
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2010-05-27

A Unified Representation for Dialogue and Action
in Computer Games: Bridging the Gap Between
Talkers and Fighters
Philip Hanson
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Hanson, Philip, "A Unified Representation for Dialogue and Action in Computer Games: Bridging the Gap Between Talkers and Fighters"
(2010). Masters Theses (All Theses, All Years). 845.
https://digitalcommons.wpi.edu/etd-theses/845

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/845?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

A Unified Representation for Dialogue and Action

in Computer Games:

Bridging the Gap Between Talkers and Fighters

by

Philip Hanson

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2010

APPROVED:

Professor Charles Rich, Major Thesis Advisor

Professor Michael Gennert, Head of Department

Abstract

Most computer game characters are either “talkers,” i.e., they engage in dialogue with the player,
or “fighters,” i.e., they engage in actions against or with the player, and that may affect the vir-
tual world. The reason for this dichotomy is a corresponding gap in the underlying development
technologies used for each kind of character. Using concepts from task modeling and computa-
tional linguistics, we have developed a new kind of character-authoring technology which bridges
this gap, thereby making it possible to create richer and more interesting characters for computer
games.

Acknowledgements

I would like to thank my advisor, Prof. Charles Rich, for his dedication, attention to detail, and

professionalism in preparing this thesis, as well as the Computer Science department and faculty

for their support during my graduate studies.

This thesis would not have been possible without the encouragement and patient endurance of

my family. I would especially like to express gratitude to my parents, John and Carolyn Hanson,

for their wisdom and love during this extended process. Thank you for providing a model I can

aspire to emulate.

Finally, I would like to thank the network of friends, colleagues, and mentors who provided

inspiration, insight, and stimulating conversation to keep me going.

i

Contents

1 Motivation 1

1.1 Talking Technologies . 2

1.2 Fighting Technologies . 4

1.3 The Problem with Modal Systems . 5

1.4 Solution Approach . 5

1.4.1 Task Modeling . 6

1.4.2 Collaborative Discourse Theory . 6

2 Technology Demo: Secrets of the Rime 8

2.1 Overview . 8

2.2 Ice Blocks . 9

2.3 Ice Wall . 11

2.4 Shelter . 12

2.5 Walrus Cave . 12

3 Tizona: A Generic Non-Modal Tool for Games 15

3.1 ANSI/CEA-2018 . 17

3.2 Disco . 21

3.3 Solving the Problem of Modal Systems . 23

3.3.1 Tizona Representation . 26

3.3.2 Game API . 29

3.3.3 Multi-way Conversations . 33

ii

3.4 Additional Benefits . 34

3.4.1 Interruptions . 34

3.4.2 Automatic Dialogue Generation . 37

3.4.3 Plan Recognition . 40

3.4.4 Failure Modeling . 42

4 Evaluation 45

4.1 Metrics . 46

4.2 Development with Tizona . 46

4.3 Modal System Development . 48

4.4 Comparison . 50

4.5 Play Testing . 51

5 Related Work 52

6 Conclusions and Future Work 56

A Interaction Histories for Secrets 58

B Task Models for Secrets 63

C XML Schema for Tizona Format 78

D Tizona to ANSI/CEA-2018 Translation 80

Bibliography 86

iii

List of Figures

1.1 Sample dialogue tree from Icewind Dale . 3

1.2 Diagram of dialogue tree from Figure 1.1 . 3

1.3 Example interaction history . 7

2.1 Ice Blocks level . 10

2.2 Ice Wall level . 11

2.3 Shelter level . 13

2.4 Walrus Cave level . 14

3.1 Block diagram of solution components . 16

3.2 Task model for Ice Blocks level . 17

3.3 Example of diagram simplification conventions . 18

3.4 Example task model in ANSI/CEA-2018 XML format 20

3.5 Disco inputs and outputs . 21

3.6 Example interaction history . 22

3.7 Partial task model for Shelter level . 25

3.8 Interaction history demonstrating dialogue tree behavior 26

3.9 Partial Tizona representation of Ice Wall task model 28

3.10 Partial task model for Ice Wall level generated from Figure 3.9 28

3.11 Partial Tizona representation of Shelter task model from Figure 3.7 30

3.12 Communication between Tizona and game API . 31

3.13 Example grounding script . 32

iv

3.14 Diagram of a stack with interruption and return 35

3.15 Interaction history before/after interruption and utterance menu with interruption

choice . 36

3.16 Example generated dialogue and interaction history 37

3.17 Three levels of printing for GetTo goal . 40

3.18 Properties for formatted printing . 40

3.19 Alternative interaction histories illustrating benefit of plan recognition 41

3.20 Partial interaction showing failure modeling in Ice Wall level from Secrets 43

4.1 UML class diagram of Secrets when developed using Tizona 48

4.2 UML class diagram of Secrets when developed modally 49

v

Chapter 1

Motivation

In most computer games, non-player characters (agents for short) are usually either “talkers” or

“fighters.” Talkers are the merchants, bar tenders and extras of a virtual world. They are mainly

for the player to converse with—they do not modify the game state in important ways. Fighters

are the monsters, companions and villains the player encounters. Their typical capabilities are the

opposite of talkers: depending on whether they are friends or foes, they help or hinder the player

by opening and closing doors, destroying objects, and attacking other game entities, usually with

no words exchanged outside of the occasional taunt thrown in battle.

The result of this situation is that the talker and fighter character types are often one-

dimensional. As with books and movies, it is less stimulating intellectually and less interesting

in gameplay terms to interact with such limited characters. Agents in games have thus been

limited to these narrow ranges of interaction, leaving a missed opportunity to build “integrated”

characters, i.e., characters that break the dichotomy between talking and fighting.

This dichotomy between types of interactions arises because the technologies used to handle

each type of interaction are disjoint. Data describing an agent’s intended behavior is typically

stored in a format associated with a given technology and is not used by other parts of the

system. Due to the amount of effort involved in integrating the two “technology silos” of talking

and fighting, most game developers refrain from including more than a handful of integrated

characters—the most common example being sidekick characters. We believe that if character-

1

building technologies were integrated, developers could include more characters with depth in

computer games.

The remainder of this thesis describes our work in developing a tool called Tizona for build-

ing integrated characters and interactions in games. Following sections in this chapter provide

background on current technology and the techniques we select to improve upon it. Chapter 2

introduces a game we have developed using this tool, from which we will draw examples through-

out the thesis. Chapter 3 further describes the foundations of task modeling and collaborative

discourse theory upon which we build and describes the game development tool we have produced.

We follow this with an evaluation of Tizona’s effectiveness in Chapter 4 and a summary of related

work in Chapter 5. Chapter 6 states conclusions and describes future work.

1.1 Talking Technologies

Presently, the dominant technology for building talking agents is a dialogue tree [5]. Figure 1.1

shows an example of a dialogue tree from the game Icewind Dale in typical indented textual

form as typically developed in, e.g., a spreadsheet. Figure 1.2 shows the same dialogue tree

graphically. Nodes within the tree represent player or agent utterances. At each level in the

tree we denote candidate player utterances with bracketed numbers before the utterances. Lines

without bracketed numbers are agent utterances. Conversations between the player and an agent

begin at the root of the agent’s current dialogue tree. When it is the player’s turn to speak, a

menu of the current utterance choices is presented to the player, where each choice is a child node

of the current dialogue node. A complete conversation can thus be thought of as a path through

the dialogue tree from the root to a leaf.

Dialogue trees allow developers to implement conversations between the player and agents

without performing natural language processing on player input [1]. However, dialogue trees

are well known to suffer from a form of combinatorial explosion due to the number of possible

paths. If each agent utterance has several possible player responses, the number of paths increases

dramatically with the length of the conversation, and each path must be authored by the designer.

This explosion cannot be totally avoided, but it may be mitigated somewhat by the automatic

2

Greetings, traveler! The name’s Quimby, and I welcome you to my inn!

[1] Well met, Quimby. You seem rather... enthusiastic.

Ah! Enthusiastic! Yes! It is rare that I get any travelers at this time of yea...

[1] Er... okay. How about a room, Quimby?

[2] Indeed. Have you heard any interesting news lately, Quimby?

Actually, yes. The whole town’s been talking about the upcoming expediti...

[1] Really? Tell me more about this expedition.

Well, Hrothgar no doubt will be leading the expedition. I’ve heard...

[1] Thanks, Quimby. I must be going. Farewell.

[2] Thanks for the information, Quimby. I must be going. Farewell ...

[3] Do you get ANY travelers at this time of year?

We do have one! Ha-HA! Yes, his name is Erevain something or another. He...

[1] Did he bring any interesting news with him?

Actually, yes. The whole town’s been talking about the upcoming ex...

...

[5] Interesting. Farewell, Quimby.

[4] Hmm. Thanks, Quimby, but I must be going. Farewell.

.

.

.

Figure 1.1: Sample dialogue tree from Icewind Dale

Figure 1.2: Diagram of dialogue tree from Figure 1.1

3

dialogue generation techniques described in Section 3.4.2.

Because fighting and talking technologies are separated, dialogue trees typically do not have

side effects: regardless of which response the player selects, the state of objects in the world is

usually not affected. Furthermore, all the utterances in the tree are simply strings—they lack

even the most basic semantics, such as whether an utterance is a question. If conversations are

to have an effect on the game world state, developers must explicitly specify these effects for each

utterance and implement them in the game code. This disconnect between the conversation model

and the world model also goes in the other direction, since dialogue trees are also typically static,

i.e., they are pre-authored and do not change to fit the player’s actions. Developers often resort

to using ad-hoc hidden variables as flags to disable dialogue options and divert the conversation

based on previous player actions.

1.2 Fighting Technologies

The technology that drives fighting characters is more general than just fighting: the actions

performed need not be hostile. We therefore generalize our terminology, from “fighters” to “doers,”

meaning agents that can change the state of the world. The typical technology for implementing

doers is some form of behavioral AI, such as state machines or behavior trees. We will focus on

behavior trees [8], because they are becoming increasingly popular, and because they are the most

similar to the talking technology of dialogue trees.

Behavior trees are essentially hierarchical task networks [9]. Using behavior trees, designers

can define goals and actions for agents to pursue autonomously or as reactions to game events.

These actions form a coherent model leading toward an intended goal. The process of creating a

hierarchical task network is sometimes called task modeling, a process we also adopt and describe

in greater detail in Section 1.4.1.

Behavior trees are self-describing; they are a declarative specification of agent intentions,

actions, and the relationship between these elements. Since behavior trees are self-describing tree

structures, they are easier to modify and less prone to accidental destruction of behaviors than

state machines. But even with these advantages over previous technologies, behavior trees have

4

typically been used only to describe actions rather than dialogue.1

1.3 The Problem with Modal Systems

To create agents that integrate the disjoint technologies for talking and doing discussed above,

developers today typically add more technology to the mix. A typical approach is called a “modal

interface,” wherein interacting with talking agents and interacting with doing agents are performed

in separate playing modes [5]. When a modal approach is used, each integrated agent must, in

effect, be implemented twice: once to define their talking behavior, typically using dialogue trees,

and again to define their fighting behavior, e.g., using behavior trees. In order to connect the

two representations, developers insert ad hoc hidden variables to coordinate them. The process

is labor-intensive and error-prone, and as a result, few integrated agents are created.

1.4 Solution Approach

Our work integrates talker and doer technologies (specifically dialogue trees and behavior trees)

into a single unified representation to manage an agent’s dialogue, action, and world state infor-

mation. Additionally, we have developed an agent authoring tool, called Tizona, based on this

unified representation. Games implemented using Tizona allow players to freely engage in both

actions and dialogue with non-player characters without using a modal interface.

In order to bring talker and doer technologies together, we can either move actions into the

realm of dialogue (as in text-based adventure games like Zork) or move dialogue into the realm

of action. The majority of people do not find screenfuls of text very entertaining, so the former

approach is not useful for mainstream games. To move dialogue into the realm of action we

represent utterances as a type of action. We thus “bridge the gap” by representing talking as a

kind of doing.

To create a unified representation for dialogue and action (and accompanying tools), we draw

from the fields of task modeling and computational linguistics. Specifically, we draw from a branch

1A situation which we are about to remedy!

5

of computational linguistics called collaborative discourse theory, which takes both utterances and

actions into account in modeling dialogue [19]. The following sections provide a brief overview of

these foundations.

1.4.1 Task Modeling

Task modeling—the process of developing a model of possible player and agent goals and actions

in a particular domain—is a well-known technique in both player interface design and artificial

intelligence [16]. In task modeling, tasks are represented as nodes of a directed graph (which

we will sometimes informally call a “tree,” ignoring the possibility of “joins”). Primitive tasks,

called actions, can be accomplished directly. For example, an action might be to push a button or

pull a lever. Composite tasks, called goals, are higher-level constructs that are accomplished by

decomposing them into their component actions. Goals may have multiple alternative methods

by which they can be accomplished, called decompositions. We call child subgoals and actions

the steps of a decomposition. Actions, goals, and decompositions may have conditions (expressed

either in code or in a logical language) limiting the circumstances in which they can be used. An

utterance is considered to be a type of action which results in the agent having said something.

1.4.2 Collaborative Discourse Theory

Collaborative discourse theory provides tools to model human interactions based on utterances

and actions. The phrase “collaborative discourse” reflects the field’s focus on the communication

between two people working together to achieve a goal. According to this theory, in order to

collaborate successfully, participants must hold “mutual beliefs about the goals and actions to

be performed and the capabilities, intentions, and commitments” of their collaborators [17]. We

represent these mutual beliefs (by way of task modeling) with a plan tree containing goals and

actions. Additionally, collaborative discourse theory states that attention in human conversations

follows the model of a stack (called the focus stack), where new conversation topics or sub-topics

are pushed onto a stack while under discussion and later popped when the conversation returns

to the previous topic.

6

[Achieve CrossRiver] -succeeded

Player says "We need to get to the other side."

[Get to the first island by making a bridge] -succeeded

[Player says let’s get to the first island somehow] -succeeded

Sidekick says "How do you want to get to the first island?"

Player push an ice block into the water. -succeeded

[Player walk to the first island] -succeeded

Sidekick says "Please walk to the first island."

[Get to the second island using the rope] -succeeded

[Player says let’s get to the second island somehow] -succeeded

Sidekick says "How do you want to get to the second island?"

Player says "It’s too far for me to swim. There’s a rope, though..."

[Sidekick swim to the second island] -accepted -done

[Player says please swim to the second island] -done

Sidekick says "Well, I can make it across. I’ll send you a postcard

from the other side."

Player says "Ok, in you go!"

Sidekick swim to the second island.

Sidekick throw the rope.

[Player grab the rope] -done

Sidekick says "Please grab the rope."

Player grab the rope.

[Get to the far side by swimming] -succeeded

[Player says let’s get to the far side somehow] -succeeded

Sidekick says "How do you want to get to the far side?"

Figure 1.3: Example interaction history

Figure 1.3 is presented as a preview of our solution. We can show the natural hierarchical

structure of human collaboration using an interaction history such as Figure 1.3. This listing

shows the state of an interaction in progress between a player and an agent as they attempt

to accomplish a goal from the first level of Secrets of the Rime (see Chapter 2). Notice that

this interaction demonstrates the interleaving of actions and utterances: we see that the sidekick

performed an action (“Sidekick push an ice block. . . ”), and subsequently produced an utterance

(“Please walk to. . . ”) requesting action from the player. We will discuss interaction histories in

greater detail in Chapter 3.

7

Chapter 2

Technology Demo: Secrets of the

Rime

We have produced a game demo called Secrets of the Rime that illustrates the benefits of our

approach. The game and the Tizona tool were developed as co-evolving systems. In Secrets,

the player and a sidekick character need to overcome a series of puzzles that must be solved

collaboratively. Each puzzle has associated dialogue, but at any time the player or sidekick may

perform an action that advances the puzzle. Players can interleave dialogue and action at will.

The following sections comprise a descriptive treatment of the game. This treatment is in-

cluded here for reference so we can draw on Secrets for examples throughout the remaining

chapters. Details of our completed implementation are omitted.

2.1 Overview

Secrets of the Rime is a single-player 2D adventure game with environmental puzzle-solving and

mild role-playing elements. The game’s story follows the player and a sidekick character, both

researchers in Antarctica, who find themselves cut off from their research base and must take the

long way back. Collaboration is an integral element of gameplay, with most puzzles requiring

coordination of player and sidekick actions.

Secrets is composed of four levels, each containing a puzzle to be solved or task to be completed:

8

• Ice Blocks: cross a river

• Ice Wall: get over a wall

• Shelter: build a fort to take shelter in

• Walrus Cave: solve the riddles posed by a Sphinx-like walrus

At the start of each level, the player and sidekick are placed near the left edge of the level’s

playing area, or “map,” like that shown in Figure 2.1. They are attempting to return to their

base, which is far to the right and outside the map, and various obstacles stand in their way.

Thus, a level is considered completed when both parties reach the right edge of the current level’s

map.

Figures in this chapter, starting with Figure 2.1, show screen captures of the working demo.

The graphical presentation is at a prototype level and not intended to be production quality. Thus

the player is represented as a white circle and the sidekick is represented as an orange square.

Player utterance choices are presented in a numbered menu at the bottom of the screen, and agent

utterances are shown in a nearby comic-book-like speech bubble. The player can move around

the map using the arrow keys, and can choose utterances from the menu by pressing a number on

the keyboard. Objects that have associated actions display a text description of the action when

the player or an agent is nearby. The player can perform actions thus advertised by an object by

using the arrow keys to walk “into” the object. See the “open” object action advertisement in

Figure 2.2 for an example.

In the following sections we describe each level in further detail.

2.2 Ice Blocks

Figure 2.1 shows the middle of a play session of the Ice Blocks level. The map has four areas of

dry land: two river banks (on the left and right) and two islands in the middle. The rest of the

map is the river itself. There are two ice blocks, one on the near river bank and one on the second

island. Each block can be pushed into the water to form a bridge to the next land mass. Thus

9

Figure 2.1: Ice Blocks level

the player has several options for traversing the level. To get from the left bank to the first island

(or from the second island to the right bank):

• both player and sidekick can swim,

• either player or sidekick can push the ice block into the water to create a bridge, or

• one can swim while the other uses the bridge.

All of these choices can be selected either through dialogue or by performing appropriate actions.

To get from the first island to the second island, the sidekick can swim across and throw a rope

to the player.

10

At the moment shown in Figure 2.1, the leftmost ice block has already been pushed into the

water to form a bridge, which the player and sidekick have crossed. Both player and sidekick can

swim, but the gap between the two islands is too wide: only the sidekick is able to swim across

this gap unaided. After swimming across, the sidekick can throw a rope from the second island to

the player to help him across, as shown in the figure. Other gaps are short enough for the player

to swim unassisted.

2.3 Ice Wall

Figure 2.2: Ice Wall level

Figure 2.2 shows one moment from a play session of the Ice Wall level. The map consists of

11

a flat plane of snow and ice, and a wall stretched across it vertically with a door in the center.

The door in the middle of the wall is locked and can only be opened from the other side. The

wall is too high for one person to jump or climb over, but it is reachable by standing on another’s

shoulders. Cliffs on either side (off-screen) make it impossible to circumvent the wall without

climbing equipment, which the characters do not have. There is a thin section of the wall that

could be chipped away with other ice shards, but it would take a long time. In Figure 2.2 the

sidekick has just boosted the player over the wall and is asking the player to open the door from

the other side.

2.4 Shelter

Figure 2.3 shows the middle of a play session of the Shelter level. There is no physical obstacle

to progress in this level. However, weather conditions are worsening and the characters must

construct a shelter before they are caught in a storm. Either the player or the sidekick must

collect ice shards and scraps from a plane wreck, place them, and then hold them steady until the

other party puts a supporting piece in place. Note that these roles are interchangeable: any piece

of the shelter can be placed by either the player or the sidekick so long as the physical conditions

for placing that piece are met.

2.5 Walrus Cave

Figure 2.4 shows a moment from one play session of the Walrus Cave level, at the beginning of

a three-way conversation between the player and two NPCs. (Speech bubbles are color-coded to

speakers, so the speech bubble with white text on black is the walrus’ dialogue.) Upon entering

a large ice cave, player and sidekick are surprised to find that the exit (and their way back to

base) is blocked by a talking walrus. The walrus demands that they solve a riddle, posed in verse,

before he will let them through. The riddle is

“Living threats your senses hone

The frozen twin smiling is seated

12

Figure 2.3: Shelter level

There upon a warming throne

But you must not, or be defeated

Bring forth the adamantly polished

Hidden when walls were breached”

and requires the player to give the correct answer of “a diamond.” Once the riddle has been

solved the walrus will disappear, revealing the cave’s exit and the end of the game. Note that

this level includes a 3-way conversation in which the player, sidekick, and walrus speak in turn.

13

Figure 2.4: Walrus Cave level

14

Chapter 3

Tizona: A Generic Non-Modal Tool

for Games

Our main contribution is the development of a tool for game developers, enabling them to create

games with agents that combine talking and doing without the need for a modal interface. This

tool, called Tizona,1 is used at design time to author models of agent and player behavior, and

at run time to manage agent dialogue and actions.

Our goal in creating this tool was to build on existing technologies and provide a platform

for future development. Tizona is built on top of two existing tools: ANSI/CEA-2018 and Disco.

ANSI/CEA-2018 is a standard for representing task models in XML, and Disco is open-source

software created by Prof. Charles Rich at WPI. The CETask task engine software is a reference

implementation of ANSI/CEA-2018 [16], an XML task modeling standard. Disco uses task models

to maintain the plan tree of an interaction and support agent behaviors. Disco is built on top of

CETask and includes run time algorithms for building and using a discourse model, including a

task library that defines lightweight semantics for utterance types. Disco is inspired by and based

on the same collaborative discourse theory as Collagen [17]. All of these components, including

Tizona, are implemented in the Java programming language.

The architecture of our work is shown in Figure 3.1. On the left is the run time component

1Tizona is named after the sword carried by El Cid, now housed at the Museo de Burgos in Burgos, Spain.

15

architecture. It shows the use of Disco as the basis for managing task models, the plan tree

and focus stack, Tizona to coordinate Disco with the game world, and finally a specific game

engine at the top level (though the core of Tizona is game-independent). On the right is the

design time component architecture that depicts the design-time use of our unified representation

(see Section 3.3.1) to create the game content necessary to use Tizona at run time. Use of this

representation at design time is key to bringing together talking and doing in games. The design

time architecture also includes other game content produced by the developer, such as 3D models,

textures, and audio files.

Figure 3.1: Block diagram of solution components

We have also produced an extension for Tizona that integrates with the freeware Golden T

Game Engine [6]. This extension is part of the run time component of Tizona in Figure 3.1,

and its primary role is to keep the game state synchronized between Tizona and Golden T. We

describe this run time extension further in Section 3.3.2.

The remaining sections of this chapter proceed as follows. Section 3.1 contains a primer

on ANSI/CEA-2018, the XML notation used by Disco, which is followed in Section 3.2 by a

description of the Disco engine and its capabilities. With this technical foundation in place, we

move on to technical aspects of our solution in Section 3.3, including our key contributions of

improved task model representation, game engine API, and multi-way conversation support. We

16

conclude the chapter in Section 3.4 with a description of some additional benefits gained using

the technology we have chosen and adapted.

3.1 ANSI/CEA-2018

The ANSI/CEA-2018 standard defines an XML notation for task models. Figure 3.2 shows an

example diagram of an ANSI/CEA-2018 task model, which we will use for a brief introduction to

the standard. For a full reference, see the standard [4].

When working with task models, it is often useful to draw diagrams like Figure 3.2, though

such diagrams do not include all the details of the full XML version. The model represented by

Figure 3.2 is drawn from the Ice Blocks level of Secrets of the Rime (see abbreviated XML version

in Figure 3.4 and the complete version in Appendix B). Goals and actions are represented by

ovals, decompositions are represented as diamonds, and utterances (a type of action) as rectangles.

Actions are distinguished from goals by being at the leaves of the tree. Goals are connected to

decompositions using a dashed line, while decompositions are connected to actions and utterances

using a solid line. Decomposition steps are by default unordered. Ordering constraints are

represented using arrows.

Figure 3.2: Task model for Ice Blocks level

17

Task models can be thought of as a type of and/or tree [22, 7]. The semantics of this example

model are as follows. There is one top-level goal, CrossWater, which has three totally ordered

steps (subgoals). Note that a set of steps can be thought of as an “and” operator: all actions

or subgoals must be completed (subject to ordering) to complete the goal. Each subgoal of

CrossWater is an instance of a parameterized goal called GetTo(?,?), where we have supplied the

values (represented by “?” symbols) in the complete task model. GetTo has three alternative

decompositions: at least one of ‘swim,’ ‘bridge,’ or ‘rope’ needs to be accomplished in order to

complete GetTo. Thus we see that decompositions act as an “or” operator. Several of the actions

have restrictions on who may execute the task: we represent restrictions on the actor by placing

the actor’s name (e.g., player or sidekick) in brackets before the task name.

We are, in essence, using task models as a high-level declarative programming language for

non-player characters in computer games. The ability to represent conditionals such as “and” and

“or” within a task model and using tools like partially ordered decompositions rather than ad-hoc

variables and scripts is a crucial part of making the technology practical for game development.

(a)

(b)

Figure 3.3: Example of diagram simplification conventions

A word on diagram convention: the left and right sides of Figure 3.3 are equivalent. When

every decomposition of a goal has only a single child (whether subgoal, action, or utterance),

the decompositions may be omitted and dashed lines drawn directly to the children as in (a). It

18

is implied by the semantics of the notation that the decompositions exist even if they are not

shown, as in the top half of the figure. Likewise, if only one decomposition exists for a goal, we

may draw solid lines from the goal directly to the decomposition’s steps as in (b). The line type

implies that there is a single decomposition, because goals cannot have steps. These conventions

are useful in simplifying diagrams, yet remain unambiguous. We will use these simplifications in

later diagrams.

Figure 3.4 contains an abbreviated listing of the Ice Blocks task model we show in Figure 3.2.

A full listing is included in Appendix B. Using Figure 3.2 for reference, we will explain the

structure of the XML format. Note that in ANSI/CEA-2018, both goals and actions are declared

using a ‘task’ element. The discourse engine determines whether a task is primitive (an action)

or composite (a goal) at run time based on the presence or absence of decompositions for that

type of task. Since decompositions are composed of subtasks, we use a ‘subtasks’ element for each

decomposition.

The top-level goal, CrossWater, has a single decomposition with three steps, each of which is

an instance of GetTo. We have omitted lines that supply parameter values for brevity. The task

has two input parameters, ‘from’ and ‘to,’ that represent areas (locations) in the game world. The

type of a parameter can be any valid JavaScript type or Java class or interface; the ‘to’ and ‘from’

parameters are declared here as Java types from the game using the Packages syntax afforded

by LiveConnect [14]. GetTo also has a postcondition, a JavaScript expression whose value is

supposed to evaluate to true upon goal success. There can also be ‘precondition’ elements that

determine whether a task is eligible for execution.

The definition of GetTo has three alternative decompositions, named ‘water,’ ‘bridge,’ and

‘rope.’ According to the model, then, one can accomplish GetTo by performing all the steps of

one of these decompositions. The ‘applicable’ element in the ‘water’ decomposition is similar to a

precondition in nature—it is a JavaScript expression used to determine whether a decomposition

can be applied to the current situation. The specific precondition for ‘water’ restricts execution

to instances not involving the second island as a destination, because the gap is too big. This

expression uses the ‘world’ variable to access the state of the game world, which we discuss further

19

<taskModel about="urn:cetask.wpi.edu:models:secrets:IceBlocks"

xmlns="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext"

xmlns:disco="urn:disco.wpi.edu:Disco">

<!-- Top-level goal -->

<task id="CrossRiver">

<subtasks id="cross">

<step name="goIsland1" task="GetTo"/>

<step name="goIsland2" task="GetTo"/>

<step name="goFarSide" task="GetTo"/>

...

</subtasks>

</task>

<!-- Parameterized subgoal -->

<task id="GetTo">

<input name="from" type="Packages.edu.wpi.secrets.objects.Area"/>

<input name="to" type="Packages.edu.wpi.secrets.objects.Area"/>

<postcondition> ... </postcondition>

<subtasks id="water" ordered="false">

<step name="playerSwim" task="Swim"/>

<step name="sidekickSwim" task="Swim"/>

<applicable>

$this.to != world.get("island2")

</applicable>

<binding slot="$sidekickSwim.from" value="$this.from"/>

<binding slot="$sidekickSwim.to" value="$this.to"/>

<binding slot="$sidekickSwim.external" value="false"/>

...

</subtasks>

<subtasks id="bridge">

<step name="pushBlock" task="PushIceBlock"/>

<step name="walk" task="Walk"/>

...

</subtasks>

<subtasks id="rope"> ... </subtasks>

</task>

<!-- Actions -->

<task id="Walk"> ... </task>

<task id="Swim"> ... </task>

<task id="PushIceBlock"> ... </task>

<task id="ThrowRope"> ... </task>

<task id="CatchRope"> ... </task>

</taskModel>

Figure 3.4: Example task model in ANSI/CEA-2018 XML format

20

in Section 3.3.2. Several steps in the ‘water’ decomposition have parameters that are supplied

with values using a ‘binding’ element. One such binding supplies a value for the built-in ‘external’

parameter. By binding the value of ‘external,’ we can specify which actor can perform the action,

as is shown by the bracketed names in Figure 3.2. In this instance, we restrict the execution of a

Swim action to the sidekick.

Note that ANSI/CEA-2018 (and therefore Disco) only natively supports interactions with

two actors, reflected in the use of a boolean parameter ‘external’. By default, Tizona considers

the player to be the external=true role and the NPC to be the external=false role. Tizona also

expands the number of actors that can participate in an interaction (see Section 3.3.3).

3.2 Disco

Disco is a collaborative discourse engine. After we have authored a model using ANSI/CEA-2018,

we provide it as input to Disco, which interprets and guides an interaction. At any point, Disco’s

internal state will reflect the structure and chronology of the interaction according to the task

model.

Figure 3.5: Disco inputs and outputs

Figure 3.5 illustrates Disco’s external operation. We see that Disco takes as input one or more

task models. Disco’s internal state is indicated by two icons representing the focus stack and the

plan tree specified by collaborative discourse theory. These elements represent the discourse state

21

that is produced using elements from the task model (for details of Disco’s internal operation

see [16, 17]). The other input to Disco is observations of the actions that are being performed by

both (all) participants in the interaction—including utterances, because we consider them to be

a type of action. The engine processes each incoming action based on where it fits in the task

model structure according to the action’s semantics and current discourse state, and then updates

the discourse state (discourse interpretation).

Disco also produces output in the form of a list of possible actions for each actor to perform,

where these actions would be expected in relation to the current discourse state. Thus, Disco can

suggest the next NPC action or utterance. Disco acts as an NPC control engine by generating

appropriate actions for NPCs to perform, and can also generate a menu of possible player utter-

ances (cf. Section 3.4.2). Note, however, that Disco is designed for interactions of exactly two

participants, as supported by the ANSI/CEA-2018 standard. See Section 3.3.3 for our approach

to generalizing to interactions with more than two participants.

Interaction Histories

[Achieve CrossRiver] -live

Player says "We need to get to the other side."

[Get to the first island by making a bridge] -live

[Player says let’s get from the near side to the first island somehow] -done

Sidekick says "How do you want to get to the first island?"

Player push an ice block into the water. -succeeded

[Player walk to the first island] -live <-focus

Sidekick says "Please walk to the first island."

[Get to the second island]

[Get to the far side]

Figure 3.6: Example interaction history

The other output of Disco shown in Figure 3.5 is the interaction history, which is a textual

visualization of the current discourse state. An interaction history shows the past, present, and

expected future of an interaction. Interaction histories are a useful tool when debugging task

models, and they can also provide a form of post-play review for players. Figure 3.6 is an example

interaction history from the Ice Blocks level at the moment when the player has pushed an ice

22

block into the water between the near shore and the first island. Goals are denoted in Disco

interaction histories by placing brackets around the corresponding goal description (note that we

use Disco’s facility for customizing the printing of goal descriptions, described in Section 3.4.2).

Referring to the Ice Blocks model in Figure 3.2, we see that the top-level goal CrossRiver was

initiated by a player utterance. The three GetTo subgoals have been added to the tree (shown

at a greater indentation level), but a decomposition has only been chosen for one, so only that

instance is expanded. The listing continues hierarchically through the levels of the task model

until an action or utterance is reached. Below the first subgoal there is an utterance in which the

sidekick asks the player to choose a decomposition, followed by an action and another utterance

regarding the next step. The remaining subgoals show actions that must be completed in order

to accomplish the goal. The last two lines of this interaction history show expected future goals

that are not yet live.

Figure 3.6 also exhibits other elements of the discourse state: the “focus” pointer shows the

location of the top of the focus stack, and various flags indicate action completion and applicability.

Three tasks in the figure are marked as “live,” which signifies that they are eligible for execution.

Two tasks have been completed, and these are marked as “done” and “succeeded.” The “done”

flag denotes tasks that have been executed. For tasks that include a postcondition, the done

flag is specialized into “succeeded” (as well as “failed”) to indicate the result of execution. See

Section 3.4.4 for further discussion of of failure modeling.

3.3 Solving the Problem of Modal Systems

As introduced in Section 1.4, we eliminate the technology gap between talking and doing by folding

both technology types into a single unified representation. The existence of a unified representation

allows us to handle both utterances and actions using the same agent control engine (Disco). Use

of a single engine means that there is no longer a need to switch between “talking mode” and

“acting mode,” and it also means that dialogue state does not need to be synchronized between

multiple engines. Instead there is a single mode, which we might call “interacting mode”, where

the player and all NPCs may at any time produce an utterance or perform an action.

23

In this section we describe an application of task modeling and collaborative discourse theory

to agents in computer games. In Section 3.3.1 we describe a unified representation that extends the

ANSI/CEA-2018 standard, simplifying common cases without loss of generality. In Section 3.3.2

we describe the API exposed by Tizona for integration with game engines, and we also outline

Tizona’s support for multi-way conversations in Section 3.3.3.

Figure 3.7 shows an example diagram of a task model that includes utterances. The figure

demonstrates the key idea of interleaving actions and utterances in the same task tree. All

utterances shown are instances of Disco’s “Say” task class, which has a single input parameter

that contains the text of the utterance. We omit the names of intermediate goals where they have

no bearing on the structure or behavior of the model.

Figure 3.7 is taken from the Shelter level of Secrets of the Rime, where the goal of the level

is to build a structure from existing materials. Unlike the Ice Blocks model (Figure 3.2), we do

not introduce the objective of the level as a top-level goal; here we include preliminary dialogue

between the player and sidekick which implicitly leads to the introduction of the objective as a

goal. As we will show, the upper portion of the diagram is essentially a dialogue tree while the

internal structure of the model makes use of decompositions and ordering to interleave actions

and utterances. We will describe a more compact representation for the special case of dialogue

trees in task models in Section 3.3.1.

There is one top-level goal in Figure 3.7. The player’s initial dialogue option corresponds to

that goal, which initiates the conversation. After the player has selected the top-level goal, the

only available option is for the sidekick to produce its line of dialogue. After the sidekick’s second

utterance, we see from the presence of two alternative decompositions that the player will have

two utterance choices. Disco will produce a list of utterances as a menu for the player containing

the two player utterances that are one level below in the hierarchy. Figure 3.8 shows an example

interaction history of this choice and associated utterances. By selecting one of these utterances,

the player will implicitly choose which decomposition to use. (The listing in Figure 3.8 comes

from Tizona’s development and debugging shell, which allows developers to look at interaction

histories and generate player menus without using a game engine.)

24

Figure 3.7: Partial task model for Shelter level

25

> history

[Achieve Shelter] -live

Player says "All right, a clear path for once!"

Sidekick says "Not so fast. I can’t walk much further today, and the weather’s

getting worse."

[] -live

Player says "Okay. What should we do, then?"

[] -live <-focus

Sidekick says "We need to build a shelter for the night."

[] -live

> say

[1] Let’s use pieces of that wreck to build a hut.

[2] We could build an igloo, I guess...

Figure 3.8: Interaction history demonstrating dialogue tree behavior

We begin to introduce actions into the tree after the second set of decompositions. The

left subtree, beginning with the player utterance “We need some walls,” requires the subgoal

BuildWalls to be accomplished before continuing to the next utterance in the dialogue tree.

The subgoals of BuildWalls, BuildPillars, and BuildRoof are not primitive actions—they have

decompositions not shown in the figure. Interleaving utterances and actions—or even utterances

and goals—is supported since the BuildWall subgoal must be expanded before executing the

sidekick’s “Do we want pillars at the front?” utterance. Disco guarantees that the ordering

constraints are respected.

By representing the dialogue state and action conditions in the same model, we eliminate

the need for hidden variables to coordinate the order of actions. We simply place actions as

descendants of an appropriate decomposition, which may be chosen through dialogue.

3.3.1 Tizona Representation

Data files for Disco at run time must be in ANSI/CEA-2018 format, which may include utter-

ances as described above. However, we also define a higher-level language, referred to as Tizona

representation, as a macro facility on top of ANSI/CEA-2018. Tizona reduces the complexity of

expressing simple, common cases—like simple dialogue trees—and the complexity of interleaving

actions and utterances in ANSI/CEA-2018 by adding two new XML elements called ‘do’ and

26

‘say.’ (The XML schema for Tizona is included in Appendix C.) This higher-level representation

is intended for use at design time—in order to run a model, it is translated into ANSI/CEA-2018

format using the XSL Transformation file included in Appendix D.

Using Tizona, we can define a dialogue tree with familiar structure similar to that of Figure 1.1.

The ‘say’ element represents an utterance, and it requires the text of that utterance as an attribute.

‘Say’ elements are naturally expanded into Disco “Say” tasks. Figure 3.9 shows a partial listing of

the Tizona format model for the Ice Wall level of Secrets of the Rime. This portion of the model

is in essence a simple dialogue tree. Figure 3.10 is a task model diagram of the same portion of

the model. The full listing is included in Appendix B. The segment reproduced here corresponds

to the portion of Figure 3.10 above the Escape task, namely the initial conversation of the level.

The nesting of elements in Tizona has semantic implications: child elements are understood

to follow the parent in the conversation, and sibling elements are understood to be alternative

decompositions. Thus, sequences are represented by repeated nesting of elements, and agent

choices are represented by plateaus, or sibling elements. Unlike ANSI/CEA-2018 tasks, ‘do’ and

‘say’ semantics do not support the expression of partial ordering—for this one needs to drop down

into ANSI/CEA-2018 representation.

In Figure 3.9 the first sidekick utterance starts a sequence2. It contains a pair of sibling ‘say’

elements, meaning that there are two alternative player utterances. Thus, the “1” and “2” XML

comments in Figure 3.10 highlight the two player choices afforded by this decomposition. The

remaining utterances and actions have no alternatives, and are thus sequential, but there are two

special cases illustrated here. The first is the childless ‘do’ element, which is simply translated into

a decomposition step. The second is the childless ‘say’ element that references another subtree

using the ‘ref’ attribute and the ‘id’ of the referred-to subdialogue (an ‘id’ becomes the name of a

subgoal containing the element’s children, i.e., the root of the subtree). By including a reference

of this nature, we effectively join the two trees at the point of reference (the node labeled LeadIn).

Thus, in this instance both branches of the dialogue tree lead to the same end.

Elements may also declare an optional restriction on which actor is allowed to perform the

2There is an initial player utterance not present in Figure 3.9 that is supplied through automatic dialogue
generation. The omitted player utterance actually starts the dialogue.

27

<say actor="sidekick"

text="Clearly. You destroyed at least twenty in Cape Town alone.">

<!-- 1 -->

<say actor="player" text="So? It was easier to see them that way.">

<say id="LeadIn" actor="sidekick"

text="No, it wasn\’t. And it was more difficult to follow them, too!">

<say actor="player" text="Whatever. We still have to get past this one.">

<do task="Escape"/>

</say>

</say>

</say>

<!-- 2 -->

<say actor="player" text="Whoah, whoah, whoah. That was an accident. ...">

<say actor="sidekick"

text="And some nice, innocent walls had to suffer for it.">

<say ref="LeadIn"/>

</say>

</say>

</say>

Figure 3.9: Partial Tizona representation of Ice Wall task model

Figure 3.10: Partial task model for Ice Wall level generated from Figure 3.9

28

action or produce the utterance. Standard ANSI/CEA-2018 elements may be included in the

model after the Tizona elements (in a different namespace).

The listing in Figure 3.11 is a more complex example taken from Shelter level of Secrets, shown

as a task diagram in Figure 3.7. Notice that, while this model incorporates more actions into the

tree, it differs little in structure from the Ice Wall example in Figure 3.9. We nest ‘do’ and ‘say’

elements within each other, building up sequences and decompositions out of the given utterances

and the referenced tasks.

The semantics of the ‘do’ element are to include the referenced task as a step and then include

any child ‘do’ or ‘say’ tasks. It serves as a placeholder for a task that is defined elsewhere in the

model. The task’s identifier is stored as an attribute, and an appropriate reference is inserted upon

translation. Each element can contain child elements of either type. Both elements may define

an optional identifier that can be used to reference the element’s subtree. During translation this

has the effect of copying the subtree below the referenced element in place of the referencing ‘do’

or ‘say’ element.

The ‘do’ element requires an ANSI/CEA-2018 task with the given identifier to be present,

and tasks can define decomposition steps that reference ‘do’ or ‘say’ trees by identifier, so all

the features of ANSI/CEA-2018 are still available. For instance, both of the ‘do’ elements that

reference BuildPillars have at least one ‘say’ element below them. The child ‘say’ elements will

appear as utterances in a subtree of a step following the BuildPillars step, as shown in Figure 3.10.

The full Tizona model of Shelter can be found in Appendix B.

3.3.2 Game API

While Tizona’s core is independent from any specific game engine, we have produced a run time

extension to Tizona for the Golden T game engine [6]. This extension, called Tizona-GT, main-

tains a synchronized state between the discourse engine and the game engine, and provides a

streamlined programming interface for using Tizona in Golden T games. The extension man-

ages the graphical display of player utterance menu and the NPC utterances. Several examples

from Secrets exhibiting these graphical elements, such as Figure 2.2, can be found in Chap-

29

<say id="Shelter" actor="sidekick" text="Not so fast. I can\’t walk much further today,

and the weather\’s getting worse">

<say actor="player" text="Okay. What should we do, then?">

<say actor="sidekick" text="We need to build a shelter for the night">

<say id="Floor" actor="player"

text="Let\’s use pieces of that wreck to build a hut">

<say actor="sidekick"

text="Okay, the floor is flat already, so what should we build first?">

<do task="BuildWalls">

<say actor="sidekick" text="Do we want pillars at the front?">

<applicable> !world.get("shack").hasPillar("right") </applicable>

<say actor="player" text="Sure, let\’s go for it">

<do id="Roof" task="BuildPillars">

<say actor="sidekick" text="Now all that\’s left is the roof!">

<do task="BuildRoof"/>

</say>

</do>

</say>

<say actor="player" text="No, let\’s not have pillars">

<say actor="sidekick" ref="Roof"/>

</say>

</say>

<do task="_Roof_tree">

<applicable> world.get("shack").hasPillar("right") </applicable>

<say actor="sidekick" text="Glad that\’s over!"/>

</do>

</do>

<do task="BuildPillars">

<say actor="sidekick" text="They look cool, but we definitely need walls">

<do task="BuildWalls">

<say actor="sidekick" ref="Roof"/>

</do>

</say>

</do>

</say>

</say>

<say actor="player" text="We could build an igloo, I guess...">

<say actor="sidekick"

text="Ice pillars, maybe. But we don\’t have time for an igloo">

<say actor="sidekick" ref="Floor"/>

</say>

</say>

</say>

</say>

</say>

Figure 3.11: Partial Tizona representation of Shelter task model from Figure 3.7

30

Figure 3.12: Communication between Tizona and game API

ter 2.1. Tizona-GT also handles the practical matter of cross-thread communication, as Tizona

and Golden T run in different Java threads.

Tizona maintains a repository of data about the state of the game world in a thread-safe Java

object. Tizona-GT exposes this repository to the game engine, allowing actions in the discourse

engine to be reflected in the game engine’s representation of the world. The extension also

exposes a reference to the world state within the execution context of scripts from the task model.

Figure 3.12 is a block diagram showing communication between Tizona and any extensions using

the API and the world state.

ANSI/CEA-2018 tasks may optionally contain associated JavaScript code, called a “grounding

script,” that is connected to the game state using Java LiveConnect [14]. Figure 3.13 is a grounding

script from the Ice Blocks level of Secrets. Grounding scripts are executed in order to accomplish

the task. For instance, the grounding script in Figure 3.13 accomplishes the PushIceBlock task

by moving the block into the water. We make use of Java’s built-in JavaScript engine to embed

the world state reference as a JavaScript variable called ‘world.’ Grounding scripts can use the

‘world’ variable to alter object states, thereby accomplishing the task in terms of the game state

and providing implicit notification to the game engine. The game state can also be queried from

preconditions and postconditions, allowing the system to react to changes in the game world that

are not modeled explicitly as tasks—including changes not induced by conversation participants,

31

<task id="PushIceBlock">

<input name="to" type="Packages.edu.wpi.secrets.objects.Area"/>

<precondition>

$this.to && !$this.to.getAccessBlock().isInWater()

</precondition>

<postcondition sufficient="true">

$this.to && $this.to.getAccessBlock().isInWater()

</postcondition>

<script>

if (!$this.external)

moveNPC("sidekick", $this.to.getAccessBlock().getLocation());

$this.to.getAccessBlock().pushIntoWater();

</script>

</task>

Figure 3.13: Example grounding script

like an ice block sliding into the water rather than being pushed.

When the player accomplishes a task, Tizona-GT creates a new instance of the task’s type.

The task’s grounding script, if any, is then executed, and Tizona updates the discourse state. For

example, suppose the player intends to push an ice block into the water in the Ice Blocks level

of Secrets. Once the player has triggered the block in-game, a new task of type PushIceBlock

(shown in Figure 3.13) will be created with appropriate variable values. This task will be sent to

Tizona to have its grounding script executed (via LiveConnect), which updates the world state by

changing properties of the ice block so it will appear in the water. After the grounding script has

been executed Tizona will evaluate the postcondition, if any, and mark the task as ‘succeeded’ or

‘failed’ (or simply ‘done’ if there is no postcondition). Note that the game world state is updated

through the grounding script, and the discourse state is updated by Tizona. Thus Tizona-GT

establishes two-way state synchronization between the two engines.

Note that, in Secrets, avatar motion, i.e., moving left, right, up and down with the arrow keys,

do not appear as actions in the task model or interaction history. Only actions performed through

interaction with an object in the world are modeled. This is a level-of-abstraction modeling issue

that is specific to each game. In Secrets, then, objects in the world can be used to perform

actions “directly” by walking into them with the player avatar. Game objects that are activated

by player movement (including constructs like triggers) subsequently create action instances that

32

are observed by Disco so the action can be reflected in the discourse state.

3.3.3 Multi-way Conversations

Disco is limited by the ANSI/CEA-2018 standard to handle only interactions with exactly two

participants, a player and a computer agent. While it is certainly possible to design games with

only two characters—titles like Myst survive with the player as sole participant for long stretches—

designers would probably find this design too limiting for mainstream games. Tizona extends the

Disco model to support multiple participants in an interaction.

We account for extra participants by creating an instance of the discourse state for each pair

of participants. We adapted the Disco interaction code to handle multi-way conversations that

broadcast actions to all interactions that include the acting participant. A major downside of

this approach is that it requires a separate task model to be authored for each pair of partici-

pants (though the models can certainly share tasks). Because the number of pairings grows with

the square of the number of participants, the number of active participants in a single conver-

sation should be limited in order to avoid creating a large number of task models. This can be

accomplished by separating interactions by level, as in Secrets, or by restricting the number of

participants that are active at a given time, e.g., exclusion by distance from the player.

Conversations can have participants added and removed at any time. A player can therefore

engage in multiple sequential interactions with different agents in the same level, even leaving

the conversation and returning to it. Dialogue state is stored in the conversation, so agents

that leave and return will retain state from previous interactions, thus “remembering” where

the conversation left off. This does lead to participant which have a “frozen memory,” which—

though better than no memory—is slightly unrealistic. Serial conversations of this nature could

be improved by modeling agents leaving and returning within the task model so that characters

can respond appropriately when the conversation resumes, e.g., asking why the player has been

away for so long.

Agents can also participate simultaneously in a multi-way interaction, as shown in the Walrus

Cave level of Secrets: the three actors (player, sidekick, and walrus) are aware of the others’

33

actions and can respond to either of the other participants at any time if there is an appropriate

utterance or action. The three task models necessary for this three-way interaction are included

in Appendix B.

3.4 Additional Benefits

While our primary goal in using task models is to create a unified representation for talking and

doing, this decision also brings some additional benefits to game authoring due to the connection

with other work based on collaborative discourse theory.

3.4.1 Interruptions

When humans switch topics mid-conversation, they will often return to the original topic to

complete the conversation. This behavior is accounted for by the focus stack in collaborative

discourse theory, and is implemented in Disco. In Disco the participants’ currently active shared

goal is on top of the stack, but new goals can be pushed onto the top of it. When a goal is

completed, it can be popped off the stack. The ability to handle interruptions – such as bringing

up a topic or goal from an unrelated portion of the task model – and return to the original subject

of the interaction once the interruption is complete comes as a natural side effect. The unrelated

goal will be pushed onto the stack until it has been accomplished, and after popping it from the

stack the focus will return to whatever goal previously held the focus of interaction.

Interruptions are characterized by “discontinuities” in the focus stack. Because each goal is

pushed onto the stack in turn, there is a natural stratification: top-level goals are generally at the

bottom of the stack, followed by their subgoals, the subgoals’ subgoals, and so on. Whenever the

relation between any two adjacent items in the stack is other than goal-subgoal, that discontinuity

represents an interruption.

Figure 3.14 shows a simple task model and a representation of the focus stack at three different

points in time. Initially the stack has the task A and its subgoal B in it. These tasks have a

goal-subgoal relationship, so there is no interruption present. After some time has passed (stack

2), the task X has come into focus above B. However, B and X have no goal-subgoal relationship,

34

Figure 3.14: Diagram of a stack with interruption and return

so X is an interruption. Once X is accomplished (perhaps pushing and popping its subgoals, if

any), it is popped off the stack (stack 3) and focus returns to B.

Most dialogue tree-based systems cannot support unplanned interruptions, because they do

not have a focus stack. While there may be scripted interruptions, it is generally not possible to

have, e.g., side conversations in a modal system. Interruptions simplify the handling of unrelated

events, like random attacks. Interruptions also open the door to previously impractical level

structures. A simple example of such a structure would be a detective game where the player and

sidekick are always in conversation about the solution to the mystery, but this conversation can

be interrupted other NPCs and affected by the information they provide.

Figure 3.15 shows an interaction history from the Ice Wall level of Secrets that includes an

interruption (see Appendix B for the level’s task model). At the moment shown in figure, the

player has a choice to introduce a new topic of conversation by choosing a new top-level goal

(choice [2]) from the utterance menu. Disco recognizes that this new goal, SillyConversation,

is not related to the one below it on the stack by a goal-subgoal relationship, and therefore it

must be an interruption. The second half of the figure shows the interaction history after the

sub-dialogue is completed. We see that SillyConversation was popped off the stack and the actors

resumed discussion of how to surmount the wall.

35

> history

[] -live

Player says "A wall. Why does it always have to be walls? I hate walls!"

Sidekick says "Clearly. You destroyed at least twenty in Cape Town alone."

[Achieve PreCon] -live

Player says "Whoah, whoah, whoah. That was an accident. There was no way to know

that crane would malfunction."

[] -live

Sidekick says "And some nice, innocent walls had to suffer for it."

[] -live

> say

[1] Whatever. We still have to get past this one.

[2] Actually, there’s something I’ve been meaning to tell you...

>> 2

...

> history

[] -live

Player says "A wall. Why does it always have to be walls? I hate walls!"

Sidekick says "Clearly. You destroyed at least twenty in Cape Town alone."

[Achieve PreCon] -live

Player says "Whoah, whoah, whoah. That was an accident. There was no way to know

that crane would malfunction."

[] -live

Sidekick says "And some nice, innocent walls had to suffer for it."

[Achieve SillyConversation] -done -interruption

Player says "Actually, there’s something I’ve been meaning to tell you..."

Sidekick says "Really? Now is the time to do this?"

[] -done

Player says "Yes. I want you to know that..."

[] -done

Player says "Umm... it’s very cold out here."

[] -done

Sidekick says "How informative."

[] -live

[Achieve LeadIn] -live

Player says "Whatever. We still have to get past this one."

[] -live

[Get past it] -live

[Player says let’s get past it somehow] -live <-focus

Sidekick says "How should we get past it?"

Figure 3.15: Interaction history before/after interruption and utterance menu with interruption
choice

36

3.4.2 Automatic Dialogue Generation

We also find benefits in reducing the labor of dialogue creation through automatic dialogue gen-

eration. We will first explain the intuition of this approach and then give a more technical

explanation. Automatic dialogue generation is made possible as a result of combining simple

AI planning (implemented in Disco) with lightweight natural language semantics we draw from

collaborative discourse theory [19]. We expand the dialogue tree to find the next live steps, and

then the semantics determine a set of appropriate utterances (for either the player or the NPC).

Many different sets of utterances can be generated from a single task model. In this respect,

we obtain compactness of representation in the same way that regular expressions simplify pattern

matching by representing many possible matching strings at once. Use of automatic generation

can thus reduce the labor involved in creating dialogues.

For example, suppose the current plan tree includes an instance of the action MoveIceBlock

with unbound parameters for the actor (player or agent) and the ice block to be moved. This

situation suggests two appropriate utterances, which supply the unbound variable values. An

actor might reasonably ask at this point in the collaboration “Which ice block?” and “Who

should move it?” These utterances do not need to be explicitly coded into the task model; they

can be automatically generated from the semantics of the model.

> history

[Achieve CrossRiver] -live

[Get to the first island by making a bridge] -done

Player push an ice block into the water. -succeeded

[Player walk to the first island]

Sidekick says "Please walk to the first island."

[Get to the second island] -live

[Player says let’s get to the second island] -live <-focus

Sidekick says "How do you want to get to the second island?"

[Get to the far side]

> say

[1] Let’s get to the second island by making a bridge

[2] It’s too far for me to swim. There’s a rope, though.

[3] Let’s not get to the second island

Figure 3.16: Example generated dialogue and interaction history

37

Another example of automatically generated dialogue is choosing a goal decomposition. When

the task model includes several alternate methods of accomplishing a goal, an agent will automat-

ically utter a “how” query. For example, once the goal named GetTo from Figure 3.2 has all its

variables bound, an agent might ask “How to you want to achieve GetTo?” because there are three

decompositions defined in the task model. The interaction history in Figure 3.16 shows the use

of automatic dialogue generation in Secrets of the Rime: all three entries in the player menu have

been automatically generated, corresponding to three alternative decomposition choices. This

instance makes use of text replacement to improve the quality of utterances, as explained later

in this section. The Ice Blocks level, which contains the example of Figure 3.16, relies exclusively

on automatic dialogue generation for player and agent utterances.

Lightweight Utterance Semantics

Automatic dialogue generation is an outgrowth of using collaborative discourse theory as a foun-

dation. Disco includes a library of task types with built-in semantics drawn from collaborative

discourse theory [19]. Because the semantics of these utterance types is relative to a task model,

they can be automatically chosen (generated) based on the current discourse state to algorith-

mically generate appropriate player and agent utterances. In addition to a general Say action

type to represent utterances without semantics, Disco provides implementations for the following

utterance types with the semantics (and an example) indicated:

• Propose.Should(?goal): initiate execution of a specified task (“Let’s achieve ?goal”)

• Propose.ShouldNot(?goal): stop or cancel execution of a task (“Let’s not ?goal”)

• Propose.What(?action, ?parameter, ?value): provide the value for an unbound variable

(“The ?parameter of ?action is ?value”)

• Propose.Who(?who, ?action): propose which participant should execute a task (“I’m going

to ?action”)

• Propose.Achieved(?goal): declare a task to have been successfully achieved (“?goal is achieved”)

38

• Propose.How(?goal, ?method): choose a decomposition (“Let’s achieve ?goal by ?method”)

There are also corresponding Ask utterance types, which have semantics of a question that is

answered with the corresponding Propose utterance. One example is in climbing the wall in the

Ice Wall level of Secrets: after the player chooses the decomposition using a Propose.How utterance

(“Let’s get over it by climbing”), the sidekick will produce an Ask.Who utterance (“Who should

give a boost over the wall?”) to determine which participant should perform the next action. To

continue, the player can choose a Propose.Who utterance (“Give me a boost?” or “Up you go”)

from the utterance menu to specify which of them should act. The player could also perform the

action directly, which moots the question. Using these utterance types it is possible to model a

large proportion of natural collaborative communication.

Dialogue Customization

While convenient, the text produced by automatically generated dialogue is almost certainly

not good enough for production game use. Disco-generated dialogue is simple and includes

task model identifiers. Nevertheless, a game can be prototyped quickly and incrementally us-

ing machine-generated utterance text until more polished, human-authored text is available.

Machine-generated text can later be replaced by human-authored text or even voice-over au-

dio. Disco provides two convenient methods for improving the default machine-generated text for

builtin utterance types. All three levels of printing are illustrated in Figure 3.17, starting with

the default level, which is used if neither of the other methods is employed by the author. Default

strings are generally a description of the goal, slot values, and chosen decomposition, if any.

The first customization method uses native Java format strings, which are similar to formatted

printing facilities in most other programming languages. Figure 3.18 lists format strings for a task

and three decompositions in the Ice Blocks level of Secrets. Format strings for tasks can include a

number of locations to insert text representing the values that fill a task’s slot values in order of

definition. The resulting formatted text is much more natural and reads more or less like a normal

English sentence, though it is perhaps a bit stilted. Not all constructions using format strings

work out so well, particularly when the tense or number is different than the author expected.

39

Default : let’s achieve GetTo on island1 and island2 and island1block by rope

Formatted : let’s get to the second island using the rope

Translated : it’s too far for me to swim. There’s a rope, though...

Figure 3.17: Three levels of printing for GetTo goal

GetTo@format = get to the %2$s

water@format = by swimming

bridge@format = by making a bridge

rope@format = using the rope

Figure 3.18: Properties for formatted printing

The second method of customizing machine-generated utterance text uses a translation file

that maps specific machine-generated responses to human-authored text, a process that could

easily be extended to audio files. The final line of Figure 3.17 shows the final utterance text. It is

clearly part of a conversation and includes some mannerisms and hints about the character who

is speaking. The same string can also be translated differently in different goal tree contexts to

give more variety or specifics. The dialogue customization files used in the Secrets of the Rime

can be found in Appendix B.

This approach is similar to that used in simple source-code internationalization: consider the

source text to be another language, “computerese,” to be translated into the native language

of the player. Tizona is thus amenable to rapid prototyping of dialogue which will later be

replaced with content authored to fit the final level. By judicious use of these dialogue generation

and customization techniques, utterances can be included in development prototypes from the

beginning of the design process and only customized later on, removing some potential bottlenecks

in content creation.

3.4.3 Plan Recognition

In addition to planning for dialogue generation, another standard AI technique we get the benefit

of by using task modeling is plan recognition. Plan recognition attempts to recognize patterns of

actions and match them to decomposition steps in order to identify the goal an actor is working

toward. This reduces the number of utterances needed for collaboration [11].

40

(a)

(b)

(c)

Figure 3.19: Alternative interaction histories illustrating benefit of plan recognition

The interaction histories shown in Figure 3.19 illustrate the benefits of plan recognition in

the Ice Blocks level of Secrets of the Rime. All three interactions achieve the same goal, but in

(a) three utterances must be exchanged while (b) uses only two and (c) uses none. In (a), no

plan recognition is performed: the “push ice block” action is accomplished as expected and is

attached to the tree. Note that in this instance the player and sidekick engaged in a conversation

to determine what action is expected. The player chose which decomposition to use via utterance,

leaving “push ice block” as the only live action. The sidekick then performed this action when

given the chance. Without plan recognition, this conversation would be mandatory in order for

the sidekick follow the collaboration.

However, as we see in (b), Disco allows us to eliminate much of this dialogue, e.g., if the player

41

wants to avoid it. Here the player first introduced the CrossRiver goal by selecting an option

from the utterance menu and then implicitly chose the decomposition by performing the “push

ice block” action. This action was recognized as the first step in the ‘bridge’ decomposition for

GetTo, which was a live goal, so it was placed beneath the appropriate decomposition. That

decomposition then became selected. The initial utterances between player and sidekick relate

to intent, or focus in the goal tree, but the player chose not to explicitly answer the sidekick’s

question. Instead, the player performed a “push ice block” action.

In Figure 3.19(c), the player simply performed the “push ice block” action at the start. This

action was recognized as a step in the plan for GetTo, under the CrossRiver goal. It is the first

step of the decomposition for making a bridge, and it fits at no other place in the model, so it

was placed beneath the appropriate decomposition. That decomposition then became selected,

and the CrossRiver goal became ‘live’. This instance leverages plan recognition to the fullest,

eliminating all the utterances encountered in (a) and (b).

Plan recognition can be used to simplify level design, as authors can simply associate a task

with a player action. This is sufficient to allow Disco to attach the action once performed and

update the discourse state, and it allows the author to handle cases where the player ignores

dialogue in a graceful manner.

3.4.4 Failure Modeling

The ANSI/CEA-2018 standard includes the notion of task failure. This intuitive concept sim-

plifies the modeling of tasks with many failure modes and makes explicit the representation of

“wrong turns” in exploration. When a task fails (when the task is done but its postcondition is

not satisfied) it remains in the interaction history with a ‘failed’ flag, and Disco allows the rest

of the interaction to continue. Disco also performs an ‘automatic retry’ when there are multiple

decompositions, allowing the player or NPC to select a different decomposition to achieve the

same goal. Without the notion of failure it would be necessary to create many alternative de-

compositions with hidden variables that restrict their applicability based on success, essentially

recreating this system manually for each task model.

42

In the event that one of multiple decompositions fails, Disco will create a new instance of the

goal and allow the player or NPC to select another decomposition (a “fail-over”) to continue trying

to accomplish the current goal. This is reflected in the interaction history, as seen in Figure 3.20.

Fail-over functionality also illustrates the utility of task models for modeling the structure of goals

and actions rather than the specific sequence they can be accomplished in, though sequences can

also be represented. Flexible level design will likely result in a large number of valid sequences

that follow the same structure, and task modeling is well-suited to describing such flexible action

patterns.

> history

...

[] -live

[Get past it] -live

Player says "Let’s get past it."

[Player says let’s get past it somehow] -live <-focus

Sidekick says "How should we get past it?"

> say

[1] I say we climb over it.

[2] We could tunnel under it.

[3] No wall is an island. Can we go around?

[4] An ice wall? I’ve got the matches if you’ll find the kindling.

>> 2

...

> history

...

[] -live

[Get past it by digging under] -failed

Player says "Let’s get past it."

[Player says let’s get past it somehow]

Sidekick says "How should we get past it?"

Player says "We could tunnel under it."

Sidekick says "Are you crazy? There’s a reason it’s called permafrost: it’s

permanent."

[Get past it] -live <-focus

> say

[1] I say we climb over it.

[2] No wall is an island. Can we go around?

[3] An ice wall? I’ve got the matches if you’ll find the kindling.

Figure 3.20: Partial interaction showing failure modeling in Ice Wall level from Secrets

43

Figure 3.20 shows a sequence of interaction histories from a portion of the Ice Walls level of

Secrets. The first interaction history is the discourse state after the player has proposed the goal

of getting past the wall, and the subsequent menu of player utterances has entries for all four of

the goal’s decompositions (see Appendix B for the full task model). The “get past it” goal (to

circumvent a wall) has a postcondition that both actors should be standing on the far side of the

wall, so a successful decomposition must end with both actors standing on that side.

The second interaction history is the discourse state after unsuccessfully trying one of these

decompositions. All steps of the decomposition—in this case, a single utterance—were executed,

but both actors remained on the near side of the wall. This state does not satisfy the postcon-

dition, meaning that the goal was unsuccessful (not achieved). Therefore, the “digging under”

decomposition was marked as “failed,” while the overall goal of “get past it” remained active.

Thus the second menu of player utterances includes the three untried decompositions, allowing

the player to try an alternative tactic. Disco’s failure-driven retry mechanism will continue until

either goal is accomplished, all decompositions are exhausted, or the player stops pursuing the

goal.

44

Chapter 4

Evaluation

There are two main challenges in evaluating a tool such as Tizona. The first challenge is a lack of

established metrics for the effectiveness of tools: existing metrics for software products measure

code quantity and performance rather than the quantity and performance of code based on the

measured code [18, 21]. This leaves few options apart from user studies. The second challenge is

the number of resources required to run a significant user study. We propose suitable metrics to

overcome the first obstacle, and a hypothetical analysis to overcome the second one.

The ideal evaluation study for Tizona would be to assemble two equally skilled game devel-

opment teams to work from the same design documents, where one team would use Tizona and

the other would use modal technologies. If given the same art assets and game engine to begin

with, the relative quality of output and speed of production of each team would provide some

value measurement of the tool.

Due to the time and resources it would require, such a study is impractical for this project.

In its place we present a comparison of development methods and careful analysis of the actual

development process involved in producing the game Secrets of the Rime using Tizona. This

game was produced in parallel with Tizona as a technology demo. Thus, we have a reference for

modeling development with Tizona, though this reference comes from a team that is intimately

familiar with Tizona. Development with modal technologies has many commercial references to

draw from, as Secrets is similar in design to most adventure games.

45

For this analysis we assume use of the freeware Golden T Game Engine [6] and the existing

Tizona extension for it that is described in Chapter 3. However, we will not assume that any

development environments for task modeling are available. We also assume that the same art

assets, such as map tiles and character sprites, are used for both projects and thus are not a

factor. The following sections present a set of metrics we will use in comparing development

technologies and an analysis of the two development methodologies considered, i.e., using Tizona

and using modal technologies. We then examine the impact of Tizona on development and end

product.

4.1 Metrics

We use standard software development metrics for comparison between the two development

methods. We use two metrics, lines of code and number of classes, which relate to the size and

complexity of the product [18]. Because the art assets, development language, and game design

are the same in both cases, metrics such as function points [21] are mostly irrelevant. However,

some of the game mechanics are not possible to implement using modal technologies, reducing the

function point count of the modal version. The most notable mechanic of this sort is the ability

to speak while performing an action, which requires the capabilities of two modes at once.

Finally, in addition to quality statements such as the above function point assertion, we will

comment on the modifiability of each project in terms of lines of code as a measure of effort.

4.2 Development with Tizona

Our analysis of the development of Secrets using Tizona is based on work completed while devel-

oping the tool in parallel. Development in parallel exposed potential shortcomings and allowed

us to test the usability of Tizona for development. This means that the game was produced by

an expert in using the tool, potentially reducing the amount of time required, however much time

was also spent debugging Tizona and working out issues with the extension for the game engine.

Proceeding by level, we defined the actions in each level’s task model, as well as Java classes

46

Level Actions Objects

Ice Blocks Swim, PushBlock, ThrowRope, CatchRope IceBlock, Rope

Ice Wall Boost, Clamber, OpenDoor, Dig, MakeFire Door

Shelter PickUp, Place Shard, Panel

Walrus Cave Boost, ExamineStatue, ThawDiamond, Statue, Diamond,
HoldFountain, OpenWindow Fountain, Window

Table 4.1: Actions and objects in Secrets

for each object type, based on the level description. These actions and objects are listed in Table

4.1. Because the game is divided into levels, it was convenient to create a separate task model for

each level. We also created a Java class for each level, extending the GTLevel class in the Tizona

extension for Golden T. Figure 4.1 shows a simplified Unified Modeling Language (UML) class

diagram for Secrets when developed using Tizona. GTLevel handles coordination of the game

state and actors with Tizona, and it also provides default behaviors for movement, performing

actions, and emitting utterances. Thus the level classes only need to include exceptions to the

default behavior and level-specific setup information.

In the level initialization methods, we created as many instances of an object as necessary,

assigned the proper locations and object state, then added the objects to the global world state.

For instance, the Ice Blocks level requires three IceBlock objects, one heavier than the others,

and a single Rope. The Walrus Cave requires one of each of the objects listed in table 4.1.

The abstract class GameEngine is provided by Golden T, and that GTLevel and Inter-

actableObject are provided by Tizona. From this diagram we see that development with Tizona

results in the production of 14 Java classes and interfaces in addition to the 4 task models. The

object classes in Figure 4.1 are small, as scripts to perform actions with these objects are actually

contained in the task model. All task models for the game are included in Appendix B.

The combined line count for Secrets Java code and task model files is a little less than 1,400

lines of code. If the game were modified by adding a new level, it would require a new task model

and level class, as well as object classes if the level includes objects. Changing a puzzle within a

level requires only that the task model be changed, with potential tweaks to the level setup and

additional object classes if new objects are specified.

47

Figure 4.1: UML class diagram of Secrets when developed using Tizona

4.3 Modal System Development

For comparison, we now consider developing a modal system using the Golden T Game Engine

directly, without Tizona.

If possible, we would have also chosen a preexisting dialogue engine to handle “talking mode,”

but there are few readily available dialogue engines. The few available dialogue systems are

embedded in a game engine, and most are not written in Java. There is no dialogue engine

included in Golden T, nor is there a well-known third party solution for this engine. Essentially,

this means that a development team that chooses not to license a game engine with dialogue

support would have to implement it themselves. Furthermore, there is no standard representation

for dialogue trees, so it would also be necessary either to define a file format or represent the trees

in Java. We assume that a simple serialization class for dialogue trees and a dialogue engine

would be produced to meet the needs of Secrets’ design.

Making good use of Golden T’s features, we would define a base class for levels to handle

movement in “talking mode” and dialogue in “acting mode,” as well as to manage the transition

between modes. Figure 4.2 shows a simplified UML class diagram for Secrets when developed

without Tizona. The handling of each mode would take place in separate classes, called TalkMode

48

and ActMode. The abstract classes GameEngine and GameObject, as well as the Sprite class, are

provided by Golden T. However, player and NPC types, with specializations for each character,

would be necessary to implement. From this diagram we see that a conservative estimate involves

the creation of 24 types. Developers of a modal system would need to re-implement the default

behaviors, as well as player action and utterance interfaces, that are specified in the Tizona

extension for Golden T.

Figure 4.2: UML class diagram of Secrets when developed modally

Much of the implementation is straightforward, though the levels require occasional adaptation

to fit the limitations of modal systems. For instance, it is likely that the Walrus Cave level would

be adapted slightly to fit a fetch-quest design where player and sidekick can only converse with

the walrus when standing directly in front of him. Commercial adventure games such as Golden

Sun and Beyond Good and Evil follow this paradigm, where the game switches between talking

mode and acting mode frequently to intermingle talking and doing.

To estimate lines of code for modal development, we begin by counting lines in the existing

(Tizona-based) Secrets Java classes. We must also account for re-implementing behaviors, so we

49

Existing Engine New Engine

Tizona 1,400 1,400
Modal 1,900 3,700

Code reduction 26% 62%

Table 4.2: Comparison of development methods

include the Golden T extension to Tizona in this count, as well as the actor modeling classes.

After including the extension, our estimate is approximately 1,900 lines of code. Finally, to reflect

the implementation of a dialog engine, we include the core classes from Disco. These core classes

form the basic Disco engine but not advanced features, so this is a conservative estimate of the

effort required. This estimation gives a total of over 3,700 lines of code.

If we were to modify the game, adding a new level would require a new level class, as well

as object classes if the level includes objects. Changing a puzzle within a level would require

that program flow in the level classes—and potentially some object classes—be changed. Even if

the level classes include comments detailing connections to the level’s puzzle, it might be unclear

whether the new code matches the design of the new puzzle.

4.4 Comparison

If we compare lines of code between projects, as shown in Table 4.2, it appears as though develop-

ment with Tizona can reduce lines of code by 62%. However, this number includes development

of a dialogue engine. After the initial implementation, a development team would most likely opt

to update the engine for new projects rather than write a new engine. If we use the lower estimate

for modal development—that is, excluding the dialogue engine—we find that development with

Tizona can reduce lines of code by 26%.

In addition, games authored using Tizona use an abstract representation (a task model) to

define the game world and possible actions. We assert that this abstraction allows developers to

prototype games more quickly, much like working in a higher-level language. And as described

above, changes to a level may only require changes to the task model, which has a direct and

explicit connection to the level’s puzzle. Thus we would expect to find an analogous decrease in

50

development time for games developed with Tizona.

4.5 Play Testing

We performed an informal user study on Secrets of the Rime with two participants. One partic-

ipant was an experienced computer game player from a college age group, and the other was a

middle aged “casual gamer.” The largest difference we observed was in approach to sidekick inter-

action. One participant was not interested in dialogue and chose the first utterance presented to

them at any menu, while the other tended to forget that dialogue options were available, despite

having used them moments before.

A common problem we observed was the choice of an utterance for which there was no agent

reaction, such as “I’m going to open the door.” Utterances of this nature are inert in that they

do not change the world state. Users became confused when they chose one of these utterances

and got no response from the NPCs. We subsequently fixed this problem by removing utterances

with those semantics. However, participants had little difficulty in completing tasks that were

initiated by a player utterance, followed by a sidekick action, and required further action from

the player (such as being boosted over the wall in the Ice Blocks level and then being asked to

open the door). This may indicate successful modeling of cooperative interactions.

Neither participant explored the dialogue options beyond what was needed to progress through

the level, and they occasionally missed hints placed in NPC dialogue because they disregarded it.

This can be attributed to user interface issues to some extent, though it is likely that the quality

and style of authored dialogue also affects player willingness to carry on conversations. A third

factor is highlighted by one participant—notably, the more experienced player—who thought

that the sidekick “talked too much,” or at least more than expected given other games they had

played. At the time of play testing there was a bug in Tizona where agents would narrate their

own actions, which may be what the participant was referring to; this bug has since been fixed.

Because modern games typically use a modal system for dialogue, if at all, players are not used

to constant interaction with NPC companions. This unfamiliarity is likely to be an obstacle in

marketing a non-modal game or game engine.

51

Chapter 5

Related Work

To our knowledge, no work in games outside our own has addressed the integration of talking

and doing technologies in a single representation. However, there are several related areas of

research, such as interactive story generation, that extend the technologies we discuss or attempt

to bridge the gap in other ways. It is useful to consider each related project as occupying a space

on an authored-emergent spectrum, where at one end of the spectrum the behavior of the actors

is totally controlled by the game author and at the other end it emerges from the actors (player,

agents) themselves. A typical first-person shooter game with linear story-telling would fall at the

extreme authorship end, for instance, while a flight simulator would fall at the extreme emergent

end.

Like our work, Charles, Mead, and Cavazza [3] use hierarchical task networks for agent control

and decision-making, though their approach is focused on task networks for individual agents

instead of collaborative task networks. Their system displays strictly emergent agent behaviors

and no explicit agent collaboration either with other agents or with players, placing it far to the

emergent end of the spectrum. Their work is similar to our approach because agents have the

capability to mix actions and utterances [2], although this is not through a general form and

the system does not make use of semantics within the model, i.e., all dialogue must be modeled

explicitly. Behavior in this system is non-deterministic: attempts to create a specific situation in

the game by adjusting agent behavior are not sure to succeed. In the unified representation we

52

propose, all agents behave deterministically1, thus enabling authorship of specific situations or

events.

Moving to the other end of the spectrum, there is the Wide Ruled project, a general framework

based on the Universe story model [10]. Wide Ruled is focused entirely on goals set by the story

author to compose a structured narrative that supports user interaction [20]. All aspects of the

story are controlled through author goals and plot fragments, including character actions and

environments. This approach is closer to our own in terms of goal focus (player and agent goals

defined by the author), but the level of interactivity is low. There are no individual characters in

Wide Ruled—all dialogue and actions are performed by the engine on a character’s behalf. This

approach could rightly be termed an “interactive storytelling” engine rather than a game or AI

engine.

The Façade [12] project can be viewed as trying to combine the emergent agent behaviors of

Charles, Mead, and Cavazza with the structured narrative of Wide Ruled in the form of author

goals, or “story beats.” While the characters of Grace and Trip are autonomous agents with

their own goals most of the time, the Façade “drama manager” will at times reach in and insert

goals or cause the agents to perform actions for dramatic effect. This structure addresses the

problem of creating specific situations by overriding the emergent behavior at appropriate times

and places Façade close to the center of the authored-emergent spectrum. Façade also bridges

the talker/doer gap by adding a technology layer to coordinate talking and doing according to

authored story beats. The approach is distinct from the unified model we propose in that shared

plan elements are inserted by an external entity rather than pre-existing in the model.

One commercial example of talkers and doers is the game Neverwinter Nights 2 (NWN2),

which includes several “companions”, which are sidekicks for your player character that can

engage in both talking and fighting modes. However, the majority of agents encountered in the

game are solely talkers or doers. Talking characters give out quests and information, and fighting

(doing) characters attack on sight. The player must explicitly engage companions in dialogue,

though they are sometimes included automatically in multiway conversations between the player

1This is because we impose a default order on partially ordered steps.

53

and other agents. At all other times, companions act as doers. This is what we called a modal

integration approach, where an agent has the capacity to talk and to fight, but can only do one

at a time.

The NWN2 game engine models attributes for the player character such as charisma, diplo-

macy, an “intimidation” factor, and position on a “good or evil” spectrum. These attributes have

a bearing on whether some dialogue choices are available, and they may be changed by selecting

some dialog choices, but outside of these effects, player actions have no effect on dialogue. For

example, a player might steal all the items in an agent’s house, but unless that causes a shift in

the player’s good-or-evil rating or the designer has included an extra script to detect the theft,

the agent’s dialogue will not change.

Another illustration of a modal system is SIMDIALOG [15], a tool developed for producing

educational games with extensive dialogue sequences. The SIMDIALOG tool is used to produce a

set of dialogue trees whose execution is dependent on a user-defined set of hidden variables. Player

dialogue choices can affect these hidden variables. Agent dialogue choices are selected based on

the value of some variables and can also alter that value. Conversations end in a “terminal state”,

which acts as a flag used by higher-level logic. A terminal state might indicate a new conversation

to begin, some actions to be performed by an agent, or even the player’s death.

SIMDIALOG lies in the middle of the authored-emergent spectrum: while dialogue is authored

by the developer, the player can have some measure of influence on the conversation by changing

the hidden variables. Our approach also tracks state, but does so implicitly through the task

model. One could recreate much of the SIMDIALOG system using Tizona by adding hidden

variables to the task model.

The Forerunner project [13] at Worcester Polytechnic Institute implemented a “narrative

engine” to direct the plot in a non-linear adventure game. Like Wide Ruled, Forerunner’s focus

is on interactive story generation, but Forerunner incorporates more interactivity. The data

structure used by the narrative engine in Forerunner is a form of and-or tree the authors call a

story tree, and this structure bears a significant resemblance to hierarchical task networks [13, p.

14]. But while our work is intended to build on existing technologies and provide a platform for

54

continued development, the Forerunner narrative engine is not generalized or easily extended and

thus it is not likely to be useful as a tool.

55

Chapter 6

Conclusions and Future Work

Our contribution is twofold: firstly, we have defined a form and method for the unified represen-

tation of talking and doing agent behaviors in computer games. Secondly, we have developed a

character-authoring tool called Tizona that enables game development with agents that are not

limited by or divided into separate modes of interaction. Tizona, both as an authoring tool and

as a run time environment, breaks down the dichotomy between talking technologies and doing

technologies by handling both types of actions with the same run time engine. Tool and repre-

sentation together serve to bridge the gap between talkers and doers, thereby making it possible

to create richer and more interesting characters for computer games.

Our work also introduces several innovations in the authoring of agents, particularly through

representation of agent behavior as data instead of code. Because the behavior description is stored

in data files, it is more easily understood and altered—behaviors can be changed independently of

changes to the game engine. Furthermore, the Tizona representation (which is based on an open

standard) is analogous to a high-level declarative programming language, giving game developers

greater expressive power.

What remains for future work is primarily to make the use of Tizona and its modeling language

more practical. Specifically, an integrated development environment (IDE) for Tizona would

increase ease of use. Note that an IDE for our representation could be implemented more easily

than an IDE for modal technologies because task models are data files rather than code. A Tizona

56

IDE might include an editor for task model diagrams, allowing designers to “draw” the behavior

of their agents. An IDE might also include a spreadsheet-like dialogue tree editor, which is a

familiar environment for teams working with modal systems and thus might reduce the amount

of adjustment necessary to use the new technology.

Non-modal interaction presents challenges in user interface design: while modal systems may

halt to allow players to read every line of dialogue, non-modal systems must find an alternative

method of presenting dialogue and actions to the player. Some method of determining acceptable

timing and duration of utterances is also needed. Additionally, the increased complexity of select-

ing utterances in addition to normal play may be difficult to adapt to game consoles, which are

limited to use of a controller. These issues will need to be addressed before any commercialization

of Tizona or similar tools.

Using the Tizona format it would be possible to represent all required ANSI/CEA-2018 task

models for a level using a single file, and to generate all of these models automatically using a

script similar to that in Appendix D in order to alleviate the problem of authoring n2 models for a

conversation of n participants. The Tizona format could also be extended to support annotations

and engine-specific metadata for tasks, thus reducing the amount of cross-referencing between

files that human authors must do during development. Of course, these are all conveniences on

the way to the ultimate goal of this project, which is to produce games with more characters that

collaborate.

57

Appendix A

Interaction Histories for Secrets

The following interaction histories are examples of some of the many alternative interaction ex-

periences possible for each level.

Ice Blocks

[Achieve CrossRiver] -succeeded

Player says "We need to get to the other side."

[Get to the first island by making a bridge] -done

[Player says let’s get to the first island somehow] -succeeded

Sidekick says "How do you want to get to the first island?"

Player push an ice block into the water. -succeeded

[Player walk to the first island] -succeeded

Sidekick says "Please walk to the first island."

[Get to the second island using the rope] -succeeded

[Player says let’s get to the second island somehow] -succeeded

Sidekick says "How do you want to get to the second island?"

Player says "It’s too far for me to swim. There’s a rope, though..."

[Sidekick swim to the second island] -accepted -done

[Player says please swim to the second island] -done

Sidekick says "Well, I can make it across. I’ll send you a postcard

from the other side."

Player says "Ok, in you go!"

Sidekick swim to the second island.

Sidekick throw the rope.

[Player grab the rope] -done

Sidekick says "Please grab the rope."

Player grab the rope.

[Get to the far side by swimming] -succeeded

[Player says let’s get to the far side somehow] -succeeded

Sidekick says "How do you want to get to the far side?"

58

Player says "Let’s get to the far side by swimming."

[Sidekick swim to the far side] -accepted -done

[Player says please swim to the far side] -done

Sidekick says "Should I go first?"

Player says "Go ahead, race you there!"

Player swim to the far side.

[Sidekick swim to the far side] -accepted -done

Sidekick swim to the far side.

Ice Wall

[Achieve IceWall] -done

Player says "A wall. Why does it always have to be walls? I hate walls!"

Sidekick says "Clearly. You destroyed at least twenty in Cape Town alone."

[] -done

Player says "Whoah, whoah, whoah. That was an accident. There was no way to know

that crane would malfunction."

[] -done

Sidekick says "And some nice, innocent walls had to suffer for it."

[] -done

[] -done

Player says "Whatever. We still have to get past this one."

[] -done

[Get past it by going around] -failed

[Player says let’s get past it somehow] -done

Sidekick says "How should we get past it?"

Player says "No wall is an island. Can we go around?"

Sidekick says "It stretches on to the horizons. I heard that a

company called InfiniWall makes these."

[Get past it by climbing over] -succeeded

Player says "I say we climb over it."

[Sidekick give a boost over the wall] -accepted -done

[Player says "You should give a boost over the wall."] -succeeded

Sidekick says "Who should give a boost over the wall?"

Player says "Give me a boost?"

Sidekick give a boost over the wall.

[Player finish climbing over] -done

Sidekick says "Please finish climbing over."

Player finish climbing over.

[Player open the door] -done <-focus

Sidekick says "Please open the door."

[Achieve SillyConversation] -done -interruption

Player says "Actually, there’s something I’ve been meaning to

tell you..."

Sidekick says "Really? Now is the time to do this?"

[] -done

Player says "Yes. I want you to know that..."

[] -done

Player says "Umm... it’s very cold out here."

59

[] -done

Sidekick says "How informative."

Sidekick says "Please open the door."

Player open the door.

[Sidekick execute Walk]

Shelter

[Achieve Shelter] -done

Player says "All right, a clear path for once!"

Sidekick says "Not so fast. I can’t walk much further today, and the weather’s

getting worse."

[] -done

Player says "Okay. What should we do, then?"

[] -done

Sidekick says "We need to build a shelter for the night."

[] -done

Player says "We could build an igloo, I guess..."

[] -done

Sidekick says "Ice pillars, maybe. But we don’t have time for an igloo."

[] -done

[] -done

Sidekick says "Okay, the floor is flat already, so what should we

build first?"

[] -done

[Build the walls] -done

[Build the left wall] -done

[Sidekick find a panel to use] -done

Player says "We need some walls."

Sidekick find a panel to use.

Sidekick pick up a panel.

Sidekick place a panel on the left.

[Build the top wall] -done

Sidekick find a panel to use.

Sidekick pick up a panel.

Sidekick says "Ok."

[Sidekick place a panel on the top] -done

Player says "Please place a panel on the top."

Sidekick place a panel on the top.

[Build the right wall] -done

Sidekick find a panel to use.

Sidekick pick up a panel.

Sidekick place a panel on the right.

[] -done

Sidekick says "Do we want pillars at the front?"

[] -done

Player says "No, let’s not have pillars."

[] -done

[] -done

60

Sidekick says "Now all that’s left is the roof!"

[] -done

[Make the roof] -done

Sidekick find a panel to use.

Sidekick pick up a panel.

Sidekick place a panel on the roof.

Walrus Cave

Because there is a three-participant interaction in this level, thus three task models, we list here

three interaction histories (one per model). A merged history printout would be useful future

work for examining multi-way interactions.

Player and Walrus

[Achieve Convo] -done

Player says "H-hello?"

Walrus says "Ah, you have come at last. Welcome, great emissaries, to my hall!"

[] -done

Player says "Uh... hail, walrus! We seek the northern exit of your hall."

[] -done

Walrus says "What?! No one may exit the hall by the north gate unless they know

the secret of the Hall."

[] -done

Player says "Well, it’s been great talking to you, great tusk, but we really

have to be going now."

[] -done

Walrus says "Not before you tell me the secret! I like the two of you, so

here’s a clue:."

[] -done

Walrus says "Living threats your senses hone."

[] -done

Walrus says "The frozen twin smiling is seated."

[] -done

Walrus says "There upon a warming throne."

[] -done

Walrus says "But you must not, or be defeated."

[] -done

Walrus says "Bring forth the adamantly polished."

[] -done

Walrus says "Hidden when walls were breached."

[] -done

Walrus says "Now... what is the secret?"

[] -done

Player says "A diamond?"

[] -done

61

Walrus says "Aha! The Adamant Request! Well done."

[] -done

Walrus leaves. -succeeded

Player and Sidekick

Sidekick says "Oh look, a talking walrus."

Player says "Uh... hail, walrus! We seek the northern exit of your hall."

Sidekick says "Seems to have a high opinion of himself for a talking pinniped."

Player says "Well, it’s been great talking to you, great tusk, but we really have to

be going now."

Sidekick says "Finally. Thought he’d never shut up."

Player says "A whale?"

Player says "A hidden door?"

Player says "A diamond?"

Sidekick says "He creeps me out. Let’s get out of here."

Sidekick and Walrus

[Achieve Convo] -done

Walrus says "Ah, you have come at last. Welcome, great emissaries, to my hall!"

[] -done

Sidekick says "Oh look, a talking walrus."

[] -done

Walrus says "What?! No one may exit the hall by the north gate unless they know the

secret of the Hall."

[] -done

Sidekick says "Seems to have a high opinion of himself for a talking pinniped."

Walrus says "Not before you tell me the secret! I like the two of you, so here’s a

clue:."

Walrus says "Living threats your senses hone."

Walrus says "The frozen twin smiling is seated."

Walrus says "There upon a warming throne."

Walrus says "But you must not, or be defeated."

Walrus says "Bring forth the adamantly polished."

Walrus says "Hidden when walls were breached."

[Achieve Secret] -done

Walrus says "Now... what is the secret?"

[] -done

Sidekick says "Finally. Thought he’d never shut up."

[Achieve AdamantRequest] -done

Walrus says "Aha! The Adamant Request! Well done."

[] -done

Sidekick says "He creeps me out. Let’s get out of here."

62

Appendix B

Task Models for Secrets

The following sections contain listings of the task models and associated files (for dialogue cus-

tomization) used to create the game Secrets of the Rime, described in Section 2. The Ice Blocks

model is in pure ANSI/CEA-2018 format. The remaining three task models are in Tizona for-

mat, which can be transformed into an ANSI/CEA-2018 format task model for use with Disco

and Tizona using the script contained in Appendix D.

Ice Blocks

Task Model

<taskModel about="urn:cetask.wpi.edu:models:secrets:IceBlocks"

xmlns="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext">

<!-- Overall goal: get to the other side -->

<task id="CrossRiver">

<postcondition sufficient="true">

on("player", farSide) && on("sidekick", farSide)

</postcondition>

<subtasks id="cross">

<step name="goIsland1" task="GetTo"/>

<step name="goIsland2" task="GetTo"/>

<step name="goFarSide" task="GetTo"/>

<binding slot="$goIsland1.from" value="world.get(’nearSide’)"/>

<binding slot="$goIsland1.to" value="world.get(’island1’)"/>

<binding slot="$goIsland2.from" value="world.get(’island1’)"/>

<binding slot="$goIsland2.to" value="world.get(’island2’)"/>

<binding slot="$goFarSide.from" value="world.get(’island2’)"/>

63

<binding slot="$goFarSide.to" value="world.get(’farSide’)"/>

</subtasks>

</task>

<!-- Subgoal: get to a specific area -->

<task id="GetTo">

<input name="from" type="Packages.edu.wpi.secrets.objects.Area"/>

<input name="to" type="Packages.edu.wpi.secrets.objects.Area"/>

<postcondition sufficient="true">

on("player", $this.to) && on("sidekick", $this.to)

</postcondition>

<subtasks id="water" ordered="false">

<step name="sidekickSwim" task="Swim"/>

<step name="playerSwim" task="Swim"/>

<applicable> $this.to != world.get("island2") </applicable>

<binding slot="$sidekickSwim.from" value="$this.from"/>

<binding slot="$sidekickSwim.to" value="$this.to"/>

<binding slot="$sidekickSwim.external" value="false"/>

<binding slot="$playerSwim.from" value="$this.from"/>

<binding slot="$playerSwim.to" value="$this.to"/>

<binding slot="$playerSwim.external" value="true"/>

</subtasks>

<subtasks id="bridge">

<step name="pushBlock" task="PushIceBlock"/>

<step name="walk" task="Walk"/>

<applicable> $this.to != world.get("island2") </applicable>

<binding slot="$pushBlock.to" value="$this.to"/>

<binding slot="$walk.to" value="$this.to"/>

</subtasks>

<subtasks id="rope">

<step name="sidekickSwim" task="Swim"/>

<step name="throw" task="ThrowRope"/>

<step name="catch" task="CatchRope"/>

<applicable> $this.to == world.get("island2") </applicable>

<binding slot="$sidekickSwim.from" value="$this.from"/>

<binding slot="$sidekickSwim.to" value="$this.to"/>

<binding slot="$sidekickSwim.external" value="false"/>

<binding slot="$throw.external" value="false"/>

<binding slot="$catch.external" value="true"/>

</subtasks>

</task>

<!-- Primitive actions -->

<task id="Walk">

<input name="to" type="Packages.edu.wpi.secrets.objects.Area"/>

<binding slot="$this.external" value="true"/>

<postcondition sufficient="true"> on("player", $this.to) </postcondition>

</task>

64

<task id="Swim">

<input name="from" type="Packages.edu.wpi.secrets.objects.Area"/>

<input name="to" type="Packages.edu.wpi.secrets.objects.Area"/>

<script>

if ($this.external) movePlayer($this.to.getWalkToLocation());

else moveNPC("sidekick", $this.to.getWalkToLocation());

</script>

</task>

<task id="PushIceBlock">

<input name="to" type="Packages.edu.wpi.secrets.objects.Area"/>

<precondition>

$this.to && !$this.to.getAccessBlock().isInWater()

</precondition>

<postcondition sufficient="true">

$this.to && $this.to.getAccessBlock().isInWater()

</postcondition>

<script>

if (!$this.external)

moveNPC("sidekick", $this.to.getAccessBlock().getLocation());

$this.to.getAccessBlock().pushIntoWater();

</script>

</task>

<task id="ThrowRope">

<script>

if (world.get("rope") != null) {

world.get("rope").setThrown(true);

world.get("ropetrigger").activate();

}

</script>

</task>

<task id="CatchRope">

<script>

if (world.get("rope") != null) {

world.get("rope").setThrown(false);

world.get("player").getLocation().setLocation(world.get("rope").getLocation());

}

</script>

</task>

<!-- Useful functions for writing conditions -->

<script init="true">

function player () { return getX("player"); }

function sidekick () { return getX("sidekick"); }

function getX (actor) { return world.get(actor).getLocation().x; }

function on (actor, area) {

return (area) && (getX(actor) >= area.getWalkToLocation().x);

}

var farSide = world.get("farSide");

</script>

65

</taskModel>

Properties File

@how = how do you want to

GetTo@format = get to the %2$s

water@format = by swimming

bridge@format = by making a bridge

rope@format = using the rope

rope@authorized = false

Swim@format = swim to the %2$s

Walk@format = walk to the %s

PushIceBlock@format = push an ice block into the water

ThrowRope@format = throw the rope

CatchRope@format = grab the rope

Swim@authorized = false

Swim@ProposeShouldNot = false

CrossRiver@ProposeShouldNot = false

Translation File

let’s_achieve_CrossRiver = we need to get to the other side

let’s_get_to_the_second_island_using_the_rope = it’s too far for me to swim. There’s

a rope, though...

should_I_swim_to_the_second_island? = well, I can make it across. I’ll send you a

postcard from the other side

please_swim_to_the_second_island = ok, in you go!

should_I_swim_to_the_far_side? = should I go first?

please_swim_to_the_far_side = go ahead, race you there!

Ice Wall

Task Model

<model about="urn:cetask.wpi.edu:models:secrets:IceWall"

xmlns="http://www.cs.wpi.edu/~rich/tizona"

xmlns:d="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext">

<!-- Introductory dialogue tree, including banter -->

66

<say id="IceWall" actor="sidekick"

text="Clearly. You destroyed at least twenty in Cape Town alone.">

<say actor="player" text="So? It was easier to see them that way.">

<say id="LeadIn" actor="sidekick"

text="No, it wasn\’t. And it was more difficult to follow them, too!">

<say actor="player" text="Whatever. We still have to get past this one.">

<do task="Escape"/>

</say>

</say>

</say>

<say actor="player" text="Whoah, whoah, whoah. That was an accident. There was no

way to know that crane would malfunction.">

<say actor="sidekick" text="And some nice, innocent walls had to suffer for it.">

<say ref="LeadIn"/>

</say>

</say>

</say>

<d:task id="Escape">

<d:postcondition sufficient="true">

world.get("door").isOpen() && (player() >= walkToLocation.x)

</d:postcondition>

<!-- Climb over the wall -->

<d:subtasks id="over">

<step name="boost" task="Boost"/>

<step name="clamber" task="Clamber"/>

<step name="open" task="OpenDoor"/>

<step name="walk" task="Walk"/>

<binding slot="$clamber.external" value="!$boost.external"/>

<binding slot="$open.external" value="!$boost.external"/>

<binding slot="$walk.external" value="$boost.external"/>

</d:subtasks>

<!-- Dig under the wall -->

<d:subtasks id="under">

<d:step name="say" task="disco:edu.wpi.disco.lang.SayAgent"/>

<d:binding slot="$say.text" value="’Are you crazy? There\’s a reason it\’s called

permafrost: it\’s permanent.’"/>

</d:subtasks>

<!-- Walk around the wall -->

<d:subtasks id="around">

<d:step name="say" task="disco:edu.wpi.disco.lang.SayAgent"/>

<d:binding slot="$say.text" value="’It stretches on to the horizons. I heard that

a company called InfiniWall makes these.’"/>

</d:subtasks>

<!-- Cut/melt/explode through the wall -->

<d:subtasks id="through">

<d:step name="say" task="disco:edu.wpi.disco.lang.SayAgent"/>

<d:binding slot="$say.text" value="’Are you kidding? There\’s no kindling here!’"/>

67

</d:subtasks>

</d:task>

<d:task id="Boost">

<d:script>

actor($this.external).setMovable(false);

other($this.external).setMovable(false);

world.get("climbableWall").climb();

actor($this.external).getLocation().setLocation(boosterLocation);

other($this.external).getLocation().setLocation(boostedLocation);

</d:script>

</d:task>

<d:task id="Clamber">

<d:script>

world.get("clamberTrigger").clamber();

actor($this.external).getLocation().setLocation(clamberLocation);

actor($this.external).setMovable(true);

other($this.external).setMovable(true);

</d:script>

</d:task>

<d:task id="OpenDoor">

<d:script>

if (!$this.external) moveNPC("sidekick", walkToLocation);

if (world.get("door")) world.get("door").open();

</d:script>

</d:task>

<d:task id="Walk">

<d:postcondition>

(actor($this.external) != undefined) &&

(getX(actor($this.external)) >= walkToLocation.x)

</d:postcondition>

<d:script>

if ($this.external) movePlayer(walkToLocation);

else moveNPC("sidekick", walkToLocation);

</d:script>

</d:task>

<!-- Possible interruption -->

<d:task id="SillyConversation">

<d:precondition>

(player() >= walkToLocation.x) && (sidekick() < walkToLocation.x)

</d:precondition>

<d:subtasks id="silly_subtasks">

<d:step name="say" task="disco:edu.wpi.disco.lang.SayAgent"/>

<d:step name="rest_of_conversation" task="_SillyConversationContinued"/>

<d:binding slot="$say.text" value="’Really? Now is the time to do this?’"/>

</d:subtasks>

</d:task>

68

<say id="_SillyConversationContinued" actor="player"

text="Yes. I want you to know that...">

<say actor="player" text="I\’m the one who stole the diamonds.">

<say actor="sidekick" text="Huh?">

<say actor="player" text="Uh... never mind."/>

</say>

</say>

<say actor="player" text="Umm... it\’s very cold out here.">

<say actor="sidekick" text="How informative." />

</say>

</say>

<d:script init="true">

function player () { return getX("player"); }

function sidekick () { return getX("sidekick"); }

function getX (actor) { return world.get(actor).getLocation().x; }

function actor (external) {

if (external == undefined) return undefined;

if (external) return world.get("player");

return world.get("sidekick");

}

function other (external) {

if (external == undefined) return undefined;

if (external) return world.get("sidekick");

return world.get("player");

}

function rel(object, offX, offY) {

location = object.getLocation();

return new Packages.java.awt.Point(location.x + offX, location.y + offY);

}

boosterLocation = rel(world.get("climbableWall"), -1, 0);

boostedLocation = rel(world.get("clamberTrigger"), -1, 0);

clamberLocation = rel(world.get("clamberTrigger"), 1, 0);

walkToLocation = world.get("door").getLocation();

</d:script>

</model>

Properties File

@someone = one of us

@how = how should we

Escape@format = get past it

over@format = by climbing over

under@format = by digging under

around@format = by going around

through@format = by sheer force

69

Boost@format = give a boost over the wall

Boost@authorized = false

Clamber@format = finish climbing over

OpenDoor@format = open the door

IceWall@ProposeShouldNot = false

Escape@ProposeShouldNot = false

Translation File

let’s_achieve_IceWall = a wall. Why does it always have to be walls? I hate walls!

let’s_achieve_SillyConversation = actually, there’s something I’ve been meaning to tell you...

let’s_not_achieve_SillyConversation = Forget it

let’s_get_past_it_by_climbing_over = I say we climb over it

let’s_get_past_it_by_digging_under = we could tunnel under it

let’s_get_past_it_by_going_around = no wall is an island. Can we go around?

let’s_get_past_it_by_sheer_force = an ice wall? I’ve got the matches if you’ll find the kindling

I_should_give_a_boost_over_the_wall = up you go

you_should_give_a_boost_over_the_wall = give me a boost?

let’s_not_give_a_boost_over_the_wall = actually, I just remembered that I’m scared of heights

I’m_not_going_to_give_a_boost_over_the_wall = I’m not going to give you a boost

I’m_going_to_give_a_boost_over_the_wall = I’m going to give you a boost

please_finish_climbing_over = well, are you going to climb over or not?

Shelter

Task Model

<?xml version="1.0" encoding="utf-8"?>

<model about="urn:cetask.wpi.edu:models:secrets:Shelter"

xmlns="http://www.cs.wpi.edu/~rich/tizona"

xmlns:d="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext">

<say id="Shelter" actor="sidekick" text="Not so fast. I can\’t walk much further

today, and the weather\’s getting worse">

<say actor="player" text="Okay. What should we do, then?">

<say actor="sidekick" text="We need to build a shelter for the night">

<say id="Floor" actor="player"

text="Let\’s use pieces of that wreck to build a hut">

<say actor="sidekick"

text="Okay, the floor is flat already, so what should we build first?">

70

<do task="BuildWalls">

<say actor="sidekick" text="Do we want pillars at the front?">

<applicable> !world.get("shack").hasPillar("right") </applicable>

<say actor="player" text="Sure, let\’s go for it">

<do id="Roof" task="BuildPillars">

<say actor="sidekick" text="Now all that\’s left is the roof!">

<do task="BuildRoof"/>

</say>

</do>

</say>

<say actor="player" text="No, let\’s not have pillars">

<say actor="sidekick" ref="Roof"/>

</say>

</say>

<do task="_Roof_tree">

<applicable> world.get("shack").hasPillar("right") </applicable>

<say actor="sidekick" text="Glad that\’s over!"/>

</do>

</do>

<do task="BuildPillars">

<say actor="sidekick" text="They look cool, but we definitely need walls">

<do task="BuildWalls">

<say actor="sidekick" ref="Roof"/>

</do>

</say>

</do>

</say>

</say>

<say actor="player" text="We could build an igloo, I guess...">

<say actor="sidekick"

text="Ice pillars, maybe. But we don\’t have time for an igloo">

<say actor="sidekick" ref="Floor"/>

</say>

</say>

</say>

</say>

</say>

<d:task id="BuildWalls">

<d:subtasks id="_walls">

<d:step name="lwall" task="BuildWall"/>

<d:step name="twall" task="BuildWall"/>

<d:step name="rwall" task="BuildWall"/>

<d:binding slot="$lwall.placement" value="’left’"/>

<d:binding slot="$twall.placement" value="’top’"/>

<d:binding slot="$twall.external" value="!$lwall.external"/>

<d:binding slot="$rwall.placement" value="’right’"/>

</d:subtasks>

</d:task>

<d:task id="BuildWall">

<d:input name="placement" type="string"/>

71

<postcondition sufficient="true">

world.get("shack").hasWall($this.placement)

</postcondition>

<d:subtasks id="_wall">

<d:step name="choose" task="ChoosePanel"/>

<d:step name="pickUp" task="PickUpPanel"/>

<d:step name="place" task="PlacePanel"/>

<d:binding slot="$choose.external" value="$this.external"/>

<d:binding slot="$pickUp.panel" value="$choose.panel"/>

<d:binding slot="$pickUp.external" value="$this.external"/>

<d:binding slot="$place.placement" value="$this.placement"/>

<d:binding slot="$place.panel" value="$pickUp.panel"/>

<d:binding slot="$place.external" value="$this.external"/>

</d:subtasks>

</d:task>

<d:task id="ChoosePanel">

<d:output name="panel" type="Packages.edu.wpi.secrets.objects.Panel"/>

<d:script>

$this.panel = getNearest("panel", actor($this.external));

$this.success = ($this.panel != null);

</d:script>

</d:task>

<d:task id="PickUpPanel">

<d:input name="panel" type="Packages.edu.wpi.secrets.objects.Panel"/>

<d:script>

if (!$this.external) moveNPC("sidekick", $this.panel.getLocation());

actor($this.external).pickUp($this.panel);

$this.panel.pickUp();

</d:script>

</d:task>

<d:task id="PlacePanel">

<d:input name="placement" type="string"/>

<d:input name="panel" type="Packages.edu.wpi.secrets.objects.Panel"/>

<d:script>

shack = world.get("shack");

if (!$this.external) moveNPC("sidekick", rel(shack, 0, -1))

if ($this.placement == ’left’) actor($this.external).setMovable(false);

actor($this.external).dropCarriedObject();

shack.place($this.placement, $this.panel);

if ($this.placement == ’top’) other($this.external).setMovable(true);

</d:script>

</d:task>

<d:task id="BuildPillars">

<d:subtasks id="_pillars" ordered="false">

<d:step name="pillar1" task="BuildPillar"/>

<d:step name="pillar2" task="BuildPillar"/>

<d:binding slot="$pillar1.placement" value="’left’"/>

<d:binding slot="$pillar2.placement" value="’right’"/>

72

</d:subtasks>

</d:task>

<d:task id="BuildPillar">

<d:input name="placement" type="string"/>

<postcondition sufficient="true">

world.get("shack").hasPillar($this.placement)

</postcondition>

<d:subtasks id="_pillar">

<d:step name="choose" task="ChooseShard"/>

<d:step name="pickUp" task="PickUpShard"/>

<d:step name="putDown" task="PlaceShard"/>

<d:binding slot="$pickUp.shard" value="$choose.shard"/>

<d:binding slot="$pickUp.external" value="$choose.external"/>

<d:binding slot="$putDown.placement" value="$this.placement"/>

<d:binding slot="$putDown.shard" value="$choose.shard"/>

<d:binding slot="$putDown.external" value="$choose.external"/>

</d:subtasks>

</d:task>

<d:task id="ChooseShard">

<d:output name="shard" type="Packages.edu.wpi.secrets.objects.IceShard"/>

<d:script>

$this.shard = getNearest("shard", actor($this.external));

$this.success = ($this.shard != null);

</d:script>

</d:task>

<d:task id="PickUpShard">

<d:input name="shard" type="Packages.edu.wpi.secrets.objects.IceShard"/>

<d:precondition>

($this.external == undefined) || (!actor($this.external).isCarrying())

</d:precondition>

<d:script>

if (!$this.external) { moveNPC("sidekick", $this.shard.getLocation()); }

actor($this.external).pickUp($this.shard);

$this.shard.pickUp();

</d:script>

</d:task>

<d:task id="PlaceShard">

<d:input name="placement" type="string"/>

<d:input name="shard" type="Packages.edu.wpi.secrets.objects.IceShard"/>

<d:precondition>

($this.external != undefined) &&

(actor($this.external).getCarriedObject() == $this.shard)

</d:precondition>

<d:script>

shack = world.get("shack");

if (!$this.external) moveNPC("sidekick", rel(shack, 0, 1))

actor($this.external).dropCarriedObject();

shack.place($this.placement, $this.shard);

73

</d:script>

</d:task>

<d:task id="BuildRoof">

<postcondition sufficient="true">

world.get("shack").hasRoof()

</postcondition>

<d:subtasks id="_roof">

<d:step name="choose" task="ChoosePanel"/>

<d:step name="pickUp" task="PickUpPanel"/>

<d:step name="place" task="PlacePanel"/>

<d:binding slot="$pickUp.panel" value="$choose.panel"/>

<d:binding slot="$pickUp.external" value="$choose.external"/>

<d:binding slot="$place.placement" value="’roof’"/>

<d:binding slot="$place.panel" value="$pickUp.panel"/>

<d:binding slot="$place.external" value="$choose.external"/>

</d:subtasks>

</d:task>

<d:script init="true">

function actor (external) {

if (external == undefined) return undefined;

if (external) return world.get("player");

return world.get("sidekick");

}

function other (external) {

if (external == undefined) return undefined;

if (external) return world.get("sidekick");

return world.get("player");

}

function rel(object, offX, offY) {

location = object.getLocation();

return new Packages.java.awt.Point(location.x + offX, location.y + offY);

}

function getNearest(prefix, actor) {

var i = 1;

var min = 1000;

var nearest = null;

var current = null;

while ((current = world.get(prefix + "" + i)) != null) {

if (!current.isPickedUp()) {

dist = current.getLocation().distance(actor.getLocation());

if (dist < min) {

nearest = current;

min = dist;

}

}

i++;

}

return nearest;

}

</d:script>

74

</model>

Properties File

@someone = we

Shelter@ProposeShouldNot = false

BuildPillars@format = put up some pillars

BuildWalls@format = build the walls

BuildRoof@format = make the roof

BuildWalls@ProposeShouldNot = false

BuildRoof@ProposeShouldNot = false

BuildWall@format = build the %s wall

BuildPillar@format = put up the %s pillar

ChoosePanel@format = find a panel to use

ChooseShard@format = find an ice shard to use

PickUpPanel@format = pick up a panel

PickUpShard@format = pick up an ice shard

PlacePanel@format = place the %s wall

PlaceShard@format = place the %s pillar

Translation File

let’s_achieve_Shelter = all right, a clear path for once!

let’s_not_achieve_BuildPillars = never mind about the pillars

we_should_find_a_panel_to_use = we need some walls

we_should_find_an_ice_shard_to_use = let’s put some pillars at the front

Walrus Cave

The Walrus Cave level contains a third conversant: a “talking walrus” agent. Thus it was neces-

sary to author the three task models listed below, one for each pair of actors.

75

Player and Walrus

<model about="urn:cetask.wpi.edu:models:secrets:WalrusCave"

xmlns="http://www.cs.wpi.edu/~rich/tizona"

xmlns:d="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext">

<say id="Convo" actor="walrus" text="Ah, you have come at last. Welcome, great

emissaries, to my hall!">

<say actor="player"

text="Uh... hail, walrus! We seek the northern exit of your hall.">

<say actor="walrus" text="What?! No one may exit the hall by the north gate

unless they know the secret of the Hall.">

<say actor="player" text="Well, it\’s been great talking to you, great tusk,

but we really have to be going now.">

<say actor="walrus" text="Not before you tell me the secret! I like the

two of you, so here\’s a clue:">

<say actor="walrus" text="Living threats your senses hone">

<say actor="walrus" text="The frozen twin smiling is seated">

<say actor="walrus" text="There upon a warming throne">

<say actor="walrus" text="But you must not, or be defeated">

<say actor="walrus" text="Bring forth the adamantly polished">

<say actor="walrus" text="Hidden when walls were breached">

<say id="Secret" actor="walrus" text="Now, what is the secret?">

<say actor="player" text="A hidden door?">

<say actor="walrus" ref="Secret" text="I should say not!"/>

</say>

<say actor="player" text="A diamond?">

<say id="AdamantRequest" actor="walrus"

text="Aha! The Adamant Request! Well done.">

<do task="OpenExit"/>

</say>

</say>

<say actor="player" text="A whale?">

<say actor="walrus" ref="Secret" text="Huh?"/>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

</say>

<d:task id="OpenExit">

<d:binding slot="$this.external" value="false"/>

<d:precondition> !exitOpen() </d:precondition>

76

<d:postcondition sufficient="true"> exitOpen() </d:postcondition>

<d:script>

world.get("walrus").getLocation().setLocation(disappearLocation);

</d:script>

</d:task>

<d:script init="true">

function exitOpen() { return world.get("walrus").getLocation().x < 0; }

disappearLocation = new Packages.java.awt.Point(-2, -2);

</d:script>

</model>

Player and Sidekick

<model about="urn:cetask.wpi.edu:models:secrets:WalrusCave"

xmlns="http://www.cs.wpi.edu/~rich/tizona"

xmlns:d="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext">

<say actor="player" text="A whale?">

<say actor="sidekick" text="That doesn\’t even make sense!"/>

</say>

</model>

Sidekick and Walrus

<model about="urn:cetask.wpi.edu:models:secrets:WalrusCave"

xmlns="http://www.cs.wpi.edu/~rich/tizona"

xmlns:d="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext">

<say id="Convo" actor="walrus"

text="Ah, you have come at last. Welcome, great emissaries, to my hall!">

<say actor="sidekick" text="Oh look, a talking walrus."/>

</say>

<say actor="walrus" text="What?! No one may exit the hall by the north gate unless

they know the secret of the Hall.">

<say actor="sidekick"

text="Seems to have a high opinion of himself for a talking pinniped."/>

</say>

<say id="Secret" actor="walrus" text="Now... what is the secret?">

<say actor="sidekick" text="Finally. Thought he\’d never shut up."/>

</say>

<say id="AdamantRequest" actor="walrus" text="Aha! The Adamant Request! Well done.">

<say actor="sidekick" text="He creeps me out. Let\’s get out of here."/>

</say>

</model>

77

Appendix C

XML Schema for Tizona Format

The following listing is an XML Schema document that defines the form of Tizona format XML

files. Such files can be transformed into standard ANSI/CEA-2018 task models using the XSL

Transform file given in Appendix D.

<xs:schema targetNamespace="http://www.cs.wpi.edu/~rich/tizona"

elementFormDefault="qualified"

xmlns="http://www.cs.wpi.edu/~rich/tizona"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="model">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="do"/>

<xs:element ref="say"/>

</xs:choice>

<xs:any namespace="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="about" type="xs:anyURI"/>

</xs:complexType>

</xs:element>

<xs:element name="do">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="do"/>

<xs:element ref="say"/>

</xs:choice>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="optional"/>

78

<xs:attribute name="actor" type="xs:string" use="optional"/>

<xs:attribute name="task" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="say">

<xs:complexType>

<xs:sequence>

<xs:element name="applicable" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="do"/>

<xs:element ref="say"/>

</xs:choice>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="optional"/>

<xs:attribute name="ref" type="xs:string" use="optional"/>

<xs:attribute name="actor" type="xs:string" use="optional"/>

<xs:attribute name="text" type="xs:string" use="optional"/>

</xs:complexType>

</xs:element>

</xs:schema>

79

Appendix D

Tizona to ANSI/CEA-2018

Translation

The following listing is an eXtensible Stylesheet Language (XSL) Transformation file that takes

as input a Tizona format XML document and produces an ANSI/CEA-2018 task model.

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext"

xmlns:d="http://www.cs.wpi.edu/~rich/cetask/cea-2018-ext"

xmlns:t="http://www.cs.wpi.edu/~rich/tizona">

<xsl:output method="xml" indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:variable name="external" select="’player’"/>

<xsl:template match="t:model">

<xsl:element name="taskModel">

<!-- force inclusion of disco namespace -->

<xsl:namespace name="disco" select="’urn:disco.wpi.edu:Disco’" />

<!-- take care of ’about’ URN to make unique -->

<xsl:attribute name="about">

<xsl:value-of select="@about"/>

</xsl:attribute>

<!-- make top-level ’do’ and ’say’ tasks to get things started -->

<xsl:for-each select="t:do|t:say">

<xsl:element name="task">

<xsl:attribute name="id">

<xsl:value-of select="@id"/>

80

<xsl:if test="not(@id)">

<xsl:text>_</xsl:text>

<xsl:value-of select="generate-id()"/>

</xsl:if>

</xsl:attribute>

<xsl:apply-templates select="current()" mode="subtasks"/>

</xsl:element>

</xsl:for-each>

<!-- make required 2nd, 3rd, and so on level tasks to build tree -->

<xsl:apply-templates select="//t:do" mode="task"/>

<xsl:apply-templates select="//t:say" mode="task"/>

<!-- collect the disco elements -->

<xsl:apply-templates select="d:task|d:script|d:subtasks" mode="disco"/>

</xsl:element>

</xsl:template>

<!-- allow disco tags to pass through unscathed -->

<xsl:template match="*" mode="disco">

<xsl:element name="{local-name()}">

<xsl:copy-of select="@*"/>

<xsl:apply-templates mode="disco"/>

</xsl:element>

</xsl:template>

<!-- tasks for ’do’ nodes -->

<xsl:template match="t:do" mode="task">

<!-- only generate task if there are children -->

<xsl:if test="node()">

<xsl:element name="task">

<!-- use id attribute if present -->

<xsl:attribute name="id">

<xsl:choose>

<xsl:when test="@id">

<xsl:text>_</xsl:text>

<xsl:value-of select="@id"/>

<xsl:text>_tree</xsl:text>

</xsl:when>

<xsl:otherwise>

<xsl:text>_</xsl:text>

<xsl:value-of select="generate-id()"/>

<xsl:text>_tree</xsl:text>

</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<!-- apply to children -->

<xsl:apply-templates select="t:do|t:say" mode="subtasks"/>

</xsl:element>

</xsl:if>

</xsl:template>

81

<!-- tasks for ’say’ nodes -->

<xsl:template match="t:say" mode="task">

<!-- only generate task if there are children -->

<xsl:if test="node()">

<xsl:element name="task">

<!-- use id attribute if present -->

<xsl:attribute name="id">

<xsl:choose>

<xsl:when test="@id">

<xsl:text>_</xsl:text>

<xsl:value-of select="@id"/>

<xsl:text>_tree</xsl:text>

</xsl:when>

<xsl:otherwise>

<xsl:text>_</xsl:text>

<xsl:value-of select="generate-id()"/>

<xsl:text>_tree</xsl:text>

</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<!-- apply to children -->

<xsl:apply-templates select="t:do|t:say" mode="subtasks"/>

</xsl:element>

</xsl:if>

</xsl:template>

<!-- subtasks for ’do’ nodes-->

<xsl:template match="t:do" mode="subtasks">

<xsl:variable name="id">

<xsl:choose>

<xsl:when test="@id">

<xsl:text>_</xsl:text>

<xsl:value-of select="@id"/>

</xsl:when>

<xsl:otherwise>

<xsl:text>_</xsl:text>

<xsl:value-of select="generate-id()"/>

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<xsl:element name="subtasks">

<xsl:attribute name="id">

<xsl:value-of select="$id"/>

<xsl:text>_subtasks</xsl:text>

</xsl:attribute>

<!-- link to referenced task -->

<xsl:element name="step">

<xsl:attribute name="name">

82

<xsl:value-of select="$id"/>

<xsl:text>_step</xsl:text>

</xsl:attribute>

<xsl:attribute name="task">

<xsl:value-of select="@task"/>

</xsl:attribute>

</xsl:element>

<!-- include rest of tree if applicable -->

<xsl:if test="node()">

<xsl:element name="step">

<xsl:attribute name="name">

<xsl:value-of select="$id"/>

<xsl:text>_ref</xsl:text>

</xsl:attribute>

<xsl:attribute name="task">

<xsl:value-of select="$id"/>

<xsl:text>_tree</xsl:text>

</xsl:attribute>

</xsl:element>

</xsl:if>

<xsl:apply-templates select="t:applicable" mode="disco"/>

<!-- apply external modifiers if actor specified -->

<xsl:if test="@actor">

<xsl:element name="binding">

<xsl:attribute name="slot">

<xsl:text>$</xsl:text>

<xsl:value-of select="$id"/>

<xsl:text>s.external</xsl:text>

</xsl:attribute>

<xsl:attribute name="value">

<xsl:if test="@actor=$external">

<xsl:text>true</xsl:text>

</xsl:if>

<xsl:if test="@actor!=$external">

<xsl:text>false</xsl:text>

</xsl:if>

</xsl:attribute>

</xsl:element>

</xsl:if>

</xsl:element>

</xsl:template>

<!-- subtasks for ’say’ nodes -->

<xsl:template match="t:say" mode="subtasks">

<xsl:variable name="id">

<xsl:choose>

<xsl:when test="@id">

<xsl:text>_</xsl:text>

<xsl:value-of select="@id"/>

83

</xsl:when>

<xsl:otherwise>

<xsl:text>_</xsl:text>

<xsl:value-of select="generate-id()"/>

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<xsl:element name="subtasks">

<xsl:attribute name="id">

<xsl:value-of select="$id"/>

<xsl:text>_subtasks</xsl:text>

</xsl:attribute>

<xsl:if test="@ref">

<!-- referencing another node -->

<xsl:element name="step">

<xsl:attribute name="name">

<xsl:value-of select="$id"/>

<xsl:text>_step</xsl:text>

</xsl:attribute>

<xsl:attribute name="task">

<xsl:text>_</xsl:text>

<xsl:value-of select="@ref"/>

<xsl:text>_tree</xsl:text>

</xsl:attribute>

</xsl:element>

</xsl:if>

<xsl:if test="not(@ref)">

<xsl:element name="step">

<xsl:attribute name="name">

<xsl:value-of select="$id"/>

<xsl:text>_step</xsl:text>

</xsl:attribute>

<xsl:attribute name="task">

<xsl:text>disco:edu.wpi.disco.lang.Say</xsl:text>

</xsl:attribute>

</xsl:element>

</xsl:if>

<!-- include rest of tree if applicable -->

<xsl:if test="node()">

<xsl:element name="step">

<xsl:attribute name="name">

<xsl:value-of select="$id"/>

<xsl:text>_ref</xsl:text>

</xsl:attribute>

<xsl:attribute name="task">

<xsl:value-of select="$id"/>

<xsl:text>_tree</xsl:text>

</xsl:attribute>

84

</xsl:element>

</xsl:if>

<xsl:apply-templates select="t:applicable" mode="disco"/>

<xsl:if test="not(@ref)">

<!-- include text -->

<xsl:element name="binding">

<xsl:attribute name="slot">

<xsl:text>$</xsl:text>

<xsl:value-of select="$id"/>

<xsl:text>_step.text</xsl:text>

</xsl:attribute>

<xsl:attribute name="value">

<xsl:text>’</xsl:text>

<xsl:value-of select="@text"/>

<xsl:text>’</xsl:text>

</xsl:attribute>

</xsl:element>

</xsl:if>

<!-- apply external modifiers if actor specified -->

<xsl:if test="@actor">

<xsl:element name="binding">

<xsl:attribute name="slot">

<xsl:text>$</xsl:text>

<xsl:value-of select="$id"/>

<xsl:text>_step.external</xsl:text>

</xsl:attribute>

<xsl:attribute name="value">

<xsl:if test="@actor=$external">

<xsl:text>true</xsl:text>

</xsl:if>

<xsl:if test="@actor!=$external">

<xsl:text>false</xsl:text>

</xsl:if>

</xsl:attribute>

</xsl:element>

</xsl:if>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

85

Bibliography

[1] Adams, E. Fundamentals of Game Design. New Riders, 2009.

[2] Cavazza, M., and Charles, F. Dialogue generation in character-based interactive sto-
rytelling. AAAI First Annual Artificial Intelligence and Interactive Digital Entertainment
Conference (2005), 12–17.

[3] Charles, F., Mead, S., and Cavazza, M. Generating dynamic storylines through char-
acters interactions. International Journal of Intelligent Games & Simulation, 1 (2002), 5–11.

[4] Consumer Electronics Association. CEA-2018 Task Model Description.
http://ce.org/cea-2018, 2007.

[5] Despain, W. Writing for Video Game Genres: From FPS to RPG. A K Peters, 2008.

[6] Golden T Studios. http://goldenstudios.or.id/.

[7] Heineman, G., Pollice, G., and Selkow, S. Algorithms in a Nutshell. O’Reilly Media,
2008.

[8] Isla, D. Handling complexity in the Halo 2 AI. Gamasutra Online (2005),
http://www.gamasutra.com/gdc2005/features/20050311/isla pfv.htm.

[9] Kelly, J., Botea, A., and Koenig, S. Offline planning with hierarchical task networks
in video games. In Proceedings of the Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference, Stanford, CA (2008).

[10] Lebowitz, M. Story-telling as planning and learning. Poetics 14, 6 (1985).

[11] Lesh, N., Rich, C., and Sidner, C. Using plan recognition in human-computer collabo-
ration. 23–32.

[12] Mateas, M., and Stern, A. Façade: An experiment in building a fully-realized
interactive drama. In Game Developers Conference, Game Design Track (2003),
http://www.interactivestory.net/papers/MateasSternGDC03.pdf.

[13] McCannel, D., and Ivory, C. Forerunner project. Major qualifying project, Worcester
Polytechnic Institute, 2008.

[14] Oracle/Collabnet. Liveconnect support in the new java plug-in technology, 2006.

86

[15] Owen, C., Biocca, F., Bohil, C., and Conley, J. SIMDIALOG: A visual game dialog
editor. Proceedings of Meaningful Play Conference, Michigan State University, East Lansing,
MI (2008).

[16] Rich, C. Building task-based user interfaces with ANSI/CEA-2108. IEEE Computer 42, 8
(2009), 20–27.

[17] Rich, C., and Sidner, C. Collagen: A collaboration manager for software interface agents.
User Modeling and User-Adapted Interaction 8 (1998), 315–350.

[18] Schach, S. R. Object Oriented and Classical Software Engineering, 6th Ed. McGraw-Hill,
2005.

[19] Sidner, C. An artificial discourse language for collaborative negotiation. Proceedings of the
Twelfth National Conference on Artificial Intelligence (1994), 814–819.

[20] Skorupski, J., Jayapalan, L., Marquez, S., and Mateas, M. Wide Ruled: A friendly
interface to author-goal based story generation. Lecture Notes in Computer Science 4871
(2007), 26–38.

[21] Sommerville, I. Software Engineering, 7th Ed. Pearson Education Ltd., 2004.

[22] Winston, P. Artificial Intelligence. Addison-Wesley, 1992.

87

	Worcester Polytechnic Institute
	Digital WPI
	2010-05-27

	A Unified Representation for Dialogue and Action in Computer Games: Bridging the Gap Between Talkers and Fighters
	Philip Hanson
	Repository Citation

	tmp.1530275769.pdf.GwL2p

