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Abstract

The paper is devoted to a revision of the metric regularity property for mappings
between metric or Banach spaces. Some new concepts are introduced: uniform metric
regularity and metric multi-regularity for mappings into product spaces, when each
component is perturbed independently. Regularity criteria are established based on
a nonlocal version of Lyusternik-Graves theorem due to Milyutin. The criteria are
applied to systems of generalized equations producing some “error bound” type
estimates.
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1 Introduction

The property of metric regularity has proved to be one of the central concepts of
the contemporary variational analysis, playing an extremely important role both
in theory and its numerous applications to generalized equations, variational in-
equalities, optimization, etc. Being well-established and recognized, this concept
still continues its expansion into new areas of mathematical analysis (see the recent
monographs [19,22] and survey papers [2, 13]).
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A set-valued mapping F : X ⇒ Y between metric spaces is said to be metrically
regular near (x◦, y◦) ∈ gph F if there exist κ ≥ 0 and δ > 0 such that

d(x, F−1(y)) ≤ κd(y, F (x)), ∀x ∈ Bδ(x
◦), ∀y ∈ Bδ(y

◦). (1)

Here F−1 denotes the inverse mapping: F−1(y) = {u ∈ X : F (u) 3 y}. An impor-
tant interpretation of this property is in terms of error bounds : given a solution x◦

of the inclusion (generalized equation) F (u) 3 y◦, any x and y close to x◦ and y◦,
respectively, and κ′ > κ, it guarantees the existence of a solution x′ of the perturbed
inclusion F (u) 3 y satisfying the error estimate d(x, x′) ≤ κ′d(y, F (x)).

In the case of a single-valued mapping f between Banach spaces, strictly differen-
tiable at x◦, the main regularity criterion is provided by the famous Lyusternik-
Graves theorem, which basically reduces the problem of regularity of f to that
of its linear approximation ∇f(x◦), the criterion being the surjectivity of ∇f(x◦)
(see [7, 13]). This result is recognized as one of the main theorems of (smooth)
nonlinear analysis (see [13]).

In the general case, some extensions of Lyusternik-Graves theorem have been devel-
oped based on the same idea: to reduce the problem of regularity of F to that of
another mapping close to F in a certain sense. Such extensions provide, in particular,
estimates of the radius of metric regularity [11] (with respect to Lipschitz continu-
ous perturbations): the extent to which a regular near some point mapping can be
perturbed by adding a locally Lipschitz continuous function before metric regular-
ity is lost. This idea can be traced back to the original papers by Lyusternik (see
the extensions of Lyusternik theorem in [14] and [5]) and Graves (see its extension
in [7]).

Despite its great generality, Lyusternik-Graves theorem in its standard form as well
as its traditional extensions does not cover some important cases. For instance, when
considering a system of inclusions (generalized equations)

fi(u) + Qi 3 0, i = 1, 2, . . . , n, (2)

where fi : X → Yi is a function between Banach spaces and Qi is a subset (usually
a cone) of Yi, it can be important to have error bounds estimates when the variables
in each equation are perturbed independently. More precisely, if x◦ is a solution of
(2), conditions are needed guaranteeing the existence of κ > 0 and δ > 0 such that
for any xi ∈ Bδ(x

◦) and yi ∈ Bδ, i = 1, 2, . . . , n, there exists x ∈ X satisfying

fi(xi + x) + Qi 3 yi, i = 1, 2, . . . , n, (3)

‖x‖ ≤ κ max
1≤i≤n

d(yi − fi(xi), Qi). (4)

Conditions of this type do not follow directly from the standard Lyusternik-Graves
theorem. Fortunately, once again classical results happen to be richer than they are
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usually cited. It was noticed by Milyutin in early seventies (see e.g. the survey paper
[5]) that the original proof of Lyusternik’s result was applicable to the “nonlocal”
metric regularity, when the estimate of type (1) held on a set. Although well known
to the variational analysis community, the importance of this feature of Milyutin’s
extension of Lyusternik-Graves theorem seems to be still underestimated. At the
same time this is exactly the property needed to prove the “parametric” version of
Lyusternik-Graves theorem (see Theorem 2) and deduce the above estimates (see
Theorem 3). It can also be useful for other applications (see [4]).

The paper is organized as follows. Section 2 is devoted to the metric regularity prop-
erty and Lyusternik-Graves theorem. It contains a nonlocal (due to Milytin) version
of the theorem as well as some discussions. All regularity statements formulated in
the rest of the paper are corollaries of this fundamental result. In Section 3 uniform
metric regularity is defined and a parametric version of Lyusternik-Graves theorem
(for a family of mappings depending on a parameter) is formulated and proved. In
Section 4 we define metric multi-regularity for mappings into product spaces when
each component is perturbed independently, and consider systems of generalized
equations. The application of the regularity criteria produces some “error bound”
type estimates. In the final Section 5 regularity properties of collections of sets are
considered. Based on the results from Section 4, some regularity conditions are es-
tablished.

Mainly standard notations are used throughout the paper. A closed ball of radius
ρ centered at x in a metric space is denoted by Bρ(x). We write Bρ if x = 0. Dis-
tance is denoted by d(·, ·). The same notation is used for point-to-set distances:
d(x, Ω) = infω∈Ω d(x, ω). When considering products of metric spaces, we always as-
sume that they are equipped with the maximum-type distance: d((x1, y1), (x2, y2)) =
max {d(x1, x2), d(y1, y2)}. The notation F : X ⇒ Y is used for set-valued mappings
(the term “set-valued” is usually omitted) between metric spaces as opposed to
single-valued functions f : X → Y .

2 Metric regularity and Lyusternik-Graves theorem

For a mapping F : X ⇒ Y between metric spaces and a point (x◦, y◦) ∈ gph F (the
graph of F ) define a (possibly infinite) constant

r[F ](x◦, y◦) = lim inf
x→x◦, y→y◦

[
d(y, F (x))

d(x, F−1(y))

]
∞

. (5)

Here [·/·]∞ is the “extended” division operation, which differs from the usual one
in the additional rule [0/0]∞ = +∞. This allows one not to worry about the points
(x, y) with y ∈ F (x) when evaluating the lower limit in (5).

The constant (5) characterizes the metric regularity property: r[F ](x◦, y◦) > 0 if
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and only if F is metrically regular near (x◦, y◦). Moreover, if positive, this constant
provides a quantitative characteristic of metric regularity. It is also known as the rate
or modulus of surjection or covering (see [13,19]) and is often denoted sur F (x◦| y◦)
or cov F (x◦| y◦).

It is a well known fact (see [13, 19,22]) that

r[F ](x◦, y◦) =
1

reg F (x◦| y◦)
,

where reg F (x◦| y◦) is the modulus of metric regularity defined as the infimum of all
κ for which (1) holds.

We prefer r[F ](x◦, y◦) to reg F (x◦| y◦) when characterizing metric regularity because
of its explicit “derivative-like” definition (5) and because it leads to simpler estimates
in the statement of the extended Lyusternik-Graves theorem (see Theorem 1 below).

Similarly to (5), one can define another constant:

l[F ](x◦, y◦) = lim sup
x→x◦, y→y◦

[
d(y, F (x))

d(x, F−1(y))

]
0

, (6)

where [·/·]0 stands for another “extended” division operation with the additional
rule [0/0]0 = 0. Formula (6) can be rewritten equivalently as

l[F ](x◦, y◦) = lim sup
x,x′→x◦, y→y◦

y∈F (x′)

[
d(y, F (x))

d(x, x′)

]
0

. (7)

This is exactly the Lipschitz modulus lip F (x◦| y◦) [22]. This constant is convenient
for characterizing the Aubin’s Lipschitz-like (pseudo-Lipschitz ) property [1, 19, 22].
It follows immediately from the definition, that

l[F ](x◦, y◦) =
1

r[F−1](y◦, x◦)
.

If f : X → Y is a usual (single-valued) function we shall speak about metric regu-
larity near x◦ and write r[f ](x◦) and l[f ](x◦) instead of r[f ](x◦, y◦) and l[f ](x◦, y◦),
respectively. In this case, (7) takes a simpler form:

l[f ](x◦) = lim sup
x,x′→x◦

[
d(f(x), f(x′))

d(x, x′)

]
0

. (8)

Along with (5), (8), consider their “approximate” counterparts corresponding to

4



some positive δ:

rδ[F ](x◦, y◦) = inf
x∈Bδ(x◦), y∈Bδ(y◦)

[
d(y, F (x))

d(x, F−1(y))

]
∞

, (9)

lδ[f ](x◦) = sup
x,x′∈Bδ(x◦)

[
d(f(x), f(x′))

d(x, x′)

]
0

. (10)

Obviously,

r[F ](x◦, y◦) = lim
δ→0

rδ[F ](x◦, y◦), l[f ](x◦) = lim
δ→0

lδ[f ](x◦).

Moreover, rδ[F ](x◦, y◦) ≥ α > 0 if and only if (1) holds with κ = 1/α.

Using (9) and (10), one can formulate the following extension of Lyusternik-Graves
theorem.

Theorem 1 Consider mappings F : X ⇒ Y and g : X → Y from a complete
metric space into a normed linear space. Suppose that gph F is closed in X×Y and
(x◦, y◦) ∈ gph F . Then for any δ > 0,

rδ[F + g](x◦, y◦ + g(x◦)) ≥ rδ[F ](x◦, y◦)− lδ[g](x◦). (11)

The single-valued version of Theorem 1 can essentially be found in [5]. The proof
given in [5] can be easily extended to cover the set-valued case (see also [13] for set-
valued statements and historical comments). Taking δ → 0 in (11) one immediately
obtains the extended Lyusternik-Graves theorem as it is formulated in [10, 12] (in
the Banach space setting).

Theorem 1 guarantees metric regularity of the perturbed mapping F + g when F is
metrically regular and lδ[g](x◦) < rδ[F ](x◦, y◦) for some δ > 0. Note the “nonlocal”
character of this theorem: metric regularity of F+g is guarantied in the same δ-neigh-
borhood of (x◦, y◦), where F is metrically regular and g is Lipschitz continuous. (The
corresponding statement in [5] is formulated for an arbitrary set.) This is important
for some applications (see Theorem 2 below).

Remark 1 The assumption that the graph of F is closed can be weakened: it is
sufficient to assume that it is locally closed near (x◦, y◦): if gph F ∩ Bδ0(x

◦, y◦) is
closed for some δ0 > 0 then (11) holds for any positive δ < δ0.

Applying Theorem 1 to the sum of the set-valued mapping F + g and the function
−g, one immediately obtains an upper estimate for rδ[F + g](x◦, y◦ + g(x◦)).

Corollary 1.1 Under the conditions of Theorem 1, for any δ > 0,

rδ[F ](x◦, y◦)− lδ[g](x◦) ≤ rδ[F + g](x◦, y◦ + g(x◦)) ≤ rδ[F ](x◦, y◦) + lδ[g](x◦).
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The main application of this result is when limδ→0 lδ[g](x◦) = 0, that is g is strictly
stationary at x◦ [7, 8], or, in other words, F is a strict first-order approximation
[12, 19] to F + g (and vice versa) at x◦. It guarantees that a perturbation of a
mapping by a strictly stationary function does not affect its metric regularity. This
result allows one to reduce examining metric regularity of a complicated mapping
to that of a simpler (usually linear) one. For instance, in the case of a strictly
differentiable at x◦ function f : X → Y between Banach spaces, it follows that
f is metrically regular near x◦ if and only if ∇f(x◦) is regular (Lyusternik-Graves
theorem, see [11]), which by Banach open mapping theorem is equivalent to its
surjectivity.

Based on Corollary 1.1, it is possible to consider a more general case of “partial
strict linearization” for the sum f + F of a strictly differentiable function f and
an arbitrary set-valued mapping F with closed graph (see [12]). It is also possible
to consider mappings, which admit nonlinear (in particular, positively homogenous)
approximations.

3 Uniform metric regularity

Theorem 1 (or its Corollary 1.1) makes it possible to extend the metric regular-
ity estimates to the important for applications case of mappings depending on a
parameter.

Consider a mapping F : P ×X ⇒ Y , where X and Y are metric spaces and P is a
topological space. Denote Fp = F (p, ·) : X ⇒ Y . Let (p◦, x◦, y◦) ∈ gph F . Similarly
to (5), (6) define (possibly infinite) constants

r[F ](p◦; x◦, y◦) = lim inf
x→x◦, y→y◦

p→p◦

[
d(y, F (p, x))

d(x, F−1
p (y))

]
∞

, (12)

l[F ](p◦; x◦, y◦) = lim sup
x→x◦, y→y◦

p→p◦

[
d(y, F (p, x))

d(x, F−1
p (y))

]
0

.

(The approximate δ-versions of the above constants can also be of interest.)

We shall say that F is uniformly metrically regular near (p◦, x◦, y◦) with respect to
(x, y) if r[F ](p◦; x◦, y◦) > 0, that is if there exist κ ≥ 0 and δ > 0 such that

d(x, F−1
p (y)) ≤ κd(y, F (p, x)), ∀x ∈ Bδ(x

◦), y ∈ Bδ(y
◦), p ∈ Bδ(p

◦).
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If f : P ×X → Y is single-valued we write r[f ](p◦; x◦) and l[f ](p◦; x◦). In this case

l[f ](p◦; x◦) = lim sup
x,x′→x◦

p→p◦

[
d(f(p, x), f(p, x′))

d(x, x′)

]
0

. (13)

The condition l[f ](p◦; x◦) < ∞ means that f is locally uniformly Lipschitz [6, 9]
(equi-Lipschitz [3]) in x at (p◦, x◦).

When X and Y are normed spaces, a function f : P ×X → Y is said to be partially
strictly differentiable in x [20] (see also [3]) at (p◦, x◦) if there exists a linear and
continuous mapping ∇xf(p◦, x◦) : X → Y such that

lim
x,x′→x◦, p→p◦

x′ 6=x

f(p, x′)− f(p, x)−∇xf(p◦, x◦)(x′ − x)

‖x′ − x‖
= 0,

or, in other words, l[f − ∇xf(p◦, x◦)](p◦; x◦) = 0, that is the linear mapping x →
∇xf(p◦, x◦)x strictly approximates f in x at (p◦, x◦) (see [21] where the term “strong-
ly” is used). Clearly this is a direct generalization of the notion of strict differentia-
bility [20] (see [19, 22]) which corresponds to the case when f does not depend on
p.

Theorem 2 Consider a mapping F : X ⇒ Y from a complete metric space into a
normed linear space and a function g : P ×X → Y , where P is a topological space.
Suppose that gph F is closed in X × Y , (x◦, y◦) ∈ gph F and l[g](p◦; x◦) = 0. Then

r[F + g](p◦; x◦, y◦ + g(p◦, x◦)) = r[F ](x◦, y◦). (14)

The short proof provided below illustrates standard arguments used when deducing
this type of “parametric” statements from the extended Lyusternik-Graves theorem.
Note that one needs to use the full “approximate” Theorem 1 (or Corollary 1.1);
the limiting statement is not sufficient.

Proof. Take an arbitrary ε > 0. It follows from (13), that there exists δ > 0 such
that for any p ∈ Bδ(p

◦) one has lδ[gp](x
◦) ≤ ε, where gp = g(p, ·). Corollary 1.1

implies the estimates

rδ[F ](x◦, y◦)− ε ≤ rδ[(F + g)p](x
◦, y◦ + g(p, x◦)) ≤ rδ[F ](x◦, y◦) + ε. (15)

Evidently

r[F + g](p◦; x◦, y◦ + g(p◦, x◦)) ≤ lim inf
p→p◦

r[(F + g)p](x
◦, y◦ + g(p, x◦))

= lim inf
p→p◦

lim
δ→0

rδ[(F + g)p](x
◦, y◦ + g(p, x◦)),

and the second inequality in (15) yields

r[F + g](p◦; x◦, y◦ + g(p◦, x◦)) ≤ r[F ](x◦, y◦) + ε. (16)
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On the other hand, it follows from the first inequality in (15) that

d(y, (F + g)(p, x)) ≥ (rδ[F ](x◦, y◦)− ε)d(x, (F + g)−1
p (y))

for all x ∈ Bδ(x
◦), y ∈ Bδ(y

◦), p ∈ Bδ(p
◦), and consequently

r[F + g](p◦; x◦, y◦ + g(x◦)) ≥ lim
δ→0

rδ[F ](x◦, y◦)− ε = r[F ](x◦, y◦)− ε. (17)

Since ε is arbitrary, (16) and (17) imply (14). 2

4 Systems of generalized equations

Consider a mapping F : X ⇒ Y , where X is a normed linear space and Y =
Y1 × Y2 × . . . × Yn is a Cartesian product of n ≥ 1 normed linear spaces. Suppose
that F can be represented as F = (F1, F2, . . . , Fn), where each Fi is a mapping from
X into Yi. This means that for any x ∈ X its image F (x) under F is the product of
the images: F (x) = F1(x)×F2(x)× . . .×Fn(x). If F is single-valued this assumption
is fulfilled automatically.

Let (x◦, y◦) ∈ gph F and y◦ = (y◦1, y
◦
2, . . . , y

◦
n). Thus, (x◦, y◦i ) ∈ gph Fi, i = 1, 2, . . . , n.

Along with constant (5) define another regularity constant:

r̂[F ](x◦, y◦) = lim inf
xi→x◦, yi→y◦

i
i=1,2,...,n

 max
1≤i≤n

d(yi, Fi(xi))

d(0,
n⋂

i=1
(F−1

i (yi)− xi)


∞

. (18)

Note that (5) corresponds to taking x1 = x2 = . . . = xn in the above limit. Thus, in
general,

r̂[F ](x◦, y◦) ≤ r[F ](x◦, y◦),

and (18) gives rise to a stronger regularity concept: one can say that F is metrically
multi-regular near (x◦, y◦) ∈ gph F if r̂[F ](x◦, y◦) > 0, that is if there exist κ ≥ 0
and δ > 0 such that

d(0,
n⋂

i=1

(F−1
i (yi)− xi)) ≤ κ max

1≤i≤n
d(yi, Fi(xi)) (19)

for all xi ∈ Bδ(x
◦), yi ∈ Bδ(y

◦
i ), i = 1, 2, . . . , n. The infimum of all such κ equals

1/r̂[F ](x◦, y◦).

Now we turn to system (2) from Section 1. Let x◦ be a solution of this system. We
say that (2) is metrically multi-regular at x◦ if there exist κ > 0 and δ > 0 such that
for any xi ∈ Bδ(x

◦) and yi ∈ Bδ, i = 1, 2, . . . , n, there exists x ∈ X such that (3),
(4) hold true.
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The metric multi-regularity property guarantees the existence of a solution of the
perturbed system (3) and provides the estimate (4) of the norm of the solution
which can be interpreted as an error bound. Note that both the right-hand sides and
variables are perturbed in (3), and the variables in different generalized equations
are perturbed independently.

One can easily check that metric multi-regularity of (2) at x◦ as it is defined above is
nothing else but metric multi-regularity near (x◦, y◦) (with y◦ = 0) of the mapping
F : X ⇒ Y defined by F (x) = f(x) + Q, where f(x) = (f1(x), f2(x), . . . , fn(x)) and
Q = Q1 ×Q2 × . . .×Qn.

Remark 2 Conditions (3), (4) can be viewed as a realization of (19). However, the
constant κ in (4) is in general greater than (but can be taken arbitrarily close to)
the correspondent constant in (19), because the distance in the left-hand side of (19)
does not have to be achieved.

Theorem 3 Let x◦ ∈ X be a solution of system (2), where the functions fi : X → Yi

between Banach spaces are strictly differentiable at x◦ and the sets Qi ⊂ Yi are closed
and convex. Then system (2) is metrically multi-regular at x◦ if and only if

0 ∈ int {f(x◦) +∇f(x◦)X + Q}. (20)

Proof. Consider the Banach spaces P = Xn and Y = Y1×Y2× . . .×Yn, and define
the multifunction Φ : P ×X ⇒ Y by the relation Φ(p, x) = φ(p, x) + Q, where

φ(p, x) = (f1(x1 + x), f2(x2 + x), . . . , fn(xn + x))

and p = (x1, x2, . . . , xn). Denote p◦ = (x◦1, x
◦
2, . . . , x

◦
n). Then metric multi-regularity

of (2) at x◦ means the existence of κ > 0 and δ > 0 such that for any p ∈ Bδ(p
◦),

y ∈ Bδ there exists x ∈ X such that Φ(p, x) 3 y and ‖x‖ ≤ κd(y, Φ(p, 0)). Notice
that Φ possesses the following property: for any x, x′ ∈ X, p ∈ P one has Φ(p, x +
x′) = Φ(p + p′, x), where p′ = (x′, x′, . . . , x′). This property allows us to conclude
that metric multi-regularity of (2) at x◦ is equivalent to the existence of κ > 0 and
δ > 0 such that for any p ∈ Bδ(p

◦), x ∈ Bδ, y ∈ Bδ there exists an x′ ∈ Φ−1
p (y)

such that ‖x− x′‖ ≤ κd(y, Φ(p, x)). In its turn, the last condition is equivalent to
the uniform metric regularity of Φ near (p◦, 0, 0).

The function φ is partially strictly differentiable in x at (p◦, 0) and its derivative coin-
cides with that of f = (f1, f2, . . . , fn) at x◦:∇f(x◦) = (∇f1(x

◦),∇f2(x
◦), . . . ,∇fn(x◦)) :

X → Y . Define the mapping F (x) = ∇f(x◦)x + Q and the function g(p, x) =
φ(p, x) − ∇f(x◦)x. Then gph F is closed and convex, l[g](p◦; 0) = 0 and Φ(p, x) =
F (x)+g(p, x). By Theorem 2 uniform metric regularity of Φ near (p◦, 0, 0) is equiva-
lent to metric regularity of F at (0,−f(x◦)). Due to convexity of gph F the criterion
of metric regularity of F is provided by Robinson-Ursescu theorem (see [1, 11, 19]):
−f(x◦) ∈ int F (X) which is exactly condition (20). 2
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Note that (20) implies the following well known qualification condition:

[y∗ ∈ Y ∗, (∇f(x◦))∗y∗ = 0, 〈y∗, y〉 ≥ 0, ∀y ∈ f(x◦) + Q] ⇒ y∗ = 0.

If Q is convex and int {∇f(x◦)X + Q} 6= ∅ (the last requirement can be weakened)
both conditions are equivalent.

If the functions fi, i = 1, 2, . . . , n, are continuous near x◦ then the maximum in (4)
can obviously be taken over the set of active constraints

I(x◦) = {i ∈ {1, 2, . . . , n} : −fi(x
◦) ∈ bd Qi} .

Here bd Qi = Qi\int Qi is the boundary of Qi. (The case int Qi = ∅ is not excluded.)

The next proposition gives an estimate for the solution of the system of perturbed
generalized equations, in which only the variables are perturbed, not the right-hand
sides of the equations. Here, the variable in each equation is perturbed not relative
to the solution of the whole system, but relative to any sufficiently close to it solution
of this particular equation.

Proposition 1 Let x◦ ∈ X be a solution of system (2). Suppose that, in the neigh-
borhood of x◦, the functions fi are Lipschitz continuous for i ∈ I(x◦) and continuous
for i 6∈ I(x◦). If system (2) is metrically multi-regular at x◦, then there exist con-
stants L > 0 and δ > 0 such that for any xi ∈ Bδ(x

◦) satisfying the individual
inclusions

fi(xi) + Qi 3 0, i = 1, 2, . . . , n,

and any variations ui ∈ Bδ , i = 1, 2, . . . , n, one can find x ∈ X such that

fi(xi + ui + x) + Qi 3 0, i = 1, 2, . . . , n, (21)

‖x‖ ≤ L max
i∈I(x◦)

‖ui‖ . (22)

Proof. By the definition of metric multi-regularity, there exist constants κ > 0 and
δ > 0 such that for any xi ∈ B2δ(x

◦), i = 1, 2, . . . , n, there exists x ∈ X satisfying

fi(xi + x) + Qi 3 0 , i = 1, 2, . . . , n,

‖x‖ ≤ κ max
1≤i≤n

d(fi(xi),−Qi). (23)

Choosing a sufficiently small δ, one can assume that, for i ∈ I(x◦), fi is Lipschitz
continuous on B2δ(x

◦) with a modulus l, and fi(xi) ∈ −Qi if xi ∈ B2δ(x
◦) and i 6∈

I(x◦). So, the maximum in (23) is actually over I(x◦). Take an arbitrary xi ∈ Bδ(x
◦)

satisfying fi(xi) ∈ −Qi, and ui ∈ Bδ . Then xi + ui ∈ B2δ(x
◦) and

d(fi(xi + ui),−Qi) ≤ ‖fi(xi + ui)− fi(xi)‖ ≤ l ‖ui‖ .

Combining this with (23), one gets the existence of x ∈ X satisfying (21), (22) with
L = κl. 2
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It follows from Theorem 3 that in the case when all the spaces are Banach and the
functions are strictly differentiable, the regularity condition (20) is sufficient for the
conclusions of Proposition 1.

5 Regularity of collections of sets

In this section we consider a collection of sets Ω1, Ω2, . . . , Ωn in a normed space X
with a common point x◦ ∈ ∩n

i=1Ωi . For any ρ > 0 one can define the constant

θρ[Ω1, . . . , Ωn](x◦) = sup

{
r ≥ 0 :

( n⋂
i=1

(Ωi − ai)
) ⋂

Bρ(x
◦) 6= ∅, ∀ai ∈ Br

}
(24)

characterizing the mutual arrangement of these sets. It shows how far they can be
“pushed apart” independently while still intersecting in a given neighborhood of x◦.

Obviously, θρ[Ω1, . . . , Ωn](x◦) ≥ 0. If θρ[Ω1, . . . , Ωn](x◦) = 0 for some ρ > 0, then
the collection of sets Ω1, Ω2, . . . , Ωn is locally extremal [17] at x◦.

A “limiting” constant can be defined based on (24):

θ̂[Ω1, . . . , Ωn](x◦) = lim inf
ωi→x◦, ωi∈Ωi

ρ→+0

θρ[(Ω1 − ω1), . . . , (Ωn − ωn)](0)

ρ
. (25)

The constant (25) is in a sense a derivative-like object. It possesses some properties
of the strict derivative as it accumulates information about local properties of the
sets not only at the given point but also at all nearby points.

If θ̂[Ω1, . . . , Ωn](x◦) > 0, then the collection of sets Ω1, Ω2, . . . , Ωn is called strongly
regular [15, 16] at x◦.

The last condition means that there exist constants α > 0 and δ > 0 such that

θρ[Ω1, . . . , Ωn](ω1, . . . , ωn) > αρ

for any positive ρ ≤ δ and any ωi ∈ Bδ(x
◦), i = 1, 2, . . . , n, or, in other words, the

sets (Ωi−ωi−ai) have a common point in Bρ for any ρ ≤ δ and any ωi ∈ Ωi∩Bδ(x
◦),

ai ∈ Bαρ, i = 1, 2, . . . , n. The supremum of all such α equals θ̂[Ω1, . . . , Ωn](x◦).

The concept of strong regularity of a collection of sets seems to be useful in vari-
ational analysis, e.g. when formulating qualification conditions. It can also have
algorithmic applications (see [18]).

Different primal and dual characterizations of strong regularity of collections of sets
can be found in [15, 16]. There exist strong relations between regularity properties
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of collections of sets and the corresponding properties of appropriate multifunctions
(see e.g. [13]). The next assertion is basically Proposition 8 from [16].

Proposition 2 The collection of sets Ω1, Ω2, . . . , Ωn is strongly regular at x◦ if
and only if the multifunction x → (Ω1 − x)× (Ω2 − x)× . . .× (Ωn − x) from X into
subsets of Xn is metrically regular at (0, x◦, . . . , x◦).

Consider now the case when the sets Ωi are of the form

Ωi = {x ∈ X : Fi(x) 3 0} , i = 1, 2, . . . , n, (26)

where Fi is a (set-valued) mapping from X into a normed space Yi. Then the defin-
ition of strong regularity takes the following form.

Proposition 3 The collection of sets (26) is strongly regular at x◦ if and only if
there exist constants α > 0 and δ > 0 such that for any positive ρ ≤ δ and any
xi ∈ Bδ(x

◦) with Fi(xi) 3 0, ui ∈ Bαρ, i = 1, 2, . . . , n, one can find an x ∈ Bρ, such
that Fi(xi + ui + x) 3 0, i = 1, 2, . . . , n.

The case of particular interest is when each Fi is of the form Fi(x) = fi(x) + Qi,
where fi : X → Yi is a (single-valued) function and Qi ⊂ Yi. The application of
Theorem 3 and Propositions 1, 3 yields the following sufficient regularity condition.

Theorem 4 Let the conditions of Theorem 3 be satisfied. Suppose also that (20)
holds true, where f = (f1, f2, . . . , fn) and Q = Q1 × Q2 × . . . × Qn. Then the
collection of sets

Ωi = {x ∈ X : fi(x) + Qi 3 0} , i = 1, 2, . . . , n,

is strongly regular at x◦.

For the collection of sets (26), along with the linear shifts in (24), one can also
consider their nonlinear transformations related to variations of the right-hand sides
of the inclusions in (26). Namely, for any yi ∈ Yi consider the “perturbed” sets

Ωi(yi) = {x ∈ X : Fi(x) 3 yi} = F−1
i (yi), i = 1, 2, . . . , n. (27)

The initial sets (26) correspond to yi = 0, i = 1, 2, . . . , n.

Similarly to (24)–(25), the following “analytical” constants can be defined:

σρ[Ω1, . . . , Ωn](x◦) = sup

{
r ≥ 0 :

( n⋂
i=1

Ωi(yi)
) ⋂

Bρ(x
◦) 6= ∅, ∀yi ∈ Br

}
, (28)

σ̂[Ω1, . . . , Ωn](x◦) = lim inf
ωi→x◦, ωi∈Ωi

ρ→+0

σρ[(Ω1 − ω1), . . . , (Ωn − ωn)](0)

ρ
. (29)

Note that Ωi − ωi = {u : Fi(u + ωi) 3 0} .
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Defining the mapping F : X ⇒ Y = Y1 × Y2 × . . .× Yn by F (x) = F1(x)× F2(x)×
. . .× Fn(x) one can easily see that

σρ[Ω1, . . . , Ωn](x◦) = sup {r ≥ 0 : F (Bρ(x
◦)) ⊃ Br} (30)

and (29) is actually the covering constant for F at (x◦, 0). At the same time (29)
characterizes a kind of joint regularity for the collection of mappings F1, F2, . . . , Fn

near (x◦, 0), related to metric multi-regularity defined in terms of constant (18).

Proposition 4 r̂[F ](x◦, 0) ≤ σ̂[Ω1, . . . , Ωn](x◦).

Proof. Let 0 < r < r̂[F ](x◦, 0). It is sufficient to show that r ≤ σ̂[Ω1, . . . , Ωn](x◦).
By (18) there exists δ > 0 such that for any xi ∈ Bδ(x

◦), yi ∈ Bδr, i = 1, 2 . . . , n,
one can find x ∈ X such that yi ∈ Fi(xi + x), i = 1, 2 . . . , n, and

‖x‖ <
1

r
max
1≤i≤n

d(yi, Fi(xi)).

Take arbitrary positive ρ < δ and ωi ∈ Ωi ∩ Bδ(x
◦), yi ∈ Bρr, i = 1, 2 . . . , n. Then

yi ∈ Bδr, Fi(ωi) 3 0 and d(yi, Fi(ωi)) ≤ ‖yi‖ ≤ ρr. Consequently, there exists x ∈ X

such that Fi(ωi +x) 3 yi, i = 1, 2 . . . , n, and ‖x‖ < ρ. In other words,
(⋂n

i=1(Ωi(yi)−
ωi)

) ⋂
Bρ(x

◦) 6= ∅ for any yi ∈ Bρr. This yields σρ[Ω1, . . . , Ωn](ω1, . . . , ωn) ≥ ρr and

σ̂[Ω1, . . . , Ωn](x◦) ≥ r. 2

Thus, metric multi-regularity of F implies σ̂[Ω1, . . . , Ωn](x◦) > 0. Note that the
inequality in Proposition 4 is not reversible in general, since in the definition (29) of
σ̂[Ω1, . . . , Ωn](x◦) the sequences {ωi} are limited to the corresponding sets Ωi. Some
partial inversion is possible if the mappings are single-valued.

Theorem 5 Let fi : X → Yi, i = 1, 2, . . . , n, be functions between Banach spaces,

Ωi = {x ∈ X : fi(x) = 0} , i = 1, 2, . . . , n, (31)

and x◦ ∈ ∩n
i=1Ωi. Suppose that f = (f1, f2, . . . , fn) is strictly differentiable at x◦.

Then σ̂[Ω1, . . . , Ωn](x◦) > 0 if and only if ∇f(x◦) is surjective. Under these condi-
tions the collection of sets (31) is strongly regular at x◦.

Proof. Apply Theorem 3 with Q = {0}. Condition (20) takes the form ∇f(x◦)X =
Y . Thus, surjectivity of ∇f is equivalent to r̂[f ](x◦) > 0. Due to Proposition 4 the
last inequality implies σ̂[Ω1, . . . , Ωn](x◦) > 0.

Suppose now that ∇f(x◦)X 6= Y . We need to show that σ̂[Ω1, . . . , Ωn](x◦) = 0.
Take an arbitrary ε > 0. It is known (see Lemma 1 below) that in this case there
exists an element y∗ ∈ Y ∗ with ‖y∗‖ = 1 such that |〈y∗,∇f(x◦)x〉| ≤ ε ‖x‖ for all
x ∈ X. Since f(x◦) = 0, there exists a δ > 0 such that for any x ∈ Bδ one has
‖f(x◦ + x)−∇f(x◦)x‖ ≤ ε ‖x‖ , and consequently |〈y∗, f(x◦ + x)〉| ≤ 2ε ‖x‖. Take
any positive numbers ρ ≤ δ and r < σρ[Ω1, . . . , Ωn](x◦) (if σρ[Ω1, . . . , Ωn](x◦) = 0,

13



then σ̂[Ω1, . . . , Ωn](x◦) = 0 trivially holds). According to (30), F (Bρ(x
◦)) ⊃ Br,

hence
r = sup

y∈Br

〈y∗, y〉 ≤ sup
x∈Bρ

〈y∗, f(x◦ + x)〉 ≤ 2ερ,

and consequently σρ[Ω1, . . . , Ωn](x◦) ≤ 2ερ. According to definition (29) one has

σ̂[Ω1, . . . , Ωn](x◦) ≤ lim inf
ρ→+0

σρ[Ω1, . . . , Ωn](x◦)

ρ
≤ 2ε,

and consequently σ̂[Ω1, . . . , Ωn](x◦) = 0.

The last assertion follows from Theorem 4. 2

Lemma 1 Let A : X → Y be a linear bounded mapping between Banach spaces. If
A is not surjective, then for any ε > 0 there exists a y∗ ∈ Y ∗ with ‖y∗‖ = 1 such
that |〈y∗, Ax〉| ≤ ε for all x ∈ B1.

Proof. If AX 6= Y , the assertion is trivial. Suppose that AX = Y . Take any ε > 0.
If A(B1) ⊃ Bε, then A(B1) is dense for Bε, and so, by Theorem 1.5 from [5] (or by
the second part of the proof of the Banach open mapping theorem) A(B1) ⊃ Bε/2,
whence AX = Y , so A is surjective, a contradiction. Thus, the closed convex set
C = A(B1) does not contain some point y0 ∈ Bε. By the separation theorem there
exists y∗ ∈ Y ∗ with ‖y∗‖ = 1 such that 〈y∗, y〉 ≤ 〈y∗, y0〉 ≤ ε for all y ∈ C. Hence,
for any x ∈ B1 one has 〈y∗, Ax〉 ≤ ε and −〈y∗, Ax〉 = 〈y∗, A(−x)〉 ≤ ε. 2

Acknowledgements. We wish to thank Bernd Kummer for suggesting a direct
proof of Proposition 1 as well as for helpful discussions; the referee for careful reading
of the manuscript, for professional criticism which has led us to revising the whole
bunch of publications on metric regularity; Jǐŕı Outrata for helpful discussions and
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