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Abstract

Two new graph characteristics, the total vertex irregularity strength and the total edge irregularity strength, are introduced.
Estimations on these parameters are obtained. For some families of graphs the precise values of these parameters are proved.
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1. Introduction

A labelling of a graph is a map that carries graph elements to the numbers (usually to the positive or non-negative
integers). The most common choices of domain are the set of all vertices (vertex labellings), the edge set alone (edge
labellings), or the set of all vertices and edges (total labellings). Other domains are possible. The most complete recent
survey of graph labellings is [6].

In many cases it is interesting to consider the sum of all labels associated with a graph element. This will be called
the weight of the element. As in the study of magic total labellings, see e.g., a recent book of Wallis [13], the weight
of a vertex x under a total labelling � of elements of a graph G = (V , E) is

wt(x) = �(x) +
∑
xy∈E

�(xy), (1)

and the weight of the edge xy is

wt(xy) = �(x) + �(xy) + �(y). (2)

In [2], the following problem was proposed by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba. Assign
positive integer labels to the edges of a simple connected graph of order at least 3 in such a way that the graph becomes
irregular, i.e., the weights (label sums) at each vertex are distinct. What is the minimum value of the largest label over
all such irregular assignments?
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This parameter of a graph G is well known as the irregularity strength of the graph G, s(G). Finding the irregularity
strength of a graph seems to be rather hard even for simple graphs, see [3,4,5,7,9,10]. An excellent survey on the subject
is Lehel [11]. For recent results see papers by Amar and Togni [1], Jacobson and Lehel [8] and Nierhoff [12].

Motivated by this problem, a recent excellent book by Wallis [13] and other papers on total labellings, see e.g. [14],
we study in this paper irregular total labellings.

For a graph G = (V , E) with vertex set V and edge set E we define a labelling � : V ∪ E → {1, 2, . . . , k} to be a
total k-labelling. A total k-labelling is defined to be an edge irregular total k-labelling of the graph G if for every two
different edges e and f of G there is

wt(e) �= wt(f ),

and to be a vertex irregular total k-labelling of G if for every two distinct vertices x and y of G there is

wt(x) �= wt(y).

The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity
strength of the graph G, tes(G). Analogously, we define the total vertex irregularity strength of G, tvs(G), as the
minimum k for which there exists a vertex irregular total k-labelling of G.

Let G = (V , E) be a (p, q)-graph, that is, the graph with vertex set V = {v1, v2, . . . , vp} and edge set E, |E| = q.
Let � be a total labelling of G. We associate with G and its total labelling the following p × p matrix L = [lij ] defined
by

lij =

⎧⎪⎨
⎪⎩

�(vivj ) if vivj ∈ E and i �= j,

0 if vivj /∈ E and i �= j,

�(vi) if i = j.

Let us call this matrix the �-matrix of the total labelling � of the graph G. This matrix is symmetric with respect to
the main diagonal and all its elements are non-negative integers.

The rest of the paper is organised as follows. In Section 2 we investigate properties of edge irregular total labellings.
Section 3 is devoted to vertex irregular total labellings.

2. Edge irregular total labellings

Our first result shows that the total edge irregularity strength is defined for all graphs. Namely, we have

Theorem 1. Let G = (V , E) be a graph with vertex set V and a non-empty edge set E. Then⌈ |E| + 2

3

⌉
� tes(G)� |E|.

Proof. To get the upper bound we label each vertex of G with label 1 and the edges of G consecutively with labels
1, 2, . . . , |E|. It is easy to see that wt(e) �= wt(f ) for any two distinct edges e and f of G.

Let � be an optimal labelling with respect to the tes(G). Then the heaviest edge e of G has weight wt(e)� |E| + 2.
This weight is the sum of three labels. So at least one label is at least (|E| + 2)/3. �

The lower bound in Theorem 1 is tight as can be seen from the following theorem.

Theorem 2. Let Pn and Cn be a path and a cycle, respectively, with n�1 edges. Then

tes(Pn) = tes(Cn) =
⌈

n + 2

3

⌉
.

Proof. By Theorem 1 we have tes(G)��(n + 2)/3�, n�1 where G ∈ {Pn, Cn}. First we prove the bound for
paths. We proceed by induction on n. The path P1 is labelled with label 1 on all three elements. Let Pn be a path
v1e1v2e2v3 · · · vnenvn+1; n�1. Suppose we have labelled the path Pn for n=3(k−1)+1, k�1, in such a way that the
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Fig. 1.

edge en = vnvn+1 of Pn is labelled with �(vn) = �(vn+1) = �(en) = k. For the inductive step the edges e1, . . . , en and
the vertices v1, . . . , vn+1 are labelled as in Pn and we put �(en+1)=�(en+2)=�(en+3)=k+1, �(vn+2)=k, �(vn+3)=
�(vn+4) = k + 1. Because Pn+1 ⊆ Pn+2 ⊆ Pn+3, we are done.

Let Cn be a cycle v1, e1, v2, e2, v3, . . . , vn, en, v1. In Fig. 1 we have optimal irregular labellings of C3, C4 and C5
with labels from the set {1, 2, 3}.

Suppose we have an irregular labelling of Cn for n = 3(k − 1) + 2, k�2 with the edge en−1 labelled as follows,
�(en−1) = k + 1, �(vn−1) = �(vn) = k. To obtain an optimal labelling of Cn+1 (Cn+2 and Cn+3, respectively) we split
the edge en−1 into two (three, or four, respectively) edges by adding one new vertex x1 (two new vertices x1 and x2, or
three new vertices x1, x2 and x3, respectively) and label the “new” vertices and edges of the cycle Cn+1 (Cn+2, Cn+3,
respectively) in the following way, �(vn−1x1)=k +1, �(x1)=k +1, �(x1vn)=k (�(x1)=�(x2)=k +1, �(vn−1x1)=
�(x1x2)=k+1, �(x2vn)=k, and �(x1)=�(x2)=�(x3)=k+1, �(vn−1x1)=�(x2x3)=k+1, �(x1x2)=k+2, �(x3vn)=k,
respectively). For Cn+3 we reorder the vertices and edges so that the edge x1x2 will play the role of en−1 of the above
construction. �

The upper bound in Theorem 1 is not sharp. If we introduce into the play the maximum degree � = �(G) of the
graph G, we obtain the following:

Theorem 3. Let G = (V , E) be a graph with maximum degree � = �(G). Then

(i)

tes(G)�
⌈

� + 1

2

⌉
and

(ii)

tes(G)� |E| − � if �� |E| − 1

2
.

Proof. (i) Suppose � is an optimal total labelling of G. Let e1, e2, . . . , e� be the edges incident with a vertex x of
maximum degree � in G. Let yi be the other end of the edge ei , i.e., ei = xyi . Since w(ei) = �(x) + �(ei) + �(yi) for
all i, 1� i��, and as w(e1), w(e2), . . . , w(e�) are all distinct, �(ei)+�(yi) are all distinct for 1� i��. So the largest
among these values must be at least � + 1. Thus, either �(ei) or �(yi) must be at least (� + 1)/2 for some i, 1� i��.

(ii) Let x and e1, e2, . . . , e� be defined as above. Let � be the following labelling of the elements from V ∪ E.
�(v) = 1 for every v ∈ V, v �= x and �(x) = � + 1. The edges from E − {e1, e2, . . . , e�} are labelled consecutively
with labels 1, 2, . . . , |E| − � and �(ei) = |E| − 2� + i, i = 1, 2, . . . ,�. It is easy to see that � is an edge irregular
total labelling having the required property. �

The lower bound in Theorem 3 is tight as can be seen from the next theorem.

Theorem 4. Let Sn = K1,n be a star on n + 1 vertices, n > 1. Then

tes(Sn) =
⌈

n + 1

2

⌉
.

Proof. The inequality tes(Sn)��(n + 1)/2� holds by Theorem 3. What follows is an edge irregular total labelling
showing the converse inequality. Let e1 = xv1, e2 = xv2, . . . , en = xvn be edges of the star Sn. The following total



labelling � is optimal:

�(x) = 1, �(vi) =
⌊

i + 1

2

⌋
, �(ei) =

⌈
i + 1

2

⌉
for i = 1, 2, . . . , n. �

The upper bound in Theorem 3 seems to be far from the best possible.
The idea of the proof of Theorem 3(ii) is used in the proof of:

Theorem 5. Let G = (V , E) be a graph with |V | = p and |E| = q. Let I = {u1, u2, . . . , ut } be an independent set of
vertices in G such that degG(ui) = di for any i = 1, 2, . . . , t . If

∑t
i=1 di �(q − 1)/2 then

tes(G)�q −
t∑

i=1

di .

Proof. Let Ai ={e1, e2, . . . , edi
} be the set of edges incident with the vertex ui , i =1, 2, . . . , t . Set A0 =E −⋃t

i=1 Ai .
The following labelling � is an edge irregular total labelling to the set {1, 2, . . . , r}, where r = q − ∑t

i=1 di . We put
�(v) = 1 for every v ∈ V − I ,

�(ui) = 1 + d1 + d2 + · · · + di for every i = 1, 2, . . . , t .

The edges from the set A0 are labelled consecutively with labels 1, 2, . . . , r . The edges {e1, e2, . . . , edi
} from the set

Ai get labels r − di + 1, r − di + 2, . . . , r .
It is easy to see that the largest integer used in our labelling � is r = q − ∑t

i=1 di .
It is a routine matter to verify that each edge of G has a distinct weight. In fact, our labelling has been chosen in such

a way that the resulting edge weights form a consecutive sequence of integers from 3 to q + 2. �

Let � be an edge irregular total labelling of a graph G, and let H be a subgraph of G. The restriction of � to H is also
an edge irregular total labelling of H. This means that tes(H)� tes(G). As a consequence of this inequality we have
the following:

Lemma 6. Let G = (V , E) be a graph with |V | = p. Then

tes(G)� tes(Kp).

Lemma 6 points out that it is very important to know the exact value of tes(Kp) for any p�2. We know that⌈
p2 − p + 4

6

⌉
� tes(Kp)� (p − 1)(p − 2)

2
. (3)

The left inequality is from Theorem 1, the right side one is a consequence of Theorem 3(ii).
From Fig. 1 we know that tes(K3) = 2. The total edge irregularity strength of K4 equals 3 as can be seen from (3)

and from the following matrix L(4) expressing a suitable labelling �:

L(4) =
⎡
⎢⎣

1 1 2 2
1 1 1 3
2 1 2 3
2 3 3 3

⎤
⎥⎦ .

For K5 the inequality (3) gives tes(K5)�4. However, we have:

Theorem 7. tes(K5) = 5.

Proof. The upper bound 5 is given by the labelling � expressed by �-matrix of K5 below

L(5) =

⎡
⎢⎢⎢⎣

1 1 4 4 4
1 1 1 1 1
4 1 2 5 5
4 1 5 4 5
4 1 5 5 3

⎤
⎥⎥⎥⎦ .



To prove that tes(K5)�5, let us proceed by contradiction. Suppose tes(K5)=4. Then the edges of K5 must have weights
3, 4, 5, . . . , 11, 12. The existence of an edge e = ab with wt(e) = 12 forces �(e) = �(a) = �(b) = 4. Also, in K5, there
must be an edge f = xy with wt(f ) = 3 and �(f ) = �(x) = �(y) = 1. Because the edges ax, ay, bx, and by have one
vertex labelled with label 1 and the second vertex labelled with label 4 their labels must be distinct. As tes(K5) = 4 we
have {�(ax), �(ay), �(bx), �(by)}={1, 2, 3, 4} and so {wt(ax), wt(ay), wt(bx), wt(by)}={6, 7, 8, 9}. The remaining
four edges must receive the weights 4, 5, 10 and 11. The fifth vertex of K5 cannot be labelled with a label larger than
2, otherwise the weight 4 cannot be attained and it cannot be labelled with a label less than 3, otherwise the weight 11
cannot be attained. This produces a contradiction. �

We believe that the following holds

Conjecture 1. tes(Kp) = �(p2 − p + 4)/6� for any p�6.

We have verified this conjecture for 6�p�20.
The next two theorems were motivated by our desire to explore labellings of graphs with a vertex of maximum

degree beyond the constraints of Theorem 3(ii).
First we present the total edge irregularity strength of Wn, the wheel with n + 1 vertices.

Theorem 8. tes(Wn) = �(2n + 2)/3� for n�3.

Proof. Let Wn be the wheel with V (Wn) = {v} ∪ {vi : 1� i�n} and E(Wn) = {vvi : 1� i�n} ∪ {vivi+1 : 1� i�n −
1} ∪ {vnv1}. That �(2n + 2)/3� is a lower bound for tes(Wn) follows from Theorem 1. To show that �(2n + 2)/3� is
an upper bound for tes(Wn) we describe a total �(2n + 2)/3�-labelling for Wn.

For n�6 we construct the function � as follows:

�(v) =
⌈

2n + 2

3

⌉
,

�(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1� i�
⌈

2n + 2

3

⌉
− 2,⌈

2n + 2

3

⌉
− 2 if i =

⌈
2n + 2

3

⌉
− 1 and i = n,⌈

2n + 2

3

⌉
if

⌈
2n + 2

3

⌉
� i�n − 1,

�(vivi+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i if 1� i�
⌈

2n + 2

3

⌉
− 3,

1 if i =
⌈

2n + 2

3

⌉
− 2,

5 if i =
⌈

2n + 2

3

⌉
− 1,

2n + 2 −
⌈

2n + 2

3

⌉
− i if

⌈
2n + 2

3

⌉
� i�n − 2,

4 if i = n − 1,

2 if i = n,

�(vvi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i if 1� i�
⌈

2n + 2

3

⌉
− 2,

2 if i =
⌈

2n + 2

3

⌉
− 1,

i −
⌈

2n + 2

3

⌉
+ 4 if

⌈
2n + 2

3

⌉
� i�n − 1,

3 if i = n.



Observe that

wt(vivi+1) = �(vi) + �(vi+1) + �(vivi+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i + 2 for 1� i�
⌈

2n + 2

3

⌉
− 2,⌈

2n + 2

3

⌉
+ 1 for i = n,

2

⌈
2n + 2

3

⌉
+ 2 for i = n − 1,

2

⌈
2n + 2

3

⌉
+ 3 for i =

⌈
2n + 2

3

⌉
− 1,

2n + 2 +
⌈

2n + 2

3

⌉
− i for

⌈
2n + 2

3

⌉
� i�n − 2

and

wt(vvi) = �(v) + �(vi) + �(vvi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌈
2n + 2

3

⌉
+ 1 + i for 1� i�

⌈
2n + 2

3

⌉
− 1,

2

⌈
2n + 2

3

⌉
+ 1 for i = n,

i +
⌈

2n + 2

3

⌉
+ 4 for

⌈
2n + 2

3

⌉
� i�n − 1.

So the weights of edges of Wn under the labelling � constitute the set {3, 4, . . . , 2n+ 2} and the function � is a map
from

V (Wn) ∪ E(Wn) into

{
1, 2, . . . ,

⌈
2n + 2

3

⌉}
.

To take care of Wn, 3�n < 6, we give the following special labellings:
For W3: �(v) = 3, �(v1) = �(v2) = 1, �(v3) = 2 �(vv1) = 2, �(vv2) = �(vv3) = 3, �(v1v2) = �(v2v3) = 1 and

�(v1v3) = 2.

For W4: �(v)= 4, �(v1)=�(v2)= 1, �(v3)= 2, �(v4)= 3 �(vv1)=�(v1v2)=�(v1v4)=�(v2v3)= 1, �(vv2)=
2, �(vv3) = �(vv4) = �(v3v4) = 3.

For W5: �(v) = �(v4) = 4, �(v1) = �(v2) = 1, �(v3) = 2, �(v5) = 3, �(vv1) = �(v1v2) = �(v1v5) = �(v2v3) =
1, �(vv2) = �(vv3) = �(vv5) = 2, �(vv4) = �(v3v4) = �(v4v5) = 4.

It is easy to see that these total labellings have the required properties.
This concludes the proof. �

Next we determine the total edge irregular strength for friendship graphs.
The friendship graph Fn may be visualised as n triangles sharing a common vertex (but otherwise independent).

Alternatively, Fn may be considered as an even wheel W2n with every alternate rim edge missing. This second concep-
tualisation justifies us referring to the edges adjacent to the vertex of maximum degree as spokes and the remainder of
the edges as rim edges. Note that |V (Fn)| = 2n + 1 and |E(Fn)| = 3n.

Theorem 9. tes(Fn) = �(3n + 2)/3�.

Proof. For the friendship graph Fn our aim is to allocate edge weights from the set {3, . . . , 3n + 2} so that each edge
receives a distinct weight. Ideally, we would wish to ensure that the largest label is M = �(3n + 2)/3�, the minimum
largest label by Theorem 1.

Case 1: n ≡ 1 (mod 2). Label the vertex x of degree � = 2n with c = (n + 1)/2. Choose a vertex v1 and without
loss of generality number v2, v3 etc clockwise, with v1v2 ∈ E(Fn). Let si represent the spoke xvi and ri the rim edge



vivi+1. Note that the subscript of r is always odd. Define a labelling � for the first (n − 1)/2 triangles as

�(ri) =
{�(vi) + 1, i ≡ 0 (mod 3),

�(vi), i ≡ 1 (mod 3),

�(vi) − 1, i ≡ 2 (mod 3),

�(si) = i − �(vi) + 1,

where 1� i�n − 1, so we have labelled (n − 1)/2 complete triangles and allocated weights from {3, . . . , (3n + 1)/2}
such that each edge has a distinct weight.

For the second part of the labelling we now allocate the largest edge weight, 3n + 2 to a rim edge so that the
maximum label is as small as possible. Allocate �(v2n) = n + 1 = �(v2n−1) and �(r2n−1) = n. If n + 1 is to be the
largest label, then the largest spoke weight can be no greater than (5n + 5)/2. Next we need to allocate weights from
the set {(5n + 7)/2, . . . , 3n + 2} to rim edges. Note that the cardinality of this set is (n − 1)/2. We may then assign
labels to a further n − 1 spokes so as to allocate weights from the set {(3n + 9)/2, . . . , (5n + 5)/2}. For a separate set
of (n − 1)/2 triangles define the labelling � as

�(vi) =
⌈

4n + i + 2

6

⌉
, n + 2� i�2n,

�(ri) =
{�(vi) + 1, (n + i) ≡ 0 (mod 3),

�(vi), (n + i) ≡ 1 (mod 3),

�(vi) − 1, (n + i) ≡ 2 (mod 3),

�(si) = i + 2 − �(vi).

We have now labelled n − 1 complete triangles and allocated all weights from the given set except for the weights
(3n + 3)/2, (3n + 5)/2 and (3n + 7)/2. To complete the labelling we label the remaining two vertices and rim edge
all with the value c and the two remaining spokes with c + 1 and c + 2. This completes our labelling.

Case 2: n ≡ 0 (mod 2). Label the vertex of maximum degree with c = n/2. The rest of the labelling follows the
labelling for Case 1 except that the first part labels only (n/2) − 1 complete triangles. The second part of the labelling
and the remaining triangle are labelled as in Case 1. �

Note 1. The problem of finding the total edge irregularity strength for other classes of graphs such as complete graphs,
complete bipartite graphs, complete multipartite graphs, trees and regular graphs remains open.

3. Vertex irregular total labellings

It is easy to see that irregularity strength s(G) of a graph G is defined only for graphs containing at most one isolated
vertex and no connected component of order 2. On the other hand, the total vertex irregularity strength tvs(G) is defined
for every graph G. Our first result in this section is

Theorem 10. Let G be a graph with no component of order �2. Then

tvs(G)�s(G). (4)

Proof. Let � be an edge labelling providing the irregularity strength s(G), � : E → {1, 2, . . . , s(G)}. If we extend
this labelling to the vertex set V (G) of G using �(v)=1 for every v ∈ V (G), we obtain a vertex irregular total labelling
of G. �

Nierhoff [12] recently proved that for all graphs G with no component of order at most 2 and G �= K3, the irregularity
strength s(G) of G is at most p − 1. Using this result and (4) we obtain

Corollary 11. Let G be a graph with no component of order �2, G �= K3. Then tvs(G)�p − 1.



Theorem 12. Let T be a tree with n pendant vertices and no vertex of degree 2. Then⌈
n + 1

2

⌉
� tvs(T )�n.

Proof. Amar and Togni [1] established that the irregularity strength s(T ) of any tree with no vertex of degree 2 is equal
to its number of pendant vertices. This provides an upper bound. To prove the lower bound consider the weights of the
pendant vertices. The smallest weight among them is at least two and the largest weight has value at least n + 1. Since
the weight of any pendant vertex is the sum of two positive integers, the proof is complete. �

The sharpness of the lower bound in Theorem 12 is given by

Lemma 13. Let K1,n be a star with n pendant vertices then

tvs(K1,n) =
⌈

n + 1

2

⌉
.

Proof. It is enough to describe a suitable vertex irregular total labelling. Let x be the central vertex of the star and let
e1, e2, . . . , en be edges and v1, v2, . . . , vn the pendant vertices. The following total labelling � fulfills our requirements:

�(x) = 1, �(vi) =
⌈

i + 1

2

⌉
for every vertex vi, i = 1, 2, . . . , n,

and �(ei) = 
(i + 1)/2� for every edge ei , i = 1, 2, . . . , n. �

Let Kp denote the complete graph of order p. In [2] it was shown that s(Kp) = 3 for every p. Here, we have

Theorem 14. For p�2 we have

tvs(Kp) = 2.

Proof. Trivially, tvs(Kp)�2 for any p�2. For the converse, we define a suitable vertex irregular total labelling as
follows. Let V (Kp) = {v1, v2, . . . , vp}. We define

�(vi) = 1 for 1� i�
⌈p

2

⌉
and

�(vi) = 2 for
⌈p

2

⌉
< i�p

and for every i, 1� i�p, we define

�(vivj ) = 1 for 1�j �p − i + 1, i �= j

and

�(vivj ) = 2 for p − i + 2�j �p.

To see that this total labelling � is irregular on the vertices of Kp, consider the corresponding �-matrix L(Kp). It is
easy to see that the sum of entries of L(Kp) in the row corresponding to the vertex vk gives the weight

wt(vk) = p + k − 1 for any k = 1, . . . , p. �

The following simple observation is very useful. We formulate it as



Lemma 15. Let � be a vertex irregular total labelling of a graph G and let wt be the corresponding weight function
on V (G), the vertex set of G. Let e = xy be an edge of G. Then the weights wt(x) and wt(y) are not changed if � is
transformed into �+ or �−, respectively, where

(i) �+(v) = �(v) for x �= v �= y,

�+(x) = �(x) + 1, �+(y) = �(y) + 1,

�+(f ) = �(f ) for f �= e and
�+(e) = �(e) − 1.

(ii) �−(v) = �(v) for x �= v �= y,

�−(x) = �(x) − 1, �−(y) = �(y) − 1 provided that �(x), �(y)�2,

�−(f ) = �(f ) for f �= e and
�−(e) = �(e) + 1.

Note that in Lemma 15 the case when �+(e) = 0 corresponds to the deletion of the edge e.

Theorem 16. Let G be a (p, q)-graph with minimum degree � = �(G) and maximum degree � = �(G). Then⌈
p + �

� + 1

⌉
� tvs(G)�p + � − 2� + 1.

Proof. Lower bound: The largest value among the weights of vertices of G is at least p + � and this weight is the sum
of at most � + 1 integers. Hence the largest label contributing to this weight must be at least �(p + �)/(� + 1)�.

Upper bound: Consider Kp with the optimal total labelling � from the proof of Theorem 14 providing tvs(Kp) = 2.
Choose a subgraph of Kp isomorphic with G and delete from Kp all edges not belonging to G in agreement with
Lemma 15. This means that if an edge e = xy is deleted and its label is �(e)= k (k = 1 or 2 because tvs(Kp)= 2) then
in the new labelling �+(x)=�(x)+ k and �+(y)=�(y)+ k. After the deletion of all the edges of G, the complement
of G, the new label �(v) of any vertex of degree d is

p − d ��(v)�2p − 2d .

Hence the labels � of vertices of G are at least p − � and at most 2p − 2�. Because of Lemma 15, the weights of
vertices of G are the same as in Kp and they are mutually distinct. Now the label �(v) of every vertex is decreased by
p − � − 1. The new vertex irregular total labelling � is obtained with the property that

1��(v)�2p − 2� − (p − � − 1) = p + � − 2� + 1 for any v ∈ V (G)

and

�(e)�2 for every edge e ∈ E(G).

The new weight wt(v) = wt(v) − p + � + 1�p − p + � + 1 = � + 1 and, clearly, wt(x) �= wt(y) whenever
x �= y. �

Corollary 17. Let G be an r-regular (p, q)-graph. Then⌈
p + r

1 + r

⌉
� tvs(G)�p − r + 1.

By using the labelling from Theorem 2, one can easily see that

tvs(Cp) = tes(Cp) =
⌈

p + 2

3

⌉
.

This observation can be used in the proof of:



Theorem 18. Let G be a regular hamiltonian (p, q)-graph. Then

tvs(G)�
⌈

p + 2

3

⌉
.

Proof. Label totally the hamiltonian cycle of G as in Theorem 2, using labels from the set {1, 2, . . . , �(p + 2)/3�};
the remaining edges of G are labelled with label 1. This yields tvs(G)��(p + 2)/3�. �

Theorem 19. Let G be a (p, q)-graph with maximum degree � = �(G) and no component of order �2. Then

tvs(G)�p − 1 −
⌊

p − 2

� + 1

⌋
.

Proof. If G satisfies the conditions of the Theorem and G �= K3 then, by Nierhoff [12], G has the irregularity strength
s(G)�p − 1. This means that there is an edge labelling � such that for each edge e of G�(e)�p − 1. We extend this
labelling to a vertex irregular total labelling by setting �(v) = 1 for every vertex v ∈ V (G).

Put t = 
(p − 2)/(� + 1)�. Lemma 15(i) is now applied t times to each edge e = xy of G with �(e) > t . Then the
labels of x and y increase by t. Therefore, applying Lemma 15(i) we get new vertex irregular total labelling � with the
following properties:

�(e) = �(e) − t �p − 1 − t = p − 1 −
⌊

p − 2

� + 1

⌋
for every edge e ∈ E(G)

with

�(e) > t, �(e) = �(e) for all other edges,

and for every vertex v ∈ V (G) we have

�(v)��(v) + t degG(v)��(v) + t� = 1 + t��p − 1 − t

because t (� + 1)�p − 2. This gives

�(v)�p − 1 −
⌊

p − 2

� + 1

⌋

and we are done. �

Note that for G = K3 tvs(K3) = 2 = p − 1 − 
(3 − 2)/(2 + 1)� by Theorem 14.
It is a natural desire to seek the exact value of any graph characteristic for every member of some family of graphs.

In the next part we investigate the total vertex irregular strength of the n-sided prism Dn, n�3.
The prism Dn, n�3, is a trivalent graph which can be defined as the cartesian product P2 × Cn of a path on two

vertices with a cycle on n vertices. Dn consists of an outer n-cycle y1y2 · · · yn, an inner n-cycle x1x2 · · · xn and a set of
n spokes xiyi, i = 1, 2, . . . , n.

Theorem 20. For n�3 tvs(Dn) = �(2n + 3)/4�.

Proof. We label edges of Dn, n�3, in the following way:

(i) each edge of the inner n-cycle receives the label 1,
(ii) if n is even then each edge of the outer n-cycle receives the label �(2n + 3)/4�,

(iii) if n is odd then the edge y1y2 receives the label 1 and the other edges of the outer n-cycle receive the label
�(2n + 3)/4�,

(iv) spokes xiyi receive the label 1, for 1� i��(2n+3)/4�, and the labels �(2n+3)/4�, for �(2n+3)/4�+1� i�n.



The weights of vertices xi, 1� i�n, successively attain values 4, 5, 6, . . . , n+3 if all vertices xi, 1� i��(2n+3)/4�,
receive distinct labels from the set {1, 2, 3, . . . , �(2n + 3)/4�} and all vertices xi, �(2n + 3)/4� + 1� i�n, receive
distinct labels from the set {2, 3, 4, . . . , n − �(2n + 3)/4� + 1}.

If n is even and each vertex yi, 1� i�n, receives the same label as vertex xi then the weights of vertices yi, 1� i�n,
constitute the set of consecutive integers {n + 4, n + 5, . . . , 2n + 3}. If n is odd and

�(yi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⌈
2n + 3

4

⌉
− 2 + i for 1� i�2,

i − 1 for 3� i�
⌈

2n + 3

4

⌉
,

i −
⌈

2n + 3

4

⌉
for

⌈
2n + 3

4

⌉
+ 1� i�n

then the weights of vertices yi are n + 3 + i, 1� i�n.
This labelling provides the upper bound on tvs(Dn). The sharpness of this bound is by Theorem 16. �

Note 2. In the previous parts we determined the total vertex irregularity strength for complete graphs, cycles, stars,
paths and prisms. It would be interesting to know the exact value of this parameter for other families of graphs e.g.
complete bipartite graphs, regular graphs, n-cubes.
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