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Abstract

Globally increasing levels of bandwidth and capacity requirements force the optical com-

munications industry to produce new products that are faster, more powerful, and more

efficient. In particular, optical-electronic-optical (O-E-O) conversions in Wavelength Di-

vision Multiplexing (WDM) mechanisms prevent higher data transfer speeds and create

a serious bottleneck for optical communications. These O-E-O transitions are mostly en-

countered in the Wavelength converters of WDMs, and as a result, all-optical wavelength

conversion methods have become extremely important. The main discussion in this thesis

will concentrate on a specific all-optical wavelength conversion mechanism. In this mecha-

nism, photonic crystal structures are integrated with moving MEMS/NEMS structures to

create a state-of-the-art all-optical wavelength converter prototype. A wavelength conver-

sion of 20% is achieved using this structure.

Since the interaction of light with moving MEMS/NEMS structures plays an impor-

tant role in the proposed wavelength conversion mechanism, modeling and simulation of

electromagnetic waves becomes a very crucial step in the design process. Consequently,

a subsection of this thesis will focus on a proposed enhancement to the finite-difference

time-domain (FDTD) to model moving structures more efficiently and more realistically.

This technique is named “Linear Dielectric Interpolation” and will be applied to more re-

alistically and efficiently model the proposed photonic crystal MEMS/NEMS wavelength

conversion mechanism.
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Chapter 1

Introduction

In his famous talk “There’s Plenty of Room at the Bottom”, Feynman asked the following

question: “Why cannot we write the entire 24 volumes of the Encyclopedia Britannica on

the head of a pin?”. He also discussed the issue of miniaturizing computers and asked

“Why can’t we make them very small?” While answering these questions back in 1959, he

formed the basis and roots of nanotechnology which he imagined would be manipulating and

controlling things on a small scale [18]. Similarly, in his paper “Cramming more components

onto integrated circuits”, Moore predicted that number of transistors on an integrated

circuit (IC) would double every 18 months. In this paper, which was written back in 1965,

he said that “Integrated electronics will make electronic techniques more generally available

throughout all of society, performing many functions that presently are done inadequately

by other techniques or not done at all.” [40]

When we look at the advancements in nanotechnology today, we should agree that Feyn-

man and Moore made very precise predications almost fourty years ago. Every year, the

overall interest in nanotechnology research and development is increasing rapidly. Con-

sequently, various types of nanotechnological applications are being produced in various

fields. Some of these applications are prototypes existing in present research and will need

more time to become commercially available. An important portion of these products, on

the other hand, have already become commercially available and are being used in various

applications.
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First of all, the most important implication of nanotechnology is observed in the elec-

tronic IC domain. Electronic IC technology and fabrication methods associated with it have

been the driving force and the locomotive of nanotechnology. The advancements in fab-

rication technology (clean rooms, various fabrications methods, and complicated machines

capable to implement these methods) increased the rate of development in manipulation and

control on very small scales. This in turn provided more reliable, more efficient, faster, and

cheaper components in the electronics domain. Minimum feature sizes less than 50 nm are

becoming more common for the transistors used in ICs. Very efficient and powerful micro-

processors (even with multicore and multithreading technologies to increase the parallelism

in instruction execution) have been developed. Also, memories with very high data storage

capacity and very low latencies have been produced. This miniaturization and performance

increase in IC technology also enables the miniaturization of very popular products such as

cellular phones, laptop computers, mp3 players, camcorders, digital cameras, etc.

Another area in which the nanotechnology creates the basis for is transducers. Trans-

ducers are the mechanisms which convert one type of energy to another. Using Micro/Nano-

Electro-Mechanical-Systems (MEMS/NEMS), which are maturing rapidly as a result of the

available IC fabrication technology, various types of novel transducers are produced. Very

briefly, MEMS/NEMS is the technology used to create moving parts in micro/nano scale.

They can be used either to sense specific characteristics in the environment or to manipulate

(and respond to) the specific parts of the environment using actuation and motion.

There are two main classes of the transducers: 1) sensors and 2) actuators. Today,

various types of sensors, which are used to observe and analyze different characteristics in the

environment, are commercially available in industry. Maybe the most common commercial

entity that utilizes these sensors is the cars. Pressure sensors for measuring the tire pressure,

accelerometers for activating the air bags, chemical sensors for measuring and adjusting the

exhaust gas ratios for environmental purposes are just a few examples of the wide variety

of sensors found in today’s cars. The gyroscopes used in air navigation and game console

joysticks are other examples of MEMS/NEMS sensors. A second class of transducers is

the actuators which are used to manipulate the surrounding environment. Maybe the most

popular and commercially available product in this category is the optical MEMS/NEMS
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micromirror arrays used in today’s projectors. Microengines, micromotors, gear trains in

micron sizes are some of the other examples. One important nanotechnological area, which

is enabled as a result of the advancement in MEMS/NEMS technology, is medicine. Lab-on-

a-chip devices for diagnostic purposes and complicated drug-delivery systems on the order

of biological molecules and structures provide very efficient and good results.

Nanophotonics (optics in nanoscale) is another domain which is a direct beneficiary of

nanotechnology. Being able to manipulate light at the chip level can lead to very revo-

lutionary results and applications. Consequently, one can find very interesting nanopho-

tonics research topics in the literature. Photonic crystals are the first example of popular

nanophotonic structures. When handled appropriately, these structures can lead to various

applications such as on-chip bending waveguides, microcavity lasers, wavelength converters,

etc. Another very interesting topic is slowing light for optical storage. If the amplitude and

phase information associated with an input beam could be stored, optical memories that

can be used in optical computing could be built. Another possible application of nanopho-

tonics is quantum computing which provides very fast and parallel instruction execution on

the atomic level using the laws of quantum physics.

The nanotechnological advancements inevitably affected the optical communications do-

main too. In recent years, by means of the Wavelength Division Multiplexing (WDM) and

erbium-doped-fiber-amplifiers (EDFAs), optical communication technology gained a lot of

importance. In these systems, the data is encoded using amplitude modulation, and is car-

ried over different channels with different optical carrier frequencies. Optical crossconnect

stations in WDM systems connect the data coming from a specific source to a specific desti-

nation using wavelength converters. Modern optical communication systems can transfer up

to 160 separate signals simultaneously, each of which can provide a data rate of 10 Gbit/s.

Consequently, theoretical total capacity of a single fiber is 1.6 Tbit/s. However, optical-

electronic-optical(O-E-O) transitions in the optical crossconnects of WDM mechanisms put

a severe limit on the optical communication data rates and creates a serious bottleneck.

Wavelength converter segments of WDMs suffer the most from these O-E-O transitions and

as a result all-optical wavelength conversion methods have become exteremely important.

Ultimately, the main discussion in this thesis will concentrate on a specific all-optical
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wavelength conversion mechanism. In this mechanism, photonic crystal structures are inte-

grated with moving MEMS/NEMS structures to create a state-of-the-art all-optical wave-

length converter prototype.

Since the interaction of light with moving MEMS/NEMS structures plays an important

role in the proposed wavelength conversion mechanism, modeling and simulation of electro-

magnetic waves becomes a very crucial step in the design process. One of the most popular

and powerful simulation mechanisms to model electromagnetic waves is the finite-difference

time-domain (FDTD) method. In FDTD, Maxwell’s equations are numerically solved in

time domain by discretizing time and space. Even though the FDTD technique is a very

powerful method, it has some serious limitations when the simulated structure includes

motion. Consequently, a subsection of this thesis will focus on a proposed enhancement to

the FDTD to model moving structures more efficiently and more realistically. This tech-

nique is named “Linear Dielectric Interpolation” and will be applied to more realistically

and efficiently model the proposed photonic crystal MEMS/NEMS wavelength conversion

mechanism.
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Chapter 2

Linear Dielectric Interpolation

Method for FDTD

With the increasing interest and advancements in the nanophotonics domain, applica-

tions which manipulate light in the micro/nano scale have become very popular in both

industry and academia. Before these analytically designed devices are fabricated though,

they need to be simulated and modeled using computers to reduce the cost of development.

Finite-difference time-domain (FDTD) is one of the most popular and powerful simula-

tion methods that models these types of nanophotonics structures very accurately. How-

ever, when the modeled structure includes the interaction of light with moving nanoscale

structures, the FDTD simulations suffer from the generation of non-physical and spurious

frequency content. Consequently, in this section of this thesis, an enhancement to the reg-

ular FDTD will be proposed. First of all, a brief description of FDTD and its applications

will be provided. Next, the efficiency and accuracy of FDTD to model motion will be

analyzed. In the third part of this section, the proposed “Linear Dielectric Interpolation

Method” will be described in detail. Finally, in the last part of this section, the results and

test case performance associated with this method will be presented.
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2.1 Brief Description and Applications of FDTD

The interaction of electric and magnetic fields with arbitrary and complex structures can

not be solved analytically except for the simplest of cases. In order to solve the general case,

numerical methods must be employed. The realm of computational electrodynamics focuses

on solving problems of this type. One of the most flexible and powerful numerical solvers is

the finite-difference time-domain (FDTD) technique first suggested by Yee in 1966 [75]. By

sampling the unknown electric and magnetic field on a spatial grid and then approximating

a direct time-domain solution of the differential form of Maxwell’s equations, FDTD is able

to accurately solve for the unknown field quantities. Similarly, the time derivatives can be

approximated by sampling in time, producing the spatial and temporal field distributions

of arbitrary structures.

The computational rules for FDTD can be easily described. Basically, Maxwell’s equa-

tions are discretized and represented using central difference equations in FDTD. As can be

observed in the following differential form of Maxwell’s equations (assuming that there are

no electric or magnetic current sources in the domain, but there may be lossy materials), the

behavior of electric field (E) in time depends on the change of the magnetic field (H) across

space. This phenomenon leads to the basic FDTD time stepping mechanism which states

that the new value of the electric field at any point in space depends on 1) the previous

electric field value at that point (temporal) and 2) magnetic field values at the neighboring

points of that point (spatial). Similarly, the magnetic field in time depends on the change

of the electric field across space, and new value of the magnetic field at any point in space

depends on 1) the previous magnetic field value at that point (temporal) and 2) electric

field values at the neighboring points of that point (spatial). When this idea is iterated in

time, the basic FDTD scheme emerges. Ultimately, at each time step the field quantities

at all spatial grid points are updated using only the neighboring field values in space and

time.

∇ ·D(−→r , t) = ρ(−→r ) (2.1)

∇ ·B(−→r , t) = 0 (2.2)
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∇× E(−→r , t) = −∂B(−→r , t)
∂t

−M(−→r ) (2.3)

∇×H(−→r , t) =
∂D(−→r , t)

∂t
+ J(−→r ) (2.4)

The FDTD algorithm can be applied in 1D, 2D, and 3D using the same idea explained

previously. In many dimensions, calculating the curl operation indicated in above Maxwell’s

equations may become very complicated. However, Yee suggested a lattice structure in

which electric and magnetic field values in discrete space are positioned with a half grid

distance between them [75]. This is called a Yee lattice, and in this mechanism each electric

field component in the space is positioned between two magnetic field components, and vice

versa. The Yee lattice in a cubic form for 3D case is indicated in Fig. 2.1. The i, j, and

k variable indicated in the figure are the index values of the discretized space in x, y, and

z directions, respectively. This lattice structure has become a very crucial part of most

FDTD simulations and provides very good results.

Figure 2.1: Illustration of a standard Yee lattice used for FDTD, in which different field
components use different locations in a grid. Visualized as a cubic voxel, the electric field
components correspond to the edges of the cube, and the magnetic field components to the
faces [71].

The material properties which are included in Maxwell’s equations are also used in

FDTD simulations. In the computational domain of FDTD simulations, the geometry of

the structure and material properties are defined by setting the values for permeability,
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permitivity, and conductivity at each grid point of the discretized space. These predefined

coupling constants between the grid points effectively encode the local material properties

(e.g., the complex-valued material dielectric constant). In addition, boundary conditions

such as the tangential electric and magnetic fields at a material interface can be directly

enforced.

When these procedures are applied to the Maxwell’s equations, we produce the follow-

ing FDTD approximations for the electric and magnetic fields [65]. Equations 2.5 through

2.7 are for the 2D transverse magnetic (TM) polarized case. Consequently calculations are

necessary for only Ez, Hx and Hy are shown in these equations. The i and j parameters

are the index values associated with the cubic Yee lattice which is indicated in Fig. 2.1, but

in this case just a 2D cross sectional slice of it is used (imagine taking a 2D slice of the 3D

Yee lattice shown in this figure, and this slice will only include the Hx, Hy, and Ez field

components). n is the time step for the FDTD simulation. The material properties in the

computational domain are implemented in the simulation using the Ca, Cb, Da, and Db

coefficients which are indicated in equations 2.8 to 2.11. As can be observed in these equa-

tions, these coefficients are functions of the permitivity, permeability, and the conductance

of the discretized space. FDTD estimation equations for 1D fields and coefficients are also

indicated in equations 2.12 to 2.17. In all of these equations, the subscripts indicate the

coordinates in the discretized space map, and the superscripts represent the time step value

in the discretized time. More information and details of this notation can be found in [65].

Ez |n+1/2
i−1/2,j+1/2 = Ca,Ez |i−1/2,j+1/2 Ez |n−1/2

i−1/2,j+1/2 +

+Cb,Ez |i−1/2,j+1/2 ·
(
Hy |ni,j+1/2 −Hy |ni−1,j+1/2

)
+

+Cb,Ez |i−1/2,j+1/2 ·
(
Hx |ni−1/2,j −Hx |ni−1/2,j+1

)
(2.5)

Hx |n+1
i−1/2,j+1 = Da,Hx |i−1/2,j+1/2 Hx |ni−1/2,j+1 +

+Db,Hx |i−1/2,j+1 ·
(
Ez |n+1/2

i−1/2,j+1/2 −Ez |n+1/2
i−1/2,j+3/2

)
(2.6)
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Hy |n+1
i,j+1/2 = Da,Hy |i,j+1/2 Hy |ni,j+1/2 +

+Db,Hy |i,j+1/2 ·
(
Ez |n+1/2

i+1/2,j+1/2 −Ez |n+1/2
i−1/2,j+1/2

)
(2.7)

where

Ca |i,j=

(
1− σi,j∆t

2εi,j

)
(
1 + σi,j∆t

2εi,j

) (2.8)

Cb |i,j=

(
∆t

εi,j∆space

)
(
1 + σi,j∆t

2εi,j

) (2.9)

Da |i,j=

(
1− σ∗i,j∆t

2µi,j

)
(

1 +
σ∗i,j∆t

2µi,j

) (2.10)

Db |i,j=

(
∆t

µi,j∆space

)
(

1− σ∗i,j∆t

2µi,j

) (2.11)

Ez |n+1/2
i−1/2 = Ca,Ez |i−1/2 Ez |n−1/2

i−1/2 +

+Cb,Ez |i−1/2 ·
(
Hy |ni −Hy |ni−1

)
(2.12)

Hy |n+1
i = Da,Hy |i Hy |ni +

+Db,Hy |i ·
(
Ez |n+1/2

i+1/2 −Ez |n+1/2
i−1/2

)
(2.13)

Ca |i=

(
1− σi∆t

2εi

)
(
1 + σi∆t

2εi

) (2.14)

Cb |i=

(
∆t

εi∆space

)
(
1 + σi∆t

2εi

) (2.15)
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Da |i=

(
1− σ∗i ∆t

2µi

)
(
1 + σ∗i ∆t

2µi

) (2.16)

Db |i=

(
∆t

µi∆space

)
(
1− σ∗i ∆t

2µi

) (2.17)

Boundary conditions due to the edge of the computational grid are solved in a number of

ways. Absorbing boundary conditions (ABCs) are used to allow propagating energy to exit

the computational cell without causing a spurious reflection that would degrade the quality

of the simulation [42]. In 1994, Berenger developed the perfectly-matched-layer (PML)

boundary condition that effectively made the computational boundary appear as a perfectly-

matched medium for plane waves of arbitrary frequency, direction, and polarization [6].

Regardless of the shape and spectrum of a propagating waveform, it would be absorbed

with potentially a negligible (-80 dB) reflection. PML provides orders of magnitude lower

reflections at the boundaries of the computational domain when compared to other ABCs.

As all modeling techniques, FDTD has its advantages and limitations too. The first

strength of the FDTD method is that it is very easy to understand and implement in

software. Also, because it is a time domain solver, response of the system to many different

frequencies can be simulated in a single run. In addition, maybe the biggest advantage of

this method is its flexibility in creating various structures in the computational domain. As

mentioned before, this can be done by assigning specific values for material properties in

each cell of the main FDTD lattice. Finally, in this technique the electric and magnetic

fields are computed directly so there is no need for any type of post processing to get the

field values.

Next, we mention some the weaknesses of the FDTD. The first disadvantage of this

mechanism is the spatial discretization. The spatial discretization of the structure must

be sufficient enough for correct and precise simulations. This in turn may lead to very

large computational domains and very long simulation times. Another disadvantage of

this method is that the far field extensions are hard to implement. In other words, the

field values at some distance are hard to find without any post-processing of the resulting

simulation data. Finally, the most relevant disadvantage of the FDTD technique to this
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thesis is its failure to correctly model moving structures and motion. Because time and

space are discretized, the continuous nature of the motion in moving structures cannot be

accurately represented in this method. Consequently, when the interaction between moving

structures and electromagnetic waves is modeled using this technique, non-physical and

artificial results may be observed.

Another important issue that needs to be discussed concerning the FDTD method is

the algorithm’s stability. Since the FDTD works on a discrete domain and approximates

Maxwell’s equations by discretizing time and space, a typically negligible amount of approx-

imation error occurs in the simulations. If a certain relation between the time and space

steps of the simulations is not met, this negligible error can grow exponentially causing in-

stabilities and unexpected results. This relation is indicated in the following equation and

is known as the Courant stability criterion. In this equation, cmax is the maximum wave

speed in the solution space, ∆t is time step, and ∆x,∆y, ∆z are the space discretizations.

A more detailed analysis of the derivation of this relation is provided in [64].

cmax ×∆t ≤
[

1
(∆x)2

+
1

(∆y)2
+

1
(∆z)2

]−1/2

(2.18)

In addition to the stability issue, numerical dispersion in FDTD simulations also needs

to be addressed to get accurate results. Modeling and simulating Maxwell’s time-dependent

curl equations using FDTD causes numerical dispersion in the simulations. Basically, de-

pending on the modal wavelength, propagation direction, and lattice discretization, the

phase velocity of the numerical modes in the main FDTD lattice can vary. This leads to

nonphysical artifacts such as pulse distortion, artificial anisotropy, and pseudorefraction in

the simulations [63]. To solve this issue, the space discretizations, ∆x,∆y, and ∆z, must

be a small fraction (a common rule of thumb is 1
10) of either the minimum wavelength or

minimum feature size in the model [58, 33, 41].

FDTD has been successfully applied to a wide variety of applications. For example,

it has been used extensively in military contexts such as ground-penetrating radar, land

mine detection, radar guidance, and electromagnetic pulse shielding [59, 60]. Commercial

companies use FDTD to improve and test antenna designs, and determine the effect of

parasitic capacitances on high-speed circuit boards. It is also used extensively in the optical
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community to design high-frequency optical communication devices, optical filters, and

optical switches. Academic research groups are also actively using FDTD techniques to

investigate novel nanoscale optical devices.

2.2 FDTD and Moving Structures

Finite-difference time-domain (FDTD) simulations can fail to accurately model the

Doppler shift associated with moving structures. In this section, we propose a simple lin-

ear interpolation method that significantly improves the accuracy of the simulation. This

improvement is necessary for precise design of optical MEMS/NEMS structures.

Modeling and simulation demands high accuracy at reasonable computational complex-

ity and plays an important role in the design process of optical MEMS/NEMS structures.

When the modeled structure is static, material properties in the FDTD calculation grid

are constant, and electric/magnetic fields in the structure are approximated very precisely.

However, when there are continuously moving structures in the FDTD model (which is the

case for optical MEMS/NEMS devices), the material properties in the FDTD calculation

grid change continuously as the MEMS/NEMS structures move and the coefficients have

to be updated. However, since the time and space are discretized in FDTD solutions, the

full continuous nature of the movement cannot be accurately reflected in the calculation

of the parameters. This results in instantaneous “pseudo” jumps in material properties.

Ultimately, non-physical spurious frequency content is generated which leads to erroneous

results.

Because modeling is a very crucial step for the realization of optical MEMS/NEMS

components, different ways to efficiently and accurately incorporate moving structures into

FDTD have been proposed in the literature. First of these methods is the quasi-stationary

method in which the main idea is to update the changing material coefficients in the FDTD

simulation at the end of each time step [7]. However, time and space in FDTD simulations

are discretized. Consequently, even though this technique provides an approximate answer

for some cases, it cannot model the continuous nature of the motion accurately and cannot

provide the proper physics behind the motion-electromagnetic wave interaction.
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A second possible method to more accurately model motion in FDTD simulations is the

system transformation method that mainly consists of transformations between moving and

stationary frames of reference [47]. Basically, the incident field in the stationary domain is

transformed to the moving system domain using a Lorentz transformation. In this system

frame, the moving layer is stationary and it becomes much more easier to define and solve

the electromagnetic boundary conditions. The disadvantage associated with this method

is the extra effort spent for transitions (transformations) between the two domains in the

simulation.

A third possible method is the application of relativistic boundary conditions. In this

method, the relativistic boundary conditions between the moving structure and the sta-

tionary domain surrounding it (at the surface of the moving structure) are incorporated

into the FDTD simulations. If the relativistic boundary condition is applied only for the

electric field in each time step, then this method is referred to as semi-relativistic boundary

condition. If on the other hand the relativistic boundary conditions is applied for both

electric and magnetic fields, then this method is referred to as fully-relativistic boundary

condition. More information and analytical details about relativistic boundary conditions

can be found in [24, 14].

Another method that is proposed to model reconfigurable MEMS/NEMS structures in

optical and RF domains is variable gridding [11]. In this method, the grid structure of

the main FDTD window can be different in different parts of the simulated structure. For

example, at the parts of the structure where there is motion, an increased resolution can

be used while at the stationary parts (where the resolution is not a very important factor

for accuracy), a lower resolution in space can be implemented. This way the increase in

the simulation time due to the increased resolution is kept at minimum. In this method,

providing the correct interaction between different cells with different space discretization

may be a complicated task. In addition, if the motion in the FDTD domain sweeps a big

portion of the main grid, then using this method will be very computationally inefficient.

Also, it becomes very difficult to implement arbitrary motion trajectories in this method.

These are some of the most popular methods that are used in the literature to more accu-

rately simulate moving structures in FDTD. In the following subsection we propose another
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method, “Linear Dielectric Interpolation”, to incorporate the motion of MEMS/NEMS

structures into the FDTD simulations in a very efficient and simple way. A conceptually

similar study has been conducted by Inman [28], but we propose a more complete method

and provide insight into the capabilities, limitations, and efficiency of this approach.

At this point, it is also important to note the stability issues caused by incorporating

movement into the FDTD simulations. As mentioned previously, FDTD has already some

limitations in terms of stability. In addition, instantaneous “pseudo” jumps in material

properties as a result of moving objects in the main FDTD domain can easily lead to

stability problems. In other words, with the motion included in the simulations, FDTD

becomes more sensitive to the stability issues. The proposed Linear Dielectric Interpolation

method significantly improves the stability limitation. The details of this issue are discussed

in section 2.4.

2.3 Linear Dielectric Interpolation Method

As mentioned previously, FDTD cannot accurately model the interaction between elec-

tromagnetic waves and moving structures due to its discrete nature in space. One possible

solution to this problem is to decrease the spatial grid size used in FDTD calculations so

that the discretization error is reduced. However, this solution dramatically increases sim-

ulation time because the number of spatial grids to represent the same physical distance

increases. Consequently, the number of FDTD calculations increases which makes the sim-

ulations longer. This negative side effect can be observed in 1D FDTD simulations in which

simulation time and number of space grids are inversely and linearly proportional. The situ-

ation becomes much more dramatic when the FDTD is implemented in 2D and 3D because

in these cases simulation time and number of space grids are still inversely proportional but

the relation becomes quadratic. Ultimately, it can be asserted that this solution is not an

efficient and effective one to solve this problem.

We propose the linear interpolation method which is a very efficient and easy method

to remove these side effects without significantly increasing the simulation time. Basically,

linear interpolation eliminates non-physical discrete jumps in material properties at the
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Figure 2.2: Timeline for the interpolation scheme. Two FDTD grids “Grid A” and “Grid
B” are indicated at four different times t0, t1, t2, and t3 respectively. The position of the
moving layer is also indicated at each time. Initially, “Grid B” has the dielectric value of
the moving structure and “Grid A” represents air, for which dielectric value is one.



16

boundaries of moving structures by linearly changing their dielectric values. The inter-

polated dielectric values at the moving interface are calculated using the real continuous

position of the moving structure as indicated in Fig. 2.2 and following equations. In Fig. 2.2

two FDTD grids “Grid A” and “Grid B” are indicated at four different times t0, t1, t2, and

t3 respectively. The position of the moving layer is also indicated in this figure at each time.

Initially, “Grid B” has the dielectric value of the moving structure and “Grid A” represents

air, for which dielectric value is one.

Without interpolation, the continuous nature of the motion indicated in this figure

cannot be represented accurately because the dielectric value in “Grid A” is updated to its

new dielectric value at time t3 when the moving layer actually reaches to that grid. However,

this update occurs very sharply at a single time step and consequently the dielectric value

of “Grid A” (εa) reaches to the dielectric value of “Grid B” (εb) at an instant. As a result,

the previously mentioned non-physical frequency components occur in the simulation. If

this instantaneous jump in the material properties is too large, it may even lead to stability

problems in the simulation.

On the other hand, when the linear interpolation method is applied, the dielectric value

of “Grid A” is updated at each time using the equations indicated below. When this single

equation is applied at each time step using the distance values indicated in Fig. 2.2, the

dielectric value of “Grid A” shows a linear increase from its initial value to its final value.

Initially at time t0, the distance between the moving layer and “Grid A” is one grid, which

makes εa=εa using the first equation. At time t1, the moving layer is between the two

grids but close to the “Grid B”. Consequently, for “Grid A” second equation leads to a

dielectric value which is between the original εa and εb but much closer to εa. At time t2,

this situation is reversed so the dielectric value of “Grid A” becomes much closer to the

dielectic value of the moving structure which is represented by εb. Finally, when the moving

layer actually reaches to “Grid A” position, the dielectric value in this grid becomes equal

to the dielectric value of the moving layer which is indicated in the equation for t3. In this

case, the continuous nature of the motion is modeled more accurately and this solves the

previously mentioned stability and non-physical frequency generation problems.
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At t0 → εb = D1 × εa + (1−D1)× εb = εa (2.19)

At t1 → εb = D2 × εa + (1−D2)× εb (2.20)

At t2 → εb = D3 × εa + (1−D3)× εb (2.21)

At t3 → εa = εb (2.22)

Fig. 2.3 and Fig. 2.4 show the dielectric values of “Grid A” and “Grid B” for the cases

indicated in Fig. 2.2. Fig. 2.3 provides the results associated with the simulation in which

the suggested linear interpolation method is not used, and Fig. 2.4 gives the results for the

same simulation but this time the linear interpolation mechanism is applied. Both figures

include four different time steps each of which correspond to the time steps of Fig. 2.2. In

both cases, the edge of the moving layer is between space grids 3 and 4. At time t0 the

moving layer is on space grid 4, which represents the “Grid B”, and it will move towards

the space grid 3, which represents the “Grid A” in Fig. 2.2.

As can be observed in Fig. 2.3, the dielectric constant of space grid 3 (“Grid A”) is

initially εa=1, which is the dielectric constant of air. At times t1 and t2, even though the

moving layer gets closer to the space grid 3 (“Grid A”) as a result of its continuous motion,

the dielectric value at this grid is not updated and remains the same. In the last time step

t4 when the moving layer actually reaches to the space grid 3 (“Grid A”), the dielectric

constant value of this grid is updated to the dielectric constant value of the moving layer

εb=5.3. This is an instantaneous jump in the dielectric value of “Grid A”. In the FDTD

simulation of this case, there is air in space grid 3 (“Grid A”) in time steps t0, t1, and t2 and

the previously mentioned FDTD field calculations are done using the material properties

associated with air. However, in just one time step, the space grid 3 (“Grid A”) becomes

the moving layer and all its material characteristics are converted to the material properties

associated with the moving layer material. Then the new FDTD field calculations are done

using these new values, and this situation causes the previously mentioned accuracy and

stability problems in FDTD simulations.

On the other hand, when the linear interpolation method is applied, the continuous

nature of the motion is modeled more accurately as can be observed in Fig. 2.4. Initially,
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Figure 2.3: The dielectric constant of space grid 3 (“Grid A”) is indicated in four different
time steps. Initially at time t0, εa=1 which is the dielectric constant of air. At times t1
and t2, even though the moving layer gets closer to the space grid 3 (“Grid A”) as a result
of its continuous motion, the dielectric value at this grid is not updated and remains the
same. At time t4 when the moving layer actually reaches to the space grid 3 (“Grid A”),
the dielectric constant value of this grid is updated to the dielectric constant value of the
moving layer εb=5.3.
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Figure 2.4: The dielectric constant of space grid 3 (“Grid A”) is indicated in four different
time steps. Initially at time t0, εa=1 which is the dielectric constant of air. At times t1 and
t2, the continuous motion of the moving layer is reflected in the dielectric value of space
grid 3 (“Grid A”). The dielectric value at this grid increases linearly. At time t4 when the
moving layer actually reaches to the space grid 3 (“Grid A”), the dielectric constant value
of this grid is becomes equal to the dielectric constant value of the moving layer εb=5.3.
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the dielectric value of the space grid 3 (“Grid A”) is εa=1, which is the dielectric constant

of air. At time t1, since the moving layer gets closer to the space grid 3 (“Grid A”), the

dielectric value of this grid is linearly increased. Since the edge of the moving layer is closer

to the space grid 4 (“Grid B”), the dielectric value of the space grid 3 (“Grid A”) is closer

to its original value as expected from the above equations. However, at time t2, the moving

layer edge is closer to the space grid 3 (“Grid A”), and consequently the dielectric constant

value at this grid is closer to the dielectric value of the moving layer. Finally, at time t3,

the moving layer completely reaches to the space grid 3 (“Grid A”) and the dielectric value

at this grid becomes εa=5.3, which is the dielectric constant value for the moving layer.

When these events are interpreted in the FDTD simulations, at each time step the material

properties associated with the space grid 3 (“Grid A”) are changing but this change is much

smaller when compared to the no interpolation case. Consequently, in the simulation there

is never an instantaneous jump in material properties and FDTD calculations can adapt

to the linearly and slowly increasing material properties in a stable manner. This in turn

solves the accuracy and stability problems that can be encountered in the no interpolation

case.

At this point, it is important to relate the accuracy and stability of the linear interpo-

lation method to the velocity of the moving structure. The dielectric constant value for the

space grid 3 (“Grid A”) of Fig. 2.3 and Fig.2.4 is plotted as a function of time in figure 2.5

for three different velocities of the moving layer of Fig. 2.2. V1=0.01×c, V2=0.002×c, and

V3=0.001×c where c is the speed of the light in free space. For all three cases, the dielectric

values for the no interpolation cases show big jumps at 200th, 600th, and 1100th time steps

of the simulation. With interpolation case on the other hand provides a linear increase in

the dielectric values, and the speed of this increase (slope of the linear line) is a function of

the velocity as can be observed in this figure. As the velocity of the moving layer increases,

the slope of the linear line created as a result of the linear interpolation method increases

and gets closer to the no interpolation case. However, linear interpolation enhanced FDTD

simulations still more accurately models the motion in the structure. Ultimately, it can

be asserted that the linear interpolation method always provides a better estimate for the

motion, yet its efficiency and accuracy resembles to that of no interpolation case as the
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Figure 2.5: The dielectric constant value for the space grid 3 (“Grid A”) of Fig. 2.3 and
Fig.2.4 is plotted as a function of time. Three different velocities of the moving layer
of Fig. 2.2 are used, and results are shown for with and without interpolation cases.
V1=0.01×c, V2=0.002×c, and V3=0.001×c where c is the speed of the light in free space.

velocity of the moving structure increases. A more detailed analysis on the velocity and

simulation accuracy will be conducted in section 2.4.

Until this point, linear interpolation method is discussed from a 1D point of view.

However, this method can also be easily applied for 2D cases where the motion is not only

in one dimension. In addition, it is important to note that even in 2D, this method will still

be very easy to implement and provide very good results without increasing the computation

complexity and time. In the following, detailed information about the implementation of

2D linear interpolation will be presented.

Fig. 2.6 indicates a moving layer at two different time steps, t0 and t1. The dielectric

constant for the moving layer is set to be ε1 and the dielectric constant for the rest of the

FDTD domain is set to be ε0. To be able to implement the 2D interpolation, we keep track

of two separate grid structures. The first one is the stationary main FDTD grid indicated

in this figure by red circles, and the second one is the moving grid indicated in this figure
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Figure 2.6: A moving layer in 2D FDTD grid is indicated at two different times, t0 and t1.
The circles represent the stationary main FDTD grid, and the crosses represent the moving
grid. The layer moves with a velocity of V in the indicated direction.
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Figure 2.7: The whole grid structure is divided into squares for three different cases around
the moving layer (only these three squares are shown for convenience, but in the actual
algorithm the whole grid structure is divided into squares). Each of these squares include
a point of the main grid, for which we want to calculate the interpolated dielectric value.

with blue crosses. The main FDTD grid is the one that is used to calculate the material

properties and field values in the simulation. The moving grid on the other hand includes

the moving structures and the motion of the objects is represented by moving this whole

grid above the stationary main grid. In Fig. 2.6, initially at time t0 both grids lay on top

of each other. When the moving layer moves to the position indicated in time t1, the whole

moving grid structure moves with it and creates the grid structure indicated in figure.

In the next step, the whole grid structure is divided into squares as indicated in Fig. 2.7

for three different cases around the moving layer (only these three squares are shown for

convenience, but in the actual algorithm the whole grid structure is divided into squares).

Each of these squares include a point of the main grid, and to calculate the new dielectric

values for each of these points, the following 2D linear interpolation calculation is conducted.

Fig. 2.8 briefly summarizes the 2D interpolation for a single square. First of all, the

square is divided into two regions (1 and 2) as indicated. Then, depending on the position

of the main grid point, three moving grid points are chosen to implement the interpolation.

In this case, the main grid point for which we want to calculate the new dielectric value

for is in region 1. As a result, dielectric values of points A, B, and C of the moving grid

are used to do the interpolation. After the three points are chosen, a 3D linear surface
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Figure 2.8: 2D linear interpolation algorithm for a single cell is explained in two steps.
Each cell of Fig. 2.7 is divided into two regions (left), and a 3D surface is created using the
dielectric values of the points that are at the corners of the triangle that includes the main
FDTD grid (right).

passing through all these points are created, as shown in Fig. 2.8 (right). The created

surface passes through points A, B and C in this case and has the values εA, εB, and εC in

the third dimension. Finally, the value of the εmain which represents the dielectric constant

of the main grid point in region 1 of Fig. 2.8 (left).

Fig. 2.9 shows the 2D interpolation for cell 3 of Fig. 2.7. Since the moving layer is located

above this cell as shown in Fig. 2.7, the top two dielectric constant values are ε1 which is

the dielectric constant value of the moving layer, and the bottom two grid points have the

dielectric value of the rest of the structure which is ε0. In this case, we want to calculate

the interpolated dielectric constant value for the main grid point marked “3”. Since this

point lies in the first region of the divided square, the moving grid points located on the

left triangle of Fig. 2.9 will be used to calculate the dielectric value of the main grid point

“3”. Using these three points and their dielectric constant values in the third dimension, a

surface will be created. Finally, the dielectric value of the main grid “3” will be found using

this surface as explained in the previous paragraph.
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Figure 2.9: Application of the 2D linear interpolation algorithm to the cell 3 in Fig. 2.7

2.4 Test Case Performance

In this part, we will discuss the performance of the suggested “Linear Dielectric Interpo-

lation” method. First, we will describe the test cases we used to determine the performance

of the suggested method. Next, the details of setup and implementation of these cases in

FDTD will be provided. Finally, results will be presented.

2.4.1 Description of test cases

In order to demonstrate the effectiveness of the linear interpolation method, we per-

formed FDTD simulations to accurately model a moving dielectric mirror (a 1D photonic

crystal). The interaction of a normal incident wave with a nine layer dielectric mirror con-

sisting of two alternating refractive indices is tested using the following testbench in FDTD.

The test case also includes a “hard source” which means that we are actually forcing a single

point in the FDTD grid to have a specific field value in every time step. The locations of

the source and the observation point are shown in Fig. 2.10.

Highly reflective dielectric mirror designs can be found in the literature [45]. Taking

the dielectric mirror design in this reference as an example, we chose nH = 2.32 and nL =

1.38 for material indices. These specific values are chosen to produce a high reflection
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Figure 2.10: Dielectric mirror testbench showing the operation at 3 consecutive time steps.
A wide Gaussian pulse is incident to a moving dielectric mirror consisting of nine layers
with high and low refractive indices (nH = 2.32 and nL = 1.38). Layers have lH = 98 nm
and lL = 165 nm thicknesses. The mirror is moving in the shown direction with a velocity
of v. S indicates the source point and A indicates the observation point.

coefficient. Using the well-known formulas for the reflection coefficient of a dielectric mirror,

we determine a reflection coefficient of

|Γ|2 = |
1− (nH

nL
)8

1 + (nH
nL

)8
|2 = 98.84% (2.23)

which is a sufficient value for the analysis that is conducted in this thesis. For the thin

and thick layers of the dielectric mirror, we chose lH = 98 nm and lL = 165 nm to make

the feature sizes appropriate for the nanophotonics domain. When these values are inserted

into the following formula, which provides the appropriate wavelength for each reflection

from the mirror layers to constructively add up:

nH lH = nLlL = λ0/4 (2.24)

the operating frequency and wavelength for the stationary nine layer mirror is calculated

to be f0 = 330 THz and λ0 = 910 nm. Furthermore, since we want to simulate a moving

structure in order to measure the effectiveness of the linear interpolation method, the im-
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plemented dielectric mirror is programmed to move towards the source with a velocity of

v, as indicated in Fig. 2.10.

The source used in this analysis is a Gaussian pulse with a wavelength λ0. A Gaussian

pulse is intentionally chosen as the source wave due to its easier theoretical and experimental

analysis, because the Doppler shifted reflection is also a Gaussian with a modified amplitude,

frequency, and standard deviation. It is also crucial to note that the source is arranged to

have a wide Gaussian pulse envelope so that in the frequency domain it will be easier to

observe the Doppler shift. Another important factor is the duration of the pulse. This

value is chosen such that the reflected wave from the dielectric mirror will not overlap with

the source wave at the observation point so that the input and output frequencies can be

observed separately. FDTD instability issue is the other effect on the chosen duration and

standard deviation values of the pulse. Since the source used in this case is a hard source, it

has to be stopped at a time step when the amplitude of the field emitted from it is almost

zero. Consequently, after some experiments and calculations, pulse duration and standard

deviation values of the source are arranged in order to minimize the instability occurring in

FDTD simulations. When these values are used, the source turns off very smoothly without

any instability.

At this point, it is also important to note that we specifically chose the described di-

electric mirror as our test case to demonstrate the effectiveness of the linear interpolation

method, because it is a good example of a moving 1D Photonic Crystal (PhC) and it has

feature sizes that are of the same scale as the wavelength of light.

2.4.2 Implementation in FDTD

The test mechanism described in Fig. 2.10 is modeled using a 1D FDTD simulation.

Details related to FDTD implementation of this specific test case are as follows. The time

step of the simulation is dt = dx/c0 = 0.166 fs, where c0 is the speed of light in free space,

and the spatial step size is implemented to be dx = 0.05 µm. The perfectly-matched layer

(PML) boundary condition is used along the edges of the computational domain in order

to eliminate the reflections from the FDTD simulation boundaries.

The first problem encountered at the FDTD implementation step is that when the layer
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lengths lL and lH of the previously discussed dielectric mirror are discretized using this

specific dx value, the structure did not behave as expected due to the insufficient sampling

number. There are two solutions to this problem 1) decreasing the dx value 2) increasing the

lengths lL and lH . Decreasing the dx value increases the resolution of the FDTD simulation

sampling, so it causes a considerably longer simulation time. Consequently, the second

solution − increasing the lengths lL and lH − is implemented using λ0/4 length addition

to the layer thicknesses of the dielectric mirror. By adding 4λ0/2 = 2λ0 to each layer,

the exact same reflection coefficient is obtained (theoretically and experimentally) for the

dielectric mirror, and the sampling problem is solved.

When the dielectric mirror moves with a velocity of v, the center frequency for which

this structure behaves as a perfect mirror shifts slightly. Consequently, the source velocity

is adjusted by a factor of (1 − 2v)/(1 − v) to account for the Doppler shift [50]. So, the

input frequency becomes f = f0(1−2v)/(1−v) when the dielectric mirror is moving with a

velocity of v. When a Gaussian pulse with a central frequency f and a standard deviation

σ is used as an incident wave to a moving dielectric mirror system with the previously

calculated reflection coefficient, the amplitude, frequency and standard deviation of the

reflected wave can easily be calculated theoretically. The frequency of the reflected wave

becomes f(1 + v)/(1− v) and its standard deviation becomes σ(1− v)/(1 + v).

A reasonable method to prove the advantage and functionality of applying linear in-

terpolation method to model moving structures in FDTD is to first calculate the FDTD

numerical error associated with a case where the linear interpolation method is applied.

Then to calculate the numerical error for the exact same case but without interpolation,

and compare these two error values. In this paragraph, the method used to calculate this

error is described. Basically, for a certain velocity v of the dielectric mirror, a Gaussian

pulse is transmitted towards the dielectric mirror. The theoretically correct reflection is

calculated using the previously calculated frequency and standard deviation values for this

case. Then this mechanism is simulated using FDTD both with and without interpola-

tion. The error signal is calculated as the difference between the FDTD waveform and the

theoretical reflected waveform. We use the energy in the error signal as a measure of the

accuracy of the simulation. The error energy is normalized by the theoretical waveform’s
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energy and we report the difference as a percentage error.

2.4.3 Results
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Figure 2.11: Velocities that are very close to zero are tested. 0% − 0.011% c velocity
range is simulated with 0.0001% c increments, and percentage error associated with each
of these velocities are plotted. The interpolation and no interpolation cases have the same
percentage error value at V = 0, yet they make a branch around 0.006%c. The percentage
error difference increases as a function of velocity after this point.

As mentioned above, the dielectric mirror in the testbench is moving towards the source

with a velocity of v. In our analysis, we first tested velocities that are very close to zero, and

the result is indicated in Fig. 2.11. In this figure, the vertical axis represents the percentage

error in the reflected wave, and the horizontal axis represents the percentage velocity of the

moving mirror. The reflected waveform in the simulation is compared with the theoretically

calculated reflection, and the percentage error in the simulation is calculated to be the ratio

of the error energy (difference between the simulation and theoretical reflections) to the

total energy in the theoretical result. We theoretically expected that the interpolation and

no interpolation cases would have the same percentage error value at zero velocity and with

increasing velocities, they would make a branch because no interpolation case cannot model

the test structure as accurately as the interpolation case. This actually is the case as seen
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Figure 2.12: Percentage error is plotted as a function of percentage velocity and number
of time steps using the no interpolation case. 0% − 7% c velocity and 18 × 103 : 105 time
step ranges are used. Number of time steps are shown in logarithmic scale. First unstable
velocity and a ramp indicating a percentage error increase as a function of time are marked.

in Fig. 2.11. After the velocity of the dielectric mirror passes the 0.006% c, percentage error

associated with the no interpolation case starts increasing and reaches to 5% at v = 0.011%

c. The interpolation case on the other hand, remains on the small percentage error values

due to its higher accuracy.

In the next test that is conducted, our goal is to determine an instability velocity line for

the no interpolation case. In other words, we aim to find a velocity value after which the no

interpolation case becomes unstable and cannot model the proposed testbench structure.

Consequently, we simulated the 0%−7% c velocity range without linear interpolation. Each

velocity is also simulated as a function of number of time steps, and percentage error related

to each velocity at each time step is plotted in 3D as shown in Fig. 2.12. As can be observed

from Fig. 2.12, at specific velocity values, percentage error value reaches to 100%, which

points to an important instability condition in the simulation. For instance, around 2% c

velocity, percentage error increases as a function of time, makes a ramp and reaches 100%

error value. The cross section indicated by the rectangle A is plotted in Fig. 2.13 to be able

to easily observe the instability border line associated with different velocities. As indicated
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Figure 2.13: Cross section of Fig. 2.12 cut by the rectangle A is plotted. Percentage error as
a function of percentage velocity is indicated. The number of time steps used is 105. First
unstable velocity for the no interpolation case is shown to be 0.7% c. Most of the velocities
after this border are unstable, so have 100% percentage error. The exceptions are indicated
by small circles.

in Fig. 2.12 and Fig. 2.13, no interpolation case becomes unstable at V = 0.7% c value for

the first time. Furthermore, no interpolation case is unstable for most of the velocities after

V = 0.7% c. There are some exceptions as shown in Fig. 2.13 by small circles, yet the

number of these velocities is very low. As a result, V = 0.7% c velocity can be taken as the

unstable velocity border for no interpolation case.

At this point, it is also important to mention the effect of motion in FDTD simulations on

the Courant stability criterion. The Courant stability condition indicated in equation 2.18

defines the range and limits of the discrete time and space steps for the stationary FDTD

simulations. However, when there is motion in the system, these range and limit values will

be affected, and the stability condition in this case might be more restrictive than the well-

known Courant condition. In the presence of motion in the system, the stability condition

is expected to be a function of the maximum structure velocity in the system.

The next test is to determine how accurately the interpolation and no interpolation

cases model the Doppler shift associated with the moving dielectric mirror. In Fig. 2.14,
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Figure 2.14: Doppler shift amount is plotted as a function of percentage velocity in 0−10%
c range. Theoretical, with interpolation, and with no interpolation results are shown. The
values at the Doppler shift axis are scaled by frequency of the incident wave fi. We can
see that theoretically expected Doppler shift is present in both the interpolation and no
intepolation cases in this velocity range.

theoretical, no interpolation and with interpolation Doppler shift amounts are plotted as a

function of percentage velocity, in the velocity range 0− 10% c. Basically, for a specific ve-

locity, both incident and reflected waves are Fourier transformed into the frequency domain.

Then, the ratio of the frequencies corresponding to the highest magnitudes is calculated and

plotted. Doppler shift amounts indicated in the graph are to be scaled by the incident light

frequency. For example, 0.1 value on the Doppler shift axis indicates a Doppler shift of

(0.1× fi) where fi indicates the frequency of the incident wave. As can be observed from

Fig. 2.14, theoretically expected Doppler shift is present in both the interpolation and no

interpolation cases in this velocity range. This is an expected result because while plotting

this figure, we filter out all the spurious frequency content, and we are only interested in

seeing if the expected Doppler shift is present (or not) in the frequency spectrum of these

two cases.

Although the no interpolation case indicates the same results with interpolation case in

terms of approximating the Doppler shifted frequency, spectral analysis shows the advan-
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Figure 2.15: Frequency spectrum is plotted as a function of percentage velocity in 0− 10%
c range for the no interpolation case. The frequency axis is normalized to the f0 frequency
value for which the dielectric mirror provides the highest reflection coefficient. We can see
that although the Doppler shifted frequency is present in the frequency spectrum, many
non-physical harmonic frequencies also exist, especially after the 6.5% c velocity value as a
result of the instability effects.

tage of using the linear interpolation method. In Fig. 2.15, frequency spectrum of the no

interpolation case is plotted as a function of velocity, and in Fig. 2.16 we focused to 1− 1.5

normalized frequency range for both with and no interpolation cases. As can be observed

from these figures, Doppler shifted frequency exists in the frequency spectrum, which is a

proof of the results indicated in Fig. 2.14. However, when these figures are examined in

detail, we encounter higher (and lower) non-physical harmonic frequencies in the spectrum

of no interpolation case. These frequencies emerge as a result of the instantaneous jumps

in the material properties, which occur because of the space discretization. With the addi-

tional effect of instability at higher velocities, more dramatic erroneous frequency values are

observed after 6.5% c velocity value. On the other hand, the interpolation case filters almost

all of these spurious frequency content and provides a more accurate frequency spectrum

as indicated in Fig. 2.16 (bottom).

In the next figure, Fig. 2.17, the cross section of Fig. 2.15 indicated by the rectangle B
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is plotted. This figure shows the frequency spectrum associated with incident and reflected

waves. Two different cases are used to plot the frequency content of the reflected wave 1)

With interpolation case 2) No interpolation case. In this simulation, specific 6.8% c velocity

value is used because it is the first velocity in which dramatic erroneous frequencies are

present. The frequency axis is normalized to the f0 frequency value for which the dielectric

mirror provides the highest relection coefficient. The incident wave has a frequency of f =

0.927×f0. At this velocity, the Doppler shift should be f×(1+0.068)/(1−0.068)=1.063×f0.

In Fig. 2.17, we can see that the interpolation case models this very accurately and it has

a single frequency component at 1.063 × f0. The no interpolation case has a component

at the right frequency, too, which we can not see because of the instability. However, it

also has many non-physical frequency components. This is a very good indication of how

effective the interpolation method is. Without the use of this techniques, it becomes very

hard to accurately model Doppler frequency shift.

As the last test to prove the effectiveness and benefit of the linear interpolation method,

we plotted the percentage error as a function of the velocity in the 0−13% c range as shown

in Fig. 2.18. Percentage error is indicated for with and without interpolation cases. As can

be seen from Fig. 2.18, linear interpolation provides much better results when compared

to no interpolation case. First of all, until 8% c velocity, linear interpolation incurs much

less percentage error. In this velocity range, no interpolation case becomes unstable many

times reaching to very high error values. After this velocity, even though we see an increase

associated with the percentage error of the linear interpolation method, it still continues to

be a better approximation than no interpolation case. This percentage error increase is a

result of the velocity, because with increasing velocity, slope of the linear change in material

properties increases. In other words, rate of change of the material properties increases,

which is the actual problem for the no interpolation case.

When we take the minimum percentage error envelope of the no interpolation case, linear

interpolation method provides very good results. Fig. 2.19 shows the linear interpolation

and minimum centered no interpolation cases in logarithmically scaled percentage error

graph. As expected and shown in Fig. 2.19, linear interpolation method performs much

better till 8% c velocity, and starts to look like no interpolation cases at higher velocities.
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When we take the ratio of the minimum centered no interpolation error value to linear

interpolation method error value, we get the result indicated in Fig. 2.20. As can be seen

in this figure, in average with interpolation case provides 15 − 20dB better results until

8% c velocity. After this velocity value, the ratio decreases due to the resemblance of the

interpolation case to no interpolation case.

2.5 Future Work

Results presented in this section indicate that the linear dielectric interpolation method

is a very useful, accurate and efficient enhancement for FDTD simulations that include

moving structures. However, it is also possible to make some improvements to this method,

to increase its capabilities and efficiency. In this subsection, possible improvements, adjust-

ments, and extensions for this method will be presented.

First of all, for the extension of the method into two and three dimensions, the linear

interpolation method is expected to perform similarly and model the effects of the velocity

significantly more accurately because increasing number of possible movement dimensions

decrease the accuracy of FDTD simulations. Consequently, applying linear interpolation

method in these cases is expected to result in an increased level of error reduction and

accuracy. In section 3 2D version of the linear interpolation method is already implemented

to model the proposed structures, and it provided very good results in terms of stability

and accuracy. Furthermore, this method can easily be extended to three dimensions, and

we expect to see relatively higher stability and accuracy in this case. However, a 3D version

of the algorithm is not implemented and tested, and this can be a useful extension of this

method.

Another possible extension of the linear interpolation method is the “quadratic interpo-

lation”. In this case, a quadratic equation will be used to calculate the FDTD coefficients

that represent the material properties in the main FDTD grid. For example, this method

can be used when the moving structure in the simulation has a nonzero conductivity (σ).

In this case, the FDTD coefficients perform a quadratic behavior, and a “quadratic inter-

polation” method is required in order to accurately model this behavior.
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In addition, “spatial averaging” is another extension of the linear interpolation idea. In

this case, the dielectric values for the whole spatial grid (in comparison to the linear inter-

polation method which only uses the grid points for the interpolation) is used to calculate

the new dielectric value of the required spot. This is also a good estimate of the motion

of the structure and is also expected to provide high accuracy and stability for modeling

motion in FDTD simulations.

Finally, a more detailed analysis is required on the stability issue of the FDTD sim-

ulations that include motion. As mentioned previously, in this case, the motion in the

simulation will affect the reliability and validity of the well-known Courant condition on

stability, and will probably make it more restrictive. We expect the new stability criterion

to be a function of velocity, which overlaps with our stability results indicated in section 2.4.

In this thesis, we tried to define the new stability condition numerically (using simulation),

yet analytically deriving this condition can also be listed as an important future work.
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Figure 2.16: Frequency spectrum as a function of percentage velocity in 0−10% c range for
the with (bottom) and no (top) interpolation case when zoomed in to the 1−1.5 normalized
frequency range. The frequency axis is normalized to the f0 frequency value for which the
dielectric mirror provides the highest reflection coefficient.
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Figure 2.17: Frequency spectrum of the incident and reflected waves at 6.8% c velocity is
plotted for two cases: 1- Interpolation case 2-No interpolation case. Doppler shift is very
accurately modeled using the interpolation method. The no interpolation case on the other
hand, has various dramatic, erroneous and nonphysical frequency components.
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Figure 2.18: Percentage error is plotted as a function of the velocity in the 0−13% c range.
Percentage error is indicated for with and without interpolation cases. Until 8% c velocity
value, linear interpolation method provides a much better performance. After this velocity,
the linear interpolation case starts to look like no interpolation case.
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Figure 2.19: Percentage error is plotted as a function of the velocity in the 0− 13% c range
in a logarithmic scale. Percentage error is indicated for with and without interpolation
cases, but the lower envelope of the no interpolation case is taken. Until 8% c velocity
value, linear interpolation method provides a much better performance when compared to
the best case no interpolation error value. After this velocity, the linear interpolation case
starts to look like the minimum envelope of the no interpolation case.
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Figure 2.20: Ratio of the minimum envelop of the no interpolation error to the linear
interpolation error in units of decibel(db). Until 8% c velocity value, linear interpolation
method provides almost 20dB better percentage error.



40

Chapter 3

Wavelength Conversion Using

PhC-MEMS/NEMS Structures

There is a rapid increase in the bandwidth and transfer speed requirements of optical

communications technology. Public communication systems, maybe the most important

example of which is the Internet, use single-mode fibers which are capable of transmitting

more than 1 Tb of data per second [61]. However, this enormous bandwidth cannot be

totally utilized by the most advanced commercially available telecommunication systems.

This implies that very large amounts of data can be sent very fast between specific network

nodes of today’s optical communication systems, yet this data cannot be processed and

routed to correct destinations fast enough at these nodes. The reason of this limitation will

be identified and discussed in the following.

Wavelength-Division-Multiplexing (WDM) emerges to be the most popular technique

applied and used in today’s optical communications networks. Fig. 3.1 shows an optical

cross connect associated with a WDM system. Basically, the data is transmitted on a carrier

frequency in the optical fiber, and it is amplitude modulated to provide the bit stream of

the data. The carrier frequency of the signal identifies the data channel. The cross connect

in a WDM system is similar to a network switch, and essentially distributes specific inputs

to specific outputs.

Optical-electronic-optical (OEO) transitions in these cross connects, which implies con-
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Figure 3.1: WDM Optical cross connect schematic. The schematic consists of 3 main blocks.
The first one is the DEMUX (demultiplexer) array which is used to separate the incoming
data channels. The switch block is responsible from the distribution and connection of the
incoming data to the correct destinations. Finally, the MUX (multiplexer) block multiplexes
the different data channels to a single output channel.
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Figure 3.2: The switch block of Fig. 3.1 is indicated in more detail. There are two main
blocks in this figure. The first one is the wavelength converter array. Wavelength converters
are used to connect the data coming from one data channel to another one by changing
the carrier frequency of the signal. Then the passive router provides the connection to the
appropriate output channel.
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version between optical and electronic domains, emerges to be a serious bottleneck for the

satisfaction of the previously mentioned speed and capacity requirements. Transformation

into the electronic domain is very costly and slow. Optical demultiplexing and multiplexing

are well established parts of the cross connect block indicated in Fig. 3.1, while the switching

block needs to be improved to solve the problems that occur due to OEO transitions [2, 4].

Consequently, there needs to be a way to solve this issue and increase the performance of

these nodes to meet the increased bandwidth requirements of the communications industry.

All-optical routing and networking seems to be the most suitable solution to this problem.

In Fig. 3.2, the switch block of this cross connect circuit is indicated in detail. There are

two crucial components in this block: 1) tunable wavelength converters 2) passive router.

This thesis will focus on the wavelength converter part of the switching block because this

section suffers the most from the OEO transitions mentioned in the previous paragraph.

In this section of this thesis, an all-optical wavelength conversion method will be pro-

posed and discussed as a solution to this problem. The proposed wavelength converter

is composed of photonic crystals (PhC) and MEMS/NEMS structures. Both PhCs and

MEMS/NEMS structures have very novel and interesting applications. However, they can

be integrated to design much more novel and revolutionary structures. The proposed wave-

length converter is such an example.

This section is organized as follows. In the first part, current wavelength conversion

methods will be discussed. In the second and third parts, MEMS/NEMS and PhC structures

will be reviewed. Next, the proposed PhC-MEMS/NEMS structures will be described in

detail. Then, fabrication issues associated with the proposed structures will be analyzed.

In the last part, results will be presented and discussed.

3.1 Current Wavelength Conversion Methods

Wavelength conversion is an important method that enables the connection of data

from one carrier wavelength to a different carrier wavelength. In other words, it sets the

destination of data from one specific data channel to another and enables wavelengths to

be assigned on a link-to-link basis. Essentially, wavelength conversion is a very important
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functionality in WDM systems and plays a very crucial role towards cost effective, high

speed optical networks.

In this subsection, a brief analysis of the current wavelength conversion methods will be

provided. Wavelength converters can be categorized in a few different ways depending on

the criteria of differentiation [61]. First of all, depending on the optical signal routing mech-

anism, wavelength converters can be grouped into optical-electronic-optical and all-optical

wavelength converters. Optical-electronic-optical (OEO) networking and routing implies

conversion between optical and electronic domains. All-optical wavelength converters on

the other hand provide conversion from one frequency to another using only the optical

domain, do not require any conversions to electronic domain. As a result, this type of

converters are much more efficient and reasonable in terms of cost and performance.

A second classification terminology could be in terms of the input-output signal char-

acteristics. In this case, there will be three major groups: a variable-input-fixed-output

converter, a variable-input-variable-output converter, and a fixed-input-variable-output con-

verter. The keyword “variable” implies a possible range of wavelengths applicable, while the

keyword “fixed” implies a specific and predefined wavelength. Even though each of these

methods might have specific applications, having a variable-input-variable-output converter

would be more desirable due to its flexibility.

Finally, depending on the mechanism used to create the conversion, wavelength con-

verters can be classified into three major categories: optoelectronic, optical gating, and

wavemixing. This will be the main classification this section will use in order to explain

current wavelength conversion methods, and each of these methods will be analyzed in more

detail in the following part.

Optoelectronic (O-E-O) wavelength conversion is the first class when the current wave-

length conversion schemes are classified according to the applied mechanisms. In this case,

the input optical signal is detected and converted to the electronic domain (O-E) at the

input receiver end. Then, this electronic signal is retransmitted with the required frequency

(E-O) at the output transmitter end. This mechanism is physically implemented using a

receiver, an RF amplifier, and a laser [61]. This is a more straightforward conversion mech-

anism when compared to the others, and it is usually variable-input-fixed-output, unless a
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tunable lasing mechanism is used.

The second category of the current wavelength conversion mechanisms is the optical gat-

ing wavelength conversion. Basically, this technique uses an optical device which changes

its optical properties as a result of the input wave, and these modifications in the device are

monitored and reflected to the output optical signal by means of a probe. There are many

conversion methods in this category, each of which use different types of mechanisms to

change the characteristics of the deployed optical device. Semiconductor optical amplifier

cross-gain modulation, semiconductor optical amplifier cross-phase modulation, semicon-

ductor lasers with saturable absorption, and nonlinear optical loop mirrors are the most

crucial and popular ones [61]. This type of conversion technologies, which are also variable-

input-fixed-output configuration, are less mature when compared to the optoelectronic case,

and need more time to develop.

The third and last category is the wave-mixing wavelength conversion. Basically in

this method, the input optical signal is modulated in a nonlinear material and this process

creates an output signal with a converted wavelength. The output signal has an amplitude

and phase which is a linear combination of the input and reference waves, and as a result of

this, the wave-mixing wavelength conversion method preserves the phase and the amplitude

information of the input signal. Since the superposition principle applies to the optical fields,

there may be many simultaneous frequency conversions in these devices. Consequently,

this is a variable-input-variable-output technique. This method is capable of working in

very high data bit-rates, for example more than 100 Gbit/s as demonstrated in reference

[61]. Four-wave-mixing in passive waveguides, four-wave-mixing in semiconductor optical

amplifiers, and difference frequency generation are the three major wavelength conversion

methods of this class.

When the various wavelength conversion mechanisms mentioned above are compared,

all-optical wavelength converters appear to be a better choice due to their higher signal-to-

noise ratio and higher conversion efficiency [61]. Also, optoelectronic wavelength conversion

methods require higher power to operate, and this problem is solved in the all-optical con-

verters. Ultimately, it can be asserted that a well designed all-optical wavelength converter

will not only be more efficient and easier to integrate to the optical communication systems,
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but will also provide much better performance.

Finally, at this point it is important to note that WDM makes wavelength conversion

a practical necessity [25]. However, currently commercially available WDM systems use

optical-electronic-optical conversions, optoelectronic wavelength conversion mechanisms.

Due to the reasons mentioned above, having all-optical wavelength conversion mechanisms

with variable-input-variable-output characteristics in the WDM systems of multiwavelength

transport networks would be much more efficient and simple.

3.2 Micro/Nano-Electromechanical-Systems (MEMS/NEMS)

Micro-/Nano-electro-mechanical systems (MEMS or NEMS) seek to manipulate the

nanoscale device structures to provide movable parts that can implement a variety of

functions. These structures provide the ability of interacting with the environment not

only in terms of gathering information (sensing), but also reacting against the environmen-

tal changes using special actuation mechanisms (most popular of which are electrostatic,

piezoelectric, magnetic, and electrothermal) that can be controlled. Consequently, with the

appropriate inputs, it is possible to program the MEMS/NEMS structures to any desired

state. Common applications of these systems include inertial sensors, micro-motors and ac-

tuators, inkjet printer heads, biological and chemical delivery systems, optical switches, and

“smart” sensors. As a result, MEMS/NEMS can provide a cost-effective, high-performance

solution (that can also be significantly miniaturized) to various types of problems.

MEMs and NEMs are fabricated using the heavily commercialized CMOS fabrication

processes. As a result, they provide the same potential benefits as large-scale electronic

integrated circuits, such as low-cost high-volume automated fabrication and production. It

is as a result of this fact that MEMS/NEMS have become so cost effective and so widely

used in many applications. In addition to this, they have their own unique challenges due to

the fact that they are also mechanical structures. There are two specific fabrication methods

for MEMS/NEMS systems: Surface and Bulk micro-machining. Briefly, the main idea for

surface micro-machining is to create devices by layer deposition and etching on a substrate.

For bulk micro-machining on the other hand, the bulk itself is shaped to have a certain
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feature using specific etching techniques such as back etching. A very essential part of the

MEMS/NEMS fabrication is the sacrificial layer which is used as a temporary layer to get

a certain gap in the structure. This gap is basically used for the motion capability of some

parts of the device. A more complete analysis on the fabrication issues of MEMS/NEMS

structures will be provided in section 3.5.

In this subsection, a brief review of MEMS/NEMS structures will be provided in three

subcategories: 1) Optical MEMS/NEMS 2) RF MEMS/NEMS 3) MEMS/NEMS actuation

and motion transfer methods. There are various other types of MEMS/NEMS applications

but these specific categories are intentionally chosen for their relevance to this thesis.

3.2.1 Optical MEMS/NEMS

As mentioned in section 3.1, optical networks are moving towards being all-optical, where

almost every function in the network are performed in the optical domain. However, optical

networking today is still on a limited level due to missing high-optical low-cost optical

components. Consequently, in the last years, there has been a rapid increase of interest

in the silicon-based MEMS/NEMS structures for various optical networking applications.

Optical switching, variable attenuators, and tunable lasers, all of which are the key elements

of an optical network, are the main domains where MEMS/NEMS structures are gaining

more and more importance in the optical network technologies. The main reason for this

rising interest in these structures is their substantial cost and performance advantages [43].

It is already mentioned that the switching and routing signals in the electrical do-

main is a serious bottleneck for today’s optical networks which are capable of operating

with hundreds of wavelengths. Switching these wavelengths requires a large scale optical

switch with many number of ports. This seems to be the most attractive area for optical

MEMS/NEMS integration because optical MEMS/NEMS switches will essentially provide

an all-optical solution to the switching function. A MEMS/NEMS micro-mirror array which

consists of individually addressable micron-scaled mirrors is one of the possible and efficient

methods to implement the switching function. Using electrical cross connects is the typical

and traditional method for switching, yet the optical-electronic-optical transitions in this

configuration are very costly, especially with the increasing bit rates in the network chan-
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nels. An optical MEMS/NEMS solution to the switching would provide a lot of savings in

terms of cost, power, and area [43].

Another popular application of MEMS/NEMS structures in the optical communications

is in the area of variable optical attenuators (VOAs). One method to realize this is to use a

vane that moves, and either closes or opens a hole, through which an optical beam is propa-

gating [72]. Another method is using a MARS attenuator structure [69]. MARS attenuators

use the fact that a quarter wavelength of silicon nitride, deposited on top of silicon, will cre-

ate an almost perfect antireflective coating. If the same nitride layer is positioned a quarter

wave above the silicon, it becomes a very good reflector. Consequently, a MEMS/NEMS

membrane structure which can mechanically move this silicon nitride layer will work as

an optical attenuator. The VOAs have a wide range of applications in optical networks,

especially inside optical amplifiers, add/drop multiplexers, and optical cross connects and

they function as the optical power controllers.

Another possible optical MEMS/NEMS application is in the area of tunable lasers

and filters. One such device is designed and created by Coretek [68]. This is a tunable

MEMS/NEMS optical laser with an active layer, cavity, and a supporting movable elec-

trostatically manipulated membrane. The most effective way to create tunable lasers is

physically changing the cavity length, and in this case it is done by changing the position

of the dielectric mirror membrane. This particular device is tunable between 1.51-1.56 µm,

which corresponds to a 50 nm wavelength span. These lasers have been tested with setups

of 325 km length and gave bit error rates of less than 10−13 [68].

3.2.2 RF MEMS/NEMS

RF MEMS/NEMS refers to radio frequency operation which includes DC to submilime-

ter wavelengths, and is different from optical MEMS/NEMS which is in the infrared to

ultraviolet wavelength range. In the literature, there are various types of RF components

such as self assembled antennas and inductors, transmission lines, resonators, and cavities all

of which are fabricated using the surface and bulk micromachining processes that are men-

tioned at the beginning of this section. A more detailed analysis about the current IC and

MEMS/NEMS fabrication methods is conducted in subsection 3.5. However, none of these
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components are reconfigurable and include actuation/motion. In other words, after they

are fabricated, their structure is constant and it does not change. True RF MEMS/NEMS

structures on the other hand are reconfigurable and motion in these systems is created by

means of various types of actuation mechanisms.

Figure 3.3: RF MEMS switch 3D view

RF MEMS/NEMS research and applications are not mature enough to replace the exist-

ing conventional solutions in RF circuits yet. Due to fabrication and packaging issues, RF

MEMS/NEMS devices still need more time to develop and become commercially available,

which is expected to happen soon. At the moment, the most fundamental and popular

RF MEMS/NEMS components in the literature and industry are RF switches, variable

capacitors, and antennas.

The most popular of these three component classes is the switches. They are mainly

applied and used in attenuators, phase shifters, and filters. Back in 1995, an RF MEMS

switch with a cut off frequency of f0 = 2THz was reported [22]. After this, various RF

MEMS switches with increasing performances are reported in the literature by different

groups [53, 55, 8]. The most common method used for the actuation of RF MEMS/NEMS

switches is the electrostatic actuation. Almost all of these switches consist of suspended

bridges and cantilever beams. The diagram of a cantilever RF MEMS switch is indicated in

Fig. 3.3 in a 3D view. This switch is electrostatically activated using the large green contact

below the red cantilever beam. When the red cantilever and the green contact below it have

opposite charges, the MEMS cantilever beam closes and connects the two different nodes of

the RF circuits (These nodes are indicated with small green contacts at the right hand side

of the view). When they have the same charge polarities, the contact pushes the MEMS
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(a)

(b)

Figure 3.4: RF switch side view indicating open and closed configurations

cantilever up and the switch gets into its OFF state. The switching activity is indicated

in Fig. 3.4. In (a), the switch is OFF, and in (b) the switch is ON. It is also important to

note that the gap between the activation contact and the cantilever beam is created using

the sacrificial layer concept of surface micromachining MEMS/NEMS technology.

Figure 3.5: RF MEMS varactor 3D view

Another popular RF MEMS/NEMS component class is the variable capacitors, varactors

in other words. Varactors are very crucial elements for RF phase shifters, filters, and

antennas. Various RF MEMS/NEMS varactor designs have been reported in the literature
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and industry [12, 9]. Some of these designs are created using surface micromachining and

some are created using bulk micromachining. Similar to switches, the RF MEMS/NEMS

varactors are also mostly electrostatically actuated. However, electro-thermally activated

designs are also reported in the literature [17]. An example configuration for electrostatically

actuated variable capacitors is indicated in Fig. 3.5 in a 3D view. This is a reconfigurable

parallel plate RF MEMS/NEMS variable capacitor. The red layer is the top plate of the

varactor, and the two large green contacts on the substrate create the bottom plate. The

red beam is attached to the substrate with an electrostatically actuated suspended bridge.

When the small green contact and the yellow suspended bridge have opposite charges, the

bridge bends and gets closer to the substrate. As a result of this, the distance between the

parallel plates of the capacitor changes. The capacitance value is consequently a function

of the distance between the suspended bridge and the contact below it.

Figure 3.6: Sandia Torsional racheting actuators (TRA) [66]. Courtesy of Sandia National
Laboratories, SUMMiTTM Technologies, www.mems.sandia.gov

The last and the least popular RF MEMS/NEMS component class is the RF antennas.
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Reconfigurable RF MEMS/NEMS antennas have been reported in the literature [13, 3]. In

these proposed designs, the main idea is electrically changing the far field radiation pattern

using MEMS/NEMS microactuators. One way to change the radiation pattern is changing

the radiation aperture of the antenna using microactuators.

3.2.3 MEMS/NEMS actuation and motion transfer methods

Figure 3.7: Sandia MEMS micromirror device with an electrostatically actuated parallel
plate microengine [54]. Courtesy of Sandia National Laboratories, SUMMiTTM Technolo-
gies, www.mems.sandia.gov

In this section, actuation mechanisms and motion transfer methods will be briefly de-

scribed. We will focus on the very probable candidates in these areas that may be applied

to realize the proposed structures in this thesis. Consequently, we will focus on the electro-

static actuation for motion creation, and racks and gear trains for motion transfers in the

fabricated structure.

Torsional racheting actuators and microengines driven by parallel plate comb drives are



52

the two main electrostatic actuation mechanisms used in complex MEMS/NEMS devices

[66, 54]. In the torsional racheting technique, torsional comb drives are used to generate

the motion. This motion is transferred out using rachets and a small gear mechanism.

Fig. 3.6 shows an example of this type of an actuator. The second method for actuation,

microengine created by parallel plate comb drives is indicated in Fig. 3.7. The distance

between the parallel plates of the comb drives is changed electrostatically. This motion

drives and rotates the microengine arms, which then creates a rotational motion. In this

figure, two of the most common motion transfer methods are also indicated: 1) gear trains

2) linear racks.

3.3 Photonic Crystals

Photonic crystals (PhCs) are periodic structures with different refractive indexed ma-

terials. Their importance and indispensability for electromagnetic applications emerge as

a result of their ability to confine electromagnetic waves for a certain range of frequencies

called photonic band gaps (PBG), which are analogous to forbidden electron energy gaps

in semiconductor crystals [5]. At frequencies which remain in the PBG range, there are

not any propagating electromagnetic solutions; consequently electromagnetic waves with

frequencies in this range cannot exist in these structures. Furthermore, the periodicity and

the dimensions of the structure directly affect the properties of the band gap. Ultimately,

the band gap property provides PhCs with the ability to control EM-waves. At this point,

it is also important to note that because the structures in the periodic lattice of PhCs are

typically smaller than the wavelength of the EM wave, traditional diffraction theory fails to

predict the interaction. A more rigorous theory is being developed, but for practical prob-

lems, numerical simulation using techniques like the finite-difference-time-domain (FDTD)

algorithm is one of the most common ways to characterize the time response of the structure

to the interrogating EM waves of interest.

Photonic crystal structures can be implemented in 1D, 2D or 3D depending on the di-

mensions in which a periodicity of different indexed materials is observed. In other words,

the number of dimensions in which light confinement can be achieved depends on the struc-
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1−D

Periodic in one direction

Figure 3.8: 1D PhC structure. The direction of periodicity is indicated with an arrow.
Different colors show different dielectric materials with different refractive indices. This
structure has the same characteristics with a a classical Bragg mirror because essentially a
Bragg mirror is also a 1D PhC.

ture. If an electromagnetic wave, with a frequency in the PBG, impinges on these structures

in the direction of periodicity, the structures will behave like a mirror and the light will

reflect back. Fig. 3.8, Fig. 3.9, and Fig. 3.10 indicate 1D, 2D, and 3D PhCs respectively. As

seen in these figures, in the 1D case, the material indices are periodic in only one direction

as shown with the red arrow. In the 2D case however, there are two arrows showing the

directions of periodicity, and if a light pulse whose frequency is in the band gap of this

structure impinges on this structure in either of these directions, it will be reflected back.

The similar case can be observed for the 3D case, with the only difference of periodicity

being in three directions.

1D PhC structures are restricted to confine light in only one direction because of their

geometry, which definitely decreases their possible applications. 3D PhC structures on the

other hand, are very hard to fabricate using conventional fabrication methods, although

there is a considerable increase in 3D PhC research. Consequently, this thesis will focus on

2D PhCs.

2D PhC structures, as shown in Fig. 3.9, are periodic in two directions and homogenous
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2−D

Periodic in two directions

Figure 3.9: 2D PhC structure. The directions of periodicity are indicated with two arrows.
Different colors show different dielectric materials with different refractive indices. This
time the periodicity is observed in two perpendicular directions, which essentially creates a
plane.

Periodic in three directions

3−D

Figure 3.10: 3D PhC structure. The directions of periodicity are indicated with three
arrows. Different colors show different dielectric materials with different refractive indices.
This time the periodicity is observed in all three perpendicular directions.
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in the third, so the photonic band gap appears in the plane of periodicity. Their fabrication

process is much easier when compared to 3D PhCs. 2D PhC structures can be realized using

various methods, yet the two most commonly researched are “air columns in a dielectric

substrate” and “dielectric columns in air.” PhCs can also be classified depending on the

lattice properties of the periodicity. For example, the PhC structure can be a square

lattice or a triangular lattice depending on the required band gap characteristics. The

whole photonic band gap characteristics, consequently all functionality of the structure

directly depends on these properties. Different dimensionality, material composition, lattice

structure, and dimensions (length and width ratios) cause different responses. Following

information will be useful to give some insights about these properties.

3.3.1 Air columns in a dielectric substrate in a triangular lattice structure

Figure 3.11: PhC configuration with air columns in a dielectric substrate. The structure is
in a triangular lattice geometric shape. This figure is created using MIT’s Photonic Bandgap
tool (MPB), which is a frequency domain solver mostly used for periodic structures such as
PhCs [30].

Using air columns in a dielectric substrate is one method that is commonly used in

literature. This structure is periodic in two of its axes and homogenous in the third.

For certain values of columns spacing, this crystal can have a photonic band gap in the



56

plane cutting all the air columns. As mentioned previously, inside this frequency range, no

extended states are allowed, so the incident light in this plane (regardless of its angle) is

reflected. Depending on the periodicity dimensions, there can be total band gaps (TE+TM)

for this specific structure. Of course, a more detailed design analysis has to be conducted

in order to overlap the band gaps of TE and TM waves. In Fig. 3.11, the top view of this

type of a structure is indicated. Also, Fig. 3.12 shows a fabricated version of this PhC type.

Figure 3.12: Fabricated PhC structure consisting of air columns in a dielectric substrate.
In the middle of the structure, a resonant cavity is created by removing some of the air
columns. This is a good example of possible applications PhCs can provide when specific
defects are intentionally created in them. [26]

When these structures, indicated in Fig. 3.11 and Fig. 3.12, are analyzed in terms of

their band gap characteristics and mode shapes, we reach to the following results.

First of all, Fig. 3.13 shows the TM (transverse magnetic) band diagram of this structure.

There are two band gaps as indicated in the figure, a small one around f = 0.8(c/a) and

a wider one in f = (0.4 − 0.45)(c/a) frequency range. Each line in this figure corresponds

to a specific mode as a function of frequency and wave vector (k) direction in the Brillouin

zone. The next figure, Fig. 3.14, indicates the TE (transverse electric) band diagram of

the same structure. In this case, it is important to note the significantly wide band gap

in f = (0.4 − 0.5)(c/a) frequency range. In the case of PhCs consisting of air columns in
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Figure 3.13: TM band diagram for the specific PhC configuration consisting of air columns
in dielectric. Each line in the plot indicates a mode that can propagate in the structure,
and these modes are plotted as a function of frequency and wave vector (k) direction in the
Brillouin zone. There are two main band gaps: first one around f = 0.8(c/a) and a second
and wider one in f = (0.4− 0.45)(c/a) frequency range

a dielectric material, there is a “total band gap” in the frequency range corresponding to

f = (0.4− 0.45)(c/a). “Total band gap” is defined as the frequency range whose band gap

characteristics are independent from the polarization of the light pulse. In other words, in

this wavelength range, there is a band gap for both TM and TE polarized electromagnetic

waves.

Looking at the mode shapes for this specific type of PhC structure is also important.

Fig. 3.15 shows two of the modes associated with the air columns in dielectric substrate

PhC configuration, one low order and one higher order mode. By looking at these figures,

it can be observed that modes try to concentrate on high dielectric regions to minimize

their frequencies. At the same time, they try to be perpendicular to each other. The band

gap phenomenon in PhCs can be very roughly described to be emerging as a result of this

process.
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Figure 3.14: TE band diagram for the specific PhC configuration consisting of air columns
in dielectric. Each line in the plot indicates a mode that can propagate in the structure,
and these modes are plotted as a function of frequency and wave vector (k) direction in the
Brillouin zone. The most significant band gap is in f = (0.4− 0.45)(c/a) frequency range.
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Figure 3.15: Two different mode structures associated with the air columns in dielectric
substrate PhC configuration. As can be observed from these figures, modes try to concen-
trate on high dielectric regions to minimize their frequencies. At the same time they try to
be perpendicular to each other. (left) This is one of the low order modes (right) This is a
higher order mode.
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Figure 3.16: PhC configuration with dielectric columns in air. The structure is in a square
lattice geometric shape. This figure is also created using MIT’s Photonic Bandgap tool
(MPB). [30]

3.3.2 Dielectric columns in air in a square lattice structure

Using dielectric columns in air with a square lattice structure is another common method.

This structure is periodic in two of its axes and homogenous in the third. For certain values

of columns spacing, this crystal can have a photonic band gap in the plane cutting all the

rods. As mentioned previously, inside this frequency range, no extended states are allowed,

so the incident light in this plane (regardless of its angle) is reflected. In general we see TM

band gaps in this type of structures, yet TE band gap doesn’t exist or exist in very small

frequency ranges. In Fig. 3.16, the top view of this type of a structure is indicated. Also,

Fig. 3.17 shows a fabricated version of this PhC type.

When a similar analysis that was conducted in section 3.3.1 is conducted for this type

of structures, which are indicated in Fig. 3.16 and Fig. 3.17, the following results can be

observed.

First of all, Fig. 3.18 shows the TE (transverse electric) band diagram of this structure.

There is almost no band gap as indicated in the figure, except an insignificantly small one

around f = 0.82(c/a). Similar to the band diagrams that are discussed previously, each line
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Figure 3.17: Fabricated 2D PhC structure consisting of dielectric columns in air. [15]

Μ Γ Ζ Μ
0

0.2

0.4

0.6

0.8

1

k−index

F
re

qu
en

cy
 (

c/
a)

Bandgap

Figure 3.18: TE band diagram for the specific PhC configuration consisting of dielectric
columns in air. Each line in the plot indicates a mode that can propagate in the structure,
and these modes are plotted as a function of frequency and wave vector (k) direction in the
Brillouin zone. There is almost no band gap for TE polarized light except an insignificantly
narrow one around f = 0.82(c/a)
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in this figure corresponds to a specific mode as a function of frequency and wave (k) vector

direction in the Brillouin zone. The next figure, Fig. 3.19, indicates the TM (transverse

magnetic) band diagram of the same structure. In this case, it is important to note the

significantly wide band gap in f = (0.3 − 0.4)(c/a) frequency range. In addition to this,

there is another small band gap around f = 0.75(c/a). In the case of PhCs consisting of

dielectric columns in air, there is not a “total band gap” in the observed frequency spectrum.

Consequently, it can be asserted that for this type of PhCs, TM polarized electromagnetic

waves should be preferred in order to get an efficient and reliable band gap.
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Figure 3.19: TM band diagram for the specific PhC configuration consisting of dielectric
columns in air. Each line in the plot indicates a mode that can propagate in the structure,
and these modes are plotted as a function of frequency and wave vector (k) direction in
the Brillouin zone. There is a significantly wide band gap in f = (0.3− 0.4)(c/a) frequency
range. Also, there is a smaller one around f = 0.75(c/a).

Looking at the mode shapes for this specific type of PhC structure is also important.

Fig. 3.20 shows two of the modes associated with the dielectric columns in air PhC con-

figuration, one low order and one higher order mode. By looking at these figures, it is

again very clear that modes try to concentrate on high dielectric regions to minimize their

frequencies while trying to be perpendicular to each other. Ultimately, this leads to the

band gap phenomenon in this type of PhCs, similar to the type described in section 3.3.1.
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Figure 3.20: Two different mode structures associated with the air columns in dielectric
substrate PhC configuration. As can be observed from these figures, modes try to concen-
trate on high dielectric regions to minimize their frequencies. At the same time they try to
be perpendicular to each other. (left) This is one of the low order modes (right) This is a
higher order mode.

3.3.3 Line defects and waveguides in 2D PhCs

Figure 3.21: Top view of the 2D PhC with an intentionally introduced line defect. The defect
is created by removing a row of dielectric rods from its original and perfect configuration,
which is a 2D square lattice dielectric rods in air.

As already mentioned, an electromagnetic wave cannot propagate through a PhC if its

frequency falls inside the band gap. However, it is possible to excite guided modes inside the

band gap by intentionally locating defects in the perfect PhC structure [37]. In this case,

propagation ability is activated for certain frequencies in the band gap. If this situation is

realized by the insertion of defects along a line in the PhC, then the resulting structure is

nothing but a waveguide [38]. The reason is that the light which enters this defect region
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can only propagate in the defect direction and it cannot move in any other direction because

of the band gap property. Two possible waveguide methodologies are shown in Fig. 3.21

and Fig. 3.22. The first waveguide is created by removing a row of dielectric rods from

the perfect 2D PhC structure. Consequently, light can only propagate on this line defect,

which is basically a waveguide. Similar situation holds for the second guide except it is

implemented by removing a row of air holes. In both waveguides, light can only propagate

in the waveguide, and cannot scatter in any other direction by means of the band gap

property.

Figure 3.22: Fabricated 2D triangular lattice PhC structure with a built in waveguide. The
line defect is created by removing a row of air holes from the original and perfectly periodic
configuration, which is a 2D triangular lattice air columns in a dielectric substrate. [57]

Fig. 3.23 shows one of the localized defect modes for the TM polarized electromagnetic

waves for the structure indicated in Fig. 3.21. In its perfect configuration (without the

waveguide), this PhC structure had a band gap around f = (0.3 − 0.4)(c/a) frequency

range as indicated in Fig. 3.19. However, when the line defect is introduced, a localized

defect mode is introduced into the band gap, which is indicated in Fig. 3.23. And this is

the mode that can now propagate through the waveguide, and the shape of this mode is

shown in Fig. 3.24.
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Figure 3.23: Localized defect mode for the TM polarized electromagnetic waves for the
structure shown in Fig. 3.21 is indicated. In its perfect configuration, there is a band gap
around f = 0.3 − 0.4(c/a). However, line defect created by removing a row of dielectric
columns creates a defect mode in this band gap now.

Figure 3.24: The shape of the localized mode indicated in Fig. 3.23 is shown. As can
be observed from the figure, the light is only propagating in the waveguide, and does not
scatter to any other direction because of the band gap property of the PhC.
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By using the PBG effect of PhCs, it is possible to create a completely new class of

electromagnetic waveguides [10]. First of all, by adjusting the symmetry and dimensions

of the structure, it is possible to guide a large interval of frequencies, including visible

light. Furthermore, when PBG effect compared to total internal reflection (TIR) is used,

it is possible to create lossless sharply bended (like 90 degrees) waveguides. Lossless sharp

bends and branches in PhC waveguides have been demonstrated in literature [57, 5, 35].

In other words, lossless waveguides with bend and branch curvature radiuses on the order

of light wavelength are possible to be implemented using PhC waveguides without being

dependent on TIR methodology [35]. An example of this type of a structure is shown in

Fig. 3.25. In this figure, a sharply bending waveguide, created by removing some of the

dielectric rods, is indicated.

Figure 3.25: A 2D PhC waveguide with a 90 degree bend is fabricated. The line defects
are created by removing a row and a column of dielectric rods from the perfectly periodic
configuration. [15]

As explained in this section, PhCs have very unusual and interesting characteristics.

As a result, since their recognition in 1987 by Yablonovitch[74], there has been expo-

nentially increasing interest in photonic crystal devices. For example, devices have been

demonstrated for a wide number of interesting and innovative applications such as a nearly
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thresholdless micro-laser with very high modulation bandwidth[20, 39], a highly linear fiber,

a highly nonlinear fiber, an optical add/drop filter appropriate for next-generation dense-

wavelength-division-multiplexing (DWDM) channel spacings, and even an extremely effi-

cient light source[19].

Fabrication difficulties emerge as one of the most crucial problems related to PhCs and

PhC waveguides. Especially, large index contrasts between the constituting materials as

well as a very precise material morphology with a periodicity on the scale of the optical

wavelength are hard to achieve [5]. This will become more clear when we think that the band

gap properties of the PhC structures is totally affected by the dimensions of the periodicity,

and small unexpected distortions at the fabrication level might change the expected result

completely. For instance, a frequency, which normally would fall in the band gap and would

not be able to propagate, can pass through the PhC structure because of the problems at the

fabrication process that distorts the periodicity in very small scales. Also, another major

problem is achieving good confinement in the third dimension [10]. In order to solve this

problem, 3D PhC structures are being researched and analyzed, yet it still needs more time

because three-dimensional photonic crystals for visible light could have been successfully

fabricated only within the past year or two [38].

3.4 Proposed PhC/NEMS Structures

As explained in the previous sections, both PhCs and MEMS/NEMS structures lead

to very novel applications. However, a structure that is a composition of PhCs and

MEMS/NEMS would provide much more novel and revolutionary results and applica-

tions. The main reason behind this novelty is the capability of manipulating the un-

usual optical characteristics of PhCs (both dispersion and band gap) using tunability of

nanoscale MEMS/NEMS devices. The motion (uniform or non-uniform) provided by the

MEMS/NEMS devices affect the band structure of the PhCs and cause very interesting re-

sults. Consequently, in this thesis, the main focus of discussion will be on structures which

are created by integrating PhCs and MEMS/NEMS. A good deal of work is already being

actively pursued internationally to improve the theory and understanding of the nanoscale



67

interaction between PhCs and MEMS/NEMS [21, 48, 16, 44]. However, it can be asserted

that this research needs more time to become mature and create commercially available

products.

Two main broad classes of devices are proposed as a result of the integration of PhCs

with MEMS/NEMS structures: 1) Dynamically reconfigurable optical ICs and 2) Nonlinear

optical devices, “wavelength converters” to be more specific. In the first part of this section,

proposed reconfigurable optical ICs will be described and detailed information about the

PhC-NEMS mechanism behind them will be given. In the second part, integrated PhC-

NEMS structures capable of providing wavelength conversion will be analyzed in detail.

3.4.1 Reconfigurable Optical Integrated Circuits

Figure 3.26: 2-D photonic crystal with integrated NEMS in default configuration with no
defects. The light gray circles represent the NEMS discs that can be rotated individually.

For the realization of reconfigurable optical devices, the following architecture is sug-

gested. The dielectric rods in a 2D square lattice PhC shown in Fig. 3.16 and Fig. 3.17 are

fabricated on top of an array of NEMS structures that are capable of rotation. On each

rotating disc, there is a dielectric rod etched close to the edge of the disc. The diameter

of each disk is slightly smaller (0.8a) than the lattice constant of the PhC structure (a), so

that when the disc rotates, the center of the dielectric rod on it traces out a circle with a

diameter of 0.5a. Each NEMS disk is accessible individually, and this creates an important

amount of flexibility in the device structure. The geometric position of the PhC rods can be



68

manipulated using the NEMS rings, and as a result, PhC above the rings can be configured

to be in any required, specific shape.

Fig. 3.26 shows a 6 × 9 array of the NEMS discs and rods in their default position.

As can be observed in this figure the rod structure above the rotating NEMS rings ap-

pears to be a periodic 2D square lattice PhC, and hence has the associated forbidden

band gap and dispersion properties. However, by rotating some of the NEMS rings, (and

dielectric rods above them) different functionalities can be produced. Also, all of these pos-

sible functionalities can be implemented in a single chip, and this could be a revolutionary

multipurpose-nanophotonic integrated circuit.

Figure 3.27: 2D PhC NEMS structure in a line defect configuration

The first possible functionality of this type of a structure is as a channel waveguide. As

indicated in Fig. 3.27, by rotating some of the dielectric rods, line defects can be created in

the PhC structure. As mentioned in section 3.3, this allows certain modes, with frequencies

in the band gap range, to propagate in the PhC without any losses and dispersion. Since

the waveguides can be created in a reconfigurable manner, any port in the chip can be

connected to any other port. In addition, different connections in the chip can be done

simultaneously, because each rod is individually addressible.

The second potential functionality is as the beam splitter/combiner. After some of the

rods in the structure are configured to create a line defect, an optical beam can propagate

in this waveguide. If the suitable arrangement of the rod positions is accomplished as shown
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Figure 3.28: 2D PhC NEMS structure in a beam splitter configuration

in Fig. 3.28, the single beam can be split into any required amount of separate beams. If the

process is reversed in a similar manner, beam combining can also be achieved in the device.

Again these two opposite operations can happen at the same time at different segments of

the chip which adds more to the flexibility of the proposed structure.

In addition to simple beam splitting/combining operations, more complicated tasks can

easily be achieved. For example, Fig. 3.29 shows the configuration of rods in the proposed

structure to realize a Mach-Zehnder interferometer. Basically, after a beam is split into two

separate beams, phase in one of the branches can be modulated by small deviations in the

position of the NEM cell marked “A”. Depending on the amount of phase shift, the beams

can interfere destructively or constructively.

3.4.2 Nonlinear Optical Devices

Another class of devices with very interesting characteristics can be created if the optical

waves get into interaction with moving structures, such as NEMS. When the light interacts

with static structures, the modes and interaction coefficients remain unchanged. However,

when there is an interaction with moving structures, the characteristics of the optical wave

become time-variant. In addition to this, very important phenomenon such as wavelength

conversion as a result of the Doppler effect is possible.
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Figure 3.29: 2-D photonic crystal based Mach-Zehnder interferometer. The NEMS marked
“A” can be used to modulate the path length and hence the phase of the input.

The Doppler effect can be described as a change in the frequency of a wave when the

source of the wave or the observer are moving with respect to each other. From a physical

point of, when the source of an optical wave with a frequency of f0 is moving towards an

observer with a speed of v, then the speed of light emitted by this source would be observed

to be c+v, where c is the speed of light in free space, by the observer. However, from a

relativistic point of view, this is not possible because the speed of light is constant at c in

all frames of reference. Consequently, the effect of v is converted into a frequency increase,

and the frequency of the light observed by the observer becomes f=f0 + f ′, where f ′ is the

Doppler shift associated with the frequency of the optical wave. f ′ is a function of the speed

of the source. The reverse case applies if the source is moving away from the observer, and

essentially observer sees the optical wave with a frequency of f=f0 − f ′. This situation is

indicated in Fig. 3.30. In this case, the source is moving towards left, and as shown in the

figure, the peaks of the periodic optical wave come closer on the left hand side while the

peaks on the right gets further away from each other. In other words, frequency on the left

hand side is increased while the frequency on the right hand side is decreased due to the

Doppler effect.

In this section, two different structures will be proposed both of which are composed

of integrated PhC-NEMS structures and are capable of all optical wavelength conversion:

1) Rods on counter-rotating NEMS rings 2) Sliding rods on an “L” shaped NEMS track.
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Figure 3.30: The source is moving towards left. The peaks of the periodic optical wave
come closer on the left hand side while the peaks on the right gets further away from each
other. In other words, frequency on the left hand side is increased while the frequency on
the right hand side is decreased due to Doppler effect. [70]

In both of these structures, the input optical wave to the PhC-NEMS structure will be

confined using PhC band gap property, and will gain a frequency shift as a result of the

Doppler shift created by the moving NEMS structures.

The first structure consists of two main parts. The first one is a 2D square lattice PhC

structure with a line defect (a waveguide) passing through it. The second part is a pair

of counter-rotating NEMS rings, on top of which some dielectric rods are etched. Initially,

these rotating rods align and complete the periodic 2D square lattice PhC structure above

the rings as indicated in Fig. 3.31. A side view of the same structure is shown in Fig. 3.32.

When the optical beam is propagating through the waveguide, the NEMS rings start to

rotate in opposite directions, and when the rotating rods on these rings close the waveguide,

the structure will temporarily confine light in a cavity whose dimensions are on the order

of the light’s wavelength. The light trapped in the cavity resonates between the collapsing

(moving) rods, and gain an enormous Doppler shift. When the rings and rotating rods

reopen the waveguide, the wavelength converted optical wave continues to propagate on the

waveguide. The Doppler shift of moving PhC-like structures can have some very unusual
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behavior. Very recently, Doppler shifts of 60 THz have been predicted due to shock waves

in PhCs [51, 52]. This extraordinary amount of frequency shift is entirely due to unusual

band gap properties of the PhCs.

Figure 3.31: Top view of the 2-D nonlinear photonic crystal MEMS/NEMS structure based
on counter-rotating rings. After the waveguide is created and the light is coupled into this
waveguide, the NEMS rings start to rotate in the directions indicated in the figure. Initially,
the waveguide is open, and after a while, NEMS rods on the waveguide close and trap the
light in a cavity.

Figure 3.32: CAD view of the structure indicated in Fig. 3.31

The second structure is very similar to the first one, yet the moving rods are implemented

in a different manner using a different NEMS structure. This structure also consists of two

main parts. The first one, square lattice 2D PhC with a built in waveguide, is the same as

the former structure. However, this time the moving rods are etched on a NEMS device
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that follows an “L” shaped track. The structure is indicated in Fig. 3.33 and Fig. 3.34.

The rods slide out of the periodic 2D PhC structure when the optical wave is propagating

through the waveguide. As the moving rods are moved close to each other, similar to the

first structure, the moving rods complete the periodic PhC structure, and light is trapped in

the very small sized cavity. As the cavity collapses, the trapped light gains a huge Doppler

frequency shift. When the moving rods slide out of the waveguide through the static PhC

rods, the wavelength converted optical beam continues to propagate through the waveguide,

but with its new frequency.

Figure 3.33: Top view of the second 2-D nonlinear photonic crystal MEMS/NEMS structure.
The idea of the operation is very similar to the first one indicated in Fig. 3.31 but this time
the motion is based on sliding MEMS/NEMS structures on an “L” shaped track.

At this point, it is important to note the reason of this high amount of Doppler shift

occurring in both of these structures. When the light is temporarily trapped in the cavity,

since it travels many magnitudes of order faster than the speed of the dielectric rods (NEMS

devices), it will effectively bounce millions of times off of the two moving mirror-like PhC

surfaces. Each time it will gain a small amount of Doppler shift but these frequency shifts

accumulate and create an enormous Doppler shift. Also, if desired the speed of the moving

rods in each case can be controlled to provide small or large frequency changes. Furthermore,
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Figure 3.34: CAD view of the structure indicated in Fig. 3.33

if the direction of the movement in each case is reversed (away from each other in the cavity),

the Doppler effect will result in a down conversion which is subject to similar limits as the

up conversion.

The frequency conversion that occur in the collapsing cavities of these structures can also

be explained using the adiabatic theorem. Adiabatic theorem in quantum theory mainly

refers to the evolution of systems that have very slowly changing Hamiltonians (H). The

theorem roughly asserts that “if a state is an instantaneous eigenstate of a sufficiently slowly

varying H at one time then it will remain an eigenstate at later times, while its eigenenergy

evolves continuously” [56]. This idea can also be applied to our case where the motion of

the side walls of the created cavity cause a very slowly varying Hamiltonian in the system.

Initially trapped mode in the cavity has the initial frequency. As the side walls collapse

(with a velocity much smaller than the speed of light), the energy in this mode is transferred

to another mode which has a different frequency. However, since the transition is very slow,

the new mode can still exist in the cavity without escaping. This process explains the

wavelength conversion that we expect to see in a more accurate and intiutive way.
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3.5 Proposed Fabrication Schemes

In this section, the proposed structures are discussed from the perspective of possible

fabrication methodologies [1]. We begin by reviewing some of the important fabrication

methods used in the realization of current IC, PhC and MEMS/NEMS structures. These

specifically examined fabrication methods are also related to the methods found in the

contemporary literature. Then, we explain the general mechanism and operation of each

proposed structure. Next, we propose a possible fabrication scheme for each structure and

give details of the process steps.

3.5.1 PhCs and MEMS/NEMS Fabrication Technology Review

After an IC is designed and its correct functionality is proven using computerized simu-

lation tools (if available), the next step is to fabricate it. The fabrication technology has a

great pace of advancement and has become very mature especially in the last years. Very

complicated integrated circuits with billions of transistors or MEMS/NEMS components

can now be manufactured very easily and efficiently. In this subsection, current status

of the fabrication technology will be provided before analyzing the proposed PhC-NEMS

structures from a fabrication and realization point of view. In the first part, popular fabri-

cation processes will be described and analyzed in detail. In the second part, MEMS/NEMS

specific fabrication issues will be examined.

Pattern transfer is the first step in the fabrication process. It is mainly composed of

lithography and etching. Lithography is the process of transferring an image of the structure

onto the substrate. Two of the most popular lithography techniques are electron-beam (e-

beam) lithography and standard photolithography.

In the e-beam lithography, the image of the designed structure is transferred onto the

wafer using an electron gun. The electrons are sent to the wafer in a specific configuration

which represent the shape of the proposed structure. This is a direct write technique and

consequently does not use any masks, which is an indispensable requirement for standard

lithography. The main advantage of the e-beam lithography is that it can reach to very

high resolutions on the order of 10 − 20 nm. The main disadvantage of this technique is
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the low processing speed which is a direct result of the fact that this is a series lithography

mechanism. In other words, electrons draw the image of the structure onto the wafer grid

by grid. This leads to a low throughput. Ultimately, this technique is hard to become

commercial, and it is usually used for research and development purposes.

The standard photolithography on the other hand is a much faster method because

it works in parallel. In other words, the image of the whole structure is written onto

the substrate at once. Since it has a very high throughput, this method is very highly

commercialized. Standard photolithography uses masks to transfer the specific shape of

the design onto the image. The main disadvantage of this technique is that the possible

resolution is limited to 100 nm. Also, since masks are being used, alignment issues might

occur and make the process more difficult to deal with.

Among these two lithography choices, e-beam lithography is an excellent candidate for

PhC structures [23, 27]. It should also be noted that there are also some PhC structures

which use a two-step hybrid method of multiple exposures (interferometric patterning) and

direct write [46]. This is a lower cost and faster method. For our candidate designs we

will consider standard photolithography techniques for the rotating rings, sliding plates and

rotation mechanisms as discussed in reference [62].

After the image of the structure is transferred onto the substrate using lithography, the

structure is actually created using etching. Two most popular etching methods are Reactive

Ion Etching (RIE) and Wet (Chemical) Etching.

Reactive ion etching (RIE) is one of the most popular techniques used in the literature

[73, 76]. In the RIE, ions are replaced between two oppositely charged parallel plates and

are accelerated towards the surface of the wafer, which is replaced on one of the plates.

When the ions hit the surface of the wafer, they actually etch the substrate and shape it in

the desired manner. Etching conditions depend on parameters such as pressure and radio

frequency (RF) power. This is a very anisotropic process with very perpendicular side walls,

and very high aspect ratios are possible if this method is used in the etching step. Also, it is

very highly selective in terms of deciding which materials need to be etched and which ones

should not be etched. Another advantage of this technique is the poor surface roughness at

the etched surface. Consequently, RIE emerges to be the most appropriate etching choice
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for the proposed structures. The main disadvantage in this method is the residual damage

which occurs because the accelerated ions are hitting the surface of the wafer with very

high velocities.

Wet etching on the other hand is a chemical process. Basically, wafer is put into a

suitable chemical solvent which etches away the required sections of the wafer. This is a

very highly selective process similar to RIE. The main disadvantage of this technique is its

isotropic characteristic at the side walls. Side walls are usually not in perpendicular shape

because in this method the process control is poor and this leads to some unwanted extra

parts of the substrate being etched away too. Another disadvantage of the method is the

surface roughness at the side walls of the etched layer.

While the pattern transfer steps are being implemented in the fabrication of an inte-

grated circuit, if a new layer of material is needed to be covered on the wafer, a deposition

process is required. There are two main and popular deposition processes available in to-

day’s fabrication technology: Physical Vapour Deposition (PVD) and Chemical Vapour

Deposition (CVD).

In the PVD, the material that we want to deposit on top of the wafer is put in a crucible

and evaporated. The evaporated material will climb up and stick to the surface of the wafer

that is attached to the ceiling of the system. This is mainly a physical method and chemical

reactions do not occur in PVD. This technique is usually used for metal depositions and it

is a lower quality deposition technique when compared to CVD. Consequently, it has a poor

step coverage and the deposited layers using PVD are not as uniform as layers deposited

using CVD.

CVD on the other hand is a totally chemical process. The material that will be deposited

on the wafer is transformed into gas form and sent through the wafers in a closed system.

As a result of the chemical reactions occurring between the wafers and this gas, deposition

is realized. Since this is a chemical process, it is totally dependent on the temperature and

pressure. This is a very highly uniform process when compared to PVD. It also provides a

better step coverage. Consequently, CVD is mostly preferred over PVD if the uniformity

is a very critical criteria in the structure that is being fabricated. Low pressure chemical

vapor deposition (LPCVD) is a method of CVD which provides better uniformity on the
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deposited layer than CVD. Plasma-enhanced CVD is another method in which it is possible

to deposit thin films at lower temperatures. One of these methods, or maybe both of them,

can be applicable for the proposed designs.

At this point it is also important to note that when the deposited layer is not uniform

enough for the application the fabricated device will be used for, a separate technique is used

in order to reach to higher uniformity levels. This method is name Chemical Mechanical

Polishing (CMP). Basically, in CMP, the surface of the deposited layer is chemically and

mechanically polished using special machines.

All of these process steps are implemented on top of a substrate. Substrate choice

emerges to be another essential criteria in the performance of the fabricated device. When

the optical and MEMS/NEMS devices are concerned, there are three major possibilities

for the substrate: Silicon, Galium Arsenide (GaAs) and Silicon-on-insulator (SOI). Silicon

substrates are more common and mature when compared to the others. It has a relatively

lower cost and simpler processing. Consequently, silicon is the more appropriate choice for

most of the MEMS/NEMS devices. Second possible substrate choice is the GaAs. It is usu-

ally used for high speed and high frequency applications such as satellite communications,

radar systems and mobile phones. The disadvantage associated with this choice is that it is

usually very expensive and has a very complicated process. The third and the last possible

choice is the SOI. In some applications, SOI substrates are used for their higher quality

mechanical characteristics. However, it is not very common when compared to the first two

substrate choices.

PhC structures usually use Gallium Arsenide (GaAs) due to its more appropriate optical

properties. GaAs has a high dielectric constant, yielding a high refractive index difference

from air. References [34, 29] refer to experimental PhC structures consisting of GaAs

dielectric rods on a GaAs substrate. GaAs is a more difficult and less mature process than

Silicon (Si) which makes it less convenient to use for the proposed designs. Because Si

processing is behind the micro-chip revolution, it has evolved relatively quickly into a much

more practical, cost efficient, and well-developed technology. References [31, 67] discuss

PhC structures built using Si substrates and dielectric rods. Our prototype designs will

be centered around Si for the reasons just mentioned. In addition, because we integrate
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rotating and sliding micro-machines into the design, we will use polysilicon surface micro-

machining [62] in order to produce the composite device on a single wafer.

Another key specification of the fabrication process is the minimum feature size. While

the literature search related to PhC fabrication indicates that a minimum feature size of

100 nm is possible using modern fabrication methods such as e-beam lithography [49, 46],

the integration of the MEMS structure will necessitate a larger minimum feature size on

the order of 1 µm.

After reviewing the most popular fabrication methods used in today’s IC technology

in the first part, in the second part of this subsection, MEMS/NEMS specific fabrication

issues will be described and discussed. All of the methods mentioned in the first part can

also be applied when fabricating MEMS/NEMS structures. However, there are two main

techniques that are specific to MEMS/NEMS structures: Surface Micromachining and Bulk

Micromachining.

In the surface micromachining, the MEMS/NEMS structures are built on the deposited

thin film layers. Sacrificial layers, which constitute a crucial part of surface micromachining,

are used temporarily in order to create suspending structures and gaps in the device. If in the

surface micromachining, a very high aspect ratio is required, then a special technique named

LIGA process can be used. LIGA is the german acronym for lithography-electroplating-

molding. Cantilever beam RF switches and resonators, gear trains, micromirror arrays,

and microengines are some of the example applications that are fabricated using surface

micromachining. We will consider the use of surface micro-machining and sacrificial layers

to produce the suspended and rotating structures for our candidate designs. Also, it is

essential to note that to get suspending or rotating structures, a highly selective HCl/HF

(depending on the sacrificial material) acid etch is used [23, 76].

The second MEMS/NEMS specific fabrication issue is the bulk micromachining. In the

bulk micromachining, bulk itself is etched and shaped in order to create the MEMS/NEMS

device. In other words, MEMS/NEMS structures are created in the substrate. Diaphram

pressure sensors, membranes, and accelerometers are some of the applications fabricated

using bulk micromachining.

For actuation of both proposed structures, rotation of the rotating disk in the first
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proposed structure, and “L” shaped sliding of the NEMS plates in the second proposed

structure, approaches such as electrostatic comb-drive actuators [62] or torsional ratcheting

actuators [66] can be used. This motion can be transferred to the rotating disk and sliding

plates using micro-gears. Rotational micro-gears are actuated by the micro-engines. In the

case of the rotating rings structure, these micro-gears transfer this motion to the rotating

rings using a standard gear mechanism. In the case of “L” shaped sliding plates, two

racks connected between transmissions and the sliding plates will transfer the motion of the

microengines to the NEMS plates of the proposed structure.

3.5.2 Fabrication issues of the proposed structures

Figure 3.35: (left) Side view of ring portion of proposed prototype 2-D photonic crystal with
integrated MEMS. The red and yellow rods are attached to the rotating ring underneath.
The remaining rods are stationary and spaced on a square grid of edge length a. (right)
Top view of ring portion of proposed structure. The photonic crystal rods that are on the
circle are attached to the rotating ring fabricated below the 2D photonic crystal structure.

Fig. 3.35 (left) illustrates the proposed rotating ring structure. It is composed of two

main parts. The top of the device is a two-dimensional (2D) PhC consisting of Silicon (Si)

rods in air. The rods are spaced on a square lattice of edge length a. The novel feature in

this design consists primarily of the bottom portion of the device which is a rotating ring

that is attached to the PhC rods that lie directly above the ring. Fig. 3.35 (right) shows

the top view of the ring where the rods that are part of the ring are clearly distinguished

from the other stationary rods. It is also important to note the distance between the PhC

layer and the substrate on which the rings are built. This parameter does not affect the

theoretical device performance, but it does strongly impact the feasibility of fabrication.
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This distance should be as small as possible in order to decrease the aspect ratio (which is

the height over width ratio for a fabricated structure) for the longer rotating rods. As the

aspect ratio increases, fabrication becomes increasingly more difficult.

Figure 3.36: Fabrication schematic for proposed ring PhC MEMS structure. Shown is a
one-dimensional slice following the line L in Fig. 3.35.

Fig. 3.36 and Fig. 3.37 show one possible fabrication scheme for the proposed struc-

ture. The schematic shows a one-dimensional slice following the line L in Fig. 3.35. It is

important to note that the entire structure is fabricated on a single wafer using surface

micro-machining.

The process begins with the single crystal silicon substrate (Step A). A photolithography

step is used to transfer ring pattern to the substrate and the ring shape is created using

RIE. The etched circular ring shape is deposited with SiO2 using PECVD (Step B). SiO2

is etched along the ring shape to connect the polysilicon to the substrate. Then polysilicon

is deposited and is etched outside the ring shape (Step C) creating the rotational ring. The

sacrificial SiO2 is etched away using a highly selective etching method and the backside

wafer is bonded to the structure. The last step is to etch the rods using RIE (Step D). The

product is indicated in Fig. 3.37. This figure shows the rectangle indicated in Fig. 3.36 in
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Figure 3.37: The rectangle of Fig. 3.36 is shown in more detail.

more detail. The rotation of the ring will be controlled electrostatically by use of a driver

IC. Features such as rotation speed and direction can be adjusted using this external IC. It

is also important to note that this is the process scheme for one rotating ring only. In the

proposed design there are two counter-rotating rings and a waveguide at their intersection.

The second ring will also be fabricated using same steps placed adjacent to the first ring

(since they are both on the same substrate), and the waveguide can be created at the last

etching step in which the PhC pillars are fabricated.

The proposed rotating rings structure has been discussed with process experts from the

fabrication industry and research laboratories. The above process steps are determined by

cooperation and support from the Washington Technology Center Microfabrication Facility

(WTCMF), which is the largest public microfabrication facility in the Pacific Northwest.

This microfabrication lab has a class 100 clean room with various process capabilities in-

cluding MEMS and micro-optics.

Possible fabrication process steps and methods for the second proposed structure, the

sliding plates on an “L” shaped track, are still being investigated. Since the structure

composed of rotating rings was discovered before the sliding plates, a detailed analysis (even

discussions with process experts from various clean rooms) about the fabrication issues for

this structure could be conducted. However, since the performance of the rotating rings
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case was not as expected, another topology has been investigated and the sliding plates on

an “L” shaped track was discovered. Ultimately, a more profound fabrication analysis of

this topology will be conducted in the following years.

3.6 Results

In this section, results associated with each of the proposed wavelength conversion struc-

tures will be presented. Both structures are simulated using an enhanced 2D FDTD sim-

ulator. This 2D simulator has the capability of accurately modeling and simulating elec-

trodynamics of moving structures because it is enhanced with the 2D version of the linear

interpolation method, which is described in detail in section 2 of this thesis. By apply-

ing previously suggested linear interpolation to simulate these two much more complicated

structures, we prove that the suggested method is also applicable to more complicated cases,

and it provides efficiency and accuracy even with these types of hard to model cases [32].

This section is organized as follows. In the first part, details of the FDTD implementation

for both of the proposed structures will be discussed. Next, in the following two subsections,

test cases and associated results for the proposed structures will be presented.

3.6.1 Implementation in FDTD

First of all, a 2D PhC structure is created in the main FDTD domain. This PhC consists

of dielectric rods which are surrounded by air and has a lattice constant of a=1.5 µm. The

dielectric constant associated with the dielectric rods is ε=12 and air is ε=1. Both of these

materials, silicon and air, have zero conductivity, relative permeability of one, and they do

not have any magnetic losses. These are important parameters that can be set to different

values in our FDTD simulator. The lattice distance is divided into 10 space increments,

which corresponds to a dx=0.15 µm. To stay in the stability region, the ratio between the

space increment and the time step values of the FDTD simulations is set to be dx/dt=2× c

where c is the speed of light in vacuum. The diameter of the dielectric rods are 0.5a, which

is represented by 5× dx in discrete space.

The input source frequency used in the simulations is set to be in the band gap of the
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2D PhC and we chose to work with the TM (Transverse magnetic) polarized light because

dielectric rods in air configuration of the 2D PhCs provides a much larger bandgap with

this type of polarization, as described in section 3.3. The frequency of the source is selected

to be 0.3 × c/a, which is at the low edge of the band gap as indicated in Fig. 3.19. We

specifically chose this frequency because in the conducted simulations, the main focus is

on an up frequency conversion. Consequently, we wanted the frequency converted light to

remain in the band gap for a considerable amount of time so that we would be able to

observe the conversion in our analysis. If on the other hand, we had picked the source

frequency to be close to the upper edge of the band gap, then after a short time period, the

implemented PhC would lose its ability to confine the existing wave because the frequency

of this wave would go above the band gap of the PhC. This situation would make the

analysis very difficult. In addition, the source used in simulations creates a pulse with a

constant carrier frequency and the pulse is shaped with a very wide Gaussian envelope.

This specific source type is intentionally selected because of its easier to analyze frequency

response. Since the amplitude of the pulse increases very slowly (due to its Gaussian

envelope) and the pulse width is very large when compared to the source wavelength, only

a single frequency appears when this pulse is Fourier transformed. This is a preferred

situation because it is easier to analyze the Doppler shift associated with a single frequency,

and also we can predict the behavior of this pulse in the 2D PhC structure more precisely

because we can accurately determine where on the band diagram it is. While trying different

simulations with different source structures, we encountered situations in which more than

one frequency propagated in the PhC waveguide (since the source pumped more than one

frequency into the structure), and this made the simulations and calculations messier and

harder to comprehend. In addition, the source is specified to be a point source because in

FDTD the sources created are “hard sources” which means that we are actually forcing a

single point in the calculation domain to have a specific field value in every time step. This

is against the nature of the FDTD calculations and causes reflections from that point as if

there were a perfect mirror at that specific spot. A point source rather than a plane wave

(in which case a vertical line of points in the calculation domain are forced to the source

field value) is preferred to decrease the amount of reflections to negligible levels.
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In each simulation, each rod in the main FDTD window is represented as a separate

object, a separate entity in other words. The developed FDTD simulator is object oriented

which aims to make the simulations more efficient and decrease the simulation times. In

this scheme, there are two main classes: 1) Stationary objects 2) Moving objects. For the

stationary objects, the geometric and electromagnetic coefficients are calculated only once

and these initially calculated values are used in each time step to estimate the electric and

magnetic fields in the FDTD domain. However, when there is motion in the main FDTD

window, these coefficient need to be updated around the moving object. Since we have a

separate class for moving objects, only the regions around moving objects are updated in

the simulation, which decreases the simulation time considerably. Similarly, the 2D version

of the linear interpolation method is applied only to the moving objects, and not to the

stationary objects. Furthermore, each object in the moving objects class can have its specific

motion function. Ultimately, each object in the simulation domain can move according to

a required motion trajectory. In our test cases, we have two separate motion trajectories,

which will be discussed in the following sections, but our simulator is capable of simulating

many different trajectories due to its object oriented nature.

To be able to observe and analyze the parameters associated with the fields that are

present in the simulation domain, monitors are used. They are analogous to the ossiloscope

probes in electronic circuits, and we used these monitors to record and check the field

characteristics in different parts of the structures we simulated. Also, the periphery of

the main FDTD window is covered with a perfectly matched layer which behaves as an

absorbent and prevents reflections from the edges of the simulation area.

3.6.2 Rotating Rings

In this section, implemented test cases and results associated with the proposed ro-

tating rings structure will be provided and analyzed. This structure is implemented and

simulated in our FDTD simulator to prove that it actually performed as expected in terms

of wavelength conversion.

The details of the first test case we simulated is shown in Fig. 3.38 at three different times.

In this test case, each of the rotating rings are simulated to rotate total of 10 degrees in 7
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SOURCE OBSERVATION POINT

t = 0 ps

(a)

t = 3 ps

A
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(b)
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Figure 3.38: Simulated rotating rings structure is indicated at three different time steps. The
PhC rods that are on the NEMS rings are indicated with different colors. The trajectories
of the rings are also shown with large arrows. The angular velocity of the rotation is
w=240 × 109 rpm=8π × 109 rad/s. Initially at t=0 ps, the rings are rotated -5 degrees.
Around t=3 ps, the waveguide is closed and the light is trapped in the cavity which we
observed using the indicated observation point. After the rings open at t=7 ps, the frequency
shifted light will continue to propagate on the waveguide.
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Figure 3.39: The spectogram result associated with the simulated structure indicated in
Fig. 3.38

ps, and the diameters of the large rings are 10 lattice constants. The moving dielectric rods

on two large NEMS rings are indicated with different colors, and their motion trajectory

is indicated with two large circular arrows. The angular velocity of the rotating NEMS

rings is 240 × 109 rpm, which corresponds to 8π × 109 rad/s. At t=0 ps each NEMS ring

is rotated -5 degrees from its perfect configuration which is shown in Fig. 3.31. The source

is located on the left side of the waveguide. Initially, since with the -5 degrees rotation

as shown in Fig. 3.38 (a), the periodicity of 2D PhC structure is disturbed, some amount

of the pulse created by the source will couple into the cavity which we will observe using

the observation point located in the middle. Next, the rotation begins and the moving

rods on each rotational NEMS ring moves as indicated by the large arrows. At t=3 ps,

the configuration of the structure becomes as shown in Fig. 3.38 (b). In this configuration,

the cavity is closed from two sides and since the moving rods are aligned with the periodic

structure of the 2D PhC, the light is trapped in the cavity. After this point, as the moving

rods on the waveguide get closer to each other, the trapped light is supposed to gain an
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up frequency conversion. Since the speed of the trapped light is much higher than the

velocity of the moving rods, the trapped light will bounce off of the moving rods millions

of times gaining a small frequency shift each time. As a result, as time advances and the

structure reaches to the configuration indicated in Fig. 3.38 (c), what we expect to see is a

considerable amount of up frequency conversion in the frequency of the trapped light.

0.9 0.95 1 1.05 1.1
0

10

20

30

40

50

60

Normalized Frequency

Magnitude Spectrum

Source
Frequency

Doppler Shifted
Frequency

Figure 3.40: Frequency spectrum associated with the simulated structure indicated in
Fig. 3.38

However, when the frequency on the observation point is analyzed in detail and a spec-

togram associated with it is plotted as a function of time as shown in Fig. 3.39, a very

interesting result is observed. As the time advances, the frequency of the trapped light

decreases by almost 5% instead of increasing as expected. The exact same result is also

obtained when the time signal on the observation point is Fourier transformed into the

frequency domain. This result is indicated in Fig. 3.40. The frequency axis is normalized

to the input source frequency, and the magnitude spectrum is plotted as a function of nor-

malized frequency. In this figure, the initial source frequency and the down shifted Doppler
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frequency are indicated. We can observe the 5% drop in the frequency in this figure too.

After some investigation, the reason for this decrease is discovered to be emerging as

a result of the moving rods marked as “A” and “B” in Fig. 3.38 (b) and (c). We had

expected that as the moving rods on the waveguide got closer to each other (in other words,

as the cavity along the waveguide gets compressed), the trapped light would gain an up

conversion. However, as the rings rotate, another cavity in the direction of the straight line

between rods “A” and “B” is created, and the size of this cavity increases as time advances.

Consequently, since the moving rods marked as “A” and “B” are moving away from each

other, a down frequency conversion will occur in this vertical cavity. To sum up, the trapped

light can travel in two different cavities one of which is compressing (up conversion) and

the other is decompressing (down conversion). At this point, an important and interesting

question that can be raised is why the frequency of the trapped light decreases but not

increases? The answer to this question can be found when the cavity lengths for each of

these cavities are considered. Since the length of the cavity that is decompressing (opening)

is smaller when compared to the length of the cavity that is compressing (closing), the

number of reflections occurring in the opening cavity direction (the straight line between

rods “A” and “B”) is larger than the number of reflections occurring in the closing cavity

direction (along the waveguide). Ultimately, there is an up frequency conversion but the

down frequency conversion is larger than the up conversion so we observe a net frequency

change in the down conversion direction.

To test if this was the real reason for the down frequency conversion, we created the

second test case which is indicated in Fig. 3.41 for three different time steps. In this case,

the only moving rods are the ones in the waveguide, and the rest of the moving rods shown

in Fig. 3.38 on the large circular arrows are replaced with stationary rods which complete

the 2D PhC periodicity. Initially, the moving rods are rotated by −θ degrees, and the

trajectory of the motion for these rods are indicated by circular arrows in Fig. 3.41 (a). At

this time step, since the periodicity of the 2D PhC structure is disturbed by the −θ degrees

of rotation, some part of the pulse created by the source which is located at the left edge of

the waveguide will couple into the created cavity. In 3 ps, the moving rods rotate θ degrees

and creates the configuration shown in Fig. 3.41 (b). After this time step, moving rods
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Figure 3.41: The time line for the same structure shown in Fig. 3.38, but this time the only
moving rods are the ones on the waveguide. The rest of the rods are stationary.
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continue to rotate in the shown direction till they reach to the indicated configuration at

t=7 ps as shown in Fig. 3.41 (c). As the rods move towards each other, the trapped light

will gain a Doppler shift in a similar manner discussed before in the previous test case.

However, this time there is only one cavity which is compressing (closing) and its length is

getting smaller as time advances. Since the moving rods on the side walls of the waveguide

are replaced with stationary rods in this test case, the decompressing (opening) cavity is

removed. In all three time steps of Fig. 3.41, the characteristics of the coupled and trapped

light in the cavity is monitored at the observation point indicated in this figure.
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Figure 3.42: The spectogram figure associated with the simulation of the structure shown
in Fig. 3.41 with θ=5 degrees. The result indicates a Doppler shift of almost 2.5 %.

When this structure is implemented and simulated for θ=5 degrees (w=240 × 109

rpm=8π × 109 rad/s), we get the spectogram result indicated in Fig. 3.42. As can be

seen in this figure, there is an up frequency conversion which proves our previous reasoning

about the observed down frequency conversion in the previous test case to be correct. There

is approximately 2.5 % up frequency conversion in this case because there is only one cavity

which is compressing along the waveguide. The decompressing cavity that was introduced
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Figure 3.43: The spectogram figure associated with the simulation of the structure shown
in Fig. 3.41 with θ=8 degrees. The result indicates a Doppler shift of almost 5 %.

in the previous case is removed by replacing the moving rods that cause the down frequency

conversion with stationary ones.

To test the effect of NEMS velocity on the amount of accumulated Doppler shift, we

simulated the same test case with a higher rotation degree: θ=8 degrees in the same amount

of time. This corresponds to an angular velocity of w=378×109 rpm=12.6π×109 rad/s. As

expected this caused a higher Doppler shift as indicated in the spectogram of Fig. 3.43. For

θ = 5 degrees, we had a frequency conversion of 2.5 % and for θ = 8 degrees, a frequency

conversion of almost 5 % is achieved. In both of these spectogram figures, the normalized

frequency at the observation point is plotted as a function of time.

When the time signal of the observation point is Fourier transformed for these two cases,

we get the magnitude spectrum result indicated in Fig. 3.44. In this figure, the frequency

spectrums associated with both θ=5 degrees and θ=8 degrees are plotted as a function of

normalized frequency. The frequency axis is normalized to the input source frequency. The

input frequencies and the Doppler shifted frequencies for each case is indicated in the figure.
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Figure 3.44: Frequency spectrum associated with the spectogram results indicated in
Fig. 3.42 and Fig. 3.43. The results match with each other.
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These results overlap with the results indicated in the spectogram figures for each case.

Results indicate that the proposed rotating rings structure is capable of all-optical wave-

length conversion. However, at this point, we should consider some important issues re-

garding the performance of such a device. First of all, efficiency of this structure should

be analyzed in some depth. Efficiency is the measure of how much of the input energy

with the initial wavelength has been converted to the new wavelength. In the rotating rings

structure, since the moving rods are near the ideal position for a very small percentage of

the time, the efficiency is expected to be at very low levels. When the moving rods are in

a position that disturbes the periodicity of the PhC structure, some of the trapped light

will leak out of the cavity. This is the main reason behind the low efficiency of the rotating

rings structure.

The velocity of the NEMS rings that is used in the conducted rotating rings simula-

tions is another important issue that needs to be discussed. For these simulations we used

w=240×109 rpm=8π×109 rad/s (and w=378×109 rpm=12.6π×109 rad/s). These values are

not very practical because highest angular velocity achievable using today’s MEMS/NEMS

technology is on the order of 106 rpm. These angular velocity values are chosen for con-

venience, because the simulations would take a very long time if we had simulated the

proposed structure using the practical MEMS/NEMS velocities. Also, changing the veloc-

ity of the rotation only changes the total amount of time that is required to reach to the

same wavelength conversion amount. For example, if angular velocity of w=w0 causes a %

frequency conversion in t=t0 seconds, then w=0.5 × w0 causes a % frequency conversion

in t=2 × t0 seconds. The change in the velocity is reflected as a scale factor in the time

axis. This makes sense because with higher velocity, the amount of Doppler shift for each

reflection will be larger but the total time of conversion is small. For the small velocities

on the other hand, the amount of Doppler shift for each reflection will be smaller but the

total time of conversion is large.

One last issue that needs to be considered in connection to the MEMS/NEMS velocity

is the pulse shape preservation. Since different amounts of the trapped light leaves the

cavity at different times (depending on the position of the moving rods), the pulse shape of

the input beam cannot be preserved after the wavelength conversion. In other words, the
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input pulse (as a result of the interactions with the moving NEMS structure) heterogenously

spreads out and loses its shape. This means that the data decoded on the input beam (by

amplitude modulation) is lost after the conversion. Furthermore, a more profound analysis

on the issue can be conducted if the optical data rate (data period) and the confinement

time in the cavity of the proposed structure are compared. If a 100 Gb/s optical data

rate is assumed in an optical network, then the received/transmitted data period will be

10 ps. This means that the rotating rings wavelength conversion mechanism will need to

sample an individual data bit every 10 ps. The results indicated in Fig. 3.42 and Fig. 3.43

show a confinement time of 7 ps, in which a total wavelength conversion of 2.5 % and 5

% are achieved respectively. Even though the confinement time in these cases seem to be

compatible with the optical data period of a 100 Gb/s optical network, the MEMS/NEMS

velocities used in these simulation that provide the mentioned confinement time is not

practical. On the other hand, if the optical data rate is assumed to be 1 Gb/s, then the

optical data period will be 1 ns. A compatible confinement time in the rotating rings

structure can be achieved with a MEMS/NEMS velocity on the order of w=240× 107 rpm,

which is still slightly larger then the practical (available) velocities, but definitely more

reasonable.

3.6.3 Sliding plates on an “L” shaped track

In this section, implemented test cases and results associated with the sliding plates on an

“L” shaped tracks structure will be provided and analyzed. This structure is implemented

and simulated in our FDTD simulator to prove that it actually performed as expected in

terms of wavelength conversion.

The details of the test case we simulated is shown in Fig. 3.45 at three different times.

Initially at t = 0 ps, the moving rods are in their initial position and they are indicated

with different colors than the stationary rods. The source is placed in the middle of the

waveguide and next to it is an observation point (monitor). This is shown in Fig. 3.45

(a). In the first 4 ps, the moving rods slide in a perpendicular direction to the waveguide

using the NEMS plates below, and at t = 4 ps they reach to the configuration indicated in

Fig. 3.45 (b). At this time step, a cavity is created and the existing light is trapped in this
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SOURCE OBSERVATION POINT

t = 0 ps

MOVING RODS

MOVING RODS

(a)

t = 4 ps

(b)

t = 11 ps

(c)

Figure 3.45: Simulated “L” shaped tracks structure is indicated at three different time
steps. The PhC rods that are on the NEMS rings are indicated with different colors. The
motion directions of the sliding plates at each time step are also shown with large arrows.
The velocity of the sliding NEMS plates is v0 = 6.6 × 105 m/s. Initially at t=0 ps, the
moving rods are not in the waveguide. For 4 ps, the moving NEMS plates and the moving
rods above them slide towards the waveguide. At t=4 ps, they reach to the center of the
waveguide and create a cavity.
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Figure 3.46: Spectogram figure associated with the simulated structure shown in Fig. 3.45.
The velocity of the plates is v=v0.
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cavity. The trapped light is confined perfectly because the wavelength of this pulse is in the

band gap of the 2D PhC that surrounds it. After this time step, the moving rods start to

move towards each other and compress the trapped light in the cavity where cavity length

is getting smaller and smaller as the rods come closer to each other. Fig. 3.45 (c) shows the

structure at t = 11 ps where it is getting very close to full compression.

The result associated with this test case is indicated in Fig. 3.46. In this figure, frequency

of the TM polarized electric field at the observation point is plotted as a function of time.

The time axis is in units of ps and the frequency axis is normalized to the input source

frequency. As can be observed from this figure, till t = 4 ps the only frequency present

in the observation point is the source frequency. In this time period, the rods are moving

in the perpendicular direction to the waveguide, consequently no Doppler shift is observed

in the electromagnetic wave that can propagate in the waveguide. However, after t = 4

ps, since some amount of light is trapped in the created cavity and the rods start to move

towards each other parallel to the waveguide, the frequency of the trapped light starts to

increase. Each time the trapped light reflects from the compressing rods, it gains a small

amount of Doppler shift. Yet since the speed of the trapped light is much faster than the

speed of the rods, the trapped light will bounce off millions of times of the moving rods

gaining a large amount of Doppler shift. This can actually be observed in this figure where

in approximately 7 ps, a frequency conversion of 20% is achieved. Fig. 3.46 points to a

very interesting phenomenon at t = 11 ps when the electromagnetic wave in the FDTD

disappears. Basically, as a result of the Doppler shift the trapped light gains from the

moving NEMS rods, its frequency starts to increase, and at t = 11 ps the wavelength of the

trapped light gets out of the band gap region of the 2D PhC implemented in the structure.

Consequently, the light propagates out of the structure through the perfectly matched layers

(PMLs) that surround the main FDTD window.

When we take the Fourier transform of the electric field at the monitored position, we

get the result indicated in Fig. 3.47. In this figure, the magnitude spectrum of the trapped

light is shown in the frequency domain. The frequency axis is normalized to the source

frequency and as a result, a normalized frequency value of one indicates the light with

the source wavelength. There is a large frequency component at the source frequency as
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Figure 3.47: Frequency spectrum associated with the simulated structure shown in Fig. 3.45.
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expected because initially when the rods are moving in a perpendicular direction to the

waveguide, the only frequency present in the cavity is the source frequency. However, after

the moving rods start to move towards each other and compress the cavity, new frequency

components start to emerge. The generated frequency characteristics change as a function of

time as the Doppler shift is accumulated and as the cavity length gets smaller. Furthermore,

since the frequency conversion from the initial source wavelength to the highest Doppler

shifted frequency (indicated at t=11 ps in Fig. 3.46) is continuous in time, in the frequency

spectrum all the frequencies in this range exist which can be observed in Fig. 3.47.
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Figure 3.48: Spectogram figure associated with the simulated structure shown in Fig. 3.45.
This time the velocity of the plates is v=0.5× v0.

The velocity of the sliding NEMS rods in this simulation is v0 = 6.6 × 105 m/s. Even

though this velocity value is not practical, and today’s MEMS/NEMS devices cannot pro-

vide velocities on this order, it is chosen for convenience. Using a slower velocity in the

FDTD simulations would cause very long simulation times. Since the velocity of the moving

structures has an important effect on the Doppler shift, we also wanted to check the effect
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of the velocity of the NEMS rods on the spectogram results we presented in Fig. 3.46. Ulti-

mately, we tested the same structure with the same test scenario but with the half NEMS

velocity this time, where v = 3.3× 105 m/s = 0.5× v0. Since the Doppler shift amount is

linearly proportional to the velocity of the moving structure, we expected to see the same

amount of frequency conversion in a longer time period. The resulting spectrogram for this

simulation is indicated in Fig. 3.48. As expected, the same events happen but in a longer

time range. In the previous case, the trapped light gets through a frequency conversion

for 7 ps and disappears at t = 11 ps. However, in the second case where the velocity is

decreased by a factor of two, the trapped light goes through a wavelength conversion for 14

ps and disappears at t = 22 ps. Consequently, with the practical MEMS/NEMS velocities

(which are much smaller than the values used in these simulations) we would still get the

same amount of Doppler shift, but it would take longer time.

Another important issue is the pulse shape preservation. As in the case of the rotating

rings structure, the “L” shaped rectangular tracks structure cannot preserve the input

pulse shape at this level of our research. As in the case of rotating rings structure, a similar

confinement time - optical data period comparison should be conducted for this structure

too. A 100 Gb/s data rate means an optical data period of 10 ps. Results in Fig. 3.46

indicate a total of 20 % wavelength conversion with a comfinement time of 11 ps. However,

this confiment time is possible with a MEMS/NEMS velocity of v0 = 6.6× 105 m/s, which

is not practical. At this level of our research, we do not have a perfect answer for this pulse

shape preservation issue. There may be two possible solutions to this problem. First one is

decreasing the initial cavity length, which we think will decrease the necassary confinement

time many orders. This makes sense because as the sliding plates get closer to each other,

the rate of conversion increases exponentially. The second possible solution is confining a

data train (many data bits) at the same time, and converting them all at once. However,

this idea has not been simulated and tested in detail yet. Consequently, this issue needs

more time and will be analyzed in more detail in the following years.

In addition, with this structure, another important issue emerges because the conversion

amount can reach to very high levels. As mentioned before, after the wavelength convertion,

the trapped light cannot be confined in the waveguide anymore because its new frequency is



102

out of the band gap of the PhC. Consequently, to be able to confine this new frequency, the

whole “L” shaped rectangular tracks structure can be embedded in another PhC structure,

whose dimension are arranged accordingly so that this new wavelength is in its band gap.

At this point, we should also analyze the “L” shaped rectangular tracks structure in

terms of its efficiency. First of all, the conversion efficiency of this structure is expected

to be much higher when compared to the rotating rings structure. In this structure, after

the sliding NEMS plates close the waveguide and create a cavity, the trapped light will

be confined much more effectively because the side walls of the cavity consists of perfectly

aligned PhC rods now. As a result, the amount of leaks of light from the cavity will be

much less when compared to the rotating rings structure, and this in turn provides a higher

wavelength conversion efficiency.

3.7 Future Work

The presented results indicate that the proposed PhC MEMS/NEMS structures provide

all-optical wavelength conversion as expected. However, there are some very important

points that need to be considered in more detail for the realization of this device. In this

subsection, these points will be analyzed and discussed.

First of all, efficiency of the proposed structures emerges to be a very important issue. It

is important to note that due to the small percentage of the time that the moving rods are

near the ideal position, very little light will undergo the frequency shift in the rotating rings

case. To solve this issue and increase the efficiency of this architecture, recirculation of the

output port of the waveguide into the input can be used. In this case, the unconverted light

is recycled and converted in the next rounds. Narrow bandpass photonic crystal structures

can be used to allow the converted light to be directly output of an exit port of the loop.

Conversion efficiencies of near 100% may be possible in such an architecture. This problem

is not very dramatic in the case of the second structure, sliding plates on “L” shaped tracks.

In this case, after the moving rods are in the waveguide and start to close the cavity, light

is confined much better in the cavity because of the periodic 2D PhC side walls which

provide relatively high reflection coefficients. Consequently, the efficiency problem is not



103

as dramatic as in the case of rotating rings structure. A more detailed analysis on the

efficiency of the sliding plates on “L” shaped tracks structure is still being conducted.

A second important issue is the pulse shape preservation. In order to be used in the

WDM mechanisms of today’s optical communication networks, the proposed all-optical

wavelength converter also needs to preserve the pulse shape of the input. This is extremely

important because the optical data is encoded using the pulse shape of the transmitted

light, and losing the pulse shape information is the same as losing the data. The proposed

structures are not capable of preserving the pulse shape of the input yet, and the amplitude

information is lost during the wavelength conversion process. However, this issue is being

investigated, and the existing structures will be improved in the following years in order to

solve this problem.

Finally, a third important issue is the fabrication of the proposed structures. In the

design process of the rotating rings structure, a detailed process analysis is also conducted

in parallel to come up with a reasonable fabrication scheme. The results associated with this

research is indicated in section 3.5.2. A similar fabrication analysis will also be conducted for

the sliding plates on “L” shaped tracks structure. The fabrication issue is very complicated

and difficult because we are trying to integrate two hard to fabricate structures, PhCs

and NEMS. Ultimately, experts from various clean rooms and fabrication facilities will be

contacted to discuss the realization of the proposed design. Depending on the feedback

received from these experts, the structure will be improved.
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Chapter 4

Conclusions

The recent rapid advancements in nanotechnology have affected not only various do-

mains in academia and industry, but have also led to various applications in many different

fields. Some of these products are still at the research level, while some of them have al-

ready become commercially available and popular. These advancements inevitably affected

the optical communications domain too. By means of WDM and EDFAs, very high data

transfer rates are reached. However, globally increasing levels of bandwidth and capac-

ity requirements spur the optical communications industry to produce new products that

are faster, more powerful, and more efficient. Especially, optical-electronic-optical (O-E-O)

conversions in WDM mechanisms prevent higher data transfer speeds and create a serious

bottleneck for the optical communications. Wavelength converter segments of WDMs suf-

fer the most from these O-E-O transitions and as a result all-optical wavelength conversion

methods have become extremely important.

In this thesis, we proposed two state-of-the-art, all-optical wavelength conversion mech-

anisms that are composed of integration of PhCs with NEMS structures. The first structure

is the rotating rings, and the second one is sliding plates on “L” shaped tracks. We have

observed that both of these structures performed frequency conversion, yet the conversion

in rotating rings structure is not as expected due to the unpredicted cavity formations

in the structure. The sliding plates on “L” shaped tracks structure on the other hand,

performs much more effectively and as anticipated. A wavelength conversion of 20 % is
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achieved using this structure, which is much higher when compared to the rotating rings.

The efficiency associated with sliding plates on “L” shaped tracks structure is still being

investigated, yet preliminary results indicate that it is considerably higher than the effi-

ciency of the rotating rings structure. At this point, it is also important to note that none

of the proposed wavelength conversion mechanisms preserve the pulse shape of the input

light. In other words, the shape of the optical data is lost during the conversion process.

In order to become a commercially viable technology, the proposed structures should pro-

vide all optical wavelength conversion while preserving the pulse shape of the input light.

This very important issue is also still being investigated in detail, and we are looking for

possible improvements to the structure to accomplish this goal. Another crucial issue is

the fabrication of the proposed structures. One possible process flow for the rotating rings

structure is provided as a result of a detailed research in the PhC-NEMS fabrication domain

and interaction with many experts from the commercial and academic fabrication facilities.

A very similar analysis will also be conducted for the second structure, sliding plates on

“L” shaped tracks, which performs better than the rotating rings. The fabrication issue for

these types of structures is a very serious one and needs a lot of effort and consideration.

Furthermore, the ability to more accurately model structures with wavelength scale

dimensions is a very essential requirement for the nanophotonics area, especially in the

presence of moving MEMS/NEMS structures which will cause a frequency shift due to the

Doppler effect. One method to partially accomplish this is the finite-difference time-domain

(FDTD) method, which numerically solves Maxwell’s equations in discrete time and space.

However, the traditional FDTD is not sufficient to accurately and efficiently model nanoscale

structures that include motion, such as the proposed wavelength conversion mechanisms in

this thesis. Consequently, to solve this problem and to be able to accurately simulate the

proposed PhC-NEMS structures, we presented the “linear dielectric interpolation” method

as part of this thesis. The basic algorithms for this method are very efficient and easy to

implement as discussed in detail in section 2. Results indicate that this is a very useful

method to implement when FDTD is being used to simulate structures with motion. The

FDTD simulations enhanced with this method are more stable and more accurate (in terms

of spurious frequency content) than the regular FDTD simulations when there is motion in
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the structure. The two dimensional version of the “linear dielectric interpolation” method is

also used to model the PhC-NEMS wavelength convertors that are proposed in this thesis,

and it provided a good level of accuracy to the FDTD simulations.
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