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Abstract

The goal of the thesis is to extend the kernel methods to matrix factoriza-

tion(MF) for collaborative filtering(CF). In current literature, MF methods

usually assume that the correlated data is distributed on a linear hyper-

plane, which is not always the case. The best known member of kernel

methods is support vector machine (SVM) on linearly non-separable data.

In this thesis, we apply kernel methods on MF, embedding the data into a

possibly higher dimensional space and conduct factorization in that space.

To improve kernelized matrix factorization, we apply multi-kernel learning

methods to select optimal kernel functions from the candidates and intro-

duce `2-norm regularization on the weight learning process. In our empirical

study, we conduct experiments on three real-world datasets. The results sug-

gest that the proposed method can improve the accuracy of the prediction

surpassing state-of-art CF methods.
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Chapter 1

Introduction

In this project, we applied multiple kernel matrix factorization(MKMF) for

collaborative filtering. Conventionally, the typical application of multiple

kernel learning(MKL) is to improve the performance of classification and

regression tasks. The basic idea of MKL is combining multiple kernels in-

stead of using a single one. The thesis incorporates the method to perform

low-rank matrix factorization in a possibly much higher dimension feature

space, learning nonlinear correlations toward the data in original space. Our

goal is to improve the accuracy of prediction for collaborative filtering that

serving the recommender systems. This chapter will give an overview about

motivation, challenges as well as contributions of this work.

1.1 Motivation

The increasing demand on e-commerce brings out online data growing ex-

ponentially. A critical challenge for modern electronic retailers is to provide

customers with personalized recommendations among large variety of offered

products. Collaborative filtering(CF), which mainly serves for recommender

systems making automatic predictions, is one of the technologies that ad-

dress this challenge. Recommender systems are particularly useful for en-
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tertainment products such as movies, music and TV shows. Some famous

examples of recommender systems includes Amazon.com and Netflix.

Differed from other approaches, such as content based models, CF relies

only on past user behavior, for example, previous transactions or browsing

history, without requiring the creation of explicit profiles. One major appeal

of CF is that it is domain free, yet it can address aspects of the data that

are often elusive and very difficult to profile. Given how applicable it is,

in recent years, CF has been widely researched and has achieved further

progress with the extensive study on matrix factorization technologies.

In the basic form of matrix factorization, suppose we have a partially

filled rating matrix, where each row stands for a user and each column

denotes an item in the system, matrix factorization models map both users

and items to a joint latent factor space of dimensionality f , such that user-

item interactions - the user’s overall interest in the item’s charactaristics, are

modeled as inner products in that space. As a result, the problem becomes

predicting the missing entries with the inner product of latent feature vectors

for user i and item j.

The existing works and models [4, 6, 16] for matrix factorization are

mainly induced by Singular Value Decomposition(SVD) of the user-item ob-

servation matrix. SVD assumes that the ratings are distributed on a linear

hyperplane which can be represented by the inner products of two low-rank

structures. However, in many practical situations, the data of matrix R is

nonlinearly distributed, which makes it hard or impossible to recover the

full matrix by solving low-rank factorizations in linear way. In such cases,

kernel methods can be helpful. Kernel methods work by embedding the data

into a possibly higher dimensional feature space, in which the embeddings

can be distributed on a linear hyperplane, thus it can be factorized into two

feature matrices in that space. The inner products of two embedded items

in the Hilbert feature space can be inferred by the kernel function, which is

2
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Figure 1.1: An illustration of kernelized low-rank matrix factorization for

predicting the unobserved ratings. The two latent factor matrices U and V

are embedded into a high-dimensional Hilbert feature space by a linear com-

bination of kernel functions. The products of the two latent factor matrices

reconstruct the rating matrix in original space nonlinearly.

also called the kernel trick.

Incorporating kernel methods into matrix factorization for collabora-

tive filtering, however, is very challenging for the following three reasons:

First, while the inner products of the embedding can be inferred by the

kernel function, e.g., for polynomial kernel, κ(x1,x2) =< φ(x1), φ(x2) >=

(x1
Tx2 + c)d, the mapping φ is usually implicitly defined. As a result, as to

the kernerlized matrix factorization problems, the matrices of latent factors

of users and items are implicitly defined. In that case, minimizing the ob-

jective function becomes more challenging since applying alternating least

square(ALS) or gradient descent approaches is hampered by the implication

of the latent factors. Thus, it is critical to devise effective kernel methods

for the purpose of matrix completion.

Second, lacking side information. Existing kernelized matrix factoriza-
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tion approaches [13, 28] usually require side information such as metadata,

social graphs, text reviews etc. However, in the context of real-world rec-

ommender systems, such information is not always available, which limits

the applicability of these approaches. Thus, without the help from side in-

formation of the users or items, applying kernel methods on pure matrix

factorization is a more challenging task.

Third, combining multiple kernels in terms of large scale collaborative

filtering tasks. A kernel function can capture a certain notion of similarity

and efficiently embed data into a much higher dimensional space, but using

one single kernel may still lead to suboptimal performance. To address this

problem, many methods have been proposed in the literature to learn lin-

ear combinations of multiple kernels, which are also an appealing strategy

for improving kernelized matrix factorization. Despite its value and signifi-

cance, few effort has been made on combining multiple kernel learning and

matrix factorization. Existing multiple kernel learning strategies are mostly

designed for classification and regression models, such as SVM, ridge regres-

sion, etc.. Moreover, it is even more challenging when considering the kernel

weight learning process with `2-norm considering large-scale problems.

To solve the above issues, we propose a solution, `2-norm Mkmf, that

combining matrix factorization with kernel methods and multiple kernel

learning. Applying kernel methods on pure matrix factorization without

side information, `2-norm Mkmf can effectively capture the non-linear rela-

tionships in the rating data. Empirical studies on real-world datasets show

that the proposed Mkmf can improve the accuracy of prediction for collab-

orative filtering.

1.2 Contribution

In this thesis, we introduce a new matrix-factorization algorithm for collabo-

rative filtering Mkmf with `2-norm constraint on the kernel weight learning
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process, which is based on multiple kernel learning and matrix factorization

for collaborative filtering. We have implemented this algorithm on high di-

mensional datasets in real-world domain. A special optimization is known

as a quadratic constrained quadratic programming is introduced regarding

the kernel weight learning process to achieve better prediction accuracy on

the rating data.

1.3 Structure of Thesis

The rest of the thesis is organized as follows. Chapter 2 describes the pre-

liminary concepts and an overview of the problem. Chapter 3 introduces the

proposed Mkmf approach. Chapter 4 reports the experiments and results.

Chapter 5 gives a brief introduction of the related works of collaborative

filtering. Chapter 6 concludes this work with our advancements.
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Chapter 2

Problem Statement

2.1 Notaions

In this section, we briefly describe the general problem setting of collabora-

tive filtering with some preliminaries of our proposed method.

We reserve special indexing letters for distinguishing users from items:

for users u, and for items i. Each observed rating is a tuple (u, i, rui) denoting

the preference by user u of item i, where the rating values rui ∈ R. Notice

that the matrix R contains m × n entries, where m denotes the number

of users and n is the number of items. Each user is assumed to rate an

item only once, so all such ratings can be arranged into an m× n matrix R

whose ui-th entry equals rui. The missing entires in R corresponding to the

unobserved rating, which is what we try to make prediction. The observed

entries indexed by the set Ω = {(u, i) : rui } is observed, and the number

of the observed ratings is |Ω|. Typically |Ω| is much smaller than m × n

because of the sparsity problem.

We use Ωu to denote the indices of observed ratings of the u-th row ru,

and Ωi the indices of observed ratings of the i-th column r:,i. For examples,

if ru’s ratings are all unobserved except the 1st and the 3rd values, then;

• Ωu = (1, 3)T and rΩu = (ru1, ru3)T .
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• Given a matrix A, A:,Ωu denotes a sub matrix formed by the 1st

column and 3rd column of A.

Similarly, if r:,i’s ratings are all unobserved except the 2nd and the 4th

values, then;

• Ωi = (2, 4)T and r:,Ωi = (r2i, r4i)
T .

• Given a matrix A, A:,Ωu denotes a sub matrix formed by the 2nd

column and 4th column of A.

The goal of collaborative filtering is to estimate the unobserved ratings

{rui|(u, i) /∈ Ω} based on the observed ratings.

Table 2.1: Important Notations.

Symbol Definition

R and R̂ The partially observed rating matrix and the inferred dense

rating matrix

U and V The user latent factors matrix and the item latent factors matrix

Ω = {(u, i)} The index set of observed ratings, for (u, i) ∈ Ω, the rui is

observed in R

Ωu Indices of observed ratings of the u-th row of R

Ωi Indices of observed ratings of the i-th column of R

A:,Ωu or A:,Ωi Sub matrix of A formed by the columns indexed by Ωu or Ωi

{d1, ...,dk} The set of dictionary vectors

φ(.) The implicit mapping function of some kernel

Φ = (φ(d1), ..., φ(dk)) The matrix of embedded dictionary in Hilbert feature space

au and bi The dictionary weight vector for user u and the dictionary

weight vector for item i

A and B The dictionary weight matrix of users and the dictionary

weight matrix for items

{κ1, ..., κp} The set of base kernel functions

{K1, ...,Kp} The set of base kernel matrices
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2.2 Matrix Factorization

Matrix factorization is one of the most successful realizations of collaborative

filtering. The idea of matrix factorization is to approximate the observed

matrix R as the product of two low-rank matrices:

R ≈ UTV

where U is a k ×m matrix and V is a k × n matrix. Here k stands for the

rank of the factorization, which also denotes the number of latent features

for each user and item. Note that in most cases, we have k � min(m,n).

The model map both users and items to a joint latent factor space of

dimensionality f . Accordingly, each user u is associated with a vector uu ∈

Rf , and each item i is associated with a vector vi ∈ Rf . The prediction for

rating assigned to item i by user u, as mentioned before, is done by taking

an inner product:

r̂ui =

k∑
j=1

ujuvji = uTuvi (2.1)

where uju denotes the j-th row and u-th column of matrix U, vji denotes

the element in j-th row and i-th column of matrix V, uu denotes the u-th

column of U, and vi denotes the i-th column of V.

Modern systems modeling directly only the observed ratings, while avoid-

ing overfitting through a regularization term. The low-rank parameter ma-

trices U and V can be found by solving the following problem:

minimize
U,V

||PΩ(R−U>V)||2F + λ(||U||2F + ||V||2F ) (2.2)

where the projection PΩ(X) is the matrix with observed elements of X

preserved, and the unobserved entries replaced with 0, || · ||2F denotes the

Frobenius 2-norm and λ is the regularization term for avoiding over-fitting.

This problem is not convex in terms of U and V, but it is bi-convex. Thus,

alternating minimization algorithms such as ALS [7,10] can be used to solve
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equation (2.2). Suppose U is fixed, and we target to solve (2.2) for V. Then

we can decompose the problem into n separate ridge regression problems,

for the j-th column of V, the ridge regression can be formalized as:

minimize
vj

||r:,Ωj −U>:,Ωjvj ||2F + λ||vj ||2 (2.3)

where r:,Ωj denotes the j-th column of R with unobserved element removed,

the corresponding columns of U are also removed to derive U:,Ωj , as we

defined in Section 2.1. The closed form solution for above ridge regression

is given by:

v̂j = (U:,ΩjU>:,Ωj + λI)−1U:,Ωjr:,Ωj . (2.4)

Since each of the n separate ridge regression problems leads to a solution

of v̂ ∈ Rk, stacking these n separate v̂’s together gives a k × n matrix

V̂. Symmetrically, with V fixed, we can find a solution of Û by solving m

separate ridge regression problems. Repeat this procedure until convergence

since it is a local convex problem eventually leads to the solution of Û and

V̂.

2.3 `2-norm multiple kernel learning

Since the right choice of kernel is usually unknown, applying single kernel

function may still lead to suboptimal results. As a result, multiple ker-

nel learning(MKL) works to learn an optimal linear combination of kernels

K =
∑m

j=1 µjKj with non-negative coefficients µ together with the model

parameters. One conventional approach to multiple kernel learning employ

`1-norm constraints on the mixing coefficients µ to promote sparse kernel

combinations. However, when features encode orthogonal characterizations

of a problem, sparseness may lead to discarding useful information and may

thus result in poor generalization performance [9]. Thus, we impose `2-norm

constraint on the mixing coefficients µ that leads to a quadratic constrained

9



quadratic programming(QCQP). QCQP has the basic form as

minimize
1

2
µ>P0µ+ q0

Tµ

subject to
1

2
µ>Piµ+ qi

Tµ+ ri ≤ 0 for i = 1, ...,m,

Aµ = b

(2.5)

where P0, ..., Pm are n-by-n matrices and µ ∈ Rn is the optimization vari-

able. The optimization problem is considered convex when P0, ..., Pm are

all positive semi-definite. In this thesis, the kernel weight learning process

using `2-norm regularization also solved as the QCQP convex problem.

10



Chapter 3

Multiple Kernel

Collaborative Filtering

Traditional matrix factorization recover the full matrix by solving low-rank

factorization linearly. In this chapter, we introduce the kernel methods that

aim to add non-linearity to MK problem assuming the collaborative filtering

data is distributed on a nonlinear hyperplane.

3.1 Kernels

Kernel methods work for turned linear model into a non-linear model by

embedding data into much higher dimensional (possibly infinite), implicit

feature space. It follows the Mercer’s theorem that an implicitly defined

function φ exists whenever the space χ can be equipped with a suitable

measure ensuring the kernel function K satisfies mercer’s condition. While

the embedding is implicit here, the inner product of data point in the feature

space can be inferred, such that φ(x1)Tφ(x2) = κ(x1,x2) ∈ R, where κ

denotes the kernel function of the corresponding kernel. For example, for

polynomial kernel with degree-d, κ(x1,x2) =< φ(x1), φ(x2) >= (x1
Tx2 +

c)d. Different kernel functions specify different embeddings of the data and

11



thus can be viewed as capturing different notions of correlations.

3.2 Dictionary-based Single Kernel Matrix Fac-

torization

One challenge for incorporating kernel methods into matrix factorization,

as mentioned in Chapter 1, is the implicity of the latent factors of users

and items. To address the challenge, we use the dictionary-vectors for the

computing of Gram matrix.

Suppose we have k dictionary vectors {d1, . . . ,dk}, where d ∈ Rd. Then

we assume that the feature vector φ(uu) associated to uu can be represented

as a linear combination of the dictionary vectors in kernel space as follows:

φ(uu) =
k∑
j=1

aujφ(dj) = Φau, (3.1)

where auj ∈ R denotes the weights of each dictionary vector, φ(di) denotes

the feature vector of di in Hilbert feature space, au = (au1, . . . , auk)
> and

Φ = (φ(d1), . . . , φ(dk)). Similarly we also assume that the feature vector

φ(vi) associated to vi can be represented as:

φ(vi) =
k∑
j=1

bijφ(dj) = Φbi, (3.2)

where bij is the weight for each dictionary vector and bi = (bi1, . . . , bik)
>.

Thus for each user u ∈ {1, . . . ,m} we have a weight vector au, for each item

i ∈ {1, . . . , n}, we have a weight vector bi.

Consider the analog of (2.3), when all φ(uu) are fixed, i.e. the weight

matrix A = (a1, . . . ,am) is fixed, and we wish to solve for all φ(vi), i.e. to

solve for the weight matrix B = (b1, . . . ,bn)

minimize
φ(vi)∈H

∑
u

(rui − φ(uu)>φ(vi))
2 + λφ(vi)

>φ(vi) (3.3)

12



It is easy to see

φ(uu)>φ(vi) = a>uΦ>Φbi = a>uKbi, (3.4)

φ(vi)
>φ(vi) = b>i Φ>Φbi = b>i Kbi, (3.5)

where K = Φ>Φ is the Gram matrix (or kernel matrix) of the set of dictio-

nary vectors {d1, . . . ,dk}. So we can rewrite (3.3) as

minimize
bi∈Rk

∑
u

(rui − a>uKbi)
2 + λb>i Kbi (3.6)

which is equivalent to

minimize
bi∈Rk

||r:,Ωi −A>:,ΩiKbi||2F + λb>i Kbi, (3.7)

(3.7) is similar to kernel ridge regression, the closed form solution is given

by

b̂i = (K>A:,ΩiA>:,ΩiK + λK)†K>A:,Ωir:,Ωi (3.8)

Stacking n separate b̂ together, we get the estimated B̂ = (b̂1, . . . , b̂n),

which is a k×n matrix. Symmetrically, with B fixed, we can find a solution

of Â by solving m separate optimization problem like (3.7). In this case,

the closed form solution for each âu is given by:

âu = (K>B:,ΩuB>:,Ωu
K + λK)†K>B:,ΩurΩu (3.9)

3.3 Multiple Kernel Matrix Factorization

Multiple kernel learning(MKL) [1,5,12] has been widely used on improving

the performance of classification and regression tasks, the basic idea of MKL

is combine multiple kernels instead of using a single one.

Formally, suppose we have a set of p positive definte base kernels {K1, . . . ,Kp},

then we aim to learn a kernel based prediction model by identifying the

best linear combination of the p kernels, that is, a weighted combinations

13



Algorithm 1 Multiple Kernel Matrix Factorization

Require: k, d, {κ1, . . . , κp},R,Ω, λ, itermax

1: allocate A ∈ Rk×m,B ∈ Rk×n, µ ∈ Rp,D = {di ∈ Rd : 1 ≤ i ≤ k},{Ki ∈

Rk×k : 1 ≤ i ≤ p},K ∈ Rk×k

2: initialize µ = (1
p , . . . ,

1
p)>,A, B, D

3: for i← 1, p do

4: Ki ← (κi(dh,dj))1≤h,j≤k

5: end for

6: iter ← 0

7: repeat

8: K←
∑p

i=1 µiKi

9: Update B as shown in (3.8)

10: Update A as shown in (3.9)

11: Update µ by solving (3.11)

12: until iter = itermax or convergence

13: Return A,B, µ,K

14



µ = (µ1, . . . , µp)
>. The learning task can be cast into following optimization:

minimize
au,bi∈Rk

∑
(u,i)∈Ω

(rui −
p∑
j=1

µja
>
uKjbi︸ ︷︷ ︸

υ>
uiµ

)2+

λ(b>i

p∑
j=1

µjKjbi + a>u

p∑
j=1

µjKjau︸ ︷︷ ︸
γ>
uiµ

)

(3.10)

where µ ∈ Rp+ and µ>1p = 1. It is convenient to introduce the vectors

υui = (a>uK1bi, . . . ,a
>
uKpbi)

>, γui = (a>uK1au + b>i K1bi, . . . ,a
>
uKpau +

b>i Kpbi)
>.

Rearrange optimization (3.10),

minimize µ>Yµ+ Zµ

subject to µ � 0

‖µ‖2 ≤ 1

(3.11)

where Y =
∑

(u,i)∈Ω υuiυ
>
ui and Z =

∑
(u,i)∈Ω(λ − 2rui)γui. When all υui

and γui are fixed, i.e. A and B are fixed, we impose `2-norm constraint on

µ, make the optimization problem (3.11) is known as a quadratic constrained

quadratic programming. Unlike `1-norm regularization,

minimize µ>Yµ+ Zµ

subject to µ � 0

1>p µ = 1

(3.12)

which is a quadratic programming optimization problem, the `2-norm

regularization is more challenging, but it can also be solved in principle by

general purpose optimization toolboxes such as Mosek1. Notice that, we

constraint µ � 0 to make sure the kernels are positive definite.

Now we can put all optimization problems together to build up our

multiple kernel matrix factorization algorithm, which is summarized in al-

gorithm 1. Initially, given rank value k, the dictionary dimension d and

1https://www.mosek.com/
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p base kernel functions {κ1, . . . , κp}, the algorithm randomly initializes k

dictionary vectors D = (d1, . . . ,dk), then computes the p base kernel ma-

trices as Ki = (κi(dh,dj))1≤h,j≤k. The algorithm also initializes the kernel

weight vector as µ0 = (1
p , . . . ,

1
p)>, and generates low-rank matrix A0 and

B0 randomly. So initially, the compound kernel matrix K0 =
∑

1≤i≤p µ
0
iKi.

After obtaining all above instantiations, we first let A0 and µ0 fixed, find

B1 by solving m separate optimization problems like (3.7), each solution

can be obtained directly by computing the closed form expression shown in

3.8. Similarly, we then let B1 and µ0 fixed, following the same approach

to get A1. At last, A1 and B1 are fixed, we can obtain µ1 by solving 3.12

using convex optimization package mentioned before. Repeat this ALS-like

procedure until the algorithm converges or reaches the predefined maximum

number of iterations. We then define optimal solutions obtained by above

iterative procedure are
∗
A,
∗
B and

∗
µ, the corresponding compound kernel ma-

trix is denoted as
∗
K =

∑p
i=1

∗
µiKi. Thus, for each test tuple (u, i, rui), the

prediction made by our algorithm is r̂ui = a>u
∗
Kbi, which also is the element

in the u-th row and i-th column of the recovered matrix R̂ =
∗

A>
∗
K
∗
B. The

rating inference is also summarized in algorithm 2.

Algorithm 2 Rating Inference

Require: Ω̂,
∗
K,

∗
A,
∗
B

1: allocate P

2: for u, i ∈ Ω̂ do

3: r̂ui ←
∗
a
>
u

∗
K
∗
bi

4: add r̂ui to P

5: end for

6: Return P.
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Chapter 4

Experiments

4.1 Datasets

The proposed method is experimented and evaluated on 3 real-world col-

laborative filtering datasets: MovieLens, Jester and Flixster. The details

are summarized in Table 4.1. Note that the scale of rating in each dataset

is different. For instance, the ratings in Jester dataset are continuous val-

ues ranges from -10 to 10, while the Flixster dataset contains only 5 rating

classes from 1 to 5. For each dataset, we sampled a subset with 1,000 users

and 1,000 items. The 1000 users are selected randomly while the 1000 items

selected are most frequently rated items (Jester dataset only contains 100

items).

Table 4.1: Summary of compared methods.

Dataset # of users # of items Density (%) Rating range

MovieLens 6,040 3,900 6.3 [1,5]

Jester 73,412 100 55.8 [-10.0,10.0]

Flixster 147,612 48,784 0.11 [1,5]
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Table 4.2: Summary of compared methods.

Method Type Kernelized Publication

Avg Memory-Based No [14]

Ivc-Cos Memory-Based No [20]

Ivc-Person Memory-Based No [20]

Svd Model-Based No [4]

Mf Model-Based No [10]

Kmf Model-Based Single Kernel This thesis

Mkmf Model-Based Multiple Kernels This thesis

4.2 Baselines

We compare our proposed method, `2-norm Mkmf, with multiple sets of

baselines, among which AVG, IVS-COS and IVC-PERSON are memory-

based methods while SVD, MF, KMF and MKMF are model-based methods.

1) avg: A naive baseline called AVG which predicts the unobserved rating

assign to item i by user u as r̂ui = αi+βu, where αi is the mean score of

item i in training data, and βu is the average bias of user u computed as

βu =

∑
(u,i)∈Ω rui − αi
‖{(u, i) ∈ Ω}‖

, where αi =

∑
(u,i)∈Ω rui

‖{(u, i) ∈ Ω}‖

2) Ivc-cos: (Item-based + cosine vector similarly): For memory based

methods we implemented Ivs-Cos. It predicts the rating assigning to
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item i by user u by searching for the neighboring set of items rated by

user u using cosine vector similarity [20].

3) Ivc-pearson: (Item-based + Pearson vector similarly): Another mem-

ory based method we compare with is the item based model which uses

Pearson correlation [20]. It is similar to Ivs-Cos except using different

metric of similarity.

4) svd: A model based method called Funk-SVD [4]. It is similar to the

matrix factorization approach we discussed in Section 2.2, but it is im-

plemented by using gradient descent instead of alternative least square.

5) Mf: textscMf (Matrix Factorization) is a model-based CF method that

discussed in Section 2.2.

6) kmf: We also compare the proposed mkmf with its single-kernel version

KMF which only employs one kernel function at a time, the details

are discussed in Section 3.2.

7) `1-norm mkmf: mkmf that employ `1-norm constraints on the weight

coefficients. The difference between mkmf and kmf is that mkmf com-

bine multiple kernel functions while KMF only use one kernel function.

The details of mkmf are discussed in Section 3.3.

8) `2-norm mkmf: The proposed mkmf that imposing an `2-norm con-

straint on the weight coefficients.

For a fair comparison, the maximum number of iterations in the meth-

ods Svd, Mf, Kmf and Mkmf are all fixed as 20.
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4.3 Evaluation Metric

The performance metric for rating accuracy used here is the root mean

square error (RMSE):

RMSE =

√∑
(u,i)∈Ω(rui − r̂ui)2

|Ω|
(4.1)

4.4 Settings

For each dataset, we select the 1,000 most frequently rated items and ran-

domly draw 1,000 users to generate a matrix with the dimension of 1000×

1000 (1000 × 100 for Jester). Two experimental settings are tested in this

paper respectively. In the first setting, we randomly select one rating from

each user for test and the remaining ratings for training. The random se-

lection is repeated 5 times independently for each dataset. In the second

setting, we randomly select 3 ratings from each user for test and the re-

maining ratings for training. The random selection is also repeated 5 times

independently for each dataset. We denote the first setting as Leave 1, and

the second setting as Leave 3, which has sparser training matrix than the

setting of Leave 1. The average performances with the rank of each method

are reported.

4.5 Results and Discussion

Following the setting of [12], we first use a small base kernel set of three

simple kernels: a linear kernel function κ1(x,x′) = x>x, a 2-degree poly-

nomial kernel function κ2(x,x′) = (1 + x>x)2, and a Gaussian kernel (rbf

kernel) function κ3(x,x′) = exp(−0.5(x−x′)>(x−x′)/σ) with σ = 0.5. We

implement the proposed Mkmf method to learn a linear combination of the

three base kernels by solving the optimization problem (3.10). The proposed

Kmf method is also tested using the three base kernels respectively.
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Empirical results on the three real-word datasets are summarized in Ta-

ble 4.3 and 4.4.

Table 4.3: Results (RMSE(rank)) of Leave 1 on the real-world datasets.

Methods Flixster MovieLens Jester Ave. Rank

`2-norm Mkmf 0.8274 (2) 0.8233 (2) 4.0515 (5) 3

`1-norm Mkmf 0.8270 (1) 0.8223 (1) 4.0398 (1) 1

Kmf(linear) 0.8290 (5) 0.8241 (4.5) 4.0471 (2.5) 4

Kmf(poly) 0.8289 (4) 0.8241 (4.5) 4.0472 (4) 4.1667

Kmf(rbf) 0.8292 (6) 0.8246 (6) 4.0471 (2.5) 4.8333

mf 0.8286 (3) 0.8235 (3) 4.0549 (6) 4

svd 0.9441 (10) 0.9406 (8) 4.2794 (7) 8.3333

ivc-cos 0.9223 (8) 1.0016 (9) 4.6137 (9) 9

ivc-pearson 0.9226 (9) 1.0020 (10) 4.6142 (10) 9.6667

avg 0.9006 (7) 0.8887 (7) 4.3867 (8) 7.3333

Table 4.4: Results (RMSE(rank)) of Leave 3 on the real-world datasets.

Methods Flixster MovieLens Jester Ave. Rank

`2-norm Mkmf 0.8213 (6) 0.8201 (6) 4.0883 (6) 6

`1-norm Mkmf 0.8153 (1) 0.8168 (1) 4.0809 (1) 1

Kmf(linear) 0.8163 (3.5) 0.8178 (2.5) 4.0826 (3) 3

Kmf(poly) 0.8163 (3.5) 0.8179 (4) 4.0824 (2) 3.1667

Kmf(rbf) 0.8157 (5) 0.8186 (5) 4.0829 (4) 4.6667

mf 0.8155 (2) 0.8178 (2.5) 4.0865 (5) 3.1667

svd 0.9335 (10) 0.9346 (8) 4.2601 (7) 8.3333

ivc-cos 0.9050 (8) 1.0034 (9) 4.6282 (9) 8.6667

ivc-pearson 0.9051 (9) 1.0047 (10) 4.6284 (10) 9.6667

avg 0.8868 (7) 0.8865 (7) 4.3656 (8) 7.3333

Based on the results, we have made following interesting observations:

21



• The proposed `2-norm Mkmf generally outperforms the other base-

lines, except `1-norm Mkmf, on two of the three datasets in Leave

1; The result of `1-norm Mkmf, on the other hand, surpassing all

other methods in both Leave 1 and Leave 3. Such experimental re-

sult shows that incorporating kernels into matrix factorization helps

the model capturing the non-linear correlation among the data.

• In regard to self-comparison, the performance of both `1-norm Mkmf

and `2-norm Mkmf is worse in Leave 3 than in Leave 1 while Kmf

keeps unaffected. It indicates that the multiple kernel learning algo-

rithm is more sensitive to the sparsity problem than solving kernel

ridge regression.

• Notice that `2-norm Mkmf outperformed by `1-norm Mkmf in all

cases. Though generally `2-norm regularization provides more precise

solution, in matrix factorization problem, the sparse kernel combina-

tion using `1-norm regularization proves to be more robust. While

the test performance is less ideal than what we expected, the training

RMSE of `2-norm Mkmf remains to be low in both two settings.

4.6 Parameter Studies

Figure 4.1(a) shows the kernelized methods’ sensitivity of parameter d, which

stands for the dimensions of the dictionary vectors. Generally, according to

the figures, Mkmf are not very sensitive to the value of d once we choose

relatively large d. For MovieLens dataset, the optimal choice of d is around

100. The situations of other datasets are similar, so they are omitted here

due to the page limitation. Intuitively, the larger d we choose, the more

information can be captured by the dictionary. However, since in both Kmf

and Mkmf, the dictionary vectors are eventually embedded into a Hilbert

feature space with much higher dimension than d. It is reasonable to observe
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Figure 4.1: Parameter studies over d and k

the insensitive pattern is shown in Figure 4.1(a).

Besides, we also study the performances of our proposed methods upon

different values of k, which denotes the rank of the two low-rank feature ma-

trices. It is well-known the parameter k should be tuned via cross-validation

or multiple rounds of training/test split to achieve best performance for con-

ventional matrix factorization [4,16]. Figure 4.1(b) shows the performances

of Mkmf on Jester dataset upon different values of k. The optimal rank

for Jester dataset is k = 8. It also shows that Mkmf are overfitting while k

increases.
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Chapter 5

Related Works

In current research, collaborative filtering(CF) works in one of two areas:

memory-based approach and model-based approach. In this section, we

introduces both two approaches briefly.

5.1 Memory-based Approaches

The memory-based CF approach is also called neighbor-based CF, in which

user-based methods and item-based methods are included. Neighbor-based

CF method estimates the unobserved ratings of a target user or item as

follows, it first find the observed ratings assigned by a set of neighboring

users or the observed ratings assigned to a set of neighboring items, then

it aggregates the neighboring ratings to derive the predicted rating of the

target user or item. In order to find the neighboring set of a target user

or item, similarity measures such as correlation-based similarity [19], vector

cosine-based similarity [2] and conditional probability-based similarity [8] are

usually used. Memory-based CF methods are usually easy to implement, and

new data can be added into the model easily without re-training. But they

are known to suffer from the sparsity problem which makes the algorithm

hard to find highly similar neighboring sets. Several relaxation approaches
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were proposed to address the sparsity problem to fill in some of the unknown

ratings using different techniques [15,26]. Neighbor-based CF methods also

have limited scalability for large datasets since each prediction is made by

searching the similar users or items in the entire data space. When the

number of users or items is large, the prediction is very expensive to obtain,

which makes it difficult to scale in the online recommender system.

5.2 Model-based Approaches

Model-based approach is an alternative approach that can better address

the sparsity problem than memory-based approach does, since it allows the

system to learn a compact model that recognizes complex patterns based on

the observed training data, instead of directly searching in rating database.

Generally, classification algorithms can be employed as CF models for the

dataset with categorical ratings, and regression models can be used if the

ratings are numerical. Popular models used in this category include ma-

trix factorization [16], probabilistic latent semantic analysis [6], Bayesian

networks [17], clustering [3] and Markov decision process [23].

As to the matrix factorization approaches relevant to our work, [22] gen-

eralizes probabilistic matrix factorization to a parametric framework and

requires the aid of topic models. [24] introduces a nonparametric factoriza-

tion method under trace norm regularization. The optimization is cast into

a semidefinite programming (SDP) problem, whose scalability is limited. A

faster approximation of [24] is proposed by [18], which, in fact is very simi-

lar to the formulation of SVD [4]. [27] proposes a fast nonparametric matrix

factorization framework using an EM-like algorithm that reduce the time

cost on the large-scale dataset.
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Chapter 6

Conclusion

In this thesis, we have introduced a matrix factorization model, `2-norm

MKMF, for collaborative filtering. The proposed model can capture the

non-linear distribution of latent factor effectively. The `2-norm MKMF ex-

tends `1-norm MKMF to impose `2-norm constraint on the weight coeffi-

cients regarding kernel weight learning. The `2-norm constraint on the con-

straint result in a QCQP optimization. As demonstrated in the experiments,

our proposed method improve the accuracy of prediction and surpassing the

results of multiple state-of-art collaborative filtering methods.
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