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Abstract

Noninterference is a technique to formally capture the intuitive notion of infor-

mation flow in the context of security. Information does not flow from one agent to

another if the actions of the first have no impact on the future observations of the sec-

ond. Various formulations of this notion have been proposed based on state machines

and the removal of actions from action sequences. A new model known as the con-

current game structure [CGS] has recently been introduced for analysis multi-agent

systems. We propose an alternate formulation of noninterference defined for systems

modeled by CGS’s and analyze the impact of the new approach on noninterference

research based on existing definitions.
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1 Introduction

Confidentiality

The study of security is composed of three main areas: integrity deals with establishing

trust over data and resources, availability refers to the problem of maintaining the

ability to use data and resources as desired, and confidentiality involves ensuring data

and resources are secret or concealed [Bis03]. Confidentiality is becoming more and

more important amidst such widespread concerns as identity theft and the increasing

prevalence of information and the internet.

Initial work in confidentiality has been done by Bell and LaPadula [DL73, BL76]

with the intent for securing military systems where access to information is of prime

concern. These works focused on access control or techniques intended as means of

enforcing confidentiality and has been applied to the design of a system by Millen

[Mil76]. Access control pervades today’s world from security in operating systems to

content restrictions on media devices.

Central to the work on the military systems and confidentiality in general is infor-

mation and access to this information by various entities. The military classification

scheme studied by Bell and LaPadua consists of several tiers (see Figure 1) of infor-

mation and clearances. Access control in such an example would need to ensure, for

example, that an entity with secret clearance is allowed to access only the information

with secret or lower classification (and thus prevent access to top-secret information).

An alternative and perhaps more intuitive description of the confidentiality goals of a

system is based on information flow, that is, information can flow only from lower clas-

sification levels to higher ones and never the other way around. It is noted by McLean

[McL85] that access control techniques often fail to capture such intended (or intu-

itive) notions of security. The problems arise from covert channels [RMMG01] or not

easily perceptible flows of information that seem to lie beyond the scope of an access

control policy.
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Noninterference

Noninterference is intended to formally model the intuitive notion of information flow.

It has been first formulated by Goguen and Meseguer [GM82], building upon the work

of Feiertag, Levitt, and Robinson [FLR77], Feiertag [FLR77], and Rushby [Rus82].

In most basic terms, noninterference states that agent a1 does not interfere with agent

a2 if and only if no action performed by a1 will have any effect on what a2 observes.

If agent a1 does not interfere with a2 then “no information has leaked” from a1 to a2.

Defining noninterference requires an explicit model of a system, agents, and their

actions. Approaches derived from Goguen and Meseguer’s initial work define a system

in terms of state machines and include provisions for agent actions and outputs to be

“observed” after each action. Noninterference in such a model is formulated via runs

of the state machine (or sequences of actions) and the purging of such runs. Having a

run r1 consisting of a sequence of actions by various agents being modeled, purging

the actions of a certain agent results in a run with those certain actions removed. An

agent a1 is then said to not interfere with a2 if purging a1’s actions from any run does

not change what a2 observes (see Section 2 for more details).

An information flow policy is a specification of allowable information flow be-

tween agents as a binary relation between them. The policy based on the intended

information flow in a military classification scheme (see Figure 1) as described ear-

lier demonstrates that information from higher levels cannot leak down to lower ones.

Such a policy is an example of a multi-level policy and has the property that the relation

specifying allowable information flow is transitive.

top secret

secret

confidential

unclassified

Figure 1: Information Flow in Multi-Level Security
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There are cases in which multi-level policies are insufficient. Rushby notes that

the treatment of noninterference as described by Goguen and Meseguer in [GM82] is

incapable of dealing with polices that are not transitive such as channel control (see

Figure 2) [Rus81]. The example illustrates a case in which information can flow from

in to out but only if it flows through encrypt. Such non-transitivity is initially noted by

Goguen and Meseguer in [GM84]. A treatment of the issue is presented by Haigh and

Young [HY87] and later by Rushby [Rus92]. The work on channel control has since

then been continued by Pinsky [Pin95], Roscoe and Goldsmith [RG99], and Backes

and Pfitzmann [BP03].

in encrypt out

Figure 2: Information Flow in Channel Control

An important part of noninterference formulations is the establishment of an un-

winding theorem. Such a theorem is intended to provide a means to show a system

or model satisfies the restrictions of a noninterference policy purely based on local

properties (i.e. transitions in the case of a finite state machine model). The utility of

unwinding theorems lies in the fact that noninterference is defined in terms of state ma-

chine runs which are considerably harder to deal with than state transitions. Goguen

and Meseguer [GM84] present the theorem for their initial noninterference formula-

tion and Haigh and Young [HY87] extend it to channel control policies. Haigh and

Young’s work was later revised by Rushby [Rus92].

Noninterference and security properties in general are often known to exhibit the

composition paradox. Two secure (by notion of noninterference) programs, when

composed, might result in an insecure program. Various alternate information flow for-

mulations have been proposed to address this issue including forward correct-ability

[JT88], restrictiveness [McC90], nondeducibility on strategies [WJ90], and the perfect

security property [ZL97].

3
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Figure 3: Non-Interference Literature Overview

Concurrent Game Structures

A novel tool for the analysis of open systems has been described by Alur, Henzinger,

and Kupferman [AHK98] which explicitly models actions taken by different agents.

A concurrent game structure [CGS] models agents with each contributing to the ac-

tion at each transition (that is, concurrently) and is central to Alur, Henzinger, and

Kupferman’s definition of alternating-time temporal logic which they create for use in

specification and model-checking of distributed system properties. Concurrent game

structures are especially well suited for modeling open systems in which the environ-

ment and its effects can be modeled by its contribution to transitions of the system

along with the contributions of other agents.

We propose a noninterference definition for systems modeled by CGS’s with the

use of equivalences on runs as opposed to purging of runs. We propose to replace the

4



assertion that the removal of noninterfering actions has no effect with the assertion that

two action sequences that are indistinguishable by a certain agent have indistinguish-

able outcomes (see Section 2 for more details). To complete the formulation we also

propose an unwinding theorem in this new context and consider the impact of our new

formulation on previous investigations of noninterference on non-transitivity.

Motivation

The existing formulations of noninterference that we present in this thesis (that of

Goguen & Meseguer and that of Rushby) both establish noninterference as a statement

relating the outputs to agents across a pair of runs of state machines (specifically a run

and the same run purged of certain actions). There is an overarching intuition over such

formulation: agents should not distinguish between observations of a system if they

cannot distinguish between runs that got them to those observations. A run and the

run purged are examples of action sequences which are meant to be indistinguishable

for some agent and the outputs on the last states (or upon transitions as in Rushby) are

examples of indistinguishable observations (that is if they are equal for both runs).

We believe that this is the core of noninterference and the formulation we present

in our thesis is based directly on this realization. We will not deal (in general) with

purging of runs or outputs at states. Instead we will make use of indistinguishability

of runs of a system and indistinguishability of states of that system.

In Section 2.4.3 we will present some issues with the handling of intransitivity

in existing noninterference formulations (specifically Rushby’s). We believe that the

intransitive purge (Rushby’s solution to the issues) is a patch for the noninterference

formulation based specifically on purge. Purging runs translates to removing vari-

ous actions performed in those runs which results in a completely different action se-

quence traversing different states. We believe that this is what leads to the requirement

(of Goguen & Meseguer and Rushby formulations of state machines) that transition

functions need to be totally defined (for every action at every state). This in turn pre-

vents the systems from concisely modeling situations in which there is some correct

sequence of events but more importantly some sequences just cannot happen.

5



If we allow ourselves to conclude that the cause of the problem is purge we can

tackle the issue at its root. That is, we could perhaps sidestep the need for special

considerations of intransitive policies if we can define action distinguishability in a

nondestructive way, allowing us, in turn, to not require total transition functions, and

thus allowing us to model response-like systems (that specify validity of runs) natu-

rally within the state machine itself. This is exactly what we present in this thesis.

6



2 Background

modeling

2.1

state

2.1.1
dynamics

2.1.2

state machine

2.2

agents

2.1.3

outputs

2.1.4

G+M state
machine

2.3.1

Rushby state
machine

2.4.1

policy

2.4.2

intransitive
policy

2.4.3

G+M purge

2.3.2
Rushby purge

2.4.2

ipurge

2.4.3

action distin-

guishability

output distin-

guishability

noninterference
2.3.2

2.4.2

concurrent
action

2.5

concurrent
game structures

2.5

security

2.1.3

confidentiality

2.1.4

Figure 4: Background Concepts Dependency Graph

We begin with a quick overview of modeling as an introduction to the ideas pre-

sented further in this section. To demonstrate the relationship between our work and

the originating works on noninterference we present here first the initial noninterfer-

ence formulation of Goguen & Meseguer and a second, slightly refined, noninterfer-

ence formulation of Rushby. We also present the concurrent game structure back-

ground necessary to introduce our noninterference work and provide some motivation

for the use of concurrent game structures.
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2.1 Modeling

Rarely is one capable of reasoning about real world systems in their full detail and

intricate complexity. Even if it were possible we are most often interested in only a

fraction of the system. We thus create models and factor in only the details that we

need to reason about to make needed conclusions. As the first ingredient of the model,

a sufficient description of the system or its state is required. If our system changes

over time or we need to reason about such changes, we need to model the change as

well. In many modeling tasks we also need to consider entities that are responsible for

the changes in the system and finally when reasoning about issues of confidentiality, it

is necessary to model visibility of information to the acting entities.

2.1.1 State

Every bit of information necessary to reason about a system comprises a state. If we

are modeling a simple algorithm, we might consider a set of variable=value pairs as

the state. Sometimes the intent of our model lets us abstract away facts that are not

especially necessary to the questions we want to ask of the model. For example if

we only care whether a certain integer variable is odd or even, we have no need to

consider its value in the state but rather whether it is odd or even. Reasoning about

systems in this manner has been widely studied in the field of abstract interpretation

[CC77]. This basic notion is present in every single model described in this section.

2.1.2 Dynamics

If we need to reason about changes of the system, we must model this change. Such

changes are referred to as transitions and are (in all models in this document) are given

labels.

The state and dynamics modeled in this thesis are represented by state machines.

Noninterference, however, require is to consider agents and outputs. The basics of the

state machine are carried over to the more structured models described further in this

section.

8



2.1.3 Agents

In the area of security, almost every issue depends on what is allowable (or observable)

for a certain entity and not for another. What use of security is there if the world

exhibits only a single entity? Thus we consider agents. If those agents contribute

to the transitions of the model we also model the association between the transitions

and the agents. In the model of Goguen & Meseguer (see Section 2.3.1), agents are

provided in the form of a set of users. The associated between state transitions is made

by attaching a user to each transition. In the model of Rushby, agents are represented

in the form of a set of security domains with each domain being associated with a set

of transition labels.

2.1.4 Outputs

The issue of confidentiality (of which noninterference is an example) deals centrally

with what an agent sees. To aid in such reasoning about the observations made by

agents, we model the outputs to agents. Although the issue here is what an agent ob-

serves and not necessarily what is output, we adapt the terminology of outputs as it

is widely used in the noninterference literature. The representation of outputs varies.

In the model of Goguen & Meseguer (see Section 2.3.1), outputs are provided to each

agent at each state. In the model of Rushby (see Section 2.3.1), the outputs are pro-

vided at transitions only to the agent performing the transition. In our own noninter-

ference formulations output is described by distinguishability relations.

Example 1 (Bird-song Propagation). We wish to model the propagation of a bird song

among several (or three in our simple example) birds. We theorize that the nature of

the propagation is of the following manner:

• Each bird except one merely copies what it hears from one other bird. Such birds

are attuned to the songs of their one companion who they copy and hear no one

else. The one exceptional bird is the one exhibiting the creative capacity to sing

the original bird song.

• The mimicking birds are sometimes impatient and will repeat notes of the song
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they hear without having heard new notes but they will never repeat a note that

differs from the one they last heard. Also, each bird initially assumes having

heard a dull note if they have not heard anything yet.

We derive elements of a simple model:

• We will call the creative bird, a and the mimicking birds as b and c. We assume

that b is attuned to a’s singing and c is attuned to b’s. These comprise our agents.

• We will consider only two bird song notes, 0 and 1 where 0 refers to the dull

note. We will also label the act of bird x singing note n as xn. Thus bird b

singing note 1 is represented by b1.

• We will represent our state as XY where X,Y ∈ {0, 1}. The X represents a’s last

sung note and Y represents b’s. We do not care what c sings since no one is

listening to him.

The dynamics of the model are of the following nature:

• Bird a sings an original song which is exhibited by actions a0 or a1. If the world

is on state XY (X,Y ∈ {0, 1}) the action ax causes the world to transition to state

xY .

• Bird b sings the song he hears from a which is represented by the X component

of state XY . If the world is in state XY , the action by can only occur if X = y and

causes the world to transition to state Xy.

• Bird c sings the song he hears from b which is represented by the Y component

of state XY . If the world is in state XY , the action cz can only occur if Y = z and

does not cause the world to change state.

The idea of an output is exhibited in the example not only in the state but can also

be clearly seen in the original description of the situation which we are modeling. That

is, each bird hears the notes of one other bird. Such an output is indirectly present in

the state and dynamics. We see that bird b hears the X component of state XY and is

only capable of singing a note if it has heard it recently from a.

This example is elaborated further in the various models throughout this section.
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2.2 State Machines

The nature of our work is based on the dynamic progression of a system modeled

in a sufficiently simple manner for manipulation and reasoning. The models used

throughout this thesis all derive from the very basic state machines consisting of states

and transitions (dynamics). We describe these here.

Definition 2 (State Machine). A state machine S = 〈Q, q0,Σ, δ〉 is composed of

• A set of states Q and an initial state q0 ∈ Q.

• A set of actions (or alphabet) Σ.

• A transition function δ : Q × Σ→ Q.

The dynamics of the machine involve starting at some initial state (q0) and making

transitions to other states as specified by the transition function δ.

Definition 3 (State Machine Run). A run r in system S is a (valid) finite sequence

actions. That is r ∈ R(S ) ⊆ Σ∗ where R(S ) is the set of runs of state machine S . Note

that although a run technically composed only of actions, we can reason about states

at various points in the run. We assume that the actions are applied at successive

states starting with q0 following transitions defined by the δ function. We will often

write runs in the form q0, a0, q1, ..., an−1, qn where qi are states and ai are actions

with the property that δqi, ai = qi+1. Note that only valid runs can be written in

this way whereas arbitrary action sequences cannot necessarily satisfy the condition

δqi, ai = qi+1. We will write dre as the last state reached by the run r.

Example 4 (Bird-song Propagation as a State Machine). Consider a state machine S

for the Bird-song Propagation model (as in Example 1) as follows.

Q = {00, 01, 10, 11}

The states of our system correspond to the last notes sung by birds a and b. That

is, state XY represents a state in which a’s last note was X and b’s last note was Y .

q0 = 00
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The initial state corresponds to the “initial recollection” of the dull note by every

bird as described in Example 1.

Σ = {a0, a1, b0, b1, c0, c1}

Our alphabet of transitions correspond exactly to the bird-song notes. b0 represents

bird b singing note 0. Note, however, that agents (or birds) are not modeled here. We

have to wait for a more structure representation to handle the agents (as in the model

of Goguen & Meseguer in Section 2.3.1).

00start

01

10

11

a1

a0

a1

a0

b0 b1

a0, c0

a0, c1

a1, c0

a1, c1

Figure 5: State Machine Example

And δ is defined according to Figure 5. Circles in our figure denote states. An

arrow labeled with “start” points to the starting state q0. An arrow from state q to state

q′ labeled with actions s1, ..., sn defines δ(q, si) = q′ for all i ∈ {1, ..., n}.

We note that not every action sequence in Σ∗ is a run, or specifically R(S ) , Σ∗. In

our example we see that a1, b1 is a run but a0, b1 is not. We could write the first of the

runs as 00, a1, 10, b1, 11 but for the second run, we see that there is no transition labeled

b1 from state 00 which is reached after taking action a0. A high-level characterization

of the runs of our example would be of the form: b0 can be taken only if the last

ai action was a0 and similarly b1 can only be taken if the last ai action was a1 – a

restatement of the Bird-song Propagation dynamics.

12



2.3 Goguen & Meseguer

The noninterference formalization as described by Goguen & Meseguer makes use of

more structure placed upon the standard state machine. Specifically, to reason about

noninterference it is first necessary to include some representation of agents or users

along with an association between actions (transitions) and those agents. We describe

these additions first and then describe the noninterference definition.

2.3.1 State Machine

Definition 5 (Goguen & Meseguer’s State Machine). A state machine S = 〈U, S ,C,Out, out, do, s0〉

is composed of

• A set of users U.

• A set of states S .

• A set of state commands C.

• A set of outputs Out.

• An output function out : S × U → Out.

• A (total) do function do : S × U ×C → S .

• An initial state s0.

The definition describes a fairly standard notion of a state machine with some

additional structure. We have transitions composed of two portions (a user and a com-

mand) instead of the usual generalized transition which provide a means of associating

users with transitions. We could reduce the such transitions by setting Σ in our simple

state machine to be equivalent to U×C. The transition function is renamed to do (from

the original δ). Also present is an output function necessary for formulation of distin-

guishability in noninterference. Finally the transition function is defined completely,

that is, for every state and every user/command pair. This makes the definition of a

run less involved.

Definition 6 (Goguen & Meseguer’ State Machine Run). A run r in system S is a

finite sequence of user and state command pairs. That is r ∈ R(S ) = (U ×C)∗. We
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assume that the user/command pairs are applied at successive states starting with s0

following transitions defined by the do function. We will write dreu as the output to

user u at the last state of run r or specifically dreu = output(dre, u).

Example 7 (Bird-song Propagation as a Goguen & Meseguer State Machine). Consider

a state machine S as follows.

U = {a, b, c}

S = {00, 01, 10, 11, ε}

s0 = 00

C = {0, 1}

Out = {0, 1, ε}

output : 〈xy, a〉 7→ 0 for every x, y ∈ {0, 1}

〈xy, b〉 7→ x for every x, y ∈ {0, 1}

〈xy, c〉 7→ y for every x, y ∈ {0, 1}

〈ε, u〉 7→ ε for every user u

00start

01

10

11 ε

〈a, 1〉
〈a, 0〉

〈a, 1〉
〈a, 0〉

〈b, 0〉 〈b, 1〉

〈a, 0〉, 〈c, 0〉

〈a, 0〉, 〈c, 1〉

〈a, 1〉, 〈c, 0〉

〈a, 1〉, 〈c, 1〉

Figure 6: Goguen & Meseguer State Machine Example
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And do is defined according to Figure 6. The gray dotted arrow denotes all the

transitions that are necessary to make do total. Also, the x denotes any command.

Having the additional user and output structure in place we can provide a more

satisfying interpretation of the example. That is we see that user a performs either 0 or

1 and user b observes (via output) a’s last action and repeats it. We could say no such

things in the basic state machine system we described in Example 4. User c observes

what b performed last. Any behavior outside this interpretation leads to the special

“error” state ε which exists merely to make do total.

The fact that do must be defined for every state, action, and user prevents us from

defining the validity of runs directly. We have, as an alternative, defined a special

error state ε and let every action that lies outside of the specification of the Bird-song

Propagation example to transition the system to the error state.

2.3.2 Noninterference

The Goguen & Meseguer definition of noninterference is based on purging commands

from runs.

Definition 8 (Goguen & Meseguer’ Purge). Given a run r, pG (r) is a run with the

commands of agents in G purged. Specifically,

pG (ε) = ε

pG (〈u, c〉.r) =

 〈u, c〉.pG (r) if u ∈ G

pG (r) otherwise.

For example if we have a run r = 〈a, c1〉, 〈b, c2〉, 〈b, c3〉, 〈c, c4〉, 〈b, c5〉, 〈a, c6〉, ...

and purge it of a and c’s actions, we will have p{a,c} (r) = 〈b, c2〉, 〈b, c3〉, 〈b, c5〉, ... (see

Figure 7). Note that the resulting run is just as valid as the original since every run

is valid in the Goguen & Meseguer state machine model. Also note that there is no

correspondence between the states visited in the original run and the purged run except

for the first state which is always q0.
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p{a,c}

q0 q1 q2 q3 q4 q5 q6

q0 q′2 q′3 q′5

〈a, c1〉 〈b, c2〉 〈b, c3〉 〈c, c4〉 〈b, c5〉 〈a, c6〉 · · ·

〈b, c2〉 〈b, c3〉 〈b, c5〉 · · ·

× × ×

Figure 7: Purge

Definition 9 (Goguen & Meseguer’s Noninterference). A set of users G ⊆ U does

not interfere with a set of users G′ ⊆ U, or G��⇒G′ iff for every run r ∈ (U ×C)∗ and

every user u ∈ G′, we have

dreu = dpG (r)eu

If not G��⇒G′ then G does interfere with G′ or G ⇒ G′. 1

Example 10 (Interference in Bird-song Propagation as a Goguen & Meseguer State Machine).

Consider the system described in Example 6. We can make the following interference

assertions.

• {a} ⇒ {b} as demonstrated by run 〈a, 1〉, 〈b, 0〉. That is:

p{a} (〈a, 1〉, 〈b, 0〉) = 〈b, 0〉

The last state in the original run is ε at which the output to b is ε. The last state

in the purged run is 00 and the output for b there is 0. The outputs do not match

and hence the run is sufficient to prove that {a} ⇒ {b}.

• {a} ⇒ {c} as demonstrated by run 〈a, 1〉, 〈b, 1〉 which purges to 〈b, 1〉.

• {a} ⇒ {b, c}. This is equivalent to the first two assertions combined.

• {b} ⇒ {c} via run 〈b, 1〉 which purges to the empty run ε.

1It may seem unusual to define the lack of interference and from that define its negation, the presence of

interference but we note that we the same approach is taken by Goguen & Meseguer.
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• {a, b} ⇒ {c} via the same run 〈b, 1〉.

• {c}��⇒{a, b}. We see that all of the actions performed by user c do not change the

state of the machine. Removing such actions would therefore have no effect on

the output as seen by the other two agents. This also lets us conclude {c}��⇒{a}

and {c}��⇒{b}.

2.4 Rushby

We present here the formalization derived from Rushby in [Rus92] as it is in many

respects cleaner than the original definitions of Goguen & Meseguer. We introduce

slight notation differences to allow for an easier transition to the second system defi-

nition further in this document. Rushby’s formulation is equivalent to that of Goguen

& Meseguer [Rus92] but allows for easier formulation of intransitive purge presented

further in the section.

2.4.1 State Machine

Definition 11 (Rushby’s State Machine). A state machine system is composed of

• a set of states S and an initial state s0 ∈ S ,

• a set of actions A,

• a set of outputs O,

• a step function, step : S × A→ S , and

• an output function, output : S × A→ O.

The actions in this model are inputs from the usual definition of an automata and

the step function corresponds to the transition function. The model also includes out-

puts. An agent that performs a certain action at a certain state observes an output as

encoded in the output function. This is in contrast to the Goguen & Meseguer state

machines in which the output was observed by each user at each state. In further

contrast, note that the users are missing from this definition. These are replaced by

security domains later.

The function run : S × A∗ → S is defined inductively from the step function.
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2.4.2 Noninterference

Definition 12 (Security Domain). We define security domains D and associate each

action with a domain by a function dom : A → D. The domain here is the equivalent

of the user in the Goguen & Meseguer state machine.

Note that the use of security domains exhibits differences with the use of users

as in Goguen & Meseguer. We no longer have actions associated with a user at each

transition. We have each action associated with a user (domain) globally (over all

transitions).

Definition 13 (Noninterference Policy). A noninterference policy is a reflexive rela-

tion on D and denoted by{. Also, we denote��{ as complement of{ or (D×D)−{.

Policies serve to capture the intuitive notion of information flow. Examples of such

policies are discussed in Section 1 and include multi-level security (see Figure 1) and

channel control (see Figure 2). The formalism is of course general enough to allow

a range of other security needs such as isolation in which agents are not allowed to

communicate.

Definition 14 (Rushby’s Purge). Given a security domain v ∈ D and an action se-

quence α ∈ A∗, define pv (α) as the sequence with actions associated with any domain

u with v��{u removed. That is,

pv (ε) = ε

pv (a.α) =

 a.pv (α) if dom(a){ v

pv (α) otherwise.

Definition 15 (Rushby’s Policy Satisfaction). A system is secure for policy { (or

satisfies the policy) if

output(dre, a) = output(dpdom(a) (r)e, a)

Example 16 (Bird-song Propagation as a Rushby State Machine). Consider the state

machine defined as follows:
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S = {00, 01, 10, 11, ε}

s0 = 00

A = {a0, a1, b0, b1, c0, c1}

O = {0, 1, ε}

output : 〈xy, az〉 7→ 0 for every x, y, z ∈ {0, 1}

〈xy, bz〉 7→ x for every x, y, z ∈ {0, 1}

〈xy, cz〉 7→ y for every x, y, z ∈ {0, 1}

〈ε, x〉 7→ ε for every action x

00start

01

10

11 ε

a1

a0

a1

a0

b0 b1

a0, c0

a0, c1

a1, c0

a1, c1

Figure 8: Rushby State Machine Example

And step is defined according to Figure 8. Also let us define security domains and

a security policy.
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D = {a, b, c}

dom : ax 7→ a for every x ∈ {0, 1}

bx 7→ b for every x ∈ {0, 1}

cx 7→ c for every x ∈ {0, 1}

{ = {(a, b), (b, c)} (see Figure 9)

a b c

Figure 9: A Noninterference Policy

We can quickly see that our system does not satisfy the policy { by presenting

run r = a1, b1. We see r′ = pc (r) = b1. The last state in r is 11 whereas the last state

in r′ is ε. Finally 0 = output(00, x) , output(ε, x) = ε for every domain x. If we

listen to our intuitive perspective on the machine, we might disagree with the verdict.

The machine exemplifies a situation in which domain a takes actions 0 or 1 which

are “observed” by and repeated by domain b and then observed by domain c. In this

regard we could expect the information flow depicted in the policy in Figure 9 to be

exemplified by the example system. The issue here is the fact that our example policy

was not transitive. Special consideration is given to policies of this form.

2.4.3 Non-transitivity

The policy in Figure 9 is not transitive. That is, a��{c even though a ⇒ b and b ⇒ c.

The example was designed to model a situation in which agent b listens to agent a and

repeats what it hears. It does not seem to make sense for b to repeat something it did

not hear. The specifications of a state machine for use in Rushby’s (and Goguen &

Meseguer) noninterference requires is to define state transitions for such nonsensical

actions. We did so casually by sending the system into an error state by such tran-

sitions. Being in an error state, however, was “observable” by every agent and thus

20



agent a is capable of interfering with c by virtue of not taking actions (ie, not saying 1

before b utters a 1 in spite of the situation being modeled).

Such problems are addressed by modifying the purge function. Intuitively we do

not purge actions of an agent if they could be allowed to influence another agent via

some intermediate agents. The function sources is first defined to represent the agents

whose actions are not to be deleted at various points in a run.

Definition 17 (Sources). A function sources : A∗ × D → P(D) identifies actions in a

run which should not be removed by purge.

sources(ε, u) = {u}

sources(a.α, u) =

 sources(α, u) ∪ {dom(a)} if ∃v with v ∈ sources(α, u) and dom(a){ v

sources(α, u) otherwise

Using this, an alternate definition of purge is provided:

Definition 18 (Rushby’s Intransitive Purge). Given a security domain v ∈ D and an

action sequence α ∈ A∗, define ipv (α) as the sequence with actions associated with

any domain u with u not in the sources for v at the various points in the run removed.

That is,

ipv (ε) = ε

ipv (a.α) =

 a.ipv (α) if dom(a) ∈ sources(a.α, u)

ipv (α) otherwise.

With the purge definition for intransitive policies as above we can see that the

problematic run from Example 16 is no longer an issue. That is a1, b1 purges for c

to a1, b1 and thus the output to c as a resolution of an action after the run and the

purged run are the same. The solution to the in-transitivity presented here is, however,

problematic on an intuitive level. The definition of sources lets us prevent the purging

of actions that could have influenced future observation of an agent but not necessarily

did influence. In our example, as long as b performs any action after an action a, this
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action will not be purged. What if b’s actions are not at all based on a’s actions? This

problem is especially apparent in the next example:

Example 19 (Non-Transitive Interference Without Intermediate Interference). Consider

a Rushby state machine S of the following form:

S = {s, 1, 1′, 2, 2′}

s0 = s

A = {a1, a2, b, c}

O = {1, 2, ε}

output : 〈x, az〉 7→ ε for every x ∈ S , and every z ∈ {1, 2}

〈x, b〉 7→ ε for every x ∈ S

〈x, c〉 7→ ε for every x ∈ {s, 1, 2}

〈1′, c〉 7→ 1

〈2′, c〉 7→ 2

sstart

1 2

1′ 2′

A − {a1, a2}

A − {b} A − {b}

A A

a1

a2

b b

Figure 10: Intransitivity State Machine Example

And step is defined according to Figure 10. Also let us define security domains.
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D = {a, b, c}

dom : ax 7→ a for every x ∈ {1, 2}

b 7→ b

c 7→ c

The high-level workings of this system are thus: no one receives any distinguish-

able outputs except domain c and for c to receive different outputs, domain b must first

perform an action following an action of domain a. If a does a1 then b will “enable” c

to see this fact after performing action b but no sooner (similarly for a2).

a b c

(a)

a b c

(b)

Figure 11: Two Noninterference Policies

We can easily see that both policies in Figure 11 are satisfied by this system but this

fact is somewhat unsettling. Firstly, Figure 11a would suggest to us that no information

is flowing from a to b (specifically that a does not interfere with b). Yet Figure 11b tells

us that information is flowing from a to c through b (or specifically that a interferes

with c through b). How can we accept both of these statements at the same time?

2.5 Concurrent Game Structures

Our notion of noninterference is centered on systems modeled as concurrent game

structures. The definition of a concurrent game structure below is an adaptation from

one described in [AHK98].

Definition 20 (Concurrent Game Structure). A concurrent game structure [c.g.s.]

is a tuple S = 〈A,Q, q0, Act, act, δ〉:

23



• A set A of agents 2. We write the agents of A as a1, a2, ..., ak. We will also often

use k to denote the number of agents ( |A| ).

• A set Q of states and initial state q0.

• A set Act of actions 3.

• For each agent a ∈ A and each state q ∈ Q, a set of possible actions act(q, a) ⊆

Act for that agent at that state. Also, for any state q ∈ Q, a move vector at q is

a tuple


ia1
...

iak

 (sometimes we will write it as
[
ia1 ,··· ,iak

]
instead) with ia j ∈ act(q, a j)

for every agent a j ∈ A.

– We denote the set of possible move vectors at state q ∈ Q as D(q) =

act(q, a1) × act(q, a2) × · · · × act(q, ak).

• For any state q ∈ Q and a move vector [i1,...,ik] ∈ D(q), the next state resulting

from the combined actions of all the agents as represented by the move vector is

δ(q, [i1,...,ik]) ∈ Q.

Definition 21 (Concurrent Game Structure Run). A run of a c.g.s. S is a finite se-

quence of move vectors î0, î1, · · · , ˆin−1. A valid run is one in which the move vectors

are applied (and thus applicable) to successive states starting with the initial state q0.

We will often write valid runs as sequences of move vectors and states of the form

q0, î0, q1, î1, · · · , ˆin−1, qn. The fact that states are present here is merely a book-keeping

measure as the information presented by them is completely redundant. The validity of

a run written in this way is demonstrated by the fact that î j ∈ D(q j) and q j+1 = δ(q j, î j)

for all j.

Oftentimes it is cumbersome to specify concurrent game structures and/or their

transitions. We use several shorthand notations for transition specification and a cross

2This is a slight departure from the original definition of a concurrent game structure in [AHK98] which

merely notes the existence of a certain number of agents k. We will require in our later discussion the

association between agents in two different c.g.s.’s. For this reason we specify agents as a set.
3This is yet another departure from the original definition and is made for the same reason: the need to

equate actions of agents at different points in a run or across multiple runs. The original definition merely

notes that each agent has a certain number of actions at each state.
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product construction for specification of c.g.s.’s. These are described in Appendix B

and Appendix C respectively.

2.5.1 State Machines as Concurrent Game Structures

Note that a concurrent game structure is a more elaborate state machine. We can think

of a usual state machine (such as the one described for Goguen & Meseguer’s non-

interference) as a (severely) limited concurrent game structure. Further in our thesis

we will demostrate reductions of noninterference and systems specified in Goguen &

Meseguer’s model to those specified in concurrent game structures and our own non-

interference formulation. The first step in the reduction will be the representation of

Goguen & Meseguer state machines as concurrent game structures which we demon-

strate here. The reductions presented here and further in the thesis include:

• R0 - From a state machine to a concurrent game structure.

• R1 - From a Goguen & Meseguer state machine (ignoring outputs) to a concur-

rent game structure.

• R′1 - From a Goguen & Meseguer state machine to a concurrent interference

system (Definition 40).

State Machines without Agents

Remark 22. A state machine with states and labeled transitions is a concurrent game

structure with a single agent. We demonstrate this via a reduction R0 to restructure

state machines into concurrent game structures.

Definition 23 (State Machine to Concurrent Game Structure Reduction). Given a

state machine S = 〈Q, q0,Σ, δ〉, the reduction of R0(S ) is a concurrent game structure

S ′ = 〈A,Q, q0, Act, act, δ′〉 defined as follows:

• The set of states Q is the same as in the state machine.

• The initial state q0 is the same as in the state machine.

• The set of agents includes only a single agent a. That is A = {a}.
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• The set of actions Act is equal to the set of actions Σ.

• The set of actions available to a at state q is exactly the set of actions available

at q in S . That is, act(q, a) = {c | δ is defined for (q, c)}.

• For any state q ∈ Q and action c available at q, δ′(q, [c]) = δ(q, c).

We see that the difference between a state machine and a single-agent concurrent

game structure is merely the notation.

Example 24 (State Machine to Concurrent Game Structure Reduction). Let us demon-

strate Example 4 as a concurrent game structure via an R0 reduction.

A = {a}

Q = {00, 01, 10, 11}

q0 = 00

Act = {a0, a1, b0, b1, c0, c1}

The specification of act and δ can be derived from Figure 12.

00start

01

10

11

[
a1
]

[
a0
]

[
a1
]

[
a0
]

[
b0
] [

b1
]

[
{a0, c0}

]

[
{a0, c1}

]

[
{a1, c0}

]

[
{a1, c1}

]

Figure 12: Concurrent Game Structure Version of Example 4
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State Machines with Agents

Having state machines with agents (like the Goguen & Meseguer type), we can per-

form a slightly more involved reduction to concurrent game structures. Additionally,

in this case, we need to establish some further correspondence between the original

machine and the concurrent game structure to aid us in reasoning about the relation-

ship of noninterference assertions across these two models further in this thesis.

Remark 25. A state machine with states and transitions labeled with actions and

agents is a concurrent game structure with multiple agents but where valid move vec-

tors are those in which only one agent performs an action other than the designated

null action. We demonstrate this via reduction R1.

Definition 26 (State Machine with Agents to Concurrent Game Structure Reduction).

Given a state machine (of the Goguen&Meseguer type) S = 〈U, S ,C,Out, out, do, s0〉,

the reduction R1(S ) is a concurrent game structure S ′ = 〈A,Q, q0, Act, act, δ〉 defined

as follows:

• The set of agents A is equal to the set of users U.

• The set of states Q is equal to set of states S with one additional “null” state

which we write as ε here.

• The initial state q0 is equal to the initial state s0.

• The set of actions Act is equal to the set of commands C with one additional

action ε.

• All actions in Act are available for each agent in every state. That is, act(q, a) =

Act for every q ∈ Q and every a ∈ A. This assumes that the transition function

in the original machine was defined for every state, user, and command.

• If do(q, 〈ai, c〉) = q′ then δ(q, [ε,..,c,...,ε]) = q′ where [ε,...,c,...,ε] denotes a move

vector in which agent ai (the ith agent) takes action c and every other agent does

ε. For every other move vector î, we have δ(q, î) = ε.
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Example 27 (State Machine with Agents to Concurrent Game Structure Reduction). Let

us demonstrate Example 7 as a concurrent game structure using the reduction R1. We

designate the null state by λ since the original already had a state named ε.

A = {a, b, c}

Q = {00, 01, 10, 11, ε, λ}

q0 = 00

Act = {0, 1, ε}

act : 〈x, y〉 7→ Act for every state x ∈ Q and every y ∈ A

The specification δ can be derived from Figure 13. Note that the only transitions

leading into state λ are those that have multiple non-null actions in the move vectors

while those leading to ε are those that were specified by the original state machine’s

transition function.

The definition of concurrent game structures forced us to add an additional state

and a special null action. It is not as clear whether the reduction is completely valid.

The validity, however, can only be argued in respect to the uses of the two models.

This, for our thesis, is the specification of noninterference assertions. We develop here

a few definitions that will aid us in our later correlations between noninterference as-

sertions across the state machine and the corresponding concurrent game structure. We

will demonstrate the validity of our reduction in respect to noninterference assertions

in Section 3.7.

Definition 28 (Sequential Run). A run r in a concurrent game structure with a spe-

cial designated null action ε is sequential if every move vector in the run contains

exactly one non-null action.

Such runs correspond exactly to runs in a Goguen & Meseguer state machine. We

now define purging of sequential runs.
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Figure 13: Concurrent Game Structure Version of Example 7

Definition 29 (Sequential Run Purge). Let us define pG (r) for a any set of agents

G ∈ A and any sequential run r. We do so by first flattening the runs to runs that are

of the form used in Goguen & Meseguer state machines.

f lat(ε) = ε note: ε here refers to the empty run

f lat([ε,...,ε,i j,ε,...,ε].r) = 〈i j, a j〉. f lat(r) where a j refers to the jth agent

We thus define purging of sequential runs by first flattening them:

pG (r) = pG ( f lat(r))

Note that the purge on the right hand side refers to the purge as described in Defi-

nition 8. Also note that the purging of a sequential run of a concurrent game structure
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results in a run composed not of move vectors but rather action/agent pairs (the kind

of runs present in Goguen&Meseguer state machines).

It will be necessary further in this thesis to perform the opposite of f lat, that is, take

a Goguen & Meseguer state machine run and raise it to a concurrent game structure

run. We define raise in the following manner:

raise(ε) = ε

raise(〈i j, a j〉.r) = [ε,...,ε,i j,ε,...,ε].raise(r) where a j refers to the jth agent

Note that raise produces only sequential runs.
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3 Noninterference
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Figure 14: Dependency Graph

To establish our definition of noninterference it is necessarily first to formalize

the knowledge or perception of agents. The central issue, after all, is the ability of

agents to discern differences in the state of the system after no differentiating actions

of their own. We need some way to describe the perceived difference in the eyes of

an agent. We do this by introducing equivalence relations on the states of a c.g.s. as

means to describe perception, and an equivalence relation on runs to establish the lack

of differentiating actions.

We establish our definition of noninterference and demonstrate it using several

examples. We then describe a theorem with which we can prove noninterference as-

sertions and finally demonstrate that our notion of noninterference is general enough

to describe the original formulation of Goguen & Meseguer.
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3.1 State Equivalence

We establish agent perception via a relation on the states of a c.g.s..

Definition 30 (State Equivalence). A view partition (or state equivalence ) ∼G in to

some set of agents G ⊆ A, is an equivalence relation on the states Q. We will refer to

states equivalent under ∼G as ∼G-equivalent states. We require that q ∼Ø q′ for every

pair of states.

We assume the following axiom. Intuitively, we cannot gain distinguishability be

considering a smaller set of agents (as in Axiom 1). Alternatively we cannot lose

distinguishability by considering a larger set of agents (Remark 31).

Axiom 1 (State Equivalence).

q ∼G q′ G− ⊆ G
q ∼G− q′

Proposition 31. From Axiom 1, we can derive its dual:

q��∼Gq′ G ⊆ G+

q��∼G+q′

Proof. Assume q��∼Gq′ but q ∼G+ q′. By Axiom 1, q ∼G q′ since G ⊆ G+ contradicting

the assumption. �

The intention of the view partition is to specify states that are indistinguishable

to a set of agent. Note that this notion is a replacement for the idea of an output as

in [Rus92]. More interestingly, view partitions are used by Rushby for demonstrat-

ing unwinding theorems. In our formalism, however, the view partitions take a more

central role.

Though it may potentially be useful to define the partitions for groups of agents

arbitrarily we will sometimes make assumptions on the structure of state equivalence

relations. The most common of these assumptions is the requirement that state equiva-

lence for groups of agents is directly derived from that of single agents as characterized

by Remark 32.
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Remark 32. The collective set of state-equivalences ∼ follows pointwise state equiv-

alence iff for any set of agents G ⊆ A and states q, q′ ∈ Q, it is the case that q ∼G q′

iff ∀a ∈ G q ∼{a} q′.

If we think of states q and q′ as being indistinguishable for the group G and we

assume the notion of the groups discernibility as being cooperative, then we must

assume that none of the agents in the group can discern the difference between q and

q′ as otherwise they would all as a group be able to discern the difference. Likewise, a

group not being able to distinguish states results from none of the agents in the group

being able to make the distinction.

3.2 Run Equivalence

To establish lack of differentiating actions, we define a relations on runs of a c.g.s..

Definition 33 (Run Equivalence). A run equivalence in respect to a group of agents

G in a c.g.s. S , written =G is an equivalence relation on runs in S . If r, r′ are two runs

in S with r =G r′, we call the runs =-equivalent. We require that r =Ø r′ for every

pair of runs.

We also assume the following axiom. The nature of its intuitive basis is the same

as that of the state equivalence axiom.

Axiom 2 (Run Equivalence).

r =G r′ G− ⊆ G
r =G− r′

Proposition 34. From Axiom 2, we derive its dual:

r��=Gr′ G ⊆ G+

r��=G+r′

Proof. Assume r��=Gr′ but r =G+ r′. By Axiom 2, r ∼G r′ since G ⊆ G+ contradicting

the assumption. �
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As we have done for state equivalence, we will sometimes make the following

assumption concerning the run-equivalence for groups in relation to individuals.

Remark 35. A run-equivalence = is a pointwise run equivalence if for any set of

agents G ⊆ A and runs r, r′ in a c.g.s. S , it is the case that r =G r′ iff ∀a ∈ G r ={a} r′.

Working specifically in concurrent game structures has the benefit of a natural

specification of run-equivalence that we will use most often throughout this work; one

that is based on equivalence of move vectors (as the building blocks of a run).

Definition 36 (Move Vector Equivalence). We define a move vector equivalence as

an equivalence relation on move vectors. Also we define the natural equivalence of

move vectors in respect to a group of agents. If î, î′ are move vectors and G ⊆ A is a

set of agents, î �G î′ iff the move vectors truncated to only the actions of agents in G

are the equal.

As we noted for runs, the equivalence of move vectors may be specified arbitrary

for groups of agents but we make a remark about pointwise defined move vectors.

Remark 37. A move vector equivalence � is a pointwise move vector equivalence

if for any set of agents G ⊆ A and move vectors î, î′, it is the case that î′ �G î′ iff

∀ ∈ G î �{a} î′.

Note that there is nothing in our definition of run equivalence to require the equiv-

alence to be defined based on the equivalence of all the move vectors comprising the

runs. We do, however, define a class of run equivalences that are specified in such a

way.

Definition 38 (Stepwise Run Equivalence). A stepwise run equivalence with basis �

is a run equivalence defined in terms of a move vector equivalence � such that r = r′

iff (r, r′ are both of length n and) r[ j] � r′[ j] for all j ∈ {1, ..., n} (this has an implied

requirement that both runs are of length n).

Note that if a stepwise run equivalence is defined in terms of a pointwise move

vector equivalence, then the run equivalence is itself pointwise.
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We extend our definition of a natural move vector equivalence to a natural run

equivalence which will be used most often throughout this thesis.

Definition 39 (Natural Run Equivalence). The natural run equivalence is the step-

wise run equivalence defined the natural move vector equivalence.

3.3 Concurrent Interference System

We will combine a concurrent game structure with the accompanying equivalence

relations and refer to them jointly as a system.

Definition 40 (Concurrent Interference System). A concurrent interference system

S (or just system) is a triple 〈C,∼,=〉 where,

• C is a concurrent game structure,

• ∼G is a state equivalence relation for every set of agents G ⊆ A of C, and

• =G is a run equivalence relation for every set of agents G ⊆ A of C.

3.4 Noninterference

With notions of perception and differentiating actions, we have the necessary structure

to define noninterference.

Definition 41 (Noninterference). Agents G′ ⊆ A do not interfere with agents G ⊆ A

(or G′��⇒G) iff =A−G′-equivalent runs end in ∼G-equivalent states. That is, any two

runs r, r′ with r =A−G′ r′ end at ∼G-equivalent states. Note that all runs we are

considering start with q0 or the initial state.

Proposition 42. Given our axioms for state and run equivalences, we can derive tow

following two rules for interference assertions.

G′ ⇒ G G′ ⊆ G′+

G′+ ⇒ G
G′ ⇒ G G ⊆ G+

G′ ⇒ G+

35



=A−G′ ∼G
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î′0 î′1 · · ·
ˆi′m−1

Figure 15: Noninterference

Proof. If G′ ⇒ G, then we have two runs r, r′ with r =A−G r′ ending in non ∼G-

equivalent states. For a larger set of agents G′′ (with G′ ⊆ G′′), we have (A − G′′) ⊆

(A −G′) and thus r =A−G′′ r′ by the axioms of run equivalence, giving us G′′ ⇒ G as

the fact that r, r′ end in non ∼G-equivalent states has not changed. Alternatively for a

bigger set G′′ (with G ⊆ G′′) we get that r, r′ end in non ∼G′′-equivalent states by the

axioms of state equivalence, and thus G′ ⇒ G′′. �

The definition as shown serves to capture the notion that agents cannot discern

differences if they took up no differentiating actions where differences are described

by state equivalence and differentiating actions are described by run equivalence. If

an agent or a set of agents can tell the difference between final states in two runs in

which these agents made the choose the same actions (as in the natural run-equivalence

definition), then we can conclude that the agents were interfered with.

Example 43 (Bird-song Propagation as a Concurrent Interference System). Consider a

concurrent interference system composed as follows:
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A = {a, b, c}

Q = {00, 01, 10, 11}

q0 = 00

Act = {0, 1}

act : 〈x, a〉 7→ Act for every state x ∈ Q

〈XY, b〉 7→ {X} for every state XY ∈ Q

〈XY, c〉 7→ {Y} for every state XY ∈ Q
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Figure 16: Concurrent Interference System Example: Transitions

Let transitions be defined according to Figure 16. Also, let us define the state

equivalence relations pointwise based off of the following:

37



∼{a} = {(X,Y) | X,Y ∈ Q}

∼{b} = {(X1Y1, X2Y2) | X1Y1, X2Y2 ∈ Q and X1 = X2}

∼{c} = {(X1Y1, X2Y2) | X1Y1, X2Y2 ∈ Q and Y1 = Y2}

Finally let the run equivalence be the natural run equivalence. We can thus evaluate

some noninterference assertions in this system:

• {a} ⇒ {b}. We can see this via runs 00,
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in all the move vectors in both runs. The first run, however, ends at state 00

whereas the second ends at 10 with 00��∼{b}10.

• {a, b} ⇒ {c}. This can be demonstrated by runs 00,
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All corresponding move vectors are equivalent for {c} so the runs are={c}-equivalent

but they end in non ∼{c}-states.

• {a}��⇒{c}. We will prove this fact once we show the Little Unwinding Theorem

but the statement itself is of some interest. To show {a} ⇒ {c}we need to find two

runs whose corresponding move vector components are equal for agents b and

c (that is A − {a}) but which end in non ∼{c}-equivalent states. We see, however,

that it is agent b’s last action that directly impacts the distinguishability (the state

equivalence) for agent c. Thus a alone does not interfere with c but rather does

this through b.

• {b}��⇒{c}. This is another fact of interest but unlike the previous, we cannot use

our unwinding theorem to prove it. To show {b}��⇒{c} we need to find ={c,b}-

equivalent runs that end in non ={c}-equivalent states. We see, however, that

the actions of b are determined directly from the actions of a, giving c a distin-

guishability of runs (based on a’s actions) that prevents c to get to non ∼{c} states
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via indistinguishable runs.

Example 44 (Bird-song Propagation as Concurrent Interference System with Free Choice).

In our previous example, we did not allow agents b and c any choice at all. That is,

for every state, each of these agents had exactly one allowable action. This resulted in

some surprising noninterference assertions (see Example 43). Here we will restructure

the system so that each agent does not necessarily have to repeat the last thing it hears;

it can wait instead. This is closer to our original motivation behind the example (see

Example 1). The specification gets too complex so we will specify the system via a

cross-product construction.

A = {a, b, c}

Act = {0, 1, ε}

Q1 = {0, 1}

Q2 = {0, 1}

q1 = 0

q2 = 0

act1 : 〈x, a〉 7→ Act for every state x ∈ Q1

〈x, b〉 7→ {x, ε} for every state x ∈ Q1

〈x, c〉 7→ Act for every state x ∈ Q1

act2 : 〈x, a〉 7→ Act for every state x ∈ Q2

〈x, b〉 7→ Act for every state x ∈ Q2

〈x, c〉 7→ {x, ε} for every state x ∈ Q2

Let δ1 and δ2 be defined according to Figure 17a and Figure 17b respectively.

Let Q, q0, act, and δ be defined according to the cross product construction from

Q1,Q2, q1, q2,, act1, act2, and δ1, δ2 respectively.

Finally let us define the state equivalence relations pointwise based off of the fol-

lowing:
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0start 1


0, ε
0, ε
Act




1

0, ε
Act




1, ε
1, ε
Act




0

1, ε
Act



(a)

0start 1


Act
0, ε
0, ε




Act
1

0, ε




Act
1, ε
1, ε




Act
0

1, ε



(b)

Figure 17: Concurrent Interference System Example with Choice: Transitions

∼{a} = {(X,Y) | X,Y ∈ Q}

∼{b} = {(〈X1,Y1〉, 〈X2,Y2〉) | 〈X1,Y1〉, 〈X2,Y2〉 ∈ Q and X1 = X2}

∼{c} = {(〈X1,Y1〉, 〈X2,Y2〉) | 〈X1,Y1〉, 〈X2,Y2〉 ∈ Q and Y1 = Y2}

The state equivalence relations describe the following situation: agent a cannot tell

any states apart, agent b can tell the difference between states that differ in their first

component (which corresponds exactly to what agent a performed last), and agent c

can tell the difference between states that differ in the second component (correspond-

ing to what agent b performed last).

Finally let the run equivalence be the natural run equivalence. We can thus evaluate

some noninterference assertions in this revised system. Note that any run in the system

described in Example 43 is also a run in this revised system. We have, however,

additional runs possible here. Specifically, agents b and c have a choice of acting out

(as in Example 43) or performing the null operation ε.

• {a} ⇒ {b} and {a, b} ⇒ {c}. The interference claims do not change from Example

43 as the witness runs are still valid here.
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• {a}��⇒{c}. This fact can be shown using the Little Unwinding Theorem further in

this thesis.

• {b, c}��⇒{a}. No group of agents can possibly interfere with a since a cannot tell

apart any two states.

• {c}��⇒{a, b} (equivalent to the conjunction of {c}��⇒{a} and {c}��⇒{b}). Actions of

c have absolutely no impact on the state thus c cannot interfere with any other

agent (and thus with the group).

• {b} ⇒ {c}. We see that this last claim differs from the original example. Consider

the following two runs:

r = 〈0, 0〉,


1
ε

ε

, 〈1, 0〉,

ε

1
ε

, 〈1, 1〉

r = 〈0, 0〉,


1
ε

ε

, 〈1, 0〉,

ε

ε

ε

, 〈1, 0〉

The runs are ={a,c}-equivalent but end in non ∼{c}-equivalent states. Thus by

giving agent b a choice, we caused it to interfere with c whereas without the

choice (Example 43), the interference could not be shown.

3.5 Policies

Having a definition of noninterference, we can aggregate a set of noninterference as-

sertions in a noninterference policy:

Definition 45 (Noninterference Policy). A noninterference policy { is a reflexive

relation on A 4. For agents a, a′ ∈ A, a { a′ denotes that agent a can interfere

with agent a′. If not a { a′ (or a��{a′) then agent a is meant to not interfere with

agent a′.

4Note that this refers to a certain set of agents and thus is applicable to any system with that set of agents.

Also note that this definition only differs from the one provided by Rushby in that agents are involved instead

of security domains.
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We denote a ↓= {a′ | a′ { a} as the set of agents in A that are allowed to interfere

with a and a⊥ = {a′ | a′��{a} as the set of those agents which are not allowed to

interfere with a.

Definition 46 (Policy Satisfaction). A system S satisfies a pointwise noninterference

policy{ if for every agent a ∈ A, a⊥��⇒{a}.

Example 47 (Policy Satisfaction). The system described in Example 44 satisfies the

policy in Figure 18.

a b c

Figure 18: Policy for the Concurrent Interference System in Example 44

To show the fact we need to establish several noninterference assertions: {b, c}��⇒{a},

{c}��⇒{b}, and {a}��⇒{c}. All of these have been established in Example 44.

3.6 Unwinding

The Unwinding Theorem serves to reduce the question of noninterference which is

based on equivalence of runs and states to remarks about individual transitions of a

system. We require, however, that the run equivalence is defined stepwise.

∼G

q0 q1 q2 qn−1 qn

q0 q′1 q′2 q′n−1 q′n

î0 î1 · · · ˆin−1

î′0 î′1 · · ·
ˆi′n−1

�A−G′ �A−G′ �A−G′

Figure 19: Noninterference with Step-wise Run Equivalence

Definition 48 (Local Respect of an Assertion). A system S with a stepwise run equiv-

alence locally respects a noninterference assertion G′��⇒G iff for every pair of states

q, q′ ∈ Q with q ∼G q′, and every pair of move vectors î ∈ D(q), î′ ∈ D(q′) with
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î �A−G′ î′ (where � here refers to the stepwise basis of the run equivalence) we have

δ(q, î) ∼G δ(q′, î′).

We can now present our version of the Unwinding Theorem (originally demon-

strated by Goguen & Meseguer in [GM84] for their noninterference formulation).

Theorem 49 (Little Unwinding Theorem). A system S with a step-wise run equiva-

lence = satisfies a noninterference assertion G′��⇒G if S locally respects the assertion.

Proof. We need to show that G′ does not interfere with G which, by our definition,

means that all =A−G′-equivalent runs end in ∼G-equivalent states. We begin with a

lemma:

Lemma 50. For any two runs r, r′ with r = q0, î0, q1, ..., qn, r′ = q′0, î
′
0, q
′
1, ..., q

′
n, and

r =A−G′ r′ we have q j ∼G q′j for any j ∈ {0, ..., n}.

Proof. Let us show this by induction on j:

• j = 0: q0 = q′0 as all runs begin with the same state and thus q0 ∼G q′0 as ∼G is

an equivalence relation.

• j − 1 ≤ n: Let us assume that q j−1 ∼G q′j−1.

• j ≤ n: By inductive assumption, q j−1 ∼G q′j−1 and by initial assumption ˆi j−1 �A−G′

ˆi′j−1. Since S locally respects{, we know δ(q j−1, ˆi j−1) ∼G δ(q′j−1,
ˆi′j−1) or more

specifically, q j ∼G q′j.

�

Consider any two runs r, r′ with r =A−G′ r′. Lemma 50 tells us that the runs end

in ∼G-equivalent states and thus G′��⇒G. Note that the definition of a stepwise defined

run equivalence requires any equivalent runs to be of the same length. �

We also demonstrate the main Unwinding Theorem as a tool for showing satisfac-

tion of an entire noninterference policy (in line with the Unwinding Theorem presented

by Rushby in [Rus92]). We begin with an alternate definition of local respect.
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Definition 51 (Local Respect of a Policy). A system S with a stepwise run equiva-

lence locally respects a policy { iff for every agent a ∈ A, states q, q′ ∈ Q with

q ∼{a} q′, and move vectors î ∈ D(q), î′ ∈ D(q′) with î �A−a⊥ î′ (where � here refers to

the stepwise basis of the run equivalence) we have δ(q, î) ∼{a} δ(q′, î′).

Proposition 52. A system S with a stepwise run equivalence locally respects a policy

{ iff for every agent a ∈ A, S locally respects the assertion a⊥��⇒{a}.

The proposition is merely a substitution of local respect of an assertion into the

definition of local respect of a noninterference policy.

Theorem 53 (Unwinding Theorem). A system S with a step-wise run equivalence =

satisfies a policy{ if S locally respects{.

Proof. Given local respect of{ we know S locally respects a⊥��⇒{a} for every agent

a by Proposition 52. By the Little Unwinding Theorem, we know that a⊥��⇒{a}. �

Note that the Unwinding Theorem presented here could just as well be labeled

as a corollary of the Little Unwinding Theorem. We call it a theorem, however, to

remain consistent with the naming of the equivalent Unwinding Theorem presented

by Rushby in [Rus92].

Example 54 (Unwinding Theorem Application). In Example 43 (and Example 44) we

a noninterference claim without providing sufficient proof. Having the Little Unwind-

ing Theorem lets us now prove the claim:

• {a}��⇒{c} (as in Example 43)

We need to check that the system locally respects this assertion which in turn

requires us to examine the transitions coming out from any two ∼{c}-equivalent

states. Let us consider the equivalence classes in turn:

– {00, 10} - There are no �{b,c}-equivalent move vectors coming out of a pair

of these states.

– {01, 11} - Similarly to the above, there are no �{b,c}-equivalent move vectors

coming out of any pair of these states.
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Thus we see that the local respect condition for the assertion has been satisfied

vacuously.

• {a}��⇒{c} (as in Example 44)

We need to check that the system locally respects this assertion which in turn

requires us to examine the transitions coming out from any two ∼{c}-equivalent

states. Let us consider the equivalence classes in turn:

– {〈0, 0〉, 〈1, 0〉} - We see that the only transitions that lead from these states

to states with the second component being equal to 1 are


1, ε
1

0, ε

 from 〈1, 0〉

to 〈1, 1〉 and


0
1

0, ε

 from 〈1, 0〉 to 〈0, 1〉. Every other transition has agent b

doing action 0 or ε and leads to states with 0 as the second component. Thus

it is b’s action that differentiates transitions that lead to states with different

second components. Therefore we have no �{b,c}-equivalent move vectors

that leads to different second state components (that is, non ∼{c}-equivalent

states).

– {〈0, 1〉, 〈1, 1〉} - Similarly to the above, it is b’s action that determines whether

the state we transition to has 0 or 1 as the second component. Since we

are considering �{b,c}-equivalent move vectors, we see there is no �{b,c}-

equivalent move vectors that lead us from the members of the equivalence

class to non ∼{c}-equivalent states.

Thus we see that the local respect for the assertion has been satisfied vacuously.

3.6.1 Limitations

Though the Unwinding Theorem can be used for proving noninterference assertions,

it is not always applicable. The theorem is too weak as it can be used to prove asser-

tions using a stronger noninterference definition. Specifically if we were to allow our

systems to start in any state and likewise define valid runs as starting at any state, our

proof of the Unwinding Theorems would still apply but yet noninterference in such

alternate systems is much harder to satisfy (as runs do not necessarily start in the same
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state).

Specifically in Example 43, we see that the assertion {b}��⇒{c} cannot be proven

using the Little Unwinding Theorem as indeed the local respect of the assertion is not

satisfied. We see that states 00 and 10 are ∼{a,c}-equivalent, but they contain �{a,c}

transitions [1,0,0] and [1,1,0] from 00 and 10 respectively that lead to states 10 and 11

which are not ∼{c}-equivalent. We see, however, that states 00 and 10 cannot be reached

from the initial state by following only �{a,c}-equivalent move vectors. Thus we cannot

construct runs to demonstrate {b} ⇒ {c} though if we defined valid runs to start in any

state, we easily could.

3.7 Goguen & Meseguer’s Noninterference

We note that our definition of noninterference is general enough to express the familiar

Goguen & Meseguer and Rushby noninterference assertions in its framework. We

present here the relationship between the Goguen & Meseguer formulation and our

own by expressing it in our more general scheme.

Given a state machine S , we present here the construction of a concurrent inter-

ference system S ′ = 〈C,∼,=〉 such that any Goguen noninterference assertion about

S is exactly exhibited by a noninterference assertion about S ′. The state machine

construction here is based on Remark 25 and the reduction of presented in Definition

26.

Definition 55 (State Machine with Agents and Outputs to Concurrent Interference System Reduction).

Given a state machine (of the Goguen&Meseguer type) S = 〈U, S ,C,Out, out, do, s0〉,

the reduction R′1(S ) is a concurrent interference system S ′ = 〈R1(S ),∼,=〉 defined as

follows:

• R1(S ) is the reduction of S as described in Definition 26.

• out(q, u) = out(q′, u) iff q ∼{u} q′. The equivalence for every other set of agents

is defined pointwise, that is ∼ is a pointwise state equivalence.

• pG (r) = pG (r′) iff r =A−G r′ for every pair of sequential runs r, r′. If either

of r, r′ is not sequential then r��=Gr′ for any group of agents G without condition
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(unless of course r = r′).

To demonstrate the validity of such a reduction, we would like to establish that

noninterference assertions are equivalent in both the original system and the concur-

rent interference systems.

Theorem 56 (Noninterference-wise Validity of Reduction). A noninterference as-

sertion G′��⇒G is true in a Goguen & Meseguer system S iff the assertion is true in

the concurrent interference system S ′ = R′1(S ).

Proof. Let us consider both sides of the theorem in turn.

( ⇒ ) We are given that G′��⇒G is true in S . Let us assume that G′ ⇒ G in S ′.

Thus there are two runs r, r′ with r =A−G′ r′ that end states q, q′ with q��∼Gq′. The

definition of the reduction tells is that any non-sequential runs end in the special ε

state. Since r =A−G′ r′, we know that either both runs are sequential or neither is

(recall that r�=r′ for any non sequential runs r , r′). If both were to be non-sequential

then both would end in the ε and thus not end in non ∼G-equivalent states. It must

be, therefore, that both r, r′ are sequential. Thus we know pG′ (r) = pG′ (r′) (via our

construction of run equivalence). The definition of purge tells us that the flattened

runs purge to the same run. Let us say f = f lat(r) and f ′ = f lat(r′). We thus know

pG′ ( f ) = pG′ ( f ′). Let us call this “central” run c = pG′ ( f ) = pG′ ( f ′). By definition

of the state equivalence in our reduction, we know that the output to the last states

of f and f ′ (which we previously labeled as q and q′) differs for some agent in G.

The pointwise state equality does not let us have q��∼Gq′ while q ∼{u} q′ for all u ∈ G.

Let us call this agent u. Thus we have d f eu , d f ′eu. Let o be the output to u at the

end of the central run, that is, o = dceu. We can now see that either o , d f eu or

od f ′eu , d f ′eu. Let us say it is the first without the loss of generality. Thus we have

dpG′ ( f )eu , d f eu which lets us conclude that G′ ⇒ {u} in the original Goguen &

Meseguer state machine, contradicting the given fact that G′��⇒G in that state machine.

(⇐ ) Going the other direction we have G′��⇒G in S ′. Let as assume that G′ ⇒ G

in S . That is, there is an agent u ∈ G, and a run r such that dpG′ (r)eu , dreu. Let

us refer to the last states of r and pG′ (r) as q and q′ respectively. By our definition
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of state equivalence, we have q��∼{u}q′ and thus q��∼Gq′ by Proposition 31. By raising

the two runs, we still arrive at the same ending states, that is q = draise(pG′ (r))e and

q′ = draise(r)e. Since pG′ (r) purges to itself (it is already purged), we know that

pG′ (raise(pG′ (r))) = pG′ (raise(r)) which implies (by our definition of run equiv-

alence in the reduction) that raise(pG′ (r)) =A−G′ raise(r) (recall that raise always

results in sequential runs). Thus we have two =A−G′-equivalent runs that end in non

∼G-equivalent states. Thus G′ ⇒ G in S ′, contradicting our assumption. �

The reduction of Rushby state machines is more involved. We do not provide it

here, however.
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4 Composability

The issue of composability of security properties is a commonly noted problem [McL94].

Specifically if a security assertion is true in some components, we would naturally like

to preserve the property upon combining the components into a larger whole. Alter-

natively if we are analyzing a complex system via decomposition into simpler com-

ponents, we would like to make conclusions about security properties of the whole by

solving the issue of their presence in the simpler components.

The security property relevant to our thesis, of course, is noninterference. Like

for security properties in general, noninterference is cited to not be preserved under

composition [ZL95]. We present a variation of a problematic composition example

described by McCullough [McC88] but note its lack of formal specification (we pro-

vide such a specification in Appendix D). Though such examples often lack formal

specification, often specific guidelines are provided to avoid the situations exemplified

(in the example presented it is the presence of finite buffers). We, alternatively, attack

the problem from the different level by addressing an reasoning behind the intuitive

notion that composition should preserve properties.

4.1 Problematic Composition

We present here a high-level description of a variation of the composition example

presented by McCullough in [McC88]. An attempt at modeling the situation in a

concurrent game structure is presented in Appendix D. It is unclear to us that this is

a valid example of the non-composability of a security property though we present it

here and let the reader judge.

Consider a system composed of three components: high (or h), low0 (or l0), and

low1 (or l1). Present in the system are also two 1-bit buffers which we label 0B, 1B.

0B connects the output of the low0 component to high and 1B connects the output

of the low1 component to high. Specifically what a connection and what an output

means is omitted here but we attempt to model the informal specification in Appendix

D. Finally an input is fed into high and both low0 and low1 send output to a common
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output buffer (again, this is not modeled here). The buffers 0B and 1B are 1-bit and

blocking. If a component attempts to write to the buffer while it is filled, the com-

ponent is blocked (until the buffer is emptied). The situation is described by Figure

22.

output

l0

l1

0B

1B

h input

Figure 20: Composability Example Overview

The behavior of the components is as follows:

• h: The h component reads a bit from the input buffer and clears buffer 0B if the

read bit was 0 or clears buffer 1B if the read bit was 1.

• l0: The l0 component first fills the 0B buffer and proceeds to loop involving

writing to 0B (and potentially blocking) followed by writing a 0 to the output

buffer.

• l1: Similar to l0 except it fills and writes to 1B buffer instead. Also it writes a 1

to the output buffer as opposed to a 0.

The argument that this is an example of the failure of composition involves two

elements: firstly that some security property is satisfied in the components, and sec-

ondly, that the same property is not satisfied in the complete system. The security

property relevant here is absence of a high level input leaking to low level output. The

input to h is high whereas the output from l0 and l1 is low.

The property is satisfied in l0 and in l1 as they do not read anything but write to the

output or to the 0B and 1B buffers. The property is satisfied by h as it does not produce

any outputs. Note that these arguments are indeed very flimsy as the exact nature of

communication involving the buffers has not been formally described.
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Consider now the system as a whole. The l0 and l1 components fill their respective

buffers and begin to block while attempting to write another bit. At this point, h

receives either 0 or 1 from the input. If 0 is received, h reads from buffer 0B and

unblocks l0 which then writes a 0 to the output buffer. Alternatively 1 is read and the

end result is that 1 is written to the output by l1. Such a situation certainly describes

the high input leaking to the low output and if one accepts the arguments that no such

occurrence was present in the individual components, then one must admit that the

composition failed to preserve the property of lack of leakage.

Our attempts at modeling the situation, however (see Appendix D), suggest that

it is not entirely clear that the components satisfy the property or more specifically

whether the property can even be formulated in the components. Specifically it might

not be possible to reasonably consider the components individually and separate from

the entire system given their connections through the buffers to other components.

It might even be argued that the diagram we provided (Figure 22) of the system is

deceiving in that the arrow between l0 and 0B points towards 0B and not inversely,

suggesting that information only flows from l0 to 0B. The fact that h can unblock l0

through the buffer suggest some kind of influence in the reverse direction.

Though we might have some arguments against the example being a valid demon-

stration of the lack of preservation of a security policy under composition, it is not

bring us at all to any conclusion on composition. McCullough’s partial resolution on

the problem is a conclusion that finite (and specifically blocking) buffers need to be

not included in the system composition to preserve noninterference [McC88]. Though

such conclusions might be useful on a certain implementation level as guidelines for

designers against specific practices (like uses of finite blocking buffers), it is not par-

ticularly enlightening on a more abstract and general level. We strive for in this section

for such more abstract and general conclusions about composability of systems.

4.2 Composition and Projection

The question of preservation of non-interference is naturally tied with the preserva-

tion of some structure in the composition process. If one makes the claim that non-
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interference is preserved in a composed system, or more specifically that this is some-

thing that should happen, one really notes that there is (or ought to be) a close structural

connection between the subcomponents and the resulting composed system. Specifi-

cally to non-interference the connection that is relevant is between runs and perception

(∼) in subcomponents and the composition. We begin our composability discussion

with the formalization of these connections.

Definition 57 (Run Projection). A run projection (denoted by π) is a function trans-

forming a run in system S to to a run in system S 2. What we are interested about in

terms of run projections is their potential preservation properties:

• validity-preservation: A projection π preserves validity if for every run r in S ,

the run π (r) is a valid run in S 2.

• =-preservation: A projection π preserves = if for every group of agents G ⊆ A

(of S ), every =G-equivalent runs r, r′ in S are mapped to two =G-equivalent

runs in S 2. The final bit of subtlety here is that, once more, =G are potentially

different in the two systems.

We will write a composition function as C. Such a composition function will

take systems S 1 and S 2 to produce system S . The agents present in each subsystem

are assumed to be present in S . Since state and run equivalences are required for

our non-interference definitions, we require that composition C also determines the

appropriate = and ∼ in the composed system (usually based closely on the = and ∼ in

the subsystems).

One final bit of structure connection we might require is a logical preservation of

knowledge or ∼ by a pair of projections in the context of system composition C.

Definition 58 (State Equivalence Preservation). If C composes systems S 1 and S 2

to system S , the projections π1 (from S to S 1), π2 (from S to S 2) preserve ∼ iff

For every pair of runs r, r′ in S , which are mapped to r1 = π1 (r) , r′1 = π1 (r′) and

to r2 = π1 (r) , r′2 = π1 (r′), with r, r′, r1, r′1, r2, r′2 ending in states q, q′, q1, q′1, q2, q′2

respectively, we have:

• For every group of agents G ⊆ A (in S ) q ∼G q′ iff both q1 ∼1G q′1 and q2 ∼2G q′2.

52



We must be careful here as some agents might not be present in some subsystems.

That is, if we are composing two systems that both contain agent a but do not share

agents a1 and a2 which are present in systems S 1 and S 2 respectively, the state equiv-

alence of system S 1 does not by definition handle equivalence of states for agents

{a, a2}. To alleviate this problem we make the following remark:

Remark 59. In context of system composition we assume that ∼ and = are extended

to handle all agents of both systems. Given a set of agents Gd not originally present in

system S , we assume q ∼G∪Gd q′ iff q ∼G q′ for every pair of states q, q′ ∈ Q of S and

for every group of agents G of S . Likewise r =G∪Gd r′ iff r =G r′ for every pair of runs

in S . Note that this means q ∼Gd q′ and r =Gd r′ for every pair of states and runs.

We refer to such agents as dummy agents where dummy refers to not only the fact that

such an agent serves as placeholder but also for the fact that the dummy cannot tell

the difference between any states and any runs.

We note that Remark 59 gives us the ability to reason about non-present agents

together with present ones. For example, consider a system S 1 with agents {a, a1} and

system S 2 with agents {a, a2}. The definition of ∼ preservation would state:

• q ∼{a1} q′ iff q1 ∼1{a1}
q′1. Definition of ∼ preservation would require also

q2 ∼2{a1}
q′2 but the statement is always true for any two states of S 2 as a1 was

not originally present in S 2 via Remark 59.

• q ∼{a,a1} q′ iff both q1 ∼1{a,a1}
q′1 and q2 ∼2{a} q′2 as the statement q2 ∼2{a} q′2 is

equivalent to q2 ∼2{a,a1}
q′2 by Remark 59.

Having such formalism, we can properly describe the somewhat intuitive belief

that non-interference is (or should) be preserved via connections in the structure of

subcomponents and the composition. First let us describe what we mean by preserva-

tion of non-interference.

Definition 60 (Noninterference Preservation). A composition C preserves non-interference

if every non-interference assertion G′��⇒G true in each subsystem is true in the com-

posed system.
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Theorem 61 (Projected Noninterference). Any composition C function taking in sys-

tems S 1 and S 2 and producing composed system S , preserves non-interference if there

exist two run projections π1 and π2 such that for all i, πi run-preserves and =-preserves

from S to S i, and that the projections preserve ∼ (∼-preservation is a property of the

pair of projections).

Proof. Assume the aforementioned projections exist but C does not preserve non-

interference. That is, there is a non-interference assertion G′��⇒G true in both subsys-

tem but G′��⇒G is not true in the composed system S . By definition of non-interference,

there exist two =A−G′-equivalent runs r, r′ in S that end in non ∼G-equivalent states.

Consider run pairs projected to both systems, r1 = π1 (r), r′1 = π1 (r′), r2 = π2 (r),

and r′2 = π2 (r′). Their validity as runs and their =-equivalence can be made in their

respective subsystems via the validity and = preservation properties of the projections.

Since ∼ is preserved by the pair of projections and since r, r′ end in non ∼G-equivalent

states, we know that either r1,r′1 end in non ∼G-equivalent states or r2,r′2 do. Thus we

have G′ ⇒ G in at least one of the subsystems contradicting our assumption. �

4.3 Composition C¬cc,i

We demonstrate the application of Theorem 61 with an example of a simple type of

composition of two systems which we refer to as non-concurrent, independent compo-

sition (or C¬cc,i). We consider two systems both modeling two users, h and l (for high

and low). A noninterference policy h��⇒l is to be assumed in place for both systems.

We describe the structure of this composition based on some motivating factors:

• Two users interact with two systems: Users h and l are modeled both in system

S 1 and system S 2.

• The systems model different kinds actions: The set of available actions to users

in S 1 is different from that in S 2. We refer to the actions available as Acti for

system S i. Note that the special null action ε needs to be available to both agents

in both systems (this will be described shortly).
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• The systems do not interact with each other: Composed state is of the form

Q = Q1 × Q2 where Qi is understood to be the set of states of S i.

• Agents interact with one system at a time: Transitions of the composed system

S = C¬cc,i(S 1, S 2) are 2-tuples (actions of each of the two agents). To make

sure we can define the composed transition function, we make the following

restrictions on the transition functions of the component systems:

For any state q ∈ Qi and for any action a of agent h at q (and similarly for l),

the move vector (a, ε) (similarly (ε, a)) must be available at q. Also, the move

vector (ε, ε) must be available at any state.

We formalize the system assumptions discussed above (with a few additions) in

the following definition.

Definition 62 (Composability). A system S = 〈〈A,Q, q, Act, act, δ〉,∼,=〉 is C¬cc,i-

composable iff

• A = {h, l},

• ε ∈ act(q, a) for any agent a and at any state q, and

• = is a natural run-equivalence.

Also, two systems S 1 = 〈〈A1,Q1, q1, Act1, act1, δ1〉,∼1,=1〉, S 2 = 〈〈A2,Q2, q2, Act2, act2, δ2〉,∼2

,=2〉 are together C¬cc,i-composable iff

• S 1 and S 2 are individually C¬cc,i-composable, and

• Act1 ∩ Act2 = Ø.

Given two C¬cc,i-composable systems S 1 = 〈〈A1,Q1, q1, Act1, act1, δ1〉,∼1,=1〉,

S 2 = 〈〈A2,Q2, q2, Act2, act2, δ2〉,∼2,=2〉 let use define C¬cc,i (S 1, S 2) = S = 〈〈A,Q, q, Act, act, δ〉,∼

,=〉:

• A = A1 = A2 = {h, l},

• Q = Q1 × Q2, and the starting state q = 〈 q1
q2
〉,

• 〈
q1
q2
〉 ∼G 〈

q′1
q′2
〉 iff both q1 ∼1G q′1 and q2 ∼2G q′2 for any group of agents G ⊆ A,
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• = is the natural run equivalence,

• Act = Act1 ∪ Act2,

• act(〈q1
q2
〉, a) = act1(q1, a) ∪ act2(q2, a) for every agent a, and

• δ
(
〈

q1
q2
〉, [a1,a2]

)
= 〈
δ1(q1,d1([a1,a2]))
δ2(q2,d2([a1,a2])) 〉 where di is defined as follows:

di ([a1,a2]) =



[a1,a2] a1 ∈ Acti, a2 ∈ Acti

[a1,ε] a1 ∈ Acti, a2 < Acti

[ε,a2] a1 < Acti, a2 ∈ Acti

[ε,ε] a1 < Acti, a2 < Acti

Preservation of Noninterference

Theorem 63 (Noninterference Preservation). C¬cc,i preserves noninterference.

Proof. Let us define a project π1 (and similarly π2) for runs in the following manner:

π1 (ε) = ε

π1 (r.[a1,a2]) = π1 (r) .d1 ([a1,a2])

Claim. If r in S ends at state 〈q1
q2
〉 then π1(r) (and similarly π2(r)) ends at state q1

(similarly q2).

Proof. We show this by induction on the length of the run r. We also consider π1

without loss of generality.

• |r| = 0: The composed start state is defined as 〈q1
q2
〉 where q1 is the start state in

S 1.

• |r| = n: Assume that for a run r of length n ending in 〈q1
q2
〉, the run projected to

S 1, π1(r) ends in q1.

• |r| = n + 1: Let us say that after n steps (r′ = r[1..n]), the shorter run r′ ends at

〈
q1
q2
〉. By assumption, the projection π1(r′) of this run ends at q1. By definition of
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the composed δ, the next state reached by r is 〈 δ1(q1,d1([a1,a2]))
δ2(q2,d2([a1,a2])) 〉 (assuming the last

move vector in r is [a1,a2]) or specifically the first component of the next state is

δ1(q1, d1([a1,a2])). We see that the projection also makes us take the move vector

d1([a1,a2]) and thus the next state in S 1 via the projected run is δ1(q1, d1([a1,a2])).

�

Claim. πi preserve validity.

Proof. Let us consider π1 without the loss of generality. The validity of a run can

be claimed if the starting state is correct and that the move vectors at each point are

actually allowable at that point. Let us consider r = q0, î0, q1, · · · , ˆin−1, qn and r′ =

π1(r) = q′0 î′0, q
′
1, · · · ,

ˆi′n−1, q
′
n.

• start state: Any run r in S begins with 〈q1
q2
〉 where q1 is the start state of S 1.

• move vectors: Consider a move vector [a1,a2] in r taken at state 〈q1
q2
〉. Without

loss of generality let us consider the action by the first agent. If a1�∈Act1 then the

first component of d1([a1,a2]) is ε which is a valid action in S 1 for the agent given

the assumption that S 1 is C¬cc,i-composable. Otherwise a1 ∈ Act1 and thus d1

leaves the action unchanged and we can see it is allowable since by definition of

the composed actions act(〈 q1
q2
〉, a) = act1(q1, a) ∪ act2(q2, a) (remember that the

set of actions is disjoint between the two systems).

In the projection, d1 ([a1,a2]) is taken at state q1. The ε components of the move

vector are allowable at any state so we only need to worry about non-ε actions.

�

Claim. πi (r1) preserves =.

Proof. Consider S 1 without the loss of generality. We already established that π1 (r1)

and π1 (r2) start in the starting state of S 1. Next we need to show that for two move vec-

tors
[
a j,a′j

]
,
[
b j,b′j

]
(where j refers to the jth move vector in the run), we have d1(

[
a j,a′j

]
) =G

d1(
[
b j,b′j

]
). Since r1 =G r2 (for some group of users G) in S , we know

[
a j,a′j

]
=G

[
b j,b′j

]
.

Since d1 takes any action outside of Act1 to ε, both or none of a j, b j (and/or a′j, b
′
j
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depending on agents in G) must be in Act1. If both, then d1 does not affect G’s com-

ponents and thus they remain equal for G. If neither is in Act1 then both are changed

to ε by d1 and thus also equal. �

Claim. π1 and π2 preserve ∼.

Proof. This comes directly from the first claim and the definition of the composed ∼.

�

This gives us everything necessary to claim that C¬cc,i preserves noninterference

by Theorem 61. �
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5 Conclusions

We presented a new formulation of noninterference based directly to the intuitive basis

of the interplay between distinguishability of action and output. Our notion was at the

same time general enough to express existing definitions in the same framework but

also intricate enough to simplify the handling of intransitive information flow. We also

explored the issue of composability of systems and described a sufficient condition for

proving the preservation of noninterference under composition of systems.

5.1 Potential Future Work

Though the work presented explores a wide range of issue and makes conclusions on

some, there are many avenues for further work.

• The Unwinding Theorem we present for our noninterference assertions is too

weak. That is, it requires too much of a system to make a conclusion about

noninterference. We saw in Example 43 that a noninterference assertion is true

but cannot be proven using the Unwinding Theorem. It would be of great use

to develop an alternate and stronger theorem capable of proving noninterference

assertions in larger number of situations.

• The composition example presented in Section 4.3 is perhaps a little too sim-

plistic. To ascertain the usability of the Projected Noninterference theorem, we

would almost certainly need a notion of composition that is sufficiently complex

for modeling more realistic situations.
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Appendix

A Notation

• ∼ - State equivalence (see Definition 30)

• � - Move vector equivalence (see Definition 36)

• = - Run equivalence (see Definition 33)

• r, r′, rx, ... - Runs of a state machine.

• q, q′, qx, ... - States of a state machine.

• î, î′, îx, ... - Move vectors.

•
S 1 S 2 · · · S n

C - Expresses that if statements S 1, S 2, ..., and S n are all true then so is C.

• G+ - Any set G′ such that G ⊆ G′. Inside a statement, S (G+) holds is equivalent to ∀G′ with

G ⊆ G′, S (G′) holds.

• G− - Any set G′ such that G′ ⊆ G.

• |r| - The length of a run r.

• r[ j] - The jth move vector in run r.

• dre - The last state reached in run r (see Definition 6).

• r[1..n] - A slice of a run r containing the first n move vectors.

• { - Noninterference policy (see Definition 45).

• G′ ⇒ G (or G′��⇒G) - Agents G′ do (or not) interfere with agents G (see Definition 41).

• a ↓ - Agents that are allowed to interfere with a based on some policy (see Definition 45).

• a⊥ - Agents that are not allowed to interfere with a based on some policy (see Definition 45).

• ε - A special null action, a special error state, or an empty run (of no actions).

• a.r - A concatenation of an action or move vector a with a run r.

• r.a - A concatenation of an action or move vector a onto the end of run r.
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B c.g.s. Transition Specification

We describe the various transition specification conventions in Figure 21.

q1 q2
î1, î2, · · ·

(a)

q1 q2
{î1, î2, · · ·}

(b)

q1 q2


{0, 1}
ε
{1, 2}



(c)

q1 q2


0, 1
ε

1, 2



(d)

q1 q2


0
ε
1

,

0
ε
2

,

1
ε
1

,

1
ε
2



(e)

q1 q2


{0, 1}
ε

Act

 ∩


Act
ε
{1, 2}



(f)

Figure 21: Concurrent Game Structure Shorthand Transition Specifications

If we include a set of move vectors on a transition as in Figure 21b, we mean that

same transition is taken upon any of the move vectors in the set. Sometimes we omit

the set brackets as in Figure 21a (thus Figure 21a and Figure 21b demonstrate the

same thing). We may also include sets of actions inside move vectors as in Figure 21c.

This has the same meaning as specifying a set of move vectors where in each, a single

action is taken from each of the action sets in the original specification as in Figure

21e (that is the transitions in Figure 21c and Figure 21e are equivalent). Sometimes

we will leave off the set brackets for action set specification as in Figure 21d. Since

we allow specification of move vector sets on transitions, we can also perform some

set operations on such sets as in Figure 21f which is equivalent to Figure 21d.
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C c.g.s. Cross-Product Construction

Specification of complex systems or problematic. We will sometimes use a cross-

product construction to first describe two pieces of a state machine and then take the

cross product of the pieces to create our full machines.

Definition 64 (Cross Product Production). The cross product construction specifies a concurrent

game structure from two components that include a state space, the allowable actions, and the

transition function.

Given a set of agents A, a set of actions Act, a pair of state sets Q1,Q2, a pair of starting

states q1, q2, a pair of allowable action functions act1, act2 (where act1 : Q1 × A → P (Act) and

act2 : Q2 × A → P (Act)), and a pair of transition functions δ1, δ2 (where δ1 : Q1 × Actk → Q1

and δ2 : Q2 × Actk → Q2), the cross product of the pairs is a concurrent game structure S =

〈A,Q, q0, Act, act, δ〉 defined as follows:

• Q = Q1 × Q2.

• q0 = 〈q1, q2〉.

• act(〈q1, q2〉, a) = act1(q1, a) ∩ act2(q2, a) for every pair of states q1 ∈ Q1, q2 ∈ Q2 and every

agent a ∈ A.

• δ(〈q1, q2〉, î) = 〈δ1(q1, î), δ2(q2, î)〉 for every pair of states q1 ∈ Q1, q2 ∈ Q2 and every move

vector î ∈ D(〈q1, q2〉).

An example of such a construction can be seen in Example 44.
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D Composition Example Specification

One of the most commonly cited examples of composition problems is the one using

blocking buffers. The following example is derived from [McC88]. The situation,

however, is never described formally as a state machine. We do construct a state

machine for the situation below as an exercise.

We begin by considering a system that appears to be a composition of several

sub-systems. It might be odd to attack the problem of composition by considering

an already composed system instead of starting with the pieces first but as we will

eventually see, it is not obvious how to define the sub-systems individually.

Consider a system composed of three smaller components, and four 1-bit buffers

with the following general behaviors (see Figure 22):

O

l0

l1

0B

1B

h I

Figure 22: Composability Example

• h: The h component reads a bit from buffer I and clears buffer 0B if the read bit was 0 or

clears buffer 1B if the read bit was 1.

• l0: The l0 component first fills the 0B buffer and proceeds to loop involving writing to 0B (and

potentially blocking) followed by writing a 0 to buffer O.

• l1: Similar to l0 except it fills and writes to 1B buffer instead. Also it writes a 1 to O buffer as

opposed to a 0.

The overall system is designed to accept input (via the I buffer) and provide output

via the O buffer. The relevant question is whether information flows from I to O. If

the input is designated as high and the output as low, we can consider the assertion

that high cannot interfere with low.
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D.1 Model

We model the situation with a state-space composed of a cross product of several com-

ponent state spaces. The components of the states should make it easier to ascertain

the system components and to consider them outside of the composed system. We will

assume that the three subsystems contain each one agent and contain a local state with

that agent having effect on that local state. In addition we let the buffers be agents with

additional local state. We do this to resolve the issue of placement of the buffer-relate

state components: does 0B buffer-related state belong to l0 or h? We opt for neither

and let the buffers be handled by their own agent and having their own state space.

The issue of state space association to system is only partially resolved as there is

still a need, for example, to share some state space between l0 and 0B. We introduce

small state space pieces for all such interfaces (see Figure 23). Using such a structure,

we may be able to reason about subsystems on their own in a consistent fashion and

explore the real flow information in the system.

O

l0

l1

0B

1B

h I

Figure 23: Composability Example with State Components

We begin the formal model by first describing precisely the state space and the

actions available for each agent.

Let us define various state space components:

• QI = {I = 0, I = 1}: Local state of buffer I. The values refer to the content of the buffer and

should be self-explanatory.

• QO = {O = 0,O = 1}: local state of buffer O.

• Q0B = {b0,¬b0}: local state of buffer 0B. The values here denote whether or not the buffer is

filled. We do not care of the content of the buffer at all for this example. b0 means the buffer
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is blocked or filled and ¬b0 denotes that the buffer is not blocked or empty.

• Q1B = {b1,¬b1}: local state of buffer 1B.

• Ql0 = {i00, i01, i02} × {R0 (O = 0) ,R0 (b0) ,R0 (ε)}: local state of component l0. The first sub-

component refers to the state of the three-state state machine that governs the general behavior

of this component (described Figure 24). The second component is the interface between l0

and 0B. It describes l0’s request (R0) for a specific change in 0B where ε denotes no request.

• Ql1 = {i10, i11, i12} × {R1 (O = 1) ,R1 (b1) ,R1 (ε)}: local state of component l1. The structure is

similar to that of l0 except the requests now refer to the interface with 1B instead (see Figure

24).

• Qih = {ih} × {Rh (¬b0) ,Rh (¬b1)}: local state of component h. There is only one state in the

state machine describing h’s behavior. In addition h has an interface to the 0B and 1B buffers

(namely requests to empty them).

We will thus consider our system consisting of global state Q = QI × QO × Q0B ×

Q1B × Ql0 × Ql1 × Qih .

Next we describe the availability of actions, the transitions, and their effect on the

various state spaces in a high-level manner.
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agent availability action effect

l0 ( i00 or i01 ) and R0 (ε) write 0, 0B R0 (b0)

i02 and R0 (ε) write 0,O R0 (O = 0)

R0 (b0) and b0 ε none

R0 (b0) and ¬b0 λ R0 (ε)

R0 (O = 0) λ′ R0 (ε)

l1 ( i10 or i11 ) and R1 (ε) write 0, 1B R1 (b1)

i12 and R1 (ε) write 1,O R1 (O = 1)

R1 (b1) and b1 ε none

R1 (b1) and ¬b1 λ R1 (ε)

R1 (O = 1) λ′ R1 (ε)

h I = 0 read 0B Rh (¬b0)

I = 1 read 1B Rh (¬b1)

I always S (I = 0) I = 0

always S (I = 1) I = 1

O R0 (O = 0) and not R1 (O = 1) S (O = 0) O = 0

R1 (O = 1) S (O = 1) O = 1

0B R0 (b0) and not Rh (¬b0) S (b0) b0

Rh (¬b0) and not R0 (b0) S (¬b0) ¬b0

R0 (b0) and Rh (¬b0) S (b0) and S (¬b0) ¬b0

1B R1 (b1) and not Rh (¬b1) S (b1) b1

Rh (¬b1) and not R1 (b1) S (¬b1) ¬b1

R1 (b0) and Rh (¬b1) S (b1) and S (¬b1) ¬b1

The meaning of the various actions is as follows:

• ε - This represents a null action that has no effects (that is, the state component affected does

not change).

• write 0, 0B - This represents writing a 0 to buffer 0B. The effect of such an action is the

request to write to the buffer. Similarly for writing 1 and to buffer 1B.

• λ - This represents an buffer filling request being processed. The result is that the request is

emptied.
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i00start i01 i02
write0, 0B write0, 0B

ε
write0,O

(a)

i10start i11 i12
write0, 1B write0, 1B

ε
write1,O

(b)

ihstart

read0B

read1B

(c)

Figure 24: Component Transitions and Effect on State Components

• λ′ - Similarly as above but for the output buffer.

• read 0B - This represents reading from buffer OB and similarly for 1B. The effect is that the

a request is made to empty the buffers.

• S (I = 0) - This represents the setting of buffer I to 0. Similarly for S (I = 1), S (O = 0), S (O =

1).

• S (b0) - This represents the filling of buffer 0B. Similarly for S (b1).

• S (¬b0) - The emptying of buffer 0B and similarly for S (¬b1).

The effects on the table describe the value of state components after each transition.

The effects described are always local to the state space of the component owning each

action or a shared component (such as some components owned by the buffers). For

example consider agent h. We see that the action read 0B is available as long as the

system is in the state with the QI component equal to I = 0. The effect of such an
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action is that a request for emptying the buffer is that the value of the Qih is set to

Rh(¬b0).

Having a c.g.s. model for the system, it becomes apparent that considering the

components separately from the whole system is not straightforward. Though we pre-

sented the component state spaces in an attempt to make this task easier, significant

amount of transitions for the components depend on state of other components es-

pecially involving the buffers. For example the ε and λ actions of l0 depend on the

{b0,¬b0} component of the buffer’s state space. Not only this, the buffers’ actions de-

pend on state space of two different components. For example the S (b0) and S (¬b0)

actions of 0B depend on state space of both l0 and h (specifically R0(b0) and Rh(¬b0)

). These dependencies prevent us from separating the whole system into individual

components.
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