
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2010-04-13

Margrave: An Improved Analyzer for Access-
Control and Configuration Policies
Timothy Nelson
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Nelson, Timothy, "Margrave: An Improved Analyzer for Access-Control and Configuration Policies" (2010). Masters Theses (All Theses, All
Years). 203.
https://digitalcommons.wpi.edu/etd-theses/203

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/203?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Margrave: An Improved Analyzer for Access-Control and
Configuration Policies

by

Tim Nelson

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

April 2010

APPROVED:

Professor Kathi Fisler and Professor Daniel Dougherty, Thesis Advisors

Professor Craig Wills, Reader

Professor Michael Gennert, Head of Department

Abstract

As our society grows more dependent on digital systems, policies that regulate

access to electronic resources are becoming more common. However, such policies

are notoriously difficult to configure properly, even for trained professionals. An in-

correctly written access-control policy can result in inconvenience, financial damage,

or even physical danger. The difficulty is more pronounced when multiple types of

policy interact with each other, such as in routers on a network.

This thesis presents a policy-analysis tool called Margrave. Given a query about

a set of policies, Margrave returns a complete collection of scenarios that satisfy the

query. Since the query language allows multiple policies to be compared, Margrave

can be used to obtain an exhaustive list of the consequences of a seemingly innocent

policy change. This feature gives policy authors the benefits of formal analysis

without requiring that they state any formal properties about their policies.

Our query language is equivalent to order-sorted first-order logic (OSL). There-

fore our scenario-finding approach is, in general, only complete up to a user-provided

bound on scenario size. To mitigate this limitation, we identify a class of OSL that

we call Order-Sorted Effectively Propositional Logic (OS-EPL). We give a linear-

time algorithm for testing membership in OS-EPL. Sentences in this class have the

Finite Model Property, and thus Margrave’s results on such queries are complete

without user intervention.

Acknowledgements

I could start this page by stating, simply:

I did it. Me! Me! All Me! Aren’t I great?

But that would be a big, fat, smelly lie, and I’m glad it’s not true. At least half

the fun of this thesis has been in working with a few groovy people. This document

would not exist without them.

My advisors, Profs. Kathi Fisler, Dan Dougherty, and Shriram Krishnamurthi,

for introducing me to this field and for their encouragement.

My reader, Prof. Craig Wills, who has been supportive since my first day at

WPI (and who has exercised saintly patience while waiting for this document!)

Danny, Theo, Yu, Guillaume, Ken, Chris, Paul, Roman and the rest of the ALAS

lab and alumni. Working next to you all has been a pleasure.

Chris Barratt, my collaborator.

My wife Emily, who has dealt kindly with my Research Jitters (and who proof-

read parts of this document.)

My family: Lisa, Erika, and Cary Nelson; John and Linda Gibbons. My dear

friends Stef and Michelle, and all others whose names would not fit on this page.

This research has been supported by the National Science Foundation and grad-

uate fellowships from WPI and the Carl and Inez Weidenmiller endowed fellowship.

I am grateful for their generous support.

i

Contents

1 Introduction 1

1.1 Summary of contributions . 3

1.2 Thesis Roadmap . 4

2 A Motivating Example 5

2.1 Firewalls with NAT . 5

2.2 Summary . 10

3 Margrave Internals 11

3.1 Architecture . 11

3.2 Margrave Policy Language . 13

3.2.1 Vocabulary . 14

3.2.2 Policy (Leaf and Set) . 16

3.2.3 Other Supported Languages 16

3.3 Margrave queries . 21

3.3.1 Query Handling . 22

3.3.2 Vacuity . 24

3.4 Using Margrave to model networks 24

3.5 Performance Optimizations . 25

ii

4 Foundations: Order-Sorted Logic 28

4.1 Introduction . 28

4.2 Preliminaries: Order-Sorted Predicate Logic 31

4.2.0.1 Motivating (local) filtering 34

4.2.0.2 The Term Model . 35

4.2.1 Formulas and Truth . 36

4.2.1.1 On reduction to unsorted logic 39

4.3 Skolemization . 40

4.3.1 Negation-normal form . 40

4.4 A Finite Model Theorem for Order-Sorted Logic 45

4.4.1 Homomorphisms and Submodels 45

4.4.2 The Kernel of a Model . 47

4.4.2.1 The kernel and the Skolem hull 47

4.4.3 A Finite Model Theorem . 48

4.4.4 Herbrand’s Theorem . 49

4.5 Algorithms . 50

4.5.1 Testing OS-EPL membership 50

4.5.2 Computing the number of terms in a sort 53

4.6 About Sorts-as-Predicates . 57

4.6.1 Sorts-as-predicates in Margrave 60

4.7 Tupling . 61

4.7.1 The First-Order Existential Case 61

4.7.2 The Sorted Case . 68

4.7.3 Including Constraints . 74

4.7.3.1 At-most-one . 76

4.7.3.2 Disjointness . 77

iii

4.7.3.3 Subsort Exhaustiveness 77

4.7.4 Finishing The Example . 80

4.8 Summary . 81

5 Evaluation 83

5.1 CONTINUE (XACML 1.1) . 84

5.2 A Large Firewall Policy . 85

5.3 Help! My Router Isn’t working! (IOS, Routing) 86

5.3.1 The Cry For Help . 86

5.3.2 Finding a Solution . 88

5.4 Summary . 91

6 Related Work 94

6.1 Policy Analysis . 94

6.2 Order-Sorted Logic . 97

7 Conclusion 101

7.1 Conclusion . 101

7.2 Future Work . 102

iv

List of Figures

2.1 Example topology . 6

3.1 Margrave Architecture . 11

3.2 Left: A simple model. Right: A model with IDB Output 13

3.3 Sample Vocabulary . 15

3.4 Sample Policy . 17

3.5 A query (1) . 23

3.6 A query (2) . 23

3.7 NAT alters a request as it is evaluated. 24

4.1 Original Hierarchy . 70

4.2 Tupled Hierarchy . 70

5.1 The cry for help: network topology 93

v

List of Tables

3.1 Without tupling: n rules per policy, k-ary request vector 27

3.2 With tupling: n rules per policy, k-ary request vector, only one solu-

tion when tupled . 27

3.3 Number of satisfying models . 27

vi

Chapter 1

Introduction

As the Internet has become more prevalent in society, so the typical person has

needed to think more about issues of access control. Control is no longer a matter

of buying a strong lock, but one of creating a strong policy. Furthermore, a policy

must not be made excessively strong or legitimate agents may be unable to access

needed resources. This process is often difficult. Many of us have asked questions

such as: “Who has access to my home address in Facebook?”, “Can anyone but

my doctor read my medical history?”, or “Why can’t I see my spouse’s Gmail

calendar?”. An incorrectly written access-control policy can result in inconvenience,

financial damage, or even physical danger [Dum]. To complicate matters, policies

often need to be modified. A new network host, a new (or terminated) employee,

a new corporate doctrine – all these and more may induce changes to a working

policy. Those changes must be implemented quickly and with confidence.

Oppenheimer, Ganapathi, and Patterson [OGP03] have shown that operator

error is the major source of failure in online services, and that errors in configuration

are the majority of such errors. So how does an administrator know that a policy (or

policy change) reflects their intent? Without testing, even a technical expert may

1

inadvertently render their resources vulnerable [Woo04]. One option is to simply

look for problems through testing. This option is problematic for several reasons:

First, such testing is costly to perform correctly. Second, test environments are not

available in many situations, which forces a user test a policy when it is already

live. Third, vulnerability to certain attacks may not be possible to test on a live

policy. Finally, testing is not a guarantee of proper functionality: A policy may pass

a battery of tests, only to fail in a case that had not been considered by the tester.

A better option is to precisely state a set of properties that must hold about

the policy, and to use formal methods to verify those properties. This provides a

guarantee of proper functionality, something that even the most exhaustive suite

of test cases lacks. In order to do this, one must first state what the important

properties are for the policy; this is often difficult for users without training in logic

and verification. A more subtle concern is this: how does a policy author know

that they have stated all the important properties? A policy change could cause

an unexpected error, which then becomes a new “important” property to test. This

motivates a different kind of static analysis: examining the original and modified

policies and generating a list of all situations in which they disagree. This is called

“differencing” or “change-impact analysis”. Such an analysis guarantees proper

functionality since a policy author is likely to be able to recognize whether their

expectations are met, even if they do not possess a formal specification [FKMT05].

Since the list of differences that change-impact analysis presents is exhaustive, the

author knows that if those differences are as expected, there are no hidden cases

lurking in the wings.

Change-impact analysis of policies was first proposed by Fisler et al. [FKMT05]

but supported only a small subset of policies using propositional logic. Many real-

world policies use richer language or are effectively the composition of many smaller

2

policies. The goal of this thesis is to extend verification and change-impact analysis

to policies that involve a non-trivial notion of environment. Since firewall policies

are known to be problematic for system administrators to write and maintain, we

will pay special attention to that problem domain.

1.1 Summary of contributions

Our work builds off of Fisler et al. [FKMT05]. We allow policies and queries to

involve predicates and limited quantification, yet show that they can still be soundly

and completely addressed using propositional methods.

Furthermore, we do not limit ourselves to ordinary access-control: we provide

a general framework that supports a wide variety of policy types and consider the

interactions that can occur between policies in settings such as multi-router networks

(Sections 3.2, 3.4).

The contributions in this thesis are threefold:

• We present a new tool for verification and change-impact analysis of policies.

Since our work is in essence an expansion of Fisler et al. [FKMT05], we call

our tool Margrave. The new tool supports far richer notions of policy and

query than before, which has required a completely new implementation and

a new theoretical approach.

• We identify a syntactically-determined class of sentences for which the Finite

Model Property holds, rendering model-finding complete. We also give efficient

algorithms for putting this theory into practice.

• We evaluate our work on a real-world enterprise firewall policy.

3

1.2 Thesis Roadmap

To set the stage for this thesis, we start with a motivating example in Chapter

2, then discuss the design and implementation of the Margrave tool in Chapter

3. We detail the necessary foundational work to support the tool in Chapter 4,

including some theory-driven performance optimizations at the end of the chapter.

We evaluate this thesis in Chapter 5, then summarize the related work in Chapter

6 before closing with perpective and future work in Chapter 7.

4

Chapter 2

A Motivating Example

2.1 Firewalls with NAT

One of the main goals of the new Margrave project is to move beyond simple access

control. Networks are a major problem domain, and network tools need to reason

about more than just isolated access-control policies. A firewall possesses access-

control lists (ACLs) for each of its interfaces along with separate rule-sets for routing

and network-address translation (NAT). Understanding how a firewall will act on a

packet requires knowledge of which interface the packet is arriving on. Moreover, if

we want to model networks in general, we need to consider multiple firewalls and

any modifications they make to a packet in transit via NAT.

The following example is helpful in understanding why NAT adds an extra chal-

lenge to modeling firewall behavior. Suppose a small business has a group of em-

ployees, a group of contractors, a manager, a web server, and a mail server. Two

firewalls isolate the servers in a demilitarized zone (DMZ). Figure 2.1 shows this

toplogy in detail.

5

Figure 2.1: Example topology

The policies for the two example routers follow:

Inside Firewall’s ACL:

Rule 1) DENY if: interface=fw_inside_dmz

Rule 2) DENY if: interface=fw_inside_internal, ipdest=mailserver,

portdest=25, protocol=TCP, ipsrc in contractorPCs

Rule 3) ACCEPT if: interface=fw_inside_internal, ipdest=mailserver,

portdest=25, protocol=tcp

Rule 4) ACCEPT if: interface=fw_inside_internal, portdest=80,

protocol=tcp

Rule 5) otherwise, DENY

This access-control list applies to traffic arriving at the inside firewall. It forbids

any connections that originate from outside the protected network, while allowing

all outgoing web traffic and permitting non-contractor PCs to access the company

6

mailserver.

Inside Firewall’s NAT:

Rule 1) Change ipsrc to fw_inside_static_outgoing if:

interface=fw_inside_internal

This NAT policy stipulates that packets arriving at the internal interface of the

inside firewall will be subjected to static NAT, changing their source IP address

field.

Outside Firewall’s ACL

Rule 1) DENY if: interface=fw_outside_dmz, ipdest in blacklisted_ips

Rule 2) DENY if: interface=fw_outside_external, ipsrc in blacklisted_ips

Rule 3) DENY if: interface=fw_outside_dmz, portdest=23

Rule 4) ACCEPT if: interface=fw_outside_external, ipdest=mailserver,

portdest=25, protocol=tcp

Rule 5) ACCEPT if: interface=fw_outside_external, ipdest=webserver,

portdest=80, protocol=tcp

Rule 6) ACCEPT if: interface=fw_outside_dmz, ipdest=any outside,

portdest=80, protocol=tcp, ipsrc=managerPC

Rule 7) otherwise, DENY

This access-control list applies to traffic arriving at the outside firewall. It forbids

any connections from blacklisted IPs as well as any outgoing telnet traffic. Outside

hosts are allowed to use the mail and web servers on the appropriate ports, and only

the manager’s PC is allowed to surf the web.

Late one night, the company’s system administrator gets a phone call from the

manager. The manager can read e-mail, but not browse the web. The sysadmin

has to fix the error quickly, but also without causing any new problems. This

situation is exactly where Margrave can be most useful. The following Margrave

query asks “When can a connection from the manager’s PC be denied if it’s to

7

port 80 somewhere outside our network?”. As expected, the query takes NAT into

account; see Section 3.4. We have edited the query content for clarity; Section 3.3

contains more information on the full query language.

EXPLORE port80(portdest) AND
outsideIPs(ipdest) AND
TCP(protocol) AND
managerPC(ipsrc) AND
fw_inside_internal(arrival1) AND
fw_outside_dmz(arrival2)
AND

(fw_inside_acl:drop(ipsrc, ipdest, portsrc, portdest, arrival1)
OR
(fw_inside_nat:translate(ipsrc, intermip, portsrc, portdest, arrival1)

AND
fw_outside_acl:drop(intermip, ipdest, portsrc, portdest, arrival2)))

Margrave gives the following results 1:

$arrival1 = fw_inside_internal

$arrival2 = fw_outside_dmz

$ipsrc = managerPC

$ipdest in outsideIPs

$portsrc = any

$portdest = port80

$protocol = tcp

This result confirms that the manager’s workstation is forbidden to access the

web. That isn’t helpful by itself, but by activating output of applicable rules and

re-running the query, he can learn:

fw_inside_acl’s rule 4 accepts

($arrival1, $ipsrc, $ipdest, $portsrc, $portdest, $protocol).

fw_inside_nat translates

($arrival1, $ipsrc, $ipdest, $portsrc, $portdest, $protocol)

into

($arrival1, $intermip, $ipdest, $portsrc, $portdest, $protocol).

1The “any” in the results represents several solutions that we have combined for brevity.

8

fw_outside_acl’s rule 7 denies

($arrival1, $intermip, $ipdest, $portsrc, $portdest, $protocol)

This extra information helps the sysadmin infer why the problem happens: the

outside firewall is dropping the packet since the inside firewall changed it as it

passed; Rule 6 will not apply because the source IP is no longer managerPC.

Suppose that the sysadmin makes the “obvious” fix, changing the outside fire-

wall’s Rule 6 to accept packets coming from fw inside static outgoing. Before up-

dating the production system with the new policy he issues a change-impact query

in Margrave, asking for an exhaustive list of all packets whose disposition changes.

The query is shorter than it would normally have to be, because we are interested

only in packets traveling outward, and only one ACL changes:

EXPLORE port80(portdest) AND
outsideIPs(ipdest) AND
TCP(protocol) AND
managerPC(ipsrc) AND
fw_inside_internal(arrival1) AND
fw_outside_dmz(arrival2)
AND

fw_inside_acl:accept(ipsrc, ipdest, portsrc, portdest, arrival1) AND
fw_inside_nat:translate(ipsrc, intermip, portsrc, portdest, arrival1)
AND

((fw_outside_new_acl:accept(ipsrc, intermip, portsrc, portdest, arrival2)
AND
fw_outside_acl:drop(intermip, ipdest, portsrc, portdest, arrival2))

OR
(fw_outside_new_acl:drop(ipsrc, intermip, portsrc, portdest, arrival2)

AND
fw_outside_acl:accept(intermip, ipdest, portsrc, portdest, arrival2)))

The results of this query will expose any unforseen consequences of the fix:

$arrival1 = fw_inside_internal

$arrival2 = fw_outside_dmz

9

$ipsrc = **any**

$ipdest in outsideIPs

$portsrc = any

$portdest = port80 (www)

$protocol = tcp

This confirms that the manager can now access the web, but so can everyone else!

The original property being tested (“Can the manager access the outside web?”) is

itself incorrect; it doesn’t reflect the sysadmin’s intention. The actual property of

interest is “Can the manager, and nobody else access the outside web?”.

Of course, the problem is that there is no way for the outside firewall to tell who

sent a packet once the inside firewall has altered the packet’s header. One way to

resolve this is to have the inside firewall filter web traffic while the outside firewall

allows all web traffic from fw inside static outgoing. After making this change, the

sysadmin first tests the new property (“Can the manager, and nobody else...”),

then performs a second change-impact analysis, seeking unintended side effects.

This time, there are none.

2.2 Summary

The iterative process in the above example illustrates a major use case for change-

impact analysis. Changing a policy can often have unforseen side effects. Production

systems are sensitive to such side-effects. Our tool is designed to guide policy authors

as they make changes, preventing them from compromising their system in the

process.

10

Chapter 3

Margrave Internals

3.1 Architecture

Margrave consists of a Scheme front-end and a query engine written in Java. We use

the Kodkod [TJ07] model-finder as our back-end along with the SAT4j SAT Solver

library1. This relationship is sketched in 3.1.

Figure 3.1: Margrave Architecture

1Available at http://www.sat4j.org

11

Having a Scheme REPL2 as a front-end lets users interact naturally with Mar-

grave via a command-line interface. Users can load policies, define and run queries,

set environment variables and process query results all from the same command-line

environment. They can also write query scripts offline using Scheme and load them

in Margrave. We use a Scheme implementation called SISC (Second Interpreter of

Scheme Code) [Mil02] for this because it is itself implemented in Java, giving us a

convenient foreign-function interface to our engine and to Kodkod. SISC provides

the entire R5RS Scheme language standard.

The REPL model encourages an iterative query process. A user may start by

asking “What requests will policy A and policy B disagree on?”, then refine their

results, looking for unexpected consequences: “Do any of those requests involve

students?”, “Do any of those requests involve students reading final grades?”, etc.

Margrave can present the results of a query in different ways:

• Is the query satisfiable? : Returns either a true or false.

• Print all solutions : Gives a stream of first order-models that satisfy the query.

• Print the first solution: Prints only the first model found that satisfies the

query.

When displaying a model, Margrave prints its size and a visualization of what

each relation contains. Relations are either EDBs (Extensional Data Bases, repre-

senting ground facts) or IDBs (Intensional Data Bases, representing policy-specific

facts such as decision or rule applicability). Constants (i.e., existential variables in

the query prefix) are shown by name, along with what value they take in the model.

2An acronym for Read-Eval-Print-Loop. A REPL is an interactive programming environment
and is often seen in Lisp.

12

Figure 3.2: Left: A simple model. Right: A model with IDB Output

*** SOLUTION: Size = 3.

$subject: reviewer author

$action: readpaper

$resource: paper

conflicted =

{ [$subject, $resource] }

assigned = {}

*** SOLUTION: Size = 3.

$subject: reviewer author

$action: readpaper

$resource: paper

conflicted =

{ [$subject, $resource] }

assigned = {}

policy1:rule3_applies =

{ [$subject, $action, $resource] }

policy1:deny =

{ [$subject, $action, $resource] }

Figure 3.1 (left) shows what a simple model of a paper review system request looks

like when printed.

If a model is unexpected, the user can discover which policies and rules are

responsible for the change by enabling a feature called IDB output. This feature

causes model output to include IDBs as well as EDBs, explaining why, rather than

just what. Figure 3.1 (right) shows a simple model with IDB output included. Since

IDB output adds additional relations to the query’s language, it can add a significant

overhead to execution time, depending on the arity of the IDBs being shown.

3.2 Margrave Policy Language

Margrave is applicable to policies over arbitrary problem domains, even to the com-

bination of different kinds of policies. Each domain has its own set of concepts that

Margrave must represent. For instance, a firewall policy cares about IP addresses,

ports, and protocols. A conference manager’s policy involves authors, papers, and

conflicts of interest. These concepts define the logical language in which a policy is

written and over which a Margrave query may be executed. It is therefore useful to

categorize policies by their vocabulary, and so we have separated policies from their

13

vocabularies in our language.

3.2.1 Vocabulary

A Margrave vocabulary defines the ontology of a policy: What sorts are available

(subject, action, and resource? Perhaps IP addresses and ports, instead?), non-

sort predicates, and contraints are all defined in the vocabulary. Every policy uses

exactly one vocabulary. The sorts and predicates in the vocabulary are called the

EDB symbols.

The vocabulary also defines what shape a policy request takes, in the form

of variable declarations. For instance, if the requests are TCP/IP packets, the

vocabulary would declare names for each of the packet header fields.

Finally the vocabulary lists what decisions may be rendered. While “Permit”

and “Deny” are standard, Margrave allows a policy to be more fine-grained, letting

the user make a distinction between “Deny” and “Drop”, or including a “Deny and

log” decision. If a vocabulary is meant to model the interaction of different kinds of

policies, it may declare decisions from both. For instance, a vocabulary modelling

firewall ACLs and NAT in tandem may declare “Permit”, “Deny”, and “Translate”

decisions.

Margrave allows the following constraints to be imposed:

• Disjointness : Two sorts A and B must be disjoint.

• at-most-one (also known as LONE): Sort A may contain at most one element.

• nonempty (also known as SOME): Sort A must contain at least one element.

• singleton: Sort A contains exactly one element.

• abstract : Sort A is equal to the union of its subsorts (if it has subsorts).

• partial function: Predicate F ⊆ (A1 × ... × An) is a partial function from
(A1 × ...× An−1) to An.

14

• partial function: Predicate F ⊆ (A1 × ...×An) is a total function from (A1 ×
...× An−1) to An.

Figure 3.3 shows a sample vocabulary. It is a vocabulary for phone company

policies, which take source and destination phone numbers and decide whether to

refuse the call, charge toll, or make the call toll-free. The function GetExchange

represents the function mapping numbers to their exchange.

(PolicyVocab PhonePolicy
(Types
(Number : InService OutOfService)
(Exchange : AnExchange))

(Decisions
TollFree
Toll
Refuse)

(Predicates
(GetExchange : Number Exchange))

(ReqVariables (src : Number)
(dest : Number))

(OthVariables (e1 : Exchange) (e2 : Exchange) (e3 : Exchange))
(Constraints

; There is a unique exchange for each number.
(total-function GetExchange)

; A number is either in or out of service, never both.
(disjoint-all Number)

(abstract Exchange)
(abstract Number)

; Weed out vacuous solutions
(nonempty Number)
(nonempty Exchange)))

Figure 3.3: Sample Vocabulary

15

3.2.2 Policy (Leaf and Set)

A Policy is either a Leaf or a Policy Set. A policy Leaf is a standalone access-control

policy: it consists of a set of rules and a rule-precedence3 setting. A policy Set

consists of a policy-precedence setting and a set of child policies. Policy sets allow

Margrave to support hierarchical policies of the kind used extensively in XACML.

Margrave accepts the following precedence settings: first-applicable, in which the

first rule (or policy) in the list that applies takes precedence, and overrides : Given

a total ordering on the set of decisions, higher-priority decisions take precedence. A

policy rule is a set of EDB literals and a decision. The literals may be either positive

or negative, may involve both the request variables declared in the vocabulary as

well as rule-scope existential variables. For instance, a rule may say: “Permit if

the subject is a customer and there exists some manager who has approved the

customer’s application.”

From the given vocabulary, policies, and rules, Margrave constructs first-order

formulas representing when each rule applies and when each policy decision is ren-

dered. For a sample policy file, see Figure 3.4. This sample uses the vocabulary

in Figure 3.3. Senseless requests are refused while intra-exchange calls are toll-

free. Since the company wants to avoid giving free calls away, the Refuse decision

overrides TollCall, which in turn overrides TollFree.

3.2.3 Other Supported Languages

Beyond our own intermediate language, we have implemented parsers for several

standard access-control languages that are in wide use. We support:

• XACML 1.0, 1.1, and 2.0

3Called combining algorithms in XACML.

16

(Policy Phone1 uses PhonePolicy
(Target)
(Rules

(TollFreeCall = (TollFree src dest) :-
(GetExchange src e1) (GetExchange dest e1))

(TollCall = (Toll src dest) :-
(GetExchange src e2) (GetExchange dest e3) (!= e2 e3))

(RefuseCall1 = (Refuse src dest) :- (OutOfService src))
(RefuseCall2 = (Refuse src dest) :- (OutOfService dest))
(RefuseCall3 = (Refuse src dest) :- (= src dest)))

(RComb O Refuse Toll TollFree)
(PComb O Refuse Toll TollFree)
(Children))

Figure 3.4: Sample Policy

• Amazon SQS policy language

• Cisco IOS

XACML The XACML [OAS05] interface uses Sun’s XACML Implementation4.

We support the TARGET element and most CONDITION elements. Complex func-

tional CONDITION elements are supported by treating each application as describ-

ing a predicate name. For instance the following function application, representing

that the current time must be at least 9 am:

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-greater-than-or-equal"
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:time-one-and-only">

<EnvironmentAttributeSelector
DataType="http://www.w3.org/2001/XMLSchema#time"
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>

</Apply>
<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#time">09:00:00</AttributeValue>
</Apply>

4Available at: http://sunxacml.sourceforge.net/

17

becomes a single predicate over Environments. We do not consider the semantics

of these condition predicates – for instance, given two predicates (S.age < 18) and

(S.age ≥ 18) we do not force them to be disjoint. We also do not consider XACML’s

bag semantics.

Amazon SQS Amazon Simple Queue Services is a distributed queue system for

use by web applications. Recently, Amazon announced a basic access-control lan-

guage for use with SQS queues5.

The core language is strictly less expressive than XACML, and so it was not

difficult to implement after our work on XACML. Amazon plans to expand other

services to use the language soon; any expansions made to the language can be

accounted for as needed.

IOS Cisco’s (Internetwork Operating System) IOS is a configuration language

widely used on Cisco routers and firewalls.

The IOS interface for Margrave supports standard and extended ACLs, static

NAT, ACL-based and map-based dynamic NAT, static routing, and policy-based

routing. The IOS parser for Margrave is due to Christopher Barratt, who was a

graduate student at Brown University while this research was underway. We have

collaborated with him on applying Margrave to IOS policies.

Since a Cisco IOS configuration file may contain more than a simple ACL, we

also handle NAT and routing instructions. These components of the configuration

are treated as separate Margrave policies, and can be used together in queries. For

example, we may ask which packets will be routed by a firewall.

5http://docs.amazonwebservices.com/AWSSimpleQueueService/2009-02-01/
SQSDeveloperGuide/

18

http://docs.amazonwebservices.com/AWSSimpleQueueService/2009-02-01/SQSDeveloperGuide/
http://docs.amazonwebservices.com/AWSSimpleQueueService/2009-02-01/SQSDeveloperGuide/

EXPLORE InboundACL:permit(ahostname, entry-interface, src-addr-in, src-addr-in,
dest-addr-in, dest-addr-in, protocol, message, src-port-in, src-port-in,
dest-port-in, dest-port-in, length, next-hop, exit-interface) AND

OutsideNAT:translate(ahostname, entry-interface, src-addr-in, src-addr_,
dest-addr-in, dest-addr_, protocol, message, src-port-in, src-port_,
dest-port-in, dest-port_, length, next-hop, exit-interface) AND

(
LocalSwitching:Forward(ahostname, entry-interface, src-addr_, src-addr_,
dest-addr_, dest-addr_, protocol, message, src-port_, src-port_,
dest-port_, dest-port_, length, next-hop, exit-interface)
OR

(
LocalSwitching:Pass(ahostname, entry-interface, src-addr_, src-addr_,
dest-addr_, dest-addr_, protocol, message, src-port_, src-port_,
dest-port_, dest-port_, length, next-hop, exit-interface)
AND
(
PolicyRoute:Forward(ahostname, entry-interface, src-addr_, src-addr_,
dest-addr_, dest-addr_, protocol, message, src-port_, src-port_,
dest-port_, dest-port_, length, next-hop, exit-interface)
OR
(
PolicyRoute:Route(ahostname, entry-interface, src-addr_, src-addr_,
dest-addr_, dest-addr_, protocol, message, src-port_, src-port_,
dest-port_, dest-port_, length, next-hop, exit-interface)
AND
NetworkSwitching:Forward(ahostname, entry-interface, src-addr_,
src-addr_, dest-addr_, dest-addr_, protocol, message,
src-port_, src-port_, dest-port_, dest-port_, length,
next-hop, exit-interface))

OR
(

PolicyRoute:Pass(ahostname, entry-interface, src-addr_, src-addr_,
dest-addr_, dest-addr_, protocol, message, src-port_,
src-port_, dest-port_, dest-port_, length, next-hop,
exit-interface)
AND
(
StaticRoute:Forward(ahostname, entry-interface, src-addr_,
src-addr_, dest-addr_, dest-addr_, protocol, message,
src-port_, src-port_, dest-port_, dest-port_, length,
next-hop, exit-interface)

19

OR
(

StaticRoute:Route(ahostname, entry-interface, src-addr_,
src-addr_, dest-addr_, dest-addr_, protocol, message,
src-port_, src-port_, dest-port_, dest-port_, length,
next-hop, exit-interface)
AND
NetworkSwitching:Forward(ahostname, entry-interface, src-addr_,
src-addr_, dest-addr_, dest-addr_, protocol, message,
src-port_, src-port_, dest-port_, dest-port_, length,
next-hop, exit-interface))

OR
(

StaticRoute:Pass(ahostname, entry-interface, src-addr_, src-addr_,
dest-addr_, dest-addr_, protocol, message, src-port_,
src-port_, dest-port_, dest-port_, length, next-hop,
exit-interface)
AND
(
DefaultPolicyRoute:Forward(ahostname, entry-interface,
src-addr_, src-addr_, dest-addr_, dest-addr_,
protocol, message, src-port_, src-port_, dest-port_,
dest-port_, length, next-hop, exit-interface)
OR
(

DefaultPolicyRoute:Route(ahostname, entry-interface,
src-addr_, src-addr_, dest-addr_, dest-addr_,
protocol, message, src-port_, src-port_, dest-port_,
dest-port_, length, next-hop, exit-interface)
AND
NetworkSwitching:Forward(ahostname, entry-interface,
src-addr_, src-addr_, dest-addr_, dest-addr_,
protocol, message, src-port_, src-port_, dest-port_,
dest-port_, length, next-hop, exit-interface)))))))))

AND InsideNAT:Translate(ahostname, entry-interface, src-addr_, src-addr-out,
dest-addr_, dest-addr-out, protocol, message, src-port_,
src-port-out, dest-port_, dest-port-out, length, next-hop,
exit-interface)

AND OutboundACL:Permit(ahostname, entry-interface, src-addr-out, src-addr-out,
dest-addr-out, dest-addr-out, protocol, message, src-port-out,
src-port-out, dest-port-out, dest-port-out, length, next-hop,
exit-interface)

PUBLISH entry-interface, src-addr-in, dest-addr-in, src-port-in, dest-port-in

20

We plan to provide “stock” queries such as this in the Margrave API, so that

users do not need to enter them manually, but may use them as custom IDBs in

their own queries.

Other Languages Interfaces for similar languages can be added via Margrave’s

Java API.

3.3 Margrave queries

Margrave allows users to write queries using order-sorted first-order logic. Queries

may use arbitrary quantification and refer to EDBs as well as policy decisions and

rules (IDBs) by name. The formal grammar is:

A query is one of:

• (and QUERY_1 ... QUERY_n)

• (or QUERY_1 ... QUERY_n)

• (forsome varname sortname QUERY)

• (forall varname sortname QUERY)

• (not QUERY)

• (= var_1 var_2)

• (edbname var_1 ... var_k)

• (idbname var_1 ... var_k)

We are also working on providing a user-friendly interface for purely existential

queries; the examples above that use the “EXPLORE” syntax demonstrate this

work in progress.

21

3.3.1 Query Handling

Once a query is submitted, the vocabulary provides constraint axioms that are then

combined with the query. The result is a sentence in order-sorted first-order logic

that exactly represents the query. To discover whether the query’s conditions can

be met, we must decide whether or not the sentence is satisfiable — an undecidable

problem in general!

We have circumscribed a decidable class of order-sorted logic, OS-EPL, which is

discussed in detail in Chapter 4. This class is decidable because given a sentence,

we can produce bounds on the model sizes we need to check when searching for

models. If such bounds exists, model-finding is a complete decision procedure for

satisfiability.

We have incorporated this theory into Margrave. Given a query sentence, the

tool first checks to see if the sentence falls into OS-EPL. If so, it searches for models

up to the sufficient ceiling. If the sentence is not in OS-EPL, the user is alerted

and must provide a bound, which is what other model-finding tools such as Alloy

([Jac06]) and Paradox ([CS03a]) require.

For sentences in OS-EPL, Margrave’s results are exhaustive: any model of the

query sentence will have a submodel no bigger than the established bound. This

means that in spite of the fact that the tool will not list all models of the sentence

(and indeed doing so would be bad: there might be infinitely many such models!)

it will express all possible root causes that satisfy the query. This property is a

consequence of our finite model theorem in Section 4.4.

Sample queries appear below in Figures 3.5 and 3.6. They both use the policy

in Figure 3.4. Figure 3.5 asks what sorts of calls can be classified as Toll Free.

Figure 3.6 is a change-impact query between the original policy and a new version.

We provide an API function in Margrave that quickly produces a standard change-

22

impact query, but also allow users to write their own. The query in Figure 3.6

illustrates the second option.

; pPhone1 loaded beforehand
(query-policy pPhone1
(forsome ncaller Number

(forsome nreceive Number
(Phone1:TollFree ncaller nreceive))))

(pretty-print-results qry)

Figure 3.5: A query (1)

; pPhone1 and pPhone2 loaded beforehand
; suppose pPhone2 is a new version of pPhone1

(query-policy pPhone1
(forsome ncaller Number

(forsome nreceive Number
(or (and (pPhone1:TollFree ncaller nreceive)

(not (pPhone2:TollFree ncaller nreceive)))
(and (pPhone1:Toll ncaller nreceive)

(not (pPhone2:Toll ncaller nreceive)))
(and (pPhone1:Refuse ncaller nreceive)

(not (pPhone2:Refuse ncaller nreceive)))
(and (pPhone2:TollFree ncaller nreceive)

(not (pPhone1:TollFree ncaller nreceive)))
(and (pPhone2:Toll ncaller nreceive)

(not (pPhone1:Toll ncaller nreceive)))
(and (pPhone2:Refuse ncaller nreceive)

(not (pPhone1:Refuse ncaller nreceive)))))))

Figure 3.6: A query (2)

It is possible to handle some special classes of queries differently in order to get

a performance increase. We discuss a particular special class later in this section.

23

3.3.2 Vacuity

An interesting complication arises from allowing full-first order queries, yet trying to

keep model sizes as small as possible. Suppose that a policy involves 10 individual

IP addresses that we model as subsorts of IPAddress. Having a separate atom for

each of those addresses might make query execution slow, so instead of declaring

each of those sorts to have exactly one atom (via the “one” constraint) we instead

say that they have at most one atom each (via the “lone” constraint). This causes

no problems if the query is existential, but suppose it contains a universal quantifier

over the IPAddress sort. Now there may be many models that satisfy the query

only because they lack atoms in the important IP Addresses.

3.4 Using Margrave to model networks

We saw in section 2.1 that modeling networks or even single firewalls with NAT can

be tricky. To recap, suppose a packet is sent and must traverse multiple firewalls

en route (Figure 3.7). If the first firewall performs NAT on the packet, it changes

the packet header. In our terminology, it has effectively altered the request mid-way

through its evaluation!

Figure 3.7: NAT alters a request as it is evaluated.

In order to deal with this situation in our model, we take two steps. First, each

firewall’s ACLs and NAT policies are treated as separate Margrave policies. Second,

queries involving NAT must consider changes to the original packet by adding extra

24

variables that represent the intermediate state of the (possibly) altered packet fields;

this is exactly what our proverbial sysadmin did back in section 2.1.

We consider it a weakness in the tool that users must write these queries manu-

ally. Improving the query language and the interface for different problem domains

is something we are actively working on; see section 7.2.

3.5 Performance Optimizations

Rule Precedence As one might expect, the internal representation of a formula

in Margrave can greatly affect performance. An unsimplified formula will consume

more memory and take more time to handle, but simplification is expensive. We try

to express formulas as concisely as possible from the beginning. A good example

of this is our treatment of the first-applicable rule precedence algorithm. A rule R

applies under first-applicable only if rules appearing before R in the policy do not.

Naively, one might construct a formula for Permit by taking the disjunction of the

applicability formulas for all the Permit rules. This approach results in a formula

whose size is quadratic in the number of rules. It is possible to create a logically

equivalent, linear-sized formula. Algorithm 1 builds such formulas for each decision:

Algorithm 1: First Applicable

let Dec be vector of formulas, one for each decision ;
initialize each element of Dec to ⊥ ;
for each rule R (with decision D) in reverse order do

D = R ∨D ;
for each decision D’ 6= R’s decision do

D’ = D′ ∧ ¬R ;

This approach is especially valuable when modelling firewall policies, which al-

25

ways combine rules via first-applicable and are often very large. We found that on

a simulated 1000-rule firewall policy, this approach reduced formula size by 2 orders

of magnitude.

Canonical Map Formulas in Margrave are stored internally as Kodkod abstract-

syntax objects. Since Kodkod does not maintain a canonical map for its formulas,

it may produce many isomorphic (but not equal) copies of the same formula.

We implemented our own canonical map using weak references. This greatly

reduced the number of objects in memory; the actual savings depends on the amount

of duplication within a formula, but we see a reduction of 3 to 4x on most of our

large tests. More importantly having a canonical map allowed us to make proper

use of caching when processing formula trees.

Tupling We implement the tupling optimization described in Section 4.7 for exis-

tental queries without functional constraints. Tupling can give a substantial boost

in speed (Figures 3.1 and 3.2) that is primarily dependent on the size of the request

vector, which is what one would expect. It also does better when the original for-

mula’s smallest model is large compared to bound generated by algorithm 2. This

is because smaller model sizes are checked first 6.

Tupling can also reduce the number of solutions returned from Kodkod as well.

By way of example, consider the following sentence: σ ≡ ∃x ∃y ∃z P (x, y, z).

Suppose we want to use model-finding to characterize all models of σ. Naively, this

involves looking at each model of size up to 3 (since we know from Section 4.4 that

each model of σ has a “small” submodel that also satisfies σ). In general, even with

the help of Kodkod’s symmetry-breaking techniques, there may be too many models

6Benchmarking trial results are the average of n runs per category, where n = 100 for the
100-rule trials and n = 10 for the 1000-rule trials.

26

to enumerate them all. For example, consider the tupled version of σ, ∃zP1,2,3(z)

versus the original. Figure 3.3 gives the number of models for both formulas at each

size up to 3. The single size 1 model of the tupled formula characterizes each of

the millions of models of the original formula at size 3. Even if equality is explicitly

considered (in this case, it need not be) there are still only 5 models of the tupled

query.

Table 3.1: Without tupling: n rules per policy, k-ary request vector
n k smallest model avg is-sat?

100 3 1 141ms
100 3 3 691ms
1000 14 6 7923ms
1000 14 10 18239ms
1000 14 14 32751ms

Table 3.2: With tupling: n rules per policy, k-ary request vector, only one solution
when tupled

n k smallest model avg is-sat? avg portion of that used for Tupling
100 3 1 19ms 17ms
100 3 3 212ms 64ms
1000 14 6 1053ms 457ms
1000 14 10 1115ms 493ms
1000 14 14 1148ms 558ms

Table 3.3: Number of satisfying models
Size Original (w/o s.b.) Original (w/ s.b.) Tupled σ′ Tupled σ′ with equality

1 1 1 1 8
2 1024 512 - -
3 millions millions - -

27

Chapter 4

Foundations: Order-Sorted Logic

4.1 Introduction

The Schoenfinkel-Bernays-Ramsey class, or sometimes, “Effectively Propositional

Logic” (EPL), comprises the set of first-order sentences of the form

∃x1 . . . ∃xn∀y1 . . . ∀ym . φ

where φ is quantifier-free and has no function symbols. The satisfiability problem

for this class is decidable: Schoenfinkel and Bernays [BS28] and Ramsey [Ram30]

showed that such a sentence has a model if and only if it has a model of size bounded

by n plus the number of constants in φ.

When such a finite model property holds, satisfiability-testing can be reduced

to exhaustive search. More important to applications is the fact that model-finders

for EPL sentences can restrict their search to models whose elements are constants;

similarly, instantiation-based theorem provers can restrict attention to instantiation

by constants.

Model-finders and theorem-provers can benefit from the additional information

28

that a many-sorted framework can provide [Jer88, HRCS02, dMB08b, LS04]. More

strikingly, the class of sentences supporting finite model theorems is richer in a

many-sorted framework than in the one-sorted case [Harpt, FG03, ARS10]. In order

to meet our goals for Margrave, we have made a systematic study of this latter

phenomenon, in a very general order-sorted framework. We identify a broad class

of sentences comprising Order-Sorted Effectively Propositional Logic (OS-EPL), for

which the Finite Model Property holds (Theorem 4), and present algorithms that

allow us to treat OS-EPL both soundly and completely in Margrave.

We have also created a Web interface (http://sortedtermcount.appspot.com)

for readers to experiment with the algorithms we describe here and use in Margrave.

The tool accepts input in the notation used by Alloy [Jac06], a popular system for

the analysis of system requirements and designs.

The following simple example gives the flavor of our results. Consider the class

of unsorted sentences of the form

∀y1∃x∀y2 . φ.

This prefix class has an undecidable satisfiability problem. But the following sorted

version

σ ≡ ∀yA1 ∃xB∀yA2 . φ (4.1)

is better-behaved. Suppose that φ contains constants, say nA constants of sort A

and nB of sort B, but no function symbols. Suppose in addition that sort A is a

subsort of sort B. Under these conditions σ is in OS-EPL. Indeed we can show that

if σ has any models at all then it has a model whose size at sort A is bounded by

nA and whose size at sort B is bounded by (2nA + nB). So we have a finite model

theorem and satisfiability for this class of formulas is decidable. On the other hand

29

http://sortedtermcount.appspot.com

if we were to require instead that B is a subsort of A, then the resulting sentence

is not in OS-EPL; some such σ have only infinite models. These assertions are all

consequences of our main theorem, Theorem 4 below.

Outline An instructive way to present the technical challenges and contributions

of this work is to consider a standard approach to showing that a class of sentences

has the finite-model property. Given a sentence σ in unsorted first-order logic we

might reason as follows.

1. By Skolemization, there is a universal sentence σsk equi-satisfiable with σ;

2. Any potential model M for σsk has a Skolem hull, obtained by closing the

interpretation of the constants by the interpretation of the functions [CK73].

This makes a submodel of M in which every element is named by a term in

the language.

3. An easy theorem of unsorted logic is that the truth of universal sentences is

preserved under submodel.

Thus, if the signature of σsk has only finitely many terms, we can conclude our

finite model theorem. This last part of the argument succeeds in the one-sorted

case only for formulas in the EPL class, but the starting point of this research is the

observation that the many-sorted framework offers more opportunities for a finite

Herbrand universe. However, the following facts complicate matters.

1. When empty sorts are allowed, the Skolem form of σ is not equi-satisfiable

with σ (Section 4.3).

2. When sorts are not assumed to be disjoint—in particular, in the order-sorted

setting—not every element in the Skolem hull of a model is named by a term.

Indeed the Skolem hull of M can be infinite even when a finite submodel

30

of M does exist (Example 6). (This phenomenon also cause difficulties in

giving a model-theoretic proof of Herbrand’s Theorem for order-sorted logic:

see Section 4.4.4).

3. When sort names are allowed to be used as predicates, as they are in many

tools, preservation of universal sentences under submodel fails (Section 4.6).

Our development addresses each of these difficulties.

We view the identification of the OS-EPL class as a contribution to a taxonomy

of decidability classes in order-sorted logic in the same spirit as for classical un-

sorted logic. In the presence of possibly-empty sorts, sentences do not always have

equivalent prenex-normal forms, so we cannot attempt a decidability classification

in terms of quantifier prefix as in [BGG97]. As Section 4.4 shows, our decidability

criterion is based entirely on the signature of the Skolemization of the given formula.

This signature can be viewed as a generalization of the idea of quantifier prefix, as

it implicitly records the pattern of nesting between universal and existential quan-

tification.

4.2 Preliminaries: Order-Sorted Predicate Logic

The definitions and results in this section are either directly from Goguen and

Meseguer’s work [GM92] or they are the obvious extensions to the setting in which

relations as well as function are considered.

Notation We use 〈〉 for the empty sequence. If (S,≤) is an ordering we extend

≤ to words in S∗ and then to products, pointwise. The connected components

of (S,≤) are the equivalence classes for the equivalence relation generated by ≤.

31

Suppose w = A1 . . . An is a word in S∗ and suppose that for each i we have defined

a set XAi
; then the notation Xw refers to XA1 × · · · ×XAn .

Signatures An order-sorted signature is a triple L = (S,≤,Σ) where (S,≤) is a

finite poset of sorts and Σ is an indexed family of symbols, the vocabulary, compris-

ing

• {Σw | w ∈ S∗}, an S∗-sorted family of relation symbols, and

• {Σw,A | w ∈ S∗ , A ∈ S}, an (S∗ ×S)-sorted family of function symbols, satis-

fying the monotonicity condition

f ∈ Σw1,A1 ∩ Σw2,A2 and w1 ≤ w2 imply A1 ≤ A2

When R ∈ Σw we say that w is the arity of R. When f ∈ Σw,s we say that w is

the arity of f and A is the result sort of f .

A signature is regular if whenever f ∈ Σw1,A1 and w0 ≤ w1 then there is least

(w, S) ∈ (S∗ × S) such that w0 ≤ w and f ∈ Σw,s. A signature L = (S,≤,Σ) is

coherent if it is regular and (S,≤) is locally filtered (i.e., each pair of sorts in the

same connected component has an upper bound).

If L = (S,≤,Σ) and L′ = (S,≤,Σ′) are such that for each w and A, Σw ⊆ Σ′w

and Σw,A ⊆ Σ′w,A we say that L′ is an expansion of L, and that L is a reduct of L′.

This is a very general notion of signature, allowing symbols to be overloaded,

i.e., declared in more than one sort. Following standard usage, a symbol a ∈ Σ〈〉,A

is referred to as a “constant” of sort A, and in concrete syntax we write simply a

instead of a(). Note that the monotonicity assumption means that constants cannot

be overloaded.

32

On the other hand, note that sort names are not eligible to be used as predicates,

in contrast to certain treatments of many-sorted logic. There are very good reasons

for this: see Section 4.6.

Example 1. The following signature is filtered, but not regular. S = {A,B,C,D},

with A ≤ B ≤ D and A ≤ C ≤ D. Σ〈〉,A = a, ΣB,B = f , ΣC,C = f . Not regular

since there is no least (w, S) with A ≤ w and f ∈ Σw,S.

See Example 3, Example 4, and Theorem 1 below for motivation for the restric-

tion to coherent signatures.

The restriction to finite vocabulary is reasonable given the fact that our main

concern in this paper is finite model theorems. In our setting, when S is finite, local

filtering is equivalent to the requirement that each component have a maximum

element.

In general, we would like to specify that certain pairs of sorts are to be disjoint

(e.g. Alloy, with “extends”). For simplicity we do not consider such a mechanism

in our notion of signature, since we can get the same effect by explicitly writing

disjointness sentences and conjoining hem with any sentences under consideration

(as long as they are in the same connected component!). For future reference we

note that such sentences involve no existential quantifiers.

Models Fix an OS signature L = (S,≤,Σ). An L-model M comprises

• an S-sorted family {MA | A ∈ S} of sets, the universe of M, such that

A ≤ A′ implies MA ⊆MA′ ,

33

• for each R ∈ Σw a relation RMw ⊆Mw, such that

R ∈ Σw1 ∩ Σw2 and w1 ≤ w2 imply RMw1 = RMw2 ∩Mw1

• for each f ∈ Σw,A a function fMw,A :Mw →MA, such that

f ∈ Σw1,A1∩Σw2,A2 and w1 ≤ w2 imply fMw1,A1 is fMw2,A2 restricted to Mw1

If M is a model for L = (S,≤,Σ) and L′ is an expansion of L then an expansion

of M to L′ is a model of L′ with the same universe as M which agrees with M on

the symbols in Σ.

A homomorphism h :M→N between modelsM and N is an S-sorted family

of functions

{hA :MA → NA | A ∈ S} satisfying the following conditions (suppressing sort

information for readability).

A ≤ A′ implies hA = (hA′) �MA

h(fM(a1, . . . , an) = fN (h(a1), . . . , h(an)), and

RM(h(a1, . . . , an)) implies RN (h(a1), . . . , h(an))

4.2.0.1 Motivating (local) filtering

Two cautionary examples from [GM92].

Example 2. A ≤ B, A < C, f ∈ ΣB,B ∩ ΣC,C. Let M have MA = {a}, MB =

{a, b}, MC = {a, c}, let fMB,B be the constant function b; let fMC,C be the constant

function c. Thus these two functions, each interpreting f , do not agree on a.

Filtering and the monotonicity condition on models will preclude this.

34

Example 3. [GM92]] B ≤ A,B ≤ C; a : A, b : B, c : C; postulate a = c.

The term algebra does not satisfy a = c. But the algebra that interprets A as

{d, e}, C as {d, e}, B as {d} with constant b interpreted as d and constants a, c both

interpreted as e, does satisfy it — and this alg is isomorphic to the term algebra! So

equations are not preserved under isomorphism.

Assumption of local filtering precludes this phenomenon.

4.2.0.2 The Term Model

When the set of relation symbols in L is empty then the set of closed terms forms

the universe of a model for L, the term algebra [GM92]. We may view this as a

model for an arbitrary order-sorted signature, as follows.

Definition 1. Fix L = (S,≤,Σ). The family T L = {T L,A | A ∈ S} of closed terms

over L is the ⊆- least family satisfying

• Σ〈〉,A ⊆ T L,A;

• if f ∈ Σw,s with w = A1 . . . An and for each i, ti ∈ T L,Ai then f(t1, . . . , tn) ∈

T L,A;

• is A ≤ A′ then T L,A ⊆ T L,A′.

The family {T L,A | A ∈ S} determines a model T L of L, the term model, by

taking the interpretation fT
L

of each f ∈ Σ〈A1...An〉,A to be the function taking each

tuple (t1, . . . , tn) ∈ (T L,A1 × · · · × T L,An) to the term f(t1, . . . , tn), and taking the

interpretation of each relation symbol to be the empty relation.

The following result is an easy consequence of the initiality of term models in

order-sorted algebra, but it is crucial to our development.

35

Theorem 1. Suppose L = (S,≤,Σ) is a regular signature such that Σ has no

relation symbols. Then the term model T L is initial. That is, for any model M of

L there is a unique homomorphism from T L to M.

Proof. Initiality of T L in the category of algebras was shown by Goguen and Meseguer

[GM92]. Now, given an L-model M, we let M′ be the reduct of M to L′, is the

reduct of L obtained by removing the relation symbols: M′ is a L’-algebra. The

unique algebra homomorphism from T L toM′ is itself a L-homomorphism from T L

to M, simply because each T L-relation is empty.

Here’s why we want a cross-domain equality predicate (rather than each sort

having its own equality predicate).

Example 4 ([GM92]). A ≤ B,C ≤ B,C ≤ D, with a : A etc. Equations a = b,

b = c, c = d want to imply a = d by transitivity but A and D are incomparable.

Leads to allowing equations between terms in same connected component.

Summary: we allow equations between terms in the same connected component

(in order to support transitivity). But we may assume terms in an equation have

the same sort (Definition 3) by local filtering.

4.2.1 Formulas and Truth

Henceforth we assume that our signatures are coherent: regularity ensures that the

term model is initial, and local filtering allows us to assume that terms in an equation

have the same type common type). (even though we have “cross-sort” equality,

terms in the same connected component of the sort poset do have a common type).

Definition 2 (Open terms). Fix a signature L = (S,≤,Σ). Let X be an S-sorted

set {XA | A ∈ S} of variables, with the XA mutually disjoint and disjoint from

36

Σ. The set T L(X) of (open) terms over X is, intuitively, obtained by adjoining the

variables in XA to the term model at type A. Formally we proceed as follows [GM92].

Define ΣX to be the family of symbols with ΣX
〈〉,A = Σ〈〉,A ∪XA and ΣX

w,A = Σw,A

for w 6= 〈〉. Then LX is the signature (S,≤,ΣX). Then the family T L(X) of open

terms over X is the family T LX
as defined in Definition 1, that is the terms of

T L(X) are the closed terms over LX .

As noted by Goguen and Meseguer [GM92] the fact that the open term algebra

is initial in the category of LX-algebras entails the fact that this algebra is free over

the generators X in the category of L-algebras. In particular, if η : X →M is an

S-sorted assignment of values in M to variables from X then there is a canonical

way to extend η to map T L(X) to M.

Definition 3 (Formulas). An atomic formula is one of

• ⊥ (to be interpreted as falsehood)

• P (t1, ..., tn) where P ∈ Σ〈A1,...An〉 and ti ∈ T Σ,Ai(X) for all 1 ≤ i ≤ n.

• t1 = t2 where for some A, for all i, ti ∈ T Σ,A(X).

The formula ⊥ will be convenient in Section 4.3. The set of formulas is defined

inductively by closing the set of atomic formulas under the propositional operators

∧, ∨, and ¬ and the quantifiers ∃ and ∀. We will indicate quantification over a

sorted variable x ∈ XA by ∃xA or ∀xA.

The notions of free and bound variable are standard; let FV (φ) denote the set of

free variables of formula φ. A sentence is a formula with no free variable occurrences.

We don’t need to introduce a constant for “true”, as the negation of falsehood,

since any sentence of the form ∀xA . x = x will serve (as will be seen, existential-free

37

sentences will play a key role in the following, and ⊥ provides an existential-free

falsehood).

Definition 4. An environment η over a model M is an S-indexed family of partial

functions {ηs : Xs →MA | A ∈ S} such that ηA = (ηA′)�XA
whenever A ≤ A′. As

usual the notation η[xA 7→ e] refers to the environment agreeing with η except that it

maps variable x ∈ XA to e. An environment η can be extended to terms in T Σ(X)

in the usual way.

Definition 5 (Truth in a model). Let M be a model, φ a formula, and η an envi-

ronment such that FV (φ) ⊆ dom(η). The relation M |=η φ is defined by induction

over φ as follows.

• If φ is ⊥ then M |=η φ fails.

• If φ ≡ P (t1, ..., tn) then M |=η φ if and only if PM(η(t1), ..., η(tn)) holds.

• If φ ≡ t1 = t2 then M |=η φ if and only if η(t1) = η(t2) holds.

• If φ ≡ ¬α then M |=η φ if and only if M 6|=η α.

• If φ ≡ α ∧ β then M |=η φ iff M |=η α and M |=η β.

• If φ ≡ α ∨ β then M |=η φ iff M |=η α or M |=η β.

• If φ ≡ ∃xAα then M |=η φ iff there is some element e in MA such that

M |=η[x 7→e] α.

• If φ ≡ ∀xAα then M |=η φ iff for each element e in MA it holds that

M |=η[x 7→e] α.

We allow empty sorts in our models, indeed we even allow all sorts to be empty,

and it is well-known that the possibility of empty sorts introduces subtleties into

38

formal deduction [SNGM89]. But we are not interested in formal deduction per se

and, given the fact that we require that the domain of an environment include all

the free variables of a formula under consideration, there are no semantic difficulties

arising from empty sorts. For example, if sort A is empty in a model then any

environment η must have ηA be the empty function; as a consequence any formula

∃xA.φ will be false under η, and any formula ∀xA.φ will be true under η.

4.2.1.1 On reduction to unsorted logic

It is not unusual for treatments of many-sorted logic to “encode” sorts as unary

predicates and to view many-sorted logic as a particular syntactic discipline over

standard one-sorted logic. For example one can reasonably view the sorted quan-

tification ∃xA . φ as shorthand for ∃x . (A(x) ∧ φ). This is the traditional approach

taken in mathematical logic [End72]. To handle subsorting is is natural to introduce

coercion functions: to capture A ≤ B in the order-sorted setting we can add to the

signature a function symbol cAB : A → B in the flat setting. There are some nat-

ural axioms imposed on the coercion functions: that they are injective, that they

compose properly to reflect transitivity, and so forth.

Definition 6. Let (S,≤,Σ) be a signature. The flat many-sorted encoding of L is

the signature L+ = (S, ∅,Σ+) where

Σ+ = Σ ∪ {cA,A′ ∈ Σ+
A,A′ | A ≤ A′}.

There are some natural axioms on the coercion functions.

1. cA,A′(x) = x

2. cA,A′ is injective

39

3. if A ≤ A′ ≤ A′′ then cA′,A′′ ◦ cA,A′ = cA,A′′

4. each c commutes with functions in Σ.

The Reduction Theorem of [GM92]:

Theorem 2 ([GM92]). When (S,≤,Σ) is regular and locally filtered then order-

sorted algebra can be reduced to ordinary many-sorted algebras satisfying the axioms

above via an equivalence of categories.

This theorem lifts, of course, to our setting of order-sorted logic. But, for a

variety of reasons, we resist such an encoding into unsorted logic. First, it would

make counting terms, our central concern, more difficult. This is because the closed

terms would involve the coercion functions and we would have to count modulo the

axioms governing them, otherwise we would overestimate the size of the true set of

closed terms in the original signature. Second, introducing coercion functions would

clutter the treatment of results such as Herbrand’s Theorem. Finally, we want our

results to provide clear information to users of tools—like Alloy—that are explicitly

order-sorted, and an encoding into another formalism would be an obstacle to these

users. So we prefer to work with order-sorted logic directly.

4.3 Skolemization

4.3.1 Negation-normal form

A formula is in negation-normal form if the negation sign is applied only to atomic

formulas.

Lemma 1. Every formula is logically equivalent to a formula in negation normal

form.

40

Proof. As for standard one-sorted logic. DeMorgan’s laws for pushing negations

below ∧ and ∨, and the equivalences between ¬∃xAα and ∀xA¬α all hold, even in

the presence of empty sorts.

Failure of prenex-normal form The fact that models can have empty sorts

changes the rules for how quantifiers may be moved within a formula. In particular

the classical equivalence

((∃xAα) ∨ β) is equivalent to ∃xA(α ∨ β) [x not free in β]

does not hold if A can be empty (and of course the dual equivalence involving ∀ fails

as well) and so we cannot in general percolate quantifiers to the front of a formula.

So we cannot restrict our attention to formulas in prenex normal form, but we will

always pass to negation-normal form.

Definition 7 (Skolemization). Let φ be a negation-normal form formula over sig-

nature L = (S,≤,Σ); the result of a Skolemization-step of φ is any formula φ′ that

can be obtained as follows. If ∃xA.φ(xA, xA1
1 , . . . , xAn

n) is a subformula occurrence

of φ that is not in the scope of an existential quantifier, let f be a function symbol

not in Σ, and let φ′ be the result of replacing the occurrence of ∃xA.φ(x, x1, . . . , xn)

by φ(f(x1, . . . , xn), x1, . . . , xn). Note that φ′ is a formula in an expanded signature

obtained by adding f to Σ〈A1,...,An〉,A.

A Skolemization of a formula φ is a sentence with no existential quantifiers,

obtained from φ by a sequence of such steps.

It is not hard to see that any two Skolemizations of a sentence will differ only

in the names of the new function symbols used. We do not need this result here

and so will not prove it. But in order to unambiguously speak of the Skolemization

41

of a sentence σ let us agree that we will eliminate existential formulas from left-

to-right and use a canonical well-ordering of the universe of potential vocabulary

symbols. With this understanding, if σ is a sentence over L we we will speak of “the

Skolemization” of σ, and denote it σsk.

Lemma 2. For any σ we have σsk |= σ.

Proof. Note that the signature of σsk is an expansion of the signature of σ so the

entailment claim makes sense. It suffices to show that the result of a single Skolem-

step on σ entails σ; this is very easy to see from the definition.

In contrast to the classical case we do not have the fact that “ σ satisfiable implies

σsk satisfiable.” That holds in one-sorted logic because we can always expand a

model of σ to properly interpret the Skolem functions and make σsk true, but this

expansion is not always possible in the presence of empty sorts.

Example 5. Let σ be (∃xA . (x = x) ∨ ∃yB . (y = y)) ∧ (∀zA . (z 6= z)). Then σ is

satisfiable but its Skolemization ((a = a) ∨ (b = b)) ∧ (∀zA . (z 6= z)) is not.

We first note that the phenomenon in Example 5 is essentially the only thing

that can go wrong: models can be expanded to interpret Skolem functions if we do

not existentially quantify over empty sorts.

Definition 8. A model M is safe for formula φ if for every occurrence of a subfor-

mula ∃xA . α in φ we have MA 6= ∅.

Lemma 3. If M |= σ and M is safe for σ then there is an expansion M∗ of M to

the signature of σsk such that M∗ |= σsk.

Proof. It suffices to show that the corresponding result holds for a single Skolem-

step on σ entails σ, so suppose σ and σ′ are as in Definition 7. The argument is just

42

as for classical one-sorted logic: we can expand the model M to interpret the new

function symbol f precisely because M satisfies the the original σ, but we must

know that A is non-empty in case the truth of ∃xA.σ(x, x1, . . . , xn) is needed for

this.

This points the way to recovering a weak version of the classical equi-satisfiability

result which will be good enough for our present purposes.

Definition 9. Let φ be a formula. An approximation of φ is a formula obtained by

replacing some (zero or more) subformulas ∃xA . α of φ by ⊥.

Lemma 4. If σ⊥ is an approximation of σ then σ⊥ |= σ.

Proof. We prove by induction over arbitrary formulas φ and approximations φ⊥, and

for arbitrary models M and environments η, if M |=η φ⊥ then M |=η φ. Suppose

M |=η φ⊥.

• φ is a literal: then φ⊥ = φ. So certainly M |=η φ.

• φ ≡ α ∨ β: then φ⊥ = α⊥ ∨ β⊥, where α⊥ and β⊥, are approximations of α

and β. ThenM |=η α⊥ orM |=η β⊥ so by inductionM |=η α orM |=η β, as

desired.

• φ ≡ α ∧ β: then φ⊥ = α⊥ ∧ β⊥, where α⊥ and β⊥, are approximations of α

and β. ThenM |=η α⊥ andM |=η β⊥ so by inductionM |=η α andM |=η β,

as desired.

• φ ≡ ∀xAα: then φ⊥ = ∀xA . α⊥, where α⊥ is an approximation of α. For

every e ∈ MA we have M |=η[xA 7→e] α⊥, so by induction at each such e we

have M |=η[xA 7→e] α, so M |=η ∀xA . α.

43

• φ ≡ ∃xAα: then either φ⊥ = ∃xA.α⊥ or φ⊥ = ⊥. In the former case we

have, for some e ∈ MA, M |=η[xA 7→e] α⊥, so by induction M |=η[xA 7→e] α,

so M |=η ∃xA . α. The latter case cannot arise under the hypothesis that

M |=η φ⊥.

We can now prove a slightly weaker version of the traditional result on preser-

vation of satisfiability.

Lemma 5. IfM |= σ then there is an approximation (σM⊥) of σ such thatM |= σM⊥

and M is safe for σM⊥ .

Proof. The sentence σM⊥ is obtained by replacing ∃xA . α by ⊥ precisely when

MA = ∅.

Formally we inductively define approximations φM⊥ for arbitrary formulas φ as

follows.

• φ is a literal: then φM⊥ = φ.

• φ ≡ ∃xAα and MA = ∅: then φM⊥ = ⊥

• φ ≡ ∃xAα and MA 6= ∅: then φM⊥ = ∃xA.αM⊥ .

• φ ≡ ∀xAα: then φM⊥ = ∀xA . αM⊥ .

• φ ≡ α ∨ β: then φM⊥ = αM⊥ ∨ βM⊥ .

• φ ≡ α ∧ β: then φM⊥ = αM⊥ ∧ βM⊥ .

It is clear from the construction that M is safe for φM⊥ . We now claim that for an

arbitrary environment η, if M |=η φ then M |=η φ
M
⊥ . But this is a straightforward

induction over formulas φ. The lemma follows by taking φ to be σ.

44

Lemma 6. If σ is satisfiable then there exists an approximation σ⊥ of σ such that

σ⊥sk is satisfiable.

Proof. By Lemma 5 and Lemma 3.

4.4 A Finite Model Theorem for Order-Sorted

Logic

ModelM is a submodel of model N if for each A,MA ⊆ NA and each fM and RM

are the restrictions of fN and RN to M and M, respectively. Note that we use

“submodel” in this strong sense rather than just requiring each RM to be a subset

of RN (as is done by some authors).

4.4.1 Homomorphisms and Submodels

If X = {XA) | A ∈ S} is a family of sets with XA ⊆ MA for each A ∈ S then we

say that X is closed under a function g : MA1 × · · · × MAn → MA if whenever

(a1, . . . , an) ∈ X1×· · ·×Xn we have g(a1, . . . , an) ∈ XA. Note that this is a stronger

claim than saying that the single set
⋃
X is closed under g.

Lemma 7. Let h : P → M be a homomorphism between models of L = (S,≤,Σ).

There is a unique submodel of M with universe {hA(PA) | A ∈ S}.

Proof. It is easy to check that the family {hA(PA) | A ∈ S} is closed under the

interpretations inM of the function symbols in Σ. So if we define the interpretations

of the relation symbols in Σ to be the restriction of the interpretations in M the

result is a submodel. Since there is no choice in the interpretations of the symbols

in Σ once the universe {hA(PA) | A ∈ S} is determined, uniqueness follows.

45

We will denote the submodel identified in Lemma 7 as h(M).

Remark 1. For future reference we observe that if P is a submodel of M and

e ∈MB then it need not be the case that e ∈ PB even if e ∈
⋃
{PA | A ∈ S}. Indeed

this can happen even when P is obtained as the image of a homomorphism into M.

This has important consequences for the use of sorts as predicates, as we will discuss

in Section 4.6.

Next we establish the fundamental fact about preservation of universal sentences

under submodel.

Theorem 3. Let σ be a sentence that is existential-free and in negation-normal

form and let M′ be a submodel of M. If M |= σ then M′ |= σ.

Proof. We prove the following for arbitrary formulas φ: for any environment η over

M′, if M |=η φ then M′ |=η φ. Suppose φ is P (t1, ..., tn) or ¬P (t1, ..., tn), where

P is a relation symbol from Σ or the equality symbol. Each η(ti) is in the domain

of M′, so we have that M |=η P (t1, ..., tn) iff M′ |=η P (t1, ..., tn) by definition of

submodel.

Proceeding inductively: when φ is α∧ β or φ is α∨ β the result is an immediate

application of the induction hypothesis. Finally suppose that φ is ∀xAα. Then

M |= φ implies that M |=η[xA 7→e] α for all e ∈ MA. Since MA ⊇ M′
A we have

M |=η[xA 7→e] α for all e ∈M′
A, that is, M′ |=η ∀xAα.

We pause here to point out that Theorem 3 fails if sort names are permitted to

be used as unary predicates. This is simply because in the definition of submodel

there is no requirement that, for example, if element e lies in sort A in a model then

e is in sort A in the submodel. This issue is discussed in detail in Section 4.6.

46

4.4.2 The Kernel of a Model

Definition 10 (The kernel of a model). Let M be a model for the regular signature

L = (S,≤,Σ). Let h be the unique homomorphism from T L toM (c.f. Theorem 1).

The image of h is a submodel of M by Lemma 7; this is the kernel of M.

The crucially important fact for us is that for the kernel K of M we have, for

each sort A, the cardinality of KA is bounded by the the cardinality of T LA, simply

because KA is the image of T LA under h.

4.4.2.1 The kernel and the Skolem hull

Recall the classical treatment of Skolemization (see e.g., [CK73]): given a model

M, let M∗ be a Skolem expansion, i.e. a model interpreting the Skolem functions,

that satisfies the Skolem theory (the sentences saying that the Skolem functions

witness the truth of the associated existential formula). Then given a subset X of

the universe of M, the Skolem hull HM(X) is the smallest subset of the universe

containing X and closed under the functions and constants of the enriched language;

this determines an elementary submodel HM(X) of M. In particular HM(∅) can

be viewed as a “minimal” submodel of M.

But in the order-sorted setting, the kernel of a model is not in general the same

as the Skolem hull. The latter notion, although perfectly sensible in order-sorted

logic, does not play the same role of “minimal” submodel as it does in the one-sorted

setting. Indeed it is possible for the kernel of a model to be finite while the Skolem

hull is infinite.

Example 6. Consider L = ({A,B}, ∅,Σ) with a ∈ Σ〈〉,A and f ∈ ΣB,B the only

vocabulary symbols. Let M have MA = {b0 = aM}, MB = {b0, b1, b2, . . .}, and fM

map bi to bi+1. Then the Skolem hull H(∅) of M is M itself. Yet the kernel K of

47

M is the model of size 1 with KA = {b0}, KB = ∅, fK = ∅.

4.4.3 A Finite Model Theorem

Here we present our main theorem.

Theorem 4. Let σ be an L-sentence whose Skolemization σsk has signature L∗.

Then σ is satisfiable if and only if σ has a model H such that for each sort A, the

cardinality of HA is no greater than the cardinality of T L∗A.

Proof. For the non-trivial direction, suppose σ is satisfiable. By Lemma 6 there is

an approximation σ⊥ of σ such that (σ⊥)sk is satisfiable. Let L∗∗ be the signature

for σ⊥sk; note that L∗∗ is a reduct of L∗ and the sentence (σ⊥)sk is existential-free.

Let M be a model of (σ⊥)sk, and let H be the kernel of M. Since (σ⊥)sk is

existential-free, H |= (σ⊥)sk. Since H is a kernel we have that for each sort A, the

cardinality of HA is no greater than the cardinality of T L∗∗A, and thus no greater

than the cardinality of T L∗A. Since (σ⊥)sk |= σ⊥ and σ⊥ |= σ, the model H is the

desired model of σ.

Finally we can define precisely the key notion of the paper.

Definition 11. Order-Sorted Effectively Propositional Logic (OS-EPL) is the class

of sentences σ such that the signature of the Skolemization of σ has a finite term

model.

In Section 4.5 we will show how to decide whether a sentence is in OS-EPL

and if so, to compute the sizes of the sorts in the term model. Taken together

with Theorem 4, this establishes a decision procedure for satisfiability of OS-EPL

sentences.

48

4.4.4 Herbrand’s Theorem

As a brief digression, we address Herbrand’s Theorem for order-sorted logic. The

standard model-theoretic proof of Herbrand’s Theorem in first-order logic uses in an

essential way the fact that every element in the Skolem hull of a model is named by a

term. As we have noted this fails when sorts may overlap. There are proof-theoretic

approaches to Herbrand’s Theorem of course but proof theory of order-sorted logic,

especially in the presence of empty sorts, is delicate, so a model-theoretic proof

would be nice to have. We are in a position to give such a proof here.

Theorem 5 (Herbrand’s Theorem for Order-Sorted Logic). Let τ ≡ ∀y1, . . . , yn . α

be a sentence with α quantifier-free. Then τ is unsatisfiable iff there is a set

{α1, . . . , αk} of closed instances of α such that (α1 ∧ · · · ∧ αk) is unsatisfiable.

Proof. It is convenient to prove the following expanded version of the theorem. The

following are equivalent.

1. τ = ∀y1 . . . yn . α is satisfiable.

2. The set T = {α∗ | α∗ is a closed instance of α} is satisfiable.

3. For every finite subset {α1, . . . , αn} of closed instances of α, (α1 ∧ · · · ∧ αn)

is satisfiable.

The implication 1 to 2 is immediate, since any model of τ will satisfy T . To see that

2 implies 1: let M |= T . Let M0 be the kernel of M. So M0 |= T by Theorem 3.

Then M0 |= τ because the universal quantifier just ranges over closed terms when

interpreted in M0.

The equivalence of (2) and (3) is just the Compactness Theorem for ordinary

propositional logic.

49

It is worth noting that we do not in the above proof, require the Compactness

Theorem for order-sorted logic per se.

4.5 Algorithms

In this section we present an algorithm to determine, given a signature L = (S,≤ .Σ)

which sorts of S are inhabited by only finitely many closed terms, and an algorithm

to count the number of closed terms inhabiting a sort.

Notation Fix a signature L = (S,≤,Σ). We say that sort A is finitary in L if

T L,A is finite.

4.5.1 Testing OS-EPL membership

Definition 12. Let L = (S,Σ) be a many-sorted signature. The grammar GL

is defined as follows. The set of nonterminals is S ∪ {A0}, where A0 is a fresh

symbol not in S, the set of terminals is
⋃
{Σw.S | (w, s) ∈ S∗ × S}, and the set of

productions comprises:

A0 → A for each A ∈ S

A→ a whenever a ∈ Σ〈〉,A

B → fA1 . . . An whenever f ∈ Σ〈A1...An〉,B

B → A whenever A ≤ B

Recall that a non-terminal X in a CFG G is said to be useful if there exists a

derivation A0 ⇒∗ αXβ ⇒∗ u where u is a string of terminals, otherwise X is useless.

If A is a useful non-terminal and u is a string of terminals we say that A generates

50

u if there is a derivation A =⇒∗ u.

Lemma 8. Let A be a sort of L and let u be a string of terminals over
⋃
{Σw.S |

(w, s) ∈ S∗ × S}. Then u is a term in T L,A if and only if there is a derivation

A⇒∗ u in GL. A sort A is inhabited by closed term if and only if A is useful in the

grammar GL. When A is useful as a sort in L(GL), the set (T L)A is finite if and

only if A generates only finitely many terms in in L(GL). In particular the set T L

is finite if and only if L(GL) is finite.

Proof. The first claim is easy to check: it holds essentially by the construction of

GL. The second claim follows from the first and the facts that the u in question are

strings of terminals of GL and we have A0 ⇒ A for each A ∈ S.

Theorem 6. There is an algorithm that, given an order-sorted signature L, deter-

mines (uniformly) for each sort A, whether T LA is finite. The algorithm runs in

time linear in the total size of L.

Proof. By Lemma 8, T LA is finite if and only if A generates only finitely many terms

in in L(GL). There is a well-known algorithm for testing whether a non-terminal in a

context-free grammar generates infinitely many terminal strings [HMU06]. Translit-

erated into our setting the algorithm is as follows. First restrict attention to those

sorts A that are inhabited by closed strictly-typed terms (i.e. eliminate “useless

symbols” from the grammar GL): this can be done in linear time with a judicious

choice of data structures (see for example [HMU06]). Next, form the graph whose

nodes are the inhabited sorts, with an edge from B to A if and only if there is a

production in GL of the form B → α A β, that is, if and only if the set Σ〈A1...A...An〉,B

is non-empty or if A ≤ B. Having ensured in the previous step that each sort named

by a non-terminal in GL is inhabited, it is the case that A generates infinitely many

terminal strings if and only if there is a path from A to a cycle. The set of such

51

sorts can be checked in linear time by a depth-first search. Since the size of GL is

linear in the size of L, the overall complexity of our algorithm is linear in L.

Example 7. Return to Example 4.1 from the introduction. Over the signature L

with two sorts A and B, with A ≤ B, consider the sentence

∀yA1 ∃xB∀yA2 . φ (4.2)

where φ has no function symbols. After Skolemizing we have the signature with

b ∈ Σ〈〉,B and f ∈ ΣA,B in addition to those constants in the original signature. The

corresponding grammar has productions A0 → A, A0 → B, B → b, B → f A and

B → A, in addition to productions corresponding to the constants appearing in the

original φ. The resulting graph has edges from the node A0 to A and to B, and

an edge from B to A (the latter for two reasons, due to the grammar production

B → f A and due to the production B → A). This graph is acyclic so we conclude

that this class of sentences has the finite model property.

On the other hand, if we were to postulate that B ≤ A (instead of A ≤ B) then

we cannot deduce the finite model property. Our grammar would have the production

A→ B in addition to B → A and the resulting graph would have a cycle.

Corollary 1. Membership in OS-EPL is decidable in linear time.

Proof. Let σ be given, over signature L. We can compute the skolemization σsk

of σ in linear time, and extract the signature L∗ of σsk. The size of this signature

is clearly linear in σ, so by Theorem 6, we can decide whether all sorts of L∗ are

finitary in time linear in σ.

52

4.5.2 Computing the number of terms in a sort

Note that in the worst case, Σ may induce a number of terms exponential in its size.

Thus we would like to avoid actually generating the terms, and merely count them

if we can do so in polynomial time.

The intuition behind Algorithm 2 is as follows. If a sort is finitary, its terms can

be of height no greater than the number of functions in Σ. So we construct a table

containing the number of terms of each height of each sort, starting with constants

and then applying functions. The only complication is that when counting the ways

to create a new term of height h using function f , we need to make certain that

each has at least one subterm of height exactly h− 1.

Theorem 7. There is an algorithm that, given a regular signature L with no over-

loading, computes, in time cubic in the size of L, the size of T L,A for each finitary

sort A (returning “∞” for the non-finitary sorts).

Proof. The algorithm is given as Algorithm 2 below.

Proof of correctness Since the algorithm uses only FOR loops, it is easy to see

that it terminates. Furthermore we claim that after termination, the totals of each

column Tbl[
∑

][A] contain exactly |T L,A| for each finitary sort A.

First observe that by the pigeonhole principle, all terms in T L,A (A finitary)

must have height ≤ nf . Therefore, when counting terms in finitary sorts it suffices

to count only terms of height ≤ nf , and thus we need only prove that the algorithm

populates the table correctly: that each Tbl[h][A] contains exactly the number of

terms having height h within T L,A.

Proof: After a row is computed by our algorithm, it is never again modified. So

we proceed by induction on h.

53

Algorithm 2: The Counting Algorithm

Input: A signature L = (S,≤,Σ)
Output: For each sort s for which Σ in finitary, the number of terms of sort

s.

let ns be the number of sorts ;
let nf be the number of functions ;
let Tbl be a 2-dimensional vector of size [nf + 1][ns];
initialize Tbl with 0s ;

// Fill the first row with constant term counts

for each constant symbol c : S do
// Populate

Increment Tbl [0][S] by 1;
// Propagate to supersorts

for each sort S’ such that S < S ′ do
Increment Tbl [0][S’] by 1;

for h = 1 to nf do
foundTermsOfThisHeight := false;
for each function f : (A1, ..., An)→ B do

// Compute the number of ways to construct a term of

height h via f. (To be this height, must use at least

one term of height h-1.)

ways = 0 ;
// Ways to make a term with leftmost h-1 leftmost=
for leftmost= 1 to n do

// Start with the number of h-1 height terms having

this sort

waysn = Tbl[h− 1][leftmost] ;
// And multiply by the number of available subterms of

the other sorts in f’s arity

for component= 1 to (leftmost− 1) do
waysn∗ =

∑
{Tbl[k][component] | 0 ≤ k ≤ h− 2}

for component= (leftmost + 1) to n do
waysn∗ =

∑
{Tbl[k][component] | 0 ≤ k ≤ h− 1}

ways+ = waysn
// ways contains number of height h terms produced by

function f. Add those terms to the table...

Tbl[h][B]+ = ways ;
if ways > 0 then

foundTermsOfThisHeight := true

// ... and propagate to supersorts

for each sort S’ such that B < S ′ do
Tbl[h][S ′]+ = ways

// No height h terms means no larger terms.

if not foundTermsOfThisHeight then
break;

return a 1-dimensional vector of size nswhich contains the column sums of
Tbl

54

Base: If h = 0 then we are concerned only with constant terms. The first block

of our algorithm counts every constant c : S exactly once in each Tbl[0][S ′] such

that S ≤ S ′. So we can conclude that Tbl[0] contains a faithful count of height 0

terms for all sorts.

Induction: Suppose h > 0 and that each Tbl[x], 0 ≤ x < h is correct. A

non-constant term t is in T L,A if (by definition!):

1. t has a function at its head with result sort A

2. t has a function at its head with some result sort B with B ≤ A,B 6= A.

The algorithm increments a table cell according to case (2) if and only if it has

already incremented a cell according to case (1).

Each ground term of height h > 0 has one distinct function f at its head, and

(with respect to the ordering in f ’s arity) exactly one left-most subterm of height

h − 1 at index lm, 1 ≤ leftmost ≤ n. So we only need to show that we correctly

calculate the number of terms in T L,A having height h, head function f with result

sort A and left-most h− 1 subterm at index leftmost

The number of such terms depends only on the number of subterms available to

fill each index of f ’s arity. The number of usable subterms for Ai is:

• If i = leftmost, terms of sort Ai having height exactly h− 1 are admissible.

• If i < leftmost, terms of sort Ai having height up to h− 2 are admissible.

• If i > leftmost, terms of sort Ai having height up to h− 1 are admissible.

(The usable heights differ by index since index leftmost is the leftmost appearance

of a height h− 1 subterm.)

But this is exactly the calculation that the algorithm makes, and by our induction

hypothesis, these subterm rows have been calculated correctly.

55

Complexity Note that we could optimize the counting algorithm by memoizing

column totals, saving us the trouble of repeatedly summing up
∑
{Tbl[k][component] |

0 ≤ k ≤ h− 1} and
∑
{Tbl[k][component] | 0 ≤ k ≤ h− 1}. The code for this is

omitted for clarity, but we assume it when calculating the complexity bounds be-

low.

The initial pass for row 0 takes no more than ncns steps.

The main block (with memoization) has loop structure as follows:

(1) for each h ≤ nf do

(2) for each f (≤ nf iterations) do

(3) for each lm in f’s arity do

(4) for each component in f ’s arity not equal to lm do

(iterations bounded by maximum arity) . . .

(5) for each supersort of f ’s result sort (≤ ns iterations) do
. . .

Together (2) and (3) make |Σ|, the size of the signature. Therefore we have a

bound:

ncns + nf(|Σ| ∗maxarity + nfns), which is cubic in the size of the signature.

We could use this algorithm to test for finitary signatures as well, since if we

continue to iterate term height past |ΣF |, there will be an increase in Tbl[h][S] if

and only if S is infinitary. However, it benefits us to know in advance which sorts

are finitary and which functions never produce ground terms, as that may greatly

reduce the size of Tbl.

If we want to know the total number of terms across all sorts (without dupli-

cation), it is easy enough to add a counter and increment it on population (not

propagation) in the algorithm above.

56

Summarizing, we have the following sound and complete procedure for testing

satisfiability of OS-EPL sentences. Given sentence σ, compute its Skolemization σsk;

let L∗ be the signature of σsk. If the term model T L∗ is finite then we know that if σ is

satisfiable then σ has a model whose universe has cardinalities as given in Theorem 4.

Since these bounds are computable we can effectively decide satisfiability for such

sentences.

Remark 2. The results of the algorithm in Theorem 7 can be useful even if not all

sorts are finitary. Fontaine and Gribomont [FG03] have implemented an instantiation-

based algorithm that takes advantage of the information that certain sorts are guaran-

teed to have finitely many closed terms. Their algorithm does not do a sophisticated

test for this condition, in fact it succeeds only if there are no non-constant terms in

the sort in question. Our algorithm here is simple yet will allow their methods to be

applicable to a wider class of sentences.

4.6 About Sorts-as-Predicates

Many formulations of sorted logic, and certain tools, allow sort names to be used as

predicate names in formulas. We have not built this into our syntax; in this section

we explain why. We start with an example, in which Herbrand’s Theorem fails in a

dramatic way, with obvious negative consequences for our finite model theorem.

Example 8. Consider a signature L = (S,≤,Σ) with sorts A and B, a constant

b ∈ Σ〈〉,B and a function f ∈ ΣA,B. Let σ be the following sentence expressing the

fact that f is one-to-one but not onto

(∀xA . B(x))∧(∀yB . A(y))∧(∀xA . f(x) 6= b)∧(∀xA1 xA2 . (x1 6= x2)→ (f(x1) 6= f(x2)).

57

Since the first two conjuncts force A and B to be equal, this sentence has only infinite

models. But the Herbrand universe for L is the singleton set {b}.

What went wrong? The fundamental fact that the truth of existential-free sen-

tences is preserved under submodel, Theorem 3, fails when sorts are allowed as

predicates. This is because in the definition of submodel there is no requirement

that elements remain in each sort they inhabit in the original model: if P is a sub-

model ofM and element e happens to be inMA∩MB then it is possible that, say,

PA but not in PB. So Theorem 3, crucial to Herbrand’s Theorem, as well as to the

soundness of our decision procedure, fails at the base case.

A natural response to this might be: if sorts are to used as predicates then the

notion of submodel should be refined to reflect this. In particular we might refine

the definition of submodel and insist that an element in the universe of a submodel

retain all of the “sort-memberships” it had in the original model. Unfortunately, if

we do this this something else breaks: the fact that the image of a homomorphism

makes a submodel (Lemma 7). Recall that closure under under the functions of a

vocabulary is a property of a family of sets (e.g. the family of images of sorts in

the source model) and not the union of this family. When we put a sort-structure

on the union, in the target model, of the images of sorts in the source by retaining

the sort-memberships in the target the resulting family of sets can fail to be closed

under the interpretations of the function symbols.

Example 9. Refer to Example 6; consider the unique homomorphism h : K →M,

for which hA maps b0 to b0 and hB = ∅. The submodel of M generated by h

interprets sort A as {b0}, interprets B as ∅, and is the universe of a submodel of

M (in which f is interpreted as the empty function). But if we were to insist that

element b0 inhabit sort B in the “submodel” induced by h, then we cannot interpret

f : it is supposed to be the restriction of fM to the universe of our submodel, but

58

fM(b0) = b1, and b1 is not in the range of h.

We stress that these observations are not bound up with our project of trying to

build finite models, they are general foundational problems with using sorts as pred-

icates. If we permit sorts to be used as predicates, we must either give up the notion

of models being closed under homomorphisms or give up the intuitively compelling

model-theoretic result that universal sentences are preserved under submodel.

The solution is to view the use of sorts as predicates as syntactic sugar for

formulas in the core language. The construction for de-sugaring is the following.

Given σ with subtermA(t) for a sortA, rewrite this to replaceA(t) with (∃zA . z = t)

(where z is a fresh variable). This is done before passing to negation-normal form,

so as a consequence a subformula ¬A(t) will be replaced with (∀zA . z 6= t).

Lemma 9. If σ′ is obtained from σ by the process described in the previous paragraph

then σ′ and σ are logically equivalent.

Proof. Recall that we define the truth of a formula φ in a model M in the context

of environments η under the assumption that the domain of η includes all the free

variables of φ. Noting that A(t) has the same free variables as (∃zA . z = t)

when z is fresh variable, we must show that for any M and environment η such

that the domain of η includes the free variables of t), M |=η A(t) if and only if

M |=η (∃zA . z = t). The fact that MA might be empty does not cause any

problems: ifM |=η A(t) this means that η(t) ∈MA and so we can bind z to η(t) to

witness the truth of (∃zA . z = t); while if M 6|=η A(t) this means that η(t) 6∈ MA

and so M |= (∀zA . z 6= t).

Example 10. We revisit Example 8. When the sentence there is de-sugared accord-

59

ing to the recipe above we arrive at

(∀xA∃uB . u = x)∧(∀yB∃wA . w = y)∧(∀xA . f(x) 6= b)∧(∀xA1 xA2 . (x1 6= x2)→ (f(x1) 6= f(x2)).

When this sentence is Skolemized we get a function from A to B and one from B

to A; together with the constant b this obviously generates an infinite set of closed

terms.

Summarizing: the use of sorts as predicates is not innocent, but it can be can

be accommodated after translation into the core language.

4.6.1 Sorts-as-predicates in Margrave

Of these two equivalent queries: ∃xSubjectAdmin(x) and ∃xSubject∃yAdmin(x = y),

the first is far more succinct and readable. Because of this, Margrave supports a

limited kind of sort-as-predicate in its query language.

To allow this, we expand the algorithms above (4.5). When Skolemizing a query,

Margrave marks whether or not a Skolem function arose due to a sort-as-predicate,

and treats it as a restricted identity function: it cannot create new terms, only

propagate them to new sorts, much like how we handle the sort-ordering ≤. We

stress that this has not solved the sorts-as-predicates problem for two reasons:

• This algorithm treats sorts-as-predicates globally rather than locally, which

could result in an over-estimation of sufficient model size. For instance, con-

sider the following sentence over a language with two functions f : B → D

and g : C → E. ∃xA(B(x) ∨ C(x)). By adding two separate coercion func-

tions due to B(x) and C(x) we imply that both branches of the disjunction

must be true, and produce the term model {cx, f(cx), g(cx)}. A more accurate

treatment would need to consider multiple term models.

60

• Since the query language has no support for complex terms, we handle only

sort-as-predicate cases where the term appearing is a variable. A full treatment

of sorts-as-predicates would need to handle all possible terms.

4.7 Tupling

We have seen that given a query, we can often compute an upper bound on the

model sizes at which we must search for solutions. This makes Margrave’s answer

to many queries sound and complete, but the ceiling is often high, even for simple

queries. In this section we present some results that can allow a drastic reduction in

sufficient model size for a heavily-used class of queries – one that does not require

the full expressive power of OS-EPL.

We first introduce the idea in ordinary first-order logic.

4.7.1 The First-Order Existential Case

Given a query of the form ∃x1, ...,∃xkα, where α is quantifier-free, along with various

axioms of the form ∀y1, ...,∀ylβ (where β is also quantifier free), algorithm 2 will

return k, the number of existentials, as an upper bound. Yet the query seeks only a

single tuple that satisfies α, suggesting that there may be potential for improvement.

For example, consider this simple (unsorted) access-control policy:

permit(s a r) :- employee(s), read(a), public(r).

permit(s a r) :- manager(s), read(a).

permit(s a r) :- manager(s), write(a), public(r).

permit(s a r) :- employee(s), read(a), manager(m),

personal-assistant(m, s).

and a query over that policy asking what requests it permits: ∃s ∃a ∃r Permit(s, a, r).

Margrave will calculate a bound of 4 for this query, and check for models at sizes

61

1, 2, 3, and 4. Our goal is to show that a bound of 1 suffices in such situations,

although as we show below, we pay a cost: a potential increase in the number of

relation symbols in our language.

Given an existential, prenex form sentence σ ≡ ∃x1...∃xkα (where α is quantifier

free using l ≤ k free variables) over a constant- and function-free signature Σ (that

may use equality), we can construct an equisatisfiable existential sentence, possibly

over a new signature, having only one (existential) quantifier.

The intuition here is simple: For each environment η over a model M there

is a tuple of elements (η(x1), ..., η(xk)) that describes bindings to the variables in

x1, ..., xk. An atomic formula P (xi) in α asserts that the ith component of that

tuple is in the relation PM. The goal is to rewrite σ so that it involves only one

existentially quantified variable z representing the entire tuple (x1, ..., xk).

If α doesn’t contain equality, the rewriting process is straightforward: we need

only instrument each atomic formula with an index, describing which component(s)

of the tuple it involves. For instance:

Example 11. σ ≡ ∃x∃yP (y) ∧ ¬R(x, y) would produce σ′ ≡ ∃zP2(z) ∧ ¬R1,2(z)

over the new signature Σ′ = {P2, R1,2}.

However, in general α may contain equality, which makes the rewriting slightly

more involved. Here we will define some constructions that will prove useful.

Definition 13 (Tupled Signature). Let σ ≡ ∃x1...∃xkα (where α is quantifier free)

be a sentence over the signature Σ.

The tupling of Σ with respect to σ, written as Στ is built as follows:

• Στ contains a predicate symbol Pi1,...,in of arity 1, (where ij are integers between

1 and k) for each atom P (xi1 , ..., xin) that appears in σ.

• Στ also contains a predicate symbol =i,j for each 1 ≤ i < j ≤ k.

62

Definition 14 (Tupled Formula). Let σ ≡ ∃x1...∃xkα (where α is quantifier free)

be a sentence over the signature Σ.

The tupling of σ, written as τ(σ), is a sentence over Στ and is defined to be

identical to σ except that:

• The prefix of τ(σ) contains a single existential quantifier ∃z.

• All atoms P (xi1 , ..., xin) in σ are replaced with Pi1,...,in(z) in τ(σ).

• Each atom (xi = xj) is replaced with =i,j (z) (or =j,i if j < i); any occurence

of (xi = xi) is replaced with the tautology >.

If the original formula used equality, we must add an axiomatizaiton of equality

that makes the new equality predicates behave as we would expect equality to.

Definition 15 (Equality Axioms). The equality axioms for σ, written as γ(σ), is

the sentence over Στ that is the conjunction of the following finite set of universal

formulas:

• For each =i,j in Στ and each pair of predicate symbols in Pi1,...,i,...,in and

Pi1,...,j,...,in in Στ , add: ∀z (=i,j (z) =⇒ (Pi1,...,i,...,in(z) ⇐⇒ Pi1,...,j,...,in(z)))

• Whenever all of =i,j, =j,k, and =i,k (with the subscripts in any order) appear

in Στ , add: ∀z (=i,j (z)∧ =j,k (z) =⇒ =i,k (z)).

Note that the second type of axiom above is indeed required. The issue is one

of subscript ordering. Suppose only the first type of axiom was added, and that the

equality predicates =1,2, =2,3, and =1,3 all appear in Στ . Then the following axioms

are produced:

∀z (=1,2 (z) =⇒ (=1,3 (z) ⇐⇒ =2,3 (z)))

∀z (=2,3 (z) =⇒ (=1,2 (z) ⇐⇒ =1,3 (z)))

63

but the crucial third axiom will not be constructed, because there is no predicate

named =3,2. To correct this, we ignore subscript ordering when forming transitivity

axioms above.

Example 12. Suppose that σ ≡ ∃x ∃y R(y, x) ∧ ¬R(x, y) ∧ ¬(x = y). Then:

τ(σ) ≡ ∃zR2,1(z) ∧ ¬R1,2(z) ∧ ¬ =1,2 (z)

γ(σ) ≡ =1,2 (z) =⇒ (R1,2(z) ⇐⇒ R2,1(z))

.

Note that if σ does not use equality, then the equality predicates and axioms can

be disregarded and the following bounds hold:

|σ′| ≤ |σ|.

|Σ′| ≤
∑

P∈Σ of arity m

(km).

If σ uses equality, the bounds increase:

|σ′| ≤ |σ|+
(
k
2

)
|Σ′|

|Σ′| ≤
∑

P∈Σ of arity m

(km) +

(
k

2

)
.

As we will see, these bounds are extremely conservative in practice.

Definition 16 (Product Model). Let σ ≡ ∃x1...∃xkα (where α is quantifier free) be

a sentence over the signature Σ.

Given a model M of Σ, the k-ary product model M↑k of M is the following model

of Στ .

Let |M↑k| = |M|k. That is, |M↑k| is the set of all k-ary tuples of elements of M.

64

For each predicate symbol Pi1,...,in ∈ Στ and element (e1, ..., ek) ∈ |M↑k|, (e1, ..., ek) ∈

PM↑k
i1,...,in

if and only if (ei1 , ..., ein) ∈ PM.

For each =i,j∈ Στ , (e1, ..., ek) ∈=M↑k
i,j if and only if ei = ej.

Example 13. |M| = {a, b}. PM = {a}. RM = {(a, a), (a, b)}.

|M↑2| = {aa, ab, ba, bb}. PM↑2
2 = {aa, ba}. RM↑2

12 = {aa, ab}.

Lemma 10. Let σ ≡ ∃x1...∃xkα (where α is quantifier free) be a sentence over the

signature Σ. If M |= σ, then M↑k |= τ(σ) ∧ γ(σ).

Proof. Since we have constructed each =M↑k
i,j using true equality in M, γ(σ) must

hold in M↑k. So we only need to show that M↑k |= τ(σ).

Fix some η such that M |=η α. Let η′ be an environment mapping z to

(η(x1), ..., η(xk)) ∈ M↑k. Let α′ be the matrix of τ(σ). Now we show by induc-

tion that M↑k |=η′ α
′.

• α′ ≡ Pi1,...,in(z). So α ≡ P (xi1 , ..., xin). But by our construction of M↑k and

η′, (η(xi1), ..., η(xin)) ∈ PM if and only if η′(z) ∈ Pi1,...,in .

• α′ ≡=i,j (z). So α ≡ (xi = xj). Again, η′(z) = (η(x1), ..., η(xk)) and so by our

construction of M↑k, η′(z) ∈=M↑k
i,j iff η(xi) = η(xj).

• α′ ≡ β ∧ γ, β ∨ γ, or ¬β: Follows by direct use of our inductive hypothesis on

the smaller formulas β and γ.

Given a model M over Στ , we would like to define a construction that “unpacks”

tuples into their original form: the reverse of a product model in the natural way.

However if M does not satisfy the axioms in γ(σ), the “natural” projection of equality

65

becomes ambiguous. Because of this, we use the equality axioms γ(σ) to aid us in

reversing the product model process.

There is another delicacy: if the size of M isn’t nk for some n, it isn’t immedi-

ately apparent how to construct its projection. Nor is it obvious how to “project”

predicates. (For example, consider a model with two elements a and b and one

predicate symbol P1 with interpretation {a}. There is nothing in this model to tell

us how large the new model should be, nor how to assign projections from a and b

to elements, even if we knew its size.) Fortunately, it turns out that model size 1

suffices.

Definition 17 (Projection Model). Let σ ≡ ∃x1...∃xkα (where α is quantifier free)

be a sentence over the signature Σ.

Given some single-element model M over Στ that satisfies γ(σ), we define the

projection model for M, written M↓ as follows.

Let S be a set of k arbitrary elements {e1, ..., ek}, and let ∗ be the distinct element

of M. Now define the equivalence relation R on S such that R(ei, ej) ⇐⇒ ∗ ∈=M
i,j.

Now let |M↓| be the quotient of S with respect to R. We denote the equivalence

class of an element e as [e].

For each n-ary predicate P , ([ei1], ..., [ein]) ∈ PM↓ if and only if ∗ ∈ PM
j1,...,jn

for

some 1 ≤ j1, ..., jn ≤ k and either ir = jr or =M
ir,jr for each 1 ≤ r ≤ n.

This is well-defined since we forced each =i,j to respect predicates in the equality

axioms of γ(σ), and M |= γ(σ).

Example 14. Let Σ and σ be as in the above examples.

|M| = {∗}. PM
2 = {∗}. RM

12 = ∅.

Then the projection model for M is: |M↓| = {e1, e2}. PM↓ = {e2}. RM↓ = ∅.

66

Lemma 11. Let σ ≡ ∃x1...∃xkα (where α is quantifier free) be a sentence over the

signature Σ.

Given a model M over Στ , if ||M|| = 1 and M |= τ(σ) ∧ γ(σ), then M↓ |= σ.

Proof. Write the single element of |M| as ∗

M |=z 7→∗ τ(σ) ∧ γ(σ) so of course M |=z 7→∗ τ(σ). Since τ(σ) is identical to the

matrix of σ except for atoms, it suffices to show that ∗ ∈ PM
i1,...,in

if and only if

([ei1], ..., [ein]) ∈ PM↓ . But this is true by our construction of M↓.

Theorem 8. Given a sentence σ ≡ ∃x1...∃xkα (where α is quantifier free) over a

constant- and function-free signature Σ (that may use equality),

σ is satisfiable if and only if τ(σ) ∧ γ(σ) is satisfiable at model size 1.

Proof. Since σ ≡ ∃x1...∃xkα is prenex existential, a model I satisfies σ if and only

if it has some induced submodel with no more than k elements. Now Lemmas 10

and 11 suffice since τ(σ) has only one existential quantifier.

Example 15. We return to the example from the beginning of this section: σ ≡

∃s∃a∃rPermit(s, a, r).

This will be expanded to:

∃s∃a∃r (employee(s) ∧ read(a) ∧ public(r)) ∨
(manager(s) ∧ read(a)) ∨
(manager(s) ∧ write(a) ∧ public(r)) ∨
(∃m employee(s) ∧ read(a) ∧manager(m) ∧ personal-assistant(m, s))

.
After prenexing, tupling produces:

67

∃z (employee1(z) ∧ read2(z) ∧ public3(z)) ∨
(manager1(z) ∧ read2(z)) ∨
(manager1(z) ∧ write2(z) ∧ public3(z)) ∨
(employee1(z) ∧ read2(z) ∧manager4(z) ∧ personal-assistant4,1(z))

.

Notice that in this particular case, tupling has not increased the number of

predicates to consider; we have even reduced a binary relation to a unary one.

After tupling is complete on this query, a model-finder need only consider mod-

els of size 1. It would also be possible to immediately apply purely propositional

methods (e.g. BDDs) to the tupled formula. While our established bounds on the

size of Στ allow for pathological cases where this procedure is actually unhelpful, we

have found in practice that tupling nearly always results in a performance gain for

our tool (Section 3.5).

4.7.2 The Sorted Case

Margrave uses first-order order-sorted logic, and so we must extend the first-order

tupling theorem to the order-sorted setting. This both introduces subtleties (as

in the case of empty sorts) and grants benefits as we will see. First we redefine

the process of tupling in the sorted setting. We allow sorts to appear as predicate

symbols in σ, noting that in this restricted case they do not present a problem

(Section 4.6).

Definition 18 (Tupled Signature). Fix an order-sorted vocabulary Σ and a sentence

σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where α is quantifier free).

The tupling of Σ, denoted Στ contains the following sorts:

68

• A unique maximal sort Z.

• For each index i, 1 ≤ i ≤ k, Στ contains a sort Ai if:

– The atom A(xi) appears in σ; or

– Sort Bi is in Στ and B ≤ A in Σ (in this case Bi ≤ Ai); or

– P ∈ Σ〈A1,...,Ai−1,A,Ai+1,...,An〉 and the atom P (xj1 , ..., xi, ..., xjn) appears in
σ.

If the atom P (xi1 , ..., xin) appears in σ, a unary predicate symbol Pi1,...,in appears

in Στ .

Στ also contains a predicate symbol =i,j for each 1 ≤ i < j ≤ k.

Definition 19 (Tupled Formula). Fix an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α

over Σ (where α is quantifier free).

The tupling of σ, written τ(σ), is defined to be identical to σ except that:

• The prefix of τ(σ) contains a single existential quantifier ∃zZ.

• All atoms P (xi1 , ..., xin) in σ are replaced with Pi1,...,in(z) in τ(σ). This case
applies to both predicate and sort symbols.

• Each equality atom (xi = xj) is replaced with =i,j (z) (or =j,i if j < i); any
occurence of (xi = xi) is replaced with the tautology >.

Example 16. Suppose the original vocabulary Σ contains the sorts shown in Figure

4.1 and that the query sentence has the prefix:

∃ipsrcIPAddress ∃ipdestIPAddress ∃portsrcPort ∃portdestPort

and a matrix that involves the atomic formulas www.wpi.edu(ipdest), www(portdest),

and 192.168.0.1(ipsrc). Then the tupled vocabulary Στ would contain the hierarchy

shown in Figure 4.2. Shaded nodes represent sorts explicitly mentioned either in the

matrix or in the quantifiers themselves; uncolored nodes represent sorts that were

included because they are parents of an explicitly mentioned sort.

69

Figure 4.1: Original Hierarchy

Figure 4.2: Tupled Hierarchy

Definition 20 (Equality Axioms). Fix an order-sorted vocabulary Σ and a sentence

σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where α is quantifier free).

The Equality axioms for σ, denoted γ(σ), are identical to the same in the un-

sorted case, except quantification is over the maximal sort Z.

The nature of sortedness introduces a difference in quantification between σ and

τ(σ). We have introduced a sort symbol Z in Στ that implicitly means “tuples of

sort S1× ...×Sk”. If we do not make this assumption explicit, we will be unable to

prove an analog to Theorem 8 in the sorted case. The following example illustrates

the problem.

Example 17. Let σ ≡ ∃xA ¬A(x). Clearly σ is unsatisfiable. But τ(σ) ≡ ∃zZ¬A1(z),

which is satisfiable.

Definition 21 (Tupling Axioms). Fix an order-sorted vocabulary Σ and a sentence

70

σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where α is quantifier free).

The tupling axioms for σ, denoted β(σ) consist of the following universally quan-

tified sentence:

∀zZS11(z) ∧ ... ∧ Skk
(z).

Definition 22 (Product Model (Sorted)). Fix an order-sorted Σ and a sentence

σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where α is quantifier free).

Given a model M of Σ, we define the Product Model of M with respect to σ,

written M↑S1,...,Sk to be a model over Στ as follows:

Let |M↑S1,...,Sk |Z be |M|S1 × ...× |M|Sk
.

For all other sort symbols Ai in Στ , the element (e1, ..., ek) is in |M↑S1,...,Sk |Ai
if

and only if ei ∈ |M|A.

For each predicate symbol Pi1,...,in ∈ Στ 〈A1,...,An〉, each element (e1, ..., ek) of |M↑S1,...,Sk |Z

is in PM↑k
i1,...,in

if and only if (ei1 , ..., ein) ∈ PM.

For each =i,j∈ Στ , (e1, ..., ek) ∈=M↑S1,...,Sk

i,j if and only if ei = ej.

Note that if any of the prefix sorts are empty in M, then M↑S1,...,Sk is the empty

model for Στ .

Lemma 12. Fix an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where

α is quantifier free).

If M |= σ, then M↑S1,...,Sk |= τ(σ) ∧ γ(σ) ∧ β(σ).

Proof. Again, since we have constructed each =M↑S1,...,Sk

i,j using true equality in M,

γ(σ) must hold in M↑S1,...,Sk . We also know that M↑S1,...,Sk |= β(σ) since we con-

structed the set |M↑S1,...,Sk |Z to contain only properly typed tuples. Thus it only

remains to show that M↑S1,...,Sk |= τ(σ).

Fix some η such that M |=η α. Let η′ be an environment mapping z to

(η(x1), ..., η(x1)) ∈ |M↑S1,...,Sk |Z . We know that this element exists since otherwise

71

the environment η could not exist.

Let α′ be the matrix of τ(σ). Now we show by induction that M↑S1,...,Sk |=η′ α
′.

The induction proceeds similarly to the unsorted case, except that there is now a

sort-as-predicate case:

α′ ≡ Ai(z). So α ≡ A(xi). Again, by our construction of the product model,

η′(z) ∈ |M↑S1,...,Sk |Ai
if and only if η(xi) ∈ |M|A.

Definition 23 (Projection Model (Sorted)). Fix an order-sorted Σ and a sentence

σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where α is quantifier free).

Given a single-element model M of Στ , that satisfies γ(σ), we define the Projec-

tion of M with respect to σ, written M↓, to be a model over Στ as follows:

Let S be a set of k arbitrary elements {e1, ..., ek}, and let ∗ be the distinct element

of M. Now define the equivalence relation R on S such that R(ei, ej) ⇐⇒ ∗ ∈=M
i,j.

We denote the equivalence class (modulo R) of an element e ∈ S as [e].

For all each sort symbol A in Σ, and each equivalence class [ei], the element [ei]

is in |M↓|A if and only if

• ∗ ∈ |M|Ai
; or

• for some j, ∗ ∈=i,j and ∗ ∈ |M|Aj
.

For each n-ary predicate P , ([ei1], ..., [ein]) ∈ PM↓ if and only if ∗ ∈ PM
j1,...,jn

for

some 1 ≤ j1, ..., jn ≤ k and either ir = jr or =M
ir,jr for each 1 ≤ r ≤ n.

The above constructions are well-defined since M satisfies γ(σ).

Lemma 13. Fix an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where

α is quantifier free).

Given a model M over Στ , if ||M|| = 1 and M |= τ(σ) ∧ γ(σ) ∧ β(σ), then

M↓ |= σ.

72

Proof. Write the single element of |M| as ∗

M |=z 7→∗ τ(σ)∧ γ(σ)∧ β(σ) so of course M |=z 7→∗ τ(σ). Since τ(σ) is identical to

σ except for atoms, it suffices to show that:

• The mapping xSi
i 7→ [ei] (for each 1 ≤ i ≤ k) is a sorted environment. That

is, the mapping respects the sort of each xi. This is true since M |= β(σ).

• ∗ ∈ PM
i1,...,in

if and only if ([ei1], ..., [ein]) ∈ PM↓ and

• ∗ ∈ |M|Ai
if and only if [ei] ∈ |M↓|A. These are true by our construction of

M↓.

Lemma 13 is where we use β(σ). If M¬ |= β(σ), we would be unable to construct

the environment needed to proceed.

Now we state the existential tupling theorem for order-sorted logic.

Theorem 9. Given an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ

(where α is quantifier free),

σ is satisfiable if and only if τ(σ) ∧ γ(σ) ∧ β(σ) is satisfiable at model size 1.

Proof. Since σ is prenex existential, a model I satisfies σ if and only if it has some

induced submodel with no more than k elements. Now Lemmas 12 and 13 suffice

since τ(σ) has only one existential quantifier and γ(σ) ∧ β(σ) is universal.

Note that the presence of empty sorts does not affect the above theorem, but

in the sorted setting, prenex normal form may not be attainable in the presence of

empty sorts. Here, Margrave must tread carefully. For example, recall our example

Permit query above, which is expanded to:

73

∃s∃a∃r (employee(s) ∧ read(a) ∧ public(r)) ∨
(manager(s) ∧ read(a)) ∨
(manager(s) ∧ write(a) ∧ public(r)) ∨
(∃m employee(s) ∧ read(a) ∧manager(m) ∧ personal-assistant(m, s))

.

This sentence contains an existential outside the prefix. If the sort employee is

allowed to be empty, this query cannot be tupled safely — at least using the current

theory.

Since an order-sorted signature with a single sort can simulate ordinary first-

order logic, we cannot claim any general performance gains in the sorted case. How-

ever we have found that in practice the typing discipline imposed by sorts can result

in fewer axioms.

4.7.3 Including Constraints

Even if the user’s query is fully existential, it may involve vocabulary constraints

that contain implicit universal quantifiers. For instance, a constraint that expresses

A and B are disjoint sorts requires universal quantification:

∀xA∀yB(x 6= y)

.
A constraint expressing A contains at most one element does as well:

∀xA∀yA(x = y)

.
As does saying that A is covered by the union of its n subsorts :

74

∀xA(B1(x) ∨ ... ∨Bn(x))

.

Though there may be different ways to write these constraints, they cannot

be expressed in negation-normal form without universal quantifiers. This fact is

easy to see since existential formulas preserve truth in supermodels, but the above

formulas do not. Thus such constraints fall outside Theorem 9, since it handles only

existential sentences.

It is possible to prove an analog to the existential tupling theorem for universal

formulas, but it is more complicated and may cause an exponential blowup in for-

mula size. Since these three constraint types are the only non-functional universal

constraints that Margrave allows, we opt to show how each of the above may be

incorporated into Theorem 9.

Definition 24 (Immediate Subsort). A sort A where A ≤ B is said to be an

immediate subsort of B if there is no sort C such that A ≤ C ≤ B.

Definition 25 (Constraint Formula). Given an order-sorted signature Σ and sort

symbols A, B in Σ. A constraint formula over Σ is a sentence of the form:

• ∀xA∀yB(x 6= y), a disjointness constraint; or

• ∀xA∀yA(x = y), an at-most-one or lone constraint; or

• ∀xA(B1(x) ∨ ... ∨ Bn(x)), a subsort-exhaustiveness or abstract constraint,
provided B1, ..., Bn are the immediate subsorts of A.

We now redefine our notion of a tupled signature one last time:

Definition 26. Fix an order-sorted vocabulary Σ, a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over

Σ (where α is quantifier free), and a set X of constraint formulas over Σ.

The tupling of Σ, denoted Στ contains the following sorts:

75

• A unique maximal sort Z.

• For each index i, 1 ≤ i ≤ k, Στ contains a sort Ai if:

– The atom A(xi) appears in σ; or

– The sort symbol A is an immediate subsort of B, and B is abstract in X;
or

– Sort Bi is in Στ and B ≤ A in Σ (in this case Bi ≤ Ai); or

– P ∈ Σ〈A1,...,Ai−1,A,Ai+1,...,An〉 and the atom P (xj1 , ..., xi, ..., xjn) appears in
σ.

If the atom P (xi1 , ..., xin) appears in σ, a unary predicate symbol Pi1,...,in appears

in Στ . Στ also contains a predicate symbol =i,j for each 1 ≤ i < j ≤ k.

The above definition makes certain that our notion of projection can function

unambiguously in the presence of abstractness constraints.

4.7.3.1 At-most-one

Definition 27 (Tupled At-Most-One Constraint). Let Σ be a sorted signature and

let X be a set of constraint formulas over Σ.

For each at-most-one constraint formula χ ∈ X on sort A in Σ, its tupling, χτ ,

is the conjunction of the following finite set of formulas over Στ :

{∀zZ(Ai(z) ∧ Aj(z)) =⇒ (=i,j) | Ai, Aj (i 6= j) appear in τ(σ)}.

In the worst case, each at-most-one constraint introduces
(
k
2

)
new formulas.

For this axiom to be complete at all model sizes, we would also need to declare

each Ai to be at-most-one in the tupled vocabulary. However, since we will again

only be concerned with model size 1 for tupled models, the extra assertions would

be pointless.

76

4.7.3.2 Disjointness

For each A ⊥ B constraint in the original vocabulary and each index i for which Ai

and Bi both appear, we certainly must assert that the sorts Ai and Bi are disjoint

in the tupled vocabulary. However, that isn’t enough:

Example 18. Suppose there are sorts A and B, and that A ⊥ B. Let σ ≡

∃xA∃yB(x = y) This sentence is unsatisfiable with respect to the given constraint.

The only tupled sorts to appear are A1 and B2. Since A2 does not appear, we cannot

directly assert its disjointness from A1. (Similarly, B1 does not appear.) This would

then result in a satisfiable tupled query.

Instead, we do the following, which forces a contradiction in the above example

since A1 and B2 both appear, enforcing ¬(=1,2):

Definition 28 (Tupled Disjointness Constraint). Let Σ be a sorted signature and

let X be a set of constraint formulas over Σ.

For each disjointness formula χ ∈ X asserting A ⊥ B in the original vocabulary,

its tupling, χτ , is the conjunction of the following finite sets of formulas over Στ :

{∀zZ(Ai(z) ∧Bj(z)) =⇒ ¬(=i,j) | i 6= j Ai and Bj both appear in Στ}; and the

new disjointness assertions:

{∀xAi ∀yBi (x 6= y) | 1 ≤ i ≤ k, Ai and Bi both appear in Στ}.

4.7.3.3 Subsort Exhaustiveness

Definition 29 (Tupled Subsort-Exhaustiveness Constraint). Let Σ be a sorted sig-

nature and let X be a set of constraint formulas over Σ.

For each constraint formula χ that declares a sort A to be exhausted by its im-

mediate subsorts {B1, ..., Bn}, its tupling, χτ , is defined to be the conjunction of the

following finite set of sentences over Στ :

77

{∀xAi(B1i
(x) ∨ ... ∨Bni

) | 1 ≤ i ≤ k}.

The intuition for these axioms is: All the immediate subsorts of Ai appear in Στ

by definition since A is declared abstract in X. Anything in Ai must belong to one

of those subsorts.

Lemma 14. Fix an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where

α is quantifier free). Let χ be a constraint formula.

If M |= χ, then M↑S1,...,Sk |= χτ .

Proof. We consider each type of constraint formula separately.

• χ is an at-most-one constraint. Then χτ is a conjunction of formulas ∀zZ(Ai(z)∧

Aj(z)) =⇒ =i,j. All of these must hold in M↑S1,...,Sk since there is at most one

element e in |M|A.

• χ is a subsort-exhaustiveness constraint. Then χτ is a conjunction of formulas

∀xA(B1i
(x) ∨ ... ∨ Bni

(x)). These must hold since each element e of |M|A is

constrained to belong to some |M|Bj
.

• χ is a disjointness constraint on A and B. Then clearly for each i, Ai must

be disjoint from Bi in M↑S1,...,Sk . Furthermore, each sentence ∀zZ(Ai(z) ∧

Bj(z)) =⇒ ¬(=i,j) must hold by construction of M↑S1,...,Sk .

Lemma 15. Fix an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ (where

α is quantifier free). Let χτ be the tupling of a constraint formula.

If M |= τ(σ) ∧ γ(σ) ∧ β(σ) ∧ χτ , then M↓ |= χ.

Proof. We consider each type of constraint formula separately, showing that the

failure of this lemma would lead to a contradiction.

78

• χτ is the tupling of an at-most-one constraint, a conjunction of sentences of

the form ∀zZ(Ai(z) ∧ Aj(z)) =⇒ (=i,j) for all Ai and Aj both appearing

in Στ . Now suppose there are two distinct elements [ei] and [ej] in M↓. For

all pairs of indices i and j, if both Ai and Aj appear in Στ then χτ forces

[ei] = [ej].

If it is not the case that Ai appears in Στ then our construction of M↓ only

places [ei] in |M↓|A if [ei] = [en] for some n with ∗ ∈ An. If Aj appears then

=n,j holds by χτ , and if Aj does not appear then [ej] = [em] for some m with

∗ ∈ Am, and by χτ [em] = [en].

• χτ is the tupling of a subsort-exhaustiveness constraint on some sort A. For

each Ai that appears in Στ , χτ asserts that ∀xAi(B1i
(x) ∨ ... ∨ Bni

) holds,

where B1i
, ..., Bni

are the immediate subsorts of Ai. Suppose some element

[ei] ∈ |M↓|A. If Ai appears in Στ then the assertions in χτ force [ei] to also

belong to an immediate child sort of Ai. If Ai does not appear, then there

must be some j for which ∗ ∈ Aj and ∗ ∈=i,j. But then the assertions in χτ

force [ej] to belong to an immediate child sort of Aj, and [ei] = [ej].

• χτ is the tupling of a disjointness constraint. We assume there is some [ei]

in both |M↓|A and |M↓|B, and show a contradiction. Our construction of M↓

could have done this in any of four ways:

– ∗ ∈ |M|Ai
and ∗ ∈ |M|Bi

. But this cannot happen since χτ causes Ai and

Bi to be disjoint.

– ∗ ∈ |M|Ai
, ∗ ∈ |M|Bj

and ∗ ∈=i,j. But χτ enforces ∗ 6∈=i,j and so this

cannot happen.

– By the same argument, the case where ∗ ∈ |M|Bi
, ∗ ∈ |M|Aj

and ∗ ∈=i,j

cannot occur either.

79

– ∗ ∈ |M|An , ∗ ∈ |M|Bm , ∗ ∈=i,m and ∗ ∈=i,n. But then by the equality

axioms ∗ ∈=n,m which is forbidden by χτ .

So we have a contradiction.

Now we state our final theorem:

Theorem 10. Given an order-sorted Σ and a sentence σ ≡ ∃xS1
1 ...∃x

Sk
k α over Σ

(where α is quantifier free) and a set X of constraint formulas,

{σ} ∪ X is satisfiable if and only if {τ(σ) ∧ γ(σ) ∧ β(σ)} ∪ Xτ is satisfiable at

model size 1.

Proof. For the only-if direction, Lemma 12 and Lemma 14 together suffice. For the if

direction, Lemmas 13 and 15 suffice since τ(σ) has only one existential quantifier.

4.7.4 Finishing The Example

Now we return to the example at the beginning of this section and treat its sorted na-

ture along with its vocabulary contraints. The original vocabulary has the following

sorts:

Subject Action Resource

Employee ⊆ Subject Read ⊆ Action Public ⊆ Resource

Manager ⊆ Subject Write ⊆ Action

along with one binary predicate: Personal-assistant ⊆ (Subject× Subject).

The tupled vocabulary will contain the following:

80

Subject1 and Subject4 Action2 Resource3

Employee1 ⊆ Subject1 Read2 ⊆ Action2 Public3 ⊆ Resource3

Manager1 ⊆ Subject1 Write2 ⊆ Action2

Manager4 ⊆ Subject4

along with one unary predicate: Personal-assistant4,1.

Now, suppose that our example policy’s vocabulary also has the following con-

straints:

read and write are disjoint

read contains at most one element

write contains at most one element

The two at-most-one constraints do not induce any axioms, since Read and

Write have only one index (2). The disjointness constraint forces Read2 ⊥ Write2

in the new vocabulary, but no axioms.

4.8 Summary

We have identified a decidable class of order-sorted logic, OS-EPL. If a Margrave

query coorisponds to a sentence in OS-EPL, Margrave renders sound, complete, and

exhaustive results. If a query does not fall into OS-EPL, the user must provide a

model-size bound, and Margrave’s results are only complete up to that bound. We

have given efficient algorithms for deciding membership in this class and generating

a tight – for signatures without overloading, as in Margrave – bound on sufficient

model size. These algorithms have been implemented in Margrave.

The theoretical framework of tupling has also been implemented in Margrave,

and has proven beneficial for queries with large existential prefixes. We see this

theory as a way to import certain insights from predicate logic (namely parts of Her-

81

brand’s Theorem; Section 4.4.4) to model-finding tools like Kodkod which propo-

sitionalize first-order formulas without taking their structure into account. This

insight is due to the fact that the tupling process implicitly uses the fact that given

the sentence ∃x∃y A(x) ∧ B(y), which Skolemizes to A(cx) ∧ B(cy), we need not

consider whether A(cy) or B(cx) hold in a model.

82

Chapter 5

Evaluation

We evaluate Margrave in three different real-world scenarios:

1. an existing xacml policy for continue, a publically available conference

manager;

2. an isolated firewall policy for a real-world enterprise network; and

3. a request for help configuring a Cisco router found on a large networking

forum.

An aside on performance benchmarks Margrave’s core is written in Java,

which means that performance depends on the behavior of the underlying virtual

machine: its class loader, garbage collector, JIT compiler, etc. Because of this

behavior, we have attempted to measure Margrave’s steady state performance on

all benchmarks in this thesis. We do not report the time that the virtual machine

spends “warming up” code.

Moreover, we report averages taken from a pool of trials; the sample size taken

varies by test. While this is important in any benchmarking adventure, it is doubly

so in a language like Java, where elements of the VM (e.g. the garbage collector)

83

could intervene at any moment. When measuring the time needed to load a policy

from disk, we load different copies of that policy so that the disk cache does not

bias the numbers. We also cleared our canonical formula map between attempts.

All performance tests ran on an Intel Core Duo E7200 at 2.53 Ghz with 2 GB

of RAM, running Windows XP Home.

5.1 CONTINUE (XACML 1.1)

We first evaluate Margrave on the same xacml policies found in the original change-

impact analysis paper by Fisler, et al. [FKMT05]. Most notable is the sizable policy

set (25 sub-policies, 86 base rules) for continue, a publically available conference

management system.

Loading the continue policy and running change-impact queries consumed 7

MB of heap space in the Java VM. On average the policy took 106ms to load.1

Simple verification queries executed in roughly 108ms. With tupling enabled, the

same queries executed in around 30ms, half of which was spent tupling the query

prior to solving it. These results are comparable to those in the 2005 tool, though

the prior work retains a small advantage. Change-impact queries involving the

continue policy and a mutant policy took 275ms on average without tupling, and

79ms with tupling, which is significantly slower than in the 2005 work.

We believe that this difference is due to choice of data structure. The BDDs

used in the original 2005 tool will simplify themselves even as they are being built,

yet the Kodkod abstract syntax objects used in this thesis do not self-simplify. The

change-impact queries that we tested above produced formula trees of just over

10000 nodes (yet only 450 actual formula objects). It is likely that a better data

1Each benchmark in this section was the average of 50 samples.

84

structure or more advanced approach to simplification could substantially reduce

this difference.

5.2 A Large Firewall Policy

We have obtained a large Cisco IOS configuration file, containing ACLs for 6 inter-

faces totalling 1108 rules, which runs on a Cisco router in an enterprise network.

This policy is our primary performance benchmark.

Loading the policy took an average of 14 seconds, and consumed roughly 100

MB of memory. Of that, 60 MB was JVM heap and 19 MB was non-heap.

To demonstrate the usefulness of our REPL interface, we wrote a script that

detects and explains impotent rules (rules that can never take effect) and overshad-

owed rules (impotent rules that are “shadowed” by a higher-priority rule with the

opposite decision).

The script first executes one query for each rule, asking if it will ever fire. We

found that this takes 4.7 minutes on average (for 1108 sub-queries), and the results

were surprising: 900 of the 1108 rules in this policy never take effect.

The second portion of our script discovers, for each impotent rule R, which

higher-priority rules cover it. It also highlights which of these have a different

decision from R. This is useful information since an impotent rule is only inefficient,

not erroneous, otherwise. This script segment executed in 114 minutes (comprising

several thousand subqueries), and discovered that 274 of the impotent rules were at

least partially overshadowed. Memory consumption remained roughly constant at

100 MB throughout the script’s execution.

This script demonstrates Margrave’s extreme flexibility: users can write such a

script to answer any such question that they might have about a policy’s behavior,

85

though the performance of such scripts could be improved: a great deal of setup

computation is repeated when executing large numbers of queries.

We also tested the performance of change-impact analysis queries for this firewall

policy. To do this, we created a mutant version of the original policy and instructed

Margrave to characterize the changes. With tupling, Margrave started to return

differences within 1328ms, including query creation, of which 281ms was spent on

tupling.

5.3 Help! My Router Isn’t working! (IOS, Rout-

ing)

We have also sought out real-world examples on Internet help forums: Ars Tech-

nica2, Experts Exchange3, and Networking-forum.com4. This section presents one

of those examples which has been treated by our collaborator Christopher Barratt.

This example illustrates Margrave’s flexibility: we asked queries that involve

multiple ACLs, NAT and routing policies and their interaction. With tupling, all of

these queries ran in under 100ms, and the memory footprint to (including loading

all component policies) was 40 MB (9.5MB JVM heap, 17.2MB JVM non-heap).

5.3.1 The Cry For Help

In this example5, an administrator is trying to create two logical networks: one

“primary” (consisting of 10.232.0.0/22 and 10.232.100.0/22) and one “secondary”

(consisting of 10.232.4.0/22 and 10.232.104.0/22). Neither network should have

2http://episteme.arstechnica.com/eve/forums
3http://www.experts-exchange.com/
4http://www.networking-forum.com
5The original help request can be found at: http://www.experts-exchange.com/Hardware/

Networking_Hardware/Q_24113014.html.

86

http://episteme.arstechnica.com/eve/forums
http://www.experts-exchange.com/
http://www.networking-forum.com
http://www.experts-exchange.com/Hardware/Networking_Hardware/Q_24113014.html
http://www.experts-exchange.com/Hardware/Networking_Hardware/Q_24113014.html

access to the other, but both networks should have access to the Internet—the

primary via 10.232.0.15, the secondary via 10.232.4.10:

interface GigabitEthernet0/0

description $ETH-LAN$$ETH-SW-LAUNCH$$INTF-INFO-GE 0/0$

ip address 10.232.4.1 255.255.252.0 secondary

ip address 10.232.0.1 255.255.252.0

ip access-group 101 in

ip policy route-map internet

duplex auto

speed auto

!

interface GigabitEthernet0/1

ip address 10.232.8.1 255.255.252.0

duplex auto

speed auto

!

interface Serial0/3/0:0

ip address 10.254.1.129 255.255.255.252

ip access-group 102 out

encapsulation ppp

!

ip route 10.232.100.0 255.255.252.0 10.254.1.130

ip route 10.232.104.0 255.255.252.0 10.254.1.130

!

access-list 102 deny ip 10.232.0.0 0.0.3.255 10.232.104.0 0.0.3.255

access-list 102 deny ip 10.232.4.0 0.0.3.255 10.232.100.0 0.0.3.255

access-list 102 permit ip any any

access-list 101 deny ip 10.232.0.0 0.0.3.255 10.232.4.0 0.0.3.255

access-list 101 deny ip 10.232.4.0 0.0.3.255 10.232.0.0 0.0.3.255

access-list 101 permit ip any any

!

access-list 10 permit 10.232.0.0 0.0.3.255

access-list 10 permit 10.232.100.0 0.0.3.255

access-list 20 permit 10.232.4.0 0.0.3.255

access-list 20 permit 10.232.104.0 0.0.3.255

!

route-map internet permit 10

match ip address 10

set ip next-hop 10.232.0.15

!

route-map internet permit 20

87

match ip address 20

set ip next-hop 10.232.4.10

!

end

A diagram of the network topology can be found in Figure 5.1 6.

The configuration here is given for the TAS router.

5.3.2 Finding a Solution

Margrave confirms that network 10.232.0.0/22 cannot reach 10.232.100.0/22 via the

serial link:

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-0-0/ip-255-255-252-0 src-addr-in)

(ip-10-232-100-0/ip-255-255-252-0 dest-addr-in)

(Serial0/3/0:0 exit-interface)

#;> (is-query-satisfiable? routed-packets)

#f

Margrave also confirms that network 10.232.4.0/22 cannot reach its Internet

gateway 10.232.4.10 via the appropriate Ethernet link:

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-4-0/ip-255-255-252-0 src-addr-in)

(ip-0-0-0-0/ip-0-0-0-0-other dest-addr-in)

(ip-10-232-4-10 next-hop)

(GigabitEthernet0/1 exit-interface))

#;> (is-query-satisfiable? routed-packets)

#f

Relaxation of the first query demonstrates the problem:

6This diagram was included as part of the forum help post, and was presumably created by the
post’s author.

88

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-0-0/ip-255-255-252-0 src-addr-in)

(ip-10-232-100-0/ip-255-255-252-0 dest-addr-in)

>#;> (pretty-print-results? routed-packets)

--

*** SOLUTION: Size = 7.

$protocol: prot-tcp

$src-addr-in=$src-addr_=$src-addr-out=$next-hop: ip-10-232-0-15

$message: icmp-n/a

$length: len-other

$entry-interface=$exit-interface: gigabitethernet0/0

$src-port-in=$src-port_=$src-port-out=$dest-port-in=$dest-port_=$dest-port-out:

port-n/a

$dest-addr-in=$dest-addr_=$dest-addr-out: ip-10-232-100-0/ip-255-255-252-0

All packets from 10.232.0.0/22 are being directed to the Internet gateway for the

primary network, rather than only those not intended for 10.232.100.0/22. A simple

change in the routing policy fixes this issue–the insertion of the keyword default:

.

.

.

route-map internet permit 10

match ip address 10

set ip default next-hop 10.232.0.15

!

route-map internet permit 20

match ip address 20

set ip default next-hop 10.232.4.10

!

.

.

.

This change ensures that packets are routed to the Internet only as a last resort

(i.e., when static destination-based routing fails). Margrave confirms the change

with the new policy:

89

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-0-0/ip-255-255-252-0 src-addr-in)

(ip-10-232-100-0/ip-255-255-252-0 dest-addr-in)

(Serial0/3/0:0 exit-interface)

#;> (is-query-satisfiable? routed-packets)

#t

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-0-0/ip-255-255-252-0 src-addr-in)

(ip-0-0-0-0/ip-0-0-0-0-other dest-addr-in)

(ip-10-232-0-15 next-hop)

(GigabitEthernet0/0 exit-interface)

#;> (is-query-satisfiable? routed-packets)

#t

We also confirm that this change does not suddenly enable the primary sub-

network 10.232.0.0/22 to reach the secondary sub-network 10.232.4.0/22:

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-0-0/ip-255-255-252-0 src-addr-in)

(ip-10-232-4-0/ip-255-255-252-0 dest-addr-in)

#;> (is-query-satisfiable? routed-packets)

#f

Examination of whether the secondary network 10.232.4.0/22 can now reach its

Internet gateway 10.232.4.10 tells us that we still have more work to do:

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-4-0/ip-255-255-252-0 src-addr-in)

(ip-0-0-0-0/ip-0-0-0-0-other dest-addr-in)

(ip-10-232-4-10 next-hop)

#;> (pretty-print-results? routed-packets)

#f

90

A close examination of the network diagram reveals a fundamental problem: The

gateway 10.232.4.10 should be ”on” the same network as the GigabitEthernet0/1

interface, which has an address of 10.232.8.1/22. Relaxation of the above query

shows the correct selection of the next-hop gateway, but that the network topology

will need to be fixed before the router can successfully forward packets:

(and

(GigabitEthernet0/0 entry-interface)

(ip-10-232-4-0/ip-255-255-252-0-other src-addr-in)

(ip-0-0-0-0/ip-0-0-0-0-other dest-addr-in)

(ip-10-232-4-10 next-hop)

#;> (pretty-print-results routed-packets)

*** SOLUTION: Size = 8.

$src-addr-in=$src-addr_=$src-addr-out: ip-10-232-4-0/ip-255-255-252-0-other

$protocol: prot-tcp

$next-hop: ip-10-232-4-10

$message: icmp-echo-reply

$length: len-other

$entry-interface=$exit-interface: gigabitethernet0/0

$src-port-in=$src-port_=$src-port-out=$dest-port-in=$dest-port_=$dest-port-out:

port-n/a

$dest-addr-in=$dest-addr_=$dest-addr-out: ip-0-0-0-0/ip-0-0-0-0-other

Changing the address of either the GigabitEthernet0/1 interface or of the next-

hop router (10.232.4.10) so that the two share a common network address can rem-

edy this problem.

5.4 Summary

We have shown that Margrave can be applied to a wide range of existing policy

languages, and can provide useful feedback to policy authors even in situations

where multiple policy types interact. Additionally, Margrave scales to single large-

91

sized policies, although we expect that exhancements will be needed model entire

enterprise networks.

92

Figure 5.1: The cry for help: network topology

93

Chapter 6

Related Work

6.1 Policy Analysis

Oppenheimer, et al. [OGP03] examine three different internet systems and survey

these services’ failures over a period of several months. They find that operator

error is the leading cause of failure for 2 of the 3 services, and that these errors

are predominately configuration problems arising when changes were made to the

configuration. The work also discusses ways of avoiding and mitigating these failures.

Interestingly, it notes that many configuration problems are likely to avoid detection

by conventional testing.

Wool [Woo04] studies the prevalence of 12 common configuration errors in fire-

walls. He shows that larger firewall rule-sets are plagued by a much higher ratio of

errors-to-rules than smaller ones, concluding that complex rule sets are simply too

difficult for a human administrator to manage unaided.

Eronen and Zitting [EZ01] perform policy analysis on Cisco router ACLs using

an existing Constraint Logic Programming framework, which is based on Prolog.

Using CLP allows for easy integration of expert knowledge. Users are allowed to

94

define their own custom IDB predicates as they could in Prolog, which results in

a great deal of flexibility. This work is similar to ours in spirit, but is limited to

firewall ACLs and does not support NAT or routing information.

Mayer, Wool and Ziskind [MWZ00, MWZ05] and Wool [Woo01] present a tool for

discovering what sorts of packets are allowed through a network – possibly containing

many routers. Given a query of the form (Source,Destination, Service) and an

optional true source (to detect spoofing vulnerability) the tool produces a set of

sub-queries describing the packets that are allowed to reach their destination. NAT

rules are taken into account. This tool covers only a small subset of what Margrave

is capable of, but when the tools overlap, it is much more efficient than Margrave.

It is being marketed as a commercial firewall analysis tool.1

Liu [Liu07] gives algorithms for performing change-impact analysis on firewall

policies. These algorithms are efficient yet only work for atomic changes to a single

rule base (adding or deleting a single rule, swapping a pair of rules, or editing a

single rule) and do not consider NAT.

Liu and Gouda [LG04] and Gouda and Liu [GL07] introduce a data structure

called Firewall Decision Diagrams (FDDs) and use them to assist in the design

process for firewall rule sets. Liu and Gouda [LGar] then use FDDs to answer SQL-

like queries about a firewall policy. FDDs are an efficient variant of BDDs, and

apply only to the firewall packet filtering domain. The authors give algorithms for

taking the conjunction, disjunction, and difference of FDDs, but the work does not

consider NAT or routing information. This approach accomplishes only some of

what Margrave does, but vastly outperforms our tool in those cases.

Marmorstein and Kearns [MK05b, MK05a] introduce a tool, ITVal, that uses

Multi-way Decision Diagrams (MDDs) to execute SQL-like queries on firewall poli-

1http://www.algosec.com/en/index.php

95

http://www.algosec.com/en/index.php

cies. They then expand ITVal to support NAT along with reasoning about hierar-

chical (serially composed) firewall policies. Their work is also less general than our

approach, but more efficient.

Marmorstein and Kearns [MK06] also give a method for generating an equiva-

lence relation on hosts with respect to a policy: two hosts are related if identical

(modulo source address) packets from both are treated identically by the firewall.

This equivalence class structure can then be used to detect policy anomalies and

help administrators understand the policies they write. Since no query is required

to generate a set of host classes, this work bears some resemblance to change-impact

analysis.

Yuan, et al. [YMS+06] use Binary Decision Diagrams (BDDs) to model and

analyze large networks of firewall ACLs. The tool (“Fireman”) is capable of quickly

detecting whitelist and blacklist violations as well as conflicting, redundant, and

correlated rules — even between different ACLs. Fireman examines all possible

routes through a network at once, but does not consider NAT. Margrave is capable

of performing similar checks, although Fireman is 2 to 3 orders of magnitude faster

at present. However, Margrave is far more general than Fireman.

Oliveira, et al. [OLK09] extend the Fireman [YMS+06] tool to include NAT

and take advantage of routing table information. This tool (“Prometheus”) can

also provide information on which ACL rules are responsible for a misconfiguration.

Prometheus has been tested on and is currently undergoing further development by

a major European internet service provider.

Verma and Prakash [VP05] implemented FACE, a tool with a dual purpose:

automatic configuration of distributed firewalls and analysis of existing distributed

firewalls. Our work does not consider generation of configuration files. The queries

that FACE makes available are similar to Margrave’s in the firewall setting, and

96

it would be possible to run some change-impact queries in FACE. FACE uses a

depth-first search approach to propagate queries through a network; in this way it

is similar to the approach of Mayer, Ziskind, and Wool [MWZ05]. FACE is limited

to iptables firewalls, although it could be extended. It reasons about large network

topologies in a more efficient way than we do. Margrave’s API is more general and

supports richer policies.

Hughes and Bultan [HB08] use SAT solving to verify properties of XACML poli-

cies. Their handling of XACML is more sophisticated than ours; for instance, they

allow request contexts to contain set variables. We have opted to be more general

and provide an API that can support numerous languages. In order to support poli-

cies that involve variable domains of unbounded size, their tool requires a bound on

all domain sizes, up to which it performs verification. In this sense our works are

similar: both require bounds on model sizes and both use SAT solving, although

our use of SAT is mediated by the Kodkod model finder. Margrave possesses the

ability to automatically detect many situations where it is possible to bound model

sizes, whereas their tool must presumably rely on domain-specific knowledge.

6.2 Order-Sorted Logic

The decidability of the satisfiability problem for the ∃∀ class in pure logic is a

classical result of Schönfinkel and Bernays [BS28] in the absence of equality, extended

by Ramsey [Ram30] to allow equality. The problem is known to be EXPTIME-

complete [Lew80].

The monograph by Börger, Grädel, and Gurevich [BGG97] is an comprehensive

treatment of decidability for classical unsorted logic. Herbrand’s Theorem [Her30]

is the basis for automated deduction and propositional methods.

97

Enderton [End72] is a textbook treatment of many-sorted logic classically con-

sidered. In this setting sorts are assumed non-empty and pairwise disjoint. Strictly

speaking, what is assumed is that there is no cross-sort equality; this implies that

any model is elementarily equivalent to one with disjoint sorts. An example of the

usefulness of multiple sorts in pure logic is Feferman’s work [Fef74] on interpolation

theorems.

Goguen and Meseguer did seminal work [GM92] on order-sorted algebra; Goguen

and Diaconescu [GD94] present a good survey of the field through 1994. Order sorted

predicate logic was first considered by Arnold Oberschelp [Obe89]; Walther [Wal88]

explores many-sorted unification in the context of orderings on sorts, Weibel [Wei97]

extends this work to the order-sorted case.

Harrison was one of the first to observe that many-sortedness can not only yield

efficiencies in deduction but can also support new decidability results. In unpub-

lished notes [Harpt] he presents some examples of this phenomenon, and suggests

searching for typed analogs of classical decidability classes, as we have done here.

Fontaine and Gribomont [FG03], working in “flat” many-sorted logic (i.e., with-

out subsorting) prove that if there are no functions having result sort A and σ is

a universal sentence then σ has a model if and only if it has a model in which the

size of A is bounded by the number of constants of sort A. This result is used to

eliminate quantifiers in certain verification conditions. This theorem has application

even when not all sorts are finite and can be used in a setting where some functions

and predicates are interpreted. As observed in Remark 2, the algorithm in Theo-

rem 7 can be used to apply their techniques to a wider class of formulas than they

address.

Claessen and Sorensson [CS03b] have integrated a sort inference algorithm into

the Paradox model-finder that deduces sort information for unsorted problems and,

98

under certain conditions, can bound the size of domains for certain sorts and improve

the performance of the instantiation procedure. Order-sorting is not used, and there

are restrictions on the use of equality.

Momtahan [Mom05] defines a fragment of the Alloy kernel language and proves

a result computing a refutationally-complete upper bound on the size of a single

sort (as a function of the user-provided bounds on the other sorts). The conditions

defining this fragment are not directly comparable to ours, but in some respects

constrain the sentences rather severely. For example existential quantification in

the scope of more than one universal quantifier are usually not allowed.

Abadi et al. [ARS10] identify, as we do, a decidable fragment of sorted logic that

is decidable by virtue of having a finite Herbrand universe. Although they target

Alloy in their examples they work in a many-sorted logic without subsorts or empty

sorts; their condition for decidability is the existence of a “stratification” of the

function vocabulary; they do not provide algorithms for checking the stratification

condition or computing size bounds on the models.

Ge and de Moura [GM09] present a powerful method for deciding satisfiabil-

ity modulo theories with an instantiation-based theorem prover. Given a universal

(Skolemized) sentence σ they construct a system of set constraints whose least so-

lution constitutes a set of ground terms sufficient for instantiation; satisfiability is

thus decidable for the set of sentences for which this solution-set is finite (in the

many-sorted setting this subsumes the Abadi et al. class). They do not treat empty

sorts nor subsorting. They can treat certain sentences that fall outside our OS-EPL

class; detection of whether a given sentence falls into their decidable class seems

to require solving the associated set-constraints, as compared to our linear-time

algorithm. Generally speaking they do detailed fine-grained analysis of individual

sentences; we have focused on an easily recognized class of sentences.

99

The problem of efficiently deciding satisfiability in the EPL class is an active

area of research. Jereslow [Jer88] described a “partial instantiation” approach to

first-order theorem proving in the EPL fragment, constructing a sequence of propo-

sitional instantiations instead of working with the full set of possibilities from the

outset. Work by Hooker et al. [HRCS02] builds directly on Jereslow’s approach

(see also many references there). Recent alternatives approaches include [dMB08b]

and [LS04]. De Moura and Bjørner [DMB08a] have developed the SMT constraint

solver Z3. SMT enriches propositional satisfiability by adding equality reasoning,

arithmetic, bit-vectors, arrays, and some quantification. Z3 is used in software ver-

ification and analysis applications. De Moura and Bjørner [dMB08b]; and Piskac

and de Moura and Bjørner [PdMB08], introduce a DPLL-based decision procedure

for the EPL class; this has been implemented as part of Z3.

Our work is complementary to these efforts in that it identifies an extended class

of sentences to which contemporary techniques can hopefully be applied.

100

Chapter 7

Conclusion

7.1 Conclusion

This thesis presents Margrave, a tool for analyzing policies that have a notion of

predicates and quantification in their rules. We have gone beyond simple access-

control, showing Margrave’s applicability to enterprise firewall policies and networks,

and detailed the logical methods that we use to achieve this.

Perspective A major long-term goal for this project is to provide a core engine

that can be used to analyze policies across multiple problem domains. Policies in

different domains may look different; we provide an environment where users can

reason about interactions between multiple policy domains. Although we have made

progress in this thesis, some issues remain for future work.

Once a sufficient number of the remaining issues have been addressed, we will

make the tool publically available at www.margrave-tool.org. Even now, a pre-

release version of the tool is available via the contact information given on the

Margrave website.

101

www.margrave-tool.org

7.2 Future Work

Interface We acknowledge that the policy (.p), vocabulary (.v), and query lan-

guages are not ideal; users (the author included) have found them frustrating. They

were created to give us a platform on which to test our core engine. Now that the

tool’s applicability has been tested, we are addressing these user interface issues.

While Margrave supports reasoning about requests that are modified during

evaluation (such as in our Section 2.1 example) it still remains for the user to

write queries in a way that accounts for the modification. This is a major usability

problem. If the process of writing a query is so technical that it nearly reveals the

solution without invoking the tool, then the tool is not useful. The same problem

applies to IDB output: users must specify which IDBs they are concerned with.

Tupling with IDB output introduces even more complexity for the user, since he or

she must say which tuple of variables they care about.

Presenting Solutions As mentioned in Section 3.1, when asked to give all solu-

tions Margrave lists all first-order models of the user’s query up to a fixed size. Our

model-finder, Kodkod, has implemented techniques to remove isomorphic models

but we are still often left with exponentially more models than we actually need.

While tupling can mitigate the problem the basic issue remains. We are currently in-

vestigating techniques that may allow us to show only models that are representative

for the query, which would prevent the exponential blowup in models shown.

Another concern, twin to the blowup in output length, is the question of how

best to present the output to the user. A list of first-order models is fine as a proof-

of-concept, but it is difficult for most users to understand. New ways of letting users

explore the space of their solutions is an exciting direction for future work.

102

Performance There is room for improving the performance of Margrave, whether

through further optimizations of our current method or adoption of new techniques.

As we saw in Section 5.2, executing scripts that are comprised of many queries may

take more time than most users would be willing to wait.

Policy features The current Margrave tool does not support reasoning about

arbitrary-length state changes. This is in part a limitation of first-order logic, which

is also known to be unable to express reachability. We can reason about how a

packet changes as it passes through a fixed-size network, and we can represent the

state table of a firewall, but we do not currently address truly temporal policies and

queries. This is an interesting avenue of future work, but it involves carefully spying

out the land before commiting our forces.

For many of the same reasons, Margrave has no true support for delegation of

unbounded length. While Kodkod provides a transitive closure operator, we cannot

provide any bounds on sufficient model size when it is used.

Theory Our work in order-sorted logic leaves the problem of sorts-as-predicates

only partially solved. While our implementation addresses the problem as much as

we needed to for this work (Section 4.6), much is left undone.

103

Bibliography

[ARS10] Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv. Decidable frag-
ments of many-sorted logic. Journal of Symbolic Computation, 45(2):153
– 172, 2010. Automated Deduction: Decidability, Complexity, Tractabil-
ity.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision
Problem. Perspectives in Mathematical Logic. Springer, 1997.

[BS28] Paul Bernays and Moses Schönfinkel. Zum entscheidungsproblem der
mathematischen Logik. Mathematische Annalen, 99:342–372, 1928.

[CK73] Chen Chung Chang and Jerome Keisler. Model Theory. Number 73 in
Studies in Logic and the Foundations of Mathematics. North-Holland,
1973. Third edition, 1990.

[CS03a] K. Claessen and N. Sorensson. New techniques that improve MACE-
style finite model finding. In Proceedings of the CADE-19 Work-
shop: Model Computation-Principles, Algorithms, Applications. Cite-
seer, 2003.

[CS03b] K. Claessen and N. Sorensson. New techniques that improve MACE-
style finite model finding. In Proceedings of the CADE-19 Workshop on
Model Computation, 2003.

[DMB08a] L. De Moura and N. Bjorner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4963
of Lecture Notes in Computer Science, page 337. Springer, 2008.

[dMB08b] Leonardo Mendonça de Moura and Nikolaj Bjørner. Deciding Effectively
Propositional Logic Using DPLL and Substitution Sets. In Alessan-
dro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR,
volume 5195 of Lecture Notes in Computer Science, pages 410–425.
Springer, 2008.

[Dum] DumbLittleMan. Death by Google Calendar: How I Iden-
tified you to rob you (Access Date: November 24, 2008).

104

http://www.dumblittleman.com/2006/09/how-to-get-robbed-killed-
or-stalked-by.html.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press,
1972.

[EZ01] Pasi Eronen and Jukka Zitting. An expert system for analyzing firewall
rules. In Proceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec 2001), pages 100–107, 2001.

[Fef74] S. Feferman. Many-Sorted Interpolation Theorems and Applications. In
Proceedings of the Tarski Symposium, AMS Proc. Symp. in Pure Math,
volume 25, pages 205–223, 1974.

[FG03] Pascal Fontaine and E. Pascal Gribomont. Decidability of invariant val-
idation for parameterized systems. In Hubert Garavel and John Hatcliff,
editors, Tools and Algorithms for Construction and Analysis of Systems
(TACAS), volume 2619 of Lecture Notes in Computer Science, pages
97–112. Springer-Verlag, 2003.

[FKMT05] Kathi Fisler, Shriram Krishnamurthi, Leo Meyerovich, and Michael
Tschantz. Verification and change impact analysis of access-control poli-
cies. In International Conference on Software Engineering (ICSE), 2005.

[GD94] Joseph A. Goguen and Razvan Diaconescu. An oxford survey of order
sorted algebra. Mathematical Structures in Computer Science, 4(3):363–
392, 1994.

[GL07] Mohamed G. Gouda and Alex X. Liu. Structured firewall design. Journal
of Computer Networks (Elsevier), 51, no. 4:1106–1120, 2007.

[GM92] Joseph A. Goguen and José Meseguer. Order-Sorted Algebra I: Equa-
tional Deduction for Multiple Inheritance, Overloading, Exceptions and
Partial Operations. Theor. Comput. Sci., 105(2):217–273, 1992.

[GM09] Yeting Ge and Leonardo Moura. Complete instantiation for quantified
formulas in satisfiabiliby modulo theories. In CAV ’09: Proceedings
of the 21st International Conference on Computer Aided Verification,
pages 306–320, Berlin, Heidelberg, 2009. Springer-Verlag.

[Harpt] John Harrison. Exploiting sorts in expansion-based proof procedures,
Unpublished manuscript. http://www.cl.cam.ac.uk/~jrh13/papers/
manysorted.pdf.

[HB08] Graham Hughes and Tevfik Bultan. Automated verification of access
control policies using a SAT solver. STTT, 10(6):503–520, 2008.

105

http://www.cl.cam.ac.uk/~jrh13/papers/manysorted.pdf
http://www.cl.cam.ac.uk/~jrh13/papers/manysorted.pdf

[Her30] J. Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,
Université de Paris, Paris, France, 1930.

[HMU06] John E. Hopcroft, R. Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley,
Reading, Massachusetts, third edition, 2006.

[HRCS02] JN Hooker, G. Rago, V. Chandru, and A. Shrivastava. Partial instan-
tiation methods for inference in first-order logic. Journal of Automated
Reasoning, 28(4):371–396, 2002.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, April 2006.

[Jer88] R. G. Jereslow. Computation-oriented reductions of predicate to propo-
sitional logic. Decision Support Systems, 4:183–197, 1988.

[Lew80] HR Lewis. Complexity results for classes of quantificational formulas.
J. COMP. AND SYS. SCI., 21(3):317–353, 1980.

[LG04] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. In Pro-
ceedings of the IEEE International Conference on Dependable Systems
and Networks (DSN), pages 595–604, 2004.

[LGar] Alex X. Liu and Mohamed G. Gouda. Firewall policy queries. IEEE
Transactions on Parallel and Distributed Systems (TPDS), to appear.

[Liu07] Alex X. Liu. Change-impact analysis of firewall policies. In Proceed-
ings of the 12th European Symposium Research Computer Security (ES-
ORICS), pages 155–170, 2007.

[LS04] S.K. Lahiri and S.A. Seshia. The UCLID decision procedure. In 16th
International Conference, Computer-Aided Verification, pages 475–478.
Springer, 2004.

[Mil02] Scott G. Miller. SISC: A complete scheme interpreter in java. Technical
report, 2002.

[MK05a] Robert Marmorstein and Phil Kearns. An open source solution for test-
ing nat’d and nested iptables firewalls. In LISA ’05: Proceedings of
the 19th conference on Large Installation System Administration Con-
ference, pages 11–11, Berkeley, CA, USA, 2005. USENIX Association.

[MK05b] Robert Marmorstein and Phil Kearns. A tool for automated iptables
firewall analysis. In ATEC ’05: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages 44–44, Berkeley, CA,
USA, 2005. USENIX Association.

106

[MK06] Robert Marmorstein and Phil Kearns. Firewall analysis with policy-
based host classification. In LISA ’06: Proceedings of the 20th conference
on Large Installation System Administration, Berkeley, CA, USA, 2006.
USENIX Association.

[Mom05] Lee Momtahan. Towards a small model theorem for data independent
systems in Alloy. Electronic Notes in Theoretical Computer Science,
128(6):37 – 52, 2005. Proceedings of the Fouth International Workshop
on Automated Verification of Critical Systems (AVoCS 2004).

[MWZ00] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis
engine. In Proc. 2000 IEEE Symposium on Security and Privacy, pages
177–187, 2000.

[MWZ05] Alain Mayer, Avishai Wool, and Elisha Ziskind. Offline firewall analysis.
Int. J. Inf. Secur., 2005.

[OAS05] OASIS. Oasis extensible access control markup language, 2005.
http://www.oasis-open.org/committees/xacml.

[Obe89] A. Oberschelp. Order sorted predicate logic. In Workshop on Sorts and
Types in Artificial Intelligence, pages 1–17. Springer, 1989.

[OGP03] David Oppenheimer, Archana Ganapathi, and David A. Patterson. Why
do internet services fail, and what can be done about it? In 4th Usenix
Symposium on Internet Technologies and Systems, 2003.

[OLK09] Ricardo M. Oliveira, Sihyung Lee, and Hyong S. Kim. Automatic de-
tection of firewall misconfigurations using firewall and network routing
policies. In DSN 2009 Workshop on Proactive Failure Avoidance, Re-
covery and Maintenance, 2009.

[PdMB08] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. Deciding Ef-
fectively Propositional Logic with Equality. Technical Report MSR-TR-
2008-181, Microsoft Research, December 2008.

[Ram30] Frank P. Ramsey. On a problem in formal logic. Proceedings of the
London Mathematical Society, 30:264–286, 1930.

[SNGM89] Gert Smolka, Werner Nutt, Joseph A. Goguen, and José Meseguer.
Order-sorted equational computation. In H. Aı̈t-Kaci and M. Nivat, edi-
tors, Resolution of Equations in Algebraic Structures, volume 2: Rewrit-
ing Techniques, pages 299–369. Academic Press, New York, 1989.

[TJ07] E. Torlak and D. Jackson. Kodkod: A relational model finder. 2007.

107

[VP05] Pavan Verma and Atul Prakash. FACE: A Firewall Analysis and Config-
uration Engine. In Proceedings of the 2005 Symposium on Applications
and the Internet (SAINT ’05), 2005.

[Wal88] C. Walther. Many-sorted unification. Journal of the ACM (JACM),
35(1):1–17, 1988.

[Wei97] T. Weibel. An order-sorted resolution in theory and practice. Theoretical
computer science, 185(2):393–410, 1997.

[Woo01] Avishai Wool. Architecting the lumeta firewall analyzer. In Proceedings
of the 10th USENIX Security Symposium, 2001.

[Woo04] Avishai Wool. A quantitative study of firewall configuration errors.
Computer, 37, no. 6:62–67, 2004.

[YMS+06] L. Yuan, J. Mai, Z. Su, H. Chen, C-N. Chuah, and P. Mohapatra. Fire-
man: A toolkit for firewall modeling and analysis. In IEEE Symposium
on Security and Privacy, 2006.

108

	Worcester Polytechnic Institute
	Digital WPI
	2010-04-13

	Margrave: An Improved Analyzer for Access-Control and Configuration Policies
	Timothy Nelson
	Repository Citation

	Introduction
	Summary of contributions
	Thesis Roadmap

	A Motivating Example
	Firewalls with NAT
	Summary

	Margrave Internals
	Architecture
	Margrave Policy Language
	Vocabulary
	Policy (Leaf and Set)
	Other Supported Languages

	Margrave queries
	Query Handling
	Vacuity

	Using Margrave to model networks
	Performance Optimizations

	Foundations: Order-Sorted Logic
	Introduction
	Preliminaries: Order-Sorted Predicate Logic
	Motivating (local) filtering
	The Term Model

	Formulas and Truth
	On reduction to unsorted logic

	Skolemization
	Negation-normal form

	A Finite Model Theorem for Order-Sorted Logic
	Homomorphisms and Submodels
	The Kernel of a Model
	The kernel and the Skolem hull

	A Finite Model Theorem
	Herbrand's Theorem

	Algorithms
	Testing OS-EPL membership
	Computing the number of terms in a sort

	About Sorts-as-Predicates
	Sorts-as-predicates in Margrave

	Tupling
	The First-Order Existential Case
	The Sorted Case
	Including Constraints
	At-most-one
	Disjointness
	Subsort Exhaustiveness

	Finishing The Example

	Summary

	Evaluation
	CONTINUE (XACML 1.1)
	A Large Firewall Policy
	Help! My Router Isn't working! (IOS, Routing)
	The Cry For Help
	Finding a Solution

	Summary

	Related Work
	Policy Analysis
	Order-Sorted Logic

	Conclusion
	Conclusion
	Future Work

