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Abstract 

Trichloroethylene (TCE) is the most commonly found groundwater pollutant. The focus 

of this research was to determine the effectiveness of chemical oxidation for in-situ 

remediation of TCE contaminated aquifers. Analytical techniques were developed to 

measure the concentration of TCE and its degradation products in soil and in solution. 

Slurry tests were conducted to emulate in situ conditions. Various media used for the 

slurry tests included sand, silica and glass beads. In-situ chemical oxidation of the TCE 

was performed using sodium persulfate (Na2S2O8), Fenton’s reagent, Ozone and sodium 

persulfate activated by iron, ozone and zero valent iron.  

 

Persulfate oxidation was shown to be effective for TCE oxidation in the presence of all 

the media tested in slurry tests for various molar ratios of oxidant and catalyst (Fe). 

Approximately 75% of TCE destruction takes place in the first 5 minutes of the slurry 

test and 90% destruction within 24 hours. Fenton’s oxidation was tried with varying 

concentration of H2O2 and slurry volume. Percent removal of TCE decreased from a 

hydrogen peroxide concentration of 3.34% to 5% (w/v). It was found that persulfate 

oxidation activated by zero valent iron removed TCE more effectively than persulfate 

oxidation activated by ferrous iron. For persulfate oxidation activated by ozone it was 

found that 95% of TCE was destroyed at persulfate/TCE molar concentration of 10/1 

with an initial rate constant of 0.2854/min. It was also found that increasing the amount 

of solids in the slurry test decreased the effectiveness of chemical oxidation. 
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CHAPTER 1 INTRODUCTION 

 TCE or Trichloroethylene is a colorless or blue organic liquid with a chloroform-like 

odor. TCE is a DNAPL (dense non aqueous phase liquid); since it’s heavier than water it 

sinks down in an aquifer. TCE is mainly used to remove grease from fabricated metal 

parts, in dry cleaning, paint removers, printing inks and adhesives.  TCE does not occur 

naturally and is only produced by two companies in the United States (“Chemical 

Profile”, 2002). The demand for TCE in industry is growing; from 2000 to 2005 demand 

grew from 187 million pounds to an estimated 267 million pounds. Use as a 

hydrofluorocarbon intermediate accounts for 67% of TCE consumption and metal 

degreasing accounts for 30%. Historically, the main use for TCE was as a metal 

degreaser, however stricter state and local regulations have caused a decline in its use 

(“Chemical Profile”, 2002). The United States Environmental Protection Agency (EPA) 

set a maximum contaminant level at 5 µg/L of trichloroethylene (TCE) for drinking 

water.  

 

Production of TCE has increased from just over 260,000 lbs. in 1981 to 320 million lbs. 

in 1991. Major environmental releases of trichloroethylene are due to air emissions from 

metal degreasing plants. Wastewater from metal finishing, paint and ink formulation, 

electrical/electronic components, and rubber processing industries also may contain 

trichloroethylene. From 1987 to 1993, according to the Toxics Release Inventory, 

trichloroethylene releases to water and land totaled over 291,000 lbs. These releases were 

primarily from steel pipe and tube manufacturing industries. While it has been estimated 

that 60% of total TCE produced in the United States is lost to the atmosphere, with 
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negligible discharge into water bodies (Cohen and Ryan, 1985).The largest releases 

occurred in Pennsylvania and Illinois. The largest direct releases to water occurred in 

West Virginia (EPA, 2005). 

 

The regulation for trichloroethylene became effective in 1989. Between 1993 and 1995, 

EPA required water suppliers to collect water samples every 3 months for one year and 

analyze them to find out if TCE was present above 0.5 ppb. If it was present above this 

level, the system was required to monitor this contaminant until the system took 

immediate steps to remediate the problem or the State has determined that the 

contaminant would remain reliably and consistently below the MCL. 

 

TCE contaminated soil can be difficult to treat since the TCE is a DNAPL. Most of the 

remedial methods for groundwater remediation at contaminated sites involve some type 

of pump and treat system. Typically the groundwater is extracted by wells, followed by 

surface treatment of the water by sorption and aqueous chemical oxidation before 

disposal. Although this type of treatment method is accepted by government 

environmental agencies, however it was not very successful (Mackay and Cherry, 1989; 

Travis and Doty, 1990; Bartow and Davenport, 1995).Practical problems such as the 

presence of chlorinated solvent pools in the saturated zone and complexities relating to  

surface gradient , varying longitudinal and vertical subsurface profile, migration of 

contaminants to inaccessible low permeability regions, creation of vadose zone and 

processes such as retardation of the pollutants by sorption of contaminants onto solids 
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greatly extend the time required to  effectively remove the refractory contaminants. These 

problems are major obstacles to conventional pump and treat remedial techniques 

(Mackay and Cherry, 1989; NRC, 1994). Even if TCE can be treated by pump and treat 

system, which can take long times and still has the potential risk to exposing to public as 

it quite volatile.  The unsatisfactory results from conventional pump and treat processes 

have indicate the need for innovative alternatives to conventional pump and treat 

remedial techniques. Among such alternatives are the various in situ techniques where 

removal of the contaminant from the saturated zone is not required, but instead the 

contaminants are destroyed in place. Other mean of treating the contaminated soil it to 

dig it and treat offsite, which can be costly and has the potential danger of volatilizing the 

TCE into air. In situ oxidation of a aquifer involve injection of fluids which can have 

some problem such as displacement of the contaminant due to the very nature of plug 

flow, and thus having problems in efficient mixing (Gates and Siegrist, 1995). This 

project evaluated the feasibility of in-situ remediation of TCE contaminated soil using 

chemical oxidation. In-situ remediation unlike other method is quite safe to work with 

and does not pose the threat of inhalation of TCE. In-situ remediation of TCE 

contaminated aquifer can be done by injecting the combination of oxidizing agents to 

mineralize the TCE. 
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CHAPTER 2 BACKGROUND 

2.1 Trichloroethylene 

TCE is a halogenated, aliphatic organic compound. In pure phase, it is a colorless liquid 

with a slightly sweet smell. TCE has unique properties and solvent effects, so it has 

widely been used as an ingredient in industrial cleaning solutions and as a “universal” 

degreasing agent. TCE was replaced with tetrachloroethylene in the dry cleaning 

industry. TCE has also been discontinued for the following uses: fumigants, extractant for 

decaffeinating coffee, in cosmetics and drug products (EPA, 2001). The molecular 

formula for TCE is C2HCl3 and its chemical structure is shown in Figure 2-1. TCE has 

several trade names and synonyms listed below (EPA, consumer fact sheet, 2005). 

• 1,1,2-Trichloroethylene 
• Acetylene trichloroethylene Algylen 
• Anameth 
• Benzinol 
• Chlorilen 
• CirCosolv 
• Germalgene 
• Lethurin 
• Perm-a-chlor 
• Petzinol 
• Philex 
• TRI-Plus M 
• Vitran 

 

Trichloroethylene released to soil will either evaporate or leach into ground water. If 

released to surface water, it will also quickly evaporate. Solubility of TCE in water at 

200C and 1 atm is 1000 ppm (Russell et al, 1992; EPA, 2001). It has only a moderate 

potential to accumulate in aquatic life. In the gas phase, it is relatively stable in air, but 

unstable in light or moisture. The reactivity of TCE in aqueous solution varies with 
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conditions. It is incompatible with strong caustics or alkalis. It is chemically active with 

metals such as barium, lithium, titanium and beryllium (EPA, 2001). Several of its 

properties can be seen in Table 2-1. 

 

 

Table 2-1: Properties of TCE (Russell et al., 1992; EPA, 2001) 

Density, g/ml 1.46 

Solubility,mg/L@200C 1000 

Henry’ Law Constant,atm-m3/mol@200C 0.00892 

Molecular Weight ,g 131.4 

Boiling Point 86.70C 

Melting Point -730C 

Vapor Pressure@00C,mmHg 19.9 

Vapor Pressure@200C,mmHg 57.8 

Log Octanol-Water Partition Coefficient 2.42 

 

  

Fig 2-1: Chemical structure of TCE 

The chemical structure of TCE indicates its chemical reactivity. Three chlorine atoms 

attached to the carbon-carbon double bond make TCE a highly oxidized compound. TCE 
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is highly oxidized, thus resists further oxidation but is readily reduced (Russell et al., 

1992). It is however possible to oxidize TCE using chemicals such as potassium ferrate. 

Delucca et al. (1983) determined that 30 ppm potassium ferrate would completely oxidize 

100 ppb TCE in less than fifty minutes at 200 C and at a pH of 8.3. Size of the three 

carbon atom surrounding the double bond in the TCE is responsible for stearic hindrances 

(Russell et al., 1992). This lowers the rate at which large nucleophile groups can 

approach or react with the carbon-carbon double bond. 

 

During a rainfall, chemicals can easily percolate from the unsaturated zone to the water 

table. If the chemical is an immiscible liquid such as petroleum based solvent, an 

additional phase may be created. This could be a water immiscible phase which is called 

non aqueous phase liquid (NAPL). TCE is dense non aqueous phase liquid (DNAPL). So 

when TCE is present in pure phase, it sinks through the water and migrates along the 

natural gradient of the surface with the flow of water. TCE can easily spread in an aquifer 

through dissolution, advection and dispersion depending upon the velocity and turbulence 

in the channel or ground water. The low Koc value of 2.42 for TCE indicates little 

retardation by soil or aquifer organic materials. 

 

Henry’s coefficient describes the relative tendency of a compound to volatilize from 

liquid to air. The Henry’s coefficient for TCE is 0.00892 (unit less) which is high enough, 

when combined with its low solubility in water and high vapor pressure, so it can 

efficiently transfer to the atmosphere. Since the TCE is quite volatile, exposure is mainly 

through inhalation, ingestion and dermal absorption. Transformation and degradation 
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processes of TCE in environment are very slow. TCE does not absorb ultraviolet light at 

wavelengths less than 290 nanometers, so it does not photolyze in the atmosphere or in 

water naturally (Wendelin et.al, 1993). 

 

 

 

2.1.1 Health Aspect 

Trichloroethylene is not carcinogenic; it is thought to become a human health hazard only 

after processing in the human liver (Bartseh et al, 1979; EPA, 1992). Epoxidation by liver 

oxidase enzymes confers a suspected carcinogenic nature (Apfeldorf and Infante, 1981; 

Tu et al., 1985).The symptoms of exposure to TCE are manifested in central nervous 

system problems (WHO, 1985).They include headache, drowsiness, hypohydrosis, and 

tachycardia. Psychomotor impairment was noticed after inhalation exposure to 5,400 

mg/m3 (1000 ppm) for 2 hours in work place conditions (WHO, 1985). TCE vapors can 

cause eye irritation. High oral doses; 200 ml to 300 ml can be toxic to the liver and 

kidneys. TCE dose of 7,000 mg/kg body weight can be lethal to an adult (WHO, 1985). 

Reductive dehalogenation of TCE leads to production of vinyl chloride which in contrast 

to TCE is known carcinogen [Fed. Regist. 1984, 49:114, 24334(11)]. 

 

 

 

 

.   
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2.1.2 Current Treatment Methods 

• Wastewater and municipal water supply treatment processes which use 

coagulation, sedimentation, precipitation, softening, filtration and chlorination are 

ineffective for reducing the concentration of TCE to non hazardous levels (Robeck and 

Love, 1983). In wastewater treatment ozone is also used to remove organic material. In 

this case reaction of ozone with the carbon –carbon (Glaze and Kang (1988) and Francis 

(1987)) double bond takes place or nucleophilic substitution by hydroxyl radicals takes 

place. Hydroxyl radicals are generated by the decomposition of ozone. Their results 

indicate that direct ozonation of TCE is a slow process under alkaline conditions in 

ground water. To increase the production of hydroxyl radicals or to increase the oxidation 

potential of ozone Glaze and Kang (1988) have suggested four ways. 

• Variation in pH 

• Addition of Hydrogen Peroxide 

• Addition of  Ultra Violet radiation 

• Addition of a combination of Ultra Violet radiation and Peroxide 

 

 

Air stripping also is used to remove TCE from contaminated water. It requires a constant 

stream of air to expel TCE out from solution into air, taking advantage of low Henry’s 

coefficient and water solubility. A typical air stripper is designed in a manner to allow the 

percolation of large volumes of air through contaminated water. The main limitation of 
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this method is large volumes of air are required. This process only shifts the contaminant 

from water to air which is not environmental friendly and is of concern. 

 

 

Granular activated carbon (GAC) is also used to adsorb TCE from water. However GAC 

has certain limitations. 

• High dissolved organic carbon and other contaminants can compete with TCE for 

binding sites, thus saturating the column earlier than required. A concentration of 10 ppm 

natural organic matter in river water has been shown to reduce TCE adsorption by 70% 

(Amy et.al., 1987). 

• A sorbent has a finite capacity for a specific contaminant. With fixed bed 

adsorbents, when the sorption limit is reached the contaminant can breakthrough. It is 

necessary to regenerate the GAC media or replace it after breakthrough occurs. At a 

concentration of 1 ppm TCE at a neutral pH and 20°C, the capacity of TCE on a GAC 

was found to be approximately 28 mg/g (Hugh et al., 1992).  

 

Combined air stripping and granular activated carbon (GAC) adsorption is also one of the 

popular technologies to remove TCE. Air stripping can not lower the concentration of 

TCE in water to acceptable drinking water standard without high air flow rates. So the 

effluent from the air stripper can be sent to GAC column with reduced influent levels to 

finally get the most desirable effluent quality. 
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TCE is susceptible to chemical reduction. Transition metals play a vital role in abiotic 

reductions. Major reductive components can be electrons or reducing equivalents 

produced from biological reactor or molecular hydrogen (Barbash and Roberts, 

1986).Reduction of TCE is possible by any compound that has low oxidation potential 

(or high reduction potential) for efficient hydrogen transfer under ambient conditions. 

Natural dehalohydrolysis of TCE occurs with byproduct alcohol. Half lives of this 

reaction are on the order of days to centuries (Barbash and Roberts, 1986). Removal of 

chlorine atom from one carbon coincides with removal of hydrogen from the adjacent 

carbon. However natural dehalohydrolysis is not considered to be a significant 

mechanism for degradation.  

 

2.2 Oxidation via Fenton’s Reagent   

Advanced oxidation processes involves the generation of hydroxyl free radicals (OH·). 

Hydroxyl radicals are one of the strongest oxidants known after fluorine. Hydroxyl 

radicals react with dissolved constituents through a series of complex reactions until the 

constituents are completely mineralized. Hydroxyl radicals once generated, can attack 

organic molecules by radical addition, hydrogen abstraction, electron transfer and radical 

combination (SES, 1994). Today there are many technologies present to produce OH• in 

aqueous phase. Fenton’s reagent is a mixture of hydrogen peroxide and ferrous iron. 

During Fenton’s oxidation, iron cycles between the +II and +III oxidation states yielding 

hydroxyl radicals (OH·) as shown in equation 1. The ferric iron (+III) can react with 

hydrogen peroxide to return to the +II oxidation state, as shown in equation 2. Fenton’s 
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oxidation is best under acidic conditions because at higher pH iron has a lower solubility 

(Huling et al., 2000; Teel et al., 2001). 

Fe2+ + H2O2 → Fe3+ + OH- + OH•   (1) 

2 Fe3+ + + H2O2 → 2Fe2+ + O2 + 2H+  (2) 

Other reactions may take place during Fenton’s oxidation (Teel et al., 2001). 

Fe2+ + OH• → Fe3+   +  OH-   (3) 

H2O2 + OH• → H2O + HO2•    (4) 

OH• + HO2•→ O2 + H2O    (5) 

The hydroperoxyl radical (HO2•) is an oxidant, but not as strong an oxidant as the 

hydroxyl radical. The hydroxyl radical is considered responsible for oxidizing organic 

contaminants in water (Chen et al., 2001). 

 

Advanced oxidation of TCE occurs with the following reaction: 

TCE + OH• → products    (6) 

Hydroxyl radicals may also react with organics to produce another radical by hydrogen 

abstraction: 

RH + OH•→ R• + H2O    (7) 

Where RH is an organic compound. These radicals can convert Fe3+ back to Fe2+: 

R• + Fe3+ → Fe2+ + products    (8) 

Research has been conducted on the effectiveness of Fenton’s reagent for treating 

chlorinated organics. In general the reaction of hydroxyl radicals with organic material, to 

completion will produce water, carbon dioxide and salts. Teel et al. (2001) found that in 

classical Fenton’s oxidation of TCE, 78% of the initial TCE was degraded. 2.5 moles of 

                                                                                                              M.S Thesis 2006  
 
 
 



 Page 12 Sachin Sharma 

H2O2 were consumed per mole of TCE. During this reaction, 1.9 moles of chloride were 

released per mole of TCE, thus not all of the chlorine was displaced from the TCE (Teel 

et al., 2001). 

 

Bergendahl and Thies successfully applied “Fe0/H2O2” advanced oxidation of MTBE 

(Bergendahl and Thies, 2004). The oxidation reactions were able to destroy over 99% of 

the MTBE within 10 min, and showed significant generation, and subsequent degradation 

of acetone. Second-order rate constants for MTBE degradation were 1.9*108 M-1S-1at pH 

7.0 and 4.4*108 M-1S-1   at pH 4.0. In this project the Zero -Valent iron was added in the 

form of powder.  

 

2.3 Persulfate Oxidation  

The persulfate anion is a strong oxidant with a redox potential of 2.01 V (Latimer, 1952). 

Persulfate anions can be easily generated from sodium persulfate (Na2S2O8) by adding 

water. At ambient temperature (~200C), the persulfate anions can be decomposed by 

transition metal activators (e.g. Fe+2) to sulfate free radicals (SO4
-.) which have a redox 

potential of 2.6 V (Eberson, 1987). Sulfate free radicals are a powerful oxidant which can 

potentially destroy organic contaminants. The overall stoichiometric reaction between 

persulfate and ferrous ion is shown in the following equations (Kolthoff et al., 1951). 

  

Fe+2 
  + S2O8

2-   Fe+3 + SO4
-. +SO4

-2    (9) 

SO4
-. + Fe+2   Fe+3 + SO4

-2     (10) 
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The persulfate –ferrous reactions result in rapid production of sulfate free radicals. A free 

radical half life of 4 seconds was reported at a persulfate ferrous ion concentration of 10-3 

M and a temperature of 400C (Banerjee and Konar, 1984). Sulfate free radicals convert 

ferrous ion to ferric ion through Eq (3). The reaction coefficient (at diffusion controlled 

rate) for Eq (3) has been reported to be 1*109 M-1s-1(Heckel et al., 1966). There are many 

other activators found  in the literature include ions of copper, silver (House,1962), 

manganese (House,1962;Lenka and Dash,1963;Kislenko et.al.,1997), 

cerium(House,1962;Skarzewski,1984), and cobalt (Lenka and Dash, 1983). Sodium 

persulfate can also be thermally activated to form sulfate free radicals (SO4
-.) (Liang et 

al., 2003).Persulfate oxidation can be promoted  by the addition of  a reducing agent such 

as sodium thiosulfate (Na2S2O3)  to form a persulfate –thiosulfate redox system 

(Morgan,1946;Riggs and Rodrigues,1967;Narain et al,1981;Sarac,1999). 

The set of reactions between persulfate and copper thiosulfate complex anion ([Cu (S2O-

3)2]3-) has been reported as (PrÖlss and Patat, 1968): 

S2O8
2- + [Cu(S2O3)2]3-  SO4

-. +SO4
2- +2S2O3

2- +Cu2+         (11) 

Persulfate reaction can also be activated by ferrous ion in similar way to that obtained 

with copper by King and Steinbach (1930) and Morgan (1946).The reactions with iron to 

produce sulfate free radical are as follows: 

Fe+3 + S2O3
2-  Fe+2 +1/2S4O6     (12) 

XFe+2 + YS2O3
2-  Complex anion     (13) 

S2O8
2- +Complex anion  SO4

-. +SO4
2- +Fe3+

 Residue  (14)   
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Comparison of various chelating agents to hold Fe+2 in soil slurries was done by Liang 

et.al (2004) found that citric acid is the most effective chelating agent. Various others 

chelating agents used were ethylenediamintetraacetic acid (EDTA), sodium triphosphate 

(STPP) and 1-hydroxyethane-1,1-diphosphonic acid ( HEDPA).TCE degradation was 

achieved both in soil slurries and aqueous systems and degradations results were plotted 

for 24 hr at a S2O8
-2/chelate/Fe+2/TCE molar ratio of 20/25/5/1. TCE degradation up to 

34%, 73% and 41% were observed in aqueous systems when EDTA-Fe+2, STPP-Fe+2, 

and HEDPA-Fe+2 were used respectively whereas in soil slurries 33%, 67%and 54% 

were observed respectively. For the same molar ratio using citric acid as chelating agent 

TCE degradation was approximately 90% in aqueous phase and approximately 80% in 

soil slurries after 1 hr and nearly 100% destruction was achieved in both systems for 24 

hr period. 
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2.4 Hypothesis and Objective 
 
There are two hypothesis formulated 
 
• TCE can be effectively destroyed in-situ using various oxidizing agents such 

as persulfate, ozone, hydrogen peroxide.  

 

• Presence of solids (media) reduces the effectiveness of in-situ remediation.  
 
 
 
 
To test these hypothesis, the objectives of this research were: 
 
 
 
• To conduct slurry tests using various oxidizing agents such as persulfate, 

ozone and hydrogen peroxide in varying molar doses. 

 

• To conduct slurry tests with varying amount of solids or media 

 

• To measure the extent and rate at which TCE is removed from the slurry. 
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Chapter 3 Materials and Methods 
 
 
 
3.1 Materials 

 All chemicals were A.C.S grade from Fisher Scientific. The TCE and Methanol were an 

assay of 99.9%, Anhydrous Citric acid (C6H8O7  assay100.5%), Ferrous sulfate 

(FeSO4.7H2O  assay 101.0%), Sodium persulfate (Na2S2O8  assay 98.0%) ,Sodium 

Hydroxide (NaOH 50% w/w) and30%  Hydrogen peroxide .Glass beads (unwashed,425-

600µm ) used in the experiments were from Sigma. Silica (fine granular, 40-100 mesh) 

was from Fisher Scientific. Sand used in the experiment was Massachusetts native soil 

and sieved through sieve no.30 (0.0234). Zero-valent iron used was carbonyl iron micro 

powder supplied from ISP technologies. The water was from an RO pure ST reverse 

osmosis system, followed by an E-pure system supplied by Barnnstead/Thermolyne 

(Dubuque, Iowa).   The cis-dichloroehtylene (DCE) (5,000 µg/mL), trans-

dichloroethylene (DCE) (5,000 µg/mL), 1,1-DCE (1,000 µg/mL) and Vinyl Chloride 

(VC) (100 µg/mL) standards, all diluted in methanol, were from Ultra Scientific 

(N.Kingstown, Rhode Island). 
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3.2 Methods 

All glassware was washed with Alconox detergent. The glassware was rinsed four times 

in tap water and once in E-pure water. Stock solutions were kept in a 4oC refrigerator 

until use. The 2.25% (by weight) of Fe+2 solutions were prepared by adding solid Fe 

SO4.7H2O to E-Pure water. Citric acid (C6H8O7) was added to the 2.25% Fe+2 solution of 

1:1 molar ratio (citric acid: Fe+2) solution. Finally the pH of Citric acid: Fe+2(1:1) solution 

was adjusted to 6 with 30% sodium hydroxide (NaOH).Persulfate solution was made by 

adding Sodium persulfate (Na2S2O8  assay 98.0%) powder to E-pure water. Hydrogen 

peroxide was diluted from 30% to 20 % and 10% with E-pure water for use in lab. All the 

media namely sand, glass beads and silica were muffle furnaced at a temperature of 

5500C for 24 hours to ensure minimum organic content. Iron content of the sand was 

measured by atomic adsorption. 
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Fig 3-1: Samples for slurry test 

 

 

 

3.3 Equipment 

3.3.1 Programming the Gas Chromatograph 

An Agilent 6890 gas chromatograph (GC) with HP GC ChemStation software was used 

to determine the concentrations of contaminants.  An Agilent 7683 auto-sampler was 

attached to the GC to aid in quick analyses. Ultra high purity nitrogen gas from ABCO 

welding supplies (Waterford,CT) was used as the carrier gas.  The injector was equipped 

with a 100 µL syringe that was used to inject 50 µL of gas from the headspace in the 
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sample vials into the GC. The sample was injected into a split-less inlet with initial 

temperature of 50˚C and pressure of 8.06 psi. A 250˚C ECD detector was used. A Restek 

Rtx-5SILMS column had a nominal length of 30.0 m, nominal diameter of 320 µm and a 

nominal film thickness of 0.5 µm.  The column was housed in the oven with an initial 

temperature of 28˚C. After 7 minutes the temperature in the oven raised 10˚C/minute 

until a temperature of 200˚C was reached. The output from the ECD detector was read 

and the software calculates peak area using the following constraints: initial slope 

sensitivity of 120, initial peak width of 0.8, and initial area and height rejects of 0.5.  

 

 

 3.3.2 Headspace sampling  

Headspace sampling method for the gas chromatograph was chosen because of its 

simplicity and ability to be rapidly conducted.  For this sampling method, 440 mg of 

sodium chloride was added to a gas chromatograph sample vial; the salt helps to 

volatilize compounds in solution. Then 1 ml of the liquid to be sampled was added to the  

vial. The remaining area in the vial was the headspace. After tightly capping the vial it 

was hand agitated for about a minute then placed on the shaker table allowing time for 

volatilization of the chemicals from the liquid. After being taken off the orbit shaker, the 

vial was placed in the auto-sampler for analysis. The sample taken by the GC  

was taken from the headspace as seen in Figure 3-2. 
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Syringe 

Headspace 

Solution 
 Dissolved NaCl  

                          Figure 3-2: Headspace Method Diagram. 

3.4 Equipment  

 
The pH measurement was done using an Orion model 420A pH meter equipped with an 

Orion915600 pH probe. The meter was calibrated each time before use with buffer 

solutions of pH 4.00, pH 7.00 and pH 10.00 (Fisher Scientific, Airlawn, NJ). Ozone was 

generated using a Labzone ozone generator from Ozonology Inc (Northbrook, IL). Feed 

gas for ozone generation was compressed pure oxygen with feed gas inlet pressure of 25 

psi and 6 SCFH (Standard cubic feet per hour). The orbit shaker was from Labline 

Instruments Inc. (Melrose Park, ILL) and used at 100 rpm for all experiment. The Muffle 

furnace was from Thermolyne. Micro stir bars covered with Teflon PTFE fluoropolymer 

were used in the GC vials for complete mixing were from Fisher Scientific (NJ). 

Diameter of the micro stir bar was 2 mm and length was 7 mm. A convection microwave 

from Sharp Carousal was used for microwave extractions. Atomic adsorption AAnalyst 

300 with a flame atomizer was used for iron analysis of sand (Perklin Elmer 

Instruments). 
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CHAPTER 4 Procedures 

     4.1 Producing standard curves 

The first phase of the experiments was to develop standard curves for the different 

compounds of interest and determine the retention times for each compound on the gas 

chromatograph using the headspace sampling method.  Standard curves were produced 

for TCE, 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE. Stock solutions that were prepared in 

the lab were diluted with purified water directly in a GC vial containing 440 mg of 

sodium chloride. It was found that mixing the smaller volumes directly in the GC vials 

minimized the loss of the contaminant through volatilization. A stock solution of 500 

ppm of TCE was prepared in lab by adding 155 uL of 99.9% pure TCE to 199.845 ml of 

e-pure water.  This solution was allowed to mix overnight to produce a homogenous 

solution. Dilutions for TCE were created in 10, 25, 50, 100, 200 and 300 ppm 

concentration by mixing the volumes of 500 ppm TCE and water as given in Table 1. 

These dilutions were allowed to mix on the shaker table for 2 hours at 100 rpm before 

being run through the gas chromatograph. 

 

 

Cis- and trans-1, 2-DCE stock solutions of 500 ppm were purchased from Ultra Scientific 

(N.Kingstown, Rhode Island).  From this stock solution 100, 200, 300, and 400 ppm 

dilutions were produced .To obtain lower readings, a stock solution of 100 ppm was 

prepared in lab by adding 40 µL of 5000 ppm of the 1,2-DCE solution to 1.96 mL of 

water. This stock solution was allowed to mix overnight.  Dilutions of 10, 25, and 50 ppm 
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where prepared from the 100 ppm stock solution All dilutions where allowed to mix on 

the shaker table for 24 hour before running on the gas chromatograph. 

 

For 1,1-DCE a stock solution of 1000 ppm was purchased from Ultra Scientific 

(N.Kingstown, Rhode Island). Final concentrations used for the standard curve were 20, 

50, 100, and 200 ppm. These dilutions were allowed to mix on the shaker table for 24 

hours before being run through the gas chromatograph. The vinyl chloride stock solution 

of 100 ppm was purchased from Ultra Scientific (N.Kingstown, Rhode Island). Dilutions 

where prepared at 5, 10, 25 and 50 ppm. These dilutions were placed on the shaker table 

for 24 hours before running on the gas chromatograph. 

 

While running the dilution series it was noted that for each contaminant, peaks were 

eluting from the GC at specific times.  These retention times are shown in Table 4.1.  For 

the cis-1,2-DCE two peaks were present, however, only the peak at 4.1 minutes, which 

was larger, was used in creating the standard curve. 

 

Table 4.1: Retention time for each contaminant on an Agilent 6890 GC system 

Contaminant Retention time 
Trichloroethylene    6.9 minutes 
1,1 Dichloroethene 2.7 minutes 
1,2 cis-dichloroethene 4.1 & 5.5 minutes 
1,2 trans-dichloroethene 3.3 minutes 
Vinyl Chloride 2.1 minutes 

 

The points used to create the standard curves were the known concentrations in the GC 

vial and the corresponding output peak areas from the GC.  The peak area was plotted 

along the x-axis because this is the known value in later experiment runs, the units varied 
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depending on the size of the peak areas formed by the different contaminants. The 

concentration of the contaminant was plotted along the y-axis and is expressed in mg/L or 

parts per million (ppm).  A linear regression was performed on the plotted data to find the 

best fit line.  A good fit was found if the variation (r2-value) was close to 1.  

 

The TCE standard curve is seen in Figure 2. Dilutions of TCE were created from a 

minimum of 1 ppm up to a maximum of 500 ppm.GC was not able to accurate results the 

TCE at higher concentration due to degenerations of peaks. 
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Figure 4-1: Standard curve for Trichloroethylene (TCE) showing peak area(5Hz*s) as a function 

of TCE concentration. 

 

For TCE, the peak areas ranged from approximately 1.045x 103 to almost 5.26 x 105 this 

correlates into concentrations of TCE from 1 ppm to 500 ppm.  The best fit line was 
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found to give the concentration of TCE (CTCE) in terms of the peak area (PA).  The 

equation and its r2-value of the line are: 

CTCE=9.04x10-4 *PA - 8.79   ;    r2=0.9814 

 

The trans-1,2-DCE standard curve is seen in Figure 4-2.  While dilutions of trans-1,2-

DCE were created from a minimum of 10ppm up to a maximum of 500 ppm, only 

concentrations between 50 and 400ppm formed peaks detected by the software in the 

linear range.  
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Figure 4-2: Standard curve for trans-1,2-dichloroethene (DCE) showing the concentration of  

trans-1,2-DCE as a function of the peak area (5Hz*s).  

 

The peak areas range from approximately 500 to almost 7,000 (7x1000) this correlates 

into concentrations of trans-1, 2-DCE from 50 to 400ppm.  The best fit line gives the 
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concentration of trans-1, 2-DCE (Ctrans) in terms of the peak area (PA) through the 

following equation, also given is the variation: 

Ctrans=53.64*PA+27.22;    r2=0.9976. 

 

The cis-1,2-DCE standard curve is seen in Figure 4-3.  While dilutions of cis-1,2-DCE 

were created from a minimum of 10 ppm up to a maximum of 500 ppm, only 

concentrations between 25 and 400 ppm formed peaks detected by the software in the 

linear range.  
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Figure 4-3: Standard curve for cis-1,2-dichloroethene (DCE) showing the concentration of  cis-

1,2-DCE as a function of the peak area(5Hz*s).  

 

The peak areas range from approximately 100 to just over 2,500 (25x100 on graph) this 

correlates into concentrations of cis-1,2-DCE from 25 to 400 ppm. The best fit line gives 

the concentration of TCE (Ccis) in terms of the peak area (PA) through the following 

equation, also given is the variation:Error! No table of figures entries found. 

Ccis=14.85*PA+3.46   ;   r2=0.9924. 

                                                                                                              M.S Thesis 2006  
 
 
 



 Page 26 Sachin Sharma 

 

The 1,1-DCE standard curve is seen in Figure 4-4.While dilutions of 1, 1-DCE were 

created from a minimum of 20 ppm up to a maximum of 300 ppm, only concentrations 

between 20 and 200ppm formed peaks detected as linear by the software.  
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Figure 4-4: Standard curve for 1,1-dichloroethene (DCE) showing the concentration of  1,1-DCE  

as a function of the peak area(5Hz*s). 

 

The peak areas range from approximately 500 to approximately 3,500 (2.5x1000 on 

graph) this correlates into concentrations of 1,1-DCE from 20 to 200 ppm.  The best fit 

line gives the concentration of 1,1-DCE (C1,1) in terms of the peak area (PA) through the 

following equation, also given is the variation: 

C1,1=59.04*PA+12.71   ;     r2=0.9866. 
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No standard curve is available for vinyl chloride.  The concentrations used in the dilution 

series created peaks that were too small to be measured by the software.  Peaks were 

visually noted as present and this was how the retention time was determined. 

 

 

 

 

4.2 Soil slurries for ferrous activated peroxide oxidation 

Soil slurries were conducted on soil that had been contaminated with pure TCE; this was 

completed by first measuring a pre-determined mass of soil into a capped container then 

pure TCE is poured over the soil so that the soil is completely covered. Weighing the 

container at this point indicates the amount of TCE that was added. This mixture was 

allowed to mix on the shaker table for at least an hour after being vigorously shaken for 

about a minute. After mixing, the excess TCE was drained off the soil and is again 

weighed. The change in mass is attributed to the excess TCE. The difference between the 

starting TCE mass and excess TCE mass is the amount of TCE that was associated with 

the soil; these masses can be used to determine the concentration of TCE on the soil.  

 

A microwave assisted extraction process was used to estimate the amount of TCE in the 

soil. This process was performed by adding 0.5 g of contaminated soil to 200 mL of e-

pure water, shaking by hand for about 1 minute, and then placing in the microwave for 90 

sec at 20% power. During the microwaving process, the solvent (water) absorbs the 

microwave energy and then detaches the contaminant from the soil. The advantages of 

using this extraction process is that water, which is environmentally-friendly and 
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inexpensive, can be used as a solvent and the process requires little time and effort. After 

being microwave, 1 mL of solution is taken and placed in a GC vial containing NaCl 

(Figure 1 above).  

 

After the soil is contaminated, a predetermined mass was transferred to a screw cap vial. 

Then 13.33 mL of a 1:1 citric acid and Fe+2 solution was added to the vial.  The citric 

acid and Fe+2 solution was prepared by first preparing a 2.25% Fe+2 solution (adding 

22.40 grams of FeSO47H2O to a 200 mL volumetric flask and then filling the flask); the 

next step was to add 15.48 grams of citric acid to the 200mL solution; finally, the pH is 

adjusted to 6 with sodium hydroxide (NaOH,30%).  After adding the citric acid/Fe+2 

solution, 6.67 mL of hydrogen peroxide was added to the vials. The concentration of 

hydrogen peroxide depended on the experiment being run; care should be taken that the 

hydrogen peroxide concentration is low enough that the resulting reaction remains inside 

the vial. 

 

After allowing the reaction to slow vials were loosely capped and securely placed on the 

shaker table at 100 rpm and let react for approximately 24 hours. After the 24 hours had 

elapsed, 1 mL of the solution above the soil was placed in a GC vial according to the 

headspace sampling method to determine what products have been placed in solution.  

Microwave extraction was performed on the soil from the slurry by adding 0.75 g of soil 

to 200 mL of water. This mixture was shaken for approximately 30 seconds to suspend 

smaller particles and the placed in the microwave for 90 seconds at 20% power.  After 
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removing from the microwave 1 mL of solution was withdrawn and placed in a GC vial 

containing NaCl. 

 

 

 

4.3 Slurries for persulfate oxidation activated by ferrous, ozone and ZVI. 

Slurries were made using sand, silica and glass beads. All the media was muffle furnaced 

at 5500 C for 24 hrs to burn off the organics and the 40 ml batch rector was foil wrapped. 

First of all the 10 gm of the media was added to the 40 ml rector and then 13.33 ml of 

ferrous iron: citric (1/1 molar) acid solution was added. A stock solution of TCE was 

prepared for 750 mg/l and 20 ml of it was added to the slurry to make up the desired 

molar ratio of TCE/iron of 1/1 and 1/0. In the end the 6.67 ml of sodium persulfate was 

added to the slurry to make up persulfate/TCE molar ratio of 10/1, 5/1,10/0 and 5/0. For 

ozone activated persulfate oxidation 13.33 ml of ozone saturated water was used instead 

of ferrous: citric solution. For zero valent iron ½ gm of ZVI powder was added to the 

system before the addition of oxidant. Slurry bottles were immediately capped tightly and 

and kept on the orbit shaker for 24 hrs at 100 rpm. 
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Chapter 5 Results and Discussion 

 

5.1 Oxidation using Hydrogen peroxide in Soil Slurries using MAE 

Samples of both the slurry solution and the MAE (Microwave assisted extraction) soil 

run show the presence of only TCE.  The absence of the TCE degradation products may 

be attributed to the complete mineralization of TCE and all byproducts. Mass transfer of 

TCE from soil to solution can also be limiting. Once in solution TCE is degraded by the 

radicals there; the daughter products will then start out in solution where they are rapidly 

degraded if TCE does not desorb rapidly enough to also be acted on. To test this theory, 

the slurry test was run using aqueous TCE and it was found that complete degradation of 

TCE occurred without any daughter products.  Another plausible reason for the absence 

of daughter products is that they are created and destroyed in a shorter or longer time than 

being monitored.  To test this, slurry tests should be run for different lengths of time.  An 

additional benefit is that TCE degradation can then be monitored with respect to time. 

 

 

Figure 5-1 shows the average percent TCE removal from soil based on the initial 

hydrogen peroxide concentration. The slurry tests were run using 5, 10 and 20 grams of 

soil. One noticeable trend is that for the slurries containing less contaminated soil, the 

percent TCE removed is greater.  This may be due to the fact that despite the initial 

concentration of TCE in the slurry the same amount is being degrading during the 

process.  So for equal amounts of TCE removed will have a larger impact on smaller 

initial concentrations of TCE. 
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Figure 5-1:  Average Percent of TCE removed from the soil for the different hydrogen 

peroxide/soil sample size variations. 

 

 

For all the slurries run at a 0% hydrogen peroxide concentration there was evidence of 

TCE removal from the soil.  This can be explained by the fact that the TCE is moving 

from the soil and into the slurry solution.  To determine how much TCE is actually being 

destroyed the results for the slurry solutions must be quantifiable.  Then the amount 

destroyed can be calculated by the amount originally present minus the sum of the 

amount present in soil and in solution. Another possible explanation of TCE removal at 

0% hydrogen peroxide is that some TCE may be volatilizing into the slurry vial 

headspace.  To test this hypothesis samples should be run with minimal amounts of 

headspace and these results compared with results obtained using the current method. 
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For the slurries using 5 and 20 grams of contaminated soil, the percent removal decreases 

from a hydrogen peroxide concentration of 3.34% to 5%.This is due to the competitive 

reaction chemistry involved with hydroxyl radical as shown below. 

        H2O2 + OH• → H2O + HO2•    (15) 

        OH• + HO2•→ O2 + H2O    (16) 

 So as the hydroxyl generation increases it eats up the hydrogen peroxide thus decreasing 

further production of hydroxyl radical. Another explanation is that while measuring out 

the soil for MAE, the soil may have been in contact with the air for a longer period of 

time at the 3.34% concentration. Running more samples from each of the slurry test 

should reduce these impacts.  An additional explanation may be that there is a shortage of 

the ferrous ion to catalyze the hydrogen peroxide.  Adjusting the concentration of ferrous 

ion will test this hypothesis. Mohanty and Wei achieved complete removal of 2,4- 

Dinitrotoluene (DNT) in aqueous solution using Fenton’s oxidation with a 

H2O2:DNT:Fe2+ molar ratio of 20:1:2.5.  

 

 

 

 

5.2 Aqueous oxidation of TCE using Sodium Persulfate 

Aqueous oxidation of TCE was done in all the four medias (sand, silica, glass beads and 

water). Controls were run in aqueous medium with citric acid, Fe+2 solution (1:1 molar 

ratio) and persulfate solution individually and degradation of TCE was recorded after 24 
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hr. All the controls were done with and without aluminum foil wrap to detect the UV 

degradation of TCE in solution. 

 

 

 

 

 

 

 

Fig 5-2: Picture shows the 40 ml batch rector for slurry testing with and without foil. 
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Figure 5-3: controls for TCE degradation 

 

Control Medium 
% TCE reacted 
(With foil) 

%TCE reacted 
(Without foil) 

WATER 0 3.82
CA:FE 4.41 13.42
SODIUM 
PERSULFATE 96.30 100

 

 

It was found that UV rays naturally present in the ambient light degraded the TCE in 

aqueous phase approximately 5%. Controls were also done to detect the amount of 

adsorption of TCE on to media. All the media were muffle furnaced at 5500 C to burn off 

all the organics present in them and then the controls were run with TCE at 500 ppm.  
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Fig 5-4: Adsorption control for TCE on various media. Error bar shows the standard 

deviation for controls. 

After the controls were run persulfate oxidation was tried to test the % destruction of 

TCE. Experiments were done at persulfate/Iron/ TCE molar ratios of 20/1/1 and 20/0/1 

.Figure 5-5 below shows the results from the experiments. 
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Fig 5-5: % Destruction of TCE at Persulfate/Iron/TCE molar ratio of 20/1/1 and 20/0/1 
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Percent destruction at molar ratios of 20/1/1 and 20/0/1 was found  to be greater than 

95%, so experiment were conducted at various molar ratios as indicated in figure below. 

All the samples were foil wrapped to prevent degradation from UV.  
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Fig 5-6: Destruction of TCE after 24 hrs for various molar ratios 

 

From Figure 5-6 it is clear that ferrous iron catalysis the persulfate reactions and thus 

helps in more effective degradation of TCE. Liang et.al (2004) found that when ferrous 

ion was added sequentially in small increments to the reaction, it helped in destroying 

TCE. After 5 successive additions of Fe2+ equivalent to initial Fe2+/TCE molar ratios of 

1/1, 2/1 and 5/1, the final S2O8
2−/Fe2+/TCE molar ratios reached were 20/5/1, 20/10/1, 

and 20/25/1 and the overall TCE removals were 73%, 84% and 95%, respectively. As 

compared to the experiment when all Fe+2 was added at once for the same final 

S2O8
2−/Fe2+/TCE molar ratios , sequential addition of Fe2+ improved the TCE removal by 
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26%, 27%, and 31% for S2O8
2−/Fe2+/TCE molar ratios of 20/5/1, 20/10/1, and 20/25/1, 

respectively. Higher degradation of TCE in this research can be attributed to way of 

making slurries which can affect the final % TCE remaining. Soil with high organic 

content can also lead to high oxidant demand and lower the TCE degradation efficiency. 

None of the Liang et.al soil samples were subjected to muffle furnace leading to foc  of 

0.316%. Linag et.al also found that maximum degradation of TCE occurred at near 

neutral pH. Linag et.al found that lowering the system pH would increase the degradation 

of TCE. Figure 5-7 and 5-8 show the variation of pH at 0 hr and 24 hr respectively for all 

the media in the experiment data shown in Fig 5-6. As the molar ratio of  persulfate/iron 

/TCE  was decreased from 10/1/1 to 1/0/1 the pH of the system increased which in turn 

increased the degradation of TCE .Although due to the lack of oxidant at near neutral pH 

in the Figure 5-7 and5-8 show that complete mineralization was not achieved. 
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 Fig 5-7: Effect on the pH at 0 hr as the molar dose was changed at room temperature of 

250C 
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5-8: Effect on the pH at 24 hrs as the molar dose was changed at room temperature of 

250C 

 

 

 

Ferrous iron activated persulfate oxidation of TCE was carried out for 24 hr period and 

the results were plotted in Figure 5-6. Since the degradation efficiency of persulfate was 

found to be higher than 90 percent at molar ratio of 10/1/1 and 

10/0/1(persulfate/Iron/TCE). So the reaction kinetics were studied for this molar ratio for 

all the media. Results are shown in the figure below. 

 

                                                                                                              M.S Thesis 2006  
 
 
 



 Page 39 Sachin Sharma 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Time (minute)

%
 R

em
ai

ni
ng

 o
f T

C
E sand(10/1/1)

sand(10/0/1)
silica(10/1/1)
silica(10/0/1)
glass(10/1/1)
glass(10/0/1)
water(10/1/1)
water(10/0/1)

 

Fig5-9: Reaction Kinetics at Persulfate/Iron/TCE molar ratio of 10/1/1 and 10/0/1 

 

For all the samples it was found that most of the degradation was rapid and took place 

within the first five minutes. From Figure 5-9 it can be seen that approximately 80% of 

the TCE is oxidized in the first 5 minutes and the rate of destruction is much slower after 

five minutes. Liang et.al (2004) studied the influence of chelate/Fe+2 molar ratios on the 

kinetics of aqueous oxidation of TCE by ferrous activated persulfate. Liang et.al (2004) 

found that all persulfate/chelate (citric acid)/ferrous/TCE molar ratios greater than 

20/1/10/1 resulted in nearly 100% TCE destruction after 20 min reaction period. In an 

experiment with persulfate/chelate/ferrous/TCE molar ratio of 20/2/20/1 exhibited lack of 

ability to maintain the enough chelated iron in the solution and therefore TCE 

degradation and persulfate decomposition stalled after 20 min. Liang et.al concluded that 

higher initial Fe+2 content at persulfate/chelate/ferrous/TCE molar ratio of 20/2/20/1, 

showed less effective TCE degradation and more persulfate decomposition. So the excess 

unchelated ferrous iron would compete for sulfate free radicals and finally result in 

                                                                                                              M.S Thesis 2006  
 
 
 



 Page 40 Sachin Sharma 

lowering of the TCE degradation efficiency. Liang et.al (2004) also found that at 

persulfate/chelate (citric acid)/Fe+2/TCE molar ratio of 10/2/10/1, 96% of the TCE 

degradation took place within 1 hr. Liang et.al (2004) also studied the effect of varying 

the persulfate concentration. It was found that at persulfate/chelate (citric 

acid)/ferrous/TCE molar ratio of 5/0.2/1/1 and 10/0.2/1/1 resulted in 17% and 13% of 

TCE remaining and 52 % and 74 % of persulfate remaining after 24 hr period 

respectively. 

 

Since persulfate oxidation worked quite efficiently for the above mentioned molar ratios, 

for  10 gm of the media .Since the amount of solids added was expected to  play a vital 

part in  the process , the amount of media added was varied to investigate effect on  the 

efficiency. Additional media led to more oxidant demand since the surface media (sand, 

silica, glass beads) may react with oxidants. Figure 5-10 and 5-11 shows the effect of 

increased solids in the system for sand, silica and glass beads. 
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Fig 5-10: % TCE remaining at 10/1/1 molar ratio of Persulfate/Iron/TCE 
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Fig 5-11: % TCE remaining at 10/0/1 molar ratio of Persulfate/Iron/TCE  

 

From the above figures it can be easily seen that extent of oxidation of TCE is reduced 

with increased media loadings as the minerals in the soils and the surface of the glass and 

silica consume the persulfate. pH data was also recorded for all the experiments and 

shown in Figure 5-12. The addition of media can also affect the pH of the system which 

in turn affects the degradation efficiency of the persulfate oxidation. Watts et.al (2004) 

studied the effect of varying slurry volume for mineralization of benzo[a]pyrene (BaP; 

group A; confirmed carcinogen) on two soils using catalyzed hydrogen peroxide. Watts 

et.al found that the interactive effects of H2O2 concentration and iron (II) amendment 

were significantly higher than the effect of slurry volume. Watts et.al found that excess 

slurry volume (containing H2O2 that is not in contact with the sorbed or NAPL-phase 

BaP) consumes H2O2 while not degrading the sorbed or NAPL contaminant. Watts 

studied the BaP mineralization by %  14C-CO2 recovery. Based on statistical analysis of 
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the experimental data, BaP oxidation in the silica sand was described by following 

relationship: 

14C-CO2 Recovery (%) 

=40.7 + 1.47 *10-3(H2O2) - 3.40(Slurry volume) - 2.33(Iron) + 1.07*10-7(H2O2)2  

+ 3.0*10-2(Slurry volume)2 + 4.58 * 10-1(Slurry volume)*(Iron), 

 

BaP oxidation in the Palouse loess soil was described by following relationship: 

 

14C-CO2 Recovery (%) 

= 53.1 + 1.13 * 10-3(H2O2) – 5.79(pH) – 0.122(Slurry volume)2 – 0.360(pH)2 

 + 0.838(Slurry volume)*(pH), 

 

Where H2O2  is the hydrogen peroxide concentration (mM), slurry volume for silica sand 

is the slurry volume (x 0.31 ml/g, the silica sand field capacity) and slurry volume for 

Palouse loess soil is slurry volume (x 0.42 ml/g, the silica and sand field capacity), (Iron) 

is the iron(II) amendment concentration (mM).  Watts et.al (2004) data indicated that the 

most efficient systems are those in which the slurry volume was low, i.e., the results 

suggest that the close proximity of the reactive species to the sorbed or NAPL-phase BaP 

is an important factor in promoting a stoichiometrically efficient reaction that enhances 

its desorption/dissolution and mineralization. Excess H2O2 that decomposed to reactive 

species away from the soil was probably not effective in degrading and mineralizing 

sorbed or NAPL-phase BaP . Watts and Stanton (1993) obtained similar results for 

oxidation of 14C-hexadecane; they found that the degradation of hexadecane required 
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relatively high concentrations of H2O2 and that the most efficient stoichiometry was at 

low slurry volumes. 
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Fig 5-12: pH variation with increased media loading. 

 

5.3 Aqueous oxidation of TCE using Sodium Persulfate and Ozone 

Ozone is an unstable gas produced when oxygen molecules dissociate into atomic 

oxygen. Since ozone decomposes to oxygen very rapidly after generation thus it must be 

generated onsite. In these experiments the ozone was generated using “Ozongeneratar” 

using high purity oxygen and high voltage is applied across gap of narrowly spaced 
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electrodes. The high energy corona created by this arrangement dissociates one oxygen 

molecule, which re-forms with two other oxygen molecules to create two ozone 

molecules. Ozone was then bubbled through a stone into the water for immediate 

consumption. 

 

Ozonated water was used with persulfate solution for the destruction of TCE. 10 gm of 

media was mixed with 13.33 ml of ozone saturated water and 6.67 ml of persulfate 

solution and finally 20 ml of TCE was added to make up Persulfate/Iron/TCE molar ratio 

of 10/0/1 and the reaction was recorded over time and it was quenched with 3.65 gm of 

methanol to make persulfate/methanol molar ratio of 1/100. Result for these set of 

reactions were recorded at a times of 0, 1, 5, 10, 30, 60, 120 and 180 minutes and the data 

was plotted to determine the rate of reaction. Results are plotted in figure 5-13. 
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Fig 5-13: Reaction Kinetics at Persulfate/Iron/TCE molar ratio of 10/0/1 with ozone 

saturated water. 
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To calculate the rate constant the results (≤10 min) were plotted again and the first order 

rate constant was calculated. Results are shown in Fig 5-14. 
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Fig 5-14: First order reaction kinetics for methanol quenched ozone activated persulfate 

oxidation of TCE. 

 

From Figure 5-14, the equation of the line can be compared to the logarithmic equation of 

a first order reaction. 

C=C0exp-kt  

LnC = lnC0 - kt   (17) 

Y= -0.2854X – 9.0776  (18) 

Comparing (17) and (18) the rate constant is 0.2854/min or 0.00476/sec. The rate 

constant was calculated at constant temperature and pressure conditions of 250 C and 1 

atm respectively. An empirical kinetic rate law (neutral pH, aerobic) has been determined 
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for the aqueous oxidation of TCE by Knauss et.al (1998). Measurement of both the rate 

of disappearance of TCE and the rate of appearance of CO2 and Cl- 
 were the basis for 

their mass balance. Buffer solutions were used to fix pH and stoichiometrically sufficient 

amounts of dissolved O2 were used to make the reactions pseudo zero-order in O2. A 

standard chemical kinetic approach was used, two orders-of-magnitude in initial TCE 

concentrations were spanned and the resulting double-log plot (log concentration vs. log 

initial rate) was used to determine the rate constant (k=5.77±1.06_10-7 s-1) and reaction 

order (nc=0.8520.03) for the rate law. By determining rate constants over the temperature 

interval 343±373 K, the Arrhenius activation energy (Ea) for the reaction was determined 

to be 108.024.5 kJ/mol. 

 

 

 

5.4 Zero Valent Iron and Ozone Activated Persulfate Oxidation of TCE. 

Zero valent iron (ZVI) activated persulfate oxidation of TCE using 13.33 ml of ozone 

saturated water was most effective in destroying TCE when the persulfate /TCE molar 

ratio was 10/1. Complete (100%) TCE destruction took place when ½ gm of the ZVI 

powder was added to the slurry test. Bergendahl and Thies found that 99% destruction of 

MTBE (methyl tert-butyl ether) took place when H2O2: MTBE molar ratio was 440:1. 

The oxidation byproduct acetone was also destroyed at that dosage. Total organic carbon 

was also reduced by 86% when H2O2: MTBE molar ratio of 220:1 and above was used. 

Doong and Chang (1998) studied the effect of Fe0 and Fe2+ as catalysts in the photo-

assisted degradation of organophosphorous pesticides (methamidophos, malathion, 
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diazinon, phorate, and EPN) in a UV/H2O2 system. Near complete removal of the 

pesticides occurred with either Fe0 or Fe2+ added as a catalyst to the UV/H2O2 system 

with little difference in degradation rate constants when Fe0 was used instead of Fe2+. It 

was hypothesized by Doong and Chang (1998) that the Fe0 was oxidized to Fe2+ and then 

Fe3+.Doong and Chang (1998) investigated the rate of degradation of pesticides in a 

UV/H2O2 system supplemented with Fe0 and Fe2+. They found that an Fe0:H2O2 molar 

ratio of 25:1 was sufficient to degrade 10 mg/L of pesticides in approximately 200 min. 

Bergendahl and Thies (2003) found that an a much lower  Fe0:H2O2 molar ratio of 1.8:1 

and without UV radiation was sufficient to degrade 1 mg/L of MTBE. For this project 

ZVI worked much better than ferrous iron in terms of TCE degradation efficiency even 

when only ½ a gram of ZVI powder was added to slurry test. 
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CHAPTER 6 Conclusions 

 In this work a slurry test was developed to evaluate various oxidants for in-situ 

remediation of TCE contaminated aquifer. This project presented a feasible alternative to 

current treatment technologies which consist of pump and treat system, air stripping and 

digging of soil followed by treatment. There were two hypothesis formed at the 

beginning of this project. First one was that TCE can be destroyed in-situ using various 

oxidizing agents such as hydrogen peroxide, sodium persulfate and ozone. The second 

hypothesis was the presence of solids (media) reduces the effectiveness of in-situ 

oxidation. 

It was found that: 

 

• TCE was degraded rapidly by all the oxidizing agents used in these 

experiments. Activated persulfate oxidation was shown to be effective for TCE oxidation 

in the presence of all the media tested in slurry tests for various molar ratios of oxidants. 

• With increased solids the TCE removal efficiency was lowered as the solids 

may play role in the process. 

• With Ozone activated persulfate oxidation, 90% of the TCE removal takes 

place in first 10 minutes indicating a feasible option for in-situ treatment 

• Zero valent iron seems to enhance the ozone activated persulfate oxidation. 

For same molar dose of persulfate, zero valent iron appeared to work better than ferrous 

iron. 

• The solid media plays a vital part in oxidation as it can change the pH of the 

system and can further increase or decrease the removal of TCE from system. 
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Chapter 7 Future Work 

 

• Experimentation should be conducted using different chelating agents to keep 

iron in solution available for catalyzing the reactions. In this project the chelating agent 

used was citric acid. Liang et.al (2003) used various chelating agent for ferrous activated 

persulfate oxidation and found that citric acid was more effective than 

ethylenediamintetraacetic acid (EDTA), sodium triphosphate (STPP) and 1-

hydroxyehtane-1, 1-diphosphonic acid (HEDPA). A similar study should be carried out 

for ozone and iron activated persulfate oxidation. 

• From this project it was found that variation in solids loading affects the final 

% remaining TCE. An in depth study of media surface behavior under various molar 

doses of oxidant and catalyst should be studied, so as to gain better understanding of the 

in-situ remediation process. 

• This project evaluated the rate constant for ozone activated persulfate 

oxidation at fixed temperature, pressure and pH conditions. Further study should be done 

at varying temperature, pressure and pH conditions. 
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Appendix A: Control and oxidation data. 

Standard curve data for TCE. 

 

CONC(ppm) 
PEAK AREA 
(5Hz*s) 

    
500 5.26E+05
500 5.50E+05
500 5.06E+05
300 3.99E+05
300 3.98E+05
300 3.94E+05
100 1.38E+05
100 1.31E+05
100 1.37E+05

25 3.07E+04
25 3.36E+04
25 3.01E+04
10 1.09E+04
10 1.10E+04
10 1.09E+04

5 7.08E+03
5 6.06E+03
5 5.49E+03
1 1219.993
1 1075.51
1 1045.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard curve data for 1,1-DCE 

Concentration
(ppm) 

Peak 
Area 
(5Hz*s) 

20 5259.5
50 9734.2

100 21355.6
200 34937.5
300 32190.6
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Standard curve data for Trans 1,2-DCE 

Conc. 
Peak 
Area(5Hz*s) 

50 489.3
100 1230.6
200 3225
300 5266.4
400 6826.4

 

Standard curve data for Cis 1,2-DCE 

Conc. 
 Peak Area 
(5Hz*s) 

10   
25 111.1
50 269.3

100 679.9
200 1393.5
300 2106.3
400 2539.8

 

Data for adsorption control on all the media with foil wrapped samples. 

Media 
%loss of 
TCE 

%loss of 
TCE 

%loss of 
TCE 

sand 3.45 2.93 3.19
silica 5.25 4.94 5.1
glass 
beads 4.63 4.12 4.38
water 5.67 4.89 5.28

 

Data for catalyzing effect of iron. 

% DESTRUCTION OF TCE 

Media 
with 
Fe 

without 
Fe 

water 98.42 95.52
sand 94.29 93.01
silica 91.84 83.46
glass beads 93.06 82.66
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Oxidation for TCE for all the media at various molar ratios. 

sand10/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 48
final total volume(ml) 40
final total ug of TCE 1920
MW of TCE ug 131359000
final total moles of TCE 1.46164E-05
    
% destruction of TCE 87.2
    
sand10/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 122.9
final total volume(ml) 40
final total ug of TCE 4916
MW of TCE ug 131359000
final total moles of TCE 3.74242E-05
    
% destruction of TCE 67.22666667
    
sand 5/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 90
final total volume(ml) 40
 
final total ug of TCE 3600
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MW of TCE ug 131359000
final total moles of TCE 2.74058E-05
    
% destruction of TCE 76
    
sand 5/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 94
final total volume(ml) 40
final total ug of TCE 3760
MW of TCE ug 131359000
final total moles of TCE 2.86238E-05
    
% destruction of TCE 74.93333333
    
Silica 10/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 48
final total volume(ml) 40
final total ug of TCE 1920
MW of TCE ug 131359000
final total moles of TCE 1.46164E-05
    
% destruction of TCE 87.2
    
Silica 5/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of  TCE 0.000114191
    
    
final (mg/l)) 59
final total volume(ml) 40
final total ug of TCE 2360
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MW of TCE ug 131359000
final total moles of TCE 1.7966E-05
    
% destruction of TCE 84.26666667
    
Silica 10/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 50.6
final total volume(ml) 40
final total ug of TCE 2024
MW of TCE ug 131359000
final total moles of TCE 1.54082E-05
    
% destruction of TCE 86.50666667
    
    
Silica 5/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 112
final total volume(ml) 40
final total ug of TCE 4480
MW of TCE ug 131359000
final total moles of TCE 3.4105E-05
    
% destruction of TCE 70.13333333
    
    
Glass 10/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 32.5
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final total volume(ml) 40
final total ug of TCE 1300
MW of TCE ug 131359000
final total moles of TCE 9.89654E-06
    
% destruction of TCE 91.33333333
    
Glass 10/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 49
final total volume(ml) 40
final total ug of TCE 1960
MW of TCE ug 131359000
final total moles of TCE 1.49209E-05
    
% destruction of TCE 86.93333333
    
Glass 5/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 45.5
final total volume(ml) 40
final total ug of TCE 1820
MW of TCE ug 131359000
final total moles of TCE 1.38552E-05
    
% destruction of TCE 87.86666667
    
Glass 5/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 110
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final total volume(ml) 40
final total ug of TCE 4400
MW of TCE ug 131359000
final total moles of TCE 3.3496E-05
    
% destruction of TCE 70.66666667
    
water 5/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 31.3
final total volume(ml) 40
final total ug of TCE 1252
MW of TCE ug 131359000
final total moles of TCE 9.53113E-06
    
% destruction of TCE 91.65333333
    
water 10/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 23.6
final total volume(ml) 40
final total ug of TCE 944
MW of TCE ug 131359000
final total moles of TCE 7.18641E-06
    
% destruction of TCE 93.70666667
    
water 5/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 31.3
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final total volume(ml) 40
final total ug of TCE 1252
MW of TCE ug 131359000
final total moles of TCE 9.53113E-06
    
% destruction of TCE 91.65333333
    
water 5/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 76.2
final total volume(ml) 40
final total ug of TCE 3048
MW of TCE ug 131359000
final total moles of TCE 2.32036E-05
    
% destruction of TCE 79.68

  

 

 

sand 1/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 125
final total volume(ml) 40
final total ug of TCE 5000
MW of TCE ug 131359000
final total moles of TCE 3.80636E-05
    
% destruction of TCE 66.66666667
    
sand 1/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
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MW of TCE ug 131359000
initial total moles of TCE 0.000114191

    
    
final (mg/l)) 145
final total volume(ml) 40
final total ug of TCE 5800
MW of TCE ug 131359000
final total moles of TCE 4.41538E-05
    
% destruction of TCE 61.33333333
    
    
glass 1/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 143
final total volume(ml) 40
final total ug of TCE 5720
MW of TCE ug 131359000
final total moles of TCE 4.35448E-05
    
% destruction of TCE 61.86666667
    
glass 1/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 191
final total volume(ml) 40
final total ug of TCE 7640
MW of TCE ug 131359000
final total moles of TCE 5.81612E-05
    
% destruction of TCE 49.06666667
    
silica 1/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
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initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 145
final total volume(ml) 40
final total ug of TCE 5800
MW of TCE ug 131359000
final total moles of TCE 4.41538E-05
    
% destruction of TCE 61.33333333
    
silica 1/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 195
final total volume(ml) 40
final total ug of TCE 7800
MW of TCE ug 131359000
final total moles of TCE 5.93793E-05
    
% destruction of TCE 48
    
water 1/1/1   
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 125.57
final total volume(ml) 40
final total ug of TCE 5022.8
MW of TCE ug 131359000
final total moles of TCE 3.82372E-05
    
% destruction of TCE 66.51466667
    
water 1/0/1   
initial (mg/l)) 375
initial total volume(ml) 40
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initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 170
final total volume(ml) 40
final total ug of TCE 6800
MW of TCE ug 131359000
final total moles of TCE 5.17665E-05
    
% destruction of TCE 54.66666667

 

 

Kinetics for TCE oxidation 

sand10/1/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 60.6
final total volume(ml) 40
final total ug of TCE 2424
MW of TCE ug 131359000
final total moles of TCE 1.84532E-05
    
%TCE REMAINING 16.16
    
sand10/1/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 43.4
final total volume(ml) 40
final total ug of TCE 1736
MW of TCE ug 131359000
final total moles of TCE 1.32157E-05
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%TCE REMAINING 11.57333333
    
sand10/0/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 60.2
final total volume(ml) 40
final total ug of TCE 2408
MW of TCE ug 131359000
final total moles of TCE 1.83314E-05
    
%TCE REMAINING 16.05333333
    
sand10/0/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 43.6
final total volume(ml) 40
final total ug of TCE 1744
MW of TCE ug 131359000
final total moles of TCE 1.32766E-05
    
%TCE REMAINING 11.62666667
    
silica10/1/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 59.6
final total volume(ml) 40
final total ug of TCE 2384
MW of TCE ug 131359000
final total moles of TCE 1.81487E-05
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%TCE REMAINING 15.89333333
    
silica10/1/1  30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 43.6
final total volume(ml) 40
final total ug of TCE 1744
MW of TCE ug 131359000
final total moles of TCE 1.32766E-05
    
%TCE REMAINING 11.62666667
    
silica10/0/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 76.2
final total volume(ml) 40
final total ug of TCE 3048
MW of TCE ug 131359000
final total moles of TCE 2.32036E-05
    
%TCE REMAINING 20.32
    
silica10/0/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 60
final total volume(ml) 40
final total ug of TCE 2400
MW of TCE ug 131359000
final total moles of TCE 1.82705E-05
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%TCE REMAINING 16
    
    
glass10/1/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 60
final total volume(ml) 40
final total ug of TCE 2400
MW of TCE ug 131359000
final total moles of TCE 1.82705E-05
    
%TCE REMAINING 16
    
glass10/1/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 45
final total volume(ml) 40
final total ug of TCE 1800
MW of TCE ug 131359000
final total moles of TCE 1.37029E-05
    
%TCE REMAINING 12
    
glass10/0/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 78
final total volume(ml) 40
final total ug of TCE 3120
MW of TCE ug 131359000
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final total moles of TCE 2.37517E-05
    
%TCE REMAINING 20.8
    
glass10/0/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 63
final total volume(ml) 40
final total ug of TCE 2520
MW of TCE ug 131359000
final total moles of TCE 1.91841E-05
    
%TCE REMAINING 16.8
    
water10/1/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 18.8
final total volume(ml) 40
final total ug of TCE 752
MW of TCE ug 131359000
final total moles of TCE 5.72477E-06
    
%TCE REMAINING 5.013333333
    
water10/1/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 1
final total volume(ml) 40
final total ug of TCE 40
MW of TCE ug 131359000
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final total moles of TCE 3.04509E-07
    
%TCE REMAINING 0.266666667
    
water10/0/1 15 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 21.5
final total volume(ml) 40
final total ug of TCE 860
MW of TCE ug 131359000
final total moles of TCE 6.54694E-06
    
%TCE REMAINING 5.733333333
    
water10/0/1 30 MIN 
initial (mg/l)) 375
initial total volume(ml) 40
initial total ug of TCE 15000
MW of TCE ug 131359000
initial total moles of TCE 0.000114191
    
    
final (mg/l)) 1.7
final total volume(ml) 40
final total ug of TCE 68
MW of TCE ug 131359000
final total moles of TCE 5.17665E-07
    
%TCE REMAINING 0.453333333
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