
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2015-04-30

Implementation of a Surgical Robot Dynamical
Simulation and Motion Planning Framework
Adnan Munawar
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Munawar, Adnan, "Implementation of a Surgical Robot Dynamical Simulation and Motion Planning Framework" (2015). Masters Theses
(All Theses, All Years). 592.
https://digitalcommons.wpi.edu/etd-theses/592

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/592?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Implementation of a Surgical Robot Dynamical Simulation
and Motion Planning Framework

by

Adnan Munawar

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Robotics Engineering

by

May 2015

APPROVED:

Professor Gregory Fischer, Major Thesis Advisor

Professor Micheal Gennert, Thesis Committee Member

Professor Dmitry Berenson, Thesis Committee Member

Abstract

The daVinci Research Kit (dVRK) is a research platform that consists of the clinical

daVinci surgical robot, provided by Intuitive Surgical to Academic Institutions. It

provides an open source software and hardware platform for researchers to study

and analyze the current architecture and expand the capabilities of the existing

technology. The line between general purpose robotics and medical robotics has

segregated the two fields. A significant part of the segregation lies at the software

end, where new tools and methods developed in general purpose robotics cannot

make it to medical robotics in a short amount of time. This research focuses on the

integration of a widely used software architecture for general purpose robotics with

the dVRK with the hope of utilizing the research and development from one field

to the other. As a first step towards this bridging, a motion planning framework

and a dynamic simulator has been developed for the dVRK using ROS. The motion

planning framework is aimed to assist the surgeon in performing task with additional

safety and machine intelligence. A few use cases have been proposed as well. Lastly,

a Matlab Interface has been developed that is standalone in terms of usage and

provides capabilities to interact with dVRK.

Acknowledgments

I would like to acknowledge the continuous support of my parents throughout

my Masters and in fact my entire academic life. Thanks to Professor Fischer for

being such a helpful advisor, giving constructive feedback all along and to all the

members of the AIM lab.

I would also like to mention my previous advisor at LUMS, Dr. Abubakr and

the team at CYPHYNETs including Talha Manzoor, Zeeshan Sharif, Bilal Talat

and Zubair Ahmed who I have worked with and led me to pursue my Masters in

Robotics. Lastly I would like to thank my two very good friends, Shahrukh Athar

and Dr. Hassan Khan for their motivation and guidance.

i

Contents

1 Introduction 1

1.1 Laparoscopic Surgery . 1

1.2 A Historical Perspective to Robotic Surgery 2

1.3 The daVinci Surgical Robot . 6

1.4 The daVinci Research Kit (dVRK) 8

2 Literature Review 12

2.1 Limitations to Robot Specific Software Framework 12

2.2 Development of CISST/SAW at LCSR 13

2.3 The OROCOS Project . 16

2.4 Similarities between OROCOS and SAW 17

2.5 Advent of Robot Operating Systems 18

3 System Architecture 21

3.1 Hardware Architecture . 21

3.1.1 The Master Tool Manipulators 21

3.1.2 The Patient Side Manipulators 24

3.1.3 The Foot Pedal Tray . 27

3.1.4 Controllers for the dVRK . 27

3.2 Software Architecture . 29

ii

4 Models for dVRK 32

4.1 Development of the URDF files . 32

4.1.1 Using Xacro for URDF . 33

4.2 Spawning the URDF files in RViz . 34

4.2.1 Utilizing the Joint State Publisher Package 35

5 Integration of ROS and CISST/SAW 37

5.1 Motivation and Requirement . 37

5.2 The cisst-ROS Bridge . 38

5.3 Revision of the cisst-ROS Bridge . 39

5.4 The cisst-ROS Publisher . 40

5.4.1 Publishing Joint Positions . 42

5.4.2 Publishing End Effector Pose 42

5.4.3 Publishing Joint Torques . 42

5.4.4 Publishing PID Gains . 43

5.5 The cisst-ROS Subscriber . 43

5.5.1 ROS Message Types for cisst-ROS Bridge 44

5.5.2 Subscriber for setting Joint Positions 46

5.5.3 Subscriber for setting Joint Torques 46

5.5.4 Subscriber for setting the Cartesian Pose 46

5.6 cisst-ROS Events . 47

5.7 Connecting Interfaces in SAW Components 47

5.8 Compiling SAW Code with ROS Build 48

5.9 Discussion . 49

6 Motion Planning for dVRK 50

6.1 Introduction . 50

iii

6.2 Motivation . 50

6.3 Using Random Time Planners . 53

6.4 Initial Development in Matlab . 53

6.4.1 Selection of Matlab for Development 53

6.4.2 Implementation in Matlab . 54

6.4.3 Using Random Environment 64

6.4.4 State Validation/Obstacle Avoidance 65

6.4.5 Comparison of Various Planners 66

6.4.6 Limitations of using Matlab for Motion Planning with ROS . 69

6.5 Using MoveIt and OMPL . 70

6.5.1 Movegroups for dVRK . 71

6.5.2 Movegroup integration in RViz 74

6.5.3 Visualization of planning problems in RViz 77

6.5.4 Visualization of Advanced Planning Problems 79

6.6 Assisting the Surgeon with Assisted Path Planning 81

6.6.1 Use Case . 81

6.6.2 Requirements . 82

6.6.3 The Software Experimental Setup 83

6.6.4 Obstalce Detection and Visualization 83

6.6.5 Visualization of the Start and Goal Points 84

6.6.6 Using the Foot Pedal Tray to get Start and Goal Points 85

6.6.7 Demonstration . 86

6.6.8 Comparing Planners Using MoveIt Benchmarking Tools 90

6.6.9 Using Optimal Path Planners 93

6.7 Discussion . 94

iv

7 Dynamic Simulator for the dVRK and a Matlab Interface 95

7.1 Dynamical Simulation of dVRK Manipulators in Gazebo 95

7.1.1 Setting up the MTM in Gazebo 96

7.1.2 Controller Plugins for Gazebo 96

7.1.3 Controller Performance tools for Gazebo 97

7.1.4 Dynamics of the MTM . 98

7.1.5 The Matlab ROS I/O . 102

8 Conclusion and Future Work 106

8.1 Implementation of Guidance Virtual Fixtures 108

8.2 Use Case of GVFs for the dVRK . 109

8.3 Use Case of FRVFs for Assistive Path Planning 109

v

List of Figures

1.1 PROBOT for Transurethal Resection of Prostate 3

1.2 Figures (a) and (b) showing the ZEUS surgical robot in very early

procedures . 4

1.3 ROBODOC robot by Integrated Surgical Supplies 5

1.4 The daVinci Surgical System with the surgeon operating the MTM

console and the helping nurse at the PSM station 7

2.1 SAW Application built upon the CISST libraries [11] 15

2.2 Multiple Hardware Components Connected to SAW [38] 16

2.3 The OROCOS Project [7] . 17

2.4 ROS usage demographics as of 2011 19

3.1 The dVRK Components at the AIM, WPI 22

3.2 The two MTMs at AIM Labs, WPI 23

3.3 Numbered joints with their direction of motion shown by arrows . . . 24

3.4 The two PSMs at AIM labs, WPI . 25

3.5 The Remote Center of the PSM. (Source: dVRK Manual) 26

3.6 The Foot Pedal Array . 28

3.7 A controller for each dVRK manipulator with labeled components . . 29

3.8 The basic system architecture . 30

vi

4.1 RViz model the Master Tool Manipulator 34

4.2 MTM is RViz with its Joint State Publisher GUI 35

4.3 RViz model of the PSM with its Joint State Publisher GUI 36

5.1 RRT-lazy in 3 Dimensional Cspace . 41

5.2 SAW application compiled with ROS build system to get a ROS ex-

ecutable. The figure shows the SAW components connected to their

corresponding cisst-ROS bridge interfaces to get publishers and sub-

scribers for getting and setting robot parameters 49

6.1 Four different views of the points sampled by the MTM for assistive

path planning . 52

6.2 RRT-extend in 2 Dimensional shows a path (in black) found between

pair of start and goal points while avoiding the obstacles in Cspace . . 55

6.3 RRT-extend in 3 Dimensional shows a path (in black) found between

pair of start and goal points while avoiding the obstacles in Cspace . . 56

6.4 RRT-connect in 2 Dimensional shows a path (in black) found between

pair of start and goal points while avoiding the obstacles in Cspace . . 58

6.5 RRT-connect in 3 Dimensional shows a path (in black) found between

pair of start and goal points while avoiding the obstacles in Cspace . . 60

6.6 Lazy RRT in 2 Dimensional shows a path (in black) found between

pair of start and goal points while avoiding the obstacles in Cspace.

The states in red protrude into the obstacles showing that RRT-Lazy

does not account for obstacles until the goal has been reached 61

vii

6.7 RRT-lazy in 3 Dimensional shows a path (in black) found between

pair of start and goal points while avoiding the obstacles in Cspace.

The states in red protrude into the obstacles showing that RRT-Lazy

does not account for obstacles until the goal has been reached 62

6.8 Subfigures (a), (b), (c) and (d) showing the Rewiring of Path and

Explored States as more and more States are sampled 63

6.9 The Triangle Inequality . 65

6.10 Random Environment implementation of RRT variants 66

6.11 Comparision of computational time for RRT-Lazy, RRT-Connect and

RRT-Extend in Matlab . 67

6.12 Comparision of number of states explored for RRT-Lazy, RRT-Connect

and RRT-Extend in Matlab . 68

6.13 Comparison of the number of states present in the computed path . . 68

6.14 MTM’s half arm group visualized in Red 71

6.15 MTM’s end effector group visualized in Red 72

6.16 MTM’s full arm group visualized in Red 73

6.17 PSM’s halfl arm group visualized in Red 74

6.18 PSM’s endl effector group visualized in Red 75

6.19 PSM’s full arm group visualized in Red 76

6.20 . 77

6.21 Figures (a) (b) showing the obstacle mesh from different angle, (c),

(d), (e) and (f) showing different perspectives of the PSM and its

start and goal state . 78

6.22 Figure (a) and (b) displaying the planned path with the obstacles

in view. Figure (c) and (d) showing the same path from different

perspectives with hidden obstacles . 79

viii

6.23 Planning a path inside a 3D volumetric rendering of a human skeletal

structure with figures (a), (b), (c) and (d) showing different views of

the same scene . 80

6.24 Planning a path in a dummy skeleton. (a), (b) and (c) showing

different views of the planning scene and figure (d) shows just the

path produced . 81

6.25 The experimental setup in terms of software for assisted path plan-

ning. The cisstROS bridge handles the publishers and subscribers

for getting and setting dVRK parameters. The TeleOp namespace

has several nodes that allow for Teleop of simulated PSM from actual

MTM. The Environment Management namespace handles the envi-

ronment representation, collision detection, visualization, start and

goal state visualization and the motion planning related tasks 83

6.26 Collision contact of the PSM with the 3D volumetric skeletal model

displayed as yellow spherical markers. Visual aid for collision aware-

ness while Teleoperating the PSMs 84

6.27 Visualization of start and goal states chosen in figure (a) and (b). (c)

and (d) show the capability of changing the start and goal states just

by specifying additional pair of points which results in deletion of the

previously registered start and goal points 85

6.28 The sole frame is the three images shows the location of the remote

center of the PSM. This location is chosen at the center of the ribs

and at the same height as the ribs . 86

6.29 Placing a pair of start and goal points using a single entry point (a)

in figures (b) and (c). The path produced is shown in figure (d) . . . 87

ix

6.30 Placing a pair of start and goal points at opposite sides of the spine

using a single entry point. (c) and (d) show the path produced from

different angles and different translucency 88

6.31 PSM links in collision with the mesh obstacle shown in Purple color . 89

6.32 Comparison between RRT Extend, RRT Connect, Lazy RRT, SBL,

KPIECE and PRM in terms of solution time in seconds (a) and path

length (b) . 92

6.33 Comparison between RRT Extend, RRT Connect, Lazy RRT, SBL,

KPIECE and PRM in terms of path clearance from obstacles and

overall path smoothness . 93

7.1 MTM modelled in Gazebo . 97

7.2 Gazebo Controller Plugin for MTM 98

7.3 Each pair of the two different sinosoids represent the input torque

to the joint and the resulting position of joint. In this graph, the

3rd(green and blue sinosoid) and 6th joint(red and purple) of the

MTM are used . 99

7.4 Matlab GUI for dVRK. The GUI shows that Matlab is connected to

MTM and showing the current joint positions (in rad) next to the

slider for controlling each joint . 101

7.5 the armBase class connect to ROS using Matlab-ROS IO bridge and

ROS connect to CISST/SAW using cisst-ROS Bridge. Thus there are

two bridges in between to connect matlab code to dVRK manipulators102

7.6 The armBase provides the following methods by default for the de-

fined object type (MTM, PSM or ECM) 103

x

7.7 Histogram of latency values for 10,000 data packets received from

Matlab to ROS. This grap shows that most of the data packets are

received in a duration of 1 ms. 104

8.1 The Extended System Overview . 107

xi

Chapter 1

Introduction

1.1 Laparoscopic Surgery

In traditional laparoscopic surgeries, long and slender shaped tools are used by the

surgeon for insertion into the patients body. These tools have specially designed

end-effectors for different uses, ranging from slicing/cutting tools to grippers and

even small cameras for endoscopy [5]. A small incision is made at the point of entry

and from that point the tool is held by the surgeon. The nature of the procedure

provides many advantages over non-laparoscopic surgery. Studies show, that in the

surgeries performed laparoscopically, there is less hemorrhaging which directly re-

duces the need for blood transfusions[27]. Due to smaller and accurate incisions to

just the affected area, other organs are not exposed and there is much lower risk

of infection. Hospital stays are much shorter, often with the same day discharge.

Earlier discharge is perhaps one of greatest advantages of laparoscopic surgery from

the patient’s point of view as normal life can be resumed much sooner[27]. Addi-

tionally, patients report much less pain, following the laparoscopic surgery, due to

which much lower to no dosage of pain killers is required.

1

Despite the many advantages of the traditional laparoscopic surgery over the

non-laparoscopic surgery, the drawbacks include the loss of touch for the surgeon,

reduced degree of motions and the indirect view of the area being operated, to

name a few[27]. Additionally, the view is limited to 2 dimensions on a computer

screen as opposed to the natural view while performing open surgery. The tremors

induced by the surgeon’s hand are transmitted through the surgical instrument and

can cause unwanted incisions and damages to the area being operated. Even for an

expert surgeon, studies show that the tremors happen when the surgeon gets tired

and exhausted. Thus for longer period of surgery, the surgeon can very easily get

tired of holding the surgical tool and this can induce tremors that can be fatal to

the patient in precise surgical requirements. The disadvantages and shortcomings of

traditional laparoscopic surgery infact set up the use-case for Tele-Operable Surgical

Robots

1.2 A Historical Perspective to Robotic Surgery

For the past several decades researches and industries have applied robotics to vari-

ous fields, ranging from deep underground mining to space and interplanetary appli-

cations. Not surprisingly, application of robotics in the field of Medicine and surgery

has found use cases as well. From a historical point of view the PUMA 560 was

employed for medical surgery [19] for the very first time in 1985. The PUMA 560

was a general purpose robotic manipulator, possessing 6 Degrees of Freedom, with

a spherical wrist. Kwoh et al[19] were behind this project and were able to achieve

neurosurgical biopsies with the PUMA 560. The motivation, and to great extent

the success of the project was improved precision achieved by the use of a robot.

2

Figure 1.1: PROBOT for Transurethal Resection of Prostate

Following the success, a couple of years later the team utilized the PUMA 560 to

perform transurethal resection of a prostate[27].

While the PUMA 560 was applied to perform non-minimally invasive surgeries

with some noticeable advantages, the real breakthrough in Minimally Invasive (or

Laparoscopic) surgery was achieved in 1987. The surgery aimed to remove a gall

blader with minimal intervention[10]. Since then, robots has been used more fre-

quently in surgical procedures. There success and potential advantages of the PUMA

560 in surgery related to the transuretheral resection of prostate, led to the devel-

opment of PROBOT[8]. Similar to experimental setup of PUMA560 for its first

surgery, the PROBOT(Fig 1.1) was specialized to perform prostate surgeries[8].

3

(a) The ZEUS system with Master and Slave
Console

(b) The ZEUS Slave Console

Figure 1.2: Figures (a) and (b) showing the ZEUS surgical robot in very early
procedures

Meanwhile, a new system by the name of ROBOTDOC[3] (Fig. 1.3) was being

developed by Integrated Surgical Supplies at California, US. The functionality of

ROBODOC was quite different from that of PROBOT as ROBODOC was designed

to assist in Hip Replacement surgeries[3]. The procedure used abrasion of the femur

in the hip, to provide room for the replacement. ROBODOC got the approval of

the Food and Drug Administration (FDA) to perform limited clinical procedures[31].

The advent of Tele-Operated surgery as we know of today, was initiated by a

joint collaboration between researchers at Ames Research Center at National Air and

Space Administration (NASA) and Stanford Research Institute (SRI)[32]. The re-

searchers were developing a Tele-Operated tool for surgical procedures. This sparked

interest in the US military to fund the development of such a system for war time[27]

[32]. The motive behind the funding and development of the project was to reduce

the mortality rate of the wounded soldiers by providing on-sight rehabilitation and

surgical capabilities. This would have potentially provided valuable time to prevent

the wounded from exsanguinating. The system was called Mobile Advanced Surgical

4

Figure 1.3: ROBODOC robot by Integrated Surgical Supplies

Hospital (MASH) and was devised to be controlled by expert surgeons from some

remote location. The system was never tested on humans, however several animals

were used for various experiments with good results[31].

Meanwhile ZEUS Robotic Surgical System (Fig 1.2) was another medical robot

that was uder development. The ZEUS system employed two robotic arms for

5

laparoscopic and thoracoscopic surgeries. It also had a third arm for endoscopy.

This arm was called the Automated Endoscopic System for Optimal Positioning

Robotics System (AESOP) and was voice controlled. The AESOP was granted the

FDA approval in 1994[2], meanwhile the ZEUS system got FDA clearance in 2001[2].

During the same course of time the ZEUS surgical system was being developed

and tested, Integrated surgical licensed the research project by SRI and improved

the system with massive redesign to form one of the most advanced Tele Operated

Surgical Robot at that time [4] [32]. The system was called the daVinci Surgical

System. The company now called Intuitive Surgical, renamed from Integrated Sur-

gical Supplies, is currently producing the fourth generation of the daVinci Surgical

Robots. The daVinci surgical system has been used to perform more than a mil-

lion surgeries since its inception, with more than 200,000 surgeries in the year 2012

alone[25].

1.3 The daVinci Surgical Robot

For the daVinci Surgical System, the design has been chosen to provide a com-

fortable console to the surgeon that prevent fatigue over long periods of surgical

procedures. It also provides greater degrees of freedom, 7 in the daVinci’s case[27],

which is the same as the DOF for a human hand. A stereoscopic view of the surgical

area is provided, that gives the same sense of maneuverability as viewing naturally.

Tremors are taken care of by filtering th inputs by the surgeon, so even if the surgeon

gets tired of longer surgical procedure and begins to transmit tremors to the MTM,

the system isolates those tremors from translating into the PSMs movements, while

6

Figure 1.4: The daVinci Surgical System with the surgeon operating the MTM
console and the helping nurse at the PSM station

still allowing dexterous movements.

The advantages mentioned above are mostly to cater for the shortcomings of the

traditional laparoscopic surgery. There are many more advantages of surgery using

the daVinci Surgical systems apart from the ones mentioned above. However, as

of any surgical procedure, the daVinci surgical system also lacks in a few aspects

and not all surgeries performed by the daVinci were successful. These include cuff

dehiscence, bladder injuries and some technical faults that prevented the normal

operation of the robot [28]. This is expected and somewhat understandable, as no

surgical procedure is always successful. But the shortcomings of the daVinci surgical

robot do require more research into the use of robots in surgery. Beyond any doubt,

a lot of scrutiny, experimentation and a structured thought process is required to

improve upon the current generation of robot assisted surgery.

7

1.4 The daVinci Research Kit (dVRK)

Intuitive surgical for the first time initiated a research platform where universities

and researches could study the daVinci Surgical platform and extend the capabilities

of the existing system. The research platform has been named ”daVinvi Research

Kit” or for shot the dVRK[36]. As a kick off, 12 universities/institutions were pro-

vided with the dVRK.The stripped down research kit consists of two Master Tool

Manipulators (MTMs), two Patient Side Manipulators (PSMs) and a stereoscopic

display unit[36]. Some universities are offered four instead of two PSMs. The con-

trol of PSMs from the MTMs is made possible with the coordination of a foot-pedal

module that comes standard with the basic daVinci surgical robot. In a nutshell,

the role of the foot pedal is somewhat analogs to that of an automobile, engaging the

PSMs through MTMs, idling the PSMs and re positioning the MTMs while locking

the PSMs. There are additional uses of the foot pedal as well which are discussed

in the coming chapters.

The daVinci Surgical System has been provided to WPI as part of the dVRK

Program.The stripped down dVRK lacks the hardware and software interfaces for

communication between the MTMs, the foot pedal modules and the PSMs. This

comprised the initial challenge of getting the system powered-up and running. WPI

collaborated with the John Hopkins University JHU to acquire the controllers for

establishing hardware interface between the dVRK components. More on the gen-

eral design and architecture of the controllers is discussed in chapter 3.

8

Additionally, the controllers developed by JHU are integrated and coupled to

the software libraries developed and provided by them. The core libraries used for

this purpose are the CISST libraries. These libraries are utilized by an open source

platform called Surgical Assistant Workstation (SAW), developed by the same team

at JHU. SAW integrates the cisst libraries to develop applications for different types

of medical equipment/machines and robots. SAW and CISST are discussed in more

detail in chapter 2 and 3. The universities/institutes that collaborate on the dVRK

share research with each other. There are dedicated discussion forums and reposi-

tories that help the universities share their experiments and results.

The work presented in this thesis is summarized in the following points:

• Developed a cisst-ROS bridge for integrating ROS as a high level controller

for the dVRK

• Implemented a motion planning framework for the dVRK and demonstrated

a use case using assistive motion planning for the surgeon during pre and

intra-operative surgeries with the daVinci

• Developed a dynamical simulation of the dVRK manipulators.

• Implemented a Matlab based class to allow for the control of the dVRK using

Matlab. This feature extends the dVRK framework and allows more room for

development in different platforms

This work in presented in different chapter that are summarized as follows:

• Literature Review: This chapter discussed the software frameworks that

were developed before ROS in dVRKs perspective. Their life cycle, limitations

and the evolution of ROS is then presented. CISST/SAW is elaborated and

9

presented with its advantages for dVRK and its shortcomings for developing

new algorithms and carrying out experiments.

• System Architecture: The overall dVRK system is broken down into hard-

ware and software architecture for the sake of understanding. All the major

hardware units are then discussed and evaluated. This evaluation includes

the design of the MTMs and PSMs and their capabilities. Next the software

architecture is discussed, which includes the cisst-ROS bridge.

• Models for dVRK: The CAD models for the dVRK manipulators are dis-

cussed in this section and their conversion to URDF format for use with ROS

and Gazebo. The difficulties associated with the design of the CAD models

and subsequently the URDF files is discussed and the improvements to cater

for some of the problems is presented.

• Integration of ROS and CISST/SAW: Detailed integration of the CIS-

ST/SAW with ROS is discussed in this section. The changes to be required in

the CISST/SAW libraries for the cisst-ROS bridge to be possible are presented.

Additionally a brief overview of SAW applications is presented keeping cisst-

ROS bridge in perspective. The chapter also details the use of the cisst-ROS

bridge interfaces to set up subscribers and publishers to control the dVRK.

• Motion Planning for the dVRK: A motion planning framework is im-

plemented for the dVRK and presented in this chapter. The life cycle of

development from Matlab to ROS is presented and a few use cases have been

proposed. Comparison between various planners using custom Matlab bench

marking interface has been proposed. The chapter concludes with some ex-

periments in simulations.

10

• Dynamic Simulator for the dVRK and a Matlab Interface: This chap-

ter presents a dynamic simulator for the dVRK and a Matlab Interface for

complete control of the manipulators.

• Conclusion and Future Work: Finally a conclusion is presented in this

chapter followed by the future work lined up.

11

Chapter 2

Literature Review

This chapter discusses the historical issues of code re usability and software inte-

gration of general purpose robotics. Many popular software frameworks during the

past decade have been briefly discussed in relation to dVRK. The advantages and

disadvantages are discussed that led to the development and widespread used or

Robot Operating System(ROS).

2.1 Limitations to Robot Specific Software Frame-

work

In the field of science and technology, there are many instances where reinventing

the wheel is required. This slows down the research quite significantly. Robotics

research is no different and infact suffers (or historically suffered) from this problem

much drastically. From developing new algorithms to conducting experiments, most

of the times, research starts by creating of a small robot or a specific mechatronic

system. Even with the use readily available power, control and hardware compo-

nents, the time required is still significant before any experimentation or studies

12

can be conducted. Due to this work flow, the time required to reach to a stage

where experimentation can be done or newly algorithms/techniques can be devel-

oped overshadows the entire time line of the project. This is specially true for

academic research where both time and funds are limited.

Towards hardware end, the availability of various components have improved over

the past, with readily available controllers, power boards and sensors that can almost

be used in a plug and play fashion. At the software end (both low level and high level)

however, the gap only widened due the plethora of hardware components and their

varied interfaces for software integration. The codes developed at different research

labs were usually too tightly woven around the application and robots that they were

designed for. Modifying that code to suit other applications could potentially take

a lot of time and effort, provided one got access to the code in the first place. High

level control using advanced visual and sensing applications remained copyrighted,

vaguely implemented or un-maintained if available open source. In addition to

that, the plug and play feature that is available in hardware components was rarely

available in the software applications, and requiring a lot of time to configure for

application specific usage.

2.2 Development of CISST/SAW at LCSR

The Lab for Computational Sensing and Robotics (LCSR) at John Hopkins de-

veloped a set of libraries named “The Computer Integrated Surgical Systems and

Technology”[9] or CISST for short. CISST is a collection of general purpose libraries

for tasks ranging from basic vector manipulation, arithmetic to libraries employed

for OS layer abstraction, multi threading and data logging [9]. A subset of the

13

various libraries developed under CISST are:

• cisstCommon

• cisstVector

• cisstNumerical

• cisstStereoVision

• cisstRobot

• cisstOSAbstraction

• cisstMultiTask

To give a general overview of the naming convention used, in the list above, cisst-

StereoVision is a dedicated library for video acquisition, processing and display[22].

cisstRobot is a library for solving robot kinematics and dynamic equations[22]. The

reason for mentioning these libraries here with the naming convention chosen is to

explain the purpose and motivation of the development. The libraries have been

built from the ground up in C++ to provide API for the development of complex

software for robotic applications.

The Surgical Assistant Workstation (SAW) is a component based software archi-

tecture that provides API for creating software for Medical Robotic Applications[39].

The component based approach allows for modularity and designed to connect

multi-level systems with relative ease. Medical Robotic applications that involve

tele-operation using a Master-Slave pair(s) are examples of the target devices for

SAW[11]. Figure 2.2 shows many medical robotics hardware components connected

14

Figure 2.1: SAW Application built upon the CISST libraries [11]

to SAW using the component based approach.

Figure 2.1 shows a visual description of the integration of CISST in SAW. Each

software and hardware unit is considered as a component and data exchange be-

tween the components is carried out in real time using defined interfaces. Hardware

components are wrapped inside device drivers for abstraction purposes. Thus the

SAW framework is designed to include video, haptics, tracking and other devices as

components to connect to each other and the software components, modularly, and

thus providing high speed data communication between them. SAW has been built

open the CISST libraries using the component based infrastructure of CISST[39].

15

Figure 2.2: Multiple Hardware Components Connected to SAW [38]

2.3 The OROCOS Project

The Open Robotics Control Software or OROCOS, was designed as a general pur-

pose, real time and component based architecture for robot control applications.

The software was initially released in 2005 [26]. Since then the software has evolved

into four C++ implemented libraries [7]. These libraries are named such as to

demonstrate their target applications. Following are the four libraries:

1. The Orocos Real-Time Toolkit (RTT)

2. The Orocos Components Library (OCL)

3. The Orocos Kinematics and Dynamics Library (KDL)

4. The Orocos Bayesian Filtering Library (BFL)

16

Figure 2.3: The OROCOS Project [7]

The RRT and OCL library are the base implementations for using KDL and BFL,

however, both KDL and BFL are available as standalone libraries for use with other

C++ libraries. From the four categories, it is evident that OROCOS was geared

towards robot control and achieved great precision for real time applications. Infact

as shown in figure 2.3, taken from the official documentation, the project is aimed

towards advanced control of robots.

2.4 Similarities between OROCOS and SAW

While CISST libraries had been in development from as early as 2002, SAW is

a much later development. It came around 2006, aiming towards a component

based architecture. In that respect, SAW resembles most closely to OROCOS [15]

[9], as discussed in the previous section. There are numerous similarities between

the two while they differ as well is some core implementations. As an example,

17

the design similarity between SAW and OROCOS has allowed the Kinematics and

Dynamics Library (KDL) to be recently added to the SAW, thereby replacing the

native kinematics and dynamics implementations.

2.5 Advent of Robot Operating Systems

Robot Operation System (ROS) came into development in 2007 at Stanford Artificial

Intelligence Laboratory[29] with Willow Garage taking its active development and

maintenance from 2008 to 2013. The goal behind the creation of ROS as explained

in the official ROS documentation is:

“ROS (Robot Operating System) provides libraries and tools to help

software developers create robot applications. It provides hardware ab-

straction, device drivers, libraries, visualizers, message-passing, package

management, and more. ROS is licensed under an open source, BSD

license.”

The design choices behind the architecture of ROS and the initial collaboration

of 20 universities, are most likely the reason that lead to the initial adoption. The

framework was easier to use, code was reusable by design, and the level of abstrac-

tion between the hardware and software allowed researchers to quickly adopt the

framework to their required use. One of the reasons for continued adoption of ROS

can be attributed to the ROS Community and open source availability.

As more and more researchers and labs started using ROS, hardware agnostic

code that was readily usable began pouring in. The ”Reinventing the wheel” was no

longer necessary by adopting ROS. This alone was a good enough reason for many

18

Figure 2.4: ROS usage demographics as of 2011

to start using it. Thus the ease of usage, being open source and a node based ar-

chitecture lured many researchers in, who eventually created packages that further

lured more people in. The cycle continues to this day, with ROS being the popular

choice among the many robotics communities worldwide. At this point, ROS has

more than several thousand packages for different types of robot and sensory appli-

cations, available free and open source in the ROS community.

ROS is a very popular architecture across the world as of now and its adoption

rate is quite impressive [1]. The demographic (Fig. 2.4) shows the usage of ROS

across the world a few years ago in the all major continents with thousands of

research labs using ROS as a development environment. The usage has definitely

increased from then as researchers is South Asia specifically started adopting ROS.

ROS applications can be generally categorized to the following fields:

• Perception

19

• Object Identification

• Segmentation and recognition

• Face recognition

• Gesture recognition

• Motion tracking

• Egomotion

• Motion understanding

• Structure from motion (SFM)

• Stereo vision: depth perception via two cameras

• Motion

• Mobile robotics

• Control

• Planning

• Grasping

As of Robotics in general, each individual category can be combined with one

or more categories to employ for a different application. For example, for medical

robotics combining the features of Grasping, Control, Perception as so on, could

lead to improvement in many surgical procedures. The feature set of ROS is what

distinguishes itself from OROCOS and SAW, as ROS includes support for most of

the modern sensors, displays, algorithms and packages that are running on today’s

robots.

20

Chapter 3

System Architecture

In this chapter both the hardware and software component of the dVRK are defined

and then discussed. Many of the software components have been developed at JHU,

other at WPI by myself and a few other graduate students that worked on the dVRK

prior to me.

3.1 Hardware Architecture

For the purpose of explanation of the core dVRK system, smaller or custom hardware

components such as stereo cameras, tools of the PSMs are not defined here. They

are either considered part of the components already described or not discussed for

now.

3.1.1 The Master Tool Manipulators

Keeping that in mind, the Hardware architecture of the dVRK (Fig. 3.1) consists

of two Master Tool Manipulators MTMs, two Patient Side Manipulators, a stereo-

scopic viewer and a foot pedal array [36]. The MTMs are operated by a surgeon

21

Figure 3.1: The dVRK Components at the AIM, WPI

remotely. Two MTMs are for each corresponding hand of the surgeon, thus the

MTMs are referred to from here on wards as MTM right (MTMR) and MTM left

(MTML) based on which hand they are designed for.

Each MTM has a 7 DOF configuration space [25], and the arms are designed

such that a very natural motion of the surgeons hand is possible while gripping the

MTM’s end effector. Each joint of the MTM is mounted with a motor. The purpose

of these motors is to provide gravity compensation when the surgeon releases the

MTMs. The MTMs at AIM lab are shown in figure3.2.

A more elaborate view of MTM is shown in figure 3.3. The direction of move-

22

Figure 3.2: The two MTMs at AIM Labs, WPI

ment of each joints is shown with a bidirectional arrow. All the joints of the MTM

are revolute. The joints are driven by brush less DC motors and are all cable driven

using a capstan drive, except for the base joint, which is directly driven by the mo-

tor. It is important to notice that in some instances, MTM is considered to have

8 joints, with the 8th joint being the pinching at the tip of the MTM. This allows

for the closing and opening of the grippers of the PSM. For the purpose of Inverse

Kinematics, this last joint is ignored since it plays no part in the construction of the

configuration space.

Describing the joints backward i.e. starting from the last joint and moving to-

wards the first joint, is more helpful in realizing the design choice of the kinematic

23

Figure 3.3: Numbered joints with their direction of motion shown by arrows

structure of the MTM. Ignoring the 8th or the last joint, the wrist of the MTM forms

a gimbal mechanism with the axes of the joints 4 to 7 culminating into a single point.

This kinematic structure allows any orientation of the end effector with one redun-

dant joint. Going further back, the MTM is left with the first 3 joints. These joints

merely allow any position of the wrist of the MTM with in the dexterous work space.

3.1.2 The Patient Side Manipulators

The Patient Side Manipulator (PSM), has an altogether different kinematic design

as compared to the MTM. Each manipulator has an overall DOF of 7. To provide a

fixed entry point into the patient’s body, a remote center is designed such that any

24

Figure 3.4: The two PSMs at AIM labs, WPI

motion of the PSMs joints does not change that point in space. The remote center

is shown in the figure 3.5. The position of the remote center can only be changed by

moving the base of the PSM manually, thus during surgical procedures, the nursing

staff orients that PSMs to align the remote center at the entry point selected for the

operation.

The PSM setup at AIM labs is shown in figure 3.4. The length of space between

the two PSMs is adjustable. Going into the detail of the kinematic structure, the

first joint of the PSMs is a revolute joint, which is use to achieve the overall yaw

rotation around the Remote Center. In the next joint, the PSMs have a parallel

joint. It is this parallel joint that provides a remote center, kinematically. The next

25

Figure 3.5: The Remote Center of the PSM. (Source: dVRK Manual)

joint is a prismatic joint, used for insertion into the patients body, about the Remote

Center. The fourth joint is the rotation of the end effector around the last prismatic

joints axis of translation.

The fifth joint is the tool yaw and the sixth joint is the tool pitch angle. The

last joint does not play a part in the kinematics of the PSM, similar to the MTM.

The last joint is the pinching of the end effector tool. The pinching is achieved if the

attached tool is a clipper/gripper type. For tools that are designed for suturing or

pulling (using hooks) there is not capability of pinching, thus the last joint becomes

inactive. The last joint of MTM, i.e, the gripper pinch is used to achieve a direct

control this joint if a gripper like tool is used.

26

3.1.3 The Foot Pedal Tray

The foot pedal is used to connect/disconnect the motion of the MTMs to the PSMs.

Starting from the left, the first food pedal is called mono. This pedal should be

pressed in order for the PSMs to be activated by the MTMs. The next pedal is not

used for anything as of now. The next pedal is for camera movement for a camera

attached to a third PSM. Since we do not have the third PSM in the dVRK, this

pedal is not used. The last pedal is used to re position the MTMs while keeping

the PSMs where they are. This pedal when pressed allows the surgeon to move the

MTMs anywhere, usually within his/her zone of comfort to continue on where he

left of at the PSMs end. During the re positioning of the MTM, while holding the

clutch down, the orientation of the end effector of both the PSMs and MTMs in

locked. The foot pedal array is shown in figure ??.

3.1.4 Controllers for the dVRK

To control the MTMs and PSMs, IEEE-1394 Fire Wire Controllers (Fig. 3.7) are

used. These controllers have been developed at JHU. The power and cooling systems

and the mounting and packaging have been done at WPI. I formed the last link in

the chain before these controllers are shipped to other universities for the previous

year. I have tested each controller with all of its sub modules before shipping them

out to different universities, replacing, reporting issues with the sub-components if

any. These controllers provide the necessary control of the motors of the PSMs and

MTMs and can report (to PC) and set joint parameters(via PC) at around 6 kHz.

Each IEEE-1394 controller consists of two boards, a 1394 FPGA board and a Quad

Linear Amplifier QLA Board. the QLA board has interface for driving upto four

27

Figure 3.6: The Foot Pedal Array

brushed DC motors. Since the MTMs and PSMs have 8 and 7 joints respectively;

for each manipulator, two controller boards are required. In case of the MTMs all

the eight amplifier channels are used and for the PSMs, 7 channels are used and one

remains idle.

The 1394 FPGA boards are designed to retrieve certain parameters over the fire

wire to a PC running the control loops. These parameters include variables such

as joint currents, joint positions, joint efforts, amplifier temperatures and so on. It

should be noted that the control loops are not executed on the boards themselves,

but on a separate machine to which the fire wire interface connects to. This design

choice allows for using different control algorithms to be executed for a single robot

without the need to touching or altering anything on the controllers.

28

Figure 3.7: A controller for each dVRK manipulator with labeled components

3.2 Software Architecture

The manipulators and the foot pedal tray of the dVRK are connected with the

IEEE-1394 Fire Wire controllers. These controllers are connected to each other

using the daisy chain connection scheme of the fire wire. One end is connected

to a PC. The IEEE-1394 controllers are equipped with FPGA’s. The FPGA’s are

programmed such that the controllers provide the following information to the PC

over the fire wire connection:

• Motor Positions read through the potentiometer

• Motor Velocities read through the encoders

• Current feedback for each motor

• Temperature of each amplifier

29

Figure 3.8: The basic system architecture

These parameters are available at the PC end to be read by any application that

can access the fire wire port. An application has been developed using the SAW

architecture to read these parameters by JHU. The application is called the saw-

IntuitiveResearchKit. As explained in 2.2, this application also uses many CISST

libraries. Figure 3.8 shows a very simple block diagram of a single dVRK manipu-

lator, the IEEE-1394 controller and the CISST/SAW. The sawInuitiveResearchKit

application is the result of years of development. It also demonstrates one of the

proposed applications, that led to the development of SAW. Using sawIntuitiveRe-

searchKit, the following parameters can be set:

• Motor Positions

30

• Motor Velocities

• Motor Torques

• Motor Currents

At the back end the SAW libraries are taking care of these inputs and outputs

while maintaining abstraction at the users end. For setting the motor positions,

PID control laws are implemented in the SAW applications, that can run as high

as 6 kHz, which take into account the sensors attached to the corresponding dVRK

components for the feedback. Using the SAW application, the values of the P,I

and D gains can be set on the fly to change the control strategy. Default values

are provided for these parameters that achieves suitable control as the application

starts.

31

Chapter 4

Models for dVRK

The PSMs and MTMs have been modeled in Solid Works to provide simulation

models. The modeling has been carried out at both WPI (by Gang Li) and JHU.

These models have then been converted into Universal Robot Description Format

URDF and SDF files. URDF format is very popular for development in ROS frame-

works. The URDF format can be used to model the kinematics and dynamics of the

modeled robots. URDF is readily used by Simulation software such as Rviz (kine-

matic simulator), MoveIt (path planning related packages) [33] and even Gazebo

(dynamic simulator)[16]. Gazebo first turns the given URDF format to SDF.

4.1 Development of the URDF files

The work of converting the actual design of the dVRK had been taken up at JHU

and WPI at the same time. A model of the dVRK components did not exist and

to generate a model from the actual robot relied on mere visual observations and

measurements. Since it was inconvenient and rather difficult (both practically and

due to the value of the dVRK) to open all the components of the dVRK and model

them, many of the internal joint placements had to be improvised based on the

32

behavior of the robot. This approach was bound to introduce offset errors between

the software designed models and the actual robot. Non the less the models have

been developed and for this research the models designed at JHU have been used

with modifications to remove some of the offset errors.

Once the models had been developed, they were converted to URDF format,

using a 3rd party URDF conversion tool called ”sw urdf exporter”, for solidworks

models. The URDF files is just an xml format file with a .urdf extension that

maintains a tree structure of the robot based of joints. In general, for a serial

chained robot, a fixed joint in the world is the first parent. The first link in the robot

is the child to this world parent joint. Such a parent-child relationship continues

iteratively till the end-effector or the last link the robot.

URDF format keeps modularity in mind with the capability of modeling a robot

or a manipulator and a group of different sets. As as example, a humanoid robot

could be modeled as a 4 URDFs each of two arms and two legs and one for the

head and the torso. Even an individual arm can be modeled by any number of

independent URDFs that can be later combined together.

4.1.1 Using Xacro for URDF

Since the dVRK consists of two PSMs and MTMs that are identical to each other,

defining each manipulator separately makes it a redundant task. For this purpose,

Xacro has been used. Xacro is an extension to the URDF format that allows creation

of Macros. For the dVRK components, xacro files have been developed for a generic

PSM and an MTM. The xacro files are incorporated in the URDF files which utilize

the macros to defined all the joint and link names with a right or left prefix,

depending on whether that arm type is MTM-Right or an MTM-Left. For the

PSMs, the prefix one, two, three or four are used depending upon which PSM is

33

Figure 4.1: RViz model the Master Tool Manipulator

being modeled.

Using these capabilities of xacro, even more PSMs (2 and 3) can be modeled

very easily and quickly by changing the name prefix and adding a world offset to

the manipulator.

4.2 Spawning the URDF files in RViz

The biggest advantage of modeling the manipulators in URDF file format is visu-

alizing them in RViz. RViz is integrated into ROS and used across the board for

34

Figure 4.2: MTM is RViz with its Joint State Publisher GUI

atleast the kinematic simulations. Figure 4.1 shows the model of the MTM visual-

ized in RViz. The model is spawned using only the URDF file and the meshes that

are linked in the URDF file.

4.2.1 Utilizing the Joint State Publisher Package

I have used the Joint State Publisher Package to allow quick and easy control of

the dVRK. This package reads in the URDF file from the ROS server and computes

all the variable joints and their names. For the case of MTM and PSM, both the

manipulator types have parallel linkages, thus the Joint State Publisher Package

takes only the active joints. Active joints are distinguished in the URDF files by

specifying a mimic tag for non-active joints. Non active joints are the ones that are

35

not activated directly, such as the renaming joints in a parallel linkage other than

the joint have the actuator.

Figure 4.3: RViz model of the PSM with its Joint State Publisher GUI

After reading in the joint names and limits from the URDF files, the Joint

State Publisher Package spawns a GUI with sliders to interact with the simulated

robot in RViz. Sliding a slider in the GUI moves the corresponding joint in RViz.

At the back end, the Joint State Publisher package uses ROS messages of type

sensor msgs/JointState. This message type is discussed more in detail in 5.5.1.

Figure 4.2 and figure 4.3 show the Joint State Publisher GUI interface with the

MTM and PSM simulation models respectively.

36

Chapter 5

Integration of ROS and

CISST/SAW

5.1 Motivation and Requirement

For research purposes and extended control of the dVRK, it was very important to

port the control of the dVRK manipulators to a platform that is open and famil-

iar to researchers. The selection of such a platform had to play a huge role in the

future development of the dVRK. At our end, Robot Operating System ROS was

chosen as the architecture to build upon for extending the capabilities of the dVKR.

As mentioned in section 3, the PSMs and MTMs are programmed with the SAW

framework by JHU. SAW provides a great platform for the low level control of the

dVRK but has several shortcomings for being used at our end.

It is worth mentioning, that a significant amount of work had been put forward

in the developed of the SAW architecture and the CISST libraries. The libraries

have great compatibility and work coherently with each other for controlling medical

robots. Due to the extensive capabilities of the CISST/SAW many base libraries are

37

used which are essential for development. These base libraries, sometimes, re-derive

some core functionalities of standard C++ libraries, such as data types, function

parsing etc. The documentation of these base libraries are not as detailed, as the

libraries have been developed and used mostly at John Hopkins. To work on the

dVRK and come up with experiments and results, a significant understanding of

CISST/SAW is required.

It was decided to develop an interface between SAW and ROS rather than dVRK

and ROS. This prevented the time and effort being spent on reinventing the wheel

and at the same time utilizing the features of SAW and CISST as the base, low level

controller and adding ROS as a higher level controller.

5.2 The cisst-ROS Bridge

To cope up with the problem mentioned above, a cisst-ROS bridge has been de-

veloped. The bridge was programmed in C++ using the core CISST libraries and

compiled with the ROS build system. The initial work of developing this bridge

was done by researchers at JHU (Zihan Chen and Anton). The initial build of ROS

bridge, provided very brief capabilities to ROS and allowed for retrieving just the

joint positions of the PSMs into ROS.

The implementation was bare bones and relied on the specific knowledge of the

SAW framework to connect a separate node of ROS to communicate with the SAW

internals. Nonetheless, for the very first time, it was possible to get real time joint

positions of the PSMs into ROS. This could be used to simulate the models of the

PSMs to mimic the actual movements of the PSMs.

38

Since then I have extended the cisst-ROS bridge to make if much more powerful

and bi-directional(setting parameters from ROS rather than just retrieving them)

as its supposed to be. The cisst-ROS bridge is created as a component of SAW.

Any component in SAW can have required and provided interfaces. Interfaces allow

exchange of data between the components. The cisst-ROS bridge is created using

the following code syntax.

mtsROSBridge::mtsROSBridge(const std::string & componentName, double

periodInSeconds, bool spin, bool sig)

An example brdige that has been used is as follows:

mtsROSBridge robotBridge("RobotBridge", 20 * cmn_ms, true);

5.3 Revision of the cisst-ROS Bridge

I revised the cisst-ROS bridge to accommodate several new features since it was

first designed. Currently, the cisst-ROS bridge is capable of extracting the following

parameters from the actual robot.

1. Joint Positions of all the joints of PSMs/MTMs

2. The velocity of each joint of the PSMs/MTMs

3. The torque being applied to each joint of PSMs/MTMs

4. The Kp, Ki and Kd gains for the PID control laws for PSMs/MTMs

5. The current state of Manipulators PSMs/MTMs

Conversely, the following parameters can be set using ROS.

39

1. Joint Positions of all the joints of PSMs/MTMs

2. The torque being applied to each joint of PSMs/MTMs

3. The Kp, Ki and Kd gains for the PID control laws for PSMs/MTMs

4. The current state (Homing, Homed, Tele-Operation, Idle, Ready etc.) of

Manipulators PSMs/MTMs.

Parameters for the dVRK are set using the cisst-ROS Subscriber and param-

eters are read using cisst-ROS Publisher. This should not be confused with ROS

Publisher and ROS subscriber since they work the opposite way. Hence to put

things in perspective, a ROS Publisher will connect to a cisst-ROS subscriber to set

parameters on the dVRK. Likewise, a ROS Subscriber will connect to a cisst-ROS

Publisher to retriever parameters from the dVRK. Additionally, cisst-ROS Events

are used to report events such as buttons and footpedal presses to ROS. Each is

discussed in more detail in sections 5.4, 5.5 and 5.6.

5.4 The cisst-ROS Publisher

The cisst-ROS publisher is used to publish the dVRK parameters to the software

defined, ROS server. These parameters can be read from the terminal or in applica-

tions, depending upon the usage. These parameters range from Manipulator Joint

Positions, Encoder Values to Torque encountered by the motor at each joint. The

syntax for using the cisst-ROS publisher is as follows:

bool robotBridge.AddPublisherFromReadCommand<cisstDataType, rosDataType>(

const std::string & interfaceRequiredName,

const std::string & functionName,

const std::string & topicName);

40

Figure 5.1: RRT-lazy in 3 Dimensional Cspace

In the function described above, the interfaceRequiredName is the name

given to the interface by the user. For the dVRK, the interfaceRequiredName’s

are MTMR, MTML, PSM1 and PSM2 respectively. Of course, any name could

be used. The Required Interface connects to a Provided Interface that is

implemented in the CISST libraries.

The functionName is the name of the function that is implemented in the

Provided Interface. This function name is very important and has to follow the

name that is actually implemented in the SAW source files for the corresponding

interfaces.

Finally, the topicName is the name of the topic that would publish the data

retrieved. This could be any name. But a naming convention has been used to make

41

it easier to keep different topics more intuitive.

5.4.1 Publishing Joint Positions

Based on the cisst-ROS Publisher discussed above, the joint positions of the dVRK

are taken into ROS using the function:

robotBridge.AddPublisherFromReadCommand<prmPositionJointGet,

sensor_msgs::JointState>(config_name, "GetPositionJoint",

"/dvrk_mtm/joint_position_current");

5.4.2 Publishing End Effector Pose

The 6 DOF Pose or the transform of the end effector of any arm is retrieved in ROS

using the following function syntax:

robotBridge.AddPublisherFromReadCommand<prmPositionCartesianGet,

geometry_msgs::Pose>(config_name, "GetPositionCartesian",

"/dvrk_mtm/cartesian_pose_current");

5.4.3 Publishing Joint Torques

For retrieving Joint Torques in ROS, the following function syntax is used:

robotBridge.AddPublisherFromReadCommand<vctDoubleVec,

cisst_msgs::vctDoubleVec>(config_name, "GetEffortJoint",

"/dvrk_mtm/joint_effort_current");

42

5.4.4 Publishing PID Gains

For the PSMs and MTMs to follow the desired joint values, a PID control law has

been implemented in the SAW architecture. This control law uses the PID gains for

error correction. The current gain values being used for the control law can be read

at the ROS end.

5.5 The cisst-ROS Subscriber

The real achievement of developing the cisst-ROS bridge is the capability of setting

the robot parameters from ROS. To make the cisst-ROS bridge bi-directional, the

CISST libraries had to modified to accept incoming data from ROS. The parameters

can be set using ROS publishers and cisst-ROS subscribers. The general syntax is

as follows:

bool AddSubscriberToWriteCommand<cisstDataType, rosDataType>(

const std::string & interfaceRequiredName,

const std::string & functionName,

const std::string & topicName);

Similar to the cisst-ROS Publisher the interfaceRequiredName is the name

given to the interface by the user. For the dVRK, the interfaceRequiredName’s

are MTMR, MTML, PSM1 and PSM2 respectively..

The functionName is the name of the function that is implemented in the

Provided Interface. This function name is very important and has to follow the

name that is actually implemented in the SAW source files for the corresponding

interfaces.

43

Finally, the topicName is the name of the topic that would publish the data

from ROS to the SAW components.

5.5.1 ROS Message Types for cisst-ROS Bridge

For writing the robot parameters from ROS, the following ROS message types are

used most often. They are described below for the sake of understanding.

sensor msgs/JointState

The ROS message type for setting joint positions and efforts is sensor msgs/JointState.

This message type is generic and is used widely across the board in the ROS commu-

nity. The sensor msgs/JointState consists of the following generic types for carrying

information.

{

std_msgs/Header header

string[] name

float64[] position

float64[] velocity

float64[] effort

}

Depending upon the usage, one or multiple number of the data fields are used to

control the robot. The string array always consists of the names of the joints. These

joints are the joint names of the corresponding manipulator of the dVRK. Since the

dVRK has a parallel linkage in both families of the MTM and PSM manipulators,

only the active joints (that engage the entire parallel assembly) are controllable.

44

Hence the array of string name consists of only these active joints.

geometry msgs

This message type is convinient for carrying task space information as compared to

joint space information in the sensor msgs type. During the Tele-Operation mode

of the dVRK, the end effector transforms of each MTM are used to control the

tool tip frame of the corresponding PSMs thus this ros message comes in handy in

emulating those situations. Moreover, due to different control scenarios, it is easier

to realize the use of task space trajectories rather than the joint space trajectories.

For this purpose, geometry msgs have been integrated with the cisst-ROS bridge.

The components of the geometry msgs::Pose are as follows:

geometry_msgs/Point position

geometry_msgs/Quaternion orientation

Where geometry msgs/Point consists of :

float64 x

float64 y

float64 z

and the geometry msgs/Quaternion consists of:

float64 x

float64 y

float64 z

float64 w

Hence, in a nutshell the geometry msgs/Pose Consists of the positions and

45

orientation information for a point in 6-DOF space.

5.5.2 Subscriber for setting Joint Positions

The cisst-ROS bridge can be used to set the joint positions for any PSM or MTM.

The syntax for constructing such a subscriber is as follows:

robotBridge.AddSubscriberToWriteCommand<prmPositionJointSet,

sensor_msgs::JointState>(

config_name,"SetPositionJoint","/dvrk_mtm/set_position_joint");

5.5.3 Subscriber for setting Joint Torques

For controlling the motor torques of the MTMs or the PSMs from ROS, the cisst-

ROS subscriber is built by the following syntax:

robotBridge.AddSubscriberToWriteCommand<prmForceTorqueJointSet ,

sensor_msgs::JointState>(

pid->GetName(), "SetTorqueJoint", "/dvrk_mtm/set_joint_effort");

5.5.4 Subscriber for setting the Cartesian Pose

The Cartesian Pose can be set likewise, from ROS using the following code syntax

for creating a cisst-ROS subscriber:

robotBridge.AddSubscriberToWriteCommand<prmPositionCartesianSet,

geometry_msgs::Pose>(

config_name, "SetPositionCartesian", "/dvrk_mtm/set_position_cartesian");

46

5.6 cisst-ROS Events

While the cisst-ROS Publisher and Subscriber are used to publish and subscribe to

parameters such as Joint Positions, Joint Torques, etc. the cisst-ROS Events are

used to set or retrieve events that mostly depend on a single button press. These

include the event of any of the foot pedal being pressed to a safety clutch being

pressed on any PSM. Additionally events that relate to safety measures of the robot

such as current violations are also included in the cisst-ROS events.

Two examples of using cisst-ROS events are described below. The first example

relates to using the COAG foot pedal being pressed at the MTMs Console.

robotBridge.AddPublisherFromEventWrite<prmEventButton, std_msgs::Bool>(

"Coag","Button","/dvrk_footpedal/coag_state");

The second example related the gripper pinch event, where pinching the gripper

of the MTM registers an event.

robotBridge.AddPublisherFromEventVoid(

config_name,"GripperPinchEvent","/dvrk_mtm/gripper_pinch_event");

In the two examples, two different types of events have been discussed, both of

which publish to ROS.

5.7 Connecting Interfaces in SAW Components

Once the cisst-ROS bridge is created as a components in SAW, its interfaces are

defined. Each interface has functions that set or retrieve data from other SAW

components. For example, getting joint positions would require the corresponding

interface in cisst-ROS bridge component to connect to the correct components in-

47

terface that has the joint positions. For this purpose, the following syntax is used

to connect different interfaces after the cisst-ROS bridge component is registered in

the component list.

bool Connect(const std::string & clientComponentName,

const std::string & clientInterfaceRequiredName,

const std::string & serverComponentName,

const std::string & serverInterfaceProvidedName);

Example of the implementation of the above syntax is:

componentManager->Connect(robotBridge.GetName(), config_name,

mtm->GetName(), "Robot");

Another example is:

componentManager->Connect(robotBridge.GetName(), pid->GetName(),

pid->GetName(), "Controller");

A component can have several interfaces defined for it and each interface can

have several functions defined within it.

5.8 Compiling SAW Code with ROS Build

To make the use of cisst-ROS bridge, I have compiled the SAW code with ROS

to make ROS executables. These executables take care of setting the cisst-ROS

bridge and making the ROS Publishers and Subscribers readily available for use.

These executables also set up the entire configuration for running the actual dVRK

manipulators and eventually make them operational thus saving the difficulty of

launching the SAW applications and ROS applications separately. A brief overview

48

Figure 5.2: SAW application compiled with ROS build system to get a ROS exe-
cutable. The figure shows the SAW components connected to their corresponding
cisst-ROS bridge interfaces to get publishers and subscribers for getting and setting
robot parameters

of this compiled executable is shown in figure.

5.9 Discussion

A detailed description of the hardware and software components of the dVRK has

been presented in this chapter with examples of the newly created cisst-ROS bridge

for interaction with the actual dVRK components. The cisst-ROS bridge has been

possible with many extension and additions to the CISST and SAW libraries and I

have been at forefront of their development. The dVRK is no longer a monolithic

robot with complex software architecture that makes researchers wary of using it,

the control has been ported to numerous ROS interfaces so any researcher can pick

up the open source code and make experimental analysis with owning a daVinci in

their lab.

49

Chapter 6

Motion Planning for dVRK

6.1 Introduction

In this chapter, the implementation of a motion planning framework for the dVRK

has been discussed. The motion planners have been implemented first in Matlab

as a proof of concept and then a more general framework has been extended in

ROS explicitly for the dVRK manipulators. In Matlab, RRT and its variants have

been developed to plan for robot agnostic environments and the comparison between

the planners has been presented. For ROS an existing software package has been

utilized, using which some experiments have been performed and some results are

presented.

6.2 Motivation

Use of Motion Planning to Robotic Surgery is a novel idea since it has not been

applied to any real surgery as of now. Depending upon the different types of surg-

eries, the use case of Motion Planning is different. For minimally invasive surgeries,

the human operator views the surgical area most oftenly, by a pair of stereoscopic

50

cameras and rarely does the surgeon has the haptic feedback of the operational area.

Due to this, the very nature of minimally invasive surgery introduces occlusion of

the target organs by other surrounding organs, tissues and skin. From the surgeons

point of view, this creates difficulties in spanning around by accidentally touching

or damaging organs due to occlusions and loss of haptic feedback .

There could be several different ways of addressing this issue. One way, is by

using the simulated models of the PSM and the real time emulation of the surgi-

cal area/body part. Using simulation, the surgeon can specify the start and goal

points where s/he intends the PSMs to move to. This is done using the MTMs

while having a visual feedback from the simulations of PSMs and the surgical area.

Once the surgeon is confident about the goal point, s/he can lock these points. The

motion planning algorithms can then take over and compute a collision free path

between the start and goal pose of the PSM(s), in simulation. The path can be

visualized against the operated area so the surgeon can be confident and aware of

the approach being taken. Such a procedure can help relieve the accidental contact

of the PSMs to the sensitive organs by the tele-operated movements of the PSMs.

This procedure does require accurate models of the PSMs, the patient’s operated

area and the knowledge of the transformation between the two.

This idea can be extended to include more than a pair of start and goal points.

The surgeon could specify several points, creating a chain, that leads to an abstract

path emanating from the start point and following through towards the goal point.

The algorithms should take care of realizing the validity of the points chosen by the

surgeon. There could be additional validations, including whether any of the chosen

points are within the achievable work space, each point itself is in not in collision

51

(a) (b)

(c) (d)

Figure 6.1: Four different views of the points sampled by the MTM for assistive
path planning

with any organ and the goal point can be achieved by a collision free pose of not just

the end effector, but the entire PSM. More validations can be introduced depending

upon the need.

Motion planning in this sense will be hereby termed as assistive path planning.

The use of word ”assistive” merely refers to the additional supervisory control, over

the path produced by the path planners. It should be noted that this particular

implementation considers only the simulation of the movement of PSMs and not the

control of the actual PSMs by the algorithms themselves.

52

6.3 Using Random Time Planners

The planning algorithms that are used for path planning are random time planners.

Random Time Planners guarantee a solution if one exists only if the planners are

run for infinite time[20, Ch. 5, p. 185-186]. The use of random time planners is

recommended in problems where the configuration space is of higher dimensions.

Having 7 and 6 DOF configuration spaces for the MTMs and PSMs respectively, the

use of random time planners is justified. Considering the way random time planners

work, there is no guarantee that the algorithm would converge to a solution in a

given amount of time. It might also happen that a solution might not exist at all

and the planner still keeps running. This property makes random time planners

tricky to use in theory. However in many real world applications, such a condition

of convergence does not come to test, as a solution is found without the planner

running for significantly longer periods.

6.4 Initial Development in Matlab

6.4.1 Selection of Matlab for Development

A significant amount of work has been done in matlab to visualize, validify and

analyse the results of planning in configuration space. RRT and its several variants

have been implemented. The planners are implemented in configurational spaces of

2 and 3 dimensions but can be easily extended to plan for higher dimensional spaces.

The code is scale-able and modular thus further research into the use of Matlab for

motion planning is possible.

I chose Matlab for developing the planners at first due to the ease of development

53

and since there was no framework available for the control of dVRK manipulators

except CISST/SAW at that time. In a short span of time the planners were pro-

grammed and analyzed using the simple-to-use, yet powerful visualization tools.

Additionally, the availability of Matlab on all major Operating Systems made the

code functional without any modifications.

6.4.2 Implementation in Matlab

To start things off, the traditional RRT was implemented in Matlab. The planner

was developed to work both in 2 and 3 Dimensional configuration spaces. The

kinematic structure of the manipulators was abstracted away from the planner. The

space is bounded explicitly, with a start and a goal state provided to the planner at

the start. The details of implementation of each variant of RRT is discussed below.

RRT (RRT Extend)

The basic RRT planner is also known as the RRT-extend planner. The RRT-extend

planner, initiates with a start state qstart and a goal state qgoal in a d dimensional

configuration space. The planner starts filling up the free configuration space Cfree

and keeps on building the tree incrementally, till one node from the tree connects to

the qgoal or falls within the specified GoalRegion[6]. This triggers the Planner Ter-

mination Condition. The Planner Termination Condition (PTC) can be composed

of a number of things, most basically the tree reaching the goal region and a valid

branch leading upto that qgoal, additionally the PTC can include the time allowed

for the planner to plan and the number of states to be explored. If either of the

three condition is met, the planner terminates.

Additional termination conditions can certainly be planned that include a limit

54

Figure 6.2: RRT-extend in 2 Dimensional shows a path (in black) found between
pair of start and goal points while avoiding the obstacles in Cspace

to the overall cost incurred by the planner and so on. The Planner Termination

Condition function has been implemented as a polling function which keeps on

checking for the PTC after every new state in sampled.

For an existing tree, the planner samples a random state qrand in the d dimen-

sional configuration space. The function NearestNeighbour searches for the nearest

neighbor in the Tree to qrand based on a pre-specified distance metric. Since the

configuration space is a d dimensional Euclidean space, the Euclidean distance met-

ric is justified in its use. This function thus returns the state qnearestNeighbor in the

Tree that minimizes the Euclidean distance metric between the state qtree and qrand.

55

Figure 6.3: RRT-extend in 3 Dimensional shows a path (in black) found between
pair of start and goal points while avoiding the obstacles in Cspace

The next step is to propagate from qnearestNeighbour in the direction of qrand. The

function Extend is used for this propagation. Extend takes qnearestNeighbor, qrand and

a pre-specified step size as input arguments. The extend function thus produces a

new state qnew in the direction of qrand from qnearestNeigbour. The distance correspond-

ing to the chosen metric from qnearestNeighbor to qnew is equal to the step size. When

qnew has been computed, the function StateV alidation(qnew, qnearestNeighbor, Cobstacle)

is called. The function checks for collision and if the two states are collision free,

qnew is added to the tree. The whole process is repeated until a node from the Tree

falls inside the goal region or achieves any other condition mentioned to the planner

termination. The algorithm is summed up in Algorithm 1.

56

Algorithm 1 RRT Extend

1: RRTextend(qstart, qgoal)
2: Edges← qstart
3: Tree← Edges
4: while Planner Termination Condition = false do
5: qrand ← Sample(Cfree)
6: qnearestNeighbour ← NearestNeighbour(Tree, qrand)
7: qnew ← Extend(qnearestNeighbour, qrand, h)
8: if StateV alidition(qnew, Cobstacle) = true then
9: Edges← qnew

10: Tree← Edges
11: end if
12: end while

Algorithm 2 Extend

1: Extend(qnearestNeighbour, qrand, h)
2: D = MetricDistance(qnearestNeighbour, qrand)
3: if D > h then
4: qnew = qnearestNeighbour + (D/||D||)× h
5: else
6: qnew = qrand
7: end if
8: return qnew

The results for the planner in 2 and 3 Dimensions are shown in figure 6.2 and

figure 6.3. The black path shows the valid path leading from start state to goal state,

the colored spheres are the obstacles and the red lines show the explored states.

RRT Connect

The RRT-Connect planner is an extension of the RRT-extend planner [17]. The only

modification lies in the Extend function where instead of adding one new state qnew

to the tree after each qrand is sampled, the planner tries to connect qnearestNeighbor to

qrand incrementally by adding states distanced by the step size h in the d dimensional

configuration space. The Propogate function is used for this purpose 4. If an

obstacle is encountered during the propagation the planner stops and adds the last

57

valid state to the Edges.

Figure 6.4: RRT-connect in 2 Dimensional shows a path (in black) found between
pair of start and goal points while avoiding the obstacles in Cspace

RRT Lazy

The Lazy RRT planner can be implemented using either the RRT-connect or RRT-

extend algorithm. However, in literature, a method similar to RRT-extend is used

[18]. The key difference is that in Lazy-RRT, the planner tries to connect the start

state to the goal state without checking for collisions. Once a path to the goal is

found, the planner checks the path for collisions. The segments of the path that

are in collision are repaired using a RepairSegment function. RepairSegment is

implemented such that each of two states at the start and end of a broken segment

58

Algorithm 3 Extend for RRT Connect

1: Extend(qnearestNeighbour, qrand, h)
2: D = MetricDistance(qnearestNeighbour, qrand)
3: if D ≥ h then
4: Propogate(qnearestNeighbour, qrand, h)
5: else if StateV alidition(qrand, Cobstacle) = true then
6: qnew = qrand
7: Edges← qnew
8: end if
9: return Edges

Algorithm 4 Propagate for RRT Connect

1: Propogate(qseed, qrand, h)
2: qnew = qseed + (D/||D||)× h
3: while D ≥ h and StateV alidition(qnew, Cobstacle) = true do
4: Edges← qnew
5: D = MetricDistance(qnew, qrand)
6: qseed = qnew
7: qnew = qseed + (D/||D||)× h
8: end while
9: return Edges

are considered as a pair of nested start and goal states. RepairSegment then uses

RRT-extend to connect the two broken states in the path using state validation as

each qrand is sampled. This is done for each segment of the path in collision.

The motivation behind the use of Lazy RRT is the effect of collision checking

on the computational cost of the planner. Depending upon the topology of the

Cfree and Cobstacle, lazy RRT could prove to provide a solution with a siginifcant

reduction if computational costs. While at the same time for different Cfree and

Cobstacle, it could incur as much or even more cost as the other RRT variants. Thus

the advantage of using Lazy RRT is case based.

59

Figure 6.5: RRT-connect in 3 Dimensional shows a path (in black) found between
pair of start and goal points while avoiding the obstacles in Cspace

RRT* Planner

As discussed in [12] and [13] the RRT planner almost always produces a non-optimal

path. The initial study to improve the path produced by the RRT planner towards

optimality was to continue producing samples even after the goal has been found

[13]. These new samples would then be used to make new branches in the tree

thereby producing a relatively more optimal path. Such a scheme does not improve

upon the path produced [12].

The RRT* planner was thus introduced with a novel technique, involving a different

criteria for connecting new states to the tree and re-organizing the already built

tree.

60

Figure 6.6: Lazy RRT in 2 Dimensional shows a path (in black) found between pair
of start and goal points while avoiding the obstacles in Cspace. The states in red
protrude into the obstacles showing that RRT-Lazy does not account for obstacles
until the goal has been reached

IMPLEMENTATION

The implementation of the RRT* planner can be broken down into two separate

steps. Both steps are discussed below:

The first step involves sampling a random state qrand in the d dimensional configu-

ration space. The function NearestNeighbor returns the nearest state in the tree

to qrand based on a distance metric (Euclidean distance metric in our case). The

function Extend propagates from qnearestNeighbor in the direction of qrand, produc-

ing qnew. Up to this point the algorithm in pretty similar to the traditional RRT

planner. Once qnew is computed the function StatesInBall is called. StatesInBall

61

Figure 6.7: RRT-lazy in 3 Dimensional shows a path (in black) found between pair
of start and goal points while avoiding the obstacles in Cspace. The states in red
protrude into the obstacles showing that RRT-Lazy does not account for obstacles
until the goal has been reached

takes as an input, the state qnew and searches for all the states in the Tree that are

inside a d-dimensional ball of specified radius rn, centered at qnew. rn is calculated

from equation 6.1. The enclosed states are stored in a vector Qnear.

Once the vector Qnear is computed the function MinimumCostConnection is

called. This function searches in the vector Qnear for the state that minimizes the

CostMetric while connecting to qnew. The cost metric is described in the section

6.4.2. The function MinimumCostConnection thus returns a state qmin from the

vector Qnear that has the minimum accumulated connection cost for connecting to

62

(a) 1000 Explored States (b) 2000 Explored States

(c) 3000 Explored States (d) 4000 Explored States

Figure 6.8: Subfigures (a), (b), (c) and (d) showing the Rewiring of Path and
Explored States as more and more States are sampled

qnew. The function Collision(qnew, qmin) checks if the two states have a collision free

path and if true a connection is made from qmin to qnew.

The second step of the RRT* planner is to check for the cost of all the states

in the vector Qnear. These costs are compared to the cost of qnew added with the

LineCost from qnew to the corresponding state in Qnear. If the cost of qnear is greater

than the cost of qnew + LineCost, the corresponding state is rewired such that its is

assigned qnew as the new parent and its previous connection with the older parent is

removed. The function LineCost, computes the Euclidean distance in d-dimensions

63

as the line cost between the two given states.

The special parameter of the RRT* algorithm is the radius rn. The radius is

calculated using Equation 6.1.

rn = min

(γ log n

ζdn

)1/d

, η

 (6.1)

In equation 6.1 η and γ are use set parameters, ζd represents the volume of a

ball in d dimensional Cspace. The radius can be set directly in the RRT* planner.

A larger value gives a much more optimal path in relatively smaller number of

iterations but increases computational time, a relatively smaller value takes greater

number of iterations to produce on optimal path. In actual implementation, the

tuning of rn can be achieved by trial and error.

THE COST/LINE-COST FUNCTION

The cost or the line cost function computes the Euclidean distance between the

given two states and assigns it as a cost. For any three states, the are not collinear,

the triangle in-equality theorem holds.

6.4.3 Using Random Environment

The examples and figures above are for pre-defined environment with fixed number

of pre-determined obstacles. However, the implementation of random environments

has been also done. The user can specify the use of either the predetermined envi-

ronment or random environment.

Figure 6.10 shows both the 2 and 3 Dimensional Environment cases for all the

RRT variants. It is interesting to note the behavior of RRT connect in Figure6.10

(e) and (f), as it produces shorter and less jagged paths as compared to RRT Lazy

64

Figure 6.9: The Triangle Inequality

and RRT Extend.

6.4.4 State Validation/Obstacle Avoidance

For all the planners developed in Matlab, the function StateV alidation validates

two states by checking whether the shortest path between them, in the d dimensions,

is collision free or not. For the Matlab implementation, the obstacles are explicit

functions of balls or various radii in d dimensional configuration space. The choice

of such obstacles does not account for realistic obstacles environments, but provides

a an easy to compute model for bench marking the planners.

There are two modes for each environment, one with a predefined placement of

pre-specified radii of obstacles, and the other randomizes the process by placing the

obstacles of random radii at random places.

65

(a) RRT Extend in 2D (b) RRT Extend in 3D

(c) RRT Lazy in 2D (d) RRT Lazy in 3D

(e) RRT Connect in 2D (f) RRT Connect in 3D

Figure 6.10: Random Environment implementation of RRT variants

6.4.5 Comparison of Various Planners

In the implementation of the RRT planner and its variant the control variable is

the step size h. The bench marking of the planners with the different step sizes is
66

shown in figure 6.11 and 6.12. The results are presented for 2 and 3 dimensions with

a sample size of 300 runs.

(a) Average Time in 2 Dimensions (b) Average Time in 3 Dimensions

Figure 6.11: Comparision of computational time for RRT-Lazy, RRT-Connect and
RRT-Extend in Matlab

Figure 6.11 shows that time for all planners decreases exponentially as step size

is increased. For a sample of 300 Runs, it is clearly visible that for smaller step

sizes, RRT-Lazy is computationally much expensive, taking more than double the

amount of time taken by RRT-Extend and RRT-Connect. RRT connect seems to

be the most computationally efficient planner for the Cspace chosen. At bigger step

sizes, the difference between the computational time of planners seems to diminish.

The comparison between the number of states explored before finding the path

is shown is figure 6.12. Similar to the comparison for computational time, the

number of states explored, decay exponentially with increasing the step size. In this

comparison, RRT-Connect consistently finds the solution with minimum number of

states explored for the given Cspace. The difference is quite significant as for smaller

step sizes, RRT-Connect explores less than half the number of states explored by

either RRT-Extend or RRT-Connect.

67

(a) Average Number of States Explored in 2
Dimensions

(b) Average Number of States Explored in 3
Dimensions

Figure 6.12: Comparision of number of states explored for RRT-Lazy, RRT-Connect
and RRT-Extend in Matlab

(a) Number of states in Path 2D (b) Number of states in Path 3D

Figure 6.13: Comparison of the number of states present in the computed path

The third comparison is the number of states the make up the path in both 2

and 3 Dimensions. This comparison might not have a direct relation to the other

two comparisons but provides an insight to the planners themselves. As evident

from the figure 6.13, RRT Lazy almost always produces the path with most number

of states. This could be attributed to the RepairSegment function that repairs that

path and adds more states to the path. This is however, highly dependent upon the

68

the Cspace, and the results might not hold for different configurations and obstacle

environments.

6.4.6 Limitations of using Matlab for Motion Planning with

ROS

The development and testing environment in Matlab provided a quick and easy setup

to implement various motion planner and use them to visualize results. However,

following are the reason for which Matlab is not suited for carrying out motion

planning work and using with ROS:

1. At the time of development in Matlab, an interface the provided the necessary

framework of communication with ROS was non-existent. The interfaces that

did exist relied on third party packages and mostly worked on Windows (PC),

where as development at this stage was being carried out in Linux. Later on,

Matlab officially started supporting Matlab interface with ROS, however, the

capabilities of this interface were limited. Simple nodes that only allowed a

few preset ROS data types was possible.

2. The biggest drawback of using Matlab with ROS was the slow computations

in Matlab. Matlab implementations tend to be much slower than their corre-

sponding C/C++ counterparts. Matlab is good for quick and easy develop-

ment, but not suitable for real time applications, specially dVRK extensions.

3. Most of the packages in ROS developed by the ROS community are incom-

patible with Matlab. Packages such as TF[37] and Joint State Publishers[21],

which maintain a server based knowledge of all the running robots and their

corresponding transforms were not available for Matlab.

69

4. While Matlab is great for graph based visualizations, it lacks the tools and

interfaces for quick and easy visualization of Robots and Frames. This is the

area where ROS shines. Visualizing robots and transforms is simpler in ROS

and is one of the greatest strengths of ROS.

6.5 Using MoveIt and OMPL

As time passed, I developed the cisst-ROS bridge that was capable of high speed

communication with dVRK components thus is became possible to start develop-

ment in ROS using ROS packages. MoveIt[33] is a standalone package that inte-

grates Open Motion Planning Library (OMPL)[35]. The package has been used

extensively in the current development to aid in the usage of planning algorithms

and its compatibility with visualization software such as RViz. One other advantage

of using MoveIt over using OMPL directly, is the abstraction of OMPL internals.

OMPL does not have an integrated visualization package, although it can be tied up

with any visualization package but that requires extra work. Also, OMPL cannot

directly read urdf files to create the configuration space of the robot. For OMPL

each joint has to be specified separately along with its joint limits. Thus working

only in OMPL can be a tedious task for development.

MoveIt relies on the urdf file to start with. Using urdf files in proper formatting,

move groups are created. Movegroups are kinematic groups in a kinematic chain that

are used to distinguish which part of the robot needs to be analyzed and thereby

solved for motion planning problems. Movegroups are easily understood with an

example of a humanoid robot. For a given task, we would want to plan only for

the right arm, for some tasks just the left arm, for some just the base movement,

70

Figure 6.14: MTM’s half arm group visualized in Red

and occasionally the entire robot for some tasks. For all these problems, a separate

movegroup is created for the right arm, the left arm, the base and the full robot.

Building upon the idea of modularity, even the right arm itself can have multiple

move groups, one might be for the end effector, one for the joints before the end

effector and one for the entire arm.

6.5.1 Movegroups for dVRK

The MTM and PSM represent different classes of robot manipulators having dif-

ferent kinematic structure and hence require separate classification of thier inverse

kinematics formulation. One advantage of using movegroups is that this difference

can be avoided as will be shown shortly. The movegroups are used for defining kine-

71

Figure 6.15: MTM’s end effector group visualized in Red

matic chains within MoveIt. These kinematic chains are used for solving inverse

kinematics for a given configuration. If we are planning in the operational space

rather than the configuration space, the path planning problem will correspondingly

search in the operational space for a solution. Operational space has 6 parameters

for a non-plannar arm, as is the case for the dVRK manipulators. These 6 param-

eters are the x,y and z position in space of the end effector or the last link in the

chain and its roll, pitch and yaw, usually in the world frame. Hence operational

space parameters are not 1x1 mapped with the DOF. MoveIt allows for planning in

both the configuration and operational space, directly.

For the MTM 3 movegroups have been created. The first movegroup is shown

72

Figure 6.16: MTM’s full arm group visualized in Red

in figure 6.14. This movegroup consists of joints starting from the base joint of the

MTM to the joint in the wrist. This movegroup is called half arm group. All the

movegroups are shown in red color in their corresponding figures.

The second movegroup is shown in figure 6.15. This movegroup consists of the

end effector. The end effector of the MTM is a spherical mechanism with 4 joints in

it. This movegroup is called end effector group. The third movegroup is shown in

the figure 6.16. This complements that other two move groups shown in figure 6.14

and6.15. The movegroup comprises of the entire MTM manipulator and is called

the full arm group.

Similar to the movegroups of MTM, the PSM is also classified into 3 movegroups.

73

Figure 6.17: PSM’s halfl arm group visualized in Red

These movegroups are half arm group, end effector group and full arm group. They

are shown in figures 6.17, 6.18 and 6.19 respectively. It shoud be noted that this is

not the only way the movegroups can be classified. The movegroups can be classified

in any way, however, the current classification is generic and makes intuitive sense

for the purpose of this research.

6.5.2 Movegroup integration in RViz

One key advantage of creating movegroups is that they can be easily analyzed in

ROS. The movegroups are readily supported in RViz and a default kinematics solver

is integrated for solving foward and inverse kinematics for each movegroup. The IK

solver is based on an iterative solver that takes in the joint positions of the arm and

74

Figure 6.18: PSM’s endl effector group visualized in Red

solves for the desired position. It is interesting to note that an identical IK solver in

implemented in the cisstRobot libraries. Hence using this built in solver for MoveIt

and subsequently for Rviz while using the cisstRobot solver for TeleOperation or

other tasks produces similar results.

It is worth mentioning that the builtin in IK solver used in movegroup is taken

from Kinematic and Dynamic Library (KDL), from the OROCOS project. KDL

itself is a standalone package and is nicely integrated into MoveIt. Just like OMPL,

KDL’s direct interface is abstracted away from the user and the user directly deals

with the simpler interace of MoveIt. KDL deals with chains and trees to deal with

kinematic problems, which the MoveIt maintains internally with the creation of

75

Figure 6.19: PSM’s full arm group visualized in Red

movegroups from URDF files.

When ever a movegroup is visualized in RViz, an associated, interactive marker

is visualized on the last link in that movegroup. This interactive marker provides the

means of actuating the end effector and thereby creating new robot configurations.

This provides a quick and handy tool for simulation purposes. Figure 6.20a shows

the interactive marker associated with the half arm group for PSM. The movegroup

for MTMs full arm group is shown in figure 6.20b.

76

(a) Interactive Marker associate with PSM’s
half arm group

(b) Interactive Marker associate with MTM’s
full arm group

Figure 6.20

6.5.3 Visualization of planning problems in RViz

For validation purposes, simple motion planning problems have been tested on the

PSM in this section. Spheres have been generated together to form a bigger obstacle

as shown in Figure 6.21 (a) and (b). The PSM has been manually given start and

goal configurations for this problem shown is orange and green respectively. The

start and goal configurations are chosen such that the PSM has to go near the re-

mote center to reach the goal thus making it harder for the planner to compute.

The remote center of the PSM (Figure 3.5) restricts the motion in the horizontal

plane about itself. Essentially, the configuration space collapses to a point at the

remote center. Any obstacle near to this point, makes search for points in the valid

configuration space intensive and difficult. By the definition of Random Sampling in

continuous space, the probability of finding a valid point at the exact remote center

is zero.

77

(a) (b)

(c) (d)

(e) (f)

Figure 6.21: Figures (a) (b) showing the obstacle mesh from different angle, (c), (d),
(e) and (f) showing different perspectives of the PSM and its start and goal state

The results of the path planning are shown in Figure 6.22. The aid in visualiza-

tion, the results are shown as a trial of PSM configurations as it traverses through

the solution points. The trail shows that the PSM has to lift the end effector, forcing

it to come near the remote center to reach the goal position.

78

(a) (b)

(c) (d)

Figure 6.22: Figure (a) and (b) displaying the planned path with the obstacles in
view. Figure (c) and (d) showing the same path from different perspectives with
hidden obstacles

6.5.4 Visualization of Advanced Planning Problems

Having achieved satisfactory results for simple motion planning problems, more ad-

vanced planning problems were tested. In the previous experiment simpler meshes

were used. When dealing with surgery the planning environment is much more com-

plicated. The estimation of the environment with simple meshes is not feasible. To

demonstrate the use of motion planning to more advanced planning environments,

the experimental setup involves a significantly more complicated mesh that contains

more than 10,000 faces. Such a mesh stretches the state validation functions and

requires more time and memory than the previous experiment.

79

(a) (b)

(c) (d)

Figure 6.23: Planning a path inside a 3D volumetric rendering of a human skeletal
structure with figures (a), (b), (c) and (d) showing different views of the same scene

As can be seen in figure 6.23 a 3D volumetric rendering of a human skeletal struc-

ture is placed in front of the PSM. The mesh is much more complex and has areas

which require significantly denser state exploration, such as the area surrounding

the ribs. The goal of this planning problem is to take the PSMs end effector, located

deep inside a pair of ribs to another deep insertion in a different pair of ribs just to

demonstrate the validity of the path planning and obstacle avoidance algorithms.

Figure 6.24 shows the result of the path planning. Figure 6.24 (a) (b) (c) show a

trial of PSM configurations as it traverses through the volumetric skeletal model.

Figure 6.24 (d) shows just the path, with the skeleton hidden.

This approx does not implicate any direct clinical application since the PSM goes

from one deep insertion to another one by moving out of the body. This experiment

80

just demonstrates the concept of proof that based on the implementation of the

motion planning framework, complex motion planning problems can be visualized

and solved, atleast in simulation.

(a) (b)

(c) (d)

Figure 6.24: Planning a path in a dummy skeleton. (a), (b) and (c) showing different
views of the planning scene and figure (d) shows just the path produced

6.6 Assisting the Surgeon with Assisted Path Plan-

ning

6.6.1 Use Case

As discussed in the introduction of this chapter, the proposed use case for the

motion planning framework with the dVRK is to assist the surgeon plan paths

81

during surgical procedures. For pre and intra-operative procedures, the surgeon can

set paths by teleoperating the virtual PSMs in the simulation environment with the

representation of the actual surgical environment.

6.6.2 Requirements

The realize this use-case the following requirements have been outlined:

• The simulation environment must be easy to use.

• Existing component of the dVRK must be use and no additional hardware

components must added.

• The simulation must provide a visual feedback of the motion of the PSMs

controlled via MTMs by the surgeon.

• The TeleOp control of PSMs in simulations must not alter the actual PSMs

motions. Thus a path should be planned first in simulation only.

• The simulated PSMs must provide the same TeleOperation experience as the

actual PSMs.

• Visual feedback for the collision of the simulated PSMs with the simulated

surgical area must be provided.

• The start and goal points provided by the surgeon must be clearly visible so

that surgeon is aware of the points chosen.

• The resetting of the start and goal points, as many times as the surgeon wants,

must be possible, without restarting the simulation.

82

6.6.3 The Software Experimental Setup

For achieving the goals listed in the requirements several ROS executables have

been developed. Figure 6.25 gives a brief overview of the executables that need to

be running to achieve the listed requirement.

Figure 6.25: The experimental setup in terms of software for assisted path planning.
The cisstROS bridge handles the publishers and subscribers for getting and setting
dVRK parameters. The TeleOp namespace has several nodes that allow for Teleop
of simulated PSM from actual MTM. The Environment Management namespace
handles the environment representation, collision detection, visualization, start and
goal state visualization and the motion planning related tasks

6.6.4 Obstalce Detection and Visualization

To satisfy the detection of collision between the PSMs and the obstacle environment

and visualization several package have been used. These include the MoveIt wrapper

for the FCL collision checking library and ROS visualization markers array. Once

the environment has been represented, it is published as a planning scene. RViz is

83

set to receive this topic and visualize the environment. The 3D volumetric skeletal

model shown in figures 6.21 and 6.22 for example use this planning scene as well.

(a) (b)

(c) (d)

Figure 6.26: Collision contact of the PSM with the 3D volumetric skeletal model
displayed as yellow spherical markers. Visual aid for collision awareness while Tele-
operating the PSMs

Once the planning scene is available over ROS server, the collision checking

works in parallel. I have utilized the MoveIt wrapper for this purpose which allows

for obtaining contact points between the PSM and the environment. If a collision

occurs, the contact points are captured and are published to RViz for visualization

and this blocks the selection of a start or goal point (Fig 6.26).

6.6.5 Visualization of the Start and Goal Points

While the collision contact markers are essential to navigate around the simulated

environment with knowledge of the collision areas, additional visualization is pro-

vided to display the start and goal states that are chosen. If the chosen points need

84

to be changed, the user can just enter two more points and the previous pair of start

and goal points will be erased.

(a) (b)

(c) (d)

Figure 6.27: Visualization of start and goal states chosen in figure (a) and (b). (c)
and (d) show the capability of changing the start and goal states just by specifying
additional pair of points which results in deletion of the previously registered start
and goal points

6.6.6 Using the Foot Pedal Tray to get Start and Goal

Points

As mentioned in the requirements of the assisted motion planning, no new hardware

component must be added for path planning purposes. The dVRK Foot Pedal

tray has unused pedals. These include the camera, cam+ and cam− pedals. For

capturing start and goal poses, the user presses the cam−minus pedal, which results

in the visualization of a point (start) and then presses the pedal again to register the

85

goal point. If different points are needed, the user just keeps on moving the PSMs

to the required points and pressing the cam− pedal until a pair of start and goal

points are selected. To instantiate the motion planner, the user presses the camera

pedal, after the planner terminates with a successful path,, the computed path is

visualized in simulation.

(a) (b)

(c)

Figure 6.28: The sole frame is the three images shows the location of the remote
center of the PSM. This location is chosen at the center of the ribs and at the same
height as the ribs

6.6.7 Demonstration

To demonstrate a realistic scenario, the remote center of the PSM is placed between

the ribs such that the movements around the remote center do not contact the 3D

volumetric skeletal model. Figure 6.28 shows the remote center placement from

86

three different angles. In actual laparoscopic surgeries, a remote center is chosen in

such a manner, depending upon which area is being operated. For this demonstra-

tion, a random pair of ribs has been chosen, which do not demonstrate any surgical

preference other than the usefulness of the assistive path planning.

In figure 6.29 two points have been placed inside the 3D volumetric skeletal

model using a single insertion point. The path computed for these pair of start and

goal points is shown in figure 6.29(d).

(a) (b)

(c) (d)

Figure 6.29: Placing a pair of start and goal points using a single entry point (a) in
figures (b) and (c). The path produced is shown in figure (d)

For a more complex planning problem, a pair of points have been placed the

opposite sides of the spine using the same insertion point for the PSM. The PSM

87

has to go over the spine and much deeper to reach the goal point for this problem.

The results are shown in figure 6.30.

(a) (b)

(c) (d)

Figure 6.30: Placing a pair of start and goal points at opposite sides of the spine
using a single entry point. (c) and (d) show the path produced from different angles
and different translucency

Discussion

The implementation of MoveIt with dVRK works well in the simulation environment

with paths found on an average of a few milli seconds. The planners used and their

comparison is discussed in section 6.6.8. These results hold for complex meshes,

such as the 3D volumetric skeletal model. These results are encouraging since state

validation is a computationally intensive process and depends upon the complexity

of the mesh. FCL (Flexible Collision Checking Library) is the default collision

88

checking library implemented for MoveIt [24]. FCL can handle obstacles of three

types; Obstacles represented as meshes, primitive shapes or as octo maps. This

allows flexibility at the user end while defining obstacles.

(a) (b)

(c)

Figure 6.31: PSM links in collision with the mesh obstacle shown in Purple color

The links that collide with the mesh can be detected using a variety of ways,

while MoveIt triggers and event instantaneously. This is shown in figure 6.31 where

any link that collides with the mesh is programmed to show up in purple color.

Figure 6.31 (a) (b) and (c) show the collision detection in a thin rib section of the

meshes; as the PSM end effector is withdrawn out of the mesh, different link are in

collision as depicted by the figure.

89

Before MoveIt could perform collision detection, the URDF model of the PSM

was set up to be compatible for FCL. In MoveIt, this is achieved using a matrix

representation called Allowed Collision Matrix (ACM)[23]. This setup insures not

only the collision detection between the external objects and the PSMs links, but

also with the links themselves. However, some links are in collision at all times,

by design. To take care of this, ACM has to be modified by hand. This tweaking

is partly scientific and partly iterative by observation. MoveIt setup assistant is

a tool that helps in getting started with the ACM[23], however, in many cases,

one needs to alter this ACM to get better collision detection of intricate and price

movements in and and around obstacles. For simulation purposes, the ACM provides

satisfactory results, however, for more precise experiments, the ACM has to been

modified accordingly.

To get the collision contact points as shown in the Assistive Planning section,

a collision request has to be created using the planningscene interface provided by

MoveIt. The collision contacts can then be used in many different ways, and for

these experiments, they are visualized in RViz.

6.6.8 Comparing Planners Using MoveIt Benchmarking Tools

Difference between the Matlab and MoveIt Benchmarks

The Matlab Implementation of the RRT and its variants was compared in section

6.4.5 using a self developed bench marking module. It was stressed due to Mat-

lab’s own overhead, the relative difference between the planners in the performed

comparisons tells a lot about the workings of the planner however there is not much

value to the absolute data for a single planner. The bench marking tools available in

MoveIt are certainly different in this regard and provide a different insight into the

90

working of each planner. However, in the Matlab Implementation, the comparisons

of each planner were presented by varying the step size, such a comparison is not

possible in MoveIt Bench marking tools.

Additionally, in MoveIt, the comparison has been performed with not only the

RRT Planners and variants, but with all the other modern planners including

KPIECE[34], SBL[30] and the first ever class of random time planners, the PRM[14]

planner. While discussing the details of KPIECE and SBL are beyond the scope of

this research, a short introduction of SBL and KPIECE is given below:

• The SBL Planner: The SBL planner is a modified implementation of the

Probabilistic Roadmap Planner (PRM). SBL starts by expanding trees from

both the start and goal states as the PRM planner does. It delays state

validation till a path is found.In this aspect, it resembles the RRT Lazy planner

discussed in section 6.4.2. It has been shown to produce good results in real

world scenarios [30].

• KPIECE Planner The Kinodynamic Piecewise Interior Exterior Cell Ex-

ploration algorithm, as the name suggests is designed for both kinematic and

dynamic systems [34]. It segments the Cspace into cells and searches within to

find a path. In case a path is not found, it sequentially segments the space

into a finer resolution and searches again. KPIECE has also proven to produce

better results than RRT variants in many problems [34].

Figure 6.32 shows the comparison between the three RRT variants, RRT-extend,

RRT-connect and the Lazy RRT along with other planners. The planners are each

run for 300 iterations, with the skeleton based advanced planning problem. The

result for each planner is plotted as a box plot. For the comparison between com-

91

(a) (b)

Figure 6.32: Comparison between RRT Extend, RRT Connect, Lazy RRT, SBL,
KPIECE and PRM in terms of solution time in seconds (a) and path length (b)

putational times, it can be seen that RRT-connect and RRT-Lazy have taken less

than half the amount of time that RRT-extend took to find a solution path. The

outcome of the average path lengths between the three RRT variants does not show

noticeable or meaningful difference for this problem set.

The comparison has been extended to additional planners available in MoveIt.

In figure 6.32, additional planners have been compared. It is interesting to note

that, for this problem setting, RRT connect and RRT lazy remain the most efficient

in terms of computational time.

The MoveIt bench marking tools collect data about many more parameters than

just the path lengths and computational times. These include many comparisons

some of which are:

• A clearance factor for path from the obstacles

• The overall smoothness of a path represented.

• The number of states explored

92

(a) (b)

Figure 6.33: Comparison between RRT Extend, RRT Connect, Lazy RRT, SBL,
KPIECE and PRM in terms of path clearance from obstacles and overall path
smoothness

• Memory used by the planner for planning

Figure 6.33 shows two additional comparisons in terms of path smoothness and

path clearance between all the planners. The results are more favorable towards the

RRT variants.

6.6.9 Using Optimal Path Planners

The implementation of dVRK components in MoveIt allows the use of many other

planners other than the ones listed above. These planners are Optimal path plan-

ners, just like RRT* that was discussed in section 6.4.2. These planners include:

• The RRT*

• PRM*

• Lazy PRM* and many others

The comparison of these planners is not that trivial since these planner run

for all the allotted time and try to improve their path continually. Furthermore,

93

being random time planners, for a given bound of time, they produce very different

outcomes, that cannot be simply used to tell which planner is better overall.

6.7 Discussion

This chapter presented the implementation of RRT and its variants in Matlab. This

implementation was used to conduct comparisons between different planners. This

later led to the development of a motion planning framework for the dVRK using

MoveIt and ROS. The movegroups for PSMs and MTMs have been discussed with

justification for choosing specific grouping of the joints. In the end various motion

planning problems have been experimented in simulations.

A use case for assisitve path planning has been presented, the term assistive path

planning, referring the additional aid to the surgeon while planning. The experi-

mental setup has been discussed with the work cycle of getting the pair of start and

goal points for motion planning using the existing dVRK hardware and the ease of

use of the planning framework.

94

Chapter 7

Dynamic Simulator for the dVRK

and a Matlab Interface

As part of extending the dVRK research platform, additional tools/platforms have

been integrated and interfaced with CISST/SAW and ROS. This chapter briefly

discusses these tool and platforms.

7.1 Dynamical Simulation of dVRK Manipulators

in Gazebo

Gazebo is an research tool for robotics. It’s capability of emulating dynamical

behaviors of robots and manipulators makes it very valuable for academic research.

Gazebo now comes as a standalone package and can be used with ROS for enhancing

the feature set of both the platforms. Gazebo is compatible with 4 dynamic solvers

as of now. These include the popular ODE Engine and the Bullet Physics Engine,

with ODE engine being the default one. The dynamics of each robot is represented

internally as a set of differential equations. The constants(masses, inertia’s, link

95

lengths, etc) of the differential equations are provided by the SDF or URDF files

that are discussed in the next section.

7.1.1 Setting up the MTM in Gazebo

Gazebo requires a Simulator Description Format (SDF) for robot description. SDF

format is similar to the URDF format in some ways and in most ways an evolved

version of the URDF. Gazebo can be used to convert a compatible URDF to SDF

for visualizing the robot thus saving the effort to develop an SDF format for the

dVRK components separately as the URDF files had already been created.

To make the URDF files Gazebo compatible, the description of dynamic properties

of each link were required. These dynamic properties include masses, inertia’s and

also joint properties like damping and friction. Additional properties can also be

modeled. Since there was no specification of the such properties, many of the values

are mere approximations based on the CAD models. Using approximate values is

discussed in 7.1.4.

MTM right has been modeled in Gazebo as shown in figure 7.1. Gazebo simulates

the model dynamically and thus any interactions with the manipulator would follow

the dynamic behavior of the robot based on the given dynamic parameters. This

is in contrast to RViz, which only simulates the robot kinematically. In the URDF

files ”torque interface” and ”sensor” plugins have been added in addition to setting

the link and joint properties. These plugins do not affect any other functionality so

these have been added as default to all the URDF files.

7.1.2 Controller Plugins for Gazebo

To interact with a robot or a manipulator in Gazebo, plugins have to be developed.

For the model shown in figure 7.1, I have developed custom controller plugins that

96

Figure 7.1: MTM modelled in Gazebo

allow for the interaction of the manipulator from ROS. These controller plugins

treat each joint separately and model a PID control loop for each. Hence position,

velocity, acceleration or torque control can be achieved based on the need. I have

used position and torque control for initial experimentation. I have added a GUI

with sliders for each joint to test the setting of joint torques. The GUI has been

developed using the rqt gui package that aids in the development of publishing and

subscribing to topics over ROS-server.

7.1.3 Controller Performance tools for Gazebo

I have extended rqt gui to visualize the controller performances in Gazebo. This

package provides many other features which I plan to use in the future. For now,

the graph plotting plugin is used to track the input command to the joints in the

97

Figure 7.2: Gazebo Controller Plugin for MTM

Gazebo model and the sensor output. The sensor output represents the current

position of the arm. The results for controller performance are shown in figure

7.3. Two joints are displayed and are compared to their input commands that are

sinosoids of different frequencies and amplitude.

7.1.4 Dynamics of the MTM

The General Dynamics Equation

Any robotics manipulator can be broken down in three indigenous components that

comprise its dynamic model. Taking a look at the Dynamical Equation of a generic

robot manipulator in 7.1.

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) (7.1)

98

Figure 7.3: Each pair of the two different sinosoids represent the input torque to
the joint and the resulting position of joint. In this graph, the 3rd(green and blue
sinosoid) and 6th joint(red and purple) of the MTM are used

The three components of the Dynamics are the Inertia matrix M , the Coriolis

matrix C, which consists of the Coriolis components of joint velocities and the g

matrix which depends solely on the position of the manipulator and the gravity act-

ing upon it. This equation only accounts for the internal forces and torques on the

manipulator. The external forces on the manipulator induce torques on the joints

that can be calculated using the Jacobian matrix.

Going into a bit more detail, whenever any link of the manipulator experiences

99

acceleration, the M matrix acts and contribute to forces and moments at different

joints. The C matrix constitutes forces and moments on the link when ever their

exist non-zero joint velocities. Finally, the g matrix corresponds to the action of

gravity on the manipulator. Even if the manipulator is static, the g matrix produces

forces and moments on the manipulators links and joints. Additionally, all the three

components depend upon the current joint positions. With the Coriolis matrix de-

pending upon the joint velocities as well. In absence of gravity, the g matrix tends

to be zero and has no effect on the dynamics of the robot manipulator. This case

is specially true in space robots, where the robots have to perform tasks in zero

gravity situations.

The determination of the dynamic components is tricky and non-trivial. When

the links are being designed in CAD, the calculations of masses and inertia’s of links

are approximate. Later on, the machining and manufacturing processes render the

approximations even more error prone. This is especially true for intertial terms in

the M matrix and the Coriolis C(q, q̇) which are quite sensitive in the calculation of

dynamic model equation 7.1. The g offers relatively greater tolerance due to error

in actual parameters. The g matrix also lacks any inertia terms in its compositions,

hence the calculation of the gravity component is relatively trivial compared to the

Mass and Coriolis Matrix.

Dynamics for the MTM

For the components of the dVRK, the dynamic model has to be calculated from

scratch due to lack of any prior information regarding the dynamics. Even the

actual CAD models for the robot are not available thus making the task even more

100

difficult. Even the dynamic properties of the CAD models are inaccurate, since the

model is recreated from external inspection of the dVRK manipulators. This makes

the CAD model much more simpler and non-realistic as the actual manipulator

includes hollow links, cams, pulleys and wires etc that are not accounted for.

Figure 7.4: Matlab GUI for dVRK. The GUI shows that Matlab is connected to
MTM and showing the current joint positions (in rad) next to the slider for control-
ling each joint

For current implementation, only the terms that constitute the gravitational

components for the first three links of the MTM have been approximated using trial

and error by JHU (Zihan). The values need improvement and this work is left for

the future. Using the same values in URDF for Gazebo is bound to produce different

results, as Gazebo would use these values to model the Inertia and Coriolis matrix

as well. This would impart additional torques and make the simulated robot astray

101

from the actual robot as soon as any joint starts to move.

7.1.5 The Matlab ROS I/O

The inclusion of the newly released Matlab ROS IO package extends the research

platform even further. The Matlab ROS IO allows for basic functionality for re-

trieving data from ROS using topics, messages or services. The functionality is only

basic and is in no way a replacement for development in ROS. However, this tool

allows for researchers to extract the data from ROS and evaluate it for different tasks.

I have developed an extensive Matlab ROS package that can be used for control

of the dVRK manipulators through ROS. This package has been designed keeping

in mind the need for people less familiar with ROS and advanced programming

languages. A very informative GUI has been developed to provide debugging and

connection validity with the dVRK manipulator. The GUI is shown in figure 7.4.

This package has been programmed with intensive debugging features that allow

it make multiple attempts to connect to dVRK and take care of exceptions. The

Matlab ROS interface connects to the dVRK manipulator using two bridges. This

is shown in figure 7.5.

Figure 7.5: the armBase class connect to ROS using Matlab-ROS IO bridge and
ROS connect to CISST/SAW using cisst-ROS Bridge. Thus there are two bridges
in between to connect matlab code to dVRK manipulators

102

Matlab-ROS Class

The GUI provides a quick and easy way for running the dVRK and evaluating

simple control and communication. For more advanced algorithms, I have created

a Matlab ROS class, called armBase, that has been released as a first version to be

tested by Zihan at JHU. This class makes setting up ROS interface very easy. All

a user needs is these lines of code in his/here program to set up all the subscribers,

publishers and callback assignments.

Figure 7.6: The armBase provides the following methods by default for the defined
object type (MTM, PSM or ECM)

{

node = rosmatlab.node(’/my_node’)

mtm = armBase(node,’MTM’)

mtm.setupArm

/*

algorithms

103

*/

mtm.clean_up

}

The Matlab class ”armBase” thus creates an object depending upon the string

passed to it that could be either PSMs or MTMs. The object has all the methods

for setting and retrieving anything from joint positions and torques to manipulator

state in very simple to use fashion. Fig 7.6 shows an overview of the functionalities

of the armBase class.

Figure 7.7: Histogram of latency values for 10,000 data packets received from Matlab
to ROS. This grap shows that most of the data packets are received in a duration
of 1 ms.

104

The armBase class provides a unified interface for creating an object to any

dVRK manipulator (MTMR, MTML, PSM1, PSM2, PSM3, ECM) and so on. This

allows less code clutter and only one class. I have relied on string manipulations

to achieve this. The class allows adding up additional function callbacks to the

subscribers and events so that class can easily be extended for use in GUI design

and Simulink. The clean up function takes care of node and topic termination from

ROS, which is very essential for the dVRK interface. It also frees up memory and

handles in the process.

I have been able to achieve > 500 Hz of publishing and subscribing speeds. A

histogram of latency is shown in figure 7.7. The histogram executable is programmed

in Python and checks for each data packets delay with respect to ROS time. This

result is very encouraging as ROS-CISST/SAW interface works at the same speed.

This would allow total control of dVRK using Matlab for users non-familar with

ROS and C++.

105

Chapter 8

Conclusion and Future Work

I have developed many software interfaces for this research with a brief overview

depicted in figure 8.1 which also shows where they fit. To implement the cisst-ROS

bridge, shown in the middle of the figure, I had to modify the corresponding to the

CISST/SAW libraries, this work was also supported by Zihan at JHU. For right side

of the cisst-ROS bridge in figure 8.1, I added applications that were compiled with

ROS. This was a milestone in ROS integration since a single application spawned

all the required interfaces and made them available at hand.

Going forward, I added the Gazebo interface that allowed for dynamic simula-

tions of the MTMs. I am currently working on adding the same for PSMs. In Gazebo

interface, I extended an additional rqt gui package to implement joint controllers

with ease. Shortly after that, I integrated the MoveIt package with the dVRK to

be able to conduct motion planning related experiments. Lastly, I have added the

Matlab interface that is still to be tested for use by other collaborating researchers.

Motion planning for the dVRK has worked as expected in simulations, solving

for problems in a minimal amount of time. For the experimental setup, I used pre

and intra-operative planning, with the goals of having an entry path into the body

106

Figure 8.1: The Extended System Overview

and also planning inside the body using the single entry point. For the current

experiments in simulations, the obstacles environment is registered to the PSM and

thus allowing for path planners to perform valid collision and state checking. To

evaluate the results on actual problems, accurate registration of the environment

with respect to the PSM is required. There are a couple ways to achieve regis-

tration, such as pivot calibration using stereo vision or error tracking via optical

tracking markers mounted on a camera and the PSM.

Zhixian Zhang (graduated from WPI in 2014) was working on the generation

of 3D mesh models of the environment using stereo vision. He was successful in

reconstruction >70% of the point clouds from the disparity maps. This work needs

to be picked up and taken a step ahead by registering the generated mesh to the

PSMs. Once the 3D generated mesh has been registered to the PSMs, the motion

planning algorithms can be extended to control the actual PSM.

107

The dynamic parameters of the dVRK manipulators are unknown. As a future

problem, the dynamics need to be estimated. Adaptive control techniques shall be

utilized to improve upon the current estimate of the dynamic properties.

8.1 Implementation of Guidance Virtual Fixtures

In the field of Robot Manipulation, Virtual Fixtures, as the name indicates are set

of imaginary points that pose as constraints to the movement of the manipulator.

Virtual fixtures are used for various purposes and their use case classifies which

type of virtual fixtures are needed. Essentially, virtual fixtures can be broadly clas-

sified into Forbidden region virtual fixtures (FRVF) and Guidance Virtual Fixtures

(GVF).

Forbidden region virtual fixtures create a repulsive potential field around an area,

enclosed surface or a volume. This repulsive potential field repels an manipulator as

soon as it comes near the region. The stiffness of the potential field can be adjusted

to make a hard constrained obstacles or a field whose repulsion gets stronger only

as the manipulator get farther and farther inside the field.

Guidance Virtual fixtures are an altogether different approach as compared to

FRVFs. In GVFs case, a defined path is used to generate an attractive potential

field with a small propagation bias along the path. Based on the usage, the end

effector of the manipulator is attracted to the path, with the force of attraction

stronger as the manipulator deviates away from the path. Along this path, a force

is also applied to the manipulator to move along the path.

108

8.2 Use Case of GVFs for the dVRK

Once a path has been obtained using the path planning algorithms as covered in

section, taking into account the obstacles, the path will be used to generate a guid-

ance virtual fixture. In order to do so, the dynamics of the manipulator must be

know. The necessity of accurate dynamical model of the manipulator stems from the

fact that the GVFs are used to apply virtual forces at the end effector. These end

effector forces are applied by the joints themselves as torques, and are propagated

towards the end effector link from the first joint in the base link.

If the dynamic model of the manipulator is accurately know, accurate forces can

be applied at the end effector link which helps the surgeon get a feel of the path the

manipulator intends to follow.

8.3 Use Case of FRVFs for Assistive Path Plan-

ning

As detailed in the section of assistive path planning for aiding the surgeon, a visual

tool has been provided that allows the simulated PSMs and the environment to show

up collision markers whenever collision happens between the tool and environment,

in simulation. Adding FRVFs to the visual feedback will add to the safety and

convenience of choosing a pair of start and goal points for assistive path planning.

Moreover, the plan to add the FRVFs to the actual PSMs is intended. The FRVFs

will be added only for the sensitive organs where the PSMs are not supposed to go

in any way.

109

Bibliography

[1] Is ros for me. http://www.ros.org/is-ros-for-me/.

[2] Zeus robotic surgical system. http://allaboutroboticsurgery.com/zeusrobot.html.

[3] Simon Bann, Mansoor Khan, Juan Hernandez, Yaron Munz, Krishna Moorthy,
Vivek Datta, Timothy Rockall, and Ara Darzi. Robotics in surgery. Journal of
the American College of Surgeons, 196(5):784–795, 2003.

[4] Ryan A Beasley. Medical robots: current systems and research directions.
Journal of Robotics, 2012, 2012.

[5] Charles L Bennett, Steven J Stryker, M Rosario Ferreira, John Adams, and
Robert W Beart. The learning curve for laparoscopic colorectal surgery: pre-
liminary results from a prospective analysis of 1194 laparoscopic-assisted colec-
tomies. Archives of Surgery, 132(1):41–44, 1997.

[6] J. Bruce and M. Veloso. Real-time randomized path planning for robot naviga-
tion. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Con-
ference on, volume 3, pages 2383–2388 vol.3, 2002.

[7] Herman Bruyninckx and Peter Soetens. The orocos project.
http://people.mech.kuleuven.be/ orocos/pub/documentation/rtt/v1.12.x/doc-
xml/orocos-overview.html, Jan 2015.

[8] BL Davies, RD Hibberd, MJ Coptcoat, and JEA Wickham. A surgeon robot
prostatectomy-a laboratory evaluation. Journal of medical engineering &
technology, 13(6):273–277, 1989.

[9] Anton Deguet, Rajesh Kumar, Russell Taylor, and Peter Kazanzides. The cisst
libraries for computer assisted intervention systems. In MICCAI Workshop on
Systems and Arch. for Computer Assisted Interventions, Midas Journal, 2008.

[10] Michel Gagner, Eric Begin, Richard Hurteau, and Alfons Pomp. Robotic inter-
active laparoscopic cholecystectomy. The Lancet, 343(8897):596–597, 1994.

[11] M Jung, T Xia, A Deguet, R Kumar, R Taylor, and P Kazanzides. A surgical
assistant workstation (saw) application for teleoperated surgical robot system.

110

The MIDAS Journal-Systems and Architectures for Computer Assisted Inter-
ventions, 2009.

[12] S. Karaman, M.R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion
planning using the rrt*. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1478–1483, 2011.

[13] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. CoRR, abs/1005.0416, 2010.

[14] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. Robotics
and Automation, IEEE Transactions on, 12(4):566–580, 1996.

[15] P Kazanzides, S DiMaio, A Deguet, B Vagvolgyi, M Balicki, C Schneider,
R Kumar, A Jog, B Itkowitz, C Hasser, et al. The surgical assistant workstation
(saw) in minimally-invasive surgery and microsurgery. In MICCAI Workshop
on Systems and Arch. for Computer Assisted Interventions, 2010.

[16] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on,
volume 3, pages 2149–2154. IEEE, 2004.

[17] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Robotics and Automation, 2000. Proceedings. ICRA
’00. IEEE International Conference on, volume 2, pages 995–1001 vol.2, 2000.

[18] Y. Kuwata, G.A. Fiore, J. Teo, E. Frazzoli, and J.P. How. Motion planning for
urban driving using rrt. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 1681–1686, 2008.

[19] Yik San Kwoh, Joahin Hou, Edmond A Jonckheere, and Samad Hayati. A
robot with improved absolute positioning accuracy for ct guided stereotactic
brain surgery. Biomedical Engineering, IEEE Transactions on, 35(2):153–160,
1988.

[20] S.M. LaValle. In Planning Algorithms. Cambridge University Press, May 2006.

[21] David V. Lu. Joint state publisher package.
http://wiki.ros.org/joint state publisher.

[22] A. Malpani, B. Vagvolgyi, and R. Kumar. Kinematics based safety operation
mechanism for robotic surgery extending the jhu saw framework. The Midas
Journal, 08 2011.

111

[23] MoveIt. Environment representation. http://moveit.ros.org/wiki/Environment Representation/COct
2013.

[24] MoveIt. Collision checking. http://moveit.ros.org/documentation/concepts/,
Jan 2015.

[25] The Economist Online. Surgical robots: The kindness of strangers.
http://www.economist.com/blogs/babbage/2012/01/surgical-robots, Jan
2012.

[26] Orocos. Orocos project history. http://www.orocos.org/orocos/history, Jan
2015.

[27] VR Patel, MF Chammas, and S Shah. Robotic assisted laparoscopic radical
prostatectomy: a review of the current state of affairs. International journal of
clinical practice, 61(2):309–314, 2007.

[28] THE ASSOCIATED PRESS. Surgical robot da vinci scrutinized by fda after
deaths, other surgical nightmares. http://www.nydailynews.com/life-
style/health/surgical-robot-scrutinized-fda-deaths-nightmares-article-
1.1311447, April 2013.

[29] Morgan Quigley, Eric Berger, Andrew Y Ng, et al. Stair: Hardware and software
architecture. In AAAI 2007 robotics workshop, volume 3, page 14, 2007.

[30] Gildardo Sánchez and Jean-Claude Latombe. A single-query bi-directional
probabilistic roadmap planner with lazy collision checking. In Robotics Re-
search, pages 403–417. Springer, 2003.

[31] Richard M Satava. Surgical robotics: the early chronicles: a personal historical
perspective. Surgical Laparoscopy Endoscopy & Percutaneous Techniques,
12(1):6–16, 2002.

[32] Richard M Satava. Robotic surgery: from past to future—a personal journey.
Surgical Clinics of North America, 83(6):1491–1500, 2003.

[33] Ioan A. Sucan and Sachin Chitta. Moveit. http://moveit.ros.org.

[34] Ioan A Şucan and Lydia E Kavraki. Kinodynamic motion planning by interior-
exterior cell exploration. In Algorithmic Foundation of Robotics VIII, pages
449–464. Springer, 2009.

[35] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December
2012. http://ompl.kavrakilab.org.

[36] Intuitive Surgical. Welcome to the da vinci research kit wiki community.
http://research.intusurg.com/dvrkwiki/, Jan 2015.

112

[37] Foote Tully, Marder-Eppstein Eitan, and Meeussen Wim. Tf.
http://wiki.ros.org/tf.

[38] Johns Hopkins University and Intuitive Surgical Inc. Sur-
gical assistant workstation software architecture document.
https://www.cisst.org/main/images/5/52/SAW-Architecture-V1.4.pdf, 2007.

[39] Balazs Vagvolgyi, S DiMaio, Anton Deguet, Peter Kazanzides, Rajesh Kumar,
Christopher Hasser, and R Taylor. The surgical assistant workstation. In
Proc MICCAI Workshop: Systems and Architectures for Computer Assisted
Interventions, 2008.

113

	Worcester Polytechnic Institute
	Digital WPI
	2015-04-30

	Implementation of a Surgical Robot Dynamical Simulation and Motion Planning Framework
	Adnan Munawar
	Repository Citation

	tmp.1530275769.pdf.NfZ01

