the crowd-sourced one is translated, and only asks the user to trace the problem,

not also fix it. The variances between the minimal and control groups for each spec

and study are reported in the following table.

Specification Subjects Type Unit Mean Variance Median Variance

Addressbook Crowd # Attempts 0.024 0

Addressbook Expert # Attempts 0.005 0.5

Addressbook Crowd Seconds Taken 18 84.5

Addressbook Expert Seconds Taken 3135008 6612.5

Gradebook Crowd # Attempts 0.607 0.5

Gradebook Expert # Attempts 0.0004 0

Gradebook Crowd Seconds Taken 8 264.5

Gradebook Expert Seconds Taken 13875912 800

Table 7.3: Cross-referenced Performance Results

Looking at the mean and median attempt variances between the crowd-sourced

and expert groups, the difference between them is quite small, and statistically

insignificant. The difference in time variances is quite large, but this is to be expected

due to the differences in expertise and study design. The crowd-sourced respondents

only had to trace the problem, not fix it. Fixing the problem and parsing the

unaltered first-order information takes longer than solving an above average word

problem logic puzzle. The minimal differences between the non-expert and expert

results suggests the reported effects to handle, and final study design is indeed a
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trustworthy starting point to conducting a future crowd-sourced model-finding user

evaluation.
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Chapter 8

Related Work

We are unaware of any previous user evaluations of model-finding research. In

this section we provide context for the two main areas our research has drawn upon:

formal methods and user studies, and also point to some aspects of human-computer

interaction that influenced our work.

8.1 Formal Methods

8.1.1 Model Finding

Many model finders rely on SAT/SMT solving techniques. These tools, also known

as MACE-style model finders [24], instantiate and flatten the original first-order

specifications into propositional logic problems. Satisfiability (SAT) solvers are spe-

cialized tools designed to efficiently solve boolean logic problems [2]. SAT modulo

theory (SMT) solvers extend SAT solving techniques past boolean variables, such

as linear arithmetic, equality, and uninterpreted functions [28]. Both of our previ-

ous minimal model-finders are MACE-style. Aluminum is a modification of Alloy,

which implements a minimization algorithm on standard Alloy models [29]. Razor
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is a standalone minimal model finder, that supports exploration of all models, and

provenance, which originates facts in the specification [34].

Our minimal model finders rely on several formal methods techniques. Logic pro-

gramming languages restricted to horn-clauses innately produce single, least models

[22]. Our Razor model-finder operates over first-order formulas in geometric form.

Geometric form is an expressive equivalent to first-order logic, that consists of uni-

versally quantified horn-clauses, with disjunction and existential quantification al-

lowed in the consequent. A more general definition of minimality is used for the

semantics of non-monotonic reasoning [33] and database updates [11]. Razor relies

on a database update algorithm called the Chase. A modified version of the Chase

constructs the Herbrand Base, which is used to instantiate the first-order clauses

down to propositional logic. Minimal model generation often relies on tableaux

[30], or hyper-resolution techniques [4]. The original Chase algorithm is similar to

a tableaux method. An earlier version of Razor used this decision procedure to find

models without implementing MACE-style solving.

Other model-finders have produced minimal models under various definitions of

minimality. Janota’s algorithm generates all minimal models given a single model

[19]. The first minimal model is produced by modifying a traditional SAT solver.

Koshimura et al. compute minimal models in propositional logic to solve job-

scheduling problems efficiently [21]. The Cryptographic Protocol Shapes Analyzer

[10] produces minimal models specifically for analyzing crypto-protocols. These

works generate variations minimal models, or propose slightly different definitions

of minimality. We are not concerned with user evaluating these different minimality

definitions at the moment.

Minimality is not the only option for which models to generate. Fu and Malik de-

velop efficient algorithms for generating maximal propositional models [12]. Cunha,
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Macedo, and Guimaraes implement a target oriented model finder [8]. They define

a distance between models in order to generate next models near or far from the

current target model. Both of these works have their own mathematical benefits.

However, this work is only concerned with evaluating minimal models.

8.1.2 Theorem Proving

We are only aware of one other published user evaluation of a formal methods tool,

which was conducted while we were also researching this topic. Hentschel, Hahnle,

and Bubel conduct a user study to evaluate two different interfaces for KeY, a pro-

gram verifier [17]. The old control interface presents the user a debugger which

focuses on theorem proof objects from the program verification. The new interface

provides an interactive, symbolic execution debugger. They performed a user evalu-

ation with 32 experts with various levels of experience with the tools and languages

involved. They found that the less experienced users performed significantly better

using the new debugging interface for a variety of tasks. Their user study evaluates

a theorem proving tool, instead of a model finder. Also, they used a small sam-

ple of experts, and found significant positive trends in two of their five hypotheses.

Their work only evaluates two interfaces, as well: this is something the HCI com-

munity has been evaluating for decades. Our work evaluates a more theoretically

complex concept, minimal models. Their work provides a well detailed reference

for how to perform a user evaluation consisting of only expert participants. Our

work is primarily concerned with surveying non-experts, to enable more ambitious

studies requiring larger sample sizes. The authors only report significance values

during their null-hypothesis testing. Cumming [7] urges researchers to move away

from just null-hypothesis significance testing, as it does not fully discuss bias and

variance, which is important for replication. Significance is a good litmus test for
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success, but should be further investigated with confidence intervals, probability

models, and effect sizes. We touch on this meta-analysis through effect size, but we

need to increase this in our future studies. However, since most of our results are

currently insignificant, meta-analysis is mostly moot.

8.2 Crowd-sourcing

8.2.1 Amazon Mechanical Turk

We investigated the challenges of using Mechanical Turk for crowd-sourcing before

sending out our user studies. Kittur, Chi, and Suh discuss the trade-offs of sample

sizes, cost, and quality responses [20]. They stress that Mechanical Turk by design

enables large sampling at low cost, but designing the task requires careful attention

in order to get quality responses. In order to pay the needed attention, we collected

meta-data in our studies to refine our Mechanical Turk task decisions. We spent non-

trivial effort making our studies not frustrating to finish, avoiding adding distracting

questions, and paid our respondents a living wage. We also developed an informal

adversarial model, to reduce the number and filter out the remaining low quality

responses. Peer, Vosgerau, and Acquisti futher investigate MTurk’s quality [32].

They evaluate Amazon’s built in quality controls, and conclude that reputation

and productivity do correlate with response quality. Therefore, we restricted our

studies to mechanical turkers with thousands of completed tasks, with high approval

rates. Mason et al [23] evaluate the differences in the expert and crowd-sourced

populations, while also providing a blueprint on how to properly conduct studies on

mechanical turk properly. In their opinion, Amazon’s crowd-sourcing tool a great

resource when considering all categories (cost, stability of responses, quality, speed

of feedback, etc.). They were one of the reasons we decided on mechanical turk and a
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general resource through experiments. Gould et al [14] discuss the difficult of keeping

crowd-source subjects attention. They find that without intervention, crowd-workers

reach inattention after about 5 minutes. Additionally, they implement and evaluate

their own intervention method that encourages focus whenever the worker begins

to multitask. Their work incentivized us to keep our tasks as simple and short as

possible. However, their intervention schemes were not very applicable because we

have a single task, and it is difficult to measure inattention in our context.

8.2.2 Visualization Community Adoption

The vis community did not always conduct user studies, and only recently started

using crowd-sourcing. Heer and Bostock [16] successfully replicate and confirm

classic user evaluations from other disciplines using Amazon’s Mechanical Turk.

Notably Cleveland and McGill’s [5] pioneer user study. Not only are we conducting

one of the first formal methods user evaluations, we are also using crowd-sourcing.

We are simultaneously creating and replicating history. The mentioned papers give

us hope that both of these challenges can be overcome.

8.2.3 Past User Evaluations

The HCI community has begun using crowd-sourcing for much more than user-

evaluations. Bernstein et al [1] wrote and edited papers using crowd-sourced work-

ers. Bigham et al [3] develop VizWiz, which enables blind users to get crowd-sourced

feedback on their current environment in real time. After crowd-sourced user eval-

uations have become a part of the formal methods community, it may be possible

to bring the human further into the loop, enabling advancements such as these.
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8.3 Human Computer Interaction and Visualiza-

tion

We borrow several well founded techniques in the development of our model finder

facsimile. Ghoniem, Fekete, and Castagliola [13] show that graphs larger than

twenty vertices are better represented as a matrix. We avoided presenting non-

expert Alloy graphs for this reason. Simons [35] remarks on dealing with the change-

blindness in modern studies. We switched from multi-page, dynamically changing

layouts to our current single-page, static layout to address this cognitive effect.

Munzner [27] acts as a general aid to designing graphical user interfaces. We used

this as a general reference for less significant design decisions with the model-finder

facsimile. Wills [37] states that linked text highlighting, or similar linked visual-

izations, increases the users chances of cognitively linking the information. This

inspired our italicization of relations across the spec and model.

We also looked at the few non-expert targeted user interfaces for formal methods

tools for inspiration. DeOrio and Bertacco develop a human-powered SAT solver

[9]. SAT solving can be thought as propositional model finding. Their work details

a method of posing this logically complex task to humans, in a way to optimize per-

formance and engagement. Their use of shapes and highlighting to present boolean

logic puzzles to users influenced many of our visualization choices. Moffitt et al.

develop a multiplayer, crowdsourced model-checking game [25]. Model-checking is

undecidable, so posing this problem to humans is even more complex than a SAT

solver. They describe a method of breaking down this insurmountable problem into

more accessible pieces, that can be distributed among participants. Unfortunately,

model-checking is not the same as model-finding; it is closer related to theorem

proving. Thus, many of their design decisions are not applicable.
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We investigated visualization research pertaining to various logical models as

well. Ottley et al. investigate the effect of textual, graphical, and tandem rep-

resentations of probability models for Bayesian reasoning tasks [31]. They find

that the lone textual representation marked the greatest impact on user’s reasoning

ability, despite the intuitive notion that visualizations are often better. Even more

counter-intuitively, presenting both representations at once drastically decreases per-

formance. This further pushed us away from using Alloy graphs in our model-finder

facsimile whatsoever. The main caveat is to present the problem and the feedback

model in a similar language, so users can easily make connections between the two.

This inspired the matching syntax between the spec and model in our framework.

As seen in our results comparing and contrasting levels of syntax matching, we come

to the same conclusion as they did.
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Chapter 9

Conclusion

As seen in our own user evaluation of minimality, acquiring a sample size large

enough to measure effects with confidence is difficult with expert samples. We

expanded the population to non-experts through crowd-sourcing. In some cases,

there was a large benefit to presenting users minimal counterexamples, but not in

all. We have identified several sources of variance that should be controlled in future

user studies such as informal translations and chosen phrasings. Further mitigation

of these variance sources will allow us to finish our minimality evaluation with

confidence. Combating how to simplify both the syntactic and semantic information

conveyed in relational first-order logic, we eventually developed a formal model

finder facsimile. This survey tool produced results in line with the expert results

participating in the same experiment, modulo translation.

9.1 Future Work

Currently the translated model finder facsimile only allows users to trace the prob-

lem in the specification, not fix it. We hope to develop an Alloy block language

interaction to enable even non-experts to edit the specification. Additionally, the
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crowd-sourced respondents took an undesirably short amount of time to read the

task. Forcing interaction with the information to slow and direct their thinking

should increase time taken, and improve the accuracy. Both of these should bridge

the final gap in the results comparison, yielding almost equivalent data sets.

We believe that minimality should help for some user tasks and not help (or

even hinder) others. Current results seem to align with our hypothesis. However,

only one of the specifications was significant, and the effect size was not large. The

above should enable us to produce a more robust, convincing set of results. Fully

evaluating this hypothesis is our next step.

The most interesting study effect reported was the specification phrasing seman-

tics combining with the user’s preconceived intuition. This problem can be dodged

by sticking to the original phrasing, but this is unsatisfactory. The logical structure

is completely the same, so as long as the phrasing makes general sense, it should

not affect user behavior. Confirming the source of the problem from the user’s end

is the first step. Being able to control user intuition for particular phrasings would

be ideal in the investigation.
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[30] I. Niemelä. A tableau calculus for minimal model reasoning. In Theorem

Proving with Analytic Tableaux and Related Methods, pages 278–294. Springer,

1996.

[31] A. Ottley, E. M. Peck, L. T. Harrison, D. Afergan, C. Ziemkiewicz, H. A. Taylor,

P. K. Han, and R. Chang. Improving bayesian reasoning: the effects of phrasing,

visualization, and spatial ability. Visualization and Computer Graphics, IEEE

Transactions on, 22(1):529–538, 2016.

68



[32] E. Peer, J. Vosgerau, and A. Acquisti. Reputation as a sufficient condition

for data quality on amazon mechanical turk. Behavior Research Methods,

46(4):1023–1031, 2014.

[33] A. Robinson and A. Voronkov. Handbook of Automated Reasoning, volume 1.

Elsevier, 2001.

[34] S. Saghafi, R. Danas, and D. J. Dougherty. Exploring theories with a model-

finding assistant. In Automated Deduction-CADE-25, pages 434–449. Springer,

2015.

[35] D. J. Simons. Current approaches to change blindness. Visual cognition, 7(1-

3):1–15, 2000.

[36] D. Van Dalen. Logic and structure, volume 3. Springer, 1983.

[37] G. J. Wills. Visual exploration of large structured datasets. Proceedings of New

Techniques and Trends in Statistics (NTTS), pages 237–246, 1997.

69



Appendix A

Documentation: Studies and Data

This chapter provides full documentation of studies performed, and data not dis-

cussed in the results chapters. Each study is described in chronological order as

follows.

• Section A.1: Expert Preference Study

• Section A.2: Initial Crowd-sourced Preference Study

• Section A.3: Followup Crowd-sourced Preference Study

• Section A.4: Initial Crowd-sourced Performance Study

• Section A.5: Followup Crowd-sourced Performance Study

• Section A.6: Expert Performance Study

The study descriptions explain the overall intent and design outside of the contri-

butions reported in this paper.
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A.1 Expert Preference Study

We gave a survey to 18 Brown graduate students, Brown faculty, and Alloy-B-Z

(ABZ) 2012 conference attendees. The survey consisted of two parts: some short

response questions, and an analysis of example specifications with their respective

models. We intended to garner a sense of how experts in field use formal methods

tools, and if they have any strong, possibly consistent opinions on models presented.

A.1.1 Design

Short Response Questions

Nine questions were given to the respondents. The first question asked which formal-

methods tools they used (Alloy, B, Z, ASM, SAT solvers, model checkers, or others).

The second question recorded demographics. Question three surveyed familiarity

with Alloy, and other tools. The fourth question asked when and how often models

were useful during tool use. The fifth question further gauged interaction with the

models. Question six asked how often they think about necessity of facts in the

models. The seventh question queried the amount of new knowledge provided by

the model set. Question eight broadly requested favorite or desired features of the

tools. The ninth question solicited additional comments.

Specification and Model Analysis

Respondents were given three specifications, each with a set of five models. The

users reviewed a specification, chose which models they would prefer to see first,

and explained their model choice. The specifications were presented by type hier-

archy, relations, and factual constraints for brevity and quick comprehension. The

addressbook specification is from the Alloy book [18], and describes a standard ad-
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Figure A.1: Short Answer Questions
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Figure A.2: Short Answer Questions
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Alloy Model Checkers Z SAT Solvers

# Familiar 11 4 2 1

Table A.1: Question 1 Results

Undergraduate
Student

Graduate Stu-
dent

Academic
Faculty

Industry Em-
ployee

# in Position 5 3 5 1

Table A.2: Question 2 Results

dress book. Our gradebook specification describes a grading policy similar to some

universities. Our conference manager specification describes the roles in a conference

paper review system.

A.1.2 Data

18 experts were surveyed. 12 were from ABZ 2012; 6 were from Brown 2015. The

results reported in this section were statistically insignificant. The significant results

are discussed in sections 3.3.1 and 4.1.

Familiar with Alloy Other Tools

Never Used 4 n/a
Small Examples 4 3

In Class 4 6
Trivial Research 2 0

As a Plugin 1 2
Nontrivial Research 6 4

Table A.3: Question 3 Results
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Often Sometimes Rarely

Trace each scenario through the specification be-
fore viewing another

5 5 4

Inspect several scenarios at a high-level, then go
back and trace (some of) their contents to the spec-
ification

4 7 3

Refine query to include some fact(s) in a recently-
viewed scenario

5 5 4

Ask a query that includes some fact(s) not seen in
the scenarios so far

4 5 5

Ask a refined query that checks whether two dis-
tinct elements in an existing scenario could merge
into a single element

2 1 10

Table A.4: Question 5 Results

Often Sometimes Rarely

When using a tool that produces scenarios in
response to a query, how often do you wonder
whether a particular fact or element in the scenario
is necessary to satisfy the query?

7 4 3

When using a tool that produces scenarios, how of-
ten do the contents of one scenario suggest a new
property or query that you hadnt previously iden-
tified?

6 6 2

Table A.5: Question 6&7 Results
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Short Response Questions

A.2 Initial Crowd-sourced Preference Study

We surveyed 40 amazon mechanical turkers. This preliminary survey explored non-

expert ability to interact with specifications and models, while attempting to mea-

sure preference for particular model types.

A.2.1 Design

The respondents were given six examples, each meant to illustrate a particular as-

pect of the addressbook specification. Similarly to the previous study, we presented

the specification as a set of facts and constraints. In order to make the techni-

cal information legible to this audience, we manually translated the factset into a

few simple statements. The models were also presented in a simple, domain spe-

cific fashion. To accomplish this, the addressbook specification was rephrased as a

phonebook. The models were “snippets from a phonebook page.” In the first two

examples, we gauged whether respondents could verify if an example satisfied the

given specification. The first example was straight-forward, other than the name in

the listings. This is possible as the addressbook spec allows for aliases. Example

two is completely incongruent to the spec as there are addresses (phone numbers) as

aliases to look up. The following four examples were explicitly marked as satisfy-

ing the specification. We explored how the respondents perceived the specifications,

models, and the information they convey. Specifically, we were concerned if non-

experts had a sense of abstract properties of the spec, and which models exhibited

them. Once the respondents thoroughly analyzed the examples, they were asked

which models were best to present. We phrased this as “showing interesting ex-

76



Figure A.3: Example 1

Figure A.4: Example 2
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Figure A.5: Example 3
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Figure A.6: Example 4
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Figure A.7: Example 5
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Figure A.8: Example 6
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amples to a designer working on the phone books” in an attempt to guide their

intuition on what criteria to judge the models on. The rankings they provided were

required to be consecutive and total.

A.2.2 Data

The short response results are discussed in section 5.1. The model preference results

are discussed in section 4.2.

A.3 Followup Crowd-sourced Preference Study

We gave 200 Mechanical Turkers a similar preference study, except with an explicit

failing assertion to check. They were also asked to roughly point out what part

of the specification led to the assertion failing. The respondents were then asked

to rank the models based on their usefulness for understanding the problem in the

specification. The specification is the same, other than the phrasing being changed

from a phone book to a catalog table of contents.

A.3.1 Design

The assertion stated that “every name lookup must end in a valid phone number.”

This assertion fails in the original addressbook specification (empty aliases). It also

fails in this catalog phrasing, as none of the mathematical structure of the spec

has been modified. For each of the four examples, the respondent picked apart

the example by highlighting which facts violated the given assertion. A similar

simplified domain specific representation was given. They were also provided with

explicit instructions for how to mark the model for failing the assertion. After

seeing all four counterexamples, the respondents were asked to point out the part
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Figure A.9: Example Preference

83



Figure A.10: Survey Prompt

Figure A.11: Example 1
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Figure A.12: Example 2
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Figure A.13: Example 3
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Figure A.14: Example 4

of the specification that caused the assertion to fail. They only had to point out

the problematic sentence in the spec, due to the simplified representation having

no formal structure. They were also asked to explain their choice and why they

chose it. The respondents were asked a similar ranking task to the previous survey.

However, now that there is an explicit assertion, their intuition was further guided

by the problem in the specification. Their choice should reflect what they believe is

the most exemplary counterexample. Again, the rankings are consecutive and total.

A.3.2 Data

The user model preference results are discussed in section 4.3. The model analysis

and specification refinement results are discussed in section 5.2.
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Figure A.15: Specification Refinement

A.4 Initial Crowd-sourced Performance Study

We surveyed hundreds of Mechanical Turkers to measure the effectiveness of particu-

lar model types for refining specifications. They were given a specification, assertion

to check, instructions on how to analyze each counterexample, as well as teaching

feedback. At the end of the survey, they were given a set of possible fixes for the

spec, only one of which was completely correct. A between-subjects study was then

conducted with varying model types. One variant was minimal while the others

were various non-minimal models.

A.4.1 Design

The first example was a teaching example to give the respondents a chance to analyze

an example without being graded. Only one true counterexample was presented as

the independent variable. The minimal variant is shown in figure A.19. The only

difference was the model the respondents were asked to highlight. The grading was
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Figure A.16: Example Preference
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Figure A.17: Survey Prompt

adjusted for the variance in model size. That is, the grade was divided by the

number of options, yielding a normalized percentage. After only being exposed to a

single counterexample, either minimal or non-minimal, the respondents were asked

to choose a proper fix. Since there are multiple ways to fix a specification, some of

the options were plausible, but would invalidate a portion of the model presented.

They were then asked to explain their choice and why it works.

A.4.2 Data

The user model performance results are discussed in section 6.2.

A.5 Followup Crowd-sourced Performance Study

We surveyed hundreds of Mechanical Turkers to measure the effectiveness of par-

ticular model types for refining specifications. They were given a specification, an

assertion that is failing, a set of counterexamples of a particular model type, and

some possible problem portions of the specification to isolate. Unlike the previous
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Figure A.18: Example 1
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Figure A.19: Example 2
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Figure A.20: Specification Refinement
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surveys, we formalized the translation from first order relational logic to plain en-

glish. This enabled the wording to be consistent between specification and model.

It also allowed us to present a succinct task on a single page. Most importantly, the

possible problem portions of the spec mapped to definite portions of the original

spec, clarifying the criteria for correctness.

A.5.1 Design

Examples of the presented tasks and interaction environment can be seen in fig-

ures A.21 and A.24. The users could highlight and select the portion of the spec

they thought was responsible for the assertion failing after they had a look at the

counterexamples. We originally conducted a within-subjects study, presenting both

minimal and non-minimal models to each respondent. To make sure the specifi-

cation and assertion did not affect their performance, the same spec and assertion

was used for both the non-minimal and minimal task variants. We attempted to

disguise the spec the second time by rephrasing the entire thing without altering

the mathematical structure.

A.5.2 Data

As reported in sections 5.4 and 6.3, there were undesired variances caused by our

within-subjects structuring. To mitigate this problem, we converted the data to

between-subjects results, which are discussed in section 6.3 and evaluated in section

7.1.1.
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Figure A.21: Addressbook Minimal Task
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Figure A.22: Gradebook Minimal Task
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Figure A.23: Addressbook Minimal Task

A.6 Expert Performance Study

We surveyed two dozen Brown undergraduates highly familiar with Alloy. We sought

to measure their ability to refine specifications, and compare it to that of the Me-

chanical Turkers. They were also given a specification, an assertion that is failing,

a set of counterexamples of a particular model type. However, they were allowed to

freely edit the specification, as they did not require a simplified presentation format

due to their experience.

A.6.1 Design

As you can see in figures A.23 and A.24, the task is exactly the same as what was

given to the Mechanical Turkers, sans english translations. They also had to fully
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Figure A.24: Gradebook Minimal Task

edit the spec and submit their fix, instead of just tracing the problem to a piece of

the spec, and not editing it.

A.6.2 Data

The results are evaluated in section 7.1.2.
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