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Abstract
We use a primal-dual scheme to devise a new update rule for a penalty func-
tion method applicable to general optimization problems, including nonsmooth
and nonconvex ones. The update rule we introduce uses dual information in
a simple way. Numerical test problems show that our update rule has certain
advantages over the classical one. We study the relationship between exact
penalty parameters and dual solutions. Under the differentiability of the dual
function at the least exact penalty parameter, we establish convergence of the
minimizers of the sequential penalty functions to a solution of the original prob-
lem. Numerical experiments are then used to illustrate some of the theoretical
results.
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1 Introduction

A penalty function method solves a constrained optimization problem by transforming it
into a sequence of unconstrained ones. A detailed survey of penalty methods and their ap-
plications to nonlinear programming can be found in [2, 6, 4] and the references therein. In
these methods, the original constrained problem is replaced by an unconstrained problem,
whose objective function is the sum of a certain “merit” function (which reflects the objec-
tive function of the original problem) and a penalty term which reflects the constraint set.
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The merit function is chosen in general as the original objective function, while the penalty
term is obtained by multiplying a suitable function, which represents the constraints, by a
positive parameter d, called the penalty parameter. A given penalty parameter d̄ is called
an exact penalty parameter when every solution of the original problem can be found by
solving the unconstrained optimization problem with the penalty function associated with
d.

The penalty approach showed to be a powerful tool from a theoretical point of view (see,
e.g., [2] for a detailed survey of theoretical applications of penalty methods). Furthermore,
all the fundamental notions of the theory of constrained optimization can be developed
using the exact penalty function approach (see [4]).

Various kinds of penalty techniques have been proposed and studied in the past four
decades. In most of these techniques the exact penalty parameter is found by gradually
increasing the value of d, until the penalty threshold or least exact penalty parameter
is reached. However, this procedure is likely to be time-consuming and to introduce
numerical ill-conditioning because of too large a value of an exact penalty parameter
reached, which results in inaccuracies in the solution.

In order to avoid ill-conditioning, it is proposed in [12, 13, 10] a dynamic update of the
penalty parameter, based on dual information. These works analyse the case of convex
and smooth problems. This poses the natural question of whether a penalty update can
be designed, such that it uses dual information successfully, in the absence of convexity
and/or smoothness assumptions.

In [17, 18], Rubinov and his co-workers proposed a new kind of (generalized) penalty
function for nonsmooth and nonconvex problems. Their scheme possesses an exact penalty
parameter which turns out to be relatively small. A specific formula for the least exact
penalty parameter is also presented in these works. The availability of a specific formula
for the penalty threshold is very interesting from the theoretical point of view. Moreover,
a small exact penalty parameter provided by this formula opens the way to avoiding
numerical instabilities. However, it is not possible (in general) to actually use the formula
and compute the value of the least exact penalty parameter. Thus it is still necessary to
carry out the classical procedure (of gradually increasing the value of the parameter) in
order to reach (and cross over) the exact penalty threshold. This further motivates the
question of whether there is a simple, direct way to use dual information for the penalty
update for nonsmooth and nonconvex problems.

A major aim of our study is to propose such an update, which would avoid numerical
instabilities inherent to the gradual increase of the penalty parameter. For this purpose,
first, we introduce a duality scheme for the original problem, using the sharp Lagrangian.
This duality scheme has zero duality gap thanks to [15, Theorem 11.59]. Then we use a
primal-dual scheme called the Modified Subgradient (MSG) algorithm, which was recently
introduced in [8, 9] for tackling nonsmooth and nonconvex optimization problems subject
to equality constraints. The MSG algorithm was further studied in [3], where convergence
of the dual variables to a dual solution was proved. We use the updates of the MSG
algorithm for deriving a simple update formula for the penalty parameter.

Another aim of this article is to study the relationship between exact penalty parameters
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and dual solutions. In our setting, the set of exact penalty parameters is an interval which
is unbounded above. We prove here that the infimum of this interval, which we call dmin,
may not be an exact penalty parameter for a given problem. More precisely, we prove
that dmin is an exact penalty parameter if and only if the dual function is differentiable
at dmin. Moreover, under the latter assumption we establish our main convergence result:
If dk ↑ dmin and xk is a minimizer of the penalty function associated with the penalty
parameter dk, then every accumulation point of {xk} solves the original problem. To our
knowledge, this convergence result is not available for nonsmooth and nonconvex problems.

For the nonsmooth and nonconvex case, it is proved in [3] that all accumulation points
of an auxiliary sequence {x̃k} are optimal. The iterates x̃k are minimizers of the penalty
problems for penalty parameter dk + η, where η > 0 is arbitrary but fixed. In [3] it is also
proved that, in general, the accumulation points of the sequence xk (of minimizers of the
penalty problems for penalty parameter dk) may not be a solution of the original problem.
However, the numerical instabilities produced when dk + η > dmin justify the need for a
sharper result of the kind presented now.

In the numerical experiments, we compare our update rule with the classical one through
two test problems, and show that our update rule may avoid the above mentioned numeri-
cal difficulties associated with penalty function methods. We also illustrate further advan-
tages, especially when the penalty parameter can take a negative value. In both problems,
we verify our theoretical results by constructing the graphs of H and its derivative.

Our paper is organized as follows. In Section 2 we state the problem, give the basic
notation and describe the Lagrangian scheme. Also in this section we list some existing
results which will be used in further sections. In Section 3 we present our theoretical
results. In Section 4 we recall the MSG algorithm and introduce our penalty update rule.
We describe our numerical experiments in Section 5, while the concluding remarks are
given in Section 6.

2 Preliminaries

We consider the nonlinear programming problem:

(P ) minimize f0(x) over all x in X satisfying f+(x) = 0,

where X is a compact subset of IRn, and the functions f0 : IRn → IR and f+ : IRn →
IR+ are continuous. Note that problems with both equality and inequality constraints
can be transformed into the format (P) in a standard way by using the operator a+ :=
max{0, a}. While this transformation does not preserve differentiability and/or convexity
of the problem, it clearly preserves the continuity of the data.

Our duality scheme enjoys zero duality gap, as a consequence of [15, Theorem 11.59].
Before quoting this result, let us recall some definitions from [15]. Let ϕ : IRn → IR+∞ :=
IR ∪ {+∞} and consider the optimization problem

min
x∈IRn

ϕ(x). (1)
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A function g : IRn × IRm → IR±∞ := IR ∪ {±∞} is said to be a duality parameteriza-
tion for problem (1) when ϕ(·) = g(·, 0). The perturbation function associated with g is
p(v) := infx∈IRn g(x, v). Any function σ : IRm → IR+∞ which is proper, convex and lower
semicontinuous is said to be an augmenting function if

σ ≥ 0, min σ = 0, Argmin σ = {0}. (2)

The augmented Lagrangian l : IRn × IRm × IR+ → IR±∞ corresponding to the duality
parameterization g and the augmenting function σ is given by

l(x, u, c) := inf
v∈IRm

[g(x, v) + cσ(v) − 〈u, v〉] . (3)

The dual function induced by the augmented Lagrangian l is

H̃(u, c) := inf
x

l(x, u, c). (4)

So the (augmented) dual problem becomes

(D) max
u∈IRm, c≥0

H̃(u, c). (5)

We say that a duality parameterization g : IRn × IRm → IR±∞ is level bounded in x locally
uniformly in v if for each v̄ ∈ IRm and each β ∈ IR, there exists a neighborhood W ⊂ IRm

of v̄ such that for all w ∈ W we have that

{x ∈ IRn : g(x,w) ≤ β} ⊂ B,

where B ⊂ IRn is a bounded set.

Theorem 1 ([15, Theorem 11.59]) Consider a duality parameterization g : IRn × IRm →
IR±∞ for problem (1) and its associated augmented Lagrangian l as in (3). Assume that
the following hypotheses hold.

(i) g is level bounded in x locally uniformly in v.

(ii) infx∈IRn l(x, u, c) > −∞ for at least one (u, c) ∈ IRm × IR+.

Then

(a) zero duality holds, i.e., infx ϕ(x) = supu,c H̃(u, c),

(b) Primal and (augmented) dual solutions (i.e., solutions of (D)) are characterized as
saddle points of the augmented Lagrangian:

x ∈ Argminx ϕ(x) and (u, c̄) ∈ Argmaxu,c H̃(u, c)
⇐⇒ infx l(x, u, c̄) = l(x, u, c̄) = supu,c l(x, u, c).

(c) The elements of Argmaxu,c H̃(u, c) are the pairs (u, c̄) such that

p(v) ≥ p(0) + 〈u, v〉 − cσ(v) ∀ v.
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Denote by X0 := {x ∈ X : f+(x) = 0}, the constraint set of problem (P ). Given
a set A ⊂ IRn, the indicator function δA : IRn → IR+∞ is defined as δA(x) = 0 when
x ∈ A and δA(x) = +∞ otherwise. The duality properties of (P ) can be obtained applying
Theorem 1 for ϕ := f0+δX0 . We use as augmenting function σ(v) = ‖v‖, so our augmented
Lagrangian is the sharp augmented Lagrangian (see [15, Example 11.58]). Let m = 1 and
define the duality parameterization g : IRn × IR → IR+∞ as

g(x, v) =
{

f0(x), if x ∈ X and f+(x) = v,
+∞, if x �∈ X or f+(x) �= v.

It is clear that ϕ = g(·, 0). Moreover, since X is compact, it is easy to check that g is
is level bounded in x locally uniformly in v. It is also straightforward to verify that the
augmented Lagrangian l : IRn × IR × IR+ → IR±∞ associated with these choices of g and
σ is

l(x, u, c) =
{

f0(x) + (c − u)f+(x), if x ∈ X,
+∞, if x �∈ X.

(6)

So we have that infx l(x, u, c) = infx∈X f0(x)+(c−u)f+(x) > −∞ for every (u, c) because
the right-hand infimum is the minimization of a continuous function over a compact set.
Therefore, all hypotheses of Theorem 1 hold and hence the conclusions (a), (b) and (c) of
this result hold for our scheme.

By taking d := c − u ∈ IR the Lagrangian in (6) becomes

L(x, d) :=
{

f0(x) + d f+(x), if x ∈ X,
+∞, if x �∈ X.

(7)

Let the solution set and the optimal value of problem (P ) be denoted by S(P ) and M ,
respectively. We typically denote an element of S(P ) by x. The dual function H associated
with the Lagrangian in (7) is

H(d) := min
x∈X

[
f0(x) + d f+(x)

]
. (8)

This function is concave and upper semicontinuous (because it is the minimum of affine
functions of d). Moreover, since X is compact, H is finite everywhere and hence continuous.
The dual problem of (P ) induced by H is given by

(P ∗) : max
d∈IR

H(d) .

The solution set of Problem (P ∗) and its optimal value are denoted by S(P ∗) and H,
respectively. We denote an element in S(P ∗) by d. For a given d ∈ IR, consider the set

X(d) := Argmin
x∈X

[
f0(x) + d f+(x)

]
. (9)

We assume that we are able to solve the minimization problem given in (8). In other
words, we are able to find an element of X(d) for every d ∈ IR.
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Remark 1 Using (4), (6) and the compactness of X, the dual function becomes

H̃(u, c) = min
x∈X

[f0(x) + (c − u) f+(x)] , (10)

so we clearly have H̃(u, c) = H(c−u). Setting X̃(u, c) := Argminx∈X [f0(x) + (c − u) f+(x)]
we also get X̃(u, c) = X(c − u). As we stated earlier, the sharp Lagrangian yields zero
duality gap, which in our case tantamounts to

sup
(c,u)∈IR+×IR

H̃(u, c) = M . (11)

This clearly implies
sup
d∈IR

H(d) = M . (12)

The following is a well-known tool from convex analysis. Given a concave function
H : IRm → IR and a fixed d ∈ IRm, the set

∂H(d) := {v ∈ IRm : H(d′) ≤ H(d) + 〈d′ − d, v〉, ∀ d′ ∈ IRm},
is called the subdifferential of H at d, and each element of this set is called a subgradient
of H at d (the terms “superdifferential” and “supergradient”, respectively, are also used).

It is easy to check that, when x ∈ X(d), we have

f+(x) ∈ ∂H(d). (13)

Recall that the one-sided derivatives of a function H : IR → IR at d ∈ IR are defined as

H ′
+(d) := lim

λ↓0
H(d + λ) − H(d)

λ
, H ′−(d) := lim

λ↑0
H(d + λ) − H(d)

λ
. (14)

Since H is concave, it is well-known (see [14, page 229]) that the subdifferential and the
one-sided derivatives of H : IR → IR at d are related by the equality

∂H(d) := {v ∈ IR : H ′
+(d′) ≤ v ≤ H ′

−(d)} . (15)

Even though H as in (8) is in general nonsmooth, its one-sided derivatives are always
defined. The result below follows directly from [5, Theorem 1].

Theorem 2 Let H and X(d) be as in (8) and (9), respectively. Then

H ′
+(d) = min

x∈X(d)
f+(x) , H ′

−(d) = max
x∈X(d)

f+(x) .

The next lemma is a trivial modification of a result appearing in [8]. It will be frequently
used in the next section, so we include here its simple proof.

Lemma 1 Let d ∈ IR and suppose that x̃ ∈ X(d). Then x̃ ∈ S(P ) and d ∈ S(P ∗) if and
only if f (x̃) = 0.
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Proof. It is enough to prove that x̃ ∈ S(P ) and d ∈ S(P ∗), since the converse is trivial.
Assume that f(x̃) = 0 and x̃ ∈ X(d), then L(x̃, d) = f0(x̃) ≥ M . Altogether,

M ≤ f0(x̃) = L(x̃, d) = min
x∈X

L(x, d) = H(d) ≤ H ≤ M,

where we used weak duality in the last inequality. Thus we have f0(x̃) = M = H(d) and
hence x̃ ∈ S(P ) and d ∈ S(P ∗). �

3 Exact Penalty Parameters

We will view the Lagrangian L(x, d) in (7) as an exact penalty function. A parameter
d, for which X(d) = S(P ), will be called an exact penalty parameter (EPP) for Problem
(P). Rubinov and Yang [16, Section 3.2.8] call this parameter a strong exact parameter.
We use the alternative description, “exact penalty parameter,” in order to emphasize the
connection of the theory and numerical implementation we present in this study with
sequential penalty methods.

Define now the sets

C := {d ∈ IR : X(d + η) = S(P ), ∀ η > 0} ,

D := {d ∈ IR : X(d) = S(P )} .
(16)

Let dmin ∈ IR be defined as
dmin := inf C , (17)

with the convention inf ∅ = +∞. The notation dmin is justified as it will be shown in
Theorem 3(b) that the infimum in (17) is attained whenever it is finite.

The following result lists the main properties of dmin and the relationship between the
sets C, D and S(P ∗).

Theorem 3 Let C,D be given as in (16), and dmin be defined as in (17). Then,

(a) (dmin,+∞) ⊂ D ⊂ C = S(P ∗). Hence dmin < +∞ if and only if S(P ∗) �= ∅.
(b) dmin > −∞ if and only if ∃ x̃ ∈ X with f+(x̃) > 0. If dmin is finite, we have

C = [dmin,+∞) ,

so in this case the infimum in (17) is attained,

(c) Assume that dmin is finite. Then X(dmin) ⊃ S(P ).

(d) Assume that dmin is finite. If dk ↑ dmin and xk ∈ X(dk), then every accumulation
point of {xk} belongs to X(dmin).
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Proof. (a) For proving the inclusion D ⊃ (dmin,+∞) let us take d > dmin. Then there
exists d′ ∈ C such that dmin ≤ d′ < d. Take η := d − d′ > 0. The definitions of d′ and η
yield S(P ) = X(d′ + η) = X(d) so d ∈ D. Let us prove now the inclusion D ⊂ C. Take
d ∈ D and η > 0. We must prove that S(P ) = X(d + η).

First, we show that S(P ) ⊂ X(d + η). Fix x ∈ S(P ) and suppose x �∈ X(d + η). This
means that there exists x′ ∈ X such that

f0(x′) + (d + η) f+(x′) < f0(x) + (d + η) f+(x) = f0(x) , (18)

where we used f+(x) = 0. It follows that f+(x′) > 0 (if f+(x′) = 0 then x′ is feasible and
f0(x′) < f0(x), which is a contradiction). Now we can write

M = f0(x) = H(d) ≤ f0(x′) + d f+(x′) < f0(x′) + (d + η) f+(x′) < f0(x) = M ,

a contradiction, so x ∈ X(d + η).

Next, we show that X(d + η) ⊂ S(P ). Fix x̃ ∈ X(d + η). We have

f0(x̃) + (d + η) f+(x̃) ≤ f0(x) . (19)

By Lemma 1, it is enough to show that f+(x̃) = 0 in order to conclude that x ∈ S(P ).
Indeed, the assumption f+(x̃) > 0 leads to a contradiction:

M ≥ H(d + η) = f0(x̃) + (d + η) f+(x̃) > f0(x̃) + d f+(x̃) ≥ H(d) , (20)

contradicting the fact that d ∈ D (which entails H(d) = M). So the inclusion X(d + η) ⊂
S(P ) also holds. As a result X(d+η) = S(P ) and thus the inclusion D ⊂ C is established.

Next we prove that C = S(P ∗). The proof of the inclusion S(P ∗) ⊂ C follows the same
steps as those in the proof of D ⊂ C above, starting instead by taking d ∈ S(P ∗) and
concluding with d ∈ C. More precisely, the proof of D ⊂ C only uses H(d) = M , which
also holds when d ∈ S(P ∗). Therefore, we only need to prove that C ⊂ S(P ∗).

Take d ∈ C and suppose that d �∈ S(P ∗). Then H(d) < f0(x) for every x ∈ S(P ).
Because H is upper semicontinuous there exists η > 0 for which H(d + η) < f0(x),
contradicting the fact that d ∈ C. Hence we must have d ∈ S(P ∗).

Let us now prove (b). Note that, if f+(x) = 0 for every x ∈ X, then H(d) = M
and X(d) = S(P ) for every d ∈ IR, which yields dmin = −∞. Conversely, assume that
dmin = −∞ and suppose there exists x′ ∈ X with f+(x′) > 0. The assumption on dmin

implies that we can take a sequence dk ↓ −∞ with X(dk) = S(P ). We can write for every
x ∈ S(P ),

−∞ < f0(x) = H(dk) = min
x∈X

f0(x) + dk f+(x) ≤ f0(x′) + dk f+(x′),

and the assumption on x′ implies that the right hand side of the expression above tends
to −∞, a contradiction. So we must have f+(x) = 0 for every x ∈ X. This proves
the first sentence in (b). Let us prove now that C = [dmin,∞) when dmin ∈ IR. From
item (a) and the definitions of C and dmin it is clear that [dmin,∞) ⊃ C ⊃ (dmin,∞).
So it is enough to show that dmin ∈ C. Fix η > 0, choose any η′, η′′ > 0 such that
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η′ + η′′ = η and write dmin + η = (dmin + η′) + η′′. Note that d′ := dmin + η′ ∈ C so
S(P ) = X(d′ + η′′) = X(dmin + η), as we wanted.

To prove (c), let dk ↓ dmin. By (b), dk ∈ C. Using the upper semicontinuity of H and
the fact that dk ∈ C = S(P ∗) we have that M ≥ H(dmin) ≥ lim supk→∞ H(dk) = M ,
which yields M = H(dmin) and hence S(P ) ⊂ X(dmin).

Part (d) is a consequence of [15, Theorem 1.17(b)] and the continuity of H. �

Remark 2 If dmin is finite and dk ↓ dmin, then every xk ∈ X(dk) belongs to S(P ).

A direct consequence of Theorem 3 follows below.

Corollary 1 The set of dual solutions S(P ∗) is nonempty if and only if the set D of exact
penalty parameters is an interval which is unbounded above.

Proof. If S(P ∗) is nonempty, then by part (a) in Theorem 3 we have that dmin < +∞
and because (dmin,∞) ⊂ D ⊂ [dmin,∞) the conclusion holds. Conversely, if D is an
interval which is unbounded above, then in particular it is not empty. Therefore ∅ � D ⊂
C = S(P ∗). Thus S(P ∗) is nonempty. �

Note that dmin may not be an exact penalty parameter, because Theorem 3(c) only gives
the inclusion X(dmin) ⊃ S(P ). The following simple example shows that this inclusion
may be strict.

Example 1 Consider the problem

(P ) minimize |x| over all x in [−1, 1] satisfying f+(x) = max{0, x} = 0,

so S(P ) = {0} with M = 0. Moreover, it can be easily checked that

H(d) =
{

d + 1 d ≤ −1,
0 otherwise.

Therefore,

X(d) =

⎧⎨
⎩

{1} d < −1,
[ 0, 1 ] d = −1,
{0} d > −1.

One has dmin = −1 and clearly X(dmin) � S(P ).

The above example suggests that X(dmin) � S(P ) whenever H is not differentiable at
dmin. This fact is proved next.

Theorem 4 Let H be as in (8) and dmin given by (17). Suppose that dmin is finite. The
following statements are equivalent.

(a) H is differentiable at dmin.
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(b) X(dmin) = S(P ), i.e. dmin is an EPP.

(c) If dk ↑ dmin and xk ∈ X(dk) for all k, then every accumulation point of {xk} belongs
to S(P ).

If either case holds, then ∇H(dmin) = 0.

Proof. Assume (a) holds. By Theorem 3(a) we have that H(d) = M for every d > dmin. So
H is constant on (dmin,∞) and hence ∂H(d) = {0} for every d > dmin. Since the graph of
the multifunction ∂H(·) is closed (see Theorem 24.4 in [14]), we must have 0 ∈ ∂H(dmin).
Now using (a), we get

0 = ∇H(dmin) = ∂H(dmin). (21)

On the other hand, by (13), f+(x̃) ∈ ∂H(dmin) for every x̃ ∈ X(dmin). Combining this
with (21) we get f+(x̃) = 0 for every x̃ ∈ X(dmin). By Lemma 1 we conclude that
x̃ ∈ S(P ). So X(dmin) ⊂ S(P ). Now (b) follows from Theorem 3(c).

In order to prove that (b) implies (c), take a sequence {xk} such that xk ∈ X(dk) for
all k. By Theorem 3(d) and part (b) of this theorem, (c) readily follows.

Now we prove that (c) implies (a). Assume that (a) is not true, that is H is not
differentiable at dmin. By Theorem 2 and (15) this yields the existence of some α > 0 such
that α ∈ ∂H(dmin). There are two cases to consider:

Case (i): There exists a subsequence {dkj
} of {dk} such that there exists akj

∈ ∂H(dkj
)

with akj
↓ 0. By antimonotonicity of ∂H we have

0 ≥ (dkj
− dmin) (akj

− α). (22)

By the assumption on {akj
} there exists a j0 such that for all j > j0 we must have akj

< α.
So (22) can be re-written for j > j0 as

0 ≤ (dmin − dkj
) (akj

− α) < 0,

where we also used in the last inequality the fact that dmin > dk for all k. The above
expression constitutes a contradiction and hence we are left with the only other case,
stated below.

Case (ii): There exists β > 0 such that

inf
k∈IN

inf
v∈∂H(dk)

v ≥ β > 0.

Using the expression above and (13) we get f+(xk) ≥ β for all k. The continuity of f+ now
yields f+(x̃) ≥ β > 0 for every accumulation point of {xk}. But this is in contradiction
with the fact that assumption (c) gives x̃ ∈ S(P ) and therefore f+(x̃) = 0. Hence H must
be differentiable at dmin. The proof of the equivalences is complete. The last sentence of
the theorem follows from (21). �

When the parameter dmin is an EPP, it is referred to as the least exact penalty parameter
(LEPP) for Problem (P).
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4 Dual Penalty Update

The modified subgradient (MSG) algorithm was introduced to tackle nonconvex, nons-
mooth optimization problems subject to equality constraints, by solving the dual problem.
It uses an epsilon-subgradient search direction in order to (strictly) improve the value of
the dual function H. Given (uk, ck), a current iterate, the MSG algorithm, as given in
[3, 8, 9], obtains the next iterate by the rule

uk+1 := uk − skf
+(xk) , (23)

ck+1 := ck + (sk + εk)f+(xk) , (24)

where xk ∈ X̃(uk, ck) and the step-size parameter sk > 0. The parameter εk is restricted
as 0 < εk < sk in [8, 9], while it is more relaxed as εk > 0 in [3]. We will use the
setting and the results in [3], where sk is chosen in a more general way, and convergence
of the whole sequence of dual variables {(uk, ck)} is established. It is further proved in [3]
that all accumulation points of an auxiliary sequence of primal variables {x̃k}, such that
x̃k ∈ X̃(uk, ck + η) for all k and for every fixed η > 0, are optimal.

In the present paper’s setting, X(dk+η) = X̃(uk, ck+η), with dk = ck−uk. Theorem 4(c)
improves the “auxiliary” primal convergence result in [3] in the following sense: Every
accumulation point of the primal sequence {xk} such that xk ∈ X(dk) and dk ↑ dmin, is
an optimal solution when H is differentiable at dmin. From a numerical point of view, it
is important to avoid the need for the η > 0 increment as an instrument for achieving
convergence. Indeed, for large enough k we would have dk + η > dmin, and this “stepping
over the penalty threshold” may cause numerical instabilities and introduce inaccuracies
in the solution of the subproblems. This unwanted situation will be witnessed particularly
in Problem 2 in Section 5.

Letting εk := αsk for a fixed α > 0, and using (23)-(24), we obtain the following update
for dk = ck − uk:

dk+1 = dk + (2 + α) sk f+(xk) , (25)

where xk ∈ X(dk). The step-size sk is chosen in [3, Section 4.2] as

sk = δ
H − H(dk)
[f+(xk)]2

, (26)

where 0 < δ < 2. It should be noted that H(dk) ≤ H for every k, and so one always has
sk > 0. Combining (25) and (26) the update rule simplifies to

dk+1 = dk + β
H − H(dk)

f+(xk)
(27)

where β > 0. As the solution of the unconstrained problems approach the solution of
the original problem, f+(xk) becomes very small and so the update in (27) often yields
very large values of dk+1, resulting in numerical instabilities in obtaining the solution of
the next unconstrained subproblem. To alleviate this unwanted behaviour, we consider
altering the subgradient f+(xk) as f+(xk) + ε, where ε > 0 is small.
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One should observe from (27) that as dk tends to a solution d, H − H(dk) → 0 and
f+(xk) → 0. If an EPP exists, then the limit of the quotient in (27) is finite, and so
the numerator H − H(dk) tends to 0 “more rapidly” than f+(xk). This justifies the
replacement of f+(xk) by f+(xk) + ε, because the convergence of dk to d can still be
achieved, albeit possibly more slowly near a solution. This is a price worth to pay, given
the numerically crippling effect of a vanishing f+(xk). On the other hand, if ε is chosen
reasonably small, then rate of convergence should not be affected much near a solution.

When the subgradient f+(xk) in (25) and (26) is replaced by f+(xk) + ε, the update
formula in (27) simply becomes

dk+1 = dk + β
H − H(dk)
f+(xk) + ε

. (28)

We will refer to this formula as the dual penalty update (DPU) rule, because it is derived
from a duality scheme. The DPU rule requires the knowledge of the optimal value H,
which is at hand only in some special cases, for example when the problem of solving a
nonlinear system of equations is reformulated as a minimization problem [7]. Choosing
the unknown optimal value H in (28) has been an issue in subgradient methods. In [1],
H is chosen as a convex combination of a fixed upper bound and the current best dual
value; [19] proposes the so-called variable target value method which assumes no a priori
knowledge regarding H. As in [3], we will use an upper bound estimate, denoted by Ĥ, for
H. In many problems, Ĥ can be established easily: the value of the cost f0 at a feasible
point constitutes an upper bound for the optimal value.

We now propose an algorithm for the Sequential Penalty Function (SPF) method using
the DPU rule for solving Problem (P).

SPF Method with DPU Rule

Step 0 Choose d0 ∈ IR. Set k = 0.

Step k Given dk:

Step k.1 Find xk ∈ X(dk), i.e.

L(xk, dk) = min
x∈X

[
f0(x) + dk f+(x)

]
. (29)

If f+(xk) = 0, then STOP: dk ∈ S(P ∗) and xk ∈ S(P ).
Step k.2 Perform DPU:

dk+1 = dk + β
Ĥ − H(dk)
f+(xk) + ε

. (30)

where Ĥ is an upper bound estimate of H. Set k = k + 1 and repeat Step k.

In the classical SPF method, traditionally the value of d is increased by a constant
scalar multiple, namely

dk+1 = γ dk (31)
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where γ > 1, with d0 > 0, instead of (30). We will refer to (31) as the classical penalty
update (CPU) rule. So the SPF method with the CPU rule is performed through the
same algorithm given for the SPF method with the DPU rule above by simply replacing
(30) by (31).

In the numerical experiments we carry out in the next section, we will implement the
SPF method with both the DPU and CPU rules, for comparison purposes.

5 Numerical Experiments

To illustrate the use and advantages of the DPU rule and compare it with the CPU rule, we
have chosen two test problems from the literature. For the solution of the subproblems,
the Matlab function m-file fminsearch has been utilized. In both test problems, the
termination tolerance on the function value (TolFun) and the termination tolerance on
the optimization variable (TolX) for fminsearch have been chosen as 10−10.

Problem 1 Consider the test problem 62 (GLR-P1-1) from [11].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f0(x) = −32.174
[
255 ln

(
x1 + x2 + x3 + .03

0.09x1 + x2 + x3 + .03

)

+ 280 ln
(

x2 + x3 + .03
0.07x2 + x3 + .03

)

+ 290 ln
(

x3 + .03
0.13x3 + .03

)]
subject to x1 + x2 + x3 = 1

0 ≤ xi ≤ 1 , i = 1, 2, 3.

The constraints in this problem can be transformed into a single constraint as follows.

f+(x) = max
(

0, max
(

max
(

max
i

xi − 1, max
i

−xi

)
, |x1 + x2 + x3 − 1|

))
= 0 .

Then, the problem, together with this single constraint, takes the same form as Prob-
lem (P).

For the DPU rule in (30), we use an upperbound for the estimate of H, namely we set
Ĥ = −20000. We also set β = 2 and ε = 10−4. A solution to the problem is obtained in
four iterations, which are listed in Table 1 and depicted in Figure 1. In Figure 1, we also
provide a graph of the dual function H, which has been generated by setting β = 0.001.
By using the same β, we also found that the least exact penalty parameter for this problem
is dmin = 6387 (approximated to four digits of accuracy).

Using the DPU rule, this time with β = 1, the same solution is obtained in five iterations.
With β = 0.5, seven iterations are needed. As expected, the smaller the β is, the more
iterations one would need to get a solution.
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Using the CPU rule in (31) with γ = 2, the same solution is obtained in 12 iterations,
which are listed in Table 2 and depicted in Figure 1. With a less gradual increase in dk,
i.e. with a larger γ, one would expect to get a solution in fewer iterations. So we set
γ = 10, with which the algorithm terminates in five iterations (as in the case of the DPU
rule with β = 1). However the last iterate, as seen in Table 3, is not a solution of the
problem. The reason is simple: with a larger γ, because the increase in dk is linear, dk

becomes too large in Step 4 (namely d4 = 50000), causing numerical instability, resulting
in premature termination, yielding a feasible but a non-optimal solution.

In this particular problem, numerical instability in the last step seems to depend on
how far dk falls from dmin = 6387. If the CPU rule is used again, this time with γ = 5,
then the previous solution is obtained accurately in six iterations. In this case d5 = 15625,
which is relatively closer to dmin, compared to d4 = 50000 in the case of γ = 10.

Loosely speaking, the DPU rule takes into account the change in the dual function
relative to a reference upper bound Ĥ. When one approaches the solution the increase
in dk is adjusted by the update in such a way that it will not be too far from the least
penalty parameter dmin.

A beneficial use of the DPU rule seems to depend on whether the upper bound Ĥ is
relatively close to the optimal dual value H or not. For example, if one takes Ĥ = 0, which
is much farther from H, with β = 2, numerical instability occurs; although, with β = 1,
the ill-behaviour disappears, and the accurate solution is obtained in just four iterations.

In summary, the SPF method with DPU rule can achieve the solution in just a few
iterations, if the two important parameters Ĥ and β are chosen appropriately. On the
other hand, the SPF method with CPU rule seems to require a larger number of iterations.

To examine the differentiability of the dual function H(d) we have generated the graph
of the derivative H ′(d) in Figure 2. We have used a forward difference approximation for
the one-sided derivative H ′

+(d), using d = dk and λ = dk+1 −dk in (14), to plot the graph.
Note that we have set β small enough to make the approximation accurate. It turns out
that the graph of H ′−(d), using d = dk+1 and λ = dk − dk+1 in (14) (which amounts to
a backward difference approximation), overlaps with the graph of H ′

+(d), pointing to the
smoothness of H ′(d). This is independently confirmed by observing that the graph of
f+(xk) vs d overlaps with the graph displayed in Figure 2 (see Theorem 2).

Because Figure 2 points to differentiability of H, Theorem 4 ensures that dmin is LEPP
and any accumulation point of the sequence {xk} generated by the SPF is a solution.
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Figure 1: Problem 1 – Graph of the dual function H. Iterations with the DPU rule are shown
by ◦, and those with the CPU rule are shown by ×.
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Figure 2: Problem 1 – Derivative of the dual function H.
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Problem 2 We consider the test problem 77 (PGR-P1-3) from [11].⎧⎪⎪⎨
⎪⎪⎩

min f0(x) = (x1 − 1)2 + (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6

subject to g1(x) = x2
1x4 + sin(x4 − x5) − 2

√
2 = 0

g2(x) = x2 + x4
3x

2
4 − 8 −√

2 = 0 .

The constraints in this problem can be transformed into a single constraint through

f+(x) = max (|g1(x)|, |g2(x)|) = 0 .

Now the problem is of the same form as Problem (P). The solution of this problem is
listed in [11] as

x = (1.166172, 1.182111, 1.380257, 1.506036, 0.6109203)
f0(x) = 0.24150513 (32)
r(x) = 1.2 × 10−10

where r(x) = |g1(x)| + |g2(x)|.
Iterations with the DPU rule are listed in Table 4 and graphically depicted in Figure 3.

The tabulated numbers are approximations of the values obtained in the iterations. We
start the iterations with a negative penalty parameter, which eventually converge to the
solution. Such a start, i.e. d0 < 0, may be necessary in situations where finding a solution
to the subproblem with d0 > 0 happens to be difficult. With d0 < 0, the SPF method
with CPU rule is not applicable.

The solution point x given in Table 4 is accurate only to two significant figures. This
inaccurate solution is due to the numerical instability induced by the relatively large value
of d9 = 0.826. It turns out that the LEPP is dmin = 0.1174184. Any d > dmin is an exact
penalty parameter and so should yield the solution. However, even values significantly
smaller than d = 0.826 cause numerical instability and yield an inaccurate solution. For
example even d = 0.3 results in

x = (1.2, 1.1, 1.4, 1.5, 0.67)
f0(x) = 0.24581
f+(x) = 1.1 × 10−15

where the second and fifth components of x do not agree with those of the solution in
Table 4 (namely, 1.1 �= 1.2 and 0.67 �= 0.61). Needless to say, accuracy diminishes even
more drastically with relatively larger values of d.

An accurate solution of the problem can possibly be obtained by coming arbitrarily close
to dmin. However, first of all, in general it is not possible to know dmin itself accurately.
For approaching dmin one might use the SPF method with an update rule, for increasing
the value of dk up to dmin. Suppose that we can get arbitrarily close to dmin from below.
Then a second issue arises as to whether the sequence of iterates {xk} would necessarily
converge to a solution or not. This issue is addressed by Theorem 4(c): Differentiability of



Penalty Updates and a Convergence Result by R. S. Burachik & C. Y. Kaya 19

H at dmin guarantees that every accumulation point of {xk} is a solution. So for problems
of the kind we have here, graphing H ′(d) might be a useful exercise.

We have plotted the graph of the derivative of H in Figure 4 in the same way we did in
the previous problem. We observe from the figure that along the interval where we carry
out the iterations, H seems to be nonsmooth only at two points, namely at d = 0 and
d = d′ ≈ 0.035; H is differentiable elsewhere, including dmin. By Theorem 2, there are
more than one minimizer x of the Lagrangian (or the penalty function) L(x, d) at d = 0
and d = d′. However this is not the contentious issue here. It is much more important
that, because H is differentiable at dmin, any accumulation point of the SPF sequence {xk}
is a solution. This guarantees that by getting closer to dmin from below, we can obtain a
more accurate solution, which we will do next.

The solution tabulated in Table 4 can be refined by using the DPU rule with a smaller
constant β, and a more accurate estimate of H (again from Table 4). With d0 = 0.1,
β = 0.01 and Ĥ = 0.25, a solution for x accurate to three digits after the decimal point is
obtained in 18 iterations. The cost found is accurate to five digits after the decimal point.
If β = 0.001 is used, then the cost is found with the same accuracy as in (32), and x is
obtained accurately to five digits after the decimal point, in 155 iterations.

Because d0 = 0.1 > 0, one could also choose to use the CPU rule. With γ = 1.001 the
accuracy we could obtain in x was three digits after the decimal point, in 161 iterations.
With γ = 1.00005 the accuracy in x was improved to four digits after the decimal point,
in more than 3000 iterations. The accuracy that can be achieved with the CPU rule in
more than 3000 iterations is still worse than that can be achieved with the DPU rule in
less than 200 iterations.
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Ĥ

=
0.

3,
an

d
ε

=
10

−4
.



Penalty Updates and a Convergence Result by R. S. Burachik & C. Y. Kaya 21

−1 −0.5 0 0.5

−8

−6

−4

−2

0

H(d)

d

Figure 3: Problem 2 – Graph of the dual function H. Iterations with the DPU rule are shown
by ◦.
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Figure 4: Problem 2 – Derivative of the dual function H.
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6 Conclusion

Choosing a small enough exact penalty parameter so that numerical ill-conditioning can be
avoided is an important issue in nonlinear programming. It is ideal to choose a parameter
“close” to the infimum dmin of all exact penalty parameters. However, because in general
dmin is not known, the value of the penalty parameter is increased gradually from below.
We have proposed the so-called dual penalty update rule and showed through numerical
experiments that our rule may have clear advantages over the use of the classical update
rule.

Our setting allows nonpositive exact penalty parameters. We have established that the
dual function is differentiable at dmin if and only if dmin is an exact penalty parameter.
Under either of these conditions, we proved that all the accumulation points of the sequence
generated by a sequential penalty function method are solutions of the original problem.
To the best of authors’ knowledge, this convergence result is not available elsewhere for
nonsmooth and nonconvex problems. We have illustrated our theoretical results on two
numerical test problems.
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