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Abstract

This thesis focuses on a class of Galois field used to achieve fast finite field arithmetic

which we call Optimal Extension Fields (OEFs), first introduced in [BP98]. We ex-

tend this work by presenting an adaptation of Itoh and Tsujii’s algorithm for finite

field inversion applied to OEFs. In particular, we use the facts that the action of the

Frobenius map in GF (pm) can be computed with only m− 1 subfield multiplications

and that inverses in GF (p) may be computed cheaply using known techniques. As a

result, we show that one extension field inversion can be computed with a logarith-

mic number of extension field multiplications. In addition, we provide new variants

of the Karatsuba-Ofman algorithm for extension field multiplication which give a

performance increase. Further, we provide an OEF construction algorithm together

with tables of Type I and Type II OEFs along with statistics on the number of

pseudo-Mersenne primes and OEFs. We apply this new work to provide implemen-

tation results for elliptic curve cryptosystems on both DEC Alpha workstations and

Pentium-class PCs. These results show that OEFs when used with our new inversion

and multiplication algorithms provide a substantial performance increase over other

reported methods.
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Preface

This thesis represents the culmination of a child-like fascination with the world of

cryptography. On August 13-14, 1994, I was persuaded by an old friend from high

school named Rich Pell to attend a conference called Hackers on Planet Earth. This

gathering of hackers, phreakers, Feds, geeks, and other social misfits was held in New

York City to mark the tenth anniversary of 2600 Magazine. We were kids fascinated

by the vulnerabilities present in the computing and ideological systems which were

so quickly changing our world.

At the conference, Bruce Schneier and Matt Blaze gave a panel discussion on

cryptography. Years before the explosion of the Internet and electronic commerce,

the field of cryptography had not blossomed to its current state of public awareness.

They spoke about a new book by Mr. Schneier which had just been published called

Applied Cryptography.

It blew me away. It piqued my curiousity to such a degree that I find myself six

years later writing my own thesis on the subject. I devoured Applied Cryptography in

short order and was inspired to focus my energies on doing research in cryptography.

This decision meant a return to full-time study which I’d abandoned in late 1993.

In looking for a university to resume my education, I was persuaded by Amy

Bernheisel to cast my gaze toward Massachusetts. Eventually I decided to attend WPI

starting in the fall of 1995, where a new professor had just been hired by the name of

Christof Paar, whose research interest was cryptography. Since then, Professor Paar

has been my advisor through classes, papers, and projects. Thus I got my wish to
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explore the fascinating world of cryptography, and I cannot sufficiently thank those

who made it possible.

So I dedicate this thesis to Rich Pell, Bruce Schneier, Matt Blaze, Amy Bern-

heisel, and Christof Paar, without whom none of this would have been necessary.
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Chapter 1

Introduction

Since their introduction by Victor Miller [Mil86] and Neil Koblitz [Kob87], elliptic

curve cryptosystems (ECCs) have been shown to be a secure and computationally

efficient method of performing public-key operations. Our focus in the present thesis

is the efficient realization of ECCs in software. Our approach focuses on the finite field

arithmetic required for ECCs. Finite fields are identified with the notation GF (pm),

where p is a prime and m is a positive integer. It is well known that finite fields exist

for any choice of prime p and integer m.

A standard technique in the development of symmetric-key systems has been

to design a cipher to be efficient on a particular type of computing platform. For

example, the International Data Encryption Algorithm [LM90] and RC5 [Riv95] are

designed to use operations that are efficient on desktop-class microprocessors. Simi-

larly, the NIST/ANSI Data Encryption Algorithm has been designed so that hardware

realizations are particularly efficient [NIS77] [ANS81].

We propose to take the same approach with public-key system design. ECCs

provide the user a great deal of flexibility in the choice of system parameters. Our

1



Introduction 2

underlying assumption is that some choices of p and m of a finite field GF (pm)

are a better fit for a particular computer than others. The computer systems we

are concerned with in this thesis are the microprocessors found in workstations and

desktop PCs.

Most of the previous work in this area focuses on two choices of p and m.

The case of p = 2 is especially attractive for hardware circuit design of finite field

multipliers, since the elements of the subfield GF (2) can conveniently be represented

by the logical values “0” and “1.” However, p = 2 does not offer the same computa-

tional advantages in a software implementation, since microprocessors are designed

to calculate results in units of data known as words. Traditional software algorithms

for multiplication in GF (2m) have a complexity of cm2/w steps, where w is the pro-

cessor’s word length and c is some constant greater than one. For the large values of

m required for practical public-key algorithms, multiplication in GF (2m) can be very

slow.

Similarly, prime fields GF (p) also have computational difficulties on standard

computers. For example, practical elliptic curve schemes fix p to be greater than

2160. Multiple machine words are required to represent elements from these fields on

general-purpose workstation microprocessors, since typical word sizes are simply not

large enough. This representation presents two computational difficulties: carries

between words must be accommodated, and reduction modulo p must be performed

with operands that span multiple machine words.

Optimal Extension Fields (OEFs) as introduced in [BP98], are finite fields

of the form GF (pm), p > 2. OEFs offer considerable computational advantages by

selecting p and m specifically to match the underlying hardware used to perform the

arithmetic. The previous work in this area has focused on the application of OEFs

to RISC workstations, notably the DEC Alpha microprocessor.
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This contribution extends the work in [BP98] by providing an efficient inversion

algorithm, improved formulas for extension field multiplication, a new algorithm for

OEF construction, tables of Type I and Type II OEFs, tables of the number of OEFs

for blog pc up to 57 of the required order for ECCs, as well as statistics on the existence

of primes in short intervals. In addition, we review the work on OEFs by others since

[BP98] appeared.
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Previous Work

Previous work on optimization of software implementations of finite field arithmetic

has often focused on a single cryptographic application, such as designing a fast imple-

mentation for one particular finite field. One popular optimization for ECCs involves

the use of subfields of characteristic two. A paper due to DeWin et.al. [WBV+96]

analyzes the use of GF ((2n)m), with a focus on n = 16, m = 11. This construction

yields an extension field with 2176 elements. The subfield GF (216) has a Cayley table

of sufficiently small size to fit in the memory of a workstation. Optimizations for mul-

tiplication and inversion in such composite fields of characteristic two are described

in [GP97].

Schroeppel et.al. [SOOS95] report an implementation of an elliptic curve ana-

logue of Diffie-Hellman key exchange over GF (2155). The arithmetic is based on a

polynomial basis representation of the field elements. Another paper by DeWin et.al.

[DMPW98] presents a detailed implementation of elliptic curve arithmetic on a desk-

top PC, with a focus on its application to digital signature schemes using the fields

GF (p) with p a 192-bit prime and GF (2191) . For ECCs over prime fields, their con-

struction uses projective coordinates to eliminate the need for inversion, along with a

4



Previous Work 5

balanced ternary representation of the multiplicand. The work in [Bai98] and [BP98]

marks a departure from these methods and serves as a starting point for this new

research.

A great deal of work has been done in studying aspects of inversion in a finite

field especially since inversion is the most costly of the four basic operations. In the

case of prime fields, in [Knu81], Knuth demonstrates that the Extended Euclidean

Algorithm requires .843 log2(s)+1.47 divisions in the average case, for s the element we

wish to invert. A great number of variants on Euclid’s algorithm have been developed

for use in cryptographic applications, as in [WBV+96], [LKL98], and [SOOS95].

Itoh and Tsujii present an algorithm in [IT88] for multiplicative inversion in

GF (qm) based on the idea of reducing extension field inversion to the problem of

subfield inversion. Their method is presented in the context of normal bases, where

exponentiation to the q-th power is very efficient.

In [GP97], a version of Itoh and Tsujii’s algorithm for inversion when applied

to composite Galois fields GF (2n)m) in a polynomial basis is described which serves

as the basis for our development of a variant of this method applied to OEFs.

Lee et.al. [LKL98] provide an implementation of OEFs using a choice of p

less than 216. The authors present a new inversion algorithm they call the Modified

Almost Inverse Algorithm (MAIA) which is especially suited for OEFs. Their choice

of p of this size allows for the use of look-up tables for subfield inversion.

Kobayashi et.al. present in [KMKH99] a method of OEF inversion which is

based on a direct solution of a set of linear equations. The method is efficient for

small values of m.
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Optimal Extension Fields

In the following, we define a class of finite fields, which we call Optimal Extension

Fields (OEFs). To simplify matters, we introduce a name for a class of prime numbers:

Definition 1 Let c be a positive rational integer. A pseudo-Mersenne prime is a

prime number of the form 2n ± c, log2 c ≤ b1
2
nc.

We now define an OEF:

Definition 2 An Optimal Extension Field is a finite field GF (pm) such that:

1. p is a pseudo-Mersenne prime,

2. An irreducible binomial P (x) = xm − ω exists over GF (p).

The following theorem from [LN83] describes the cases when an irreducible

binomial exists:

Theorem 1 Let m ≥ 2 be an integer and ω ∈ GF (p)∗. Then the binomial xm−ω is

irreducible in GF (p)[x] if and only if the following two conditions are satisfied:

6
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(i) each prime factor of m divides the order e of ω over GF (p), but not (p− 1)/e;

(ii) p ≡ 1 mod 4 if m ≡ 0 mod 4.

An important corollary is given in [Jun93]:

Corollary 1 Let ω be a primitive element for GF (p) and let m be a divisor of p− 1.

Then xm − ω is an irreducible polynomial.

We observe that there are two special cases of OEF which yield additional

arithmetic advantages, which we call Type I and Type II.

Definition 3 A Type I OEF has p = 2n ± 1.

A Type I OEF allows for subfield modular reduction with very low complexity.

For ECCs in practice, particularly good choices of p are 231 − 1 and 261 − 1.

Definition 4 A Type II OEF has an irreducible binomial xm − 2.

As will be shown in Section 4.2.1, a Type II OEF allows for a reduction in

the complexity of extension field modular reduction since the multiplications by ω in

Theorem 2 can be implemented using shifts instead of explicit multiplications.

The range of possible m for a given p depends on the factorization of p − 1

due to Theorem 1 and Corollary 1.



Chapter 4

Optimal Extension Field

Arithmetic

This section describes the previous work on arithmetic in OEFs. Our new method for

inversion is treated separately in Chapter 5. In Chapter 6, improved multiplication

algorithms are introduced. In Sections 4.2.2 and 4.2.3, the operations of multiplication

and modular reduction in the subfield are discussed. Some of the material of this

section is described in previous work, and appears here solely for completeness of

presentation.

An OEF GF (pm) is isomorphic to GF (p)[x]/(P (x)), where P (x) = xm +∑m−1
i=0 pi xi, pi ∈ GF (p), is a monic irreducible polynomial of degree m over GF (p).

In the following, a residue class will be identified with the polynomial of least degree

in this class. We consider a standard (or polynomial or canonical) basis representation

of a field element A(x) ∈ GF (pm):

A(x) = am−1x
m−1 + · · ·+ a1x+ a0, (4.1)

8



OEF Arithmetic 9

where ai ∈ GF (p). Since we choose p to be less than the processor’s word size, we

can represent A(x) with m registers, each containing one ai.

All arithmetic operations are performed modulo the field polynomial. The

choice of field polynomial determines the complexity of the modular reduction.

4.1 Addition and Subtraction

Addition and subtraction of two field elements is implemented in a straightforward

manner by adding or subtracting the coefficients of their polynomial representation

and if necessary, performing a modular reduction by subtracting or adding p once

from the intermediate result.

4.2 Multiplication

Field multiplication can be performed in two stages. First, we perform an ordinary

polynomial multiplication of two field elements A(x) and B(x), resulting in an inter-

mediate product C ′(x) of degree less than or equal to 2m− 2:

C ′(x) = A(x)×B(x) = c′2m−2x
2m−2 + · · ·+ c′1x+ c′0; c′i ∈ GF (p). (4.2)

The schoolbook method to calculate the coefficients c′i, i = 0, 1, . . . , 2m − 2,

requires m2 multiplications and (m− 1)2 additions in the subfield GF (p).

In Section 4.2.1 we present an efficient method to calculate the residue C(x) ≡

C ′(x) mod P (x), C(x) ∈ GF (pm). Section 6 shows ways to reduce the number of

coefficient multiplications required.
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Squaring can be considered a special case of multiplication. The only difference

is that the number of coefficient multiplications can be reduced to m(m+ 1)/2.

In order to perform coefficient multiplications, we must multiply in the sub-

field. Methods for fast subfield multiplication were noted in [MA85] and [BP98]. For

the case of a Type I OEF, we require a single integer multiplication to implement the

subfield multiply, whereas with a general OEF we require three.

4.2.1 Extension Field Modular Reduction

After performing a multiplication of field elements in a polynomial representation, we

obtain the intermediate result C ′(x). In general the degree of C ′(x) will be greater

than or equal to m. In this case, we need to perform a modular reduction. The

canonical method to carry out this calculation is long polynomial division with re-

mainder by the field polynomial. However, field polynomials of special form allow for

computational efficiencies in the modular reduction.

Since monomials xm,m > 1 are obviously always reducible, we turn our atten-

tion to irreducible binomials. An OEF has by definition a field polynomial of the form

P (x) = xm−ω. The use of an irreducible binomial as a field polynomial yields major

computational advantages as will be shown below. Observe that irreducible binomials

do not exist over GF (2). Modular reduction with a binomial can be performed with

the following complexity:

Theorem 2 Given a polynomial C ′(x) over GF (p) of degree less than or equal to

2m − 2, C ′(x) can be reduced modulo P (x) = xm − ω requiring at most m− 1 multi-

plications by ω and m− 1 additions, where both of these operations are performed in

GF (p).
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A general expression for the reduced polynomial is given by:

C(x) ≡ c′m−1x
m−1 + [ωc′2m−2 + c′m−2]xm−2 + · · · + [ωc′m + c′0] mod P (x) (4.3)

As an optimization, when possible we choose those fields with an irreducible

binomial xm − 2, allowing us to implement the multiplications as shifts. OEFs that

offer this optimization are known as Type II OEFs.

4.2.2 Fast Subfield Multiplication

As shown above, fast subfield multiplication is essential for fast multiplication in

GF (pm). Subfield arithmetic in GF (p) is implemented with standard modular integer

techniques. We recall that multiplication of two elements a, b ∈ GF (p) is performed

by a × b ≡ c (mod p). Modern workstation CPUs are optimized to perform integer

arithmetic on operands of size up to the width of their registers. An OEF takes

advantage of this fact by constructing subfields whose elements may be represented

by integers in a single register. For example, on a workstation with 64-bit registers,

the largest prime we may represent is 264 − 59. So we choose a prime p ≤ 264− 59 as

the characteristic of our subfield on this computer. To this end, we recommend the

use of Galois fields with subfields as large as possible while still within single-precision

limits of our host CPU.

We perform multiplication of two single-word integers and in general obtain

a double-word integer result. In order to finish the calculation, we must perform a

modular reduction. Obtaining a remainder after division of two integers is a well-

studied problem [MA85]. Many methods such as Barrett Reduction exist which offer

computational advantages over traditional long division on integers. These methods,

however, are still slow when compared to multiplication of single-word integers. Our
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choice of p allows a far less complex modular reduction operation.

4.2.3 Fast Subfield Modular Reduction

A technique due to Mohan and Adiga shows that fast modular reduction is possible

for moduli of the form 2n ± c, where c is a “small” integer [MA85]. Integers of this

form allow modular reduction without division. We present a form of such a modular

reduction algorithm, adapted from [MA85] and [MvOV97]. This algorithm addresses

only the primes of the form 2n − c, although trivial change to the allows the use of

primes 2n + c.

The operators << and >> are taken to mean “left shift” and “right shift”

respectively.

Algorithm 1 Fast Subfield Modular Reduction

Require: p = 2n − c, log2 c ≤ 1
2
n, x < p2 is the integer to reduce

Ensure: r ≡ x (mod p)
q0 ← x >> n
r0 ← x− q02n

r← r0

i← 0
while qi > 0 do
qi+1 ← qic >> n
ri+1 ← qic− (qi+1 << n)
i← i+ 1
r← r + ri

end while
while r ≥ p do
r← r − p

end while

To understand the operation of this algorithm, consider the following graphical

representation of the situation:
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c

ai

b j

0n  n-1

n bits

2n

 jbix = a q 0 r 0

n/2 bits

In this example, we begin with two subfield elements ai and bj, which are of

size less than 2n, where 2n − 1 is the maximum integer we can represent in a single

machine register, and c is as in the above algorithm. We form the product x = aibj

which is of size less than 22n, but in general larger than 2n, and by implication larger

than p. So we use the above algorithm to perform a modular reduction.

We let r0 be the lower n bits of the product aibj and the remaining upper bits

q0. We observe that 2n (mod p) ≡ c so we may write the following:

q0, r0 ≤ 2n − c

x = aibj = 2nq0 + r0

2n = [1](2n − c) + [c]

2n ≡ c (mod (p = 2n − c))

r = x ≡ cq0 + r0 (mod p)

This is the situation depicted in the next figure.
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n bits

r

r0 

c * q0

n+1 0

  (mod 2n -c)

In general, this new expression for the residue class is still larger than 2n, and

by implication larger than p. So we repeat this process once more, again rewriting

the equations and replacing 2n by c:

r ≡ cq1 + r1 = 2nq1 + r1 ≡ cq1 + r1 (mod p)

This new situation is depicted in the following figure:

0

r

c*q 1

r

n+1 bits

n+2

Finally we have an expression for the residue of aibj that in general is less than

2n+2. To complete the reduction, we may need to subtract p from the intermediate

result r one or more times. We simply test for this case and we have completed the

reduction.

Modular reduction with this algorithm requires only two multiplications by

c, six shifts by n, and six additions and subtractions, when p is a pseudo-Mersenne

prime. In practice, this leads to a dramatic performance increase over performing



OEF Arithmetic 15

explicit division with remainder. For example, when p = 232 − 5, m = 5, and we

implement subfield reduction by performing an explicit division with remainder on

a 500 MHz DEC Alpha CPU, we require 7.74 µsec for a multiplication in GF (pm).

When we perform modular reduction using this algorithm, we require only 1.35 µsec,

a fivefold savings.

If c = 1, this algorithm executes the first while loop only once. To observe

this behavior, we simply set c = 1 in the algorithm and walk through the algorithm:

q0 ← x >> n

r0 ← x− (q0 << n)

r← r0

i← 0

q1 ← (q0 ∗ 1 >> n) = 0

r1 ← (q0 − 0)

r← r0 + r1

At this point, the algorithm terminates since q1 = 0, and we may rewrite this result

as:

x (mod 2n − 1) ≡ x− ((x >> n) << n) + (x >> n)

In this special case, no multiplications are required for the modular reduction

and the entire operation may be performed with two shifts and two adds if the in-

termediate result is contained in a single word. This is a substantial improvement

over the c > 1 case. An OEF that offers this optimization is known as Type I. In
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our implementation as reported in Section 8, we have included p = 261 − 1 for this

reason. Our implementation takes advantage of its special form, making p = 261 − 1

the best performing choice of p we consider.

4.3 Inversion Method: The Extended Euclidean

Algorithm

In [LKL98], the authors propose a method for inversion which we include here for

completeness. Our method for inversion is treated in Chapter 5 and is based on an

entirely different approach. The material of these sections on Euclidean approaches

to extension field inversion is presented in [LKL98].

Traditionally, inversion methods have been based on either Fermat’s Little

Theorem or the Extended Euclidean Algorithm (EEA). The Almost Inverse Algorithm

(AIA), introduced in [SOOS95], is a variant of the EEA, and is treated in Section 4.4.

The EEA for Polynomials is found in Algorithm 2 [LKL98]. Capital letters

denote extension field elements while lowercase letters denote subfield elements and

integers. The subscript on a subfield element indicates which coefficient of the poly-

nomial is to be selected.

The algorithm proceeds by adding multiples of the shorter of F (x) and G(x)

to the longer [LKL98]. This action reduces the degree of the larger polynomial by at

least one. With probability (p− 1)/p, the degree of the larger polynomial is reduced

by two, and so on. Thus for purposes of analysis we may safely assume that each

iteration of the algorithm reduces the degree of the larger polynomial by one. The

process is repeated until F (x) ∈ GF (p) or G(x) ∈ GF (p). A(x) in the worst case will

have degree m− 1, while P (x) will always have degree m. Thus it is clear that in the
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Algorithm 2 Extended Euclidean Algorithm for Polynomials [LKL98]

Require: A(x) ∈ GF (pm)∗, P (x) is the field polynomial
Ensure: A(x)B(x) ≡ 1 ∈ GF (pm)
B(x)← 0, C(x)← 1, G(x) ← A(x)
while deg(P (x) 6= 0) do

if deg(P (x)) < deg(G(x)) then
exchange P (x) with G(x) and B(x) with C(x)

end if
j ← deg(P (x))− deg(G(x))
α←−pdeg(P (x))/gdeg(G(x))

P (x)← P (x) + αxjG(x)
B(x)← B(x) + αxjC(x)

end while
B(x)← B(x)/p0

worst case 2(m− 1) iterations are required.

Each iteration of the algorithm requires a subfield inverse. If the subfield

GF (p) is small enough, a table of inverses may be precomputed or stored. Otherwise,

an algorithm such as the EEA must be run to determine the inverse. Thus this method

is useful for those cases where enough storage exists to store a table of inverses. In

particular, this is possible for p ≈ 232 on a workstation. The remaining methods in

this section are also subject to this restriction. Our method in Section 5 overcomes

this restriction while maintaining fast performance.

4.4 Inversion Method: The Almost Inverse Algo-

rithm

The Almost Inverse Algorithm [SOOS95] [LKL98] offers a variant on the EEA which

is advantageous in particular circumstances. For example, [SOOS95] shows a perfor-

mance gain when used in the field GF (2155). In particular, the EEA finds polynomials
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B(x) and U(x) such that A(x)B(x) +P (x)U(x) ≡ 1 ∈ GF (pm). In contrast, the AIA

modifies the EEA to find A(x)B(x) +P (x)U(x) ≡ xk. The inversion is completed by

computing B(x)← B(x)/xk. The algorithm is found as Algorithm 3 [LKL98].

Algorithm 3 Almost Inverse Algorithm [LKL98]

Require: A(x) ∈ GF (pm)∗, P (x) is the field polynomial
Ensure: A(x)B(x) ≡ 1 ∈ GF (pm)
k ← 0, B(x)← 0, C(x)← 1, G(x)← A(x)
while x|P (x) do
P (x)← P (x)/x
C(x)← C(x)x
k← k + 1

end while
while deg(P (x) 6= 0) do

if deg(P (x)) < deg(G(x)) then
exchange P (x) with G(x) and B(x) with C(x)

end if
α←−p0/g0

P (x)← P (x) + αG(x)
B(x)← B(x) + αC(x)

end while
B(x)← B(x)/p0

B(x)← B(x)/xk

In GF (2m) in polynomial basis, the multiplication by xj is implemented with

bitwise shifts. The AIA eliminates the need for these shifts. In addition, the algorithm

reduces the degree of P (x) when deg(P (x)) = deg(G(x)), thus saving iterations.

In contrast with the EEA, which saves iterations with probability only 1/p, this

algorithm saves iterations roughly 20% of the time.

However, these advantages are only present in fields of the form GF (2m). Lee,

et.al. present a variant of the AIA which offers comparable advantages to fields of

the form GF (pm) in [LKL98].
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4.5 Inversion Methods: Modified Almost Inverse

Algorithm

While the EEA works from highest coefficients down to lowest and the AIA works

from lowest to highest, the MAIA [LKL98] works on the lowest and highest in the

same iteration. However, the total number of operations is almost identical to the

EEA. The advantage to this method is that the number of iterations and hence the

number of polynomial scalar multiplications are reduced by half.

The algorithm is given as Algorithm 4.

Algorithm 4 Modified Almost Inverse Algorithm [LKL98]

Require: A(x) ∈ GF (pm)∗, P (x) is the field polynomial
Ensure: A(x)B(x) ≡ 1 ∈ GF (pm)
k ← 0, B(x)← 0, C(x)← 1, G(x)← A(x)
while x|P (x) do
P (x)← P (x)/x
C(x)← C(x)x
k← k + 1

end while
while deg(P (x) 6= 0) do

if deg(P (x)) < deg(G(x)) then
exchange P (x) with G(x) and B(x) with C(x)

end if
j ← deg(P (x))− deg(G(x))
β ←−p0/g0

if j 6= 0 then
α←−pdeg(P (x))/gdeg(G(x))

else
α← 0

end if
P (x)← P (x) + (αxj + β)G(x)
B(x)← B(x) + (αxj + β)C(x)

end while
B(x)← B(x)/p0

B(x)← B(x)/xk



Chapter 5

Optimal Extension Field Inversion

The inversion algorithm for OEFs is based on the observation that the inversion

algorithm due to Itoh and Tsujii may be efficiently realized in the context of OEFs.

In fact, we show that the inversion method is particularly suited to finite fields in

polynomial basis that have a binomial as the field polynomial.

The Itoh and Tsujii Inversion (ITI) [IT88] reduces the problem of extension

field inversion to subfield inversion. This reduction relies on a special mapping that

is defined for all finite fields. In particular, the norm function maps elements of the

extension field to the subfield by raising them to the (pm − 1)/(p− 1) power [LN83].

In previous reported applications of ITI [GP97], researchers have used look-up tables

to perform the subfield inversion. While this approach is efficient, it is also quite

limited. For a choice of p less than 216, tables easily fit in the storage of modern

desktop PCs and workstations. However, a choice of p of approximately 232 or 264

leads to tables which are simply too large. Our implementation computes the subfield

inverse using the Binary Extended Euclidean Algorithm [Nor86]. We show that an

efficient implementation of this algorithm is fast enough to make ITI suitable for

OEFs.

20
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We outline our version of the ITI here. Our objective is to find an element

A−1(x) such that A(x)A−1(x) ≡ 1 mod P (x).

One method for evaluating the norm of an element is to apply the binary

method of exponentiation [Knu81] or one of its improved derivatives [MvOV97]. Such

straightforward methods are very costly. Clearly, a faster method would be preferable.

Fortunately, we can use the Frobenius map to quickly evaluate the norm function.

5.1 Properties of the Frobenius Map on an OEF

Definition 5 Let α ∈ GF (pm). Then the mapping α → αp is an automorphism

known as the Frobenius map.

As noted in [Bas84], the ith iterate of the Frobenius map α → αp
i

is also an

automorphism. Let us consider the action of an arbitrary iterate i of the Frobenius

map on an arbitrary element of GF (pm) : A(x)pi =
∑
apij x

jpi, for aj ∈ GF (p). We

know by Fermat’s Little Theorem that apj ≡ aj mod p. Thus the aj coefficients are

fixed points of Frobenius map iterates and we can write:

Api(x) ≡ am−1x
(m−1)pi + · · ·+ a1x

pi + a0 mod P (x) (5.1)

Now we need to consider the elements which are not kept fixed by the action

of the Frobenius map: (xj)p, 0 < j < m. We can express these as xjp. But this

expression is always a polynomial with a single non-zero term due to the following

theorem (see also [KMKH99]):

Theorem 3 Let P (x) be an irreducible polynomial of the form P (x) = xm − ω over
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GF (p), e an integer, x ∈ GF (p)[x]. Then:

xe ≡ ωqxs mod P (x) (5.2)

where s ≡ e mod m with q = e−s
m
.

Proof 1 First, we observe that xm ≡ ω mod P (x). Now,

xe = xqm+s (5.3)

where q and s are defined above. Then:

xe = xqmxs ≡ ωqxs mod P (x) (5.4)

2

We have the following corollary which is of especial interest in our case of

applying iterates of the Frobenius map:

Corollary 2

(xj)p
i ≡ ωqxj mod P (x) (5.5)

where xj ∈ GF (p)[x], i is an arbitrary positive rational integer, and other variables

are defined in Theorem 3.

Proof 2 Since P (x) is an irreducible binomial, by Theorem 1, m|(p − 1), which

implies p = (p− 1) + 1 ≡ 1 mod m. Thus s ≡ jpi ≡ j mod m. 2

Note that all xjp
i
, 1 ≤ j, i ≤ m − 1 in Equation (5.1) can be precomputed if

P (x) is given. Given the above, to compute (ajxj)p
i

we need only a single subfield
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multiplication. Thus, we can raise A(x) to the pi-th power using only m− 1 subfield

multiplications if we make use of Corollary 2 and the precomputed values of xjp, 1 ≤

j ≤ m− 1.

Consider p = 231 − 1, P (x) = x6 − 7. Using Corollary 2, we can precompute

the values needed for the subfield multiplications for both the p and p2 case. These

are found in Table 5.1.

Table 5.1: Precomputed inversion constants for GF ((231− 1)6) with field polynomial

P (x) = x6 − 7

xp mod P (x) ≡ 1513477736 x xp
2

mod P (x) ≡ 1513477735 x

x2p mod P (x) ≡ 1513477735 x2 x2p2

mod P (x) ≡ 634005911 x2

x3p mod P (x) ≡ −1 x3 x3p2

mod P (x) ≡ x3

x4p mod P (x) ≡ 634005911 x4 x4p2

mod P (x) ≡ 1513477735 x4

x5p mod P (x) ≡ 634005912 x5 x5p2

mod P (x) ≡ 634005911 x5

5.2 Itoh and Tsujii Inversion for OEFs

Returning now to the problem of inverting non-zero elements in an OEF, recall that

we observed α(pm−1)/(p−1) ∈ GF (p). We begin with a simple algebraic substitution:

A−1(x) = (Ar)−1(x)Ar−1(x), r =
pm − 1

p− 1
(5.6)
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Algorithm 5 describes the procedure for computing the inverse according to

Equation (5.6). In the following, we will address the individual steps of the algorithm.

Capital letters denote extension field elements while lowercase letters denote subfield

elements.

Algorithm 5 Optimal Extension Field Inversion

Require: A(x) ∈ GF (pm)∗

Ensure: A(x)B(x) ≡ 1 mod P (x), B(x) =
∑
bixi

B(x)← A(x)
Use an addition chain to compute B(x)← B(x)r−1

c0 ← B(x)A(x)
c← c−1

0

B(x)← B(x)c

The core of the algorithm is an exponentiation to the r-th power. We have

the following power series representation for r:

r = pm−1 + pm−2 + · · ·+ p + 1. (5.7)

Thus, we have the p-adic representation r − 1 = (11 . . . 10)p. To evaluate our

expression in Equation (5.6), we require an efficient method to evaluate Ar−1(x). For

a given field, r− 1 will be fixed. Thus, our problem is to raise a general element to a

fixed exponent. One popular method of doing this is an addition chain.

From analogous results in [GP97] and [IT88], we see that using such an addi-

tion chain constructed from the p-adic representation of r − 1 requires:

#general multiplications = blog2(m− 1)c+HW (m− 1)− 1 (5.8)

#Frobenius maps = blog2(m− 1)c+HW (m− 1) (5.9)

where HW is the Hamming weight of the operand.
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Given the inversion constants in Table 5.1, we can now present an addition

chain for this field. We compute Ar−1(x) as shown in Algorithm 6. In this algorithm,

all exponents are understood to be expressed in base p for clarity. This example

requires three exponentiations to the p-th power, one exponentiation to the p2-th

power and three general multiplications, as predicted by Equation (5.8).

Algorithm 6 Addition Chain for Ar−1 in GF ((231 − 1)6)

Require: A ∈ GF (pm)∗

Ensure: B ≡ Ar−1 mod P (x)
B ← Ap = A(10)

B0 ← BA = A(11)

B ← Bp2

0 = A(1100)

B ← BB0 = A(1111)

B ← Bp = A(11110)

B ← BA = A(11111)

B ← Bp = A(111110)

We observe that A(x)r is always an element of GF (p) due to the form chosen

for r. Thus, to compute its inverse according to Equation 5.6, we use a single-

precision implementation of the Binary Extended Euclidean Algorithm. At this point

in our development of the OEF inversion algorithm, we have computed A(x)r−1 and

(A(x)r)−1. Multiplying these two elements gives A(x)−1 and we are done.

In terms of computational complexity, the critical operations are the computa-

tions of A(x)r−1 and c−1
0 . To compute A(x)r−1, we require blog2(m−1)c+Hw(m−1)−1

general multiplications and blog2(m − 1)c + Hw(m − 1) exponentiations to a pi-th

power. Since the computation of c0 results in a constant polynomial, we only need m

subfield multiplications and a multiplication by ω, as given in the following formula,

where we take A(x) =
∑
aixi and B(x) =

∑
bixi:

c0 = ω(a1bm−1 + · · ·+ am−1b1) + (a0b0)
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Further, in the last step of Algorithm 5, since c is also a constant polynomial, we only

need m subfield multiplications.

Each exponentiation to a pi-th power requires m− 1 subfield multiplications.

Each general polynomial multiplication requires m2 +m− 1 subfield multiplications

including those for modular reduction. Thus a general expression for the complexity

of this algorithm in terms of subfield multiplications is:

#SM = [blog2(m− 1)c +Hw(m− 1)](m− 1)

+ [blog2(m− 1)c +Hw(m− 1) − 1](m2 +m− 1) + 2m (5.10)

The subfield inverse may be computed by any method. Since elements of the

subfield fit into a single register, any method for single-precision inversion may be

used. Our experience indicates that the Binary Extended Euclidean Algorithm is the

superior choice for p ≈ 231 and p ≈ 261. Of course, for smaller choices of p, one may

use a precomputed table of subfield inverses.

Finally we note that for small values of m, in particular m = 3, the direct

inversion method in [KMKH99] requires somewhat fewer subfield multiplications.

However, a subfield inverse is also required.



Chapter 6

Fast Polynomial Multiplication

Polynomial multiplication is required to implement both the elliptic curve group op-

eration and the algorithm for inversion given in Section 5. In this section, we give

a method to reduce the complexity of polynomial multiplication. The method is

related to Karatsuba’s method [Knu81], but is optimized for multiplication of poly-

nomials with 3i coefficients, for i a positive integer. We observe that OEFs with

m = 3 and m = 6 are well suited for 64-bit and 32-bit processors, respectively. For

polynomial degrees that are relevant for ECCs, we show that on Intel microproces-

sors, this method yields a 10% reduction in the time required for the overall scalar

multiplication.

27
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6.1 Polynomials of Degree 2

Consider the degree-2 polynomials:

A(x) = a2x
2 + a1x+ a0

B(x) = b2x
2 + b1x+ b0

The product of A(x) and B(x) is given by:

C ′(x) =
4∑
i=0

c′ix
i = A(x)B(x) = [a2b2]x

4 + [a2b1 + a1b2]x
3 +

[a2b0 + a1b1 + a0b2]x
2 + [a1b0 + a0b1]x+ [a0b0]

Using the schoolbook method for polynomial multiplication, we require nine inner

products. However, we can derive a more efficient method. We define the following

auxiliary products:

D0 = a0b0

D1 = a1b1

D2 = a2b2

D3 = (a0 + a1)(b0 + b1)

D4 = (a0 + a2)(b0 + b2)

D5 = (a1 + a2)(b1 + b2)

We can construct the coefficients of C ′(x) from the Di terms using only addi-
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tions and subtractions:

c′0 = D0

c′1 = D3 −D1 −D0 = (a0b0 + a0b1 + a1b0 + a1b1)− a1b1 − a0b0

c′2 = D4 −D2 −D0 +D1 = (a0b0 + a2b0 + a0b2 + a2b2)− a2b2 − a0b0 + a1b1

c′3 = D5 −D1 −D2 = (a1b1 + a1b2 + a2b1 + a2b2)− a1b1 − a2b2

c′4 = D2

Thus, the only multiplications that are needed are in the Di products. The

complexity of this method is:

#MUL #ADD

schoolbook 9 4

new 6 6 + 7 = 13

where we treat subtractions as additions. Thus, with this method, we are able to

trade multiplications for additions and subtractions. On most microprocessors, the

operation of addition is much faster than multiplication. However, on digital signal

processors, for example, the number of cycles required for a multiplication is often

the same as those required for an addition. It is useful, then, to develop a simple

timing model for both multiplication methods.

Let r = TMUL/TADD on a given platform, where TMUL and TADD are the time

required for a subfield multiplication and a subfield addition, respectively. We first

analyze the schoolbook method of polynomial multiplication. The time complexity
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of this algorithm is given by:

TSB = 9TMUL + 4TADD = (9r + 4)TADD (6.1)

Then the time complexity of the Karatsuba variant is given by:

TK = 6TMUL + 13TADD = (6r + 13)TADD (6.2)

Given these relationships, it is useful to consider for which values of r this

method is of advantage. Specifically, we want the values of r for which TSB > TK .

TSB > TK

(9r + 4)TADD = (6r + 13)TADD

r = 3

As a rough guideline we can conclude that this new method is of advantage

when the ratio of multiplication time to addition time is greater than or equal to

three. Of course, when using a superscalar processor, the value of r may depend not

only on the cycle counts for multiplication and addition, but also on the data flow

dependencies in the code. Some processors may have multiple functional units avail-

able to compute additions and only one multiplier, for instance. On such a system, if

it is possible to fully utilize all functional units, the operation of addition in effect is

speeded up by the ability to perform additions in parallel. This is true even if a mul-

tiplication and addition each consume the same number of cycles. The possibility of

instruction-level parallelism must be taken into account when determining a suitable

value for r.
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6.2 Polynomials of Degree 5

Given the above algorithm to compute the product of polynomials of degree 2, we

can formulate a procedure to compute the product of polynomials of degree 5. This

algorithm combines the degree-2 method in Section 6.1 with a single iteration of the

Karatsuba method [Knu81]. As above, we consider the general polynomials:

A(x) =
5∑
i=0

aix
i = (a5x

2 + a4x+ a3) x
3 + (a2x

2 + a1x+ a0) = Ah(x) x3 +Al(x)

B(x) =
5∑
i=0

bix
i = (b5x

2 + b4x+ b3) x3 + (b2x
2 + b1x+ b0) = Bh(x) x3 +Bl(x)

In this way, we decompose each degree-5 polynomial into two degree-2 poly-

nomials in the indeterminate x3. We define the auxiliary products:

E0(x) = Al(x)Bl(x)

E1(x) = (Ah(x) +Al(x))(Bh(x) +Bl(x))

E2(x) = AhBh

Then our product C ′(x) is given by:

C ′(x) = E2(x) x6 + [E1(x)− E0(x)− E2(x)] x3 + E0(x) (6.3)

As above, the only multiplications required are in the auxiliary products Ei.

The key idea is to compute E0(x), E1(x), and E2(x), with the method for multiplica-

tion of degree-2 polynomials described in Section 6.1.

We observe that there is some overlap which must be resolved betweenE2(x) x6,
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[E1(x) − E0(x) − E2(x)] x3, and E0(x). E2(x) x6 is an expression of the form

α10x10 + α9x9 + α8x8 + α7x7 + α6x6, while [E1(x)− E0(x)− E2(x)] x3 has the form

β7x7 + β6x6 + β5x5 + β4x4 + β3x3, and we have to compute two subfield additions

to obtain the result. A similar situation arises with [E1(x) − E0(x) − E2(x)] x3 and

E0(x). Thus in total we require 4 subfield additions to construct the result on top of

the 10 subfield subtractions needed for [E1(x)− E0(x)−E2(x)].

As above, we consider the complexity of this algorithm:

#MUL #ADD

schoolbook 62 = 36 (6− 1)2 = 25

new 3× 6 = 18 3× 13 + (3 + 3) + (5 + 5) + 4 = 59

Similarly, we solve for r to determine the break even point:

TSB > TADD

(36r + 25)TADD = (18r + 59)TADD

r =
34

18
≈ 2

Thus we see that the break even point is lower for degree-5 polynomials than for

degree-2 polynomials. Our computational experiments indicate that on a 233 MHz

Pentium/MMX, use of this polynomial multiplication procedure yields a 20% speedup

over the time required for a polynomial multiplication using the schoolbook method.

Use of this procedure yields a 10% speedup in the overall scalar multiplication time.
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Fast Scalar Multiplication

In [KMKH99], the authors present an optimization for OEFs which applies to certain

elliptic curves. The content of this section is a discussion of their work. An elliptic

curve over GF (pm), p > 3, is an equation of the form:

E : y2 ≡ x3 + ax+ b

where a, b ∈ GF (pm). The optimization in [KMKH99] applies when a, b ∈ GF (p).

In this case, the Frobenius map, as described in Section 5.1 is an endomorphism on

the curve and thus if (x, y) ∈ E/GF (pm), then (xp, yp) ∈ E/GF (pm). In Section 5.1,

methods are described for efficient evaluation of iterates of the Frobenius map.

Scalar multiplication on an elliptic curve is an operation of the form kP for an

integer k and curve point P . That is, kP is the addition of P to itself k times. The

canonical methods for exponentiation including the binary method [Knu81] may be

used to speed this operation. Given our Frobenius endomorphism which we denote

by φ, however, we can improve over these methods.

33
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The Frobenius endomorphism on an elliptic curve satisifes the equation

φ2 − tφ+ p = 0,−2
√
p ≤ t ≤ 2

√
p. (7.1)

The quantity t is called the trace of Frobenius and is defined by [BSS99]:

#E/GF (pm) = pm + 1− t

Thus we can expand our multiplier as

k =
l∑
i=0

uiφ
i (7.2)

where −p
2
≤ ui ≤ p

2
. In this equation, l will be roughly 2m+ 3 [KMKH99].

Then, as in Section 5.1 we can exponentiate using this φ-adic representation

of the multiplier.

However, since ui may grow as large as p
2
, this observation is mainly helpful

only when p is very small, such as p = 2, 3. In order to adapt this method to be

effective for larger p, [KMKH99] presents a table look-up method, which is found as

Algorithm 7. The symbol O denotes the Point at Infinity on the elliptic curve.

The algorithm proceeds by first finding a φ-adic representation for k as in

Equation 7.2. This task is accomplished in the first while loop using Equation 7.1.

Next the φ-adic representation for k is optimized with two operations. The

first reduces its length from 2m+3 digits to m digits. This reduction is accomplished

due to the fact that the m-th iteration of the Frobenius map is the Identity map.

Thus we can use the rule φm ≡ 1 ∈ EndE to perform a modular reduction on the
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Algorithm 7 Base-φ Scalar Multiplication Procedure

Require: k an integer, P ∈ E/GF (pm), p, t
Ensure: Q = kP
i← 0, x← k, y ← 0, uj ← 0
while x 6= 0 or y 6= 0 do
ui← x mod p
v ← (x− ui)/p
x← tv + y
y ← −v
i← i+ 1

end while
for 0 ≤ i < m do
di ← ui + ui+m + ui+2m

end for
for 0 ≤ i < m do
ci← di − z, where z is an integer that minimizes

∑
iHW (ci)

end for
for 0 ≤ i < m do
Pi ← φiP

end for
Q← O
Q← 2Q
j ← dlog2 pe + 1
while j ≥ 0 do

for 0 ≤ i < m− 1 do
if cij = 1 then
Q← Q+ Pi

end if
end for
j ← j − 1

end while
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φ-adic representation. Thus:

d2 logp ke+3∑
i=0

uiφ
i =

m−1∑
i=0

(ui + ui+m + ui+2m)φi (7.3)

=
m−1∑
i=0

diφ
i. (7.4)

In addition, we can reduce the number of 1s in the 2-adic representation of the digits

in the φ-adic representation of k since [KMKH99]:

m−1∑
i=0

φi = 0. (7.5)

The algorithm finishes by building a table of the iterates of the Frobenius

map applied to the base point P . It then computes the scalar multiplication of P

by the optimized φ-adic representation for k. For the case of m = 7, the authors

report an 68% reduction in the number of elliptic curve operations required from

approximately 10.5dlog2 pe to 3.4dlog2 pe. The net result on a 400 MHz Pentium/II

in the field GF ((231 − 1)7) is a full scalar multiplication time of 1.95 msec.
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Implementation Results

One of the most important applications of our technique is in elliptic curve cryptosys-

tems, where Galois field arithmetic performance is critical to the performance of the

entire system. We show that an OEF yields substantially faster software finite field

arithmetic than those previously reported in the literature.

We implemented our algorithms on two platforms. One platform is the DEC

Alpha 21064 and 21164A workstations. These RISC computers have a 64-bit archi-

tecture. Thus a good choice for p would be 261 − 1 with an extension degree m = 3

since an ECC over a field of approximately 2183 elements appears quite secure. This

implementation is written in optimized C. In addition, we found that the performance

of the subfield inverse depended heavily on the organization of branches in the code.

A reduction in the number of branches at the expense of copying data proved to

be effective in reducing run time. For the DEC Alpha implementation, using our

polynomial multiplication formulas presented in Section 6.1 yields a 30% speedup on

the 21164A and a 25% speedup on the 21064. Thus, the times reported here for the

operations that rely on multiplication use the methods from Section 6.
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In addition, we implemented our algorithms on a 233 MHz Intel Pentium MMX

using Microsoft Visual C++ version 6.0. This computer has a 32-bit architecture.

Thus a good choice for p would be 231− 1 with an extension degree m = 6 yielding a

finite field with approximately 2186 elements. The Pentium implementation is entirely

in C. Because of the larger extension degree required on the Pentium, we observe a

roughly 20% speedup due to the formulas in Section 6, which is reflected in the timings

reported here.

For our implementation of EC scalar point multiplication, we used the sliding

window method with a maximum window size of 5. In addition, we used non-adjacent

form balanced ternary to represent the multiplicand [KT92]. To represent the coor-

dinates of points on the curve, we used an affine representation since inversion in an

OEF can be performed at moderate cost. In contrast, previous work [BP98] has re-

ported performance numbers using projective coordinates to represent points, thereby

avoiding the need to perform inversion.

In order to obtain accurate timings, we executed full scalar multiplication with

random multiplicand one thousand times, observed the execution time, and computed

the average.

The other arithmetic operations for which we report timings were executed

one million times. Tables 8.1 and 8.2 shows the result of our timing measurements.

We observe that the ratio of multiplication time to inversion time is highly

platform-dependent. On the Alpha 21064, we see a ratio of approximately 5.3. On

the Alpha 21164A, we have a ratio of approximately 7.9. On the Intel Pentium,

we have a ratio of 5.5. In each of these cases, the ratio is low enough to provide

improved performance when compared with a projective space representation of the

curve points.

As a final remark, we observe that for some processors, it may be still be



Implementation Results 39

Table 8.1: OEF arithmetic timings in µsec on DEC Alpha microprocessors for the
field GF ((261 − 1)3) with field polynomial P (x) = x3 − 5

Alpha 21064, 150 MHz Alpha 21164A, 600
MHz

Schoolbook Multiplica-
tion

3.67 0.48

Karatsuba-variant Multi-
plication

2.77 0.34

GF (p) inverse 8.13 1.81
GF (pm) inverse 14.6 2.68
Affine EC addition 26.1 4.45
Affine EC doubling 30.5 4.79
Affine point multiplica-
tion

6.57 msec 1.06 msec

Table 8.2: OEF arithmetic timings in µsec on Intel microprocessors for the field
GF ((231 − 1)6) with field polynomial P (x) = x6 − 7

Pentium/MMX, 233 MHz
Schoolbook Multiplication 5.82
Karatsuba-variant Multiplication 4.60
GF (p) inverse 4.15
GF (pm) inverse 25.3
Affine EC addition 44.8
Affine EC doubling 52.4
Affine point multiplication 11.4 msec
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advantageous to use projective coordinates to represent elliptic curve points and thus

postpone field inversions in the elliptic curve group operation until the end of the

computation. Consider the 500 MHz Alpha 21264, which has a fully-pipelined integer

multiplier [Com99]. This hardware improvement dramatically improves the time for

an extension field multiplication from 0.34 µsec to 0.18 µsec, despite the fact that

our 21164A test system is clocked at 600 MHz while our 21264 test system runs at

only 500 MHz. This architectural improvement does not speed the Binary Extended

Euclidean Algorithm however, so the time for an extension field inversion is only

slightly improved from 2.68 µsec to 2.44 µsec. In this case, the ratio of multiplication

to inversion time grows to 13.5. Thus, our best result on the 500 MHz Alpha 21264

of 0.75 msec for a full scalar multiplication is achieved using projective coordinates.

This result once again confirms our thesis that to achieve optimal performance for an

elliptic curve cryptosystem, one must tailor the choice of algorithms and finite fields

to match the underlying hardware.



Chapter 9

OEFs in Practice

When implementing cryptosystems in the real world, several concerns arise in addition

to high performance and hardness of the underlying problem. In this section, we

address two issues which must be resolved to use OEFs in a secure real-world system.

9.1 Key Validation

In practical usage of a public-key cryptosystem, two parties perform computations

in some mathematical structure such as a ring, field, or elliptic curve. The two par-

ties can generally be assumed to be mutually distrustful. This presents a problem:

one party must unilaterally choose a mathematical structure in which computations

may be performed. In fact, an attacking party could choose a structure in which the

assumed hard problem isn’t very hard at all. For example, there are special cases

for which the elliptic curve discrete logarithm problem can be transformed into an

easy problem, such as in the case where the number of points on the curve equals the

number of elements in the field over which the curve is defined. Further, an attacker

could provide bogus parameters which do not define the claimed mathematical struc-
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ture. For example, an attacker may be able to solve a discrete logarithm problem

more easily if she selects certain parameters [Gor93].

It is useful then to ask: what reasonable steps may be taken to ensure that

alleged parameters specifying an elliptic curve cryptosystem over an OEF are plau-

sible? In the following, let the field be GF (pm), the field polynomial be P (x), the

elliptic curve be y2 ≡ x3 + ax+ b and an elliptic curve point be W = (v, w).

1. Check that p is an odd prime rational integer.

2. Check that m is a positive integer and that P (x) is of degree m.

3. Check that P (x) is irreducible.

4. Check that v2 ≡ w3 + aw + b ∈ GF (pm).

These simple tests allow a user to verify that parameters for an elliptic curve

cryptosystem defined over an OEF are valid.

9.2 Conversion from Field Elements to Integers

and Octet Strings

Many practical cryptosystems require a user to convert between field elements and

integers and/or octet strings. For example, in real-world usage of the Diffie-Hellman

key exchange [DH76], users often perform some finite field computations, then find a

corresponding octet string to represent the result. This octet string can then be used

as input to a hash function, or as a key for a symmetric cipher.

In the case of GF (p) and GF (2m), the conversion is straightforward: simply

take the target computer’s binary representation of a field element and treat it as a
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string of octets. In the OEF case, however, things are slightly more difficult.

Suppose a user chooses some p = 2n − c,m for her OEF. Then each element

of the field can be represented in m computer words. However, for each word, there

will be only 2n − c possible values instead of 2n. Thus the number of possible octet

strings formed from the concatenation of the m computer words is reduced by cm

due to the representation.

To address this problem, a user may simply perform radix conversion arith-

metic to find a “densely packed” octet string representation. Thus the field element:

A(x) = am−1x
m−1 + · · ·+ a2x

2 + a1x+ a0

may be represented by the integer I defined by:

I = am−1p
m−1 + · · · + a2p

2 + a1p+ a0

The integer I will thus have a bit length of dm log2 pe. Assuming values for

pi are precomputed and stored, the effort required to compute I is essentially m− 1

subfield multiplications and m subfield additions. Thus the time to compute I is

negligible when compared to the time required to perform an elliptic curve point

multiplication.

To find the element A(x), some simple radix conversion operations are re-

quired. Starting from r = m− 1 down to r = 0, simply divide I by pr, where r is the

corresponding coefficient of A(x) desired. The quotient at each step will be the rth

coefficient of A(x). After each step, set the new value of I to the remainder.



Chapter 10

OEF Construction and Statistics

In the above sections we have shown that OEFs can offer particular advantages in

arithmetic performance when compared with other approaches. It is useful, then, to

ask how to construct an OEF and how many OEFs exist of various types. It turns out

that OEF construction may be done in an efficient manner using a relatively simple

algorithm. We provide statistics on the number of OEFs that exist for various choices

of n, and tables of OEFs which may be used in applications.

10.1 Type II OEF Construction Algorithm

Constructing an OEF for a particular application is an essentially straightforward

process. Let n, c,m, and ω be positive rational integers. Then we require a prime

p = 2n± c, an extension degree m, and a constant ω such that these parameters form

an irreducible binomial xm − ω over GF (p).

Theorem 1 gives us the necessary and sufficient conditions on these parameters.

For simplicity of presentation, we present an algorithm to construct a Type II OEF,
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fixing ω = 2. Even with this restriction, OEFs are plentiful. This algorithm is an

improvement over that found in [Bai98] since Algorithm 3 can be used to exhaustively

find all Type II OEFs.

The algorithm proceeds by finding pseudo-Mersenne primes and then checking

possible extension degrees m for the existence of a binomial. For our application, word

size n will be chosen based on the attributes of the target microprocessor. Typical

microprocessor word sizes lie between 8 and 64 bits, while a commonly used upper

bound for field orders used in elliptic curve cryptography is 2256. It suffices for this

application, then, to search for m up to 32, allowing for the largest possible field order

with the smallest typical word size.

We present results from the use of this algorithm to construct tables in the

Appendix. Let c and n be positive rational integers. Algorithm 3 finds OEFs with

primes of the form 2n− c; a trivial change finds OEFs with primes of the form 2n + c,

if such a field is required. In addition, minor changes to this algorithm will produce

Type I OEFs or general OEFs.

A practical implementation of this algorithm would be greatly improved by

using sieve methods rather than simply testing consecutive integers for primality. The

algorithm is presented in this form for clarity.

The most time consuming part of this algorithm is the factorization of p− 1.

For our implementation which produced the results in the Appendix, we used trial

division with small integers of the form ±1 (mod 6) to extract small factors and

Pollard’s Rho Method to recover the remaining factors. This factorization is needed

only to compute the order of 2. To our knowledge, it is an open problem to devise a

method to compute this order without the full factorization of p− 1.



OEF Construction and Statistics 46

Algorithm 8 Type II Optimal Extension Field Construction Procedure

Require: n given, low, high bounds on bit length of field order
Ensure: p, m define a Type II Optimal Extension Field with field order between 2low

and 2high.
c← 1
for log2 c ≤ b1

2
nc do

p← 2n − c
if p is prime then

factor p− 1
ord2 ← the order of 2 ∈ GF (p)∗

for m← 2 to 32 do
if m ∗ n ≥ low and m ∗ n ≤ high then
BadMV alue← 0
for each prime divisor d of m do

if d 6 | ord2 then
BadMV alue← 1
Break

end if
end for
if BadMV alue = 0 then

if m ≡ 0 (mod 4) then
if p ≡ 1 (mod 4) then

return p,m
end if

else
return p,m

end if
end if

end if
end for

end if
c← c+ 2

end for
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10.2 Statistics on the Number of OEFs

We implemented Algorithm 3 on a variety of high-end RISC workstations including

DEC Alphas and Sun Sparc Ultras, with an aim toward counting the number of

Type II OEFs of approximate order between 2130 and 2256. The results from this

computation are found in Tables A.2, A.3, and A.4. Each table lists subfield bitlengths

going down the column and extension degrees across the rows.

10.3 Statistics on the Number of Pseudo-Mersenne

Primes

Many interesting open questions exist in analytic number theory concerning the ex-

istence of primes in short intervals. We denote the number of primes not exceeding

x as π(x). One result in [IP84] shows that

π(x)− π(x− x23/42) > (x23/42)/(100 log x). (10.1)

A more recent result due to R. Baker and G. Harman analyzes the interval π(x) −

π(x− x.535...) [Rib96]. Cramer shows that the Extended Riemann Hypothesis implies

the difference between a particular prime pn and the next consecutive prime number

is O(p1/2
n log pn) [Rib96]. Of course, these results are only asymptotically true.

To exactly determine the number of pseudo-Mersenne primes, we need a result

concerning the intervals π(2n) − π(2n − 2(1/2)n) and π(2n + 2(1/2)n) − π(2n), about

which nothing appears to be known as of this writing [Kob98]. It is important to

note that this question concerning the number of primes in a short interval also arises

in choosing an elliptic curve over any finite field for cryptographic use.
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Since there are no known results of this type which apply to our case of pseudo-

Mersenne primes, we explicitly computed the number of primes for 2n ± c, where

7 ≤ n ≤ 58 and log2 c ≤ b1
2
nc. The results are found in Table A.1.

10.4 Tables of Type I and Type II OEFs

The appendix contains tables of OEFs for use in practical applications. Table A.5

provides all Type I OEFs for 7 ≤ n ≤ 61. For each choice of n and a sign for c, where

possible we provide three Type II OEFs, preferably with nm ≈ 160, 200, 240, respec-

tively, in Table A.6. We observe that due to the fast subfield multiplication available

with Type I OEFs, these offer computational advantages on many platforms when

compared to Type II OEFs. This is true since although a Type II OEF has ω = 2 and

thus implements the multiplications required for extension field modular reduction

with shifts, a Type I OEF requires only one multiplication for each subfield multiply.

Since subfield multiplication is by far the most often used operation, speedups here

are most dramatic.



Chapter 11

Discussion

11.1 Conclusion

In this paper we have extended the work on Optimal Extension Fields by introducing

an efficient algorithm for inversion. The use of this algorithm allows for an affine

representation of the elliptic curve points which is more efficient than the previously

reported projective space representation. In addition, we have provided formulas

for fast polynomial multiplication which are particularly suited to extension degrees

of the form 3i. Finally, we have included tables of OEFs for reference and use in

implementation.
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Table A.1: Number of Pseudo-Mersenne Primes, 2n ± c, log2 c ≤ b(n/2)c
n 2n − c 2n + c n 2n − c 2n + c

7 1 1 33 2886 2852

8 2 4 34 5667 5477

9 3 2 35 5379 5263

10 5 5 36 10413 10503

11 4 3 37 10197 10254

12 7 9 38 19799 19812

13 6 7 39 19461 19502

14 11 12 40 37798 37871

15 9 13 41 36743 36902

16 21 30 42 71805 72138

17 19 20 43 70257 70325

18 38 42 44 137313 137285

19 40 29 45 134641 134452

20 70 77 46 263004 263544

21 65 70 47 257295 258091

22 129 137 48 504634 504016

23 117 131 49 493785 494248

24 251 249 50 969072 967704

25 240 258 51 947752 948011

26 477 455 52 1863100 1860984

27 434 452 53 1826661 1826485

28 871 840 54 3586713 3585449

29 839 811 55 3521537 3520704

30 1578 1565 56 6920100 7131669

31 1527 1542 57 6794704 6792475

32 2931 2958 58 13351601 13351850
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Table A.2: Number of Type II OEFs of order between 2130 and 2256, 7 ≤ n ≤ 10

m= 14 15 16 17 18 19 20 21 22 23 24 25 26 27 32

n

7 1 1

8 3 1 2 3

9 1 1 1 1

10 1 3 1 1 1 1 3

Table A.3: Number of OEFs of order between 2130 and 2256, 11 ≤ n ≤ 18

m= 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

n

11 2 1 3 2 1 1

12 3 1 1 1 3 2 1

13 2 1 2 1 1 2 1 2 2

14 4 1 4 2 4 1 8 6

15 8 1 3 3 1 1 7

16 19 5 1 4 6 4 4 14

17 10 14 3 4 4 4 4 3

18 17 25 7 7 3 5 5
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Table A.4: Number of Type II OEFs of order between 2130 and 2256, 19 ≤ n ≤ 55
m= 3 4 5 6 7 8 9 10 11 12 13

n

19 9 21 25 4 3 6 4

20 22 39 48 12 14 13

21 18 35 50 15 11 13

22 40 41 66 89 33 29

23 43 35 56 83 31 20

24 77 72 126 160 48

25 76 68 124 156 47

26 183 179 133 219 342

27 177 139 125 218 286

28 333 287 259 422 559

29 329 279 240 404

30 617 512 479 790

31 615 529 432 755

32 1180 946 824 1442

33 1424 1136 977 766

34 2813 2180 1857 1561

35 2636 2126 1755 1483

36 5154 4149 3359 2967

37 5095 4139 3429

38 9871 7911 6599

39 9749 7771 6380

40 18864 15179 12499

41 18533 14656 12286

42 36074 28817 23951

43 35215 27905

44 91499 68735 55042

45 89336 67300 53918

46 175514 131656 105347

47 172251 128937 102966

48 336066 252095 201375

49 329827 247247 197553

50 645703 483609 387502

51 315731 236628 189774

52 1241533 931675

53 1218801 913858

54 2391808 1792593

55 2347560 1760093
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Table A.5: Type I OEFs for 7 ≤ n ≤ 61

n c m mn ω

7 -1 21 147 3

7 -1 27 189 3

8 1 32 256 2

13 -1 13 169 2

13 -1 10 130 17

13 -1 14 182 17

13 -1 15 195 17

13 -1 18 234 17

16 1 16 256 2

17 -1 9 153 3

17 -1 10 170 3

17 -1 15 255 3

19 -1 7 133 3

19 -1 9 171 3

31 -1 6 186 7

31 -1 7 217 7

61 -1 3 183 37

Table A.6: Type II OEFs

n c p m nm n c p m nm

7 +3 131 25 175 33 -49 8589934543 7 231

7 +3 131 26 182 33 -301 8589934291 5 165

8 -5 251 25 200 33 -301 8589934291 6 198

8 -15 241 25 200 33 +29 8589934621 5 165

8 -15 241 27 216 33 +29 8589934621 6 198

8 +1 257 32 256 33 +35 8589934627 7 231

8 +15 271 25 200 34 -113 17179869071 5 170

8 +15 271 27 216 34 -113 17179869071 7 238

9 -3 509 16 144 34 -165 17179869019 6 204

9 +9 521 25 225 34 +153 17179869337 7 238

9 +11 523 18 162 34 +339 17179869523 6 204

9 +11 523 27 243 34 +417 17179869601 5 170

10 -3 1021 16 160 35 -31 34359738337 7 245

10 -3 1021 20 200 35 -61 34359738307 6 210

10 -11 1013 23 230 35 -499 34359737869 4 140

10 +7 1031 25 250 35 +53 34359738421 5 175

10 +27 1051 14 140 35 +53 34359738421 6 210

10 +27 1051 25 250 35 +53 34359738421 7 245

11 -19 2029 13 143 36 -117 68719476619 6 216

11 -19 2029 16 176 36 -189 68719476547 7 252

11 -19 2029 18 198 36 -243 68719476493 4 144

11 +5 2053 16 176 36 +117 68719476853 4 144

11 +5 2053 18 198 36 +117 68719476853 6 216

11 +21 2069 22 242 36 +175 68719476911 7 252

12 -3 4093 16 192 37 -123 137438953349 4 148

12 -3 4093 18 216 37 -141 137438953331 5 185

12 -39 4057 13 156 37 -201 137438953271 5 185

12 +15 4111 15 180 37 +9 137438953481 5 185

12 +37 4133 16 192 37 +29 137438953501 4 148
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12 +63 4159 21 252 37 +29 137438953501 5 185

13 -1 8191 13 169 38 -45 274877906899 6 228

13 -13 8179 18 234 38 -107 274877906837 4 152

13 -21 8171 19 247 38 -153 274877906791 5 190

13 +17 8209 19 247 38 +7 274877906951 5 190

13 +27 8219 14 182 38 +13 274877906957 4 152

13 +29 8221 12 156 38 +117 274877907061 6 228

14 -3 16381 12 168 39 -19 549755813869 4 156

14 -3 16381 14 196 39 -67 549755813821 5 195

14 -3 16381 18 252 39 -91 549755813797 6 234

14 +67 16451 14 196 39 +23 549755813911 5 195

14 +69 16453 12 168 39 +45 549755813933 4 156

14 +69 16453 18 252 39 +149 549755814037 6 234

15 -19 32749 12 180 40 -195 1099511627581 4 160

15 -19 32749 16 240 40 -195 1099511627581 5 200

15 -75 32693 11 165 40 -195 1099511627581 6 240

15 +3 32771 10 150 40 +15 1099511627791 5 200

15 +21 32789 14 210 40 +141 1099511627917 4 160

15 +21 32789 16 240 40 +141 1099511627917 6 240

16 -15 65521 9 144 41 -21 2199023255531 5 205

16 -15 65521 13 208 41 -75 2199023255477 4 164

16 -15 65521 15 240 41 -133 2199023255419 6 246

16 +45 65581 10 160 41 +125 2199023255677 4 164

16 +45 65581 12 192 41 +197 2199023255749 6 246

16 +45 65581 15 240 41 +299 2199023255851 5 205

17 -13 131059 9 153 42 -11 4398046511093 4 168

17 -31 131041 13 221 42 -53 4398046511051 5 210

17 -61 131011 15 255 42 -333 4398046510771 5 210

17 +29 131101 9 153 42 +75 4398046511179 6 252

17 +29 131101 12 204 42 +87 4398046511191 5 210

17 +99 131171 13 221 42 +165 4398046511269 4 168

18 -11 262133 13 234 43 -67 8796093022141 4 172

18 -35 262109 11 198 43 -117 8796093022091 5 215

18 -93 262051 9 162 43 +29 8796093022237 4 172

18 +3 262147 9 162 43 +293 8796093022501 5 215

18 +9 262153 11 198 43 +603 8796093022811 5 215

18 +93 262237 13 234 44 -495 17592186043921 5 220

19 -19 524269 8 152 44 -539 17592186043877 4 176

19 -19 524269 12 228 44 -597 17592186043819 3 132

19 -27 524261 10 190 44 +21 17592186044437 3 132

19 +21 524309 8 152 44 +21 17592186044437 4 176

19 +53 524341 12 228 44 +55 17592186044471 5 220

19 +81 524369 13 247 45 -55 35184372088777 3 135

20 -3 1048573 8 160 45 -81 35184372088751 5 225

20 -3 1048573 12 240 45 -139 35184372088693 4 180

20 -5 1048571 10 200 45 +59 35184372088891 5 225

20 +13 1048589 8 160 45 +165 35184372088997 4 180

20 +33 1048609 11 220 45 +179 35184372089011 3 135

20 +57 1048633 9 180 46 -21 70368744177643 3 138

21 -19 2097133 8 168 46 -333 70368744177331 5 230

21 -19 2097133 12 252 46 -635 70368744177029 4 184

21 -61 2097091 10 210 46 +127 70368744177791 5 230

21 +59 2097211 10 210 46 +165 70368744177829 3 138

21 +77 2097229 8 168 46 +165 70368744177829 4 184

21 +77 2097229 12 252 47 -115 140737488355213 4 188

22 -3 4194301 9 198 47 -127 140737488355201 5 235
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22 -27 4194277 8 176 47 -541 140737488354787 3 141

22 -57 4194247 7 154 47 +5 140737488355333 3 141

22 +15 4194319 9 198 47 +5 140737488355333 4 188

22 +85 4194389 8 176 47 +273 140737488355601 5 235

22 +85 4194389 11 242 48 -59 281474976710597 4 192

23 -27 8388581 10 230 48 -93 281474976710563 3 144

23 -61 8388547 9 207 48 -165 281474976710491 5 240

23 -157 8388451 7 161 48 +61 281474976710717 4 192

23 +11 8388619 7 161 48 +75 281474976710731 3 144

23 +11 8388619 9 207 48 +235 281474976710891 5 240

23 +15 8388623 11 253 49 -81 562949953421231 5 245

24 -3 16777213 8 192 49 -123 562949953421189 4 196

24 -63 16777153 7 168 49 -139 562949953421173 3 147

24 -75 16777141 10 240 49 +69 562949953421381 4 196

24 +75 16777291 6 144 49 +69 562949953421381 5 245

24 +75 16777291 10 240 49 +191 562949953421503 3 147

24 +117 16777333 8 192 50 -27 1125899906842597 4 200

25 -61 33554371 6 150 50 -51 1125899906842573 3 150

25 -61 33554371 10 250 50 -113 1125899906842511 5 250

25 -91 33554341 8 200 50 +159 1125899906842783 3 150

25 +35 33554467 6 150 50 +205 1125899906842829 4 200

25 +69 33554501 8 200 50 +337 1125899906842961 5 250

25 +69 33554501 10 250 51 -139 2251799813685109 4 204

26 -27 67108837 8 208 51 -237 2251799813685011 5 255

26 -45 67108819 6 156 51 -397 2251799813684851 3 153

26 -45 67108819 9 234 51 +21 2251799813685269 4 204

26 +15 67108879 9 234 51 +65 2251799813685313 3 153

26 +69 67108933 6 156 51 +165 2251799813685413 4 204

26 +69 67108933 8 208 52 -183 4503599627370313 3 156

27 -79 134217649 9 243 52 -395 4503599627370101 4 208

27 -187 134217541 6 162 52 -635 4503599627369861 4 208

27 -231 134217497 7 189 52 +21 4503599627370517 3 156

27 +45 134217773 8 216 52 +21 4503599627370517 4 208

27 +53 134217781 6 162 52 +37 4503599627370533 4 208

27 +53 134217781 9 243 53 -145 9007199254740847 3 159

28 -57 268435399 7 196 53 -315 9007199254740677 4 212

28 -165 268435291 6 168 53 -339 9007199254740653 4 212

28 -165 268435291 9 252 53 +5 9007199254740997 4 212

28 +3 268435459 6 168 53 +41 9007199254741033 3 159

28 +3 268435459 9 252 53 +341 9007199254741333 4 212

28 +37 268435493 8 224 54 -33 18014398509481951 3 162

29 -3 536870909 7 203 54 -131 18014398509481853 4 216

29 -3 536870909 8 232 54 -195 18014398509481789 4 216

29 -43 536870869 6 174 54 +159 18014398509482143 3 162

29 +39 536870951 5 145 54 +373 18014398509482357 4 216

29 +39 536870951 7 203 54 +477 18014398509482461 4 216

29 +117 536871029 8 232 55 -55 36028797018963913 3 165

30 -35 1073741789 7 210 55 -67 36028797018963901 4 220

30 -35 1073741789 8 240 55 -99 36028797018963869 4 220

30 -83 1073741741 5 150 55 +11 36028797018963979 3 165

30 +7 1073741831 5 150 55 +461 36028797018964429 4 220

30 +7 1073741831 7 210 55 +629 36028797018964597 4 220

30 +85 1073741909 8 240 56 -27 72057594037927909 4 224

31 -19 2147483629 6 186 56 -57 72057594037927879 3 168

31 -19 2147483629 8 248 56 -147 72057594037927789 4 224

31 -85 2147483563 7 217 56 +81 72057594037928017 3 168
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31 +45 2147483693 8 248 56 +177 72057594037928113 3 168

31 +209 2147483857 7 217 56 +201 72057594037928137 3 168

31 +245 2147483893 6 186 57 -13 144115188075855859 3 171

32 -5 4294967291 5 160 57 -195 144115188075855677 4 228

32 -17 4294967279 7 224 57 -363 144115188075855509 4 228

32 -99 4294967197 8 256 57 +35 144115188075855907 3 171

32 +15 4294967311 5 160 57 +141 144115188075856013 4 228

32 +61 4294967357 8 256 57 +189 144115188075856061 4 228

32 +75 4294967371 6 192 57 +701 144115188075856573 4 228
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