
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2003-04-27

An Environment For Specifying and Executing
Adaptable Software Components
Sudeep Prabhakar Unhale
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Unhale, Sudeep Prabhakar, "An Environment For Specifying and Executing Adaptable Software Components" (2003). Masters Theses (All
Theses, All Years). 369.
https://digitalcommons.wpi.edu/etd-theses/369

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/369?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

AN ENVIRONMENT FOR SPECIFYING AND EXECUTING
ADAPTABLE SOFTWARE COMPONENTS.

by

Sudeep Prabhakar Unhale

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

May 2003

APPROVED:

Professor George T. Heineman, Thesis Advisor _________________

Professor Lee A. Becker, Reader __________________

Professor Micha Hofri, Department Head __________________

Abstract

One of the difficulties of Component Based Software Engineering

(CBSE) [1] in reusing pre-existing components is the need to adapt

these components to work within the desired target systems [2, 3, 4, 5,

6]. Third-party or in-house Commercial Off-the-shelf (COTS)

components may not always have the required exact functionality

demanded by the builders of the target system, so these systems have

to be either modified [2, 3, 4, 5, 6] or adapted to provide this required

functionality. Modifying these components may not be always

practically possible.

In this thesis, we propose an infrastructure that supports the active

interface adaptation technique [3, 8, 9, 10]. This infrastructure directly

addresses the problem of effectively packaging components for third-

party use, adaptation, and deployment. Doing so we support both

component designers and third party application builders. Further we

evaluate our approach using several adaptations over the case studies.

TABLE OF CONTENTS

List of Figures..viii

List of Tables... x

Acknowledgement.. xi

Chapter I: Introduction...1

 1.1 Introduction to software components......................1

 1.1.1 Motivation for adapting components...........1

 1.1.2 Software components and their types2

 1.2 Adaptation of pre-developed components..............3

 1.2.1 Introduction..3

 1.2.2 Component Adaptation4

 1.3 Thesis outline ..6

 1.3.1 Chapter 1 outline...6

 1.3.2 Chapter 2 outline...6

 1.3.3 Chapter 3 outline...6

 1.3.4 Chapter 4 outline...6

 1.3.5 Chapter 5 outline...7

 1.3.6 Chapter 6 outline...7

 - i -

 1.4 Assumptions..7

 1.4.1 Responsibility of component designers7

 1.4.2 Responsibility of application assemblers8

 1.4.3 Responsibility of component adapters........8

 1.5 Contributions ...9

 1.5.1 CSL parser ..9

 1.5.2 CSL container infrastructure10

 1.5.3 Prototype adaptations10

 1.5.4 CMI integration of CSL container..............11

 1.5.5 Simple extended CMI tutorial....................11

 1.6 Background ...12

 1.6.1 White box adaptation techniques..............12

 1.6.2 Black box adaptation techniques13

 1.6.3 Active Interfaces..15

 1.7 ADAPT project ..17

 1.8 Summary of chapter...21

Chapter II: Component Specification ...22

 2.1 Introduction..22

 2.2 CSL Introduction ...26

 2.3 CSL grammar..27

 ii

 2.3.1 Component CSL..27

 2.3.1.1 Component CSL grammar.........30

 2.3.2 Application CSL...35

 2.3.2.1 Application CSL grammar37

 2.3.3 Application assemblers adaptations38

 2.4 Component Specification Language parser..........41

 2.5 CSL parser data structure.....................................43

 2.6 Summary of chapter..44

Chapter III: Case studies...46

 3.1 Spreadsheet application46

 3.2 Adaptations proposed ...48

 3.3 Additional adaptations proposed...........................49

 3.4 Component Model Implementation.......................51

 3.5 Enterprise Java Beans..52

 3.6 Summary of chapter..53

Chapter IV: Design Methodology..54

 4.1 Introduction..54

 4.2 Tools..59

 4.2.1 AIDE tool ...59

 iii

 4.2.1.1 Usage...60

 4.2.2 CSL Profiler tool.64

 4.2.2.1 Usage...65

 4.3 Glue code..70

 4.3.1 Advantages of glue code73

 4.3.2 Disadvantages of glue code......................74

 4.4 Basic Adaptations ...75

 4.4.1 Adaptation A1..75

 4.4.1.1 Description75

 4.4.1.2 Adaptation procedure.................75

 4.4.2 Adaptation A2..77

 4.4.2.1 Description77

 4.4.2.2 Adaptation procedure.................77

 4.4.3 Adaptation A2..79

 4.4.3.1 Description79

 4.4.3.2 Adaptation procedure.................79

 4.4.3.3 Adaptation output81

 4.5 Container...82

 4.6 Deployment strategies ..86

 4.6.1 Elements required for adaptive deployment

 of environments like CMI..........................88

 iv

 4.7 Summary of chapter..89

Chapter V: Evaluation ...90

 5.1 Introduction..90

 5.2 Candidate adaptations for evaluation92

 5.2.1 Adaptation for keeping a log93

 5.2.1.1 Description93

 5.2.1.2 Use ...94

 5.2.1.3 Adaptation approach..................94

 5.2.1.4 Output...96

 5.2.2 Adaptation for supporting multiple sheets.97

 5.2.2.1 Description97

 5.2.2.2 Use ...98

 5.2.2.3 Adaptation approach..................98

 5.2.2.4 Output.......................................103

 5.2.3 Adaptation for detecting email address ..107

 5.2.3.1 Description107

 5.2.3.2 Use ...107

 5.2.3.3 Adaptation approach................108

 5.2.3.4 Output.......................................110

 v

 5.2.4 Adaptation for checking if input is picture111

 5.2.4.1 Description111

 5.2.4.2 Use ...112

 5.2.4.3 Adaptation approach................112

 5.2.4.4 Output.......................................114

 5.2.5 All Adaptations together..........................115

 5.2.5.1 Description115

 5.2.5.2 Analysis115

 5.2.5.3 Output.......................................116

 5.3 Adaptation in CMI deployment............................117

 5.3.1 Description ..117

 5.3.2 CMI: Background, Deployment & Use....117

 5.3.3 Adaptation Procedure122

 5.3.4 Output..123

 5.4 Composablity of adaptation technique................124

 5.5 Evaluation with respects to proposed metrics127

 5.6 Shortcomings ..129

 5.7 Summary of chapter..131

Chapter VI: Conclusion & future work...132

 6.1 Conclusion ...132

 vi

 6.2 Future work ..133

 6.2.1 Automatic Glue code generation.............133

 6.2.2 Developing better case studies...............133

 6.2.3 Attempting complex adaptations.............134

 6.2.4 Output..134

 6.2.5 Adding more grammar to CSL135

6.2.6 Applying adaptation approach to other

 Object Oriented components...................135

 6.2.7 Adaptation of unstructured components .135

 6.2.8 Integrating tools like AIDE & CSLprofiler136

 6.2.9 Creating a standard library /platform136

 Appendix A: AIDE tool output..137

 Appendix B: CSLProfiler tool output...140

 Appendix C: CSL grammar...141

 Appendix D: CMI output ...159

 Appendix E: CSL scripts...163

 Bibliography ...167

 vii

LIST OF FIGURES

Number Page

1.1 Active Interface ..18

1.2 Multiple returns from component ...19

2.1 Component Adaptation Process ..24

2.2 CSL parser data structure..45

3.1 Spreadsheet Application Bean like interactions.....................47

3.2 Component Model Implementation..51

3.3 Component Model Implementation

 with adaptation technique ...52

4.1 Component Deployment View: Spreadsheet55

4.2 Interactions between Adaptations...57

4.3 Component Deployment View: components like model58

4.4 Profiler and AIDE tools..60

4.5 AIDE front end...61

4.6 AIDE front end: select source ...61

4.7 AIDE front end: Instrument Method ..62

4.8 AIDE front end: After Instrumentation view.............................63

4.9 CSL Profiler tool. ...64

4.10 CSL Profiler tool GUI ..66

 viii

4.11 CSL Profiler tool Open File Menu. ..67

4.12 CSL Profiler tool, opening Xml File...67

4.13 CSL Profiler tool Generate CSL option...................................68

4.14 CSL Profiler tool Generate CSL script69

4.15 Application State based on Glue code....................................72

4.16 Spreadsheet URL Adaptation ...81

4.17 Whole Process of Component Adaptation..............................82

4.18 Deployment in CMI. ..87

5.1 Intra-Sheet Referencing..104

5.2 Intra-Sheet Referencing using Adaptation............................104

5.3 Intra-Sheet Referencing using actual Spreadsheet Class....105

5.4 Changing Sheets Adaptation using next sheet Button105

5.5 Intra-Sheet Referencing using Adaptation............................106

5.6 Email Adaptation...110

5.7 Picture Adaptation...114

5.8 All Adaptations ..116

5.9 Deployment in CMI. ..119

5.10 Integration of adaptation technology and CMI......................120

5.11 Composablity approach. ...124

5.12 Composablity proposed approach..126

 ix

LIST OF TABLE

Number Page

3.1 Adaptations chosen for framework...49

3.2 Adaptations proposed for evaluation......................................50

4.1 Adaptation For notification functions75

4.2 Adaptation For generating refresh events77

4.3 Adaptation For scanning input for URL...................................79

5.1 Metrics proposed for evaluation..91

5.2 Adaptation proposed for evaluation ..92

5.3 Adaptation A4 keeping log of all cell updates93

5.4 Adaptation A5 ability to have multiple Spreadsheets97

5.5 Adaptation A6 keeping log of all email addresses................107

5.6 Adaptation A7 display picture in Spreadsheet111

5.7 Metrics evaluation with respect to adaptations127

 x

ACKNOWLEDGMENTS

This work was based on the National Science Fund under grant

number CCR-9733660.

I want to express my sincerest appreciation and thank Professor

George T. Heineman, my thesis advisor, for his patience, advice,

guidance and continual support.

I also want to thank Professor Lee Becker for being a reader for this

thesis.

Special thanks to, Chunling Ma for the CSLProfiler tool and Paul

Calnan for the AIDE tool.

I also wish to express sincere appreciation to all friends and colleagues

for being there and for the support.

Last but not least I would like to thank my parents and sister for making

all this possible for me and for their infinite love, support and

encouragement

I dedicate this work to my parents.

 xi

C h a p t e r 1

INTRODUCTION

1.1 INTRODUCTION TO SOFTWARE COMPONENTS

1.1.1 Motivation for adapting Components

When building large-scale software systems using Component Based

Software Engineering (CBSE), some functionality desired in the new

system can be found in pre- developed components, either in-house pre-

existing components or third-party commercial Off-the-shelf (COTS).

Thus we have a trend of an increasing use of external components by

new application builders. This demand implies improvements in how

components are designed, documented, assembled, adapted and

deployed.

Heineman argues that a component market place will exist when

application builders can adapt software components to work within their

applications [3, 5, 6]. The motivation for doing so is that reusing a

component avoids implementing same functionality from scratch and

minimizes maintenance costs [3].

1

1.1.2 Software Components and their types

A software component is a software element that conforms to a

component model and can be independently deployed and composed

without modification according to a composition standard [1].

Components can be deployed independently and can be given run-time

resources. Components can independently interact with other

components to form a software system. These systems can be further

used as component themselves interacting with other sub-systems to

form a large application/system.

Components can be of two types: black box components and white box

components. White box components enable the application builder code

to access the source code of the component. Components in most cases

are of black box types provided by third party developers where source

code is not available. The black box property of components is as

essential as abstraction and information hiding are to Object Oriented

programs [2].

The component model defines how the components interact with each

other. Large complex systems are being constructed on the basis of

2 2

these component-based models. Component technology leads to a

strong commercial market for pre-developed software components.

1.2 ADAPTATION OF PREDEVELOPED SOFTWARE COMPONENTS

1.2.1 Introduction

Pre-developed software components are increasingly gaining importance

as they can be assembled, reused and deployed to form larger systems.

Component vendors develop these components in a developer

environment and application builders deploy them in the customer

environment. However, it is observed in most cases that the requirements

specified by the application builders to assemble a larger system using

third-party components may not exactly match the requirements of the

application. To overcome this difference, one must adapt the component

for the additional functionality or to remove an undesired functionality.

This adaptation can be done in two ways: either by modifying its source

code (white-box) or by wrapping it (a blackbox technique).

3 3

1.2.2 Component Adaptation

If an application builder decides to adapt the component, he must

understand the complex behavior and functionality of its code. Any

change in either of them may break the structure of the system specified

by component designer, which has to be avoided. While component

adaptation occurs during integration, it is different from component

customization. In component customization, the application builder tailors

the component using certain pre-defined options. It may not always be

possible to satisfy the additional requirements.

Prior research identifies some requirements for component adaptation [4]

• The adapted component may behave differently but should be used in

 the same way as the original component would have been used.

• There should not be any additional effort in making the adapted

 component integrate with the target system and the client-side view

 should be maintained. This property of adaptation is called

 transparency.

• The original component should not have any knowledge of the

 adaptation. The component must be open to future adaptations and

 should not lose its identity as an original component.

4 4

Software engineering phases have to be considered with respect to

component adaptation [16]:

• Design phase: The component designer has to specify the interfaces,

 interoperability and relationships between components.

• Implementation phase: The component is constructed from the

 design specifications. Writing the code, obtaining all the dependable

 components (can be COTS), implementations of interfaces, data-

 structures, database tables, compilation and linking of the source files.

• Deployment phase: The component is to be deployed into a

 component infrastructure. The composition of the components should

 also be considered during adaptation.

To adapt a composite component [7], the outer component might have to

be modified or adapted. During composite component adaptation, original

component’s out interface should not change in terms of declaration or

the prototype. Similarly the original component’s provided interfaces

should remain unchanged.

5 5

1.3 THESIS OUTLINE

The outline for this theses goes like follows,

1.3.1 Further in this chapter, we cover the assumptions and contributions

of this thesis. Also some popular white box and black box component

adaptation techniques are discussed with emphasis on the Active

Interfaces [3, 19].

1.3.2 Chapter two covers the need for Component Specification and

explains the Component Specification Language [3, 5, 6], and its parsing

structure.

1.3.3 Chapter three discusses about the case studies done and the

adaptations that were proposed for the same. It also discusses some of

the case studies with respect to different component deployment

strategies like CMI [1], EJB [20].

1.3.4 Chapter four discusses in detail about the design methodology and

describes the component adaptation mechanism we are proposing. It

also discusses the various aspects of the approach we are suggesting

like the supporting tools, extra adaptation code and deployment

strategies.

6 6

1.3.5 Chapter five discusses the evaluation of our proposed approach on

the basis of the practical implementation of the adaptation and also on

the basis of integration of the component adaptation technology with the

popular component deployment techniques.

1.3.6 Finally Chapter six provides the conclusion for this thesis and

presents a vision for the future work towards the concerned area of

component adaptation.

1.4 ASSUMPTIONS:

This thesis is based on few assumptions with respect to responsibilities of

actors as follows

1.4.1 Responsibility of component designers

Component designers are responsible for design, construction and

packaging of a software component. They would also be responsible for

delivering an adaptable component. They may provide necessary

information that aids the application assembler [19] to have this

component used as required for the target application. As far as the

adaptable component packaging is concerned if the component designer

is packaging the component giving the source level access to the

application assembler, an application assembler or a component adapter

7 7

can be responsible for converting this component into its adaptable form

using the tools like AIDE [10], used to instrument the components code

as required or any other technology to obtain similar result.

1.4.2 Responsibility of application assemblers

Application assemblers are responsible for assembling the target

software system from the component vended to them by the application

designers. They also have responsibility to know details about the

component and how to integrate it with the new system. They may have

some documentation from the concerned component designer/vendor or

they can rely on the tools like CSL-Profiler [15], which gives information

about the given black box component in the form of a CSL specification.

Application assemblers may have as deep knowledge about the

component as application designer, which is mostly the case when the

component vended to them is a white box component. In a practical

scenario, an application assembler knows somewhat about the

component and the way it can be deployed.

1.4.3 Responsibility of component adapters

Component adapters’ responsibility is to convert the component vended

into an adaptable component so as when it is reused by a component

assembler it can be adapted accordingly for the new system to be built.

8 8

Component adapters can do this using a tool like AIDE [10], which is

used to instrument the vended components code as required thus making

the component an adaptable one. One can also attempt to get an

adaptable component by manually changing the source code or

instrumenting the source code using other techniques. Most of the

approaches require source code level access to the component, which

supposedly passed on by the component designer.

Typically a component adapter can also be a system assembler who

enjoys the component adapter level access to the component vended.

1.5 CONTRIBUTIONS:

This thesis makes the following contributions

1.5.1 CSL parser:

This intelligent JavaCC based parser is useful for parsing the CSL scripts

and populates the CSL container infrastructure. This parser is developed

to act as an individual component and thus can be reused for any other

research or purpose.

Also an independent hierarchical object oriented structure is created to

store the information obtained from the CSL scripts to enable efficient use

9 9

of information provided about the component, its adaptability and the

actual location of code of the adaptation.

1.5.2 CSL container infrastructure

The CSL container infrastructure enables the practical adaptation of a

black box component and its deployment.

In this thesis, we have successfully presented the way this container

infrastructure works and how to use the environment to adapt a given

component and integrate it into a new system. This infrastructure can be

used as a template to attempt future component adaptation and

deployment.

1.5.3 Prototype adaptations

We also present several case studies on using Active interfaces to adapt

the given application for desired adaptations.

We show in detail how to adapt our application for the basic three

adaptations and also further for evaluation purpose we have contributed

by selecting and attempting four more adaptations, all of which can be

seen as effective examples or templates to carry on future adaptations of

any blackbox component using the technique we have proposed in this

thesis.

10 10

1.5.4 CMI integration of CSL container

We also set out to integrate adaptation technique with component

models. Component Model Implementation [1], like EJB [20] and CORBA

[21], is a component-based architecture to deploy components. Using

CMI we can have multiple components whose life cycle is controlled

during its run-time by a container.

This component deployment technique was used as a base for validating

the deployed adaptations as presented in this thesis. We integrate CMI

with the CSL structure to enable deployment of the adapted components

in the CMI environment.

1.5.5 Simple extended CMI tutorial

This thesis also provides an extended simple tutorial for deployment of

the adaptable components and their adaptations using the method

provided described in this thesis in the given CMI environment.

This tutorial can be seen as the steps to use towards importing the

component adaptation technology in the component deployment policies

supporting such components.

11 11

1.6 BACKGROUND

There are various ways in which we can adapt software components. In

this thesis, we have focused on several related white box and some black

box adaptation techniques including Binary Component Adaptation [17],

Active Interfaces [3,19], Superimposition [7], Component Adaptors [18],

Wrapping and Inheritance.

1.6.1 White box adaptation techniques

White box component adaptation techniques require code level access to

the component designer or application assembler. The simplest white

adaptation technique is to change the part of the source code for desired

adaptation. This is the most straightforward approach. It needs

unrestricted access to the code. Another similar white box adaptation

technique is “Copy-Paste” method. Here an application assembler may

copy paste the required code for adaptation from the library or other

source and get the desired adaptation done. This method can be

effective at times but results in overheads of having multiple copies of the

code. This is one of the popular white box adaptation techniques.

There is one more adaptation technique, Inheritance, which can be

classified in both white box and black box category depending on the

technology (language) it is being implemented in. This approach also

12 12

requires the software assembler to have detailed information regarding

the working of the component super class he is inheriting. This approach

also depends on the kind of language it is implemented in, first the

language should support inheritance and there can be some restrictions

in doing so .For example, the private, protected types in java.

1.6.2 Black box adaptation techniques

We do not have code level access in blackbox based adaptation

approach. One of the popular blackbox adaptation approaches is

“Wrapping”. The component to be adapted is embedded in a new

component whose interface matches to that of the application

requirement. Wrapping allows components to be composable or be

aggregated to compose new functionalities. Wrapping provided separate

location for the adaptation code. Wrapping may not be always a good

idea since it restricts reuse and may end up with complex excessive

adaptation code. Wrappers are typically useful while integrating

components using different technologies [9].

There is one more alternative to wrapping that is by using a proxy

component. One can generate the same adaptation effect as wrapping

but adaptation code is written in separate component, which acts like a

filter. This technique is better than wrapping with respect to reuse factor

but does not provide transparency as the client deals with the proxy

13 13

instead of actual component. Component Adaptors [18] are an extension

to proxy adaptation technique. They can be generated automatically and

use high-level description language for specification.

Binary component Adaptation [17] is another black box adaptation

technique where the components to be adapted by the component

assembler when they are loaded into memory for first time. BCA

manipulates the components in their compiled form hence require no

source code. Transparency is maintained and flexible adaptations are

allowed. BCA also leads to some load time overheads and is very

language specific. It can be configured using delta file.

Superimposition technique [7] superimposes behavior to extend software

components. It is based on principle that a component and its adapting

functionality are different entities, which are integrated appropriately. It

requires components to have interface and adaptation of a component is

supported by ability to change the mapping from interface to the

concerned methods. There can be different types of adaptation behavior

predefined for some specific components. This technique is composable

and configurable with a good reusability factor.

Note: Detailed comparison between adaptation techniques can be found

 in references [4, 7, 9, 23]

14 14

1.6.3 Active Interfaces

Active Interfaces [3,19] mechanism inserts additional interfaces that are

invoked in components with the already exposed interfaces. Callbacks

are inserted for members of the component to be adapted. The members

being referred here are methods for the given component. There are

hooks that map the pre and post condition of a given method explained

more in Section 1.7. Active Interfaces are language Independent. The

components to be adapted have to implement an Adaptable interface,

which allows setting a component adapter for the given component.

Methods when adapted have an associated component adaptor that

controls the insertion of hooks in those methods. All additional adaptation

code is written in glue code, which is external to the component as in

case of the proxy adaptation.

A typical callback specifies the adapted method name, the phase (before,

after or negotiate), the glue object and new method with its properties

(parameters). Here the new method is implemented in glue code. The

whole adaptation cod lies in new method. The callback used for

monitoring the events on basis of the pre and post conditions. Typically

information sent to monitor can be extensively evaluated on the pre-

phase of callback and accordingly corresponding denial, augmentation

and overriding of the functionality takes place. Functionality is denied if

15 15

the service provided by a method is refused. Functionality is augmented

when values of parameter are altered and functionality is overridden

when the concern method is overridden. There is an Active Interface

Development Environment (AIDE) [10], which addresses towards

developing components with Active Interfaces. AIDE had a tool that

instruments the given method of a component or all method and inserts

the right hooks for imposing the pre and post conditions monitor.

Active Interfaces offer many advantages

• Separation of adaptation code from actual component to be

adapted.

• Callbacks can be inserted for all methods irrespective of whether

they are internal or exposed.

• Language independence.

• Runtime support for dynamically adding or removing hooks.

• Original component even though inserted with callbacks same as

it used to before applying Active Interfaces.

There are few disadvantages

• Current tools like AIDE currently only support Java.

• Active Interface mechanism requires Source code to instrument

the methods

16 16

In this thesis, we have developed an infrastructure that supports adapting

blackbox software components using an approach developed by

Heineman [2, 3, 4, 5, 6]. Also we have focused on enabling component

designers to build an adaptable component for which we proposed a

framework, that packages and deploys these adaptable components for

third party use and adaptation. A Component Specification Language is

to be used as a part of the infrastructure for providing the semantic

detailed information about the adaptable component and how it is

adapted. In earlier papers [3, 5, 6], Heineman provided some examples

of use of CSL; we have designed and implemented a parser for CSL and

an infrastructure that accepts and processes CSL specifications.

1.7 ADAPT PROJECT

Previous research [3, 4, 5, 6] has identified relevant concepts with

respect to component adaptation and building of adaptable components.

The ADAPT project sponsored by an NSF grant, involved building

groundwork and foundation for this thesis, which will conclude this

research project.

17 17

Previous research proposed the concept of an active interface (Section

1.6.3) where, an active interface decides whether to take action when a

method is called, an event is announced or a protocol executes [3].

There are two phases to all interface requests

• Before phase: occurs before component performs any steps

towards executing the request.

• After phase : occurs when component has performed the

execution of the request.

Thus we have a standard way of altering the behavior of a component by

interposing an entity to intercept messages and/or events as shown in

figure below.

Figure 1.1: Active Interface.
18 18

The first case in Figure 1.1 typically reflects working of a blackbox

component without adaptation whereas the second case reflects the

adaptation of the same component done using before and after callbacks.

Figure 1.2: Multiple returns from component.

Figure 1.2 typically reflects that for a given method in a component, there

may be multiple return points such as r1 and r2 in the above figure.

These types of methods are also candidates for adaptation.

The groundwork for the ADAPT project was laid in the form of published

research work and some implementations such as Component Adapters,

active interfaces, and the example Spreadsheet application [see

Appendix B], which is our motivating example. Some contributions to this

research have also come from some previous theses affiliated to this

ADAPT project, where some of the concepts were used and

implemented; most notably, DASADA [22].

19 19

DASADA uses AIDE (Active Interface Development Environment) [10] to

insert (wrap) software probes into a software component. These probes

are used to report system events for the concerned component. The

probes also provide the entry points to the concerned component/system,

wherein system events propagate across “active connectors”. These

events can be used further for various uses like gauging the application

state, or transforming that applications state for using the current event or

set of events. These event led gauges can further lead to automated

decisions to be taken by the main DASADA system and also for

diagnostic purposes.

Most of other work in this field concentrates on either a single domain

and /or support the as-is reuse of a given component sometimes

revealing internal implementation of the component or sometimes even

modifying the original implementation as in case of white box component

adaptation. Our research strongly supports the reuse and adaptation of a

black box component on the assumption that this component is made

adaptable. We attack this problem by presenting a template-like

framework that would motivate a component designer in making

adaptable component or reengineer the existing piece of

code/component to make it adaptable.

20 20

1.8 SUMMARY OF CHAPTER

In this chapter we go through basics of predefined component adaptation

and cover the various software engineering phases to be considered for

the same in Section 1.2. Further in Section 1.3 we discuss the general

outline for this thesis brief giving overview of each and every chapter.

In section 1.4 we cover briefly the assumptions with respect to the actors

involved in the adaptation process. Section 1.5 discusses the

contributions done in this thesis. Section 1.6 talks about different

component adaptation techniques. Section 1.6.3 and Section 1.7 explain

Active Interface approach in detail and also discusses about the ADAPT

project.

21 21

C h a p t e r 2

COMPONENT SPECIFICATION

2.1 INTRODUCTION

We need a language to specify semantic information about the

component and the adaptations that are to be made. This specification

language must be easily understood by the application builder and easy

to specify by the component designer. We propose the Component

Specification Language, which was presented only by example in

previous research [3,6].

The need for a specification language here pays an important role for the

reason we propose a new language over using an existing one. There

are three basic kinds of Specification Languages with our perspective,

• Interface specification language (ISL)

• Component Specification Language (CSL)

• Architecture Specification Language (ASL)

These languages cater to different needs and have special purposes. ISL

or Interface Definition Language (IDL) [28, 25], is primararily used to

specify the interfaces of the given system, / component. The CSL [26, 27]

is used to specify about the components and is mainly used by technical

22 22

architects to express system platform, distribution, and other non-

functional requirements to assist system packaging. An ASL is used to

describe about the software architecture of the given component. ISL

confines itself to specification of the interface the component and its

information but has no way of suggesting any behavioral aspects of the

component. CSL or CDL (Component Definition Languages) does to an

extent is successful in describing the component and its interface but has

no provision to specify where the extra code (glue code) for the

adaptation lies. Some researchers [27] do have special GSL (Glue

Specification Language) to solve this purpose. ASL or ADL (Architecture

Definition Language) does have some provisions that make them

candidates for use but there are too many specification details, which

may not be needed for our specification purpose. So we strongly feel a

need to propose a language, which allow specification of interface and

other details about the component like (ISL and CSL integrated) and also

allows one to specify the Glue code. Some other researchers have taken

similar language based decisions as in case of [24,27].

We are not modifying the code nor are we doing software customization

because the customization mechanisms will be built into adaptable

software components. To illustrate our approach, we will use as our

motivating example, a spreadsheet application, which conforms to the

JavaBean architecture [20]. This application is a good candidate to be

23 23

adapted and can be treated as a blackbox component. We have already

put in hooks for adaptations as required by the Active Interface

mechanism [3,19], which were manually inserted in form of supporting

code and we can thus consider this candidate component as an

adaptable component.

CSL will also be used to specify the overall architecture of the application,

and one goal of the research would be to practically determine which

architectural styles are best suited for CBSE. The framework is proposed

to work as shown in figure 2.1.

 Figure 2.1: Component Adaptation process.

We need adaptable components for our evaluations. We will incorporate

into our project AIDE, a technology to upgrade a software component to

support Active Interfaces [10]. This technology helps us to identify the

adaptations allowed by the given component using a customized tool.

Thus the designers would now be able to select the methods in the

24 24

component they want to be adaptable and the concerned before-after

callbacks would be installed. There is also a tool, CSL-profiler [15] that

will use the information from the AIDE tool (See tools section in Chapter

4) and generate the concerned CSL specification for that component or

application describing the adaptations available to the application builders

and/or concerned third parties.

In Figure 2.1, the component designer creates an adaptable component-

using AIDE and provides CSL specification of the Adaptable properties

(see Appendix). Then Application builder adapts the component by

augmenting the CSL specification to define the before/after callbacks that

are used and providing relevant glue code .The final packaged

component will execute within container.

 We know that some components are poorly documented and/or very

little is known about them so if one has to adapt such components we

need a mechanism to get semantic information about the components

from a CSL file. We can also use the above technology to obtain

information about such components using CSL specifications. Our

framework launches adaptable components within a given container. This

container is also responsible for parsing the CSL Specification and

installing the appropriate glue code methods using the Adaptable

25 25

interface created by AIDE .The container will also support component

arbitrator as described in [3]

2.2 CSL INTRODUCTION

A CSL file consists of elements describing the component or application

and it consists of different sections. For a component CSL we have the

information about its public /private /protected methods. Also we have

information if any of these methods are adaptable. From the component

CSL we can also determine if this component is adapting another

component and if so, where the extra information about the adaptation

code (glue code) is to be found. Additional information about the methods

of this glue code can be specified as action statements and information

about the before /after callbacks are provided in the CSL file suggesting

the adaptation. A component can also have properties that are achieved

by get /set methods. More on this is discussed in the component CSL

example.

As far as an application CSL is concerned it has information about the

interfaces it implements. This CSL also consists of the number of

components associated with the application CSL. This CSL also provides

information about its public /private /protected methods if any. An

application can also have properties that specify the get /set features for

that application.

26 26

2.3 CSL GRAMMAR

A CSL file starts with a description of an application or/with a description

of a component.

2.3.1 Component CSL

A Component CSL, which also is a part of an application, consists of

• The name of the type the component is an instance of or (the one

that the component is adapting).

• The name of the Class /code where the new adaptation code/logic

is written

• The properties associated with the component

• The methods associated with the component.

• The methods that can be specified with before /after clause and

/or negotiation clause and their descriptions.

• The public, private and protected methods associated with the

component.

A component CSL grammar is similar to that of a component CSL

grammar found in the component section of the Application CSL. The

reason we have two different types of CSL specifications is to enable the

reuse of a CSL specification for a required component.

27 27

A typical Component CSL file can be shown as follows

component <name> adapts <component >{

Class

Actions …

Properties …

Methods …

Public/Private/Protected methods…

}

Note: A Component CSL can adapt a previously adapted component

28 28

Sample of Component CSL 1

Component spreadsheet.Spreadsheet{

//sample specification of Spreadsheet component

Public {

 void setFunction (String,Function);

 Function getFunction (String);

 void clearFunction ();

 void installFunctions ();

 String getValue (String);

 void setValue (String,String);

 void setValue ();

 float getNumericValue (String);

 float calculateFunction (Expression,String,Enumeration,Node);

 void handleSpreadsheetEvent (SpreadsheetEventObject);

 void addSpreadsheetListener (SpreadsheetListener);

 void removeSpreadsheetListener (SpreadsheetListener);

};

Protected {

 adaptable float evaluateConstant (String);

 adaptable void evaluate (Node);

};

Private {

 void setDebug (boolean);

 final boolean getDebug ();

};

};

29 29

2.3.1.1 Component CSL grammar

The component CSL can be described as adaptation or instance or just

the component itself. If a Component adapts some application more

details of the component can be specified as shown in sample of CSL 2

(shown further in this Chapter).

This component description is made of a couple of statements followed

by the keywords like class, action, property, method, before, after,

negotiate so on.

class is the name of the Class where the additional functionality is placed.

For example in our case study “Glue” Class. This class clause is typically

used to indicate the external code/class file that is written with the new

adaptation functionality associated to this component.

property is a brief description of the get-set data-members of the

specified component . In the component clause of the CSL description

where the word following keyword “adapts” is the name of this type being

adapted.

action is brief description of the method of the Class/file specified in the

“class” clause of the CSL description, where the word following keyword

30 30

action is the name of this method and is also termed as action name .The

attributes of the method are given here in form of parameters, which are

usually a fully quantified name. The parameter generally represent the

input datatypes of the method in the given class specified for this

component adaptation/description. The parameter type precedes the

parameter names.

action are typically used to specify the methods associated with the

external code that is written with the new adaptation functionality

indicated by the class clause.

method Indicates brief description of the method of the class/module

specified component is adapting. In the component clause of the CSL

description where the word following keyword “adapts” is the name of this

module being adapted. Word following keyword “method” is the return

data-type of the Method specified and next word following is the name of

this Method. The attributes of this method are given here in form of

parameters, which are usually a fully quantified name. The parameter

generally represents the input parameters of the method specified. The

parameter data-type precedes the parameter name.

Following the method parameter description there are open curly braces

where in lies the other concerned description, generally about the

31 31

adaptations information with respect to this specified method. This

adaptation information is basically based on three keywords, before, after

and negotiate. In before/after clause the action is specified using either of

the keywords specifying if the action is to be invoked before the specified

method or after the specified method. In the above example for evaluate

method, we specify in such a way that the script suggests to invoke

beforeEvaluate action before the method evaluate and on similar lines

the script suggest to invoke afterEvaluate action after the method

evaluate in CSL example 2.The actions here are presumed to have the

required functionalities to carry out the required adaptation.

before & after keywords are typically used to specify and suggest how the

adaptations that are required are done using action (atleast specifying to

invoke that action) before or after the invocation of the specified method.

In the negotiate clause, the action is specified with the parameter type

associated with the Method specified e.g. refreshList in the second line of

CSL example 2 .A unique negotiate name is assigned which follows the

keyword “negotiate” which is also termed as negotiate policy name.

Using this negotiate clause one can suggest adaptations such that every

time the specified method is invoked the suggested adaptation action

filtercells takes the concerned parameter input and processes or updates

32 32

it for some required functionality. The negotiate keyword is typically used

to specify and suggest how the adaptations that are required are done

using action using the input parameter of the specified method.

Note: Methods are essential and an important part of the component CSL

from the adaptation point of view one should be thus very careful while

writing this portion of CSL since a slight mistake here may result in a

logical error which can be hard to debug.

Brief description of the public/protected/private methods may be specified

in the component about which CSL description is, where the area

following keyword public/private/protected is the area where the

concerned methods declared are described for the given component and

they are termed as public/private/protected methods/listeners .the

methods and listeners are listed in between the curly braces. As in CSL

example 1.

adaptable keyword before a method indicates brief description of the

method/component specifying whether or not that particular method or

component is further adaptable. The first word of a line of the CSL

description here has to be “adaptable” implying that the concerned

method/module is adaptable. It makes it easy to know whether the

component and/or the method is useful for adaptation in future.

33 33

final keyword before method indicates brief description of the

method/component specifying whether or not that particular method or

component is further adaptable. The first word of a line of the CSL

description here has to be “final” implying that the concerned

method/module is non-adaptable further. It makes it easy to know

whether the component and/or the method is useful for adaptation in the

future.

NOTE: Final & Adaptable keywords are mutually contradictory.

34 34

2.3.2 Application CSL

An Application is an assembly of software components; for example, a

spreadsheet application that contains information such as

• The interfaces implemented by that application

• The components associated with the application

• The properties of the application

• The public, private and protected methods associated with the

application

This application can be described in a way that reflects the kind of

adaptations that are supported by the applications as well as the

adaptations that are performed on the components of this application

A typical Application CSL file is shown as follows

application <name> {

 Interfaces …

 Properties…

 Components…

 Public/Private/Protected methods …

}

35 35

A Typical sample of an Application CSL is

application FinalApp {

// application CSL for spreadsheet application FinalApp
implements ActionListener , TableListener ,
 SpreadSheetListener , TextBeanListener ,
 Serializable ;

component vs instanceof ScrollbarBean;
component hs instanceof ScrollbarBean;
component newcomponent instanceof adaptme;

component tb instanceof TableBean;
component tbBox instanceof TableBean;

property int viewHeight;
property int viewWidth;
property CellRegion tableSelected;
property CellRegion tableRSelected;

public {

// public methods

void init();
void init_gui();
void init_components();

// various Listener interface
void actionPerformed(ActionEvent);
void handleTableEvent(TableEventObject);
void handleSpreadsheetEvent(SpreadsheetEventObject);
};

private {

};

protected{
};

}
//end of application CSL script

36 36

2.3.2.1 Application CSL grammar

Application CSL Starts with a keyword “application”. It indicates that the

application named “FinalApp” is being described in the form of CSL. If an

application implements some interfaces they are specified in the

“implements” clause of the CSL file as shown in example of an

application CSL. Further the application CSL can have some components

associated with it. These components described can be adaptation or

instance.

Note: Here the rest of the grammar included in the Component

adaptation is the same as described in the above component CSL

grammar description.

Components are typically used to specify and suggest the required

adaptations associated with an external code that is written with the new

adaptation functionality indicated by the class clause in the component.

(incase of “adapts” keyword.). Components are also typically used to

specify application module associated with a different module that is not

in the component domain. (Incase of “instanceof”,”extends” keyword.)

Property indicates brief description of the data-member of the specified

application. The word following keyword property is the data-type of the

37 37

data member specified and next word following is the name of this

property. There are no more attributes to this property. Properties are

accessed through get and set methods. In general, Java strongly

encourages class designers to use getProperty() and setProperty() as the

name of the methods for accessing Properties. Properties are typically

used to specify the variables/data members in the application.

There also brief descriptions of the public/protected/private methods

specified in the application about which the CSL description is, where the

area following keyword public/private/protected is the area where the

concerned methods declared are described for the given application and

they are termed as public/private/protected methods/listeners.

2.3.3 APPLICATION ASSEMBLERS ADAPTATIONS

Application assembler is the one who tries to get the information of the

component and needs to adapt this component to be a part of the new

target system. The assembler writes the adaptations for the concerned

component in a separate glue code and has to modify the CSL scripts.

The assembler also writes few new CSL scripts suggesting the

adaptations to be done.

The component Specification example 2 is the sample of one of the CSL

scripts suggesting adaptation for our case study, Spreadsheet

application.

38 38

Sample of a Component CSL 2

component adaptme adapts spreadsheet.Spreadsheet{

 class Glue;

 action beforeEvaluate (adapt.spreadsheet.Node node);
 action afterEvaluate (adapt.spreadsheet.Node node);
 action beforeEvaluateC (java.lang.String s);
 action beforeEvaluateMail (java.lang.String s);
 action filterCells(java.lang.Vector refreshList);

 method void generateRefreshEvents(java.lang.Vector
 refreshList) {

 negotiate RefreshPolicy:
 filterCells(refreshList);
 };

 method void evaluate (adapt.spreadsheet.Node node){
 before beforeEvaluate (node);
 after afterEvaluate (node);
 };

 method void setValue (java.lang.String dest,java.lang.String
 value){
 before beforeInsert(dest,value);
 };

 method float evaluateConstant (java.lang.String s){
 before beforeEvaluateC (s);
 before beforeEvaluateMail(s);
 };

 };//end of component

39 39

The class keyword suggests that the extra code required for the

adaptations, is in class called Glue. The action declarations give more

details on the methods of this Glue class. For each method given by

method keyword, we have some special information that gives us the

actual adaptation hierarchy using the three keywords before, after and

negotiate. When used appropriately we can have the adaptations to be

reflected in the CSL script as in component CSL example 2.

For example here we write

method float evaluateConstant (java.lang.String s){
 before beforeEvaluateC (s);
};

Where we want to check if the string inputted is a URL, if so we want to

do something with that. So here we suggest that before the method

evaluateConstant() we will invoke the method beforeEvaluateC() which

is in glue code and handles the required adaptation .

Similarly we can write for other adaptations as shown in component CSL

example 2

40 40

2.4 COMPONENT SPECIFICATION LANGUAGE PARSER

As proposed in this, the Component Specification Language is

implemented using a standard JavaCC platform (Java Compiler

Compiler Technology).The proposed grammar was implemented to follow

the rules as given in the appendix C.

Typically input to a CSL parser file is a csl file, which is written by

application builder in a manner following the rules as suggested by the

CSL-parser, reads the csl file, parses it and this information can further

be used for computation. Thus this gives CSL flexibility of being used for

the project purposes as in project ADAPT ,we have tried to use the CSL

Language as a medium to express the information about the component

as well as the information regarding the adaptations done with respect to

the component. The process in all is same as Component Adaptation

mechanism, discussed earlier.

CSL parser generates appropriate error messages when the input CSL

file doesn’t conform to the grammar specified. Also further the CSL

parsing can be done more intelligently so that the parser checks the

availability and validity of the information from the CSL before it passes

the whole information for processing to the next phase.

41 41

Just having information is not enough but one has to use and store that

information in a systematic fashion. For the ADAPT project we decided to

have an infrastructure of objects such that we can systematically store

the information from a given CSL file as well as process it and for that

matter regenerate it. If the CSL file is for an application an Object of type

CSLApplication is generated consisting of the information from the CSL

file else if the CSL file is for an component an Object of type

CSLComponent is generated consisting of the information from the CSL

file.

Further these main classes CSLApplication and CSLComponent deal

with different classes so as to make a complex hierarchical object of the

CSL information according to the input.

The distinct advantage of having this kind of arrangement is that one can

reuse the information provided in a CSL script for multiple times during

runtime without having to parsing the CSL file again (unless specified).

We can regenerate the CSL file output from the objects formed previously

by parsing the CSL script file. Doing so can be beneficial cause the csl

then generated may contain all the CSL specification of the referenced

members in the main application CSL script and so on.

42 42

2.5 CSL PARSER DATA STRUCTURE

The Component Specification Language grammar is annotated with

actions to construct data-structures representing the information shared

within the CSL script file. We have implemented these data-structures in

Java, whose structure is as shown in the class diagram, Figure 2.2.

This structure is a unique structure made of different component classes

placed in hierarchy accordingly to CSL grammar literal hierarchy and

hence is a totally compatible structure to store the information regarding

the CSL script parsed.

The Application CSL details are stored in a CSLApplication class object

which consists of different subclass objects like interface class objects,

CSLComponent class objects, property class objects and Public class

objects.

• Component CSL details are stored in a CSLComponent class

object that consists of different subclass objects like

CSLAdaptation class objects, property class objects, and Public

class objects.

• CSLAdaptation class object consists of different subclass objects

like Action class objects, Method class objects, and Parameter

class objects.

43 43

• Method class object consists of different subclass objects like Neg

class objects, BeforeAfter class objects, and Parameter class

objects.

• Neg class object consists of different subclass objects like

negMethod class objects.

• Public class object consists of different subclass objects like

Method class objects.

• Action class object consists of different subclass objects like

Parameter class objects.

All these objects in combinations represent a single object for input

Application or Component CSL script information during the run time.

2.6 SUMMARY OF CHAPTER

In this chapter we establish the need to specify components and to

propose the new Component Specification Language. Section 2.1 and

2.2 gives a brief introduction about the CSL.

We further in Section 2.3 give the basic grammar for the component

Specification Language. In Section 2.4 and 2.5 we discuss about the CSL

parser and the data structures we require to hold the parsed CSL

information.

44 44

Figure 2.2: CSL Parser Data Structure.

 4

C h a p t e r 3

CASE STUDIES

3.1 SPREADSHEET APPLICATION

We use the following motivating example of the Java bean based

architectured spreadsheet component as our case study. This

spreadsheet application was available from previous research, ADAPT

project. This application is a good candidate to be adapted and can be

treated as an application composed of blackbox components. We have

already put in hooks [3, 4, 5, 6] for adaptations, which were manually

inserted in the form of supporting code and we can thus call this

candidate component an adaptable component.

As shown in Figure 3.1, this spreadsheet application consists of eight

interacting beans. The Tablebean tb displays the matrix of information in the

form of C columns and R rows, which are represented by a small grid icon.

There are two scrollbar beans for horizontal scroll hs and for vertical scroll vs,

which are represented by small rectangular icons with lines on them. We

have row header TableBeans for row tbR and for column tbC, which are

represented by the oval and plus sign. There is a TableBean tbBox which

displays the current position /selection status denoted by the triangle. Also

there is a TextBean textb, which allows the user to input the values for the

 4

spreadsheet at current cell selection. A small rectangular box denotes it in

Figure 3.1. Finally there is an invisible SpreadSheetBean ss denoted by a

dot; it maintains and calculates all the values in the given spreadsheet.

Figure 3.1: Spreadsheet Application Bean like interactions.

All these beans are created from within an applet called FinalApp, which

registers the interactions between the beans. The communication triggers

on the basis of mouse events. For example when a user selects a cell in

table bean tb, a TableEventObject event is generated by the tb. The

FinalApp further processes this event by setting entry in the

corresponding cell, the value is updated in the text bean box textb and the

current cell entry is also update earlier in the tbBox by the FinalApp.

 4

Thus this type of integrated collaboration implies that this is a typical

example of component–based software system. It also satisfies our

requirement of having a black box software system for our adaptation

framework. We thus see this application as a whole Spreadsheet

Application, which now requires being adapted for additional functionality.

3.2 ADAPTATIONS PROPOSED

When the Spreadsheet components shipped as a blackbox component to

the application builder, one can have detailed knowledge about this

Spreadsheet component in form of the CSL script. The CSL script

describes the Spreadsheet component and also suggests which portions

of the systems (methods, components) are adaptable.

Further as suggested one can change this CSL script or write a new CSL

script to impose the required adaptations for this software system.

These kinds of adaptations in Table 3.1 are chosen to highlight different

features of our framework.

 4

No Adaptation Changes in application/Use

A1

Defining notification functions are to
be invoked when a particular cell
changes.

Compare if the old value of cell is
changed or not.

A2

Altering spreadsheet to only send
updated cells visible to bean
showing current selection

Avoid those refresh events that take
place for all the spreadsheet.

A3

Defining new functions for
spreadsheet to use like e.g. if an
URL is input it should have some
special handling over a string and
so on.

Return some portion of URL specified or
the text of the URL can be a number for
current stock price of a company.

Table 3.1: Adaptations chosen for framework.

These adaptations are implemented to test the validity of our approach

towards adapting the blackbox components for additional features.

3.3 ADDITIONAL ADAPTATIONS PROPOSED

We try to recognize and implement new adaptations with respect to this

spreadsheet application and try to implement them for evaluation

purpose.

 4

No Adaptation Brief Description /Use

A4

Auto entry (date time) for each entry,

i.e. whenever spreadsheet content is

changed, a track of change is kept.

Works like a log for keeping information

about the cell changes and

A5

Multiple Spreadsheets, ability to shift

to different sheet based on an event.

also ability to do reference between

the spreadsheets.

Like multiple sheets in excel or other

commercial spreadsheets. Referencing

here indicates one can refer to a particular

spreadsheets value in other. e.g.

sheet2:B2

A6

Scan Input of textbox for email

address, if valid email address say add

to the address book

Filter like adaptation to do some

meaningful operation on the inputs to the

spreadsheet.

A7

Adapt spreadsheet to display a picture

in a given cell.

If input string is a jpeg, gif file with

appropriate path/reference, display the

picture in the TableBean tb

Table 3.2: Adaptations proposed for evaluation.

These additional features are specified to be able to gauge our framework

and approach for the evaluation purposed discussed in detail in the

Evaluation Chapter 5.

 4

3.4 COMPONENT MODEL IMPLEMENTATION

Component Model Implementation (CMI) [1], is a component deployment

strategy in which we deploy all the components as shown in figure 3.3

Figure 3.2: Component Model Implementation.

Here we have the components that follow an interface-based pattern,

which enables them to communicate with each other. The components

are instantiated and connected to each other at run time by the container

“Foundation” and after all components are properly instantiated the

application runs. Thus the Foundation controls the life cycle of this

component-based application.

We use this model as our case study for deployment of the component

and propose to integrate our adaptation technique with this approach.

This approach is shown in Figure 3.3

 4

Figure 3.3: Component Model Implementation with adaptation technique.

Thus now using the approach suggested in this thesis the container of

CMI parses the concerned CSL files, gets the concerned glue code and

inserts the callbacks according to the information suggested in the

corresponding CSL script. Thus we have a newly adapted component

deployed in the CMI environment .A detailed explanation of this

adaptation approach using CMI is given in Chapter 5.

3.5 ENTERPRISE JAVA BEANS

We would also like to discuss the work of integrating our adaptation

techniques with the EJB [20] environment. EJB is one of the popular

component models chosen by many application assemblers since it

supports the distributed environment.

 4

Our previous research by Kanetkar [8] focuses on the adaptations with

respect to EJB. It also proposes a design to enable run time adaptation

using the EJB Technology.

3.6 SUMMARY OF CHAPTER

In this chapter we discuss about the case studies we select to prove our

approach. Section 3.1 gives information about our motivating case study,

the Spreadsheet Application.

Section 3.2 and 3.3 explains about the adaptations that were done for

proving our approach, as well as for evaluation purposes. These

adaptations are carefully chosen to demonstrate the flexibility, applicability

and functionality of our approach.

Section 3.4 discusses another case study that of a component

deployment model CMI. We, in this thesis, present the way one can

integrate our technique with the component deployment model and here

in this chapter we briefly introduce the CMI deployment model. Section

3.5 further talks about EJB , a popular component deployment technique.

 4

C h a p t e r 4

DESIGN AND METHODOLOGY

4.1 INTRODUCTION

Reusing a component avoids implementing same functionality from

scratch and minimizes maintenance cost [3] in most cases. Components

to be reused are mostly black box components. This gives us motivation

for presenting an environment and approach for adapting a blackbox

adaptable component for new additional features. This will enable it to fit

in the proposed new system.

The basic essence of the mechanism we are suggesting is that we can

adapt adaptable blackbox components. We can make a component

adaptable by either having the component designer use one of the tools

or having the component adapter do it as specified in the assumptions

section in Chapter 1.A component designer/adapter with a code level

access can also use the AIDE tool to make that component into an

adaptable component. Along with AIDE, a tool like CSL-Profiler, which

returns the CSL specification unknown given black box component using

the output of AIDE, may be used.

 4

The extra functionally desired is coded into a glue code. Thus all the new

code goes into glue code and as discussed in Chapter 3 we modify the

CSL script for the given adaptable component to be adapted.

 Figure 4.1: Component Deployment View: Spreadsheet.

 As shown in Figure 4.1 we have a component C which using tools like

AIDE can be converted to an adaptable component CA. This component

has its own glue code where the system assembler writes source code for

 4

the new adaptations. It also has it’s own CSL script file as discussed in

Chapter 3. Container here invokes the parser to parse CSL script and the

concerned information is updated in the parser structures. Using this

information, the glue code is invoked and callbacks are set to monitor the

events for the desired methods through the hooks present in the

adaptable component.

Further in Figure 4.2 we can see the sequence, in which this process

takes place,

1. Container fetches the CSL scripts

2. Container invokes CSL parser and parses the scripts

3. The parser generates the concerned CSL Object

4. Then object is returned to the container

5. Container invokes the FinalApp Spreadsheet application

6. From information present from CSL scripts container invokes the

glue code

7. All necessary supporting classes are loaded and application runs

with adaptations in effect at runtime.

 4

 Figure 4.2: Interactions between Adaptations.

Figure 4.3 gives a brief idea of how things would work for multiple

components to be deployed in similar fashion as that of the infrastructure

presented in Figure 4.1.

 4

The Container would work similar to the way discussed earlier in this

section. The only difference now would be that instead of a single

component multiple components would be loaded and there can be

multiple number of glue files and CSL scripts local to the components.

Figure 4.3: Component Deployment View: components like model.

 4

4.2 TOOLS.

Our adaptation mechanism uses some tools that were developed as a

part of our in-house research by fellow researchers. Application designers

use these tools to instrument the non-adaptable component to adaptable

component. Some tools help to generate the corresponding CSL of these

adaptable component to help more in the adaptation process by having

semantic CSL based information about a given black box adaptable

component.

4.2.1 AIDE tool

We need adaptable components for our evaluations. We incorporate in

our framework, AIDE, a technology to upgrade a software component to

support Active Interfaces [10]. This technology helps us to identify the

adaptations allowed by the given component using a customized tool.

Thus the designers would now be able to select the methods in the

component, they want to be adaptable and the concerned before-after

callbacks would be installed.

 4

Figure 4.4: Profiler and AIDE tools.

AIDE has its own easy to use GUI that enables one to select the methods

to be instrumented from a given application. Once the method is

instrumented, some code is added appropriately to the application source,

which makes that corresponding method adaptable. This newly added

piece of code is just a hook inputted in the application source code to

enable one to recognize the callbacks. As shown in Figure 4.4, an

application designer can take a component and using AIDE package it to

be an “Adaptable Component”.

4.2.1.1 USAGE: To use this tool follow steps given below

A. Run AIDE tool using command, java -jar ../extract-aide/aide-gui.jar

 4

Figure 4.5: AIDE front end.

B Select the source code to instrument as shown in Figure 4.5 and 4.6

Figure 4.6: AIDE front end: select source.

C Select the methods you want to instrument (or un-instrument) and

 4

D Select instrument option from Method menu as shown in Figure 4.7

Figure 4.7: AIDE front end: Instrument Method.

This will instrument the methods from the given source code and make

necessary additions of hooks to the source code and will generate the

instrumentation information xml file

 4

E The instrumented method would be reflected in the tool GUI as shown

below; also an instrumented method can be un-instrumented anytime.

Figure 4.8: AIDE front end: After Instrumentation view.

 4

4.2.2 CSL-profiler tool

The CSL-profiler [15] tool uses the information from the AIDE tool and

generates the concerned CSL specification for that component or

application describing the adaptations available to the application builders

and/or concerned third parties.

Figure 4.9: CSL Profiler tool.

As shown in Figure 4.9, the component designer creates an adaptable

component-using AIDE and provides CSL specification of the adaptable

properties. It is important to have the CSL specification for a given

adaptable component, but it might not be always be helpful to create such

CSL using a manual process. CSL-Profiler tool uses the AIDE output XML

scripts (as shown in appendix A) and generate a CSL specification script

from it that is understood by the environment we are proposing.

 4

CSL-profiler along with generating CSL script for the component, also

does some extra work by generating CSL keywords like ADAPT, FINAL

appropriately. These keywords are very important as they suggest

whether a given method or property is adaptable or not.

For example if some method is declared as final

 final void generateCSL()

This suggests that the method generateCSL is not supposed to be

adapted any further.

Thus in a way this tool helps an application builder to have an appropriate

CSL description for the blackbox component that is to be adapted

4.2.2.1 USAGE

To use this tool follow steps given below

1. Run AIDE tool

 Get xml descriptions of the instrumented files as shown in appendix A.

2. Keep the *.xml files in a certain repository.

3. Call the convert application of the tool as given below:

 >java convert <directoryName> < fileName1 fileName2 ... fileNameN>

 4

 Example:

 >java convert aide-xml INFO-adapt.spreadsheet.Spreadsheet.xml
 INFO- adapt.spreadsheet.Spreadsheet1.xml

4. The equivalent CSL file will be generated in the specified directory

Steps 3 and 4 can also be done using GUI version of the CSL profiler.

The screen shots for the same are shown in Figure 4.10 to Figure 4.14.

The GUI is used as follows,

1. Open CSL Profiler GUI

 Figure 4.10: CSL Profiler tool GUI.

 4

2.Select the Input xml file (generated by AIDE)

 Figure 4.11: CSL Profiler tool Open File Menu.

3.Click Open to open selected file,

Figure 4.12: CSL Profiler tool, opening Xml File.

 4

4. Selected file will be reflected in the box on your left hand side, to

generate equivalent CSL script click Generate button.

Figure 4.13: CSL Profiler tool Generate CSL option.

Note: Desired CSL script will only be generated provided that the xml file

is an output of the AIDE tool or is similar to it. Appropriate error handling

is done to ensure this restriction since here we are looking forward to

recognize the instrumented members and other important members of the

actual code from which the input xml document is generated (by AIDE).

 4

5.Generated Csl script will be reflected in the box on right hand side

Figure 4.14: CSL Profiler tool Generated CSL script.

Generated Csl script will also be updated in a .csl file. The name of this

file will be “classname.csl”. The class name here is the name of the class

that was actually instrumented using AIDE and whose AIDE output is

given as an input to the CSLProfiler.

The specification outputted by the CSL Profiler tool can be used for

knowing more about the component especially while adapting it.

 4

4.3 GLUE CODE:

Glue Code is an extra code written for the adapting the given component

for a new or enhanced feature. Glue code typically consists a special lines

of code where in logic with respect to the new /enhanced functionality for

a given component to be adapted is actually implemented and which is

later associated with this particular component like for example in CSL

specification of the component we give the reference of the additional

functional logic using the CSL class clause. Example

 component adaptme adapts adapt.spreadsheet.Spreadsheet{

 class Glue;

 …

}

This kind of Glue code is written generally for the black box type

adaptation technique, the one we are suggesting.

For example, In our case study, if we need an adaptation such that, given

there is a string input to the Spreadsheet application, we want to know if it

is an URL and accordingly display the URL’s contents.

We can write the corresponding functionality in our glue code in form of a

method as ,

 4

/**
 *Returns URl value as output if the string is valid
 *URL or the same string itself
 */
public String beforeEvaluateC(edu.wpi.cs.adapt.Context c) {
 // String is the first argument
 Object args[] = c.getArgs();
 String s = (String) args[0];
 try {
 URL valueURL = new URL(s);//construct URL
 InputStream is = valueURL.openStream();
 //read URl
 BufferedReader br = new BufferedReader(new
 InputStreamReader(is));
 String value = br.readLine();//get URL value
 args[0] = value;
 return value;//return value changed
 } catch (MalformedURLException mfe) {
 return s;// not URl return value unchanged
 } catch (IOException ioe) {
 return s;
 //cannot read URl return value unchanged
 } catch (Exception e) {
 return s;
 // exception return value unchanged
 }
}// end of beforeEvaluateC(Context)

Note: We use a special input type Context to specify the input for a given

glue method. This is done to ensure the chaining of the components in

the system so as to ensure multiple adaptation of a same method .In our

case one can notice this when we adapt the evaluateconstant() method of

Spreadsheet for email adaptation , URL adaptation and the Log file

adaptation .

 4

We can further include the information about this new functionality /

method in the CSL Script of this particular component description as

component adaptme adapts spreadsheet{

 class Glue;

 action beforeEvaluateC (in java.lang.String);

 method float evaluateConstant (java.lang.String s){

 before beforeEvaluateC (s);

 };

 }

Here we suggest invoking method beforeEvaluateC from Glue code

before invoking the actual method evaluateConstant from the original

application.

Also one can see that method beforeEvaluateC is defined above as an

action that takes string as an input.

Figure 4.15: Application State based on Glue code.

 4

In Figure 4.15, we consider the input String s that is an input to the

original method evaluateConstant. When there is no adaptation as in first

case of above diagram we can see that the state of the String s is not

changed since we don’t do anything special here irrespective of whether

the string is an URL or not.

In second case, we apply our technique of adaptation for the URL

example stated above and use the glue code, where concerned

functionality for detecting URL string input is coded. Here we can see that

after adaptation the state of String s is changed to s’ accordingly w.r.t. the

adaptation specified.

Note: We assume that the input string is an URL else the status of input

String s will remain unchanged.

4.3.1 ADVANTAGES OF GLUE CODE

The basic advantage here is that for writing the additional functionality

required for adapting a given black box component, the component

internals are not required to be modified, instead one can write the code

in form of glue code and carry out the adaptation.

 4

Also advantage is that the adaptations are independent of each other

(other adaptations) .One glue code can contain multiple adaptation

functionality with respect to the component required to be adapted.

4.3.2 DISADVANTAGES OF GLUE CODE

Major disadvantage is that the Glue code should be written with precision

and care should be taken while dealing with objects whose properties are

not known. For instance, in above URL example we know that in original

component, the input to the method evaluateConstant() is an String but

had the input been an Object it would have been difficult to write a Glue

code that is compatible with the original component simply because We

cannot anticipate what type of object is expected during runtime as an

input and if it is type-casted in the original component since here we have

an black box component. There has to be some decision making work

involved before writing glue code about whether or not the adaptation is

possible for the required feature.

Still over all we feel this Glue code technique works well for the suggested

framework simply because it enables us to a blackbox component

adaptation.

 4

4.4 BASIC ADAPTATIONS

4.4.1 CSL: Adaptation A1

No Adaptation Changes in application/Use

A1

Defining notification functions are to
be invoked when a particular cell
changes.

Compare if the old value of cell is
changed or not.

Table 4.1: Adaptation For notification functions.

4.4.1.1 Description

We try and compare to see if the value of the current cell is changed or

not. We have to specify two things here for this adaptation

• Before the evaluate(), record the old value

• After the evaluate(), compare the new value with the old value

So while writing glue code we try to write the csl script for the adaptation

such that we the above two things are reflected and easily understood by

the container, which is going to read this CSL script.

4.4.1.2 Adaptation procedure

We have to instrument the method evaluate() from spreadsheet

 4

In glue code we have, beforeEvaluate()

/**
 * Used to store the value for a given node to check in
 * future if the old value is same as new value
 */
public int beforeEvaluate(edu.wpi.cs.adapt.Context c) {
 // Node is the first argument
 Object args[] = c.getArgs();
 Node node = (Node) args[0];
 // store value in hashtable
 float f = node.getNumericValue();
 values.put(node.toString(), new Float(f));
 return 0;
}//end of BeforeEvaluate(Context)

After Evaluate()
/**
 * Used to check for a given node if the old value is
 * same as new value
 */
 public void afterEvaluate(edu.wpi.cs.adapt.Context c) {
 // Node is the first argument
 Object args[] = c.getArgs();
 Node node = (Node) args[0];
 // compare new value against stored value
 Float newValue = new Float(node.getNumericValue());
 Float oldValue = (Float) values.get(node.toString());
 //remove the old value from the hashtable
 values.remove(node.toString());
 if (oldValue.equals(newValue))
 return;
 //send notify
 System.out.println("Node: " + node.toString() + " changed
value");
 }//end of afterEvaluate(Context)
We have the required functionality coded in Glue.java, with

beforeEvaluate() and afterEvaluate() being the concerned methods in

the Glue code, we have necessary csl as,

component adaptme adapts spreadsheet{
 Class Glue;
 action beforeEvaluate (in adapt.spreadsheet.Node);
 action afterEvaluate (in adapt.spreadsheet.Node);
 method void evaluate (adapt.spreadsheet.Node node){
 before beforeEvaluate (node);
 after afterEvaluate (node);
 };
 };

 4

4.4.2 CSL: Adaptation A2

No Adaptation Changes in application/Use

A2

Altering spreadsheet to only send
updated cells visible to bean
showing current selection

Avoid those refresh events that take
place for all the spreadsheet.

Table 4.2: Adaptation for generating refresh events.

4.4.2.1Description

Alter spreadsheet (ss) to only send to table bean (tb) updated cells visible

to tb. Filter update messages to spreadsheet, so only the current visible

cells of GUI are refreshed and relevant update messages generated

Here we specify a negotiate policy for this adaptation called

RefreshPolicy. So while writing glue code we try to write the csl script for

the adaptation such that we the above adaptations are reflected and

easily understood by the container, which is going to read this CSL script.

4.4.2.2 Adaptation procedure

We have to instrument the method generateRefreshEvents() from

spreadsheet .

 4

In glue code we have, filterCells()

/**
 * Used for refreshing the cells visible to the screen,
 */
public void filterCells(edu.wpi.cs.adapt.Context c) {
 // Vector is the first argument
 Object args[] = c.getArgs();
 Vector v = (Vector) args[0];//vector of cells to refresh
 int col, row;// row and column
 CellRegion visibleCells = fa.getVisibleCells();
 //get cells
 for (Iterator it = v.iterator(); it.hasNext();) {
 Node n = (Node) it.next();//get node

 col = n.getCell().getColumn();//get column of node
 row = n.getCell().getRow(); // get row of node
 if ((col < visibleCells.getStart().getColumn())
 || (col > visibleCells.getEnd().getColumn())
 || (row < visibleCells.getStart().getRow())
 || (row > visibleCells.getEnd().getRow())) {
 it.remove();
 //remove if any cell out of visible domain
 }//end of if
 }//end of for(..)
 return;
 }//end of filterCells(Context)

We have the required functionality coded in Glue. java, where in there is a

concerned method filterCells() , we have necessary csl as,

component adaptme adapts spreadsheet{

 class Glue;

 action filterCells(refreshList java.lang.Vector);

 method void generateRefreshEvents(java.lang.Vector

 refreshList){

 negotiate RefreshPolicy:

 filterCells(refreshList);

 };

};

 4

4.4.3 CSL: Adaptation A3

No Adaptation Changes in application/Use

A3

Defining new functions for
spreadsheet to use like e.g. if an
URL is input it should have some
special handling over a string and
so on.

Return some portion of URL specified or
the text of the URL can be a number for
current stock price of a company.

Table 4.2: Adaptation A3 for scanning input for URL.

4.4.3.1 description

If a cell contains a URL we can evaluate the string before

evaluateConstant() and return the value of URL instead.

So while writing glue code we try to write the csl script for the adaptation

such that we the above adaptation is reflected and easily understood by

the container, which is going to read this CSL script.

4.4.3.2 Adaptation procedure

We have to instrument the method evaluateConstant() from spreadsheet.

 4

In glue code we have, beforeEvaluateC()

/**
 * Returns URl value as output if the string is valid URL
 * or the same string itself
 */
 public String beforeEvaluateC(edu.wpi.cs.adapt.Context c) {
 // String is the first argument
 Object args[] = c.getArgs();
 String s = (String) args[0];
 try {
 URL valueURL = new URL(s);//construct URL
 InputStream is = valueURL.openStream();//read URl
 BufferedReader br = new BufferedReader(new
 InputStreamReader(is));
 String value = br.readLine();//get URL value
 args[0] = value;
 return value;//return value changed
 } catch (MalformedURLException mfe) {
 return s;// not URl return value unchanged
 } catch (IOException ioe) {
 return s;//cannot read URl return value unchanged
 } catch (Exception e) {
 return s;// exception return value unchanged
 }
}// end of beforeEvaluateC(Context)

We have the required functionality coded in Glue.java, with

beforeEvaluateC () being the concerned method in the Glue code,

We have necessary csl as,

component adaptme adapts spreadsheet{

 class Glue;

 action beforeEvaluateC (in java.lang.String);

 method float evaluateConstant (java.lang.Strings){

 before beforeEvaluateC (s);

 };

};

 4

4.4.3.2 Adaptation Output

 Figure 4.16: Spreadsheet URL Adaptation.

Figure 4.16 shows the output for the URL adaptation. We input a valid

URL, which returns the value of Pi. When this URL is typed as a string

input to the spreadsheet, its validity is checked and the content is

assigned to the cell.

Note: Here the URL selected for demonstration returns a single value.

This was done to ensure that there is not much garbling of characters in

the spreadsheet.

 4

4.5 CONTAINER:

We are seeking a Black box component-based software system as a

candidate for adaptation. Thus we are not modifying any part of the code

from the original component as it would certainly make this technique fall

into white box category and the whole essence of this approach will be

lost. This leads us to the new requirement of having a wrapper like

component on t he top of now adapted component that understands the

original component working and the new adaptations done using the Glue

code. It implies that this component should understand Component

Specification Language (CSL) and also deployment strategy used for

example java beans [8] like or CMI (Component Model Infrastructure)[12]

environment.

Figure 4.17: Whole Process of Component Adaptation.

 4

We have to be very careful while understanding the needs of this

component that we call as a “Container”. For example, in our case study

we have a file called Final App, which is the principal applet for the

Spreadsheet application. So if we have to adapt this Spreadsheet

application, we write appropriate glue code and CSL scripts. CSL scripts

describe this application and suggest / impose the adaptations to be

done.

We write a container component for this adaptation say “container applet”.

This Container applet typically consists of mechanism that takes CSL

script file as input and invokes the corresponding parser to get the

information regarding the CSL in form of some data structure. Using the

data structure then this container component tries to invoke the

application main file/applet by instantiating it using technology like Java

Reflection and then again check for the portions of the application that are

to be adapted using the CSL script and insert concerned callback as per

suggested in CSL script. The Glue code and the application now works

together to form a new blackbox component with additional desired

features that were added by adapting the original application. Instead of

the original main execution file like FinalApp, now the container

component becomes the main execution file of this adapted application.

 4

For example

With respect to our Spreadsheet example, in container applet

First we take an input csl file and parse it

 // invoke the parser
 CSL.main (cslFileinput);

 Then we get the Object of the Data structure where the information from

CSL-parsing is now Stored

// Get the application

 CSLApplication app = CSL.getApplication();

Container Applet, now using Reflection, We get the object of FinalApp,

using the information from the CSL. We check for the Components to be

adapted by going through the Structure where we now have the

information from the CSL file.

Example of an Adaptation for a given Component

In Container Applet, Consider the example we used

component adaptme adapts spreadsheet{

 class Glue;

 action beforeEvaluateC (in java.lang.String);

 method float evaluateConstant (java.lang.Strings){

 before beforeEvaluateC (s);

 };

}

 4

Using reflection we get the Glue class and traversing through data

structure. We get the method evaluateConstants adaptation properties

I.e. before this method is invoked, we have to set a callback that another

method beforeEvatuateC() takes the charge and so the necessary

adaptation for the given specification.

In Container Applet, We get the concerned other information about the

before property and set a callback as

tca.insertCallback (tca.BEFORE,method_name,adaptObject,

 glueClass.getDeclaredMethod (bfmname, paramTypes));

This Container Applet understands how these components are deployed

.If we are using a specific strategy it need to know about it.

 4

4.6 DEPLOYMENT STRATEGIES

For presenting any infrastructure, it is important to stress on the

deployment strategy to be followed. This is thus one of major factor when

it comes to make a decision whether for the concerned problem the given

framework is appropriate or not.

We present this framework for adaptation of the adaptable components,

which are focused to be the part of the new system to be assembled.

Thus the deployment strategy that we want to enforce for doing so should

be in accordance with the actual deployment strategy of the new system.

To present our view, we choose for example a component deployment

strategy, CMI [1].

CMI is deployed in a manner that all the components of the new systems

are places in a particular repository .The actual container called

“Foundation” is in a different repository, scripts are used to specify the

location of the blocks (components, e.g. jar files of the components) and

those scripts are too placed in different repository.

Thus we can deploy CMI as given in figure 4.18 for a book selling

system called “book buyer” (actual example from CS509 class fall 2001,

CS, WPI).

 4

Figure 4.18: Deployment in CMI.

In figure 4.18 left hand side indicates the actual deployment of a system

in CMI without any adaptation. We propose using our technique the

deployment would be similar to that as shown on right hand side of Figure

4.18.

 4

4.6.1 Elements required for adaptive deployment of environments like

CMI:

We are proposing following elements needed for the adaptation for

deployment of our framework with available techniques like CMI,

• Different container for the adaptation or editing Foundation for

recognizing the provided CSL mechanism, setting Adapter and

adding callbacks.

• Adding the “edu.wpi.cs.adapt.csl” package to ensure access to

data structures provided.

• Adding the “edu.wpi.cs.adapt.parser” package provided to ensure

valid parsing of the CSL script and population of corresponding

structure.

• Adding the “edu.wpi.cs.adapt” package provided to enable having

Adaptable components using active interface based technology.

Note: Here we are not changing any deployment of the original approach

only adding to it, this ensures that the application assembler can always

resort to the original deployment plan ignoring the extra adaptation

repository and simply enable or disable adaptations by using appropriate

CSL scripts. Thus rightfully controlling the run-time behavior of this

component based system.

 4

4.7 SUMMARY OF CHAPTER

In this Chapter we present the design methodology for the adaptation

procedure we are suggesting. We briefly introduce the procedure in

Section 4.1.Futher we introduce to the deployment issues of our case

study, the Spreadsheet application. Also we provide a detailed diagram

that’s gives detailed steps about the adaptation procedure.

Section 4.2 talks about the tools AIDE and CSLProfiler. Section 4.2.1

talks about AIDE a tool that assists in converting a component to an

adaptable by instrumenting its methods. Section 4.2.2 talks about the

CSLProfiler tool that takes the output of the AIDE to generate

corresponding CSL specification of the adaptable component. Detailed

usage of both tools is provided in the respective section.

Section 4.3 talks about the Glue code and its use in detail. It also

discusses about the advantages and disadvantages of the Glue code

approach. Section 4.4 gives in detail how the basic adaptations are

carried out. Section 4.5 describes how container works and how callbacks

are inserted on the fly.

Section 4.6 describes in deployment strategy for integrating our approach

with CMI component deployment strategy.

 4

C h a p t e r 5

EVALUATION

5.1 INTRODUCTION

Evaluation of a system or infrastructure is one important measure of the

practicality of that system/approach. Evaluation of the proposed

infrastructure was ideally to be done keeping other adaptation techniques

in mind. One form of evaluation would have been to compare different

approaches depending upon various metrics. This scenario is difficult

because the adaptations have different assumptions and are made in

controlled environment as yet and follow no standard. To say in other

words the adaptations are very application and end user specific.

We decided to evaluate the framework on the basis of several

adaptations. These adaptations were carefully chosen to demonstrate the

flexibility of the framework and test if the infrastructure is applicable in

practice.

To evaluate our infrastructure, we required some metrics. We planned to

evaluate design aspects too (qualitative). We proposed to evaluate

software adaptations using following metrics, which we would consider

while evaluating our approach as given in Table 5.1

 4

Metric Expectation with respect to Adaptation

Transparency

A component adaptation should be transparent i.e. a user

should be unable to derive any difference in using the

original component and adapted component.

Blackbox

A component should be blackbox for adaptation to avoid

change of internals of the component itself like most of

COTS.

Composablity

Adaptation technique should be composable with the

component it is applied on, it should also be composable

to other components as it was before adaptation and it

should be composable with other adaptations.

Performance

Performance of the adapted component should be more

or less same as that of the equivalent rewritten

component.

Deployment
Infrastructure should provide how to deploy components;

measuring overlays, tool support so on, can do this.

Table 5.1: Metrics proposed for evaluation.

The criteria in Table 5.1 are a subset of the relevant criteria of interest

during Adaptation [2]. We need to develop scenarios by which these

 4

criteria will be evaluated. We developed several candidate adaptations to

make on the spreadsheet component to compare the effectiveness of

adaptation against the desired properties listed above.

5.2 CANDIDATE ADAPTATIONS FOR EVALUATION

No Adaptation Brief Description /Use

A4

Auto entry (date time) for each entry,

i.e. whenever spreadsheet content is

changed, a track of change is kept.

Works like a log for keeping

information about the cell

changes.

A5

Multiple Spreadsheets, ability to shift

to different sheet based on an event.

also ability to do reference between

the spreadsheets.

Like multiple sheets in excel or

other commercial

spreadsheets. Referencing

here indicates one can refer to

a particular spreadsheets value

in other. e.g. sheet2:B2

A6

Scan Input of textbox for email

address, if valid email address say add

to the address book

Filter like adaptation to do some

meaningful operation on the

inputs to the spreadsheet.

A7
Adapt spreadsheet to display a picture

in a given cell.

If input string is a jpeg, gif file

with appropriate path/reference,

display the picture in the

TableBean tb

 Table 5.2: Adaptations proposed for evaluation.

 4

The proposed adaptations in Table 5.2 were worked out in a similar way

we would expect an application assembler to work them out. Doing so

helped us to evaluate the practical problems faced in doing these

adaptations and also helped to analyze how fruitful this approach can be

for black box adaptations.

Additional Spreadsheet Adaptation Cases & Requirements done for

purpose of the evaluation are as follows

5.2.1 Adaptation for keeping a log of all updates to cells

No Adaptation Brief Description /Use

A4
Auto entry (date time) for each entry, i.e.

whenever spreadsheet content is

changed, a track of change is kept.

Works like a log for

keeping information about

the cell changes.

 Table 5.3: Adaptation A4 keeping log of all cell updates.

5.2.1.1Description

Every time we make a change in a cell(s) of a Spreadsheet, we require to

record the time and date (can be the current system time and date) to be

 4

recorded in a log file. Also one may like to add the username of the

person who edits that cell(s).

5.2.1.2 Use

This can be a useful feature where an application is accessed and

modified by many people and we want to know who did it and when that

one did it.

Since our motivating example is a standalone application (we assume for

this case study) that there are no concurrency issues to be considered

like a cell being updated by two people at same time.

5.2.1.3 Adaptation Procedure

We instrument method void setValue (String dest, String value) from

spreadsheet using the AIDE technology. Using CSL parser we get more

semantics of this instrumented with the old semantics.

Then in glue code we write a method beforeInsert ()

This method consists of a mechanism that writes a record like structure in

a log file for instance with the cell being updated, value, time, date.

/**
 * Returns the cell data value string ,before a data is inserted in
 * the spreadsheet keep its log.
 */

 4

 public String beforeInsert(edu.wpi.cs.adapt.Context c) {
 Object args[] = c.getArgs();
 String dest = (String) args[0];//get dest
 String s = (String) args[1];//get value
 tempvalue =s;
 if (s != null) {
 Date tdate = new Date();//get date
 //create log string for given data
 String value = "Dest:" + dest + "," + "Data:" + s + "," + "
 Date:" + tdate;
 //update logfile with data
 write("Spreadsheet.log", value, ";");
 }
 return s;//return input string value
 } //end of beforeinsert()

In CSL file we write

component adaptme adapts spreadsheet{

 class Glue;

 action beforeInsert(java.lang.String dest,java.lang.String
 value);

 method void setValue (java.lang.String dest,java.lang.String
 value){
 before beforeInsert(dest,value);
 };

};//end of component

In above CSL script we try to invoke beforeInsert () before we set the

value of the given cell in the spreadsheet and get following output.

 4

5.2.1.4 Output

We can relate this output by mapping a small table like object that consist

the destination address (one of the input parameter of setvalue ()

function), data and relevant user/time-date information associate with it.

Sample File: Spreadsheet. Log

Dest:D2,Data:http://www.wpi.edu/~sudeepu/abc.html, Date:Tue Apr

08 11:04:48 EDT 2003;Dest:D5,Data:sudeepu@wpi.edu, Date:Tue Apr

08 11:05:22 EDT 2003;Dest:D5,Data:, Date:Tue Apr 08 11:10:36 EDT

2003;Dest:B4,Data:sudeepu@wpi.edu, Date:Tue Apr 08 11:10:40 EDT

2003;Dest:B1,Data:, Date:Tue Apr 08 11:13:46 EDT

2003;Dest:B2,Data:D2, Date:Tue Apr 08 11:14:10 EDT

2003;Dest:C6,Data:B2, Date:Tue Apr 08 11:14:18 EDT

2003;Dest:D4,Data:sheet0:D2, Date:Tue Apr 08 11:14:47 EDT

2003;Dest:D6,Data:D4, Date:Tue Apr 08 11:15:07 EDT

2003;Dest:B5,Data:sheet0:D2, Date:Tue Apr 08 11:20:29 EDT 2003

<eof>

Note: output shown above is actual output of the adaptation

 4

5.2.2 Adaptation for supporting multiple spreadsheets

No Adaptation Brief Description /Use

A5

Multiple Spreadsheets, ability to shift to

different sheet based on an event. Also

ability to do reference between the

spreadsheets.

Like multiple sheets in excel

or other commercial

spreadsheets. Referencing

here indicates one can refer

to a particular spreadsheets

value in other. e.g.

sheet2:B2

 Table 5.4: Adaptation A5 Ability to have multiple Spreadsheets.

5.2.2.1Description

Like commercially available spreadsheets, we adapt the application to

have multiple sheets open and thus allowing us to use the data between

the two sheets for computation purposes

Some requirements,

• We have to have multiple sheets

• We need to identify those individual sheets with unique names like

e.g. Sheet5

• We should be able to address a particular sheet’s cell(s) and get

data (using reference) so as we can use it in other sheet

calculation

 4

5.2.2.2 Use

This multiple sheet adaptation is based on the feature of the commercially

available spreadsheet based applications that allow similar kind of

functionality. This functionality is especially effective when we can refer to

the data from one sheet to the current sheet. This kind of ability in an

application on practical basis adds a powerful functionality and

commercial value.

Note: This adaptation is important since it suggest how to adapt the

container of application to be adapted since here we adapt the class

FinalApp itself. This adaptation is very easy if we modify the FinalApp but

doing it using our technique and writing relevant code in glue code may

be bit difficult but demonstrates the flexibility and applicability of our

approach.

5.2.2.3 Adaptation Procedure

To have multiple instances of spreadsheet and we need spreadsheet

objects. We do so by maintaining an array of spreadsheet objects in the

Glue code. These sheets are assigned to the actual sheet in the original

application on basis of an event and previous sheet is updated and saved

back to the array. Sheets need a way to refer/communicate with each

 4

other (that is share the data). We now have spreadsheet objects

distinguishably identified by a unique identifier still in memory (or can be

loaded into memory on demand using persistent storage). We can access

that data from a particular sheet by carrying out one more adaptation that

checks the input string for the reference to the other sheet.

We can use the same GUI and shift between Spreadsheet beans using

triggered by an event set by clicking the sheet button. The button is a

customizable feature present in GUI. This button has dummy method

forSheetChange() associated with its actionperformed event.

Here one can think about adapting the GUI to add the button using glue

but we for sake of simplicity avoided that adaptation.

Here, we instrument method forSheetChange() from FinalApp, which

basically is the method present to customize the actionperformed for a

given customizable button in the GUI.

The total number of spreadsheet beans is customizable using a global

variable in Glue code.

Then in glue code we write a method forSheetChange ()

 4

This method consists of a mechanism that handles the changing of

sheets from one sheet to other consistently.

/**
 *Takes care for multiple Sheets Option working,and
 *changing sheet once the button is clicked
 */
 public void forSheetChange(edu.wpi.cs.adapt.Context c) {
 Object args[] = c.getArgs();//context related
 if (count >= 0 && count <= (MULTIPLE_SHEETS-1)){
 // to keep circular flow between sheets
 spr[count] = fa.spreadsheet;
 if (count == (MULTIPLE_SHEETS-1)){
 count = 0;
 //go back to first sheet after triggered sheet change
 //at last one
 } else {
 count++;
 //to maintain 1,2,3,n,1,2,.like change between sheets
 }
 fa.textBean.setText("TO NEXT SHEET" + count);
 //indicate which is current sheet
 fa.setspreadsheet(spr[count]);
 //assign selected sheet as current sheet
 if (initcount < count + 1) {
 initcount++;
 if(initcount == 2 &&
 REFLECT_ADAPTATION_MULTIPLE_SHEETS){

 //get adapter of originally adapted spreadsheet
 //and set if the same for other spreadheets
 ca = fa.spreadsheet.getAdapter();
 }
 // Create invisible SpreadsheetBean
 fa.spreadsheet = new Spreadsheet();
 // set adapter for other spreadsheets so as they
 //inherit the original spreadsheet's existing
 // adaptations
 fa.spreadsheet.setAdapter(ca);
 // refresh events come in from the spreadsheet,
 fa.spreadsheet.addSpreadsheetListener(fa);
 } //end of if
 //reinitialize TableBean to show new spreadsheet info
 fa.tb.clearTableValue();
 fa.tb.repaint();
 fa.setSeo();
 }

 }//end of forSheetChange(Context)

 4

In CSL file we write

application FinalApp {
implements ActionListener , TableListener ;
component app instanceof FinalApp;
component adaptfa adapts app{
 class Glue;
 action forSheetChange();
 method void doSheetButton(){
 before forSheetChange();
 };
};//end of component

}

In above CSL script we try to invoke forSheetChange () before

doSheetButton() is executed.

For the Adaptation that enables data usage between the sheets using

reference, we add callback to the method evaluateConstant() from

Spreadsheet, which is already instrumented for the basic adaptations that

we worked out.

Then in glue code we write a method beforeEvaluateSheet ()

This method consists of a mechanism that handles the referencing of

cells to get data from one sheet to other consistently.

 4

The code goes as follows

/**
 * Checks the string if in case of multiple sheet selection *
 * reference is made to other sheet
 * Note implementation will work only of sheets upto 0-99
 * Note implementation works only when the referenced cell has a
 * value in it & the refereced cell is not referencing other
 * cell (this condition is as yet not handled here)
 */
 public String beforeEvaluateSheet(edu.wpi.cs.adapt.Context c) {

 // String is the first argument
 Object args[] = c.getArgs();
 String s = (String) args[0];
 if (s.startsWith("sheet")) {
 int index = "sheet".length();
 //check for syntax if proper e.g. sheet0:A1
 String n = s.substring(index + 1, index + 2);
 String m = s.substring(index + 2, index + 3);
 if (m.equalsIgnoreCase(":")) {
 // get index of the sheet and address of csl
 int sheet_index = Integer.parseInt(s.substring(index,
 index + 2), 10);
 //get value for that particular sheet
 s = spr[sheet_index].getValue(s.substring(index +
 3));
 // append the reflected value in current sheet
 args[0] = s;
 return s;
 } else
 if (n.equalsIgnoreCase(":")) {
 // get index of the sheet and address of csl
 int sheet_index = Integer.parseInt(s.substring(
 index, index + 1), 10);
 //get value for that particular sheet
 s= spr[sheet_index].getValue(s.substring(index +
 2));
 // append the reflected value in current sheet
 args[0] = s;
 return s;
 }
 }
 return s;

} // end of beforeEvaluateSheet(Context)

 4

In CSL file we write

component adaptme adapts spreadsheet{

 class Glue;

 action beforeEvaluateSheet(java.lang.String s);

 method float evaluateConstant (java.lang.String s){
 before beforeEvaluateSheet(s);
 };

};//end of component

In above CSL script we try to invoke beforeEvaluateSheet () before

evaluateConstant() is executed.

5.2.2.4 Output

We will go through few screen shots, which show the behavior of the

application when the above adaptation is done.

Consider following spreadsheet sheet 0, where in a number is inputted

from the URL, which is our existing basic adaptation. In figure 5.1, figure

5.2 and figure 5.3, we can see how referencing works within a single

sheet. Figure 5.2 demonstrates that our adaptation for the inter-sheet

referencing gives the expected result as that of the actual intra-sheet

reference handled in Spreadsheet class.

 4

Figure 5.1: intra-Sheet Referencing.

Figure 5.2: Intra-Sheet Referencing using Adaptation.

 4

Figure 5.3: Intra-Sheet Referencing using actual Spreadsheet Class.

Figure 5.4: Changing Sheets Adaptation using next sheet Button.

 4

Figure 5.5: Intra-Sheet Referencing using Adaptation.

Figures 5.4 and 5.5 shows how to change the sheet and how to use the

inter-sheet reference between two sheets for the data.

This adaptation is still in the basic reference stage; the aspect that a cell

can refer to another cell’s value is done. When the other cell’s value is

again a reference to different cell in the sheet it simply returns the

reference instead of going ahead and getting that reference’s value. This

can be handled by adding more intelligent code to the glue section of this

adaptation. We did not handle this in given adaptation as the goal was

just to show that we could refer to data from other sheet.

 4

5.2.3 Adaptation for detecting if the input is email address and

adding it to address book

No Adaptation Brief Description /Use

A6

Scan Input of textbox for email address, if

valid email address say add to the address

book

Filter like adaptation to

do some meaningful

operation on the inputs

to the spreadsheet.

Table 5.5: Adaptation A6 keeping log of all email addresses.

5.2.3.1Description

Every time a valid email address is input in the spreadsheet, it should be

entered in to an address book. (Where an address book can be a different

component of a target system)

5.2.3.2 Use

This email validation adaptation is useful to demonstrate that we can scan

an input for useful data and reuse the data for some other purpose, which

is external to the application being adapted.

In this case, we are scanning for a data if it is a valid email address and if

found so we add this data to an address book.

 4

Note: This adaptation is important since it suggest how to incorporate

external application in the glue code to do an specific task .We

incorporate a JavaCC based email format parser which parses input data

for popular email format based on the grammar specified. This

demonstrates the flexibility and applicability of our approach for doing

more complex adaptations that might involve inclusion of third party

components for adaptations. It also thus suggests the deployment of such

components/applications used in adaptation.

5.2.3.3 Adaptation Procedure

To check if input data is email or not we invoke the JavaCC based Email

parser giving the input data as the data to be parsed. If this parser returns

a valid parse we conclude that the input data is a valid email address and

we append it in the corresponding email address book file.We do not alter

the input to spreadsheet as in case of URL adaptation, but we are using it

for external purpose like keeping track for all email addresses entered in

the spreadsheet.

We add callback to the method evaluateConstant() from Spreadsheet,

which is already instrumented for the basic adaptations that we worked

out.

 4

 Then in glue code we write a method beforeEvaluateMail ()

/**
 * Returns the same string itself,before that it evaluates if
string
 * is a valid EMAIL Address, if valid email address stores it in
file
*/
 public String beforeEvaluateMail(edu.wpi.cs.adapt.Context c) {
 Object args[] = c.getArgs();
 String s = (String) args[0];
 boolean flag = false; //set flag to false
 String value; //value of string
 if (s != null) {
 String args1[] = new String[1];
 args1[0] = s;
 // invoke the parser to check email format
 // pass the string as arguments
 EMAIL.main(args1);
 flag = EMAIL.checkEmailFormat();
 //flag is true if valid email format
 }
 // if valid email format
 if (flag) {
 value = s;// valid email address: value
 v.add(value);
 //store the address in emailLog.log file
 write("emailLog.log", s, ";");
 }
 flag = false;//reset flag
 return s;//return the original string

 } //end of beforeEvaluateMail()

The method beforeEvaluateMail () takes a String as an input and parses

the string to check if it is an email address. If a match is found it stores

the address in an address book (output file) and the string reflected in the

spreadsheet would be same as it was inputted this method should not in

any way change this string (as in case of URL Adaptation).

Note: here valid email address parsed is of grammar

 <name> <@ >(<name> <.> <name>)+

For example, aa@ ss, aa@ss.com are valid email formats assumed for

the adaptation.

 4

In CSL file we write

component adaptme adapts spreadsheet{

 class Glue;

 action beforeEvaluateMail (java.lang.String s);

 method float evaluateConstant (java.lang.String s){
 before beforeEvaluateMail(s);
 };

 };//end of component

In above CSL script we try to invoke beforeEvaluateMail () before

evaluateConstant() is executed.

5.2.3.4 Output

The screen shot in Figure 5.6 shows the behavior of the application when

the above adaptation is done.

Figure 5.6: Email Adaptation.

 4

Sample File: emailLog. Log

sss@hotmail.com;sudeepu@hotmail.com;sss@ss;a@bcom;s@s.com;aa@ss.c

om;aa@ss.com;aa@wpi.edu;aa@b.com;cc@d.com;ee@g.com;aa@ss.com;bb@s

s.com;aa@ss.com;a@a;sudeepu@wpi.edu;sudeepu@wpi.edu

Note: output shown above is actual output of the adaptation

5.2.4 Adaptation for detecting if the input is a valid picture (a path)

display picture

No Adaptation Brief Description /Use

A7
Adapt spreadsheet to display a picture

in a given cell.

If input string is a jpeg, gif file

with appropriate

path/reference, display the

picture in the TableBean tb

 Table 5.6: Adaptation A7 display picture in Spreadsheet.

5.2.4.1Description

Every time we insert a valid picture (jpg, gif …depends on the supporting

glue code implementation) path into a cell it should be shown as a images

in the spreadsheet. This is a massive adaptation of the spreadsheet,

 4

which is not practically designed to show a picture, thus this adaptation

equally challenging and complex to do.

5.2.4.2 Use

This image adaptation is useful to demonstrate that we can change the

basic behavior (in some case can be rightfully called as functionality) of

the application being adapted. The spreadsheet is not designed to show

images. We are here trying to force the spreadsheet application to do so.

This approach signifies the importance of how we can use our proposed

technique to alter functional behavior of a given application to be adapted.

Note: This adaptation is important since it suggest how to adapt the

internal components of a given application. For instance we are here

adapting TableBean class, which is an internal component of the GUI of

this application. This again demonstrates the reach and applicability of

our approach for complex adaptations involving internal components of

the given application (which we assume has Component Based

Architecture).

5.2.4.3 Adaptation Procedure

We instrument method redraw() (TableBean class), which is invoked

everytime there is a change in TableBean.

 4

We add callback to the method redraw() from TableBean. In glue code

afterEvaluateGraphics() method check s the input if it’s a valid image

path. If valid, it retrives the image for the given path in form of

java.awt.image . This image is drawn in table bean by calling method

Graphics.drawImage() using appropriate coordinates .

Then in glue code we write a method afterEvaluateGraphics()

/**
 * before a data is inserted in the spreadsheet,evaluates as
String
 * if it is image and draws it in tablebean.
 */
 public void afterEvaluateGraphics(edu.wpi.cs.adapt.Context c) {
 // Graphics is the first argument
 Object args[] = c.getArgs();
 java.awt.Graphics g = (java.awt.Graphics) args[0];
 //get Graphics Object g
 int col = ((Integer) args[1]).intValue() ;//get column
 int row = ((Integer) args[2]).intValue() ;//get row
 int TEXT_XPAD = 2;//set properties x
 int TEXT_YPAD = 2;//set properties y
 int columnWidth =fa.tb.getColumnWidth();//set columnWidth
 int rowHeight =fa.tb.getRowHeight();//set rowHeight
 int topCorner = (columnWidth + TEXT_XPAD) * (col - 1);
 tempvalue=fa.tb.getTableValue(col,row);//get value of
string

 if(tempvalue!=null){//if not null
 //check if string is valid image here gif,jpg
 ImageIcon icon = new ImageIcon(tempvalue);
 Image Im = icon.getImage();
 ImageObserver IO = icon.getImageObserver();
 //draw image
 g.drawImage(Im,TEXT_XPAD + topCorner,(rowHeight +
 TEXT_YPAD) * row - TEXT_YPAD,IO);
 }//end of if

 }//end of afterEvaluateGraphics(Context)

 4

In CSL file we write

// tb is to be defined as instance of TableBean in main
application CSL script

component adapttb adapts tb{
 class Glue;
 action afterEvaluateGraphics(java.awt.Graphics g, int
 viewCol, int viewRow);
 method void redraw (java.awt.Graphics g, int viewCol, int
 viewRow){
 after afterEvaluateGraphics(g, viewCol,viewRow);
 };
 };//end of component

In above CSL script we try to invoke afterEvaluateGraphics() after

redraw() method is executed.

5.2.3.4 Output

Figure 5.7 shows the behavior of the application for above adaptation.

Figure 5.7: Picture Adaptation.

 4

5.2.4 All Adaptation together

5.2.4.1Description

It is important that we have all the adaptations that we described so far in

this thesis coexist.

5.2.4.2 Analysis

It is very important that we do the adaptations such that they should

coexist and be valid, all at same time. There were instances that two

adaptations could be contradictory and thus one has to be very careful

that when the adaptations are chose, the interdependencies between

these adaptations are taken in to account.

It is quite possible that adaptations may be affecting the state of

application undesirable to the other adaptation. Few of the factors that

may lead to unwanted adaptation result are listed in section 5.5 under

shortcomings. Also there can be an issue way in which adaptations are

done. For instance we have three adaptations URL, Email and

referencing between multiple sheets which are to be done before the

same method. The order in which adaptations are done does matter. For

example if I do URL adaptation before email adaptation, The URL

adaptation changes the state of input to actual evaluateConstant()

 4

method .This implies that the email adaptation would evaluate the output

of URL for valid email address instead of actual input by the user .So the

order of adaptation is important and we leave the liberty of deciding this

factor to the application assembler who carries out these adaptations by

appropriately updating the CSL script entries.

5.2.4.3 Output

We have been successful in coexisting all the adaptations presented in

this thesis with respect to our spreadsheet example. The concerned CSL

scripts are presented in the appendix E section of this thesis.

Figure 5.8: All Adaptations.

The screen shot in figure 5.8 shows the application when the all

adaptations are in effect.

 4

5.3 ADAPTATION IN CMI DEPLOYMENT

5.3.1Description

In most cases, we can see a component deployment strategy being used

for software systems .We saw a need for integrating our approach with a

popular component deployment technique. We selected CMI [1], which is

one of component deployment strategies as EJB [20] and CORBA [21].

We continue further from the discussion done in deployment Section 4.6

in Chapter 4 and show how to integrate our approach with the CMI

deployment.

5.3.2 CMI: Background, Deployment & Use

This adaptation suggests how we can adapt components that form a

software system and show that they can be deployed in the similar

manner, as they would have been without adaptation, using little effort.

In CMI, we deploy few components that form a software system for taking

put of two numbers and doing operations on it. These operations are

defined in a Class called Calculator. CMI requires scripts that give it a

sequence and description of components to be instantiated, activated,

connected and deactivated.

 4

CMI controls the life cycle of the application by reading these scripts and

appropriately doing instantiation, connection, and activation and finally

deactivation of the components. CMI connects the components by

matching their required and provided interfaces. It is mandatory for each

component to implement IBlock interface.

CMI controls the whole procedure through a container called

“Foundation”. We need to make changes to this Foundation, which is

main CMI container. The important changes would be a mechanism to

add appropriate callbacks to the adapted component and registration of

GlueCalc (our glue code) methods with the concerned adaptable

component methods. This also implies need for the container to have

mechanism that invokes the CSL parser and gets the information from the

CSL files. The information about the glue code is given in section 5.3.3

and the concerned CSL scripts are provided in Appendix E.

As shown in Figure 5.10 each component block has its own CSL script

that suggests information about that component and its adaptable

elements. Even the new component that adapts the old component has

its own csl describing the adaptation to be imposed (which is Modified

Component in our case).

 4

Figure 5.9 gives us an overview of deployment of this example of

Calculator that is similar to deployment we discussed in Section 4.6 in

Chapter 4.

Figure 5.9: Deployment in CMI.

Here the package edu.wpi.cs.adapt is required along with the packages

that enable parsing and CSL structures. The scripts are updated with the

new component (Modified), which adapts an old component (Calculator in

this case). The component to be adapted is to me an adaptable

 4

component again which is possible by using AIDE. A Block hence

contains the component with its concerned CSL script, which now the

updated container “Foundation” is capable of reading.

Figure 5.10: Integration of adaptation technology and CMI.

 4

 Figure 5.10 can be briefly explained in following steps

1. Construct the blocks with proper components and their CSL script

files. The adaptable components must be updated. The

components adapting other components need to be packaged with

the CSL script that suggests the adaptations to be imposed.

2. The block entries are to be updated appropriately in the script

 files.

3. Foundation parses the scripts and gets the block list to be loaded.

4. Foundation calls jar loader to load the blocks.

5. Jar loader searches for the blocks with given names.

6. Jar loader loads the required blocks.

7. Foundation instantiates the blocks in the sequence specified in the

instantiation script.

8. Foundation connects the blocks on the specification in the

connection script and also checking the provided and required

interfaces of blocks to be connected.

9. Foundation calls method adaptBlock to check for components

having their CSL specification deployed with them.

10. adaptBlock goes through the block (component) list passed by

foundation.

11. adaptBlock seek the CSL script files if present for each block.

12. These CSL files are passed to the process method.

 4

13. Process method, parses the CSL specification, instantiates

GlueCalc and inserts callbacks on the adapter of the adaptable

block (Calculator component here).

14. All blocks are activated and application runs, Finally application

calls deactivate to shutdown cleanly.

Note: This adaptation is important since it suggest how to adapt the

internal components of a given software system using a specific

deployment strategy. This example can be used as a template to carry

out adaptations for black box component based systems. This again

demonstrates the capability and applicability of our approach for complex

adaptations involving integration with component deployment techniques.

5.3.3 Adaptation Procedure

We instrument method multiply() (Calculator class), which is invoked

when multiplication operation is selected. We add callback to the method

multiply() from Foundation. In GlueCalc code beforeMultiply() method

increases the value of inputs by 10.

 4

Then in GlueCalc we write a method beforeMultiply()

/**
 * Increases the value of numbers inputted by 10
 * @see edu.wpi.cs.cs509.calculator.Calculator
 */
 public void beforeMultiply(edu.wpi.cs.adapt.Context c) {
 // int is the first argument
 Object args[] = c.getArgs();
 try {
 int a = ((Integer) args[0]).intValue();
 int b = ((Integer) args[1]).intValue();
 //increase the input by 10
 // one can do more complex adaptations here following
 //is just an simple example to
 // illustrate how one can do it technically.
 a = a + 10;
 b = b + 10;
 //assign the value back to Adapter so as the new
 //values are reflected in the actual routine
 args[0] = new Integer(a);
 args[1] = new Integer(b);
 } catch (Exception e) {
 //handle exception
 }
} //end of beforeMultiply()

In CSL file we write

component Modified adapts edu.wpi.cs.cs509.calculator.Calculator
{
 class glue.GlueCalc;
 action beforeMultiply(int a ,int b);
 // apply the adaptation to the multiply method

 method int multiply (int a ,int b) {
 before beforeMultiply (int a ,int b);
 };
};

In above CSL script we try to invoke beforeMultiply() before multiply()

method is executed.

5.3.3.4 Output

Appendix D shows the output of the CMI run

 4

5.4 COMPOSABLITY OF ADAPTATION TECHNIQUE WITH RESPECT

TO ADAPTATION

Adaptation technique should be composable with the component it is

applied on and should also be composable to the other components as it

was before adaptation.

Our approach is composable as in case shown in Figure 5.11

Figure 5.11: Composablity approach.

In Figure 5.11, we can have a component C adapted to component CA.

This component CA now has its own glue code GLUEA and its own CSL

script CSLA. We propose to compose this adaptation by carrying out

adaptation of this adapted component CA such that component CAA is

obtained, where all adaptations are valid as that in case of CA as well as

 4

the new adaptation. This Composablity is obtained by editing the CSL

specification that was present after adaptation of C. Editing the CSL script

CSLA we can easily control and impose new adaptation. For example,

consider that we adapt C with method x, such that method beforeX from

GLUEA is registered with a before callback. We thus obtain CA. We need

adapt the component CA with method x such that beforeXX method in

GLUEAA is registered with before callback. Editing CSLA to CSLA’ gives us

flexibility of deciding and imposing if method beforeX has to be registered

before the method beforeXX. This process involves adding few lines to

the existing CSLA and in desired sequence. No extra functionality is

required for container to know about the glue code and adaptations of the

composed component CA that is being adapted to derive new adapted

component CAA. We are thus, successful in evaluating the Composablity

metric.

In Figure 5.12, we propose one more approach to achieve Composablity.

We can get the adapted component CA from C as described above. In this

approach, the main difference is that we now have one glue code at the

CA adaptation level which is GLUEAA .It becomes important that the new

composed component CAA is aware about the component CA ‘s

composablity. Here it is also imperative for CAA to have knowledge about

CSLA and that the reference to the CSLA from CSLAA is properly handled.

This implies need for an intelligent container, which would have the

 4

knowledge about the composablity of CA and mechanism to parse the

CSLA (that is embedded with CA) and register callback with respect to

GLUEA.

Figure 5.12: Composablity proposed approach.

The container would also be expected to do the actual work of parsing

CSLAA and registering callbacks with respect to GLUEAA. This approach is

similar to wrapping except the interface here IA remains unchanged

through out unlike wrapping.

Note: Here we also maintain composablity with respect to the other

components, as the interfaces remain unaltered unlike the case of

wrapping technique. Since interfaces are not changed the new adapted

component is as composable as the original one. Example CMI

adaptation discussed in this chapter.

 4

5.5 EVALUATION WITH RESPECT TO METRICS PROPOSED

Table 5.1 gives the metrics to be considering for evaluation. Table 5.8

gives few observations with respect to those metrics

Metric Metric evaluation with respect to Adaptation

Transparency

We can see this measure on basis of the example of CMI

adaptation. From application assembler’s point of view

there is no major change in the actual component

deployment procedure. One can disable the adaptations

using CSL scripts and the whole CMI system works as if

there was no adaptation. Even if the component is

adapted no change is required in Client code. For

example, in CMI, the component adapted does not

require other client components to be changed for either

functionality or connectivity. This ensures the

transparency of the system.

Blackbox

We do not change the internals manually for enabling the

adaptations. Yes, we do need the component to be

adaptable which we achieve by using technology like

AIDE. This ensures that the application assembler does

not require code level access. The black box property

thus is preserved.

 4

Composablity

Composablity is to be done with respect to the component

itself as well as with the components this adapted

component interacts with. On basis of the discussion

made in Section 5.4, our approach does support

composablity.

Performance

This metric required us to use other available approaches

for the same adaptation and evaluate the performances.

We were unable to derive to the comparative

performance metrics between our approach and other

approaches. We were pleased to see that the

performance was not much different when we took the

perspective with respect to performance before

adaptation and performance after adaptation.

Deployment

We have provided deployment examples indicating the

integration of our approach with the deployment

techniques like CMI. This ensures that the approach we

propose can be deployed easily.

Table 5.7: Metrics evaluation with respect to adaptations

 4

5.6 SHORTCOMINGS

We also were able to see few shortcomings of the approach, for example

the kind of adaptations, which may not be possible or not feasible due to

complexities as,

 Requirement of either writing complex and large glue code

 Unavailability of source code to instrument required method for

adaptation

 Implementation of inter-state affecting adaptations on same

method like for e.g. one adaptation adds a value v1 to the input

and another adaptation adds value v2 to the input, if both of these

adaptations are carried out on same method, the desired result of

each adaptation is not achieved; however, only the Application

Assembler knows if the group of adaptations are consistent.

 Implementation of contradictory adaptations on same method, for

example, one adaptation sets input value v to true and another

adaptation sets input value v to false. If both of these adaptations

are carried out on same method, they both contradict and one

does not get desired result.

 The approach is not well suited towards adapting user interfaces.

 If the members, we want to adapt have generalized inputs whose

runtime type is not known in advance, then adaptation for that

member can go wrong. For example, consider a method X having

input of type Object. We, using any of the information from CSL

 4

script or other resource for a black box component, cannot

determine what kind of value or type the input may be during

runtime. In such cases carrying out adaptation may not give

desired result as this method is a bad candidate for adaptation

The above listed shortcomings are some of practical problems that can be

faced by the application designers while using the framework we are

supporting. There are many more such situations, which we have not

mentioned as they can be of different nature and kinds depending on the

application to be adapted, deployment, and many other factors.

We don’t claim that this framework we are presenting is appropriate for all

adaptation needs. We presented a way of carrying out the adaptation as

compared with the existing black box adaptation techniques and

proposed that this technique would be better in some situations over the

existing approaches.

 4

5.7 SUMMARY OF CHAPTER

We proposed several metrics to evaluate this approach in Table 5.1. The

candidates for evaluating this approach were the adaptations discussed in

Section 5.2. We were also able to implement and evaluate our

infrastructure with a component deployment technology CMI as specified

in Section 5.3

In Section 5.5, we contrast the metrics proposed against the candidate

adaptations selected and imposed for evaluation purposes and end this

chapter with a brief note on shortcomings of this approach (Section 5.6).

Every adaptation method has its own shortcoming, though it depends on

the kind of adaptation expected for the given blackbox component that will

determine if our framework is better suited for a particular problem than

other available technologies.

 4

C h a p t e r 6

CONCLUSION & FUTURE WORK

6.1 CONCLUSION

The goal of this thesis was to present an environment for specifying and

executing adaptable software components. We proposed and defined the

Component Specification Language grammar. We demonstrated, how

AIDE [10] is integrated to assist in conversion of a component to an

adaptable component. We also demonstrated, how to generate CSL

specification for the given component using tools like CSLProfiler [15]. We

provided parser for CSL specification (Chapter 2) and also data structures

to appropriately hold the csl information.

We also presented several adaptations (Chapter2, 5) to demonstrate the

flexibility of our approach in adapting a blackbox component (Chapter 2).

We also demonstrated how to integrate our adaptation approach (Chapter

4) with the existing component deployment strategies like CMI (Chapter

5). The infrastructure addresses the problem of effective packaging of the

components for third party use, adaptation, and deployment. Thus we

support both component designer and component assembler.

Finally the bottom line is, in this thesis, we show how to use declarative

specification to change run time behavior of a CBSE system.

 4

6.2 FUTURE WORK

Future Work for this adaptation technique is primarily to make it more

sophisticated and applicable on larger scale Following are areas where

we visualize the future work to be done,

6.2.1 Automatic Glue code generation

As presented in this thesis, we manually edit and write the glue code. We

also accordingly reflect the changes in the CSL script suggesting the

adaptations to be imposed. We feel this can be made automated to

further assist the framework. The visualized automation is that, once the

candidate member of adaptable component is known and the type of

callback is known, we can use a tool to generate the mechanical areas of

glue code and reflect the corresponding changes in the related CSL

script. Doing this will minimize the effort required to write a glue code

where the application assembler would now have to just write few lines of

code, that reflect the actual adaptations, in the skeleton of the glue code

method.

6.2.2 Additional functionality in “parser for csl script”

As presented in this thesis, the existing parse does do a good job but

there are still some issues that can make it more generic. For example, if

consider in CSL script of component A, we have,

Component A adapts componentB

 4

Further in component B’s CSL script, we have,

Component B adapts componentA

This will create a chain that might make the parser to go in an unwanted

state. Current parser ignores this chaining after a certain level. But effort

can be made to improvise the parser to deal with chaining problems

6.2.3 Developing better case studies & evaluating the adaptation

technique for the same.

We present some case studies that demonstrate a variety of adaptations

that we can do using our approach. But we feel strong need for

development of better and different case studies. The adaptation of any

component or application is very specific to factors like the way it is

implemented, deployed and many other things. This makes each case

study important provided that it involves a variety, which will demonstrate

the uncovered features of this adaptation technique.

6.2.4 Attempting complex adaptations such as user interface.

We can attempt to do more complex adaptations like try change the

runtime behavior for software system. For example, adapting a user

interface using our approach is a challenge; it is a complex adaptation

and may require more complex glue code. Achieving such adaptations

help to evaluate the effectiveness of this approach to aid application

assembler’s decision in selecting the adaptation technique, if required.

 4

6.2.5 adding more grammar to CSL to describe a blackbox component.

Attempt can be made to add more grammar to Component Specification

Language that will lead to better and detailed understanding of a given

black box component. This may lead to extended use out of the

framework and approach we are suggesting.

6.2.6 Applying adaptation approach to other Object /structure oriented

technologies

We strongly feel the need to extend this adaptation approach to other

technologies like C++ etc. This will show the applicability of this approach

and also open new avenues for the adaptations of blackbox components

developed using other structured technologies like C++.

6.2.7 Adaptation of unstructured components

Section 6.2.6 leads to another work of extending this adaptation approach

to the black box components developed using no structured technologies

like C. This work would be very complex and may lead to rework of few

areas. There also may be some new issues we didn’t come across due to

the non-structural nature of the technology used.

 4

6.2.8 Automating process of making an adaptable component and

generating its csl like example integrating tools like AIDE and CSLprofiler.

We currently have to make a component adaptable using AIDE and either

write down the components CSL script or generate it using tool like

CSLProfiler. An attempt can be made towards development of an

integrated tool that enables us to automatically instrument the given

component and generate its corresponding CSL specification. Such tool

will help application designer to package the adaptable component with

its CSL specification.

6.2.9 Creating a standard library /platform to enable assembler to choose

component deployment techniques.

Attempt can be made to develop a standard library to aid the

different component deployment techniques. This will assist the

component assembler to deploy the adaptable components using

preferred component deployment strategy. This will minimize the

manual process involved in the whole component adaptation

process.

Most of future work suggested can be done towards making this

adaptation approach more robust, automated and applicable.

 4

APPENDIX A

Output of AIDE tool for Spreadsheet component:

<?xml version="1.0" encoding="UTF-8"?>
<class name="adapt.spreadsheet.Spreadsheet">
 <implements>SpreadsheetListener</implements>
 <implements>Serializable</implements>
 <extends>Object</extends>
 <modifier>public</modifier>
 <modifier>private</modifier>
 <modifier>private</modifier>
 <modifier>private</modifier>
 <modifier>private</modifier>
 <modifier>private</modifier>
 <constructor instrumented="false" name="Spreadsheet">
 <modifier>public</modifier>
 </constructor>
 <method instrumented="false" name="setFunction" return-
type="void">
 <modifier>public</modifier>
 <parameter-type>String</parameter-type>
 <parameter-type>Function</parameter-type>
 </method>
 <method instrumented="false" name="getFunction" return-
type="Function">
 <modifier>public</modifier>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="false" name="clearFunction" return-
type="void">
 <modifier>public</modifier>
 </method>
 <method instrumented="false" name="installFunctions" return-
type="void">
 <modifier>public</modifier>
 </method>
 <method instrumented="false" name="extractCells" return-
type="Vector">
 <modifier>private</modifier>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="false" name="modifyLevels" return-
type="void">
 <modifier>private</modifier>
 <parameter-type>Node</parameter-type>
 </method>
 <method instrumented="false" name="updateLevels" return-
type="void">
 <modifier>private</modifier>
 <parameter-type>Node</parameter-type>

 4

 </method>
 <method instrumented="false" name="setDebug" return-type="void">
 <modifier>public</modifier>
 <parameter-type>boolean</parameter-type>
 </method>
 <method instrumented="false" name="getDebug" return-
type="boolean">
 <modifier>public</modifier>
 </method>
 <method instrumented="false" name="getValue" return-
type="String">
 <modifier>public</modifier>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="false" name="setValue" return-type="void">
 <modifier>public</modifier>
 <parameter-type>String</parameter-type>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="false" name="setValue" return-type="void">
 <modifier>public</modifier>
 </method>
 <method instrumented="false" name="getNumericValue" return-
type="float">
 <modifier>public</modifier>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="false" name="getNode" return-type="Node">
 <modifier>private</modifier>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="true" name="evaluateConstant" return-
type="float">
 <modifier>private</modifier>
 <parameter-type>String</parameter-type>
 </method>
 <method instrumented="true" name="evaluate" return-type="void">
 <modifier>private</modifier>
 <parameter-type>Node</parameter-type>
 </method>
 <method instrumented="false" name="calculateFunction" return-
type="float">
 <modifier>public</modifier>
 <parameter-type>Expression</parameter-type>
 <exception-type>FunctionException</exception-type>
 </method>
 <method instrumented="false" name="calculateFunction" return-
type="float">
 <modifier>private</modifier>
 <parameter-type>String</parameter-type>
 <parameter-type>Enumeration</parameter-type>
 <exception-type>FunctionException</exception-type>
 </method>
 <method instrumented="false" name="recalculateSpreadsheet"
return-type="void">
 <modifier>private</modifier>
 <parameter-type>Node</parameter-type>
 </method>

 4

 <method instrumented="false" name="markForRecalculation" return-
type="void">
 <modifier>private</modifier>
 <parameter-type>Node</parameter-type>
 </method>
 <method instrumented="false" name="generateRefreshEvents" return-
type="void">
 <modifier>private</modifier>
 </method>
 <method instrumented="false" name="handleSpreadsheetEvent"
return-type="void">
 <modifier>public</modifier>
 <parameter-type>SpreadsheetEventObject</parameter-type>
 </method>
 <method instrumented="false" name="addSpreadsheetListener"
return-type="void">
 <modifier>public</modifier>
 <modifier>synchronized</modifier>
 <parameter-type>SpreadsheetListener</parameter-type>
 </method>
 <method instrumented="false" name="removeSpreadsheetListener"
return-type="void">
 <modifier>public</modifier>
 <modifier>synchronized</modifier>
 <parameter-type>SpreadsheetListener</parameter-type>
 </method>
 <method instrumented="false" name="fireAction" return-
type="void">
 <modifier>private</modifier>
 <parameter-type>SpreadsheetEventObject</parameter-type>
 </method>
 <method instrumented="false" name="filterCells" return-
type="void">
 <modifier>private</modifier>
 <parameter-type>Vector</parameter-type>
 </method>
</class>

 4

APPENDIX B

Output of CSLprofiler tool for Spreadsheet component:

component Spreadsheet{

public {
 void setFunction (String,Function);
 Function getFunction (String);
 void clearFunction ();
 void installFunctions ();
 void setDebug (boolean);
 boolean getDebug ();
 String getValue (String);
 void setValue (String,String);
 void setValue ();
 float getNumericValue (String);
 float calculateFunction (Expression,String,Enumeration,Node);
 void handleSpreadsheetEvent (SpreadsheetEventObject);
 void addSpreadsheetListener (SpreadsheetListener);
 void removeSpreadsheetListener (SpreadsheetListener);
};

private {
 adaptable float evaluateConstant (String);
 adaptable void evaluate (Node);
};

protected {
};

}

Note: The above output is with respect to the previous output

(appendix A) of the AIDE tool given as input given to CSLprofiler

tool.

 4

APPENDIX C

CSL Grammar

Application CSL grammar

Application CSL Starts with a keyword “application” and the first line is

specified as

Grammar

application <application name> {
Interfaces …

Properties…

Components…

Public/Private/Protected methods…

}

Example

application FinalApp {

Indicates

Indicates that the application named “FinalApp” is being described in form

of CSL.

 4

Note:

• BOLD implies compulsory/keyword.

• “< >” implies to be filled by CSL writer.

• [* *] implies optional.

• adapt.spreadsheet.Node like dot “ . ” separated names imply fully

quantified names.

• “ ; ” is used as a common statement terminator

• “ // ” is used as a comment statement character

If an application implements some interfaces they are specified in the

“implements” clause of the CSL file as follows

Grammar

implements [* <interface1 >, <interface2 >,<interface3 >… *] ;

Example

implements ActionListener , TableListner ;

Indicates

Indicates briefly the interfaces implemented by the application whose CSL

script this is. The word following keyword “implements” is the name of the

interface implemented, one can describe more interfaces by giving the

 4

name of interfaces separated by a delimiter comma sign “ , ” as shown in

above example.

Implement’s clause is typically used to specify the interfaces associated

with the application that is described by the current CSL.

Grammar

component <component name> < instanceof> < component type
>;
component <component name> < extends> < component type >;
component <component name> <adapts > <component / application
name > {

Class

Actions ….

Properties …

Methods …

Public/Private/Protected methods …

}

Example

Component table instanceof TableBean ;

Component spreadsheet extends Spreadsheet;

Component adaptsheet adapts Spreadsheet {

……….

……….

};

 4

Indicates

Indicated if this component described is adaptation or instance. Here the

curly braces strictly are used only if the keyword following the

<component name > specified by the user is “adapt” else otherwise the

normal “;” is to be used.

Note: Here the rest of grammar included in the Component adaptation is

the same as described in the above component CSL grammar

description.

This component area, once description is done is to be terminated by

closing curly braces followed by a statement terminator.

Component’s are typically used to specify and suggest the required

adaptations associated with an external code that is written with the new

adaptation functionality indicated by the class clause in component.

(incase of “adapts” keyword.)

Components are also typically used to specify module associated with a

different module that is not in the component domain.(incase of

“instanceof”,”extends” keyword.)

 4

Grammar

property <Property Type> <Property Name> ;

Example

property int viewHeight ;

Indicates

Indicates brief description of the data-member of the specified application.

In the first line of the CSL description the word following keyword

“application” is the name of this application module. Word following

keyword property is the data-type of the data member specified and next

word following is the name of this property. There are no more attributes

to this property.

Properties are accessed through get and set methods. In general, Java

strongly encourages class designers to use getProperty() and

setProperty() as the name of the methods for accessing Properties.

Properties are typically used to specify the variables/data members in the

application.

 4

Grammar

public/protected /private {
<Method Return Type> <Method Name>([* <parameter 1>,

<parameter2>,… *])
…………..

};

Example

Public {

 void init() ;

 void init_components() ;

 void handleSpreadsheetEvent(SpreadsheetEventObject);

};

Protected {

 void xyz(int a, string node) ;

};

Private {

void actionresponse (ActionEvent);

void generateRefreshEvents();

};

Indicates

Indicates brief description of the public/protected/private methods

specified in the application about which CSL description is, where the

 4

area following keyword public/private/protected is the area where the

concerned methods declared are described for the given application and

they are termed as public/private/protected methods/listeners .the

methods and listeners are listed in between the curly braces.

public/protected/private area’s are typically used to specify the methods

associated with the concerned declaration type as the keyword suggests

respectively ,that is written with respect to the application indicated by the

application clause.

MORE KEYWORDS

Adaptable

Grammar

adaptable <Method statement > /<Component statement>;

Example

adaptable void generateRereshEvents();

Indicates

Indicates brief description of the method/component specifying whether or

not that particular method or component is further adaptable. The first

 4

word of a line of the CSL description here has to be “adaptable” implying

that the concerned method/module is adaptable.

It makes it easy to know whether the component and/or the method is

useful for adaptation in future .

Final

Grammar

final <Method statement > /<Component statement>;

Example

final void generateRereshEvents();

Indicates

Indicates brief description of the method/component specifying whether or

not that particular method or component is further adaptable. The first

word of a line of the CSL description here has to be “final” implying that

the concerned method/module is non-adaptable further.

It makes it easy to know whether the component and/or the method is

useful for adaptation in future.

Note: Final & Adaptable keywords are mutually contradictory.

 4

Component CSL grammar

Component CSL Starts with a keyword “component” and the first line is

specified as

Grammar

component <component name> <adapts > <component / application >

{
Class

Actions …

Properties …

Methods …

Public/Private/Protected methods …
 };

Example

Component table instanceof TableBean ;

Component adaptsheet adapts Spreadsheet {

Indicates

Indicated if this component described is adaptation or instance. Here the

curly braces strictly are used only if the keyword following the

<component name > specified by the user is “adapt” else otherwise the

normal “;” is to be used.

 4

Note:

• BOLD implies compulsory/keyword.

• “< >” implies to be filled by CSL writer.

• [* *] implies optional.

• adapt.spreadsheet.Node like dot “ . ” separated names imply fully

quantified names.

• “ ; ” is used as a common statement terminator

If a Component adapts some application more details of the component

can be specified as follows after opening the curly braces as shown in

above example.

This component description further is made of a couple of statements

followed by the keywords like class, action, property, method, before,

after, negotiate so on.

Grammar

class <Class Name> ;

Example

class Glue ;

 4

Indicates

Indicates the name of the Class where the additional functionality is

placed. for example in our case study “Glue” Class.

This class clause is typically used to indicate the external code/class file

that is written with the new adaptation functionality associated to this

component.

Grammar

property <Property Type> <Property Name> ;

Example

property int viewHeight ;

Indicates

Indicates brief description of the data-member of the class/module

specified component is adapting. In the component clause of the CSL

description where the word following keyword “adapts” is the name of this

module being adapted.

Note: For more details on Property clause see the property section

of the CSL application grammar

 4

Grammar

action <Action Name> ([* <parameter1 type> <parameter 1>,

<parameter2 type> <parameter2>,… *]) ;

Example

action beforeEvaluate (adapt.spreadsheet.Node n);

action beforeEvaluate (java.lang.Vector refreshList);

Indicates

Indicates brief description of the method of the Class/file specified in the

“class” clause of the CSL description, where the word following keyword

action is the name of this method and is also termed as action name .The

attributes of the method are given here in form of parameters in “(” & “)”.

The parameters are usually a fully quantified name. The parameter

generally represent the input datatypes of the method in the given class

specified for this component adaptation/description. The parameter type

precedes the parameter names.

Actions are typically used to specify the methods associated with the

external code that is written with the new adaptation functionality indicated

by the class clause.

 4

Grammar

method <Method Return Type> <Method Name>([* <parameter1

type> <parameter 1>, <parameter2 type> <parameter2>,… *]) {
negotiate …

before …

after …

};

Example

method void generateRefreshEvents(java.lang.Vector refreshList) {

 negotiate RefreshPolicy:

 filterCells(refreshList);

};

method void evaluate (adapt.spreadsheet.Node node){

 before beforeEvaluate (node);

 after afterEvaluate (node);

};

Indicates

Indicates brief description of the method of the class/module specified

component is adapting. In the component clause of the CSL description

where the word following keyword “adapts” is the name of this module

being adapted.

Word following keyword “method” is the return data-type of the Method

specified and next word following is the name of this Method. The

 4

attributes of this method are given here in form of parameters in “(” & “)”

.the parameters are usually a fully quantified name. The parameter

generally represents the input parameters of the method specified. The

parameter data-type precedes the parameter name.

Following the method parameter description there is open curly braces

where in other concerned description, generally about the adaptations

information with respect to this specified method.

This adaptation information is basically based on three keywords, before,

after and negotiate.

BEFORE /AFTER CLAUSE

Grammar

before <before method name > ([* <parameter 1>, <parameter2>,… *]

) ;

after <after method name > ([* <parameter 1>, <parameter2>,..*]) ;

Example

before beforeEvaluate (node);

after afterEvaluate (node);

 4

Indicates

In this clause the action is specified using either of the keyword specifying

if the action is to be invoked before the specified method or after the

specified method. For example in above example for evaluate method ,

We specify such that the script suggest to invoke beforeEvaluate action

before the method evaluate and on similar lines the script suggest to

invoke afterEvaluate action after the method evaluate.

Where in the actions are appropriated coded in the class/code specified in

the “class” clause of the CSL description. The actions here are presumed

to have the required functionalities to carry out the required adaptation.

before & after keywords are typically used to specify and suggest how the

adaptations that are required are done using action (atleast specifying to

invoke that action) before or after the invocation of the specified method.

NEGOTIATE CLAUSE

Grammar

negotiate <negotiate policy name > :
< action name>([* <parametertype 1>, <parametertype2>,… *]) ;

 4

Example

negotiate RefreshPolicy :

filterCells (refreshList);

Indicates

In this clause the action is specified with the parameter type associate with

the Method specified e.g. refreshList in the second line .A unique negotiate

name is assigned which follows the keyword “negotiate” which is also

termed as negotiate policy name.

Using this negotiate clause one can suggest adaptations such that every

time the specified method is invoked the suggested adaptation action

filtercells takes the concerned parameter input and process/update it for

some required functionality.

Here too the action is supposed to be appropriated coded in the

class/code specified in the “class” clause of the CSL description. The

actions here are presumed to have the required functionalities to carry out

the required adaptation.

The negotiate keyword is typically used to specify and suggest how the

adaptations that are required are done using action using the input

parameter of the specified method.

 4

Method, once description is done are supposed to be terminated by

closing curly braces followed by a statement terminator.

Method clause is typically used to specify how the adaptations that are

required are done using the keywords like before, after and negotiate

using some other known information from the class specified in the “class”

clause of CSL script.

Note: Methods are essential and an important part of the component CSL

from adaptation point of view one should be thus very careful while writing

this portion of CSL since a slight mistake here may result in a logical

error which can be hard to debug.

Grammar

public/protected /private {
<Method Return Type> <Method Name>([* <parameter 1>,

<parameter2>,… *])
……….. };

Example

Public {

void init() ;

 void init_components(String sp) ;

};

Protected {

 void set_init() ;

 void xyz(int a,node refresh) ;

};

 4

Private {

adaptable void init_components(String sudeep) ;

 final void xyz(int a,String c) ;

};

Indicates

Indicates brief description of the public/protected/private methods

specified in the component about which CSL description is, where the

area following keyword public/private/protected is the area where the

concerned methods declared are described for the given component and

they are termed as public/private/protected methods/listeners .the

methods and listeners are listed in between the curly braces.

Note: For more details on Public/Private/Protected clause see the

Public/Private/Protected section of the CSL application grammar

 4

APPENDIX D

CMI RUN OUTPUT AFTER ADAPTATION

 Wednesday March12 2003,

 Adaptation done for adding 10 to each input to calculator

Reading Scripts from adaptCMI\scripts
Connect Successful
Storage Directory: c:\program files\ibm\visualage for
java\ide\project_resources\AdaptCMI\adaptCMI\storage
Trying to load: edu.wpi.cs.cs509.calculator.Calculator
ADAPT::::Calculator is adaptable.
Trying to load: edu.wpi.cs.cs509.tutorial.FirstTry
Trying to load: edu.wpi.cs.cs509.calculator.Calculator
ADAPT::::Modified is adaptable.

public method name : activate
public method return type: boolean
-- method parameter IBlock
--*** method parameter String

public method name : connect
public method return type: boolean

public method name : deactivate
public method return type: void

public method name : getProvided
public method return type: Enumeration

public method name : getRequired
public method return type: Enumeration
-- method parameter int
-- method parameter a
--*** method parameter int
-- method parameter b

public method name : multiply
public method return type: int
-- method parameter int
-- method parameter a
--*** method parameter int
-- method parameter b

public method name : add
public method return type: int
--- public area over ---
--- public area over ---
--- public area over ---
add component: Calculator

 4

errorjava.lang.NullPointerException
component Calculator{
// Public area of application/component
Public {
// Public methods()
 boolean activate() ;
 void deactivate() ;
 Enumeration getProvided() ;
 Enumeration getRequired() ;
 boolean connect(IBlock, String) ;
 int multiply(int, a, int, b) ;
 int add(int, a, int, b) ;
};// end of public area
// Private area of application/component
Private {
// Private methods()
};// end of private area
// Protected area of application/component
Protected {
// Protected methods()
};// end of protected area
};
//end of componentCalculator

public method name : activate
public method return type: boolean
-- method parameter IBlock
--*** method parameter String

public method name : connect
public method return type: boolean

public method name : deactivate
public method return type: void

public method name : getProvided
public method return type: Enumeration

public method name : getRequired
public method return type: Enumeration
--- public area over ---
--- public area over ---
--- public area over ---
add component: FirstTry
errorjava.lang.NullPointerException
component FirstTry{
// Public area of application/component
Public {
// Public methods()
 boolean activate() ;
 void deactivate() ;
 Enumeration getProvided() ;
 Enumeration getRequired() ;
 boolean connect(IBlock, String) ;
};// end of public area
// Private area of application/component

 4

Private {
// Private methods()
};// end of private area
// Protected area of application/component
Protected {
// Protected methods()
};// end of protected area
};
//end of componentFirstTry

action name : beforeMultiply
action parameter data type: int
action parameter : a
action parameter data type*: int
action parameter *: b
 for adapt Method parameter aof type int
 for adapt Method parameter* bof type int
-- method parameter int
-- method parameter a
--*** method parameter int
-- method parameter b
BEFORE method :beforeMultiply
in adapt method name:multiply
in adapt method return type:int
add component: Modified
which adapts Calculator
>>> Inner parsing: Calculator

public method name : activate
public method return type: boolean
-- method parameter IBlock
--*** method parameter String

public method name : connect
public method return type: boolean

public method name : deactivate
public method return type: void

public method name : getProvided
public method return type: Enumeration

public method name : getRequired
public method return type: Enumeration
-- method parameter int
-- method parameter a
--*** method parameter int
-- method parameter b

public method name : multiply
public method return type: int
-- method parameter int
-- method parameter a
--*** method parameter int
-- method parameter b

 4

public method name : add
public method return type: int
--- public area over ---
--- public area over ---
--- public area over ---
add component: Calculator
errorjava.lang.NullPointerException
continuing...
errorjava.lang.NullPointerException
component Modified adapts Calculator {
 class glue.GlueCalc ;
 action beforeMultiply (int a,int b) ;
 method int multiply(int a,int b){
 before beforeMultiply(int,a,int,b);
 };
};
// end of adaptable component
field name :: Calculator
E : set adapter done
1: class glue.GlueCalc
FirstTry: You have three choices. Either enter three numbers,
separated by a space and press return. If the first number is a 1
I will multiply the two numbers together. If the first number is
a 2 then I will subtract the two numbers. If the first number is
a 3 then I will divide the two numbers.
enter "-1 -1 -1" to stop.
1 2 2
XXX BEFORE i
2 * 2 = 144

nvoke call back multiply in Calculator

1 0 0
XXX BEFORE i
0 * 0 = 100

nvoke call back multiply in Calculator

Note:Above output is after adaptation so it gives
 0*0 =10*10=100 (implies adapted)

 4

APPENDIX E

 COMPONENT SPECIFICATION LANGUAGE SCRIPTS

For Spreadsheet Application Adaptation

 (Included scripts are just the important ones)

For FinalApp
application FinalApp {

implements ActionListener , TableListener ,
 SpreadSheetListener , TextBeanListener ,
 Serializable ;

component vs instanceof ScrollbarBean;
component hs instanceof ScrollbarBean;
component newcomponent instanceof adaptme;
component tb instanceof TableBean;
component tbBox instanceof TableBean;
component newtb instanceof adapttb;
component app instanceof FinalApp;
component adaptfa adapts app{
 class Glue;
 action forSheetChange();
 method void doSheetButton(){
 before forSheetChange();
 };
};//end of component

property int viewHeight;
property int viewWidth;
property CellRegion tableSelected;
property CellRegion tableRSelected;

public {

// public methods
void init();
void init_gui();
void init_components();
// various Listener interface
void actionPerformed(ActionEvent);
void handleTableEvent(TableEventObject);
void handleSpreadsheetEvent(SpreadsheetEventObject);
};
}//end of csl

 4

For adaptme component

component adaptme adapts spreadsheet{

 class Glue;

 action beforeEvaluate (adapt.spreadsheet.Node node);
 action afterEvaluate (adapt.spreadsheet.Node node);
 action beforeEvaluateSheet(java.lang.String s);
 action beforeEvaluateC (java.lang.String s);
 action beforeEvaluateMail (java.lang.String s);
 action filterCells(java.lang.Vector refreshList);
 action beforeInsert(java.lang.String dest,java.lang.String
 value);

 method void generateRefreshEvents(java.lang.Vector
refreshList) {

 negotiate RefreshPolicy:
 filterCells(refreshList);
 };

 method void evaluate (adapt.spreadsheet.Node node){
 before beforeEvaluate (node);
 after afterEvaluate (node);
 };

 method void setValue (java.lang.String dest,java.lang.String

value){
 before beforeInsert(dest,value);
 };

 method float evaluateConstant (java.lang.String s){
 before beforeEvaluateSheet(s);
 before beforeEvaluateC (s);
 before beforeEvaluateMail(s);
 };

 };//end of component

 4

For Spreadsheet

component Spreadsheet{
public {
 void setFunction (String,Function);
 Function getFunction (String);
 void clearFunction ();
 void installFunctions ();
 void setDebug (boolean);
 boolean getDebug ();
 String getValue (String);
 void setValue (String,String);
 void setValue ();
 float getNumericValue (String);
 float calculateFunction (Expression,String,Enumeration,Node);
 void handleSpreadsheetEvent (SpreadsheetEventObject);
 void addSpreadsheetListener (SpreadsheetListener);
 void removeSpreadsheetListener (SpreadsheetListener);
};

private {
 adaptable float evaluateConstant (String);
 adaptable void evaluate (Node);
};

};//end of csl

For adapttb

component adapttb adapts tb{

 class Glue;

 action afterEvaluateGraphics(java.awt.Graphics g, int
 viewCol,int viewRow);

 method void redraw (java.awt.Graphics g, int viewCol, int
 viewRow){
 after afterEvaluateGraphics(g, viewCol,viewRow);
 };

};//end of component

 4

For CMI Adaptation (Included scripts are just the important ones)

For Modified block

component Modified adapts edu.wpi.cs.cs509.calculator.Calculator
{

 class glue.GlueCalc;

 action beforeMultiply(int a ,int b);

 // apply the adaptation to the multiply method
 method int multiply (int a ,int b) {
 before beforeMultiply (int a ,int b);
 };
 };

For Calculator block

component edu.wpi.cs.cs509.calculator.Calculator {
public {
 boolean activate ();
 boolean connect (IBlock,String);
 void deactivate ();
 Enumeration getProvided ();
 Enumeration getRequired ();
 adaptable int multiply (int a,int b);
 adaptable int add (int a,int b);
};

};

For FirstTry block

component edu.wpi.cs.cs509.tutorial.FirstTry {
public {
 boolean activate ();
 boolean connect (IBlock,String);
 void deactivate ();
 Enumeration getProvided ();
 Enumeration getRequired ();
};

};

 4

BIBLIOGRAPHY

[1] George T. Heineman and William T. Councill. Component-Based
Software Engineering: Putting pieces together. Addison Wesley
Longman, Inc., June 2001.

[2] George T. Heineman, “An Experimental Evaluation of Component

Adaptation Techniques”, Worcester Polytechnic Institute, November
1999, WPI-CS-TR-99-04.

[3] George T. Heineman, “A Model for Designing Adaptable Software

Components”, Pages 121 – 127, Vienna, Austria, August 1998. 22nd
Annual International Computer Science and Application Conference.

[4] George T. Heineman, “Adaptation of Software Components”,

Technical report, Department of Computer Science, Worcester
Polytechnic Institute, April 1999.

[5] George T. Heineman, “Adaptation and Software Architecture”, 3rd

Annual International Workshop on Software Architecture (ISAW-3),
pages 61-64, Orlando, Florida, FL, USA, November 1998.

[6] George T. Heineman, Composing Software Systems from Adaptable

Software Components, OMG-DARPA-MCC workshop on
Compositional Software Architectures. Monterey, CA, January 1998.

[7] Jan Bosch, “Superimposition: A Component Adaptation Technique”,

Information and Software Technology, 1999.

[8] Kavita Kanetkar, Formal Analysis of Component Adaptation

Techniques, M.S.Thesis, Worcester Polytechnic Institute, USA, 2002.

[9] Helgo Ohlenbusch, Software component adaptation mechanisms,

M.S.Thesis, Worcester Polytechnic Institute, 1999.

[10] Paul Calnan, “AIDE”, SERG, Worcester Polytechnic Institute, 2002.

[11] Grady H. Campbell Jr., “Adaptable Components”, Prosperity Heights

Software, www.domain-specific.com, 1999.

[12] George T. Heineman, “Component Model Implementation”, SERG,

Worcester Polytechnic Institute, 2002.

 4

[13] M. Woodman, O. Benebiktsson, B. Lefever, F. Stallinger, “Issues of
CBD product quality and process quality “, 4th International Workshop
of Component-Based Software Engineering at 23rd International
Conference on Software Engineering, Toronto, May 2001

[14] Päivi Kallio, Eila Neimelä, “Documented Quality of COTS and OCM

Components”, VIT Electronics, Finland.

[15] Chunling Ma, CSL-profiler tool, Independent Study, SERG,

Worcester Polytechnic Institute, 2002.

 [16] Wojtek Kozaczynski, Composite Nature of Component, Technical

Report, Rational Software, USA, 1999.

[17] Ralph Keller and Urs Hölzle, Binary Component Adaptation.

Technical Report TRCS97-20, Dept. of computer science, University
of California, Santa Barbara, USA, December 1997.

[18] D.M. Yelling and R.E. Strom, Protocol Specifications and Component

Adaptors. In ACM Transaction on Programming Languages and
Systems, volume 19, pages 292-333, 1997.

[19] George T. Heineman, “Integrating interface Assertion Checkers into

Component Models”, Sixth International Component Based Software
Engineering workshop (CBSE), Portland, Oregon, USA, May 2003 (To
Appear)

[20] Sun Microsystems, Enterprise JavaBeans Specifications, v2.1,

java.sun.com/products/ejb/docs.html.

[21] N. Wang, D. Schmidt, and C. O’Ryan, “Overview of CORBA

Component Model”, in [5], Chapter 31.

[22] Peter Gill, Probing for Continual Validation Prototype, M.S.Thesis,
 Worcester Polytechnic Institute, USA, 2001.

[23] Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig,
 Adaptation Strategies in Componentware, ASWEC, Proceedings of t
 the 2000 Australian Software Engineering Conference, IEEE
 Computer Society, April 2000.

[24] Noriki Amano and Takuo wantanabe, An Approach for Constructing
 Dynamically Adaptable Component-based Software Systems using
 LEAD++, OOPSLA’ 99, Workshop on Reflection and Software
 Engineering, 1999.

 4

 4

[25] Gart T.Leavens, Albert L.Baker and Clyde Ruby, Preliminary Design
 of JML: A Behavorial Interface Specification Language for Java,
 Iowa State University, USA,1998.

[26] Dae-Kyoo Kim, Sudipto Ghosh, Robert France, Eunjee Song,
 Software Component Specification Using Role-Based Modeling
 Language, OOPSLA Workshop, USA, 2002.

[27] W. (Voytek) Kozaczynski and Jim Q. Ning, Concern-Driven Design
 for a Specification Language Supporting Component-Based
 Software Engineering, Proceedings of the 8th International
 Workshop on Software Specification and Design (IWSSD '96), USA,
 1996.

[28] Object Management Group (OMG) IDL,
 http://www.omg.org/gettingstarted/omg_idl.htm.

	Worcester Polytechnic Institute
	Digital WPI
	2003-04-27

	An Environment For Specifying and Executing Adaptable Software Components
	Sudeep Prabhakar Unhale
	Repository Citation

	AN ENVIRONMENT FOR SPECIFYING AND EXECUTING ADAPTABLE SOFTWARE COMPONENTS.
	Abstract
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLE
	ACKNOWLEDGMENTS
	Chapter 1
	INTRODUCTION
	1.1 INTRODUCTION TO SOFTWARE COMPONENTS
	1.1.1 Motivation for adapting Components
	1.1.2 Software Components and their types

	1.2 ADAPTATION OF PREDEVELOPED SOFTWARE COMPONENTS
	1.2.1 Introduction
	1.2.2 Component Adaptation

	1.3 THESIS OUTLINE
	1.4 ASSUMPTIONS:
	1.4.1 Responsibility of component designers
	1.4.2 Responsibility of application assemblers
	1.4.3 Responsibility of component adapters

	1.5 CONTRIBUTIONS:
	1.5.1 CSL parser:
	1.5.2 CSL container infrastructure
	1.5.3 Prototype adaptations
	1.5.4 CMI integration of CSL container
	1.5.5 Simple extended CMI tutorial

	1.6 BACKGROUND
	1.6.1 White box adaptation techniques
	1.6.2 Black box adaptation techniques
	1.6.3 Active Interfaces

	1.7 ADAPT PROJECT
	1.8 SUMMARY OF CHAPTER

	Chapter 2
	COMPONENT SPECIFICATION
	2.1 INTRODUCTION
	2.2 CSL INTRODUCTION
	2.3 CSL GRAMMAR
	2.3.1 Component CSL
	Sample of Component CSL 1
	2.3.1.1 Component CSL grammar

	2.3.2 Application CSL
	A Typical sample of an Application CSL
	2.3.2.1 Application CSL grammar

	2.3.3 APPLICATION ASSEMBLERS ADAPTATIONS
	Sample of a Component CSL

	2.4 COMPONENT SPECIFICATION LANGUAGE PARSER
	2.5 CSL PARSER DATA STRUCTURE
	2.6 SUMMARY OF CHAPTER

	Chapter 3
	CASE STUDIES
	3.1 SPREADSHEET APPLICATION
	3.2 ADAPTATIONS PROPOSED
	3.3 ADDITIONAL ADAPTATIONS PROPOSED
	3.4 COMPONENT MODEL IMPLEMENTATION
	3.5 ENTERPRISE JAVA BEANS
	3.6 SUMMARY OF CHAPTER

	Chapter 4
	DESIGN AND METHODOLOGY
	4.1 INTRODUCTION
	4.2 TOOLS.
	4.2.1 AIDE tool
	4.2.1.1 USAGE:

	4.2.2 CSL-profiler tool
	4.2.2.1 USAGE

	4.3 GLUE CODE:
	4.3.1 ADVANTAGES OF GLUE CODE
	4.3.2 DISADVANTAGES OF GLUE CODE

	4.4 BASIC ADAPTATIONS
	4.4.1 CSL: Adaptation A1
	4.4.1.1 Description
	4.4.1.2 Adaptation procedure

	4.4.2 CSL: Adaptation A2
	4.4.2.1Description
	4.4.2.1Description

	4.4.3 CSL: Adaptation A3
	4.4.3.1 description
	4.4.3.2 Adaptation procedure
	4.4.3.3 Adaptation Output

	4.5 CONTAINER:
	4.6 DEPLOYMENT STRATEGIES
	4.7 SUMMARY OF CHAPTER

	Chapter 5
	EVALUATION
	5.1 INTRODUCTION
	5.2 CANDIDATE ADAPTATIONS FOR EVALUATION
	5.2.1 Adaptation for keeping a log of all updates to cells
	5.2.1.1Description
	5.2.1.2 Use
	5.2.1.3 Adaptation Procedure
	5.2.1.4 Output

	5.2.2 Adaptation for supporting multiple spreadsheets
	5.2.2.1Description
	5.2.2.2 Use
	5.2.2.3 Adaptation Procedure
	5.2.2.4 Output

	5.2.3 Adaptation for detecting if the input is email address and adding it to address book
	5.2.3.1Description
	5.2.3.2 Use
	5.2.3.3 Adaptation Procedure
	5.2.3.4 Output

	5.2.4 Adaptation for detecting if the input is a valid picture (a path) display picture
	5.2.4.1Description
	5.2.4.2 Use
	5.2.4.3 Adaptation Procedure
	5.2.3.4 Output

	5.2.5 All Adaptation together
	5.2.5.1Description
	5.2.5.2 Analysis
	5.2.5.3 Output

	5.3 ADAPTATION IN CMI DEPLOYMENT
	5.3.1Description
	5.3.2 CMI: Background, Deployment & Use
	5.3.3 Adaptation Procedure
	5.3.3.4 Output

	5.4 COMPOSABLITY OF ADAPTATION TECHNIQUE WITH RESPECT TO ADAPTATION
	5.5 EVALUATION WITH RESPECT TO METRICS PROPOSED
	5.6 SHORTCOMINGS
	5.7 SUMMARY OF CHAPTER

	Chapter 6
	CONCLUSION & FUTURE WORK
	6.1 CONCLUSION
	6.2 FUTURE WORK
	6.2.1 Automatic Glue code generation
	6.2.2 Additional functionality in “parser for csl script”
	6.2.3 Developing better case studies & evaluating the adaptation technique for the same.
	6.2.4 Attempting complex adaptations such as user interface.
	6.2.5 adding more grammar to CSL to describe a blackbox component.
	6.2.6 Applying adaptation approach to other Object /structure oriented technologies
	6.2.7 Adaptation of unstructured components
	6.2.8 Automating process of making an adaptable component
	6.2.9 Creating a standard library /platform to enable assembler to choose component deployment techniques.

	APPENDIX A Output of AIDE tool for Spreadsheet component:
	APPENDIX B Output of CSLprofiler tool for Spreadsheet component:
	APPENDIX C CSL Grammar
	Application CSL grammar
	Component CSL grammar

	APPENDIX D CMI RUN OUTPUT AFTER ADAPTATION
	APPENDIX E COMPONENT SPECIFICATION LANGUAGE SCRIPTS
	For Spreadsheet Application Adaptation
	For CMI Adaptation

	BIBLIOGRAPHY

