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Abstract

With the rise in aging population, about 6.8 million American residents are depen-

dent on mobility devices for their day to day activity. More than 40% of these

users have di�culty in moving the mobility device on their own. These numbers

serve as a motivation on developing a system than can help in manipulation with

simple muscle activity and localize the mobility device in the user’s home in case

of medical emergencies. This research is aimed at creating a user interface of Elec-

tromyographic Sensor, attached to the forearm, incorporated with present smart

wheelchairs and a simple localization technique using fiducial markers. The main

outcome of the research is a simulator of the smart wheelchair to rapidly analyze

the results of our research.
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Chapter 1

Introduction

Nearly 6.8 million American residents are dependent on devices to help them with

mobility. This can be further classified to 1.7 million wheelchair users or scooter

riders and 6.1 million users of other mobility devices, such as canes, crutches, and

walkers [1]. More than 40% of these users have di�culty in moving the wheelchair

on their own and hence one nurse is always required to monitor the whereabouts of

the patient. To target this problem, there is a need of a system that can help the

patients to navigate the mobility device with the least e↵ort and also monitor the

position of the patient without human agent involved.

1.1 Background

The number of users of mobility devices increase drastically with the age group.

Yet there is a huge di↵erence in the users using manual wheelchair vs electronic

wheelchair as shown in Figure 1.1. One major reason and the only advantage in

electronic wheelchair is that it can be controlled using a joy stick. While patients

who have di�culty in making limb actions go with manual wheelchair and hire a

nurse to help them with their mobility. This suggests that there should be specific
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Figure 1.1: Proportion of population using manual wheelchair vs. motorized device,
by age [1]

solutions for the entire group of patients who cannot navigate the wheelchair in their

daily life and depend on others to do so, as suggested by numbers in Table 1.1.

Table 1.1: Leading conditions associated with wheelchair or scooter use, all ages.

Conditions
Persons
(1000s)

Proportion of
device users (%)

All Conditions 1,629 100.00
1 Cerebrovascular disease 180 11.05
2 Osteoarthrosis and allied disorders 170 10.43
3 Multiple sclerosis 82 5.02
4 Absence or loss of lower extremity 60 3.68
5 Paraplegia (paralysis of both legs) 59 3.63
6 Orthopedic impairment of lower extremity 59 3.62
7 Other forms of heart disease 54 3.30
8 Cerebral palsy 51 3.11
9 Rheumatoid arthritis and other inflammatory polyarthropathies 49 3.00
10 Diabetes 39 2.40
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Figure 1.2: Anna, the semi-autonomous wheelchair

1.2 Semi Autonomous Wheelchair

Semi autonomous wheelchairs are automated systems but controlled by the human

agent behaving as the operator of the system. This system is designed in such

a way that the authority to navigate the mobility device lies with the operator,

human. This authority can be either shared with framework of interfaces, like Brain

Control Interface (BCI), Google Glass or be completely operated by the human with
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a joy-stick.

Figure 1.2 shows the semi autonomous wheelchair, Anna, developed at WPI. This

semi autonomous wheelchair consists of two Light Detection And Ranging(LiDAR)

sensors for environment mapping and obstacle avoidance, camera for perception

and cli↵ sensors to avoid cli↵ fall risks. The wheelchair operator can select di↵erent

interfaces depending on the suitability of the patient.

1.3 EMG Based Navigation

Figure 1.3: EMG Gesture Sensor

Electromyographic sensor, or EMG sensor, records the electrical activity of mus-

cles to measure the functioning of nerves’ electrical activity. EMG readings can

provide us with muscle turning on and o↵, i.e. contraction and expansion of the

muscle at a particular time [2]. These readings can be interpreted using signal

processing and can be applied to a human interfaced wheelchair [3] [4].
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The location of placing EMG sensor have to be carefully selected as the sensor

should be placed on the longitudinal mid-line of the muscle and between the joints

performing motor functions. EMG sensor if placed near the tendon, tissue that

holds muscles with joints, the muscle activity cannot be correctly interpreted as

the muscle fibers become thinner and fewer in number. Also multiple tendons are

attached with the joint which can increase the chances of recording cross talks of

di↵erent muscles [5]. The best part of a human body, serving all the restrictions

of EMG sensor placement, would be forearm. Placement and removal of the sensor

strips would also be easy when attached to forearm.

Although, these readings are noisy with minor variation in the analog signals in

comparison with the readings obtained from any other sensor, they are e↵ective and

helpful to patients who are incapable of making other motions. Capturing the EMG

signals may require a set of EMG sensors attached to forearm giving us a touch free

control of any technology with hand gestures and motion as shown in Figure 1.3.

These motions and gestures can be interpreted, after removing the noise, as set of

instructions for the robot to move in all the directions.

1.4 Indoor Localization of Wheelchair

Over the evolution of indoor localization, researchers have started using various

methods that are helpful both indoor and outdoor. Compared to outdoor local-

ization, indoor localization has proved to be more challenging in terms of accuracy

and precision. In outdoor localization GPS [8] is available which solves most of the

problems but indoor localization contains obstructions and various points of inter-

ests. Researchers have implemented navigation system based on the RFID Tags

to locate household items [6]. Wireless sensor network based approach has also
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been implemented and tested in dynamic environment [10]. Also, researches have

developed smart wheelchair which can not only navigates using the ceiling lights

as landmarks but also avoids the obstacles [7]. Along with these methods Sonar

and camera data have also been used to localize the wheelchair without specular

reflection due to Sonar in corners [9]. Localization tryouts have also been done using

magnetic sensors [11] and Kinect Sensor & Monte Carlo Localization Method [12].

All the localization methods mentioned above either requires active landmarks or

costly sensors mounted on the wheelchair which generate large amount of data just

to localize the wheelchair. It is challenging to provide easily scalable and feasible

solution. This calls of a system that is e�cient localization system for an assistive

device being used in a predefined, static environment.

1.5 Flow of Thesis

The flow of thesis is as follows. Section 2 describes about the wheelchair simulator

which details the wheelchair and environment modeling in a physics engine running

simulator. This includes the design of the smart environment set up at WPI. Section

3 describes the EMG based navigation of a wheelchair using a sensor called MYO.

Section 4 describes localization technique using low cost April Tags to locate the

wheelchair in an actual and a simulated environment.
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Chapter 2

Wheelchair Simulator

With the constant evolution of the smart wheelchair, Anna, the risks of testing a

technology directly on the wheelchair also rises, considering the fact that a disable

human will be operating the wheelchair in reality the simulator have to be reliable

and robust [16]. These risks may damage the wheelchair hardware or the user

operating the wheelchair. Hence this called for a need of a test bed for the wheelchair

which is not only realistic but also follows the law of Physics. The simulator has

two major parts, a robot model and a world in which the robot can navigate and

perform the required test cases.

2.1 Wheelchair as a Mobile Robot

A mobile robot is defined as a system that is capable of autonomous navigation in

a dynamic or static environment using the a particular type of driving mechanism.

The most common driving mechanism is a di↵erential drive consisting of two motors

controlling two wheels and few casters for free rotation. A simple di↵erential drive

mechanism is shown in Figure 2.1. The navigation of the di↵erential drive robot can

be implemented by just controlling the translation on x-axis and y-axis, and rotation
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about z-axis, shown by !, with an angle ✓ with positive x-axis. A wheelchair can

be compared to mechanism with addition of 4 caster wheels to support and balance

the whole setup.

Figure 2.1: Simple Di↵erential Drive Mechanism

2.2 ROS Integration

Robot Operating System(ROS) provides standard operating services like hardware

abstraction, communication link between processes, driver support, and several

other tools and packages 1. ROS also provides support with simulators which have

the hardware configuration of a robot or a system in a pseudo realistic computer

generated environment. Simulators like GAZEBO or V-REP also have a physics

engine running with them which simulates robot in a ideal environment. We can

not only test the functioning of the robot but also create a test world and then

parse data between the simulator and ROS. ROS gives up the capability of using

the navigation message type, TWIST message for our application to control the

translation velocity on x-axis and y-axis, and angular rotation on z-axis.

1http://wiki.ros.org/ROS/Introduction
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2.3 Gazebo Simulation

Gazebo is a standalone 3D simulator that can be integrated with ROS to simulate

robot. Gazebo takes two files as their input, a world configuration file and a robot

configuration file. The world description file contains all the elements of a simu-

lation, including furniture, walls and lights. This file is written in XML format,

and typically has a .world extension. A configuration file is the description of the

robot in nearest scale and joint movements. Robot configuration file contains all

the elements of the robot, including sensors, links, static joints and transmission

joints. This file is written in XML Macro format(XACRO) which is very similar to

Unified Robot Description Format(URDF) but a much simpler version than URDF.

In XACRO we don’t have to redefine robot parts which are similar in characteris-

tics, for example if the robot contains more than one wheel then we can create a

generalized structure and then just feed information which changes in rest of the

identical objects, which is not the case in URDF.

Figure 2.2: Wheelchair Model in Gazebo
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2.3.1 Gazebo Description Files

Wheelchairs description is in XACRO format with the closed dimensions of the real

wheelchair, shown in Figure 2.2. Details of sensors installed on real wheelchair,

including two LiDARs, two wheel encoders and one camera, are also provided in

the description file. The world file is created in closest dimension of the WPI’s

Smarthome environment where the wheelchair is actually being tested as shown in

Figure 2.3 and Figure 2.4.

Figure 2.3: Smarthome World Model in Gazebo

Gazebo uses Open Dynamics Engine(ODE), a physics engine for simulating rigid

body dynamics. ODE also provides Gazebo with advanced joint types and integrated

collision detection with friction. Gazebo can simulate LiDAR scans, depth data,

10



Figure 2.4: Smarthome at WPI

odometry and camera data from the sensors installed on the wheelchair. Every

sensor requires a Gazebo Plugin, a chunk of code to acquire data from sensors to

publish in ROS and control the properties of a sensor, and our gazebo configuration

files contains such plugins for both LiDARs, encoders and camera. LiDARs cannot

be graphically constructed in the gazebo for which we import its mesh file with is

in COLLADA (COLLAborative Design Activity) format 2. There are two LiDARs

installed on the wheelchair, one on the battery top and one on the foot plate as

shown in Figure 2.5.

Simulators lack the capacity of displaying the outputs of the sensors and for this

functionality a visualizer is needed. A visualizer displays the outputs as seen by

robot and for this utility ROS provides a package called Robot Vizualiver (RViz).

2https://collada.org
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Figure 2.5: LiDAR installation on Wheelchair

Figure 2.6: LiDAR plot in RViz

Using RViz, we can also display live representations of sensor values coming over

ROS Topics including camera image data, LiDAR depth data and odometry data

encoders. Figure 2.6 shows the depth points as perceived by LiDAR, where the red

12



points signify the data generated by LiDAR over the battery top and pink points

signify the data generated from LiDAR on the foot place.

Hence, a Gazebo ROS package for wheelchair in smart home is an outcome of

this section enabling the dynamics of the system to test all the future interface and

algorithms before its deployment on the wheelchair. This package also generates

sensor data of the fabricated environment in the simulator.

13



Chapter 3

MYO Based Navigation

3.1 Wheelchair Navigation

Safe navigation of a wheelchair is always an essential feature because the user de-

pends on the device for its safety. Safe navigation is observed if no collisions or no

unsafe conditions are met with moving the robot.

Anna, the smart wheelchair is equipped with user interfaces of navigation with

voice control, brain computer interface and a joystick. Voice Control Interface is for

patients who can only use speech function, Brain Computer Interface for patients

incapable of physical movement and joystick for patients who can use their hands,

but an interface for patients who can only make few gestures with their hand to

control the navigation of the wheelchair can be added as a replacement to all the

interfaces defined above.

3.2 Electromyography

Electromayograhy(EMG) is a diagnostic technique which records and evaluates the

electrical activity produced by muscle movement, generating an electromyogram.

14



The movement of muscles leads the muscle cells to activate and deactivate. This on

and o↵ of the cells can be analyzed and electromyogram can be generated. Primarily

EMG is undertaken to diagnose a neuro-muscular disease or disorder of motion

control.

Recently researchers have started using EMG to control smart systems. The

main site to extract EMG is from the forearm and the muscle activity can be read

using few sensors. Although this is a readily available technique, it is not that

e�cient. The signal retrieved from the electromyogram are very noisy and unreliable.

But this can be overcome using signal filters, like high pass or band pass filters, to

obtain the useful signals.

3.3 MYO - Gesture Detection

Figure 3.1: MYO by Thalmic Labs

MYO is gesture recognizing band manufactured by Thalmic Labs, shown in

15



Figure 3.1. MYO uses EMG signals to determine the hand gesture, an accelerometer

to measure acceleration and a gyroscope to determine the orientation of the hand.

It uses low power Bluetooth connected to an ARM processor with a rechargeable

lithium ion battery. Haptic feedbacks can also be provided on MYO band. The

device is compatible with Windows, IOS, OSX and android. Thalmic Labs do not

provide support for Linux based systems. Hence a MYO-ROS package is created by

converting the drivers and making them publish data on ROS topics, which can be

easily accessed by any robotics technology that runs using ROS.

The MYO-ROS package consists of a MYO node, which lets us connect MYO

with ROS through Linux and an interpreter package that lets us convert the incom-

ing data in terms of ROS messages. The most frequently used ROS message type

is the TWIST message provided by geometry stack and the MYO-ROS package is

capable of publishing it.

The data that is generated by the MYO-ROS package are forwarded to following

ROS Topics:

• IMU Raw Data

• EMG Raw Data

• Arm Muscle Movement Data

• Gesture

• Action Description

The MYO-ROS package is capable of recognizing four hand gestures as shown

in Figure 3.2 and each of these gestures are defined with a particular command for

navigating the wheelchair.
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(a) Fist for Forward (b) Stretch for Stop (c) Right Wave for Right Turn

(d) Left Wave for Left Turn

Figure 3.2: Gestures to control navigation

3.4 Matlab-Robotics System Toolbox Integration

Robotics System Toolbox is a Matlab toolbox that provides ROS data sharing com-

patibility with any system that can run Matlab. The toolbox lets you share the

address of the ROS and topics being published in that instance. Toolbox has some

inbuilt algorithms that can be merged with ROS applications to generate interfaces

that are faster and easier to code. Matlab has better mathematical functions to

analyze and understand the sensor signals which helped in bring a better under-

standing of the EMG Signals. Figure 3.3 shows the output for the hand gesture in

17



Figure 3.3: Interfacing with MYO and Matlab using ROS

Matlab using ROS Core on another system for logging the gesture data for further

analysis.

(a) Plot for Fist Gesture (b) Plot for Stretch Gesture

(c) Plot for Right Wave Gesture (d) Plot for Left Wave Gesture

Figure 3.4: Violin Plots of all the EMG Gestures [15]
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After recording 500 Samples of each gesture a violin plot, shown in Figure 3.4,

was generated to understand the distribution of the signals. A violin graph is a

method to plot numerical data in form of distribution along with reflecting the

standard deviation and the mean of the sample [15]. For one gesture we get inputs

from 8 EMG Pads, hence each violin graph shows 8 sensors generating amplified

voltage signal for that particular gesture.

19



Chapter 4

Localization using Fiducial

Markers

4.1 Localization Techniques

Localization of a wheelchair in a known but cluttered environment poses many

challenges. There has been lot of e↵ort put by the research community to address

the challenges and develop feasible solutions. Researches have tried to adopt outdoor

navigation approaches in the indoor environment. Developing an accurate indoor

localization system can benefit a large segment of aging population. A camera based

localization method is presented which uses April Tags 1, as Fiducial Markers, to

precisely find the location of wheelchair in a predefined environment. Using o↵-

the-shelf web camera and Intel Galileo embedded board, an embedded localization

device is developed and an accuracy of ±6 inches is achieved. The development

of this project started as a course project in a team of three. The flow of course

project was divided in three parts, the hardware configuration and testing, April

1https://april.eecs.umich.edu/wiki/index.php/AprilTags
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Tag information decryption and data exchange with server. My contribution was to

read the April Tags using OpenCV Library to generate the pose and orientation of

the camera with respect to the tags.

This divice is tested in Smart Home Environment at WPI which is equipped with

a PHANT 2 server. The PHANT server is a dedicated server for Internet of Things

(IOT) application, that records and transmits data to all the connected devices in

Smart Home.

4.2 Model of Physical Process

Landmark are the physical quantities which are required to be identified and de-

coded. A simple landmark with the least information detail in them are April Tags

which on decoding gives only the tag ID and the family ID of tags it belongs to.

A fixed focus camera mounted on the wheelchair is used to identify and locate the

tags. Modeling of the physical process needs consideration of certain parameters.

Those parameters change or a↵ect the physical model and are listed as bellow:

s:- Physical size of the April-tag

l,w:- Dimensions of the picture frame (l=w)

L,W:- Dimensions of the Room

h:- Height from camera to ceiling

2↵:- Viewing angle of the camera

Vx,Vy:- Velocity components

f:- frames per second (fps)

x*y:- Resolution of the image

2http://phant.io
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d:- distance between the outer edges of April-Tag

Figure 4.1: Square Pyramid formed by Camera

Wing angle ↵ and height of the ceiling form the camera h, the area which can

be covered by a single image in the camera frame can be obtained by calculating

the size of the base of the pyramid formed by the camera viewing angle or in other

words a view-port. As shown in Figure 4.1 size of the base of the camera view-port

pyramid can be obtained as follows

tan(↵) =
l
2

h

(4.1)

l = 2h ⇤ tan(↵) (4.2)
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The maximum possible distance between two adjacent April Tags, to be placed

on the ceiling, can be found by using camera viewing angle and hence area covered

by the image pyramid should be used. Assume that at time t�1(blue) and at time

t0(red) frames are being formed by camera. Considering the two consecutive frames

and the size of the image captured, ideal distance between two April Tags should

be given by:

d <

p
2d < l (4.3)

p
2d is the e�cient way when considering an April Tag in diagonal translation.

Figure 4.2: Distance between adjacent tags

Now while the image is being processed the wheelchair will still be in motion,

hence by the time the decoded location is obtained, the wheelchair would have trav-

eled to a di↵erent location. Thus wheelchair velocity should be constantly monitored

and the position should be updated as well. Let xt�1, yt�1 be coordinates at time

t-1 and xt, yt at time t, then:

xt = xt�1 + Vx (4.4)

yt = yt�1 + Vy (4.5)
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We also need to calculate the size of the tags. smin which can be found by

camera parameters, obtained by calibrating camera in OpenCV, while smax can be

estimated by supposing that picture frame contain 4 large April Tags with no space

left and dimension smax * smax,

l

2 = 4s2max =) smax =
l

2
(4.6)

But, from experiments performed by using di↵erent size for April Tags, it has

been found that April Tags printed on an A4 paper are su�ciently large enough to

be found in a single camera image. Also, distance between the adjacent April Tags

is found to be 5 feet for a room having height of 8 feet, considering the device is

place at 3 feet height from the ground.

4.3 Localization Model

Localization model is based on environment description and visual processing of

the landmarks where the April Tags placed on the ceiling. Figure 4.3 depicts the

localization model used to locate the wheelchair in a predefined environment.

As shown in the figure, locations of the April Tags in the environment is known

and described in a file given as an input to the localization device. The transform

T

H
A is read from the file along with the tag ID and its location in the environment

with respect to a predefined origin. The transform T

A
C is calculated by decoding the

April Tags using the camera mounted on the wheelchair. The transformation with

respect to April Tags is generated by using April Tags C++ Library [14] and then

it is converted to transform from Tag to Camera T

H
A . Once these two transforms
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Figure 4.3: Localization Model

are known, location of the wheelchair in the environment can be given as

T

H
C = T

H
A ⇤ TA

C (4.7)

4.4 Finite State Machine

Finite State Machine(FSM) is a model of a system which consist of states, inputs,

intermediate outputs and final system outputs. Figure 4.4 depicts the FSM for the

localization device which is implemented using Intel Galileo board. As shown in

the FSM, during system startup, first a check for the connection of camera with
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the main board is done. On successful camera connection, image is acquired and

passed over to the processing unit which decodes the image to detect April Tags.

At the end of processing, algorithm returns 6-D pose of April-Tag in camera frame

which is transformed to camera pose in April-Tag frame which is further processed

to calculate the camera location in environment frame. Calculated 6-D pose is sent

to the central PHANT server for storage and tracking.

Figure 4.4: Finite State Machine for localization device

The central control system is shown in Figure 4.5

4.5 Experimental Setup and Result

April Tags comparatively has less information as compared to a QR code or bar code

but results in faster inspection. To localize the disabled person using assistive tool,

April Tags should be placed at regular intervals on the roof of the room such that at

least one April code is visible at a time. The wheelchair has embedded system based
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Figure 4.5: Finite State Machine for Current Implementation

on camera to scan the April-code and decode it on-board. The decoded April-code

information is sent to central logging server using HTTP GET/POST requests. The

current implementation of the system uses following hardware components.

Figure 4.6: Web Application for Environment Description
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1. Main processor: Intel Galileo V. 1

2. Vision system: O↵-the-shelf web camera

3. Communication: Wi-Fi mPCIe shield for Intel Galileo

A web client to pop data from the PHANT server was also made to fetch the

localized data of the wheelchair through any computer on network. Figure 4.6 shows

trace of wheelchair locations traced using the from camera data on Intel Galileo

board.
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Chapter 5

Experiments and Results

5.1 MYO and Wheelchair

EMG signals can generate uncertainty in data because of their low amplitude. Tak-

ing 100 samples for each gesture using the action ID generated in our package and

checking the uncertainty in the data, it was found that most errors were in fist ges-

ture and stretching of fingers with a fail rate of 9% and 8% respectively. While the

right wave gesture and left wave gesture have the fail rate of 6% and 4% respectively.

This data is reflected in form of graph in Figure 5.1 for n=100 samples.

Figure 5.1: Success vs Fail Rate for EMG Gestures using 100 samples each
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The trials mentioned above were taken while providing wheelchair simulator

input and cross verifying if the wheelchair is responding as per the signal provided

by the MYO-ROS package and it was observed that the wheelchair would behave

as per the output given by the MYO-ROS package. During these trials the world

file was replaced with an empty file to avoid collisions in cluttered environment.

The final test of wheelchair simulator package and MYO-ROS package was tested

in the simulated Smart Home while publishing the data from MYO and from the

wheelchair. The wheelchair data from LiDARs and odometry data are visualized in

RViz, along with MYO-ROS published action on ROS topics is shown in Figure 5.2.

Figure 5.2: Testing of MYO-ROS Package on Wheelchair Simulator
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(a) Test 1 (b) Test 2

(c) Test 3

Figure 5.3: Test Case of April Tag Localization Device
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5.2 Analysis of April Tag Localization

The setup of April Tag localization device was using Intel Galileo board and an

o↵ the shelf camera. April Tags were printed with size of 6.53543” x 6.53543” and

pasted on the roof in the test environment. After performing tests and taking images

of the received trajectory through the web client it was evident that there was error

of ±6” from the expected path. Figure 5.3(a), Figure 5.3(b) and Figure 5.3(c)

show the test cases performed on April Tag Localization Device, where the red line

justify the recorded trajectory and the green path shows the intended motion. As

seen from the red line and green path that the localized information is within 6”

and some jerks in red line were also formed because of vibration of the device on

the wheelchair, while rest of the jerks are errors by the device.
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Chapter 6

Discussion

The thesis aims on creating a gesture based navigation interface for wheelchair users

who depend on others for mobility. Using MYO, EMG band with 9-Axis IMU by

Thalmic labs, a ROS package was created to convert the EMG signals to action

messages that can be understood by the smart wheelchair at WPI. The package

later was made modular in a way that it can be used by any robotic technology

using ROS libraries. As discussed in the previous section the hand gestures have

a fail rate less than 9%. Currently, the package only interprets the EMG signal

and in future it can be appended with 9-Axis IMU interpreter, which can help in

arm movement recognition along with gesture recognition. This arm movement

recognition could be applied to control and manipulate the JACO 1 arm attached

on the smart wheelchair.

Also, it is risky to test any new interface on the wheelchair directly as it can

endanger the hardware and the person using the wheelchair. Hence, a test bed i.e.

a simulator was made to test all the future algorithms or technologies of wheelchair

before deploying it on the wheelchair framework to avoid any possible damage. This

1www.kinovarobotics.com
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includes the replicated model of wheelchair and Smart Home in Gazebo.

Lastly, to keep a check on the whereabouts of the wheelchair user in a known

environment an April Tag Localization Device was devised. This device can localize

the wheelchair and push data to server which can be accessed by our web client to

provide the followed trajectory and the current position. Intel Galileo was used as

the development hardware for the device along with an o↵ the shelf camera. As

discussed in the results, if there is a sudden change in the pose of the wheelchair

then an error occurs in the localized output, but in all the test case the localized

output is within the range of ±6”. These test case also showed that the update

speed of web client, i.e. the speed of fetching data from the server, depends on the

network bandwidth.

In conclusion, the thesis presents a wheelchair simulator, a gesture based navi-

gation interface using MYO and an April Tag localization device.
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Appendix A

Appendix

A.1 Di↵erential Drive Kinematics

A simple mobile robot have six degrees of freedom (DOF) expresses as (x, y, z, Roll,

Pitch, Yaw). x, y, z denotes the position and Roll, Pitch, Yaw denote the pose of

the robot. For a di↵erential drive robot, we reduce the control of 6 DOF to only 3

DOF i.e. x, y, ✓, where ✓ denotes the Yaw.

Figure A.1: Simple Di↵erential Drive Mechanism

The navigation can be controlled by controlling the velocities in the reduced 3

DOF. Figure A.1 shows a simple mobile robot on 2D Plane.
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While translating the robot in X or Y direction we assume that no-slip conditions

are met. For all the wheels on the robot they should have they should have a common

center by which they rotate which is known as Instantaneous Center of Curvature

(ICC). The rotation happens around the ICC circle with a radius r. R denotes the

distance between ICC and the center of the wheel axis and l is the length of the

wheel axis.

So if a wheel speed is v in time t to complete one turn around ICC and angular

velocity is !, then we can get a combined equation

v =
2 ⇤ ⇡ ⇤ r

t

(A.1)

v =
2 ⇤ ⇡
t

(A.2)

v = r ⇤ ! (A.3)

Here, r and v for both wheels will result in same ! and converting above equation

in independent values of v and r for both the wheels yields the following equation

!(R + l/2) = vr (A.4)

!(R� l/2) = vl (A.5)

Solving these equations we can find R and !.

Now, the as the robot rotate in �t then the ✓ will change to ✓’

✓

0 = ! ⇤ �t+ ✓ (A.6)
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Using all these equations we can compute the final equations as follows

2

66664

x

0

y

0

✓

0

3

77775
=

2

66664

cos(! ⇤ �t) �sin(! ⇤ �t) 0

sin(! ⇤ �t) cos(! ⇤ �t) 0

0 0 1

3

77775
⇤

2

66664

x� ICCx

y � ICCy

✓

3

77775
+

2

66664

ICCx

ICCy

! ⇤ �t

3

77775
(A.7)

A.2 MYO Specifications

MYO EMG Band’s specifications are as follows:

1. Size and Weight Specifications

(a) Arm size: Expandable between 7.5 - 13 inches (forearm circumference)

(b) Weight: 93 grams

(c) Thickness: 0.45 inches

2. Compatible Devices

(a) Windows: Windows 7 and above

(b) Mac: OSX 10.8 and above

(c) Android: v4.3 and above

(d) IOS: IPhone 4s and above

3. Sensors

(a) Nine-axis IMU containing three-axis gyroscope

(b) Stainless Steel EMG sensors

(c) Three-axis Accelerometer
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(d) Three-axis Magnetometer

4. Processor: ARM Cortex M4 Processor

5. Haptic Feedback

6. Communication Link: Bluetooth 4.0

7. Battery: Lithium Ion Battery

A.3 Intel Galileo Specifications

Intel Galileo Board’s specifications are as follows:

1. Processor: Intel Quark SoC X1000 (16K Cache, 400 MHz)

2. RAM: DDR3 800 - 256MB

3. I/O Specifications: USB 2.0 3 Ports, 1 Serial, 1 LAN

4. PCI Support: PCI Express

5. Wi-Fi: mPCIe shield
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