View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by DigitalCommons@WPI

Worcester Polytechnic Institute

Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations
2016-01-25

Kernel Methods for Collaborative Filtering

Xinyuan Sun

Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

Repository Citation

Sun, Xinyuan, "Kernel Methods for Collaborative Filtering" (2016). Masters Theses (All Theses, All Years). 135.
https://digitalcommons.wpi.edu/etd-theses/135

This thesis is brought to you for free and open access by Digital WPL It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

https://core.ac.uk/display/213000781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/135?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

WORCESTER POLYTECHNIC INSTITUTE

Kernel Methods for Collaborative
Filtering
by

Xinyuan Sun

A thesis
Submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science
in

Data Science

January 2016

APPROVED:

Professor Xiangnan Kong, Advisor:

Professor Randy C. Paffenroth, Reader:

Abstract

The goal of the thesis is to extend the kernel methods to matrix factoriza-
tion(MF) for collaborative filtering(CF). In current literature, MF methods
usually assume that the correlated data is distributed on a linear hyper-
plane, which is not always the case. The best known member of kernel
methods is support vector machine (SVM) on linearly non-separable data.
In this thesis, we apply kernel methods on MF, embedding the data into a
possibly higher dimensional space and conduct factorization in that space.
To improve kernelized matrix factorization, we apply multi-kernel learning
methods to select optimal kernel functions from the candidates and intro-
duce fo-norm regularization on the weight learning process. In our empirical
study, we conduct experiments on three real-world datasets. The results sug-
gest that the proposed method can improve the accuracy of the prediction

surpassing state-of-art CF methods.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Contribution Lo oo 4
1.3 Structure of Thesis 5
2 Problem Statement 6
2.1 Notalons 6
2.2 Matrix Factorization L. 8
2.3 fe-norm multiple kernel learningo L. 9
3 Multiple Kernel Collaborative Filtering 11
3.1 Kernels L 11
3.2 Dictionary-based Single Kernel Matrix Factorization 12
3.3 Multiple Kernel Matrix Factorization 13
4 Experiments 17
4.1 Datasets 17
4.2 Baselines 18
4.3 Evaluation Metric 0oL 20
4.4 Settings 20
4.5 Results and Discussion L. 20
4.6 Parameter Studies 22

ii

Related Works 24
5.1 Memory-based Approaches 24
5.2 Model-based Approaches 25

Conclusion 26

iii

Chapter 1

Introduction

In this project, we applied multiple kernel matrix factorization(MKMF) for
collaborative filtering. Conventionally, the typical application of multiple
kernel learning(MKL) is to improve the performance of classification and
regression tasks. The basic idea of MKL is combining multiple kernels in-
stead of using a single one. The thesis incorporates the method to perform
low-rank matrix factorization in a possibly much higher dimension feature
space, learning nonlinear correlations toward the data in original space. Our
goal is to improve the accuracy of prediction for collaborative filtering that
serving the recommender systems. This chapter will give an overview about

motivation, challenges as well as contributions of this work.

1.1 Motivation

The increasing demand on e-commerce brings out online data growing ex-
ponentially. A critical challenge for modern electronic retailers is to provide
customers with personalized recommendations among large variety of offered
products. Collaborative filtering(CF), which mainly serves for recommender
systems making automatic predictions, is one of the technologies that ad-

dress this challenge. Recommender systems are particularly useful for en-

tertainment products such as movies, music and TV shows. Some famous
examples of recommender systems includes Amazon.com and Netflix.

Differed from other approaches, such as content based models, CF relies
only on past user behavior, for example, previous transactions or browsing
history, without requiring the creation of explicit profiles. One major appeal
of CF is that it is domain free, yet it can address aspects of the data that
are often elusive and very difficult to profile. Given how applicable it is,
in recent years, CF has been widely researched and has achieved further
progress with the extensive study on matrix factorization technologies.

In the basic form of matrix factorization, suppose we have a partially
filled rating matrix, where each row stands for a user and each column
denotes an item in the system, matrix factorization models map both users
and items to a joint latent factor space of dimensionality f, such that user-
item interactions - the user’s overall interest in the item’s charactaristics, are
modeled as inner products in that space. As a result, the problem becomes
predicting the missing entries with the inner product of latent feature vectors
for user ¢ and item j.

The existing works and models [4, 6, 16] for matrix factorization are
mainly induced by Singular Value Decomposition(SVD) of the user-item ob-
servation matrix. SVD assumes that the ratings are distributed on a linear
hyperplane which can be represented by the inner products of two low-rank
structures. However, in many practical situations, the data of matrix R is
nonlinearly distributed, which makes it hard or impossible to recover the
full matrix by solving low-rank factorizations in linear way. In such cases,
kernel methods can be helpful. Kernel methods work by embedding the data
into a possibly higher dimensional feature space, in which the embeddings
can be distributed on a linear hyperplane, thus it can be factorized into two
feature matrices in that space. The inner products of two embedded items

in the Hilbert feature space can be inferred by the kernel function, which is

r i r H
(A 5322 i
is 2 4 2 4 i _ i U| Hilbert Feature !
Ez 35 9 9 i i Space E
iRl 22 005 F i
E ANEIN UL '
Original Space -~ :

H I '
Kernel 1 Kernel 2 Kernel 3

Figure 1.1: An illustration of kernelized low-rank matrix factorization for
predicting the unobserved ratings. The two latent factor matrices U and V
are embedded into a high-dimensional Hilbert feature space by a linear com-
bination of kernel functions. The products of the two latent factor matrices

reconstruct the rating matrix in original space nonlinearly.

also called the kernel trick.

Incorporating kernel methods into matrix factorization for collabora-
tive filtering, however, is very challenging for the following three reasons:
First, while the inner products of the embedding can be inferred by the
kernel function, e.g., for polynomial kernel, k(x1,x2) =< ¢(x1), ¢(x2) >=
(x17x5 + ¢)?, the mapping ¢ is usually implicitly defined. As a result, as to
the kernerlized matrix factorization problems, the matrices of latent factors
of users and items are implicitly defined. In that case, minimizing the ob-
jective function becomes more challenging since applying alternating least
square(ALS) or gradient descent approaches is hampered by the implication
of the latent factors. Thus, it is critical to devise effective kernel methods
for the purpose of matrix completion.

Second, lacking side information. Existing kernelized matrix factoriza-

tion approaches [13, 28] usually require side information such as metadata,
social graphs, text reviews etc. However, in the context of real-world rec-
ommender systems, such information is not always available, which limits
the applicability of these approaches. Thus, without the help from side in-
formation of the users or items, applying kernel methods on pure matrix
factorization is a more challenging task.

Third, combining multiple kernels in terms of large scale collaborative
filtering tasks. A kernel function can capture a certain notion of similarity
and efficiently embed data into a much higher dimensional space, but using
one single kernel may still lead to suboptimal performance. To address this
problem, many methods have been proposed in the literature to learn lin-
ear combinations of multiple kernels, which are also an appealing strategy
for improving kernelized matrix factorization. Despite its value and signifi-
cance, few effort has been made on combining multiple kernel learning and
matrix factorization. Existing multiple kernel learning strategies are mostly
designed for classification and regression models, such as SVM, ridge regres-
sion, etc.. Moreover, it is even more challenging when considering the kernel
weight learning process with fo-norm considering large-scale problems.

To solve the above issues, we propose a solution, fs-norm MKMF, that
combining matrix factorization with kernel methods and multiple kernel
learning. Applying kernel methods on pure matrix factorization without
side information, fo-norm MKMF can effectively capture the non-linear rela-
tionships in the rating data. Empirical studies on real-world datasets show
that the proposed MKMF can improve the accuracy of prediction for collab-

orative filtering.

1.2 Contribution

In this thesis, we introduce a new matrix-factorization algorithm for collabo-

rative filtering MKMF with fo-norm constraint on the kernel weight learning

process, which is based on multiple kernel learning and matrix factorization
for collaborative filtering. We have implemented this algorithm on high di-
mensional datasets in real-world domain. A special optimization is known
as a quadratic constrained quadratic programming is introduced regarding
the kernel weight learning process to achieve better prediction accuracy on

the rating data.

1.3 Structure of Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the pre-
liminary concepts and an overview of the problem. Chapter 3 introduces the
proposed MKMF approach. Chapter 4 reports the experiments and results.
Chapter 5 gives a brief introduction of the related works of collaborative

filtering. Chapter 6 concludes this work with our advancements.

Chapter 2

Problem Statement

2.1 Notaions

In this section, we briefly describe the general problem setting of collabora-
tive filtering with some preliminaries of our proposed method.

We reserve special indexing letters for distinguishing users from items:
for users u, and for items 7. Each observed rating is a tuple (u, i, ;) denoting
the preference by user w of item i, where the rating values r,; € R. Notice
that the matrix R contains m X n entries, where m denotes the number
of users and n is the number of items. Each user is assumed to rate an
item only once, so all such ratings can be arranged into an m x n matrix R
whose ui-th entry equals r,;. The missing entires in R corresponding to the
unobserved rating, which is what we try to make prediction. The observed
entries indexed by the set Q = {(u,i) : 7y; } is observed, and the number
of the observed ratings is [2|. Typically |€2| is much smaller than m x n
because of the sparsity problem.

We use €, to denote the indices of observed ratings of the u-th row r,,
and € the indices of observed ratings of the i-th column r.;. For examples,

if r,’s ratings are all unobserved except the 1st and the 3rd values, then;

° Qu = (173)T and I'Qu - (Tularu3)T'

e Given a matrix A, A.q, denotes a sub matrix formed by the 1st

column and 3rd column of A.

Similarly, if r.;’s ratings are all unobserved except the 2nd and the 4th

values, then;
o () = (2,4)T and r.qgi = (7“2i77'4z‘)T

e Given a matrix A, A.q, denotes a sub matrix formed by the 2nd

column and 4th column of A.

The goal of collaborative filtering is to estimate the unobserved ratings

{ruil(u,i) ¢ Q} based on the observed ratings.

Table 2.1: Important Notations.

Symbol Definition

R and R The partially observed rating matrix and the inferred dense
rating matrix

U and V The user latent factors matrix and the item latent factors matrix

Q= {(u,4)} The index set of observed ratings, for (u,i) € Q, the ry; is
observed in R

Qy Indices of observed ratings of the u-th row of R

Q Indices of observed ratings of the i-th column of R

A o, or A o Sub matrix of A formed by the columns indexed by €, or Q¢

{dy,....,dg} The set of dictionary vectors

() The implicit mapping function of some kernel

® = (¢(d1), ..., #(dg)) | The matrix of embedded dictionary in Hilbert feature space
a, and b; The dictionary weight vector for user u and the dictionary

weight vector for item 4

A and B The dictionary weight matrix of users and the dictionary

weight matrix for items

{K1, s kp} The set of base kernel functions

{Ki,...Kp} The set of base kernel matrices

2.2 Matrix Factorization

Matrix factorization is one of the most successful realizations of collaborative
filtering. The idea of matrix factorization is to approximate the observed

matrix R as the product of two low-rank matrices:
R~ UTV

where U is a k x m matrix and V is a k X n matrix. Here k stands for the
rank of the factorization, which also denotes the number of latent features
for each user and item. Note that in most cases, we have k < min(m,n).
The model map both users and items to a joint latent factor space of
dimensionality f. Accordingly, each user u is associated with a vector u, €
R, and each item i is associated with a vector v; € Rf. The prediction for
rating assigned to item 7 by user u, as mentioned before, is done by taking

an inner product:
k
. Z T
Tui = ujuvji =4,Vv; (21)
Jj=1

where uj, denotes the j-th row and u-th column of matrix U, v;; denotes
the element in j-th row and i-th column of matrix V, u, denotes the u-th
column of U, and v; denotes the i-th column of V.

Modern systems modeling directly only the observed ratings, while avoid-
ing overfitting through a regularization term. The low-rank parameter ma-
trices U and V can be found by solving the following problem:

minimize || Po(R — U V)[[f + A([Ul[E + [[VI[) (2.2)

)

where the projection Po(X) is the matrix with observed elements of X
preserved, and the unobserved entries replaced with 0, || - ||% denotes the
Frobenius 2-norm and A is the regularization term for avoiding over-fitting.
This problem is not convex in terms of U and V, but it is bi-convex. Thus,

alternating minimization algorithms such as ALS [7,10] can be used to solve

equation (2.2). Suppose U is fixed, and we target to solve (2.2) for V. Then
we can decompose the problem into n separate ridge regression problems,

for the j-th column of V, the ridge regression can be formalized as:
minimize [|r, o5 — U, v; % + Allv; (2.3)
J

where r, o; denotes the j-th column of R with unobserved element removed,
the corresponding columns of U are also removed to derive U, o;, as we
defined in Section 2.1. The closed form solution for above ridge regression
is given by:

{’] = (U:’QjU:—’rﬂj +)\I)_IU:’er:’Qj. (24)

Since each of the n separate ridge regression problems leads to a solution
of ¥ € RF, stacking these n separate ¥’s together gives a k X n matrix
V. Symmetrically, with V fixed, we can find a solution of U by solving m
separate ridge regression problems. Repeat this procedure until convergence
since it is a local convex problem eventually leads to the solution of U and

A

V.

2.3 /s-norm multiple kernel learning

Since the right choice of kernel is usually unknown, applying single kernel
function may still lead to suboptimal results. As a result, multiple ker-
nel learning(MKL) works to learn an optimal linear combination of kernels
K = Z;nzl 1; K; with non-negative coefficients p together with the model
parameters. One conventional approach to multiple kernel learning employ
¢1-norm constraints on the mixing coefficients p to promote sparse kernel
combinations. However, when features encode orthogonal characterizations
of a problem, sparseness may lead to discarding useful information and may
thus result in poor generalization performance [9]. Thus, we impose ¢5-norm

constraint on the mixing coefficients p that leads to a quadratic constrained

quadratic programming(QCQP). QCQP has the basic form as
minimize %NTPOM +qo’ p
subject to %MTPW +qilp+r <0 fori=1,..,m, (2.5)
Ap=1>

where Py, ..., Py, are n-by-n matrices and g € R" is the optimization vari-
able. The optimization problem is considered convex when P, ..., P, are
all positive semi-definite. In this thesis, the kernel weight learning process

using fo-norm regularization also solved as the QCQP convex problem.

10

Chapter 3

Multiple Kernel

Collaborative Filtering

Traditional matrix factorization recover the full matrix by solving low-rank
factorization linearly. In this chapter, we introduce the kernel methods that
aim to add non-linearity to MK problem assuming the collaborative filtering

data is distributed on a nonlinear hyperplane.

3.1 Kernels

Kernel methods work for turned linear model into a non-linear model by
embedding data into much higher dimensional (possibly infinite), implicit
feature space. It follows the Mercer’s theorem that an implicitly defined
function ¢ exists whenever the space x can be equipped with a suitable
measure ensuring the kernel function K satisfies mercer’s condition. While
the embedding is implicit here, the inner product of data point in the feature
space can be inferred, such that ¢(x1)?¢(x2) = k(x1,%x2) € R, where x
denotes the kernel function of the corresponding kernel. For example, for
polynomial kernel with degree-d, k(x1,X2) =< ¢(x1), ¢(x2) >= (x17x2 +

¢)?. Different kernel functions specify different embeddings of the data and

11

thus can be viewed as capturing different notions of correlations.

3.2 Dictionary-based Single Kernel Matrix Fac-

torization

One challenge for incorporating kernel methods into matrix factorization,
as mentioned in Chapter 1, is the implicity of the latent factors of users
and items. To address the challenge, we use the dictionary-vectors for the
computing of Gram matrix.

Suppose we have k dictionary vectors {dy,...,d}, where d € R%. Then
we assume that the feature vector ¢(u,) associated to u, can be represented

as a linear combination of the dictionary vectors in kernel space as follows:
k
P(uy) = Zauj(b(dj) = ®a,, (31)
j=1

where a,; € R denotes the weights of each dictionary vector, ¢(d;) denotes
the feature vector of d; in Hilbert feature space, a, = (au1,...,ayu) ' and
® = (¢(dy),...,¢(dg)). Similarly we also assume that the feature vector

¢(v;) associated to v; can be represented as:

k
$(vi) = Y bijo(d;) = Bby, (3.2)
j=1
where b;j is the weight for each dictionary vector and b; = (b;1,...,bi) .
Thus for each user u € {1,...,m} we have a weight vector a,,, for each item
i€ {l,...,n}, we have a weight vector b;.

Consider the analog of (2.3), when all ¢(u,) are fixed, i.e. the weight
matrix A = (ai,...,a,) is fixed, and we wish to solve for all ¢(v;), i.e. to

solve for the weight matrix B = (by,...,by,)

minimize (rui — () T d(vi))? + Ao(vi) T () (3.3)

12

It is easy to see

d(u,) ¢(v;) =a, ® ®b; = a] Kb, (3.4)

o(vi) ' é(vi) = b ® ®b; = b, Kby, (3.5)

where K = @& is the Gram matrix (or kernel matrix) of the set of dictio-

nary vectors {dj,...,dx}. So we can rewrite (3.3) as
mg}lerﬁéze zu:(rm a, Kb;)* + \b; Kb; (3.6)
which is equivalent to
S, _ T 112 Trh.
minimize ||r, oi — A, :Kb;||z + Ab; Kby, (3.7)
b’LERk) B
(3.7) is similar to kernel ridge regression, the closed form solution is given

by
Bi = (KTA,QZATSPK + AK)TKTA:,QZ‘I’:,QZ‘ (38)

Stacking n separate b together, we get the estimated B = (f)l, e ,Bn),
which is a k x n matrix. Symmetrically, with B fixed, we can find a solution
of A by solving m separate optimization problem like (3.7). In this case,

the closed form solution for each &, is given by:

a, = (KTB:,QMBIQMK +AK)'K'B.q,rq, (3.9)

3.3 Multiple Kernel Matrix Factorization
Multiple kernel learning(MKL) [1,5,12] has been widely used on improving
the performance of classification and regression tasks, the basic idea of MKL
is combine multiple kernels instead of using a single one.
Formally, suppose we have a set of p positive definte base kernels {Kj, ..., K,},
then we aim to learn a kernel based prediction model by identifying the

best linear combination of the p kernels, that is, a weighted combinations

13

Algorithm 1 Multiple Kernel Matrix Factorization

Require: k,d,{k1,...,5p}, R, Q, A itermen
1: allocate A € R*>*™ B c R e RPD ={d; € R? :1<i<k}{K; €
RFXE .1 < i < p}, K € RF¥K
2: initialize pu = (%, cee, %)T,A, B, D
3: for i < 1,p do
4 K« (ki(dn, dj))1<n,j<k
5: end for
6: tter <0
7: repeat
8 K37 kK,
9: Update B as shown in (3.8)
10: Update A as shown in (3.9)
11: Update p by solving (3.11)
12: until iter = iter., or convergence

13: Return A, B, u, K

14

w=(uy,... ,,up)T. The learning task can be cast into following optimization:

p
minimize E (rm-—g ,ujaIKjbi)2+
au,bieRk

(u,2)€Q Jj=1
T.
ikt (3.10)
p p
A Y Kb +a, Y pKja,)
=1 j=1
Yuil

where p € Rﬁ and p,Tlp = 1. It is convenient to introduce the vectors
v = (agKibs,...,ai Kpbi) T, v = (a, Kia, + b/ Kib;,...,a] K,a, +
b/K,b;)".
Rearrange optimization (3.10),
minimize pu' Yp + Zp
subject to p >0 (3.11)

ull2 <1
where Y = Z(u,i)EQ vuw; and Z = Z(%i)eg()\ — 27ryi)Yui- When all vy,
and ~y,; are fixed, i.e. A and B are fixed, we impose £5-norm constraint on
p, make the optimization problem (3.11) is known as a quadratic constrained

quadratic programming. Unlike ¢1-norm regularization,
minimize p' Yp + Zp
subject to p =0 (3.12)
Lp=1
which is a quadratic programming optimization problem, the f5-norm
regularization is more challenging, but it can also be solved in principle by
general purpose optimization toolboxes such as MOSEK'. Notice that, we
constraint g = 0 to make sure the kernels are positive definite.
Now we can put all optimization problems together to build up our
multiple kernel matrix factorization algorithm, which is summarized in al-

gorithm 1. Initially, given rank value k, the dictionary dimension d and

"https://www.mosek.com/

15

p base kernel functions {ki,...,kp}, the algorithm randomly initializes k
dictionary vectors D = (dy,...,d), then computes the p base kernel ma-
trices as K; = (ki(dp, d;))1<n,j<k- The algorithm also initializes the kernel

0 _

weight vector as p® = (1)T

Dreip) and generates low-rank matrix A° and

B randomly. So initially, the compound kernel matrix K® = > <i<p ,u?Ki.
After obtaining all above instantiations, we first let A? and p fixed, find
B! by solving m separate optimization problems like (3.7), each solution
can be obtained directly by computing the closed form expression shown in
3.8. Similarly, we then let B! and p° fixed, following the same approach
to get A'. At last, A and B! are fixed, we can obtain u' by solving 3.12
using convex optimization package mentioned before. Repeat this ALS-like
procedure until the algorithm converges or reaches the predefined maximum
number of iterations. We then define optimal solutions obtained by above
iterative procedure are 11,]*3 and ;*L, the corresponding compound kernel ma-
trix is denoted as I*(=>r, /*LZKZ Thus, for each test tuple (u,i,7y;), the
prediction made by our algorithm is 7#,; = aII*{bZ-, which also is the element
in the u-th row and i-th column of the recovered matrix R = KTIE]*B The

rating inference is also summarized in algorithm 2.

Algorithm 2 Rating Inference

Require: Q,f{,f&,ﬁ
1: allocate P
2: for u,i € Q do
3: Tui 31 I*{l*)l
4: add 7y; to P

5. end for

6: Return P.

16

Chapter 4

Experiments

4.1 Datasets

The proposed method is experimented and evaluated on 3 real-world col-

laborative filtering datasets: MovieLens, Jester and Flixster. The details

are summarized in Table 4.1. Note that the scale of rating in each dataset

is different. For instance, the ratings in Jester dataset are continuous val-

ues ranges from -10 to 10, while the Flixster dataset contains only 5 rating

classes from 1 to 5. For each dataset, we sampled a subset with 1,000 users

and 1,000 items. The 1000 users are selected randomly while the 1000 items

selected are most frequently rated items (Jester dataset only contains 100

items).
Table 4.1: Summary of compared methods.
Dataset # of users | # of items | Density (%) | Rating range
MovieLens 6,040 3,900 6.3 [1,5]
Jester 73,412 100 55.8 [-10.0,10.0]
Flixster 147,612 48,784 0.11 [1,5]

17

Table 4.2: Summary of compared methods.

Method Type Kernelized Publication
Ava Memory-Based No [14]
Ive-Cos Memory-Based No [20]
Ive-PERSON | Memory-Based No [20]

SVD Model-Based No [4]

MF Model-Based No [10]
Kwmr Model-Based Single Kernel This thesis
MEKMF Model-Based | Multiple Kernels | This thesis

4.2 Baselines

We compare our proposed method, fo-norm MKMF, with multiple sets of
baselines, among which AVG, IVS-COS and IVC-PERSON are memory-
based methods while SVD, MF, KMF and MKMF are model-based methods.

1) AVG: A naive baseline called AVG which predicts the unobserved rating
assign to item ¢ by user u as 7; = a;+ [, where «; is the mean score of

item 7 in training data, and (3, is the average bias of user u computed as

Z(u,i)eQ Tui — Q4 Z(u,i)eﬂ Tui

[{(u,4) € Q1] {(u,) € Q4]

2) Ivc-cos: (Item-based + cosine vector similarly): For memory based

ﬂu:

,where a; =

methods we implemented Ivs-Cos. It predicts the rating assigning to

18

item ¢ by user u by searching for the neighboring set of items rated by

user u using cosine vector similarity [20].

3) IvC-PEARSON: (Item-based + Pearson vector similarly): Another mem-
ory based method we compare with is the item based model which uses
Pearson correlation [20]. It is similar to Ivs-Cos except using different

metric of similarity.

4) svD: A model based method called Funk-SVD [4]. It is similar to the
matrix factorization approach we discussed in Section 2.2, but it is im-

plemented by using gradient descent instead of alternative least square.

5) MF: textscMf (Matrix Factorization) is a model-based CF method that

discussed in Section 2.2.

6) kMF: We also compare the proposed MKMF with its single-kernel version
KMF which only employs one kernel function at a time, the details

are discussed in Section 3.2.

7) ¢1-norm MKMF: MKMF that employ ¢;-norm constraints on the weight
coefficients. The difference between MKMF and KMF is that MKMF com-
bine multiple kernel functions while KMF only use one kernel function.

The details of MKMF are discussed in Section 3.3.

8) /ly-norm MKMF: The proposed MKMF that imposing an fs-norm con-

straint on the weight coefficients.

For a fair comparison, the maximum number of iterations in the meth-

ods SvD, MF, KMF and MKMF are all fixed as 20.

19

4.3 Evaluation Metric

The performance metric for rating accuracy used here is the root mean

square error (RMSE):

i Tui — Tui)?
RMSE = \/ ZW*)EQ'(Q') (4.1)

4.4 Settings

For each dataset, we select the 1,000 most frequently rated items and ran-
domly draw 1,000 users to generate a matrix with the dimension of 1000 x
1000 (1000 x 100 for Jester). Two experimental settings are tested in this
paper respectively. In the first setting, we randomly select one rating from
each user for test and the remaining ratings for training. The random se-
lection is repeated 5 times independently for each dataset. In the second
setting, we randomly select 3 ratings from each user for test and the re-
maining ratings for training. The random selection is also repeated 5 times
independently for each dataset. We denote the first setting as Leave 1, and
the second setting as Leave 3, which has sparser training matrix than the
setting of Leave 1. The average performances with the rank of each method

are reported.

4.5 Results and Discussion

Following the setting of [12], we first use a small base kernel set of three
simple kernels: a linear kernel function 1(x,x’) = x'x, a 2-degree poly-
nomial kernel function sg(x,x’) = (1 + x'x)?, and a Gaussian kernel (rbf
kernel) function s3(x,x’) = exp(—0.5(x —x') T (x —x') /o) with ¢ = 0.5. We
implement the proposed MKMF method to learn a linear combination of the
three base kernels by solving the optimization problem (3.10). The proposed

KMF method is also tested using the three base kernels respectively.

20

Empirical results on the three real-word datasets are summarized in Ta-

ble 4.3 and 4.4.

Table 4.3: Results (RMSE(rank)) of Leave 1 on the real-world datasets.

Methods Flixster MovieLens Jester Ave. Rank
lo-NORM MKMF 0.8274 (2) 0.8233 (2) 4.0515 (5) 3
/,-NORM MKMF 0.8270 (1) 0.8223 (1) 4.0398 (1) 1
KMF(LINEAR) 0.8290 (5) 0.8241 (4.5) 4.0471 (2.5) 4
KMF(POLY) 0.8289 (4) 0.8241 (4.5) 4.0472 (4) 4.1667
KMF (RBF) 0.8292 (6) 0.8246 (6) 4.0471 (2.5) 4.8333
MF 0.8286 (3) 0.8235 (3) 4.0549 (6) 4

SVD 0.9441 (10) 0.9406 (8) 4.2794 (7) 8.3333
IVC-COS 0.9223 (8) 1.0016 (9) 4.6137 (9) 9
IVC-PEARSON 0.9226 (9) 1.0020 (10) 4.6142 (10) 9.6667
AVG 0.9006 (7) 0.8887 (7) 4.3867 (8) 7.3333

Table 4.4: Results (RMSE(rank)) of Leave 3 on the real-world datasets.

Methods Flixster MovieLens Jester Ave. Rank
l-NORM MKMF 0.8213 (6) 0.8201 (6) 4.0883 (6) 6
¢1-NORM MKMF 0.8153 (1) 0.8168 (1) 4.0809 (1) 1
KMF(LINEAR) 0.8163 (3.5) 0.8178 (2.5) 4.0826 (3) 3
KMF(POLY) 0.8163 (3.5) 0.8179 (4) 4.0824 (2) 3.1667
KMF(RBF) 0.8157 (5) 0.8186 (5) 4.0829 (4) 4.6667
MF 0.8155 (2) 0.8178 (2.5) 4.0865 (5) 3.1667
SVD 0.9335 (10) 0.9346 (8) 4.2601 (7) 8.3333
IVC-COS 0.9050 (8) 1.0034 (9) 4.6282 (9) 8.6667
IVC-PEARSON 0.9051 (9) 1.0047 (10) 4.6284 (10) 9.6667
AVG 0.8868 (7) 0.8865 (7) 4.3656 (8) 7.3333

Based on the results, we have made following interesting observations:

21

e The proposed fo-norm MKMF generally outperforms the other base-
lines, except ¢1-norm MKMF, on two of the three datasets in Leave
1; The result of ¢1-norm MKMF, on the other hand, surpassing all
other methods in both Leave 1 and Leave 3. Such experimental re-
sult shows that incorporating kernels into matrix factorization helps

the model capturing the non-linear correlation among the data.

e In regard to self-comparison, the performance of both £;-norm MKMF
and ¢o-norm MKMF is worse in Leave 3 than in Leave 1 while KMF
keeps unaffected. It indicates that the multiple kernel learning algo-
rithm is more sensitive to the sparsity problem than solving kernel

ridge regression.

e Notice that ¢3-norm MKMF outperformed by ¢;-norm MKMF in all
cases. Though generally #5-norm regularization provides more precise
solution, in matrix factorization problem, the sparse kernel combina-
tion using ¢1-norm regularization proves to be more robust. While
the test performance is less ideal than what we expected, the training

RMSE of ¢3-norm MKMF remains to be low in both two settings.

4.6 Parameter Studies

Figure 4.1(a) shows the kernelized methods’ sensitivity of parameter d, which
stands for the dimensions of the dictionary vectors. Generally, according to
the figures, MKMF are not very sensitive to the value of d once we choose
relatively large d. For MovieLens dataset, the optimal choice of d is around
100. The situations of other datasets are similar, so they are omitted here
due to the page limitation. Intuitively, the larger d we choose, the more
information can be captured by the dictionary. However, since in both KMF
and MKMF, the dictionary vectors are eventually embedded into a Hilbert

feature space with much higher dimension than d. It is reasonable to observe

22

Parameter d(dimension of dictionary vectors) Parameter k(rank of the feature matrices)

RMSE
RMSE
¢

(a) MovieLens Dataset (b) Jester Dataset

Figure 4.1: Parameter studies over d and k

the insensitive pattern is shown in Figure 4.1(a).

Besides, we also study the performances of our proposed methods upon
different values of k, which denotes the rank of the two low-rank feature ma-
trices. It is well-known the parameter & should be tuned via cross-validation
or multiple rounds of training/test split to achieve best performance for con-
ventional matrix factorization [4,16]. Figure 4.1(b) shows the performances
of MKMF on Jester dataset upon different values of k. The optimal rank
for Jester dataset is kK = 8. It also shows that MKMF are overfitting while k

increases.

23

Chapter 5

Related Works

In current research, collaborative filtering(CF) works in one of two areas:
memory-based approach and model-based approach. In this section, we

introduces both two approaches briefly.

5.1 Memory-based Approaches

The memory-based CF approach is also called neighbor-based CF, in which
user-based methods and item-based methods are included. Neighbor-based
CF method estimates the unobserved ratings of a target user or item as
follows, it first find the observed ratings assigned by a set of neighboring
users or the observed ratings assigned to a set of neighboring items, then
it aggregates the neighboring ratings to derive the predicted rating of the
target user or item. In order to find the neighboring set of a target user
or item, similarity measures such as correlation-based similarity [19], vector
cosine-based similarity [2] and conditional probability-based similarity [8] are
usually used. Memory-based CF methods are usually easy to implement, and
new data can be added into the model easily without re-training. But they
are known to suffer from the sparsity problem which makes the algorithm

hard to find highly similar neighboring sets. Several relaxation approaches

24

were proposed to address the sparsity problem to fill in some of the unknown
ratings using different techniques [15,26]. Neighbor-based CF methods also
have limited scalability for large datasets since each prediction is made by
searching the similar users or items in the entire data space. When the
number of users or items is large, the prediction is very expensive to obtain,

which makes it difficult to scale in the online recommender system.

5.2 Model-based Approaches

Model-based approach is an alternative approach that can better address
the sparsity problem than memory-based approach does, since it allows the
system to learn a compact model that recognizes complex patterns based on
the observed training data, instead of directly searching in rating database.
Generally, classification algorithms can be employed as CF models for the
dataset with categorical ratings, and regression models can be used if the
ratings are numerical. Popular models used in this category include ma-
trix factorization [16], probabilistic latent semantic analysis [6], Bayesian
networks [17], clustering [3] and Markov decision process [23].

As to the matrix factorization approaches relevant to our work, [22] gen-
eralizes probabilistic matrix factorization to a parametric framework and
requires the aid of topic models. [24] introduces a nonparametric factoriza-
tion method under trace norm regularization. The optimization is cast into
a semidefinite programming (SDP) problem, whose scalability is limited. A
faster approximation of [24] is proposed by [18], which, in fact is very simi-
lar to the formulation of SVD [4]. [27] proposes a fast nonparametric matrix
factorization framework using an EM-like algorithm that reduce the time

cost on the large-scale dataset.

25

Chapter 6

Conclusion

In this thesis, we have introduced a matrix factorization model, /5-norm
MKMEF, for collaborative filtering. The proposed model can capture the
non-linear distribution of latent factor effectively. The fo-norm MKMF' ex-
tends #1-norm MKMF to impose fs-norm constraint on the weight coeffi-
cients regarding kernel weight learning. The £s-norm constraint on the con-
straint result in a QCQP optimization. As demonstrated in the experiments,
our proposed method improve the accuracy of prediction and surpassing the

results of multiple state-of-art collaborative filtering methods.

26

Bibliography

1]

F.R. Bach, G. Lanckriet, and M.I. Jordan. Multiple kernel learning,
conic duality, and the smo algorithm. In ICML, page 6. ACM, 2004.

J.S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predic-
tive algorithms for collaborative filtering. In Proceedings of the Four-
teenth conference on Uncertainty in artificial intelligence, pages 43-52,

1998.

S. Chee, J. Han, and K. Wang. Rectree: An efficient collaborative
filtering method. In Data Warehousing and Knowledge Discovery, pages
141-151. Springer, 2001.

S. Funk. Netflix update: Try this at home, 2006.

M. Goénen and E. Alpaydin. Multiple kernel learning algorithms. The
Journal of Machine Learning Research, 12:2211-2268, 2011.

T. Hofmann. Latent semantic models for collaborative filtering. TOIS,

22(1):89-115, 2004.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit
feedback datasets. In ICDM, pages 263-272. IEEE, 2008.

G. Karypis. Evaluation of item-based top-n recommendation algo-

rithms. In CIKM, pages 247-254. ACM, 2001.

27

[9]

[10]

[11]

[12]

[18]

Marius Kloft, Ulf Brefeld, Pavel Laskov, and Séren Sonnenburg. Non-
sparse multiple kernel learning. In NIPS Workshop on Kernel Learning:
Automatic Selection of Optimal Kernels, volume 4, 2008.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, (8):30-37, 2009.

G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan, and W.S. No-
ble. A statistical framework for genomic data fusion. Bioinformatics,

20(16):2626-2635, 2004.

G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, and M.I. Jor-
dan. Learning the kernel matrix with semidefinite programming. The

Journal of Machine Learning Research, 5:27-72, 2004.

N.D. Lawrence and R. Urtasun. Non-linear matrix factorization with

gaussian processes. In ICML, pages 601-608. ACM, 2009.

C. Ma. A guide to singular value decomposition for collaborative filter-

ing, 2008.

H. Ma, I. King, and M.R. Lyu. Effective missing data prediction for
collaborative filtering. In SIGIR, pages 39-46. ACM, 2007.

A. Paterek. Improving regularized singular value decomposition for
collaborative filtering. In Proceedings of KDD cup and workshop, pages
5-8, 2007.

D.M. Pennock, E. Horvitz, S. Lawrence, and C.L. Giles. Collaborative
filtering by personality diagnosis: A hybrid memory-and model-based
approach. In Proceedings of the Sizteenth conference on Uncertainty in

artificial intelligence, pages 473-480, 2000.

J. Rennie and N. Srebro. Fast maximum margin matrix factorization

for collaborative prediction. In ICML, pages 713-719. ACM, 2005.

28

[19]

[21]

[22]

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
plens: an open architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM conference on Computer supported coop-
erative work, pages 175-186. ACM, 1994.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collabo-
rative filtering recommendation algorithms. In WIWW, pages 285-295.
ACM, 2001.

B. Scholkopf and A.J. Smola. Learning with kernels: Support vector

machines, reqularization, optimization, and beyond. MIT press, 2002.

H. Shan and A. Banerjee. Generalized probabilistic matrix factoriza-

tions for collaborative filtering. In ICDM, pages 1025-1030. IEEE, 2010.

G. Shani, R.I. Brafman, and D. Heckerman. An mdp-based recom-
mender system. In Proceedings of the FEighteenth conference on Un-
certainty in artificial intelligence, pages 453—460. Morgan Kaufmann

Publishers Inc., 2002.

N. Srebro, J. Rennie, and T.S. Jaakkola. Maximum-margin matrix
factorization. In Advances in neural information processing systems,

pages 1329-1336, 2004.

X.Liu, C.Aggarwal, Y.Li, X.Kong, X.Sun, and S.Sathe. Kernelized

matrix factorization for collaborative filtering. SDM, 2016.

G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen. Scalable
collaborative filtering using cluster-based smoothing. In SIGIR, pages
114-121. ACM, 2005.

K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonparametric matrix
factorization for large-scale collaborative filtering. In SIGIR, pages 211—
218. ACM, 2009.

29

[28] T. Zhou, H. Shan, A. Banerjee, and G. Sapiro. Kernelized probabilistic
matrix factorization: Exploiting graphs and side information. In SDM,

volume 12, pages 403—-414. STAM, 2012.

30

	Worcester Polytechnic Institute
	Digital WPI
	2016-01-25

	Kernel Methods for Collaborative Filtering
	Xinyuan Sun
	Repository Citation

	tmp.1530275769.pdf.cg_wD

