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Abstract …… 

This study presents the overall design of a 3U CubeSat equipped with commercial-off-the 

shelf hardware, Teflon-fueled micro-Pulsed Plasma Thrusters (µPPT) and an attitude 

determination and control system. The µPPT is sized by the impulse bit and pulse frequency 

required for continuous compensation of expected maximum disturbance torques at altitudes 

between 400 and 1000 km, and to perform stabilization of up to 20 deg/s and slew maneuvers 

of up to 180 degrees. The study involves realistic power constraints anticipated on the 3U 

CubeSat. Attitude estimation is implemented using the q-method for static attitude 

determination of the quaternion using pairs of the spacecraft-sun and magnetic field vectors. 

The quaternion estimate and the gyroscope measurements are used with an extended Kalman 

filter to obtain the attitude estimates. Proportional and derivative control algorithms use the 

static attitude estimation in order to calculate the angular momentum required to compensate 

for the disturbance torques and to achieve specified stabilization and slewing maneuvers or 

combinations. Two control methods are developed: paired firing method, and separate 

control algorithm and thruster allocation methods which determines the optimal utilization of 

the available thrusters and introduces redundancy. Simulations results are presented for a 3U 

CubeSat under stabilization, pointing, and pointing and spinning scenarios. 
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  Chapter 1.

Introduction 

CubeSats have emerged as platforms for various low earth orbit (LEO) applications. Attitude 

control using propulsion requires the development of propulsive options that adhere to the 

physical constraints of CubeSats and provide the required impulse for typical LEO applications 

as well as novel implementation and development of suitable control approaches. The goal of 

this thesis is to investigate the performance of a 3U CubeSat design shown in Figure 1-1, with 

commercial-off-the-shelf (COTS) sensors and a 1U module of Teflon-fueled, micro-Pulsed 

Plasma Thrusters (µPPT) for control functions including stabilization, pointing, and spinning. 

The CubeSat design is based on CubeSat mission studies at WPI (Major Qualifying Reports: 

NAG-1102, NAG-1204, NAG-1302, MAD-1101, MAD-1201, MAD-1301, JB3-CBS1, JB3-

CBS2, JB3-CBS3). The µPPT design and sizing was achieved by using simulations tools 

developed at WPI under a series of investigations on PPTs. (Gatsonis et al., 2001; Gatsonis et al., 

2004; Gatsonis et al., 2007) The µPPT design and Attitude Determination and Control (ADC) 

approach for CubeSats presented in this thesis and in Gatsonis et al. (2014) and Gatsonis et al. 

(2015) and can be applied to other nanosatellites (<10 kg) at LEO altitudes.  
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a). Surface mounted solar panel b). Deployed solar panels expanded 

Figure 1-1: A 3U CubeSat with the µPPT module located in the bottom 1U. 

1.1. Literature Review 

Attitude control of CubeSats can utilize magnetic torquers, reaction wheels, control moment 

gyros, or propulsion systems (thrusters). Magnetic torquers are very popular due to their low 

mass, reliability and efficiency. The downside is that they cannot produce the large torques 

required for fast maneuvers with the power available (Roethlisberger et al., 2008; MAD-1101; 

MAD-1301; Visser, 2014). Reaction wheels can produce higher control torque output than 

magnetic torquers but they are more massive and can be less reliable over an extended lifetime 

due to the rotating wheels (Balan et al., 2008; Logan & Greenland., 2011). Rotation wheels are 

usually used in combination with magnetic torquers to provide wheel desaturation (Bridges et al., 

2011; Hinkley & Hardy, 2012).  

Propulsive options for attitude control of CubeSats are an emerging area and candidate 

technologies include cold gas and electric thrusters. A space propulsion system generates thrust 
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by accelerating a propellant mass at high velocity (Goebel & Katz, 2008). One measure for the 

efficiency of space propulsion system is the specific impulse ( spI ). With F  designating the 

thrust force and m  the mass flow rate, the specific impulse is defined as 

 
0

0

t

sp t

Fdt
I

g mdt
= ∫
∫ 

 (1.1) 

where the numerator 
0

t
Fdt∫  provides the impulse bit, bitI . In cases where the thrust and mass 

flow rate are constant, Eq. (1.1) becomes 

 e
sp

VFI
gm g

= =


  (1.2) 

The above expression shows that the average exit velocity of the ejected propellant, eV  is 

directly related to the thrust and mass flow rate. The relation between the mass of satellite, m , 

mass of fuel, fm , specific impulse, spI , and V∆  is governed by well-known as the rocket 

equation 

 
lnsp

f

mV I g
m m

 
∆ =   − 

  (1.3) 

Table 1-1 lists V∆  estimates from Wertz & Larson (2008) Chapter 6 and the required fuel 

mass for typical orbital and attitude maneuvers on a CubeSat with total 4 kgm =  and a 

propulsion system with 100 sspI =  (typical for cold gas system) and 1000 sspI =  (typical for 

electric propulsion), and 2g 9.8 m/s= . The fuel mass requirement with cold gas is an order of 
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magnitude larger than that with EP and it is nearly impossible to perform inclination change with 

a cold gas system. 

Table 1-1: V∆  and fuel mass budget for various missions 

Types of Maneuver Est. V∆  (m/s) 
Fuel mass with 
Cold Gas (g) 

Fuel mass with EP 
(g) 

Coarse Attitude Maintenance 10-30 41-121 4-12 

Altitude raising from 400 to 1000km 300 1054 121 

De-orbiting from LEO to earth 500-2000 1600-3480 199-738 

Change inclination in LEO    
by  30θ∆ = °  4000 3932 1341 

by  60θ∆ = °  11000 ~3999 2698 

 

The main consideration in implementing propulsion system on CubeSats is the limitations due 

to volume, mass, and power available. Chemical thrusters have not been considered for CubeSat 

applications so far. Cold gas systems have low specific impulse and high volume/mass ratio but 

due to their simplicity and reliability have been considered in several CubeSat studies. Cold gas 

micro-propulsion with mass of 0.509 kg, thrust of 55 mN, specific impulse of 65s and total 

impulse of 34 N s⋅  was considered for aerodynamic drag compensation on a CubeSat (Conklin 

et al. 2012). Delfi-n3Xt, a 3U CubeSat launched in 2013 was carrying a cold-gas micro-

propulsion system with a thrust of 6 mN and specific impulse spI  of 30s to maintain its orbit 

(Jong et al., 2008). The use of a highly miniaturized propulsion system (e.g. cold gas thruster) to 

demonstrate relative motion control between two CubeSats was investigated by Sundaramoorthy 

et al. (2010).  
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Electric thrusters provide high specific impulse but have low thrust. Electro-thermal thrusters 

such as the resistojet and arcjet produce thrust through gas dynamic acceleration of a gas that has 

been heated electrically. Ion, Hall, field emission electric propulsion (FEEP), and electrospray 

thrusters produce thrust primarily though electrostatic forces. Pulsed plasma thrusters (PPTs), 

vacuum arc thruster, and magnetoplasmadynamic (MPD) thrusters produce thrust primarily 

through electromagnetic forces. The PPT which is considered in this thesis generates thrust by 

ablating and ionizing a solid Teflon propellant through an electric discharge and then accelerates 

the plasma using a combination of Lorenz force and natural gas dynamic forces. Earlier PPTs 

employed in the Lincoln Experimental Satellite series (LES-6, LES-8/9) or the EO1 utilized 

parallel plate configurations (see references in Gatsonis et al. (2001)). Coaxial PPTs and µPPTs 

have been considered as well (see references in Laperriere et al. (2005) and Shaw (2011)). The 

advantages of PPTs are the high specific impulse (over 1000s) and simple propellant 

management. There have been a number of applications of electric propulsion on CubeSats 

which involve resistojets, ion thrusters and PPTs which are reviewed below. 

A resistojet with propellant mass of 0.6 kg, spI of 67-890s, and a volume of 1U, was 

considered by Moore et al. (2010) for the 2U RAMPART CubeSat. A propulsion module with 

eight µPPTs for yaw, pitch and roll control was considered by Shaw and Lappas (2011) on 

STRaND-1, a 3U CubeSat. The propulsion module has a total mass of 0.34 kg with each µPPT 

producing an impulse bit bitI  of 0.56 µNs and specific impulse of over 300s. Due to the limited 

control authority of this module, the final design removed thrusters for attitude control, and only 

a cold gas system was integrated for orbit control. Clark et al. (2011) evaluated the performance 

requirement of µPPT with 0.3U and 150g mass for drag compensation and orbit maintenance. 

The UWE-4 Picosatellite is the first to incorporate vacuum arc thrusters to control the CubeSat’s 
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orbit. The total propulsion system mass is only 0.2 kg, the impulse bit is 0.01 - 0.1 µNs, and the 

maximum pulse frequency is 20 Hz (Kronhaus et al., 2013). Conversano and Wirz (2013) have 

assessed the mission capability of CubeSats using a miniature ion thruster. They showed that 

depending on the thruster and propellant available, the V∆  can range from 1000 m/s to over 

7000 m/s, enabling low-Earth-orbit inclination changes and even lunar missions.  

In Gatsonis et al. (2014), a feasibility study is presented for using μPPTs on a 3U CubeSat to 

perform attitude control to meet pointing requirements at altitudes between 400 and 1000 km. 

The orbits and attitude control are consistent with science missions for ionospheric and solar 

observations. The positioning of the thrusters is such that they provide full, three-axis rotational 

control while maximizing the efficiency of each pulse. The aerodynamic, magnetic, solar 

radiation, and gravity gradient disturbance torques are included in the formulation. The study 

involves realistic power constraints anticipated on the 3U CubeSat. The paper introduces the 

control strategy based on a paired firing method and presents numerical simulation results for 

stabilization, pointing and spinning applications. In Gatsonis et al. (2015) the the CubeSat and 

mission design was further developed as well as the µPPT sizing analysis which in addition to 

compensation of disturbance torques includes stabilization (detumbling, spinning and de-

spinning) and slew (pointing) maneuvers. An attitude determination and estimation method, 

sensor models was introduced followed by an improved attitude control approach which includes 

a thruster allocation method for robustness in place of the paired firing followed Gatsonis, et al. 

(2014). 

 

6 



1.2.  Objectives and Approach 

This thesis follows Gatsonis et al. (2014, 2015) and presents the overall design of a 3U 

CubeSat equipped with commercial-off-the shelf hardware, Teflon-fueled micro-Pulsed Plasma 

Thrusters (µPPT), and an attitude determination and control (ADC) system. The objectives and 

approaches are: 

• Use a 3U CubeSat design developed over a series of projects at WPI with commercial-

off-the-shelf (COTS) sensors operating in LEO altitudes between 400 and 1000 km. 

• Evaluate the disturbance torques experienced by 3U CubeSat for LEO applications 

using the CubeSat structure presented and analytical models for gravity,  

• Evaluate the angular momentum required to perform stabilization of up to 20 deg/s 

and slew maneuvers of up to 180 degrees. 

• Size the µPPT by the impulse bit and pulse frequency required for various maneuvers. 

Use the ablation model (Gatsonis et al., 2007) and a performance model (Laperriere et 

al., 2005) to validate the practicality of the required size of µPPT. 

• Develop an attitude determination and estimation method for a CubeSat equipped with 

magnetometer, gyroscope, sun sensors, and GPS receivers (NAG-1204, MAD-1301, 

JB3-CBS3). Attitude determination is achieved through a q-method which uses pairs 

of the spacecraft-sun and the magnetic field vectors, one in the inertial reference frame 

and one in the body frame of the CubeSat. The attitude estimation implements in novel 

way approaches found on (Wie, 2008; Sidi, 2000; Markley & Crassidis, 2015). The 
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quaternion estimate and the gyroscope measurements are used with an extended 

Kalman filter to obtain the attitude estimates. 

• Develop control methods for the 3U CubeSat with a µPPT module as the actuator. 

Two control methods are developed: paired firing method, which is tailored to the 

specific thruster arrangement, and separate control algorithm and thruster allocation, 

which uses proportional and derivative control algorithms to calculate the torque 

required to compensate for the disturbance torques and to achieve specified 

stabilization and slewing maneuvers or combinations. The controller includes a 

thruster allocation approach which finds the optimal utilization of the available 

thrusters. 

• Implement the ADC method in a simulation code based on MATLAB. In attitude 

determination, weight for sensor measurements needs to be chosen and in attitude 

estimation, covariance matrices have to be determined. Proper implementation in 

simulation is critical to obtain the correct results. 

• Perform simulations for stabilization from 5 deg/s, pointing maneuvers for solar 

observation, and spinning up to 3 deg/s while maintaining pointing accuracy. Validate 

the control methods developed and validate the µPPT sizing.  

The Thesis is organized as follows: Chapter 2 presents the CubeSat design and thruster 

requirements; Chapter 3 presents the attitude dynamics, attitude estimation and control methods; 

Chapter 4 presents the simulation results for various mission scenarios; Chapter 4 summarizes 

the results and offers recommendations for future work. 
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  Chapter 2.

CubeSat Design and Thruster Requirements  

A CubeSat has very limiting volume, mass, and power constraints. For a 3U CubeSat, the 

volume is 10cm 10cm 30cm× ×  and the maximum mass is 4kg. The power is constrained by the 

overall design of the CubeSat (i.e. the number of solar panels). The design of the CubeSat in this 

study utilizes COTS hardware and an innovative µPPT module for attitude control. In this 

chapter, the overall design of a 3U CubeSat is discussed in section 2.1 in order to meet the 

volume and mass limit, and later in the results section, issues related to power are addressed. In 

section 2.2, some useful reference frames for both attitude determination and attitude control are 

introduced. In section 2.3, the thruster requirement (i.e. impulse bit and pulse frequency) for 

disturbance torque compensation, stabilization, and slew maneuvers are discussed. Then in 

section 2.4, the design of the µPPT, and its performance characteristics are introduced. 

2.1.  CubeSat Configuration 

The baseline configuration of the 3U CubeSat considered is shown in Figure 1-1. The 

CubeSat is equipped with a magnetometer, a gyroscope, a GPS receiver, and five sun sensors as 

shown in Figure 2-1 for attitude determination. The CubeSat has an electrical power subsystem, 

power distribution module, battery board, and onboard computer. The bottom 1U is devoted to 

the thruster module with eight µPPTs for attitude control. Two options for ADC are shown in 
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Figure 1-1, one with surface-mounted solar panels and the second with deployable solar panels, 

where the latter will be investigated in this thesis.  

The µPPT propulsion module shown in Figure 1-1 is designed to provide 3-axis control for a 

3U CubeSat. It consists of 8 rectangular-geometry µPPTs arranged in two layers. Each µPPT 

includes a miniature spark igniter which creates a conductive path to initiate the primary 

discharge. This primary discharge has a period of Pτ  then ablates and ionizes the Teflon to form 

the plasma that is accelerated with electromagnetic and gas dynamic forces.  

  

Figure 2-1: The 3U CubeSat with sun sensors are placed on +Y, -Y, -X and –Z faces. 

2.2.  Reference Frames 

The design of the CubeSat, sensor modeling, and implementation of the dynamics and attitude 

control method, requires the use of five reference frames: the Earth Centered Inertial (ECI), the 

Earth-Centered Earth-Fixed (ECEF), the Body Reference Frame (BRF), the Mission Reference 
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Frame (MRF) and the North-East-Down (NED) frame. The ECI frame shown in Figure 2-2a, is 

inertial and is best for describing the orbital motion of the satellite. The (ECEF) shown in Figure 

2-2b is a rotating frame with referenced to a fixed point on the surface of the Earth. It is used by 

the Global Positioning System (GPS). The NED reference frame shown in Figure 2-2c is used in 

the International Geomagnetic Reference Field (IGRF) model. The BRF shown Figure 1-1 has its 

origin coincident with the center of mass of the CubeSat and is primarily used for sensor 

measurements, and actuator output. The X-axis is in the direction of the normal to the solar 

panels when they are fully deployed, the Z-axis is placed along the minor axis of inertia. The 

MRF shown in Figure 2-2d is mission-specific. In this study where sun pointing is of interest, the 

Z-axis is defined to be oriented along the direction of the Sun (or other targets), with the Y-axis 

orthogonal to the Z-axis and nadir direction.  
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a). ECI reference frame. b). ECEF reference frame. 

  

c). NED reference frame. d). MRF reference frame 

Figure 2-2: Reference frames used in model, control and analysis. 
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2.3. Thruster Requirements for Disturbance Torques Compensation, 

Stabilization and Slew Maneuvers  

2.3.1. Angular Momentum Evaluation  

The µPPT sizing (impulse bit and pulse frequency) requires evaluation of angular momentum 

imparted from disturbance torques over a specified time and the evaluation of angular 

momentum needed for stabilization and slewing maneuvers. Four cases of angular momentum 

are considered: the cdtH  accumulated from maximum constant disturbance torques over a time 

cdtt∆ ; the pdtH  accumulated from periodic disturbance torques over time pdtt∆  ; stH  required for 

de-spinning or spinning up within stt∆ , for a change in angular velocity of ω∆ ; and slH

associated with a 180-degree slew maneuver over time slt∆ with zero initial and final angular 

velocity.  

CubeSats in LEO experience disturbance torques due to aerodynamic drag, gravity gradient, 

the magnetic field, and solar radiation (Wertz & Larson, 2008). The disturbance torque due to 

aerodynamic drag is described by 

 ( )21  
2a D pa gT AC v c cρ= − , (1.4) 

where ρ  is the background atmospheric density, A  is the cross sectional surface area normal to 

the velocity vector, DC  is the drag coefficient, v  is the speed of CubeSat, pac  is the center of 

aerodynamic pressure, and cg is the center of mass. The gravitational torque is due to the 
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variation of the gravitational force over the CubeSat. Assuming a spherical mass distribution for 

the Earth, the gravitational torque is given by Wertz & Larson (2008) 

 ( )3

3 sin 2
2g z yT I I

r
µ θ= − , (1.5) 

where 3 -253.986 10  km sµ = × ⋅  is the Earth’s gravity constant, r  is orbit radius (km), β  is the 

maximum deviation of the Z-axis in Figure 1-1b relative to a nadir pointing vector in radians, 

and zI  and yI  are the minor moments of inertia. The solar radiation torque is given by Wertz & 

Larson (2008) 

 ( )( )( )cos 1s
sp s r ps g

FT A i q c c
c

= + − , (1.6) 

where 21367 W/msF =  is the incident solar radiation constant, c  is the speed of light, sA  is the 

surface area, psc  is the location of the center of solar pressure, gc  is the center of mass, rq  is the 

reflectance factor and i  is the angle of incidence of the Sun relative to X-axis in Figure 1-1, (

0i =  if the sunlight is aligned with X-axis). Finally, the magnetic torque from the interaction 

between the Earth’s geomagnetic field and the satellite’s residual magnetic dipole moment is 

given by Wertz & Larson (2008) 

 
3

2
m

MT D
r

= , 
(1.7) 

where 15 37.96 10 T mM × ⋅=  is the magnetic moment of the Earth, D is the residual magnetic 

dipole moment generated by onboard instruments and current-carrying wires, and is estimated 

based on the mass of CubeSat, cM  as 20.001A m /kgcD M= × ⋅  (Wertz, 1980). 
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For evaluation of the maximum torques, 3U CubeSat shown in Figure 1-1b with its solar 

panels fully deployed is considered, the velocity v r
µ=  is assumed to be in the direction 

normal to the solar panels, and input parameters are shown in Table 2-1. The aerodynamic torque 

is evaluated for maximum and minimum solar activity conditions. Figure 2-3 shows the 

disturbance torques as a function of altitude. The aerodynamic drag is evaluated for maximum 

and minimum solar activity conditions. At altitudes above 500 km the maximum disturbances are 

due to solar pressure and magnetic field while at altitudes below 400 km the aerodynamic torque 

becomes dominant. At an altitude of 400 km, the maximum disturbance torque is 

6max 6 10 N m T −= × ⋅ .  

Table 2-1: CubeSat parameters for disturbance torque estimates 

Parameters Values 

DC = 3 

A = 0.07 m2 

pa gc c− = 0.05 m 

β = 30 deg 

z yI I− = 0.025 2kg m⋅  

sA = 0.07 m2 

ps gc c− = 0.05 m 

rq = 1 

i = 0 deg 

D = 0.004 2A m⋅  
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Figure 2-3: Disturbance torques on a 3U CubeSat at altitudes from 300 to 1000 km. 

The maximum constant angular momentum accumulated over an arbitrary time cdtt∆  due to 

the maximum disturbance torque maxT  is 

 max
cdt cdtH T t= ∆    (1.8) 

The periodic angular momentum accumulated over time pdtt∆  due to disturbance torques with 

period P  is 

 max

0 0

2(t) coscdt cdtt t

pdtH T dt T t dt
P
p∆ ∆  = =  

 ∫ ∫   (1.9) 
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The absolute value sign is used to calculate the accumulated angular momentum magnitude 

and the disturbance torque is continuously compensated over the time period of interest. 

Consider a time such that pdtt∆  is an integer multiple of P , then Eq. (1.9) can be rewritten as:  

 2 max max

0

22 cos
Ppdt pdt

pdt

t t
H T t dt T

P P
p

p
∆ ∆ = = 

 ∫   (1.10) 

The angular momentum required for stabilization or spinning up with a change in angular 

velocity of ω∆  is  

 stH I ω= ∆ ,  (1.11) 

For slew maneuvers, 0 deg/si fω ω= = , slt∆  is the required slew time, and the idle period (i.e. 

the amount of time when the thrust is not applied) is sltα∆  as shown in Figure 2-4.  

 

Figure 2-4: Illustration for slew maneuver with definition of idle period.  

The angular velocity maxω  needed to be achieved  

 ( )max max
1 1
2sl slt tθ α ω α ω∆ = ⋅∆ ⋅ + − ⋅∆ ⋅ ,  (1.12) 
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( )max
2

1 slt
θω

α
∆

=
+ ∆

. 

Then the angular momentum required for such a slew maneuver is  

 ( ) ( )max 0 max
4

1sl f
sl

IH I
t

θω ω ω ω
α
∆

= − + − =
+ ∆

.  (1.13) 

 

2.3.2.  Impulse Bit and Pulse Frequency Requirements 

The µPPT considered in this investigation has a rectangular geometry and uses solid Teflon as 

a propellant. Each pulse has a duration Pτ  which is assumed to be equal to the duration of the 

primary capacitor discharge. The firing (or thrust or pulse) period is Pt , the pulse frequency is

1
P Pf t −=  and the duty cycle expressed as the percentage of one period in which thrust is 

produced ( / )100%P PD tτ= . The duration of pN  pulses, i.e. total on-time when the thrust is 

produced, is  

 P PNτ τ= ⋅ , (1.14) 

and the total firing (or thrust) time which includes the on-time and off-time is ,  

 
1

P P P
P

t N t N
f

= ⋅ = . (1.15) 
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Figure 2-5: Diagram representing idealized, thrust vs. time profile for a PPT pulse train 

For thruster sizing purposes, the required impulse bit bitI  (μN s⋅ ) and pulse frequency Pf  (Hz) 

for the µPPT are to be determined. For an angular momentum H  to be delivered by a thruster 

with moment arm of s  the number of pulses per thruster is 

 P
bit

HN
n I s

=
⋅ ⋅

, (1.16) 

where n  is the number of thrusters in one of the six directions (positive x, y, z, and negative x, y, 

z direction). The thruster has the property of providing unilateral control reaction which means 

that the thruster providing torque in the positive x direction can only produce torque in the 

positive x direction. For attitude control at least one thruster is needed for one of the six 

directions and six thrusters are required to maintain full control over three axes. Note that thrust 

forces are not acting as balanced couples, and some translational motion is expected, but such 

motion is small enough to be neglected. The required firing time can be obtained using Eq. 

(1.15) and rewrite Eq. (1.16) as 

Signal 
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P bit

Ht
f n I s

=
⋅ ⋅ ⋅

 (1.17) 

By introducing the average angular momentum rate /H H t= , the above can be written as  

 P bitf I n s H⋅ ⋅ ⋅ =   (1.18) 

which relates the thruster design parameters bitI , and Pf , the CubeSat design characteristics n , 

and s  to the mission requirement H  (or H  derived earlier over the desired firing time t ).  

For a constant disturbance torque, if compensation is achieved continuously over a firing time 

of cdtt t= ∆  then  

 
max

cdtH T=   (1.19) 

For periodic disturbance torque, if compensation is achieved over a time period of pdtt t= ∆  

then  

 max

pdt
TH
p

= . (1.20) 

For stabilization or spinning, stt t= ∆  and therefore, 

 st
st

I
H

t
ω∆

=
∆

 . (1.21) 

For the slew maneuver, the firing time ( )1 slt tα= − ∆  and  
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( )2 2

4
1sl

sl

IH
t

θ
α
∆

=
− ∆

 .  (1.22) 

For a 3U CubeSat with thrusters located as shown in Figure 1-1a, the moment arm has value 

from 3 cm to 20 cm. The assumptions for sizing purposes are 0.14 ms =  and that there is only 

one µPPT in each direction, 1n = . For a given maneuver and time duration, the angular 

momentum rate is found using Eq. (1.19), (1.20), (1.21), and (1.22), and plotted in Figure 2-6. 

Then, Eq. (1.18) is used to provide bounds on the required bitI  and Pf  of the µPPT which are 

plotted in Figure 2-7.  

 

Figure 2-6: Angular momentum rate H  for different maneuvers of a given duration.  
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Figure 2-7: Requirement of impulse bit and pulse frequency at different angular 
momentum rate  

2.4.  µPPT Design 

The rectangular µPPT can be accommodated within the available volume in the 3U CubeSat 

and is sized to provide the required impulse bit. The propulsion module, consisting of thrusters, 

fits in a 1U volume of a CubeSat. The design and performance characteristics ( spI , bitI ) of the 

µPPT are derived in an iterative procedure using the performance model of Laperriere et al. 

(2005) with the ablation model of Gatsonis et al. (2007). The performance model includes inputs 

which incorporate several design features of a rectangular µPPT (e.g. height of channel, 

discharge time, and electrical characteristics of the electrodes). The ablation model is used to 

provide the ablation profile using as inputs the geometrical characteristics of the Teflon bar, 

pulse duration and material properties. Using these two models, a µPPT and propulsion module 

is purposed, as shown in Figure 2-8. The thruster consists of two parallel electrodes with length 
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of 3.25 cm and width of 1.25 cm. These tungsten coated copper electrodes are 0.75 cm thick, 1.5 

cm apart and are housed in a Torlon casing as shown in Figure 2-8. This µPPT design can 

provide bitI  (10- 80 μN s⋅ ) with input energy below 1.5 J per pulse and operate over the range of 

pulse frequency Pf  shown in Figure 2-7. 

 

Figure 2-8: Bottom 1U of CubeSat showing the thrusters comprising the µPPT module. 

Equation Chapter (Next) Section 1 
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  Chapter 3.

Attitude Dynamics, Estimation and Control 

Attitude determination is the process of calculating the orientation of the spacecraft relative to 

a reference frame or an object of interest. The accuracy of attitude determination is bounded by 

the accuracy of sensors and quality of the algorithms utilized. Attitude estimation is the process 

of predicting the future orientations of the spacecraft based on a dynamic model and using 

previous information on the the spacecraft’s attitude. With the increasing onboard computational 

power attitude estimation has becomes essential part of an ADC system.  

In this chapter, the continuous-time dynamic model of the spacecraft is developed in section 

3.1 and the attitude determination and estimation method is introduced. In section 3.2, 

davenport’s q-method is discussed and the reference models and sensors models are introduced 

which are used for attitude determination. In section 3.3, the attitude estimation algorithm known 

as extended Kalman filter is presented. In section 3.4, a dynamics model for thruster and its 

control implementation are developed. Two attitude control method are also developed and 

discussed: paired firing, and separate control algorithm and thruster allocation. Thruster 

allocation methods usually appear as an optimization problem and are utilized in over-actuated 

system (Oppenheimer & Doman, 2006).  
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3.1. Attitude Dynamics and Estimation 

The 3U CubeSat is modeled as a rigid body and its attitude dynamics is expressed via Euler’s 

equation in terms of the angular velocity, ( )( ), ( ),( ) ( )x zyt t t tω ω ωω = , the disturbance torques,

( )D tT , the control torque, ( )C tT , and the inertia matrix I  (Wie 2008) : 

 ( )( ) () ) )( ) ((C Dt tt t t= ×+ −  Iω T T ω Iω . (2.1) 

The differential equations for quaternion kinematics ( )tq  is given by:  

 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0
01 1( ) ( ) ( ) ( )

02 2
0

z y x

z x y

y x z

x y z

t t t
t t t

t t t
t t t

t t t t

ω ω ω
ω ω ω
ω ω ω
ω ω ω

− 
 − =
 −
 − − −  

q Ω ω q = q  . (2.2) 

Attitude estimation is implemented in this study as a two-step process following established 

approaches (Markley & Crassidis, 2015; Wertz, 1980) as shown in Figure 3-1: the reference 

models (calculated vectors), attitude determination and estimation will be performed in real time 

on the spacecraft whereas the plant (dynamic equations) and simulated measurement will be part 

of the simulation. Note that orbital state data is not propagated in this study, the position data is 

preloaded from data evaluated using Systems Tool Kit (STK). The first step follows the q-

method for static attitude determination in order to obtain an estimate of the quaternion denoted 

by ( )q ty . The q-method uses pairs of the spacecraft-sun and the magnetic field vectors, one in 

the inertial reference frame and one in the body frame of the CubeSat. The second step uses the 

quaternion estimate ( )q ty  and the gyroscope measurements denoted by ( )b
G ty  with an Extended 

Kalman Filtering (EKF) algorithm to obtain the attitude estimates ˆ ( )tω  and ˆ ( )tq . 
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Figure 3-1: Flow chart for simulation, attitude determination and estimation. 

3.2. Static Attitude Determination 

3.2.1.  Davenport’s q-method  

The q-method uses two or more sets of non-collinear vectors, one in the inertial reference 

frame and one in the body frame of the CubeSat to obtain the direction cosine matrix that relates 

the two frames. The body-fixed vector by  provides the measured directions by the on-board 
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sensors and the inertia-frame vector iy  provides the directions from a reference (mathematical) 

model. The two directions are related by the rotational matrix biA  from ECI to BRF such that  

 δb bi i= +y A y y  (2.3) 

where δy  is the error term which denotes errors from both sensor measurements and 

mathematical models. The attitude matrix biA  can be represented as (Wertz, 1980) 

 ( ) [ ]2 2 T
4 1:3 3 3 1:3 1:3 4 1:3( ) || || 2 2bi q q×= − + − ×A q q I q q q  (2.4) 

where the quaternion 
TT

1:3 4q =  q q  with 1:3q  its vector part and 4q  its scalar component, and 

[ ]1:3 ×q  is the cross product matrix, defined by 

 

[ ]
3 2

1:3 3 1

2 1

0
0

0

q q
q q
q q

− 
 × − 
 − 

q 3  (2.5) 

where iq  is the ith entry in the vector part of the quaternion. Wahba (1965) proposed a 

constrained least squares estimation for finding an orthogonal matrix biA with determinant 1+  

using n measurements as 

 ( ) ( )
2

1
min   subject to det 1,

bi

n
b bi i b

j j
j

i

=

 −  =∑
A

y A y A  (2.6) 

where ( )b

j
y and ( )b

j
y , 1, , ,j n= 

 are the n  unit vectors measured in the body and inertial 

frame, respectively. The above can be solved using the q-method with Eq. (2.4), represented as 

(Markley & Crassidis, 2015) 
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 ( ) ( )
2

T

1

1 1 ,
2

n
b bi i

j j j
j

a
=

− = −∑ y A y q Kq  (2.7) 

where { }ja are non-negative weights, assumed for simplicity to be equal to 1/ n . The optimal K

is evaluated through the set of measured (body-frame) and reference (inertia-frame) vectors 

 ( )
( )

3 3tr N
N trT

I
K ×− 

 
 

S D
D

3  (2.8) 

where  

 
T= +S D D , ( ) ( )

T

1

n
b i

i j j
j

a
=

 =   ∑D y y  , ( ) ( )( )
1

n
b i

i j j
j

a
=

= ×∑N y y . (2.9) 

The optimal quaternion estimate using Davenport’s q-method is given by 

 
maxq =y q  (2.10) 

where maxq  is the normalized eigenvector corresponding to the largest eigenvalue of K  in Eq. 

(2.8) . Other methods have been developed later based on davenport’s q-method, some of which 

utilizes numerical methods to solve the eigenvector problem. Modern attitude determination 

methods are primarily a variation of q-method and are designed to meet specific mission 

requirements.  

3.2.2.  Sensors and Reference Models  

The reference models used provide the Sun position (ECI) and the geomagnetic field (NED). 

The onboard sensors provide the sun vector (BRF), the magnetic field vector (BRF), the angular 
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velocity (BRF), position, and velocity (ECEF) and are modeled for software implementation in 

this study.  

3.2.2.1.  Sun Vector in the Body Frame and Inertial Frame 

Sun sensors onboard the CubeSat provide either one-axis or two-axis information in the BRF. 

A sun-sensor model is introduced here using two-axis information, α  and β  as the true angles 

measured from the sun sensor. The orientation of the sun sensor in BRF affects the sun vector 

calculation. To illustrate this procedure, sun sensor mounted on the surface of positive Z-axis is 

taken as an example (α  and β  represent the sun angle relatively to X- and Y- axis respectively): 

 

,
, ,

,

tan
tan ,     

1

b true
b true b true S
S S b true

S

α
β

 
 = = 
  

yy y
y






, 

( )
( )

,

,

tan

tan ,     

1

S
b

b b S
S S S b

S

α

β

α n

β n

 +
 
 = + =
 
  

yy y
y






 

(2.11) 

where ,S in  is a scalar Gaussian noise with zero mean.  

The reference model for the position of the Sun in the ECI frame is derived from HM Nautical 

Almanac Office (2010) which set the Julian date of 1/1/2000 as the reference date for the sun 

position. The mean longitude of the Sun, L , mean anomaly, g , ecliptic longitude, λ , obliquity 

(axial tilt) of the ecliptic, ε , and distance of the Sun from the Earth, sr , are calculated from the 

following equations where all the angles are expressed in degrees and distances in astronomical 

units 
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( ) ( )

( ) ( )

2000

2000

2000

280.460 0.9856474
357.528 0.9856003

1.915 sin 0.020 sin 2
23.439 0.0000004
1.00014 0.01671cos 0.00014cos 2s

L JD
g JD

L g g
JD

r g g

λ
ε

= °+ °
= °+ °

= + ° + °

= °− °

= − −

 (2.12) 

Then the position of the Sun in the ECI frame is given by 

 ( )
( ) ( )
( ) ( )

,

,

,

cos

cos sin

sin cos

i
S x s

i
S y s

i
S z s

y r

y r

y r

λ

ε λ

ε λ

=

=

=

 (2.13) 

The application of q-method is expressed as  

 b bi i
S S S= +y A y ν  (2.14) 

To generate simulated sun-sensor data, the sun vector i
Sy  in the ECI frame by Eq. (2.13) is 

calculated which then is converted to the sun vector b
Sy  in BRF frame using Eq. (2.14). The 

simulated data are then obtained by reversing the calculation: 

 
,
,1 ,

,
,2 ,

acos( )

acos( )

b true
S S

b true
S S

y

y
α

β

α n

β n

= +

= +
 (2.15) 

3.2.2.2.  Magnetic Field Vector in the Body Frame and Inertial Frame  

The body-frame magnetic-field vector is provided by the onboard magnetometer as 

 ,b b true
M M M= +y y ν  (2.16) 
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The inertial frame (ECI) magnetic-field vector is derived from the International Geomagnetic 

Reference Field (IGRF-11) model (Finlay et al., 2010) which provides the B field in the NED 

frame. The governing equation for the magnetic induction in the IGRF model is  

 ( ), , ,r t Vθ ϕ = −∇B  (2.17) 

where V  is a finite series having the numerical Gauss coefficients ( )m
ng t  and ( )m

nh t  (in nT) 

 
( ) ( ) ( ) ( ) ( ) ( )( )

1

1 0

, , , cos sin cos 90
nN n

m m m
n n n

n m

aV r t a g t m h t m P
r

θ ϕ ϕ ϕ θ
+

= =

   = + °−    
∑∑  (2.18) 

In the above expression, r  is the radial distance from the center of the Earth (km), 

 6371.2 kma =  is the magnetic reference spherical radius, θ  is geocentric latitude (degrees), 

and ϕ  is east longitude. (cos )m
nP θ  are the Schmidt semi-normalized associated Legendre 

functions of degree n and order m. The Gauss coefficients ( )m
ng t and ( )m

nh t are provided for the 

main field at epochs separated by 5-year intervals between 1900 and 2010. The coefficients at a 

specific time can be found using linear interpolation 

 
( ) ( ) ( )( )

( ) ( ) ( )( )

˙

0 0 0

˙

0 0 0

m m m
n n n

m m m
n n n

g t g T g T t T

h t h T h T t T

= + −

= + −

 (2.19) 

The Schmidt Quasi-normalization function (cos )m
nP θ  is provided in Winch et al. (2005) as  

 
( ) ( )

( ) ( ) ( )2 2
!

2 1
!

mm
m

n n

n m dP P
n m d

µ µ µ
µ

−  
= −  +  

 (2.20) 

31 



The components of the geomagnetic field in the northward, eastward and radially inward 

directions are obtained with the following equations (HM Nautical Almanac Office, 2010) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

2

M,
1 0

2

M,
1 0

M,

1 cos sin sin(90 )

cos sin1 1
sin(90 ) sin(90 )                     cos(90 )

nN n
n m m m

x n n n
n m

m mnN n
n nn

y m
n m n

n
z

V ay g t m h t m P
r r

h t m g t mV ay
r r mP

y

ϕ ϕ θ
θ

ϕ ϕ

θ ϕ θ θ

+

= =

+

= =

∂    = = + °−   ∂  

 −∂    = = −  ° − ∂ °−   × °−

  
 
  

=

∑∑

∑∑

( ) ( ) ( ) ( ) ( ) ( )
2

1 0

1 cos sin cos(90 )
nN n

m m m
n n n

n m

V an g t m h t m P
r r

ϕ ϕ θ
+

= =

∂    = + + °−   ∂  
∑∑

 

(2.21) 

The magnetic field vector in the ECI frame is obtained using the satellite’s position in ECEF 

(longitude ϕ , and latitude θ ) and n
My , and an intermediate transformation matrix from ECEF to 

ECI, eiA   

 cos sin 0 sin 0 cos
sin cos 0 0 1 0

0 0 1 cos 0 sin

i ei n
M M

ϕ ϕ θ θ
ϕ ϕ

θ θ

− −   
   =    
   −   

y A y  (2.22) 

To generate simulated magnetometer data in the BRF, Eq. (2.22) is used to obtain the 

magnetic field vector in the ECI frame, which is then converted into the BRF frame using 

 b bi i
M M M= +y A y ν  (2.23) 

where Mν  is a randomly generated 3 1×  noise vector with Gaussian distribution with zero mean. 

The observations in (2.14) and (2.23) provide the measurements for the q-method, i.e. with 2n =  

the two body frame measurements { },b b
M Sy y  and the two inertial frame measurements { },i i

M Sy y  
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are used in (2.8), (2.9), and (2.10) to obtain the estimate of the quaternion ( )q ty  using the 

aforementioned static attitude determination method. 

3.3. Attitude Estimation with Extended Kalman Filtering (EKF) 

The next step is to find the best estimate of the true system using the dynamic model and 

measurements. The EKF provides the attitude estimates ˆ ( )tω  and the quaternion estimate ˆ ( )tq  

using the (static) estimate of the quaternion ( )q ty , the gyroscope measurements denoted by 

( )b
G ty , and the dynamic equations Eq. (2.1) and Eq. (2.2).  

Rate gyroscopes provide the CubeSat’s angular velocity in BRF frame. The gyroscope 

measurements, b
Gy  is given by 

 b
G G= +y ω ν  (2.24) 

where ω  is the true angular velocity and Gν is the white noise ( 3 1× ) vector. To obtain 

simulated gyroscope data Eq. (2.24) is used where ω  is from Eq. (2.1) and Gν  is a randomly 

generated 3 1×  noise vector with Gaussian distribution and zero mean. 
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Figure 3-2: Outline for extended Kalman filter algorithm 

Figure 3-2 shows the basic outline to implement the extended Kalman filter algorithm. Eq. 

(2.1) and Eq. (2.2) are rewritten in state-space form as 

 ( )

( )

1 1

( ) ( )

( ) (

1
2

)

C

G

q

t t

t t

− − −   = = +      
 

  
= =   
  

×



I T I ω Iωω
q

ν

Ω ω q

ω
q







x w

y
y +

y

 (2.25) 

where ( )tw  is a Gaussian process noise with covariance matrix Q  and zero-mean and ( )tν  is the 

Gaussian observation (sensor) noise with covariance matrix R  and zero mean. The covariance 

matrix R  is a square diagonal matrix with σ corresponding to gyroscope by the first three entries 

and σ of the sun sensors chosen as the last four entries. The covariance matrix Q  has to be tuned 

in order to achieve good EKF performance. Using the notation ( )kG G k t= ∆  to denote the 

discrete-time representation of a quantity G( )t , the discrete-time state-space representation of Eq. 

(2.25) is  

 ( )
( )

1 1 1,k k k k

k k k

− − −= +

=y ν

x f x u w

h x +
 (2.26) 
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where k
k

k 
=  
 

ω
q

x  is the process state (plant); ku  is the control input (e.g. CT ). 
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and ,

,

G k
k

q k

 
=  
 

y
y

y
, with ,G ky  given in Eq. (2.24) and ,q ky  given by Eq. (2.10). Due to the 

nonlinearity of Eq. (2.27), the system is first linearized to obtain the Jacobian matrices F  and H , 
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where the superscript – and + represent a priori and a posteriori state estimates and EKF is 

implemented as a two-step process. In the predictor step,  

 ( )1 1

T
1 1 1 1

ˆ ˆ , ,k k k

k k k k k

−
− −

−
− − − −

=

= +P F P F

x f x u
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  (2.29) 

where P  is the error covariance matrix. In the update step, the Kalman filter gain is calculated 

first  

 ( ) 1T T
k k k k k k k

−− −= +P H H P HK R , (2.30) 

and the state-estimate is updated with the optimal gain: 
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 ( )( )ˆ ˆ ˆk k k k k
+ − −= + −x x K y h x .  (2.31) 

The error covariance matrix is updated for use at the predictor step 

 [ ]7 7 7 7k k k k k kI I+ − −
× × = − = − P H P PK K . (2.32) 

3.4. Attitude Control  

In this section, the thruster model and control implementation are introduced and the change 

of angular velocity during one set of thruster firings is discussed as well as thruster arrangement. 

Then the attitude control methods using µPPTs are discussed. Sidi (2000) discusses pulse-width 

pulse-frequency modulation (PWPF) method; however, the fixed pulse duration and the 

restricted pulse frequency Pf  of µPPT has limited the use of PWPF. Two control methods are 

developed: paired firing method, and separation control algorithm and thruster allocation 

methods.  

3.4.1. Thruster Model and Control Implementation 

The thruster model is derived in the BRF shown in Figure 1-1a. The origin is placed in the 

center of mass of the CubeSat and the Z-axis is along the long axis and is positive towards the 

thruster side. Thrusters numbered 1 to 4 are on the top layer and 5 to 8 are on the second layer as 

shown in Figure 3-3. The positioning of the thrusters provides redundancy in attitude control. 

The µPPT operates as shown in Figure 2-5. 
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Figure 3-3: Top view of thruster arrangement (1, 2, 3, 4 are on the top layer). 

A discrete-time dynamic model of Eq. (2.1) is required due to the pulsed operation of the 

thrusters, 

 ( )C Dt
∆

= − × +  ∆
ωI T T ω Iω  . (2.33) 

The torque iT , produced by a single firing of one µPPT during Pτ  is 

 ( ) ( ), , bit
i eff i i eff i i

P

IF
τ

= × = ×T r n r n . (2.34) 

and then the control torque CT  from a set of active thrusters during Pτ  is  

 
( ),

(t)
 bit

C eff i i
i P

I
τ∈

 
= × 

 
∑

I
T r n , (2.35) 

where ( ) {1, 2, ...}t =I  is the set of active thrusters which is determined later in thruster 

allocation and the effective position vector of the thrusters from the center of mass is defined as  

 
, eff i i com= −r r r , (2.36) 
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where ir  is the position vector of the thruster relative to the CubeSat’s geometrical center, and 

comr  is the vector from the geometric center to the center of mass. Assuming that the control 

torque is applied during Pt τ∆ =  upon substitution of Eq. (2.34) into Eq. (2.33) it becomes  

 ( ) ( ),
(t)

 i P Pbit eff i D
i

I τ τ
∈

 
  +∆ = × − ×∑

I
I ω r n T ω Iω . (2.37) 

Scaling of the above equation can be obtained using typical values for 20.03 kg mxI = ⋅ , 

6 40 10  N mbitI −= × ⋅ , , 0.15 meff i =r , 66 10  N mD
−= × ⋅T , 610  sPτ

−
− , 0.15 rad/sω < ). The 

last two terms in the RHS of Eq. (2.37) can be neglected and Eq. (3.37) becomes:  

 ( )1
,

(t)
 ibit eff i

i
I−

∈

 ∆ =  ×∑
I

ω I r n . (2.38) 

Notice that the pulse frequency Pf , does not affect the change of angular velocity for each 

firing, but given a time span, frequency will affect the total number of firings, which influences 

the total change of angular velocity.  

I also account for the shot-to-shot variation, so the output bitI  is equal to the designed bitI  

plus a random error with a Gaussian distribution and standard deviation of one percent  

 ( )bit bitI I tδ= + . (2.39) 

A fixed error for the thrust vector in  was introduced to account for thrust misalignment with 

respect to the BRF. The thruster vector in  is rotated by 0.5 degs in each of the two off-axis 

directions to simulate a constant error introduced during structure integration.  
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3.4.2. Paired Firing Technique 

To effectively control the attitude, given the specific arrangement of thrusters that was 

discussed in the thruster model section shown in Figure 3-3, “paired firings” is utilized, which 

means that each control command fire two thrusters simultaneously (given that both thrusters are 

available). The idea is assuming the center of mass is very close to the geometric center, by 

pairing two thruster, one axis of reaction can be produced and the off-axis reactions are roughly 

cancelled.  

Table 3-1: Thruster pairs for paired firing method 

Control over Positive Direction Negative Direction 

X-axis Thruster 2 and 7 Thruster 4 and 5 

Y-axis Thruster 3 and 8 Thruster 1 and 6 

Z-axis 
Thruster 5 and 7 Thruster 1 and 3 

Thruster 6 and 8 Thruster 2 and 4 

The main assumption for this method is that the center of mass of the satellite lies around the 

geometric center with no more than 3cm away. From the table above, at most four thrusters can 

be fired simultaneously in any situations. Per the restriction from the design of the pulsed 

thruster, maximum five thrusters can operate at the same time; as a result, this is a valid firing 

strategy.  

3.4.2.1.  Stabilization & Spinning 

In order to stabilize the satellite, the angular velocity is needed to be regulated. Using paired 

firing, each axis is considered separately and at most two axes are regulated which are 

considered in descending order of priority, based on the magnitude of angular velocity. The 
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approach is to control the axis with the largest angular velocity first. Figure 3-4 depicts the flow 

chart summarizing the control strategy with thω denoting the angular velocity at which the 

CubeSat is considered as stabilized. The value of thω cannot be too small due to the dynamics of 

the pulsed thruster and must be larger than the uncertainty of the gyroscope as well as the 

impulsive change in the angular velocity due to each paired firings. Note that “No action” in the 

flow chart represents no control is performed.  

No action

Fire in the 
opposite 

direction of ω

No action

Start |ω|<ωth

Y

Check Thruster 
Availability

N Y

N

 

Figure 3-4: Control strategy for stabilization using paired firing method 

3.4.2.2.  Pointing (Slew) Maneuvers 

Similar to the control strategy for stabilization, for pointing control each axes is also 

considered separately. Yaw, pitch and roll angles of the BRF can be obtained in terms of the 

MRF and each angle is being regulated to zero in order to achieve the pointing requirement. 

Pointing requires the satellite to orient itself from an arbitrary position to a desired position, 

which is in principle similar to a slew maneuver. Therefore, successfully controlling the satellite 

to a desired attitude also enables the slew maneuvers. The only difference between the two is that 

during a slew maneuver, a fast time is always preferable where for static pointing; the fuel 

consumption may be more of a concern. Figure 3-5 shows a flowchart of the pointing control 

strategy for one axis.  
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Figure 3-5: Control strategy for pointing using paired firing method 

3.4.2.3.  Optimal Angular Velocity Threshold for Pointing 

The optimal angular velocity threshold for this study is defined as the maximum angular 

velocity that can be achieved in the process of correcting the attitude (within the capability of the 

thrusters) and minimum overshoot. The threshold depends on the error angles (i.e. yaw, pitch, 

and roll angles). The optimal threshold takes the shortest time to achieve a certain attitude. One 

axis case is first considered which the result is applied to all three axes. The change of angular 

velocity by each firing is determined by 

 
bit effI

I
ω

⋅
∆ =

r
  (2.40) 
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Note that for one axis I  is a scalar, for 3 axes 
1−

I  is a 3x3 matrix. Similar to the relation 

between displacement and acceleration, the equation regarding the angle, angular velocity and 

angular acceleration is 

 2
0 0

1
2

t tζ ζ ζ ζ= + +  , 
(2.41) 

where,  fζ ω= ∆ ⋅  is the angular acceleration for the µPPT, and 0ζ  is the initial angular velocity, 

which is assumed to be 0 for this analysis. 

I introduce 0e ζ ζ= −  as the angle travelled due to the angular acceleration, is given by  

 21
2

e ftω= ∆  
(2.42) 

The time for the controller to move the angle by e  radians is  

 360et
fω p

∆ =
∆

 
(2.43) 

In addition, ideally the angular velocity should be 0 when the error angle is 0. As a result, 

given a specific angle error, the max angular velocity allowed is 

 
2 eff

th op bit
i

t f eI f
I

ω ω= ∆ ⋅ =
r

 
(2.44) 

Assuming the initial angular velocity is zero, Figure 3-6 shows that, for a 5 degree error angle, 

the shortest recovery time can be achieved if the µPPT is saturated (i.e. operating at maximum 

thrust). In order to validate our analysis, four control policies are compared which have different 

angular velocity thresholds vs error angle curves. In Figure 3-7, policy #1 denotes the optimal 

threshold (Blue curve), policy #2 (Green curve) and policy#3 (Red curve) denote the cases in 
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which the system undershoot and policy #4 (Light blue) denotes the case of an overshoot. Note 

that the minimum angular velocity deadband cannot be smaller than the sensor error; otherwise, 

the error will result in unnecessary firings thus wasting propellant.  

 

Figure 3-6: Depiction of optimal angular velocity threshold. 

 

Figure 3-7: Four policies featuring different angular velocity threshold vs error angle. 

43 



 

Figure 3-8: Comparison of pointing accuracy with different policies. 

Figure 3-8 shows that when the thresholds are low (e.g. policy #2 and #3), it takes longer for 

the CubeSat to point in the correct direction. When the thresholds are large (policy #4), it 

overshoots and the result is that the pointing takes much longer time to converge. Obviously, the 

policy with the optimal threshold gives the best result. A smaller threshold leads to slower slew 

and longer time to converge whereas a large threshold leads to unwanted overshoot and waste of 

propellant. Figure 3-9 shows that for policy #1 the maximum angular velocity achieved is at 

approximately 1 degree/s, whereas for policy #2 and #3 the maximum is smaller and it takes 

longer time to correct the pointing error. For policy #4, the maximum angular velocity is 1.5 

deg/s and results show that it causes the system to overshoot. These results validate that the 

optimal threshold is optimal.  
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Figure 3-9: Comparison of angular velocity profile for different policies for pointing. 

The angular velocity threshold determines the allowed maximum angular velocity, and the 

angle deadband is introduces which determines the allowable excursion from the desired angle. 

The performance of policy #1, #2, and #3 are list in Table 3-2 with angle deadbands of 0.1 

degree and 0.25 degree. The time needed to achieve 0.5 degree accuracy provides us an estimate 

of how fast the CubeSat will achieve the desired pointing; and the percentage under 0.5 degrees 

measures the quality of the policy. The average number of pulses indicates the propellant 

consumption required by each policy. The results indicate that policy #1 requires faster times, 

higher percentage. Obviously, with a 0.1 degree angle deadband, the thruster is fired much more 
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than with 0.25 degree. As a result, to keep the pointing under certain angle and to save fuel, it is 

desirable to have the largest angle deadband possible.  

 Table 3-2: Performance comparison of control policies for pointing 

Policy 
Angle deadband 

(degree) 
Time to achieve 
0.5 degree (sec) 

2-norm of error 
angle (rads) 

Percentage 
under 0.5° 

Average No. 
of pulses 

#1 0.1 105.4 2.219 94.73% 1175 

#1 0.25 105.6 2.215 94.68% 545 

#2 0.1 334.16 2.628 83.30% 1070 

#2 0.25 334.88 2.626 83.26% 526 

#3 0.1 143.93 2.280 91.72% 1059 

#3 0.25 143.89 2.281 92.44% 537 

In summary, policy #1 was the best option to achieve correct attitude with the shortest time 

and the least amount of propellant consumption.  

3.4.2.4.  Spinning with Pulsed Thruster 

The control for spinning is similar to that for stabilization except that in stabilization, the 

desired angular velocity is 0 for all axes, whereas for spinning, the desired angular velocity is 

nonzero. It has shown that the spinning along the short axes are naturally unstable, so for the 

simulation of spinning, the maximum rotational speed of each axis is investigated so that the 

thruster can control the attitude properly. The analysis is shown in the simulation results in 

Chapter 4.  

3.4.2.5.  Pointing and Spinning with Pulsed Thruster 
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Control strategy for spinning and pointing follows the strategies for pointing and stabilization. 

The desired pointing is first achieved and then the angular velocity around the spinning axis is 

increasing incrementally (if the angle is off the desired value, correction to the angle is made first 

following by spinning up). 

3.4.3. Control using Separate Controller Algorithm and Thruster allocation  

As shown in Figure 3-10, the process commences with the attitude determination and 

estimation to produce the estimates ˆ ( )tω and ˆ ( )tq . Then the estimated states ˆ ( )tω  and ˆ ( )tq  from 

EKF are used in proportional and derivative control algorithm in place of ( )tω  and ( )tq  in order 

to calculate the desired torque desT . Note that the actuator system cannot realize the desired 

torque desT  using μPPT due to the fixed impulse bit; as a consequence, a thruster allocation 

method is utilized to determine the best thruster firing combination n∈z R  such that the angle 

between desT  (the designed control input using Eq. (2.1) and (2.2) ) and control output CT  (the 

actual input to Eq. (2.1) and (2.2) which is the output of the µPPT) is minimal. Finally, the 

control torque output CT  is computed and is used to actuate the control system given by Eq. (2.1) 

and (2.2). One advantage of using a two-step process for attitude control, i.e. a separate control 

algorithm and thruster allocation, is to increase the robustness of attitude control in the event of 

thruster failure.  
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Figure 3-10: Flow chart for attitude control. 

3.4.3.1. Stabilization 

During the stabilization phase, attitude determination is not required and only the estimate of 

the angular rate ω̂  is needed, and the desired torque is 

 ( )ˆdes des= − −T ω ωK  (2.45) 

where K is a user-defined proportional gain matrix and desω  is the desired angular velocity. If 

the actuator had no dynamics, then this desT  is implemented in Eq. (2.1) as CT . However, as 

mentioned above, thruster allocation method finds the best thruster firing combination that 

minimizes the angle between the desired torque desT and the control torque CT delivered by the 

active µPPTs. 

3.4.3.2. Target Pointing (Slewing) and Spinning 

A general PD controller using Euler error angles, φ , is used as the control algorithm  
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 ( )ˆdes des= − − −T ω ωp dK Kϕ  (2.46) 

In the case of sun pointing, two of the Euler angles can be obtained directly from the sun 

sensors. In general, they are given by  

  

1 2 2
1 4 2 3 1 2

1
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1 2 2
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 (2.47) 

Where the function, 1tan−  with two arguments is the four quadrant inverse tangent which differs 

from the regular inverse tangent by expanding the output range from [ ]2, 2p p−  to [ ],p p− . 

The error quaternion q  is defined in Wie (2008) as  
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 (2.48) 

where desq  can be found in the reference model. In Eq. (2.46), pK  and dK   are proportional and 

derivative gain matrices which are determined by the moment of inertia of the spacecraft: 
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d
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K

 (2.49) 

where nω  and ς  are the natural frequency and damping ratio, and which require tuning in order 

to achieve acceptable attitude control performance. Due to the limited control authority of a 
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pulsed thruster, the damping ratio does not work in the same way as with a traditional controller. 

In this case, the direction of the desired torque provided by the PD control scheme is more 

important than the magnitude of the torque. Different gain matrices may be chosen based on 

different specifications and arrangement of the µPPT. The performance of the controller also 

depends on the accuracy of the sensor (i.e. the statistics of the noise ( )tν  in Eq. (2.25) and the 

magnitude of the environmental disturbances ( )D tT  in Eq. (2.1).  

3.4.3.3. Optimal Controller Allocation 

The angle between the torque output, CT  and the desired torque, desT  (i.e. the cost function) 

must be minimized in order to obtain the best approximation of desT . This is solved with a 

nonlinear binary optimization:  

 

{ }

1

1
subj

min co

ect t

s   

0,o: 1  and 5 

des

des

n
n

i
i

z

−

=

 ⋅
  
 

∈ ≤∑

z

Bz T
Bz T

z

, (2.50) 

where z  is a 1n×  vector indicating the status of all thrusters where each entry has value of either 

0(off) or 1(on), and m n×∈B   is the control effectiveness matrix (i.e. ( ), ×B =  

i eff i ir n ), where 

8n =  is the length of z , and 3m =  is the length of desT  (Oppenheimer & Doman, 2006). Notice 

that z  is the control signal that determines which thruster to fire, and Bz  is the actuator output 

(also is CT ). The second condition in Eq. (2.50) is the constraint from the thruster electronics. 

Preliminary design of the thruster module has constrained the power distribution to an upper 

limit of 5 thrusters at one time, which means that at any instance, at most 5 thrusters can be fired, 
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i.e. the cardinality of the set ( )tI  is at most 5 at any instance. Solution to this optimization 

provides the best thruster firing combinations to accommodate the direction of desired torque.  

If the cost function is twice continuously differentiable, the solution can be obtained by first 

convexifying the problem and then solving a sequence of subproblems, whose solutions form a 

trajectory that leads to the final solution (Murray & Ng, 2010). However, this is not the case 

because the cost function cannot be simplified; the only way to solve this optimization problem 

is by method of exhaustion. Fortunately, there are only eight binary variables which require 255 

repeated calculations and it is practical to solve it onboard in real-time. The cosine is an even 

function, with ( )cos 0 1= . Therefore, the cost function can be reduced to a simpler form:  
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This reduces the computational cost. Although the improvement is on the level of tenth of 

milliseconds, but it could be significant in cases that z  has a large dimension. When the desired 

attitude is achieved, a deadzone modification was implemented in order to avoid unnecessary 

thruster firings: 
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where Tcrit  is the critical torque threshold which is determined based on the moment of inertia I , 

effectiveness matrix B , and impulse bit bitI . When the desired torque is below the critical torque 

level, no thruster is active, which means if 0des =T , z  is a 8 1× vector of zeros and ( )tI  is the 

null set.  

This control algorithm is processed no more frequent than the pulse frequency of the µPPT. 

So for a µPPT of Pf =1 Hz, the algorithm is evaluated at most once every second. The advantage 

of using this method is also that, during the event of thruster failure, simply changing the B  

matrix in the optimization will suffice.  
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  Chapter 4.

Simulations of Mission Scenarios and Results 

To validate the control algorithms that were developed in section 3.4, the spacecraft dynamic 

is simulated and the control algorithms are implemented in MATLAB®. In section 4.1, the input 

parameters used in simulation to obtain the results is introduced (such as CubeSat parameters and 

thruster properties). Then in section 4.2, 4.3, and 4.4, the simulation results are presented and 

compared for both control methods developed in section 3.4 for the three scenarios: stabilization, 

pointing, and pointing and spinning. The performance is compared with the estimates from 

thruster sizing in section 2.3.2. The power and fuel consumption during each scenario is also 

presented and discussed. In section 4.5, simulation results are presented to show how the thruster 

failure affects the performance of both control methods, and why having a thruster allocation 

method increases the redundancy in the controller.  

4.1.  Input Parameters 

For simulation purposes, MATLAB® is utilized to implement the attitude control for the 

CubeSat shown in Figure 1-1b. The center of mass of the CubeSat in the BRF is located at 

[ ]0.5 1.5 1  cm−  relative to the geometric center. The inertia matrix (non-diagonal) for the 

CubeSat shown in Figure 1-1b is estimated as: 
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2

0.03 0.0005 0.0005
0.0005 0.03 0.0005  kg m
0.0005 0.0005 0.006

I
 
 = ⋅ 
  

 

I assume that the µPPT has 40 μN sbitI = ⋅  with a random error of normal one percent and a 

pulse frequency 1 HzPf = . The thrust vector has a fixed error of 1% to simulate error introduced 

in the thruster-structure integration. Since the orbit propagation was not considered in this study, 

the orbital parameters of the CubeSat are not evaluated. In order to study the feasibility of a 

µPPT in providing the desired attitude control, a periodic disturbances torques based on the 

maximum disturbances encountered in the orbit is introduced and the disturbances are applied to 

all three axes.  

Typical sensor errors are introduced in the simulation. Sun sensors have error of 0.5 degrees 

(3σ); gyroscope has error of 0.05 deg/s and magnetometer has error of 250 nT. The gains for 

thruster allocation methods are: 3.7ς =  and 0.1nω = . 

4.2.  Stabilization Results 

After being deployed from the launch vehicle, a CubeSat usually has random rotations and the 

first phase of attitude control is to stabilize the CubeSat. The initial body rotation rate is assumed 

to be 5 deg/s in each axis. At the end of stabilization phase, the CubeSat should have a minimum 

angular rotation as some onboard buses and hardware are powered on.  
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Figure 4-1: Rotational kinetic energy of a CubeSat undergoing stabilization with paired 
firing (left) and thruster allocation (right).  

 

Figure 4-2: Angular velocity of a 3U CubeSat undergoing stabilization with paired firing 
(left) and thruster allocation (right). 

The thruster has fixed impulse bit, so the result is different from the usual controller where an 

exponential decay is expected. From the data presented in Figure 2-6 and Figure 2-7, in section 

2.3, a set of six thrusters, operating with an impulse bit and pulse frequency of 40 μN s⋅  and 1 

Hz respectively, is found to be capable of completing maneuvers with an angular momentum rate 

of under 5 μN s/s⋅ . So for a stabilization of ∆ω=5 deg/s, the time estimate is a little less than 10 

minutes, which is consistent with the result presented here. The stabilization time is expected to 

be less than an estimate based solely on the rate, due to the addition of two thrusters. In this 
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regards, both methods achieves the stabilization within our estimated time. But paired firing has 

a slight edge in achieving stabilization compared with the thruster allocation method. The reason 

for this advantage will be clear when the power consumption by both methods is analyzed later.  

  

Figure 4-3: Firing sequence of µPPTs on a 3U CubeSat during stabilization and 
compensation of periodic disturbance using paired firing; (Left) the total number of firings 
from each thruster; (Right) the time of occurrence for each firing indicted by a line. The 
areas filled with lines indicate that the specific thruster is on full operation. 
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Figure 4-4: Firing sequence of µPPTs on a 3U CubeSat during stabilization and 
compensation of periodic disturbance using thruster allocation; (Left) the total number of 
firings from each thruster; (Right) the time of occurrence for each firing indicted by a line.  

For µPPTs, the amount of fuel consumption is proportionally related to the number of firings. 

Figure 4-3 also represents the amount of fuel consumed during the maneuver. From Figure 4-3 

and Figure 4-4, paired firing method uses more fuel than thruster allocation method (during 20-

min window, total number of firing is 2200 for paired firing method and 1771 for thruster 

allocation method). Thruster allocation utilizes the best possible firing combination for a 

proportional controller, as a result, the effective impulse bit by each firing combination is 

maximized, but to achieve this effectiveness, the performance (i.e. time for stabilization) is not 

ideal. However, paired firing method uses a pair of thrusters, due to the cancellation of the torque 

along the off-axis direction, the effective impulse bit is reduced. Looking closely at Figure 4-1 
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for paired firing, the rotational kinetic energy decreases almost linearly for the first 2.5 minute, 

but the slope of the curve decreases afterward, especially after 4 minutes. In Figure 4-2 for pair 

firings, after 4 minutes, both X and Z axes are stabilized which leaves only the Y-axis. It started 

by four thrusters firing simultaneously to regulate either two of the three axes; however, only two 

thrusters have the capability to regulate in one direction along the Y-axis, meaning that the 

decrease of the rotational kinetic energy will slow down due to fewer firing thrusters. 

The same pattern can be found when comparing power consumption by both methods during 

stabilization. A typical shot energy of 1.5 J is used to calculate the power consumption of a µPPT 

module. In Figure 4-5, using paired firings, the average power consumption for stabilization is 

fixed at 6 W for the first 3 minutes, and then gradually decreases to less than 1W, whereas the 

average power consumption for stabilization is approximately 6 W, and after 8 minutes when the 

CubeSat is stabilized, the average power consumption is less than 1W for disturbance torque 

compensation using thruster allocation. With double deployed solar panels shown in Figure 1-1b, 

the total power generation during sunlight is rated at 20 W, as a result, the power consumption is 

well within the constraint of a CubeSat power budget.  

  

Figure 4-5: Power consumption of µPPTs on a 3U CubeSat during stabilization and 
compensation of periodic disturbance torques with paired firing (left) and thruster 
allocation (right). 
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 After the CubeSat is stabilized, there are scattered firings as shown in both Figure 4-3 and 

Figure 4-4. The scattered firings after 8 min. compensate for the rotation due to disturbance 

torques. Comparing this with the result due to a constant disturbance torque in Figure 4-6, the 

thrusters can stabilize the CubeSat in both situations and the time for initial stabilization is 

similar; however, it requires more firings to compensate for the constant disturbance torques 

which act on the spacecraft continuously.  

 

Figure 4-6: Firing sequence of µPPTs on a 3U CubeSat during stabilization and 
compensation of the maximum constant disturbance. (Left) The total number of firings 
from each thruster; (Right) the time of occurrence for each firing indicted by a line.  

As noted earlier, to compensate for a constant disturbance requires a set of six thrusters with 

40μN s⋅  with 1 Hz frequency. With the specific arrangement of thrusters in this study, 2n =  in 
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Eq. (1.16) and as a result none of the thrusters is overloaded. The µPPT is adequate to stabilize 

the CubeSat even during the worst case of disturbance. 

4.3.  Pointing Results 

A CubeSat mission considered in this scenario involves Sun observation or target tracking. In 

this simulation, the initial error angle about the Sun is 68 degrees and it is required that the 

CubeSat be controlled to correctly point toward the Sun within 0.5 degrees. This leads us to the 

pointing requirement where the CubeSat needs to be oriented correctly to have the desired field-

of-view over a certain target. The Allowable time span for the maneuver is set to 20 minutes.  

 

Figure 4-7: Pointing angle error of a 3U CubeSat using µPPTs with paired firing (left) and 
thruster allocation (right). 

The pointing accuracy is limited by the sensor accuracy. A fine Sun sensor has accuracy 

within 0.1 degrees however a coarse Sun sensor more commonly encountered will have an 

accuracy of 0.1 to 1 degree. Figure 4-7 shows the pointing error during the 20-min simulation. 

The red line shows the radius of the Sun in the view from CubeSat. Both methods achieve within 

5 degree accuracy in approximately 2 minutes, and thruster allocation method takes longer to 
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achieve fine pointing (i.e. below the red line). Comparing the pointing accuracy by both methods 

in long term, they have very similar performance; the pointing accuracy can be achieved under 

0.5 degrees. In Figure 4-8, the angular velocities for the first 2 minutes depicts the fastest slew 

maneuver which can be achieved by µPPTs. The angular velocity reaches maximum and starts to 

decrease immediately, implying the idle (or coasting) period is 0%.  

 

Figure 4-8: Angular velocity of a 3U CubeSat undergoing pointing using µPPTs with 
paired firing (left) and thruster allocation (right). 

Fuel consumption during pointing maneuver is then investigated for both control methods. 

Figure 4-10 and Figure 4-11 represents the firings for paired firing method and thruster 

allocation method respectively. From the time occurrence of firings, in both methods, thrusters 

are constantly firing to compensate for the disturbance torques, but it appears that paired firing 

achieves the same level of pointing accuracy with less fuel consumption. The average number of 

firing by each thruster for pair firing method is a 275, whereas that of thruster allocation method 

is 475. Paired firing has a clear advantage in fuel consumption and it uses 40% less than thruster 

allocation method 
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Figure 4-9: Firing sequence of µPPTs on a 3U CubeSat during pointing with paired firing 
allocation. (Left) The total number of firings from each thruster; (Right) the time of 
occurrence for each firing indicted by a line. 

In Figure 4-10, the average number of pulses per thruster is 472, with minimum 419 and 

maximum 517. Assuming that the CubeSat is always in the view of the Sun for a desired mission 

time of one year, then the average number of pulses is approximately 12 million/thruster and the 

maximum number of pulses is 13 million/thruster. Similarly to stabilization, Figure 4-11 shows 

the power consumption of the µPPT module during pointing maneuvers. It is expected that at 

most 5 thrusters are fired at the same time and under normal operation, 2 to 4 thrusters are fired 

constantly to correct the pointing and compensate for the disturbance torques so the power 

consumption is between 3 to 6 W.  
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Figure 4-10: Firing sequence of µPPTs on a 3U CubeSat during pointing with thruster 
allocation. (Left) The total number of firings from each thruster; (Right) the time of 
occurrence for each firing indicted by a line. 

 

Figure 4-11: Power consumption of µPPTs on a 3U CubeSat during pointing with paired 
firing (left) and thruster allocation (right). 
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4.4.  Pointing and Spinning Result 

In this simulation, the control strategy for spinning and pointing is evaluated. The strategy 

will orient the CubeSat towards the Sun within 0.5 degree and then start to spin it to 3 deg/s 

around the pointing axis. Figure 4-12 shows that the CubeSat first initiate the pointing maneuver 

to obtain the desired attitude. Then it starts to spin around the pointing axis. As the CubeSat is 

constantly adjusting the attitude for pointing, thrusters may fire for pointing correction thus no or 

fewer thrusters will be available for spinning. Figure 4-13 shows the angular velocity of a 

CubeSat undergoing spinning and pointing maneuvers using both control methods.  

 

Figure 4-12: Pointing angle error of a 3U CubeSat undergoing spinning and pointing 
maneuvers using µPPTs with paired firing (left) and thruster allocation (right). 

It is obvious that paired firing achieves a much more stable spinning and pointing than 

thruster allocation method. There is a drastic difference between the performances for pointing 

and spinning maneuver using paired firing and thruster allocation. The reason can be seen by 

considering the pointing result in section 4.3 where thruster allocation utilizes more number of 

firings for the similar performance of pointing maneuver. Every thruster is more occupied using 
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thruster allocation method than using paired firing for pointing maneuver, and in turn, less 

control output can be distributed towards spinning up the CubeSat.  

 

Figure 4-13: Angular velocity of a 3U CubeSat undergoing pointing and spinning to 3 deg/s 
using µPPTs with paired firing (left) and thruster allocation (right).  

In Figure 4-15, the time for the CubeSat to spin up to 3 deg/s in one axis, is approximately 2 

min. Because the pointing axis is a major axis where moment of inertia is the largest among all 

three axes, the rotation is relatively stable.  

 

Figure 4-14: Power consumption of µPPTs on a 3U CubeSat during pointing with paired 
firing (left) and thruster allocation (right). 
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Figure 4-15: Angular velocity of a 3U CubeSat undergoing spinning to 3 deg/s without 
pointing using µPPTs with thruster allocation.  

4.5.  Pointing Performance with Thruster Failure  

This section compares simulation results during pointing maneuvers with the thruster-

allocation method and paired-firing method. Thruster #3 is set to be inoperative and detection of 

the failure is assumed. Paired firing will use the same technique with the optimal angular 

velocity threshold being halved due to the loss of half control authority, but when the pair of 

thrusters which includes thruster #3 is commanded to fire, only the operational thruster will fire. 

With the separate control algorithm and thruster-allocation method, as described in Section 3.4.3, 

the control effectiveness matrix needs to be modified to accommodate the situation and the gain 

in the control algorithm will be affected, as was the case when decreasing the threshold for the 

paired firing technique.  

Figure 4-16 shows the pointing accuracy and demonstrates that both methods are able to 

orient the CubeSat properly with the thruster allocation method being more robust.  The time 

required to achieve pointing and stabilization with thruster failure is slightly longer than that 

without failure as a comparison with Figure 4-7. A comparison of the angular velocity of the 
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CubeSat in Figure 4-17, shows that the paired-firing method does not eliminate the constant 

angular velocity around the pointing axis because it cannot properly distribute the torque. In 

contrast, the thruster allocation method shows that the impact of the thruster failure is minimal.  

 

Figure 4-16: Pointing angle error of a 3U CubeSat using µPPTs with paired firing (left) and 
thruster allocation (right) under thruster failure. 

 

Figure 4-17: Angular velocity of a 3U CubeSat using µPPTs with paired firing (left) and 
thruster allocation (right) under thruster failure. 

Now comparing the power consumption for both methods in Figure 4-18, despite having the 

advantage of consuming less fuel and power during normal operation, paired firing method 

consumes significantly more power and in turn more fuel for a pointing maneuver with a failed 

thruster. 
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Figure 4-18: Power consumption of µPPTs with paired firing (left) and thruster allocation 
(right) under thruster failure. 

Without loss of control authority, thruster #3 and #6 are set as inoperative. The simulation 

results are shown in Figure 4-19 and Figure 4-20. Both control methods achieve pointing with 

the thruster-allocation method exhibiting better performance. As before, the paired-firing method 

fails to stabilize the rotation along the Z axis. 

 

Figure 4-19: Pointing angle error of a 3U CubeSat using µPPTs with paired firing (left) and 
thruster allocation (right) under two thruster failure. 
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Figure 4-20: Angular velocity of a 3U CubeSat using µPPTs with thruster allocation (right) 
under two thruster failure. 

Finally thrusters #3, #6, and #7 are assumed to be inoperative and simulation results for the 

pointing maneuver are shown in Figure 4-21 and Figure 4-22. The paired-firing method is not 

able to control the attitude properly and can no longer stabilize the CubeSat. The thruster-

allocation method can stabilize the CubeSat and maintain the pointing to within an error of 3 

degrees. 

 

Figure 4-21: Pointing angle error of a 3U CubeSat using µPPTs with paired firing (left) and 
thruster allocation (right) under three thruster failure. 
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Figure 4-22: Angular velocity of a 3U CubeSat using µPPTs with paired firing (left) and 
thruster allocation (right) under three thruster failure. 

The results show that the thruster-allocation method has an advantage over the paired-firing 

especially in cases of thruster failure. The thruster-allocation method can properly distribute the 

control with the best possible firing combination. Another advantage of thruster allocation 

method is that it works for arbitrary geometries based on different thruster arrangements. The 

only parameters to be tuned are the values of proportional and derivative gains, whereas paired 

firing method only works for the geometry purposed earlier.  
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  Chapter 5.

Summary and Recommendations  

This thesis work presents a feasibility study of using µPPTs for attitude control of 3U 

CubeSat. The thesis also presents the development of attitude determination, estimation, and 

attitude control methods. 

5.1.  Summary 

In Chapter 1, a literature review is provided on propulsion options for CubeSat applications 

along with overall objectives and approaches in this thesis. In Chapter 2, the CubeSat conceptual 

design is introduced which includes the µPPT module consisting of 8 thrusters occupying 1U of 

the CubeSat. The hardware and sensors of the CubeSat are COTS. Sizing of the µPPT and the 

propulsion module is based on the magnitude of disturbance torques which can be experienced 

by the 3U CubeSat in LEO. In Chapter 3, the dynamical model for a rigid body spacecraft is 

discussed, the actuator model and control implementation for the µPPT, and useful reference 

frames. The static attitude determination is obtained using Davenport’s q-method. Models for 

magnetometer and sun sensor, as well as reference models for the Sun’s position and the Earth’s 

magnetic field are introduced.  The attitude estimation is based on an extended Kalman filter and 

two control methods. The paired-firing method is developed based on the geometry of the 

thruster arrangement, whereas a separate control algorithm and thruster-allocation method 

provide the optimal utilization of the available thrusters. The latter is more robust for attitude 
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control for arbitrary thruster arrangements or in the event of thruster failure. For the paired firing 

method, the optimal angular velocity threshold is determined for the shortest time pointing 

maneuvers.  

In Chapter 4, MATLAB simulation results are presented using both control methods for 

stabilization, pointing, and spinning and pointing. It is shown that both control methods are 

capable of stabilizing the CubeSat, and they have similar performance in terms of required time. 

For pointing and pointing with spinning maneuvers, the paired firing method has a clear 

advantage over the thruster allocation method as paired firing is tailored to the specific thruster 

arrangement. However in situations of thruster failure, thruster allocation has shown robustness 

that it is able to accommodate the loss of thrusters. 

5.2. Recommendations for Future Work 

Future work should involve further development of the propulsion module and the ADC 

method. Specifically:  

• Incorporation of a detailed power budget in the thruster allocation.  

• Investigation of additional electric propulsion options. 

• Investigation and comparison of alternative control algorithms.  

• Development of trade studies to address fuel consumption and time required of 

maneuvers using various control methods, over longer mission times and under a more 

expanded set of scenarios.  
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• Consideration for both attitude and orbital control with the µPPT module which 

involves new thruster arrangements and development of different control algorithms 

and allocation methods as the system may be under-actuated.  
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