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ABSTRACT 
 
 

The objective of this thesis is the implementation of Monte Carlo and quasi-Monte Carlo 
methods for the valuation of financial derivatives. Advantages and disadvantages of each method 
are stated based on both the literature and on independent computational experiments by the author. 
Various methods to generate pseudo-random and quasi-random sequences are implemented in a 
computationally uniform way to enable objective comparisons. 

Code is developed in VBA and C++, with the C++ code converted to a COM object to make 
it callable from Microsoft Excel and Matlab. From the simulated random sequences Brownian 
motion paths are built using various constructions and variance-reduction techniques including 
Brownian Bridge and Latin hypercube. The power and efficiency of the methods is compared on 
four financial securities pricing problems: European options, Asian options, barrier options and 
mortgage-backed securities. In this paper a detailed step-by-step algorithm is given for each method 
(construction of pseudo- and quasi-random sequences, Brownian motion paths for some stochastic 
processes, variance- and dimension- reduction techniques, evaluation of some financial securities 
using different variance-reduction techniques etc). 
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CHAPTER 1 
 
INTRODUCTION 
 

 
 
To price financial derivatives analytic methods are only available for a few special cases and 

often under unrealistically restricting assumptions. In most practical cases computational methods 
have to be used. 

Derivatives whose price depends only on the current value of the underlying security can be 
priced using partial differential equations. For numerical evaluation these equations can be 
discretised and solved e.g. by finite differences. Current technology allows the solution of the 
partial differential equations up to 6-7 dimensions. 

Many important derivatives are either higher dimensional or are path dependent, which 
means that their prices depend on the past history of the value of the underlying security, not just on 
its current value. Important such examples are Asian options, which depend on the average price of 
the underlying over a certain interval of time. Another example is mortgage-backed securities, 
whose price depends on the past evolution of interest rates. Such path-dependent securities cannot 
be valued using partial differential equations. In these cases Monte Carlo simulation is the most 
efficient computational method to evaluate them. 

The price of a derivative security is always a discounted expected value with respect to a 
risk-neutral martingale measure. Due to the extreme complexity of the random variables involved, 
this expected value can only be evaluated by numerical integration. In Monte Carlo methods the 
random variables are simulated by computer generated pseudo-random sequences and the numerical 
integration is performed by averaging over a large number of simulations. Pseudo-random numbers 
mimic the realizations of independent identically distributed random variables. Due to a 
fundamental result in probability theory, Monte Carlo methods based on such pseudo-random 
numbers can converge only proportionally to the square root of the number of simulations. 

It was noticed that the randomness of the simulating sequence is not essential for numerical 
integration. Deterministic sequences which fill the space uniformly can also be used. These so 
called low-discrepancy sequences offer the advantage of a faster convergence proportional to the 
number of simulations (and not the square root of it). Simulation methods based on low-discrepancy 
sequences are also called quasi-Monte Carlo techniques. 

Realistic problems in computational finance are typically high dimensional. For example 
pricing a mortgage backed security requires a 360 dimensional space. Solution of such high 
dimensional problems is currently limited by the available computer technology. Consequently, 
using more efficient numerical methods makes it possible to solve problems whose solution 
wouldn't be possible otherwise with the current technology. Quasi-Monte Carlo techniques are 
considered a promising new methodology for financial problems. 

The goal of the present thesis is the implementation of Monte Carlo and quasi-Monte Carlo 
methods for the valuation of financial derivatives. Advantages and disadvantages of each method 
are stated based on both the literature and on independent computational experiments by the author. 
Various methods to generate pseudo-random and quasi-random sequences are implemented in a 
computationally uniform way to enable objective comparisons. In the literature most authors state 
that their methods are superior to others. This issue is further complicated by the fact, that some of 
the highest publicized methods are only available as proprietary commercial implementations. Their 
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authors do not disclose crucial details and, at the same time, claim unsurpassed superiority. To even 
the playing field and to make objective comparisons possible, all methods considered in this thesis 
were coded in a uniform way by the author. As a consequence, observed processor times are 
indicators of the efficiency of the methods and are not influenced by their computational 
implementations. From the simulated random sequences Brownian motion paths are built using 
various constructions and variance-reduction techniques including Brownian Bridge and Latin 
hypercube. The power and efficiency of the methods is compared on four financial securities 
pricing problems: European options, Asian options, barrier options and mortgage-backed securities. 
In this paper a detailed step-by-step algorithm is given for each method (construction of pseudo- 
and quasi-random sequences, Brownian motion paths for some stochastic processes, variance- and 
dimension- reduction techniques, evaluation of some financial securities using different variance-
reduction techniques etc). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7

 
 
CHAPTER 2  
 
LOW DISCREPANCY INTEGRATION METHODS 

 
 
 
 
 
2.1 Traditional Monte Carlo (MC) integration 

Monte Carlo integration is to use random points for the numerical evaluation of an integral. 
Other words, to use random points to determine the area under the function, see the picture below 
(based in Press et al., 1992).  

Let consider a simple example. We want to evaluate an area on a picture below. 

 

y

f(x) 

Area=I

According to numerical methods to find the area (or evaluate the integral) we can approximately 

compute it as a sum: ∑∫
=

−
≈=

N

i
i

b

a
)x(f

N
)ab(dx)x(fI

1
. 

xa b 

Monte Carlo estimators will approximate I by taking a lot of random samples and averaging their 
contributions . 

ix
)x(f i

The Monte Carlo simulation can be viewed as a problem of integral evaluation. Recall that 
to calculate an expected value we have to evaluate an integral (or a summation for discrete 
probability distributions). Ripley wrote that the object of any simulation study is the estimation of 
one or more expectations of the form )]([ XE ϕ . In general, the Monte Carlo method solves 
multidimensional integrals, and the expression for the Monte Carlo approximation for the 
multidimensional integral is given by (1). 

 (1)      ∑∫
∈

=
≈=

N

Bx
i

i
B

i

)x(
N

dx)x(f)x(
1

1 ϕϕθ ,                                                          
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where ,,1, Nixi = are N independent random samples from the distribution of )(xf that are 

obtained from N independent random samples from uniform distribution on  (s is the 

dimension of the unit cube, 

s]1,0[
sB ℜ∈ ).  

The Monte Carlo method provides approximate solutions to a variety of mathematical 
problems by performing statistical sampling experiments on a computer. Monte Carlo methods have 
been used for centuries, but only in the past several decades has the technique gained the status of a 
full-fledged numerical method capable of addressing the most complex applications. The method 
applies to problems with no probabilistic content as well as to those with inherent probabilistic 
structure. In the computational practice of MC methods the required random numbers and random 
vectors are actually generated by the computer in a deterministic subroutine. In this case are 
pseudorandom numbers and pseudorandom vectors are meant.  

Advantages of MC. Because of its intuitive sense and simplicity of implementation Monte 
Carlo methods are used in a wide range of applications. The advantages of MC are: 

 This method is easy to implement.  There are only minimal requirements that make the 
method applicable to very difficult integration problems. The evaluation requires only the 
ability to sample random points x and evaluate f(x) for these points. 

 MC method for numerical integration offers a way to deal with problems of high 
dimensionality. 

 The standard error does not depend upon the dimensionality of the integral whereas most 
techniques of numerical integration—such as the trapezoidal rule or Simpson's method—
suffer from the curse of dimensionality. 

 Monte Carlo simulation allows mimicking extremely complicated phenomena by using the 
computer’s random numbers generator to simulate normal fluctuations in nature. 

Limitations of MC. Although of all above strength sides, Monte Carlo method is not a 
panacea. It has several deficiencies that may complicate its usefulness [Niederreiter].  Some of the 
disadvantages are: 

 It must be decided in advance how many points to choose and how fine it is should be. 
Once number of random points is chosen all those sample points should be completing. 
With a grid it is not convenient to “sample until” convergence or termination criterion is 
met. So, with MC methods, generating random samples is difficult. 

 The MC method converges slowly. The convergence rate —how quickly the error 
decreases with the number of samples—of basic Monte Carlo integration is proportional to 

N
1

. This means that to halve the error, four times as many samples are needed. 

 The results are statistical in nature.  This means that the estimate I can be wrong, and there 
are only probabilistic error bounds.  

 The error bound does not reflect any additional regularity of the integrand.  
 The Monte Carlo method depends on our initial seed. 

Mechanism of MC integration. To evaluate integrals in form (1) and their errors using 
Monte Carlo Method we can implement follow algorithm: 



 9

1. Generate a sequence of random numbers with density function )x,...,x,x( N21 )x(f . 

2. Form a sum ∑
=

=
N

i
iN )x(

N
ˆ

1

1 ϕθ  that is the approximation for ∫=
B

dx)x(f)x(ϕθ .  

3. Evaluate the empirical variance of θ : ( )
2

1

2

1
1

∑
=

−
−

≈
N

i
NiN

ˆ)x(
N

S θϕ  .  

4. Compute the standard error (SE): .
N
S

)ˆ(SE N
N

2

=θ  

SE, a measure of the error, is the standard deviation of Nθ̂  . The error is due the fact that it 
is an average of randomly generated samples and so itself random.   

5. Calculate the necessary sample size to achieve error less or equal to 0N ε , where 

N
S N2

=αε . From the above with )%( α−1  confidence we have 

                               )(
N

SˆP N
N αθθ −≥⎟

⎠

⎞
⎜
⎝

⎛ <− 1
2

 

The Monte Carlo method was invented by Stanislaw Ulam, a Polish born mathematician 
who worked for John von Neumann on the United States’ Manhattan Project during World War II, 
in 1946 while pondering the probabilities of winning a card game of solitaire. But Ulam did not 
invent statistical sampling. This had been employed to solve quantitative problems before, with 
physical processes such as dice tosses or card draws being used to generate samples. W. S. Gossett, 
who published under the pen name “Student,” randomly sampled from height and middle finger 
measurements of 3,000 criminals to simulate two correlated normal distributions. Ulam’s 
contribution was to recognize the potential for the newly invented electronic computer to automate 
such sampling. Working with John von Neuman and Nicholas Metropolis, he developed algorithms 
for computer implementations, as well as exploring means of transforming non-random problems 
into random forms that would facilitate their solution via statistical sampling. This work 
transformed statistical sampling from a mathematical curiosity to a formal methodology applicable 
to a wide variety of problems. Metropolis named the new methodology after the casinos of Monte 
Carlo. The Monte Carlo method (stochastic simulation) was introduced in finance in 1977, in the 
pioneering work of Boyle. 

 
2.2 Quasi-Monte Carlo  
 

 Quasi-Monte Carlo integration is a method of numerical integration that operates in the 
same way as Monte Carlo Integration, but instead uses sequences of quasi-random numbers which 
have a more uniform behavior to compute the integral. Quasi-random numbers are generated 
algorithmically by computer, and are similar to pseudo-random numbers while having the 
additional important property of being deterministically chosen based on equally distributed 
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sequences (Ueberhuber 1997, p. 125) in order to minimize errors.  In general this change will cause 
the integration estimate to converge towards the actual solution like ( ) N/Nln s  (where s is the 

number of dimensions in the integral) instead of the usual 
N
1

 of the standard MC procedure. 

This improved convergence is considerably better, almost as fast as 
N
1

. The term “quasi-random” 

is somewhat misleading because is nothing “random”. The sample points in a quasi-random 
sequence are, in a precise sense, “maximally avoiding” of each other. 

QMC methods can be viewed as deterministic versions of Monte Carlo methods [Niederreiter]. 
Determinism enters in two ways: 1) by working with deterministic points rather than random 
samples and 2) by the availability of deterministic error bounds instead of probabilistic MC error 
bounds. It could be argued that most practical implementations of MC methods are, in fact, quasi-
Monte Carlo methods since the purportedly random samples that are used in Monte Carlo 
calculation are often generated in the computer by the deterministic algorithm. In QMC methods 
deterministic nodes are selected in such a way that the error bound is as small as possible. The very 
nature of the QMC methods with its completely deterministic procedures implies that we get 
deterministic and thus guaranteed error bounds [Niederreiter]. In principle, it is therefore always 
possible to determine in advance an integration rule that yields a given accuracy. For example, for 
MC it is necessary to increase 100 times the number of simulations N to reduce the error by a factor 
of 10, whereas the QMC requires less (in general much less) that 100 times, and only 10 times in 
optimal cases. 

Quasi Monte Carlo (QMC) methods are also termed low discrepancy procedures.  

The discrepancy of the point set s
N,ii ),[}x{ 101 ∈= is )E(

N
)N;E(AsupD

E

)s(
N λ−=  

where ,s,j,t),t,[...)t,[E js 11000 1 =≤≤××= )E(λ the Lebesgue measure of E is, and 

)N;E(A  is the number of  contained in E.  ix

Other words, E is an s-dimensional hyper-rectangle, )E(λ is the length, area, volume etc, 

N
)N;E(A

 is the percentage of  in E, and the discrepancy is the largest difference between  ix

N
)N;E(A

 and )E(λ . 

A Low Discrepancy Sequence is a set of s-dimensional points, filling the sample area 
“efficiently” and has a lower discrepancy than straight pseudo-random number set. The advantages 
of  QMC: 

 The integral is approximated using a well-chosen sequence of points. 
 The QMC approach often leads to better point estimates for a similar computational effort 

compared with standard Monte Carlo. 
 Quasi-random numbers result in faster convergence. Fewer quasi-random samples are 

needed to achieve a similar level of accuracy as obtained by pseudo-random sequences. 
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 In several cases permit to improve the performance of Monte Carlo simulations, offering 
shorter computational times and/or higher accuracy. Because of higher accuracy, Quasi-
Monte Carlo methods provide a way to improve the accuracy and reliability of Monte Carlo 
simulation. 
 
Quasi-Monte Carlo methods have first been proposed in the 1950s and their theory have 

since developed widely. Some of applications of QMC methods arise in problems of numerical 
analysis that can be reduced to numerical integration. In 1995 Paskov and Traub  used quasi-Monte 
Carlo (QMC) methods to estimate the price of a collaterized mortgage obligation. The problem they 
consider was in high dimensions (360) but nevertheless, they obtained more accurate 
approximations with QMC methods than with the standard MC method. Since then, many people 
have been looking at QMC methods has a promising alternative for pricing financial products. In 
finance applications it turns out, that results obtained by QMC are usually closer to the best rate of 
convergence than the theoretic worst-case. This occurs sometimes because the use of some 
technique for the reduction of effective dimension, sometimes because the favorable smooth payoff 
function and even the discount effect [Boyle].  

 
 

2.3 Random Uniform Sequences (pseudo-random) 
 

The pseudo-random sequence of numbers looks like random numbers because it looks 
unpredictable. However, pseudo random numbers are generated with deterministic (explaining the 
adjective "pseudo") algorithm like the congruent random generator (the most common generator). 
In addition, the implementation of these pseudo random sequences are, in general, of volatile type in 
the sense that the seed (initial value of a sequence) depends of an (unpredictable) external feeder 
like the computer clock. 

The Uniform distribution in the interval [0, 1] is, for practical purposes, the only distribution 
that we need generate for simulations. The reason is that the samples from the other distributions 
are derived using the Uniform Distribution.  

Pseudo-random sequences (N=1000): Dimensions 1 x 2

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

Dimension 1

D
im

en
sio

n 
2

 
There is no need to show pseudo-random sequences for other dimensions because they will 

look similar to the above graph thanks to randomness. 
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2.4. Low Discrepancy (LD) Sequences  
 
 Discrepancy is a measure of deviation from uniformity of a sequence of points in D 
( ). Discrepancy contributes to the error in quasi-Monte Carlo methods. This error is 
bounded by the product of a function’s variation, a measure of the function’s “niceness” over the 
area of integration, and the discrepancy of the point set. The idea behind the low-discrepancy 
sequences (a sequence of n-tuples that fills n-space more uniformly than uncorrelated random 
points) is that for any rectangular set B the fraction of the points within B should be as “close” as 
possible to its volume. That way (see 

sD ]1,0[=

Press at al. for detail), the low-discrepancy sequences cover 
the unit cube as “uniformly” as possible by reducing gaps and clustering of points [Paskov]. 
Although the ordinary uniform random numbers and quasi random sequences both produce 
uniformly distributed sequences, they are a very different. A uniform random generator on 

will produce outputs so that each trial has the same probability of generating a point on equal 
subintervals, for example 

)1,0[
)2/1,0[  and )1,2/1[ . Therefore, it is possible for n trials to 

coincidentally all lie in the first half of the interval, while the )1( +n st point still falls within the 
other of the two halves with probability 1/2. This is not the case with the quasi random sequences, 
in which the outputs are constrained by a low-discrepancy requirement that has a net effect of points 
being generated in a highly correlated manner (i.e., the next point "knows" where the previous 
points are). Such a sequence is extremely useful in computational problems where numbers are 
computed on a grid, but it is not known in advance how fine the grid must be to obtain accurate 
results. Using a quasi random sequence allows stopping at any point where convergence is 
observed, whereas the usual approach of halving the interval between subsequent computations 
requires a huge number of computations between stopping points.  
 

The van der Corput sequence is the simplest one dimensional low discrepancy sequence. To 
obtain nth point xn of the van der Corput sequence (with a prime base of p ), first write the integer n 

in base p : , then transpose the digits around the “decimal point” to get∑
=

=
I

i

i
i pnan

0
*)( )(nai

 

the corresponding quasi-random number ∑
=

+
=Φ=

I

i
i

i
pn p

na
nx

0
1

)(
)( . 

Only a finite number of these will be non-zero. I is the lowest integer that makes )(nai 0)( =nai  

for all i > I (I equal to integer part of N,n),pln(/)nln( 1=  ). 
For example, let p =3 and n=19. We can write 19 in base 3 as 

2013*13*03*219 012 =++= . When reflecting 201 (in base 3) about the “decimal point” 

we obtain 
27
11

27
2

9
0

3
1)19(319 =++=Φ=x . This is a number in the interval [0,1].  

The sequence with a base of 2 begins: 

                   =1: n ;
2
1)1(,12*11 21

0 =Φ=== x   

                   =2: n ;
4
1

4
1

2
0)2(,22*02*12 22

01 =+=Φ==+= x   
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                   =3: n ;
4
3

4
1

2
1)3(,112*12*13 23

01 =+=Φ==+= x   

 

                    =4: n ...
8
1

8
1

4
0

2
0)4(,1002*02*02*14 24

012 =++=Φ==++= x  

 
After every N=2n-1 points, the sequence is “maximally spread out”, i.e. the longest interval 

 which does not contain any points from the sequence is a short as possible. The 
construction process of new LD sequences involves sub-dividing the unit hypercube into sub-
volumes (boxes) of constant volume, which have faces parallel to the hypercube's faces. The idea is 
to put a number in each of these sub-volumes before going to a finer grid. 

)1,0(),( ⊆ba

Different bases have different cycle length, the quantity of numbers to cover the interval [0, 
1) in each cycle. In base two, the pairs (0, 1/2) and the pair (1/4, 3/4) are the two first cycles.  
For other bases this cycle is larger. For example, in base 3 the sequence has power of 3 denominator 
with length cycle = 3 (e.g., 0, 1/3, 2/3 is the first cycle). It looks like: 

0, 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, 10/27, 19/27... 

Two keys to the successful use of QMC methods in high dimensions are the construction of 
good sequences and the intelligent use or the sequences for path generation. There are several high-
dimensional sequences for use in QMC: Halton, Faure, and Sobol sequences. Other important 
sequences are Niederreiter [Niederreiter] and generalized Faure sequences (see [Bratley], 
[Ninomiya]). 
 
 
2.4.1 Halton Sequences 
 

Halton sequence is the most basic low discrepancy sequence in multiple dimensions, which 
can be viewed as the building block of other low discrepancy sequences. The Halton sequence 
[Broadie] is a general s-dimensional sequence in the unit hypercube . The first dimension of 
the Halton sequence is the van der Corput sequence base 2 and the second dimension is the van der 
Corput sequence using base 3. Dimension s of the Halton sequence is the van der Corput sequence 
using the s-th prime number as the base. As the base of the van der Corput sequence is getting 
larger as the dimension increases, it takes increasingly longer to fill the unit hypercube (for 
example, 25

s]1,0[

th and 26th primes are 97 and 101 correspondingly). The sequence corresponding to the 
prime p has cycles of length  p  with numbers monotonically increasing. This characteristic makes 
the initial terms of two sequences highly correlated, at least to the first cycle of each sequence.  

In one dimension for a prime base p , the nth number in the sequence ,N,n},H{ n 1= is 
obtained by the following steps [Press at al.].  

For each N,n 1= : 
1. Write  as a number in base n p . For example, suppose =3 and n=22, then we can write 

22 in base 3 as 

p
2113*13*13*222 012 =++= . 

2. Reverse the digits and put a radix point (i.e. a decimal point base p ) in front of the 
sequence (in the example, we get 0.112 base 3). 
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3. The result is . nH
In s-dimension problem, each component a Halton sequence are made with a different prime 

base p (first n primes are used). Every time the number of digits in n increases by one place, n’s 
digit-reserved fraction becomes a factor of p  finer-meshed.   So, at each step as n increases points 
of Halton sequence are better and better filling Cartesian grids. 

 
Table 1. Halton sequences for first 3 dimensions 
 

 Dim=1 
(Base 2) 

Dim=2 
(Base 3) 

Dim=3 
(Base 5) 

n=1 1/2 1/3 1/5 
n=2 1/4 2/3 2/5 
n=3 3/4 1/9 3/5 
n=4 1/8 4/9 4/5 
n=5 5/8 7/9 1/25 
n=6 3/8 2/9 6/25 
n=7 7/8 5/9 11/25 
n=8 1/16 8/9 16/25 

 
Figure 1 below shows first 10 quasi-random numbers of Halton sequences 
 
Fig. 1 

Halton quasi-random sequences (N=10): Dimension 1 x 2
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Figures 2-4 demonstrate some weakness of this sequences that arise in high dimensions. 
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Fig.2   

Halton-random sequences (N=1000): Dimensions 1 x 2

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

Dimension 1 (base=2)

D
im

en
sio

n 
2 

(b
as

e=
3)

 
 
Fig. 3 
 

Halton-random sequences (N=1000): Dimensions 14 x15
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As we will see below the problems are arise with higher dimensions. 
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Fig. 3 Starting with n=1 
Halton quasi-random sequences (N=1000): Dimensions 27 x28
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Figure 3 illustrates the problem with Halton sequences: points in successive dimensions are highly 
correlated and, in high dimensions, the initial points are clustered near zero. All of these problems 
can lead to poor integral estimates. The second problem can be reduced (see Fig. 4) if take a starting 
point n=16 instead of n=1. 
 
Fig. 4 Starting with n=16 
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 The sequence preserves its basic properties starting from a different number, so that is not 

necessary to start from n = 0 or n =1. In addition, there are some advantages to cut the first n* 
numbers of a sequence to improve the uniformity in higher dimensions, as reported by many 
authors [Galanti and Jung].  

The major problem for the simple quasi-random sequences is their degradation when the 
dimension is large. The generation process of uniformly distributed points in becomes 
increasingly harder as s increases because the space to fill becomes too large. The high-dimensional 
Halton sequences exhibit long cycle lengths, due the large prime number base. For example, in the 
dimension 55, is used the base 257, the 55th prime number. The long cycle length means that the 
high-dimensional sequence needs a large number of points for an entire walk in the interval [0, 1). 

s)1,0[
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So, Halton sequence becomes unsatisfactory after dimension 14. In practice, due the 
correlation, many people prefer to avoid the use of Halton sequence for more than 6 or 8 
dimensions. 

 
2.4.2 Faure Sequences 
 
 The Faure sequence ([Faure], [Joy at al.]) is also a general s-dimensional sequence. Unlike 
the Halton sequence, all dimensions use the smallest prime p such that sp ≥ and 2≥p  as the 
base. The first dimension of the Faure sequence is the van der Corput sequence in base p . Higher 
dimensions are permutations of the sequence in the first dimension. For high-dimensional problems 
the Faure sequence works with van der Corput sequences of long cycle. Long cycles have the 
problem of higher computational time (compared with shorter cycle sequences).  
As occurred with high-dimensional Halton sequence, there is the problem of low speed at which the 
Faure sequence generates increasing finer grid points to cover the unit hypercube. However, this 
problem is not as severe as in the case of the Halton sequence. For example, if the dimension of the 
problem is 55, the last Halton sequence (in dimension 55) uses the 55th prime number that is 257, 
whereas the Faure sequence uses the first prime number after 55, that is a base 59, which is much 
smaller than 257. So, the "filling in the gaps" in high-dimensions is faster with Faure sequence 
when compared with the Halton one. General formula for the length of the n-th cycle in base p is 

. For example, for 1−np 4=p the first four cycles are 3, 15, 63, and 255.   
To construct the Faure s-dimensional sequence we start by representing any integer n  in 

terms of base p as . The first dimension of a Faure point is given by reflecting 

about the “decimal point”, as  in the case of van der Corput sequence: 

∑
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We will use recursion to find all remaining dimensions (components) of the sequence point. First 
assume that all  are known. Then can be obtained from the formula: )(1 na k
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The successive points in the Faure sequence obtained from 
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This recursive procedure permits us to generate s components (dimensions) corresponding 
to each Faure point N,N,n(n 1=  is a number of simulations) in the Faure sequence with p as 
base )sp( ≥ .  

 
Table 2. Faure sequences for first 3 dimensions 
 

 Dim=1 
(Base 3) 

Dim=2 
(Base 3) 

Dim=3 
(Base 3)  

Dim=1 
(Base 3) 

Dim=2 
(Base 3) 

Dim=3 
(Base 3) 

 )n(a0  )n(a1  )n(a2  1
nx  2

nx  3
nx  

n=1 1 0 0 1/3 1/3 1/3 
n=2 2 0 0 2/3 2/3 2/3 
n=3 0 1 0 1/9 4/9 7/9 
n=4 1 1 0 4/9 7/9 1/9 
n=5 2 1 0 7/9 1/9 4/9 
n=6 0 2 0 2/9 8/9 5/9 
n=7 1 2 0 5/9 2/9 8/9 
n=8 2 0 1 8/9 5/9 2/9 

 
 
Figures below represent Faure sequences for different dimensions. 
Fig. 5 Faure sequences, base 3, N=1000 
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The problems with Faure sequences arise with the dimension. Higher dimension requires a 
larger prime number taken as base and causes higher correlation between two neighboring 
components of the points.  
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Fig.6  

Faure-random sequences (N=1000): Dimensions 13 x14, base 17
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Fig.7  

Faure quasi-random sequences (N=1000): Dimensions 28 x29. 
Base 31
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Faure sequence is build the way that with each additional dimension number of rows that are 
absolutely the same is growing. As reported in [Galanti and Jung], among others, the Faure 
sequence suffers from the problem of start-up. In particular, for high-dimension and low starting 
values n0, the Faure numbers exhibits clustering about zero. In order to reduce this problem, Faure 
suggests discarding the first points, where )1( 4 −= pn p  is the base. The start-up problem is 
reported also for other sequences with the same practical suggestion of discarding some initial 
numbers from the sequence. The Faure sequence exhibits high-dimensional degradation at 
approximately the 25th dimension. But according our experience, what is surprising that at 
dimension 30 these sequences behave better than at dimension 14. By eliminating the first n points 
we can get “empty spots” in our sequences that cause decreasing of uniformness.  
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 There are some variations for this class of sequences. Tezuka formulated the Generalized 
Faure Sequence, based on Halton sequence but using polynomials for reordering. According to 
Traub, generalized Faure method converges significantly faster than Monte Carlo and simple Faure 
method.  

 
2.4.3 Sobol Sequences 
 

In the general s-dimensional Sobol’ sequence [Sobol] for all dimensions uses the prime 
number 2 as the base. The first dimension of the Sobol’ sequence is the van der Corput sequence in 
base 2, and higher dimensions are permutations of the sequence of the first dimension. Permutations 

depend on a set of direction numbers . The numbers iv ,,1,
2

wi
m

v i
i

i == form a  sequence of 

binary fractions with  bits after the binary point, where  are odd integers. The 
Sobol’ sequence is not uniquely defined until all of these direction numbers are defined.  

w i
im 20 <<

In the Sobol algorithm [Sobol] a one-dimensional Sobol’ sequence is generated by 

, where  is the binary representation of 

 and ⊕  denotes a bit-by-bit exclusive-or-operation (XOR). For example, n=5 is 101 in base 2. If 
, then  

0,2211 ≥⊕⊕⊕= nvavavax wwn K

0 321 === vvv

⎣ ⎦
∑
=

=
n

i

i
ian

log

0
2

n
111.0,11.0,1.

011.0111.001.0111.0*111.0*01.0*15 =⊕⊕=⊕⊕=x . 
As  increments different “ones” of the ’s flash in and out of  on different time 

scales.  alternates between being present and absent most quickly, while  goes from present to 

absent (or vice versa) only every  steps. 

n iv nx
1v nv

12 −n

For the construction of Sobol sequences the notion of Grey codes are used. 

The Gray Code of an integer j is defined as ⎥⎦
⎤

⎢⎣
⎡⊕=
2
jintj)j(G , where int[x] represents the 

largest integer inferior or equal to x. Notice that G(j-1) and G(j) differ, in their binary 
representations, only in the digit relative to the rightmost zero in the binary representation of (j-1). 
Therefore, in the construction of the jth  Sobol number, the induction is the same as XORing all the 
direction numbers associated to the unit bits of G(j). For example,  
G(2) = ). 311110102112 1 ==⊕=⊕+=⊕ )*(
 
To construct of the Sobol sequence for each dimension k we should follow as  

1. Choose an integer x randomly, for instance, x = 2. This number defines the starting point of 
the sequence (the “seed” of the process).  

2. Compute the Gray Code of x, G(x), as explained above.  
3.  Transform G(x) to its binary representation (G(2) =3=1*21 +1*20 =11). 
4. Sum bit by bit (XOR) the direction numbers associated with the digits of G(x) (in binary 

representation) that are different from zero. In the example, counting from right to left, the 
bits of G(x) different from zero are the first and second. Therefore XOR has to be done with 
the first (0.1) and the second (0.11) direction numbers: 

                0.010.11  0.10  k) y(2; =⊕=  
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5.  Transform the resulting number into a decimal number contained in (0; 1), by multiplying 
each digit of that binary representation by , where l is the position of the digit in the 
decimal part of number, counting from left to right. Add up the terms. The result is the first 
Sobol number in dimension k: .  

l−2

250021202 21 .)k,(s =×+×= −−

 
Antonov and Saleev proposed a shifting of the original Sobol’ sequence, which can be 

generated much faster while preserving good convergence properties. They show that instead of 
using the bits of the integer  to select direction numbers, the bits of the Gray code of n could be 
used. In their algorithm, the sequence of direction numbers  is generated by a primitive 
polynomial with coefficients in the field  with elements {0, 1}. In case of the primitive 

polynomial of degree  in , the direction numbers 
can be obtained from the recurrent formula:  

n
iv

2Z
1...)( 1

1
1 ++++= −

− xbxbxxP n
nn n ][2 xZ

nivvvbvbvbv n
ninininiii >⊕⊕⊕⊕⊕= −−+−−−− ),2/(112211 K , 

where the last term is shifted right  places.  niv − n
Instead of XORing several directions numbers, the j-th Sobol can be obtained from the (j-1)-th 
using just one direction number: jk2 v -y(j   k) y(j; ⊕) 1;= 2κ , where  is the direction number 
associated with the rightmost zero in the binary representation of (j-1). In the example, 210 = 102, 
therefore the rightmost zero is encountered in the first position and one should XOR the first 
direction number of the k- th dimension with y(2; k). The second number in the sequence will be: 

jkv

       
501 21 70 = ×+×=

=⊕=
−− .2 2  1  k)    s(3;          

0.110.10  0.01 k) y(3;              
 

Similarly, 310 = 112 and it is necessary to add a leading zero to put our hands on the rightmost zero 
in the binary representation of 3, that is, the 10 digit in the third position. Therefore we need to 
XOR the third direction number. The third number in the sequence is: 

     
375211 321 .2 2  0  k)    s(4;          

0.0110.101  0.110 k) y(4;              

0 = ×+×+×=

=⊕=
−−−  

The fourth number depends on y(4; k) and on the first direction number, because the rightmost zero 
in the binary representation of 4 is in the first position: 410 = 1002 

   
58211 321 70 = ×+×+×=

=⊕=

.2 2  1  k)    s(5;          

 0.111  0.100  0.011  k) y(5;              2
           

And so forth... The numbers “fill” the gaps in the interval (0; 1) looking for empty spaces, as 
if the procedure knew where the positions of all prior numbers were. 

To construct a multi-dimensional Sobol’ sequence, consider  to be s primitive 

polynomials in . Denote [
sPPP ,...,, 21

][2 xZ Paskov] the sequence of one-dimensional Sobol’ points 
generated by the polynomial . Then the sequence of s-dimensional Sobol’s points is defined as 

∞
=1}{ n

i
nx

iP
( )s

nnnn xxxx ,...,, 21= . 
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Table 3.Sobol three-dimension sequences (Start No=0) 
    

  Dim=1 
(Base 2) 

Dim=2 
(Base 2) 

Dim=3 
(Base 2) 

n=1 1/2 1/2 1/2 
n=2 3/4 1/4 3/4 
n=3 1/4 3/4 1/4 
n=4 3/8 3/8 5/8 
n=5 7/8 7/8 1/8 
n=6 5/8 1/8 3/8 
n=7 1/8 5/8 7/8 
n=8 3/16 5/16 5/16 

   
Figures below demonstrate how quality of Sobol sequences varies in different dimensions.  
 
Fig.8  

Sobol sequences (N=1000) : Dimensions 1 x 2
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Fig.9 

Sobol sequences (N=1000): Dimensions 14 x 15
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Fig.10  

Sobol sequences (N=1000): Dimensions 39 x 40
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Sobol sequences possess a good uniformness and require a little time to compute them.  
Galanti and Jung showed that the Sobol sequences presented no degradation at all up to the 

dimension 260. 
Each dimension k of the Sobol sequence is created with the use of a different primitive 

polynomial. There are several tables of these polynomials available in the literature. Press et al. list 
150 primitive polynomials, allowing the construction of Sobol sequences up to 150 dimensions. 
Jaeckel [2002] offers a CD containing more than 8 million polynomials. These should suffice for 
nearly all practical problems in finance. 
 
Alternative Heuristic Random Method of Generation of the Initial Direction Numbers: 

1. For each dimension k, using a pseudo-random generator, draw uniform numbers  

such that  is odd (simply keep drawing  until 

the condition is met), and use 

kd iku
 d  i  0 for 1) 1]; - 2  max(int[u  m k

i
ikik <<×= iku

i
ik

ik
m

v
2

=  as the direction number for dimension k.  

2. Generate randomly a seed for each dimension. It is preferable to choose large numbers as 
seeds; this will force the algorithm to use direction numbers of higher orders in the w-bit long array 
for each dimension (this enhances the power of randomization of the algorithm). 

 
This method was used by Silva to generate 2500-dimensional Sobol sequences with 2047 

points each. The uniform numbers in consecutive dimensions covered the unit square very well for 
nearly all the 2500 dimensions. The number of dimensions that can be tackled with this method 
depends only on the amount of available primitive polynomials, currently around 8 million. Thus it 
seems that the curse of dimensionality could be broken in practice.  
 

2.4.4 A Hybrid Quasi-Monte Carlo Approach 

The following Hybrid Quasi-Monte Carlo approach is very simple and it is inspired by the Latin-
hypercube technique named stratified sampling without replacement [Vose, 2000]. 
For a problem with s dimensions and N simulations: 
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1. Generate a vector-column of N  random or quasi-random numbers as the basic vector. For 
example, we can use the van der Corput sequence in base 2 for the first dimension.  

2. For each dimension ,s,k,k 1= use this vector but with independent random permutations 
for the elements of this vector.  

Table 4. Hybrid Quasi three-dimension sequences  
    

  Dim=1 
(Base 2) 

Dim=2 
(Base 2) 

Dim=3 
(Base 2) 

n=1 1/2 1/2 1/4 
n=2 1/4 1/8 3/8 
n=3 3/4 3/4 1/2 
n=4 1/8 5/8 1/16 
n=5 5/8 3/8 5/8 
n=6 3/8 1/4 7/8 
n=7 7/8 1/16 3/4 
n=8 1/16 7/8 1/8 

As we can notice from the table each column consists of the same elements but in different random 
order. It uses the same base 2 for all dimensions as Sobol sequences, but permutations of first 
columns are random. 

Fig. 11 

Hybrid quasi-random sequences (N=1000): Dimensions 1 x 2
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Fig.12 

Hybrid quasi-random sequences: Dimensions 14 x15
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Fig. 13 

       

Hybrid quasi-random sequences: Dimensions 27 x28
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Because the Hybrid quasi-points built as permutations of Corput sequence with base 2, this 
method does not experience problems with autocorrelation in high-dimension environment. 

The random permutation idea is to break the correlations (cyclicality) of the sequence of s 
low-discrepancy vectors of N components each. The resulting vector after the permutation preserves 
its low discrepancy property of evenly distributed numbers in the interval [0, 1), because the 
numbers are the same in another order, and in addition the sequence in the same row from the 
matrix (that is, in the same sample path) gains the property of independence or at least become 
closer for practical purposes. From the graphs above we can notice that the degradation of low-
discrepancy sequence in high-dimensional case is not occurring for hybrid quasi-random sequence. 
In terms of high-dimensional clustering this means that the hybrid quasi-random sequence is not 
worse than the pseudo-random sequence in multi-dimensional case. The multi-dimensional 
sequence being more evenly dispersed in each individual one dimension has higher potential to be 
evenly dispersed at higher dimension if it is possible to eliminate the correlation between 
dimensions. This job is performed by the random permutation, which makes a random association 
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between quasi-random numbers (van der Corput with base 2, for example) for every 2D projection.  
By using these hybrid QR sequences we have the guarantee of nice cross-temporal statistical 
properties: for any time instant t we have a van der Corput base 2 (permuted) sequence, which we 
see before is a much better approximation for U[0, 1] than the pseudo-random sequence, without 
the problem of degradation observed in the standard (non-hybrid) quasi-random sequences for 
higher dimensions.  

 
2.4.5 (t, m, s)-Nets and (t, s)-Sequences 
 
 The quasi-random points that we discussed in this chapter are special cases of (t, m, s)-nets 
and (t, s)-sequences [Niederreiter].
 An elementary interval in base b is a set of the form  

                     s
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for non-negative integers  with  . For jj k,a jk
j ba < 0≥t , a sequence mbN =  points  is a 

(t, m, s)-net in base b if every elementary interval 

nx

J  in base b of volume  has    mtb −

             01
1

=−Χ= ∑
=

N

n
nJN )J(m)x(

N
)J(R .  

(  is a characteristic function of the set J, and m(J) is its volume). JΧ
The smaller t is the better, given m, s, and b. Also, a smaller base is preferable, since it implies that 
uniformity holds over shorter subsequences. 
 An infinitive sequence ( )∞

=1nnx  is a (t, s)-sequence in base b if each finite sequence 

 with ( ) n

n
b)A(

j,Abnnx 1−

−
0≥A  is a (t, m, s)-net in base b for all . 0≥m

Other words, a (t, m, s)-net in base b (with mt ≤≤0 ) is a set of  points in the s-dimensional 
hypercube such that every elementary interval of volume  contains  points. 

mb
mtb − tb

 The net property becomes relevant for tm > , that is 1+≥ tbN . Below this value of N, any 
sequence of points in sI , even identical points, is consistent with the net property [ Caflisch]. The 
smallest N at which the net property constrains some fully s-dimensional elementary sub-interval 
(one with all ) is . The asymptotic rate for the discrepancy of nets should therefore start 

at around N= . 

0>jk stb +

stb +

 Faure points are (0,s)-sequences in prime bases not less than s. Sobol points are (t,s)-
sequences in base 2. For s=360 the value of t is quite large for Sobol’ sequences (according to 
Niederreiter in the thousands). For s=360 the smallest value of b for Faure sequence is 361.  
Therefore, Faure points achieve the smallest value of t, but at the expense of a large base. 
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2.4.5 Comparison Low Discrepancy Sequences 
 
To compare low-discrepancy sequences, several criteria were used. 

1. Uniformity. We compute methods on the basis of how uniformly they fill the hypercube 
. Better uniformity leads to smaller integration error at the same sample size.  s),[ 10

The following table illustrates the nice statistical properties of quasi-random sequence (used 
a van der Corput sequence in base p compared with the (theoretical) Uniform [0, 1] distribution, 
and pseudo-random sequence (generate with Excel).  

Table 5. Statistical Properties of Low Discrepancy points (LDP) vs. Linear Congruent Generator 
(LCG) 

Comparison (n=1000) for Uniform Distribution U[0,1] 
                
  Theoretical LCG LDP 

    
Pseudo-
Random 

Corput 
Base 2 

Halton 
Base 3 

Faure 
Base 3 

Sobol 
Dim 2 

Hybrid 
Dim 2 

Mean 0.50000 0.49822 0.49951 0.49899 0.49928 0.50040 0.49951 
Variance 0.08333 0.08573 0.08339 0.08332 0.08314 0.08318 0.08339 
Skew 0.00000 -0.00936 0.00000 -0.00112 0.00069 -0.00051 0.00000 
Kurtosis -1.20000 -1.24690 -1.20087 -1.19902 -1.19871 -1.19799 -1.20087 
Max 1.00000 0.99845 0.99805 0.99863 0.99863 0.99902 0.99805 
Min 0.00000 0.00195 0.00098 0.00046 0.00046 0.00098 0.00098 
                

As we can notice from this table, the LDP sets routinely outperformed the LCG set. Sobol 
sequence has better uniform properties regarding to the mean and maximum number comparing to 
other LDS, whereas Faure sequence has the lowest variance at base 3. Corput sequences with base 2 
and therefore Hybrid quasi sequences perform better regarding to skew and kurtosis. 

Hence, quasi-random sequence presents a better performance than typical pseudo-random 
sequences for all four probabilistic moments, indicating that quasi-random sequence is more 
representative of U[0, 1] than pseudo-random numbers.  
 

2. Speed of generation. We compare methods on the basic of the computer time it takes to 
generate a given number of s-dimensional points.  

Table 6. Speed of generation of different sequences (N is a number of M-dimensional points, where 
M is the dimension). All numbers in this table are in seconds. 

Sequence N=1,000,000; 
M=6 

N=1,000,000; 
M=12 

Times of time 
increasing  

Pseudo-Random 3 6 2.5 
Halton 8 14 1.75 
Faure 79 200 2.53 
Sobol 2 4 2 
Hybrid 10 17 1.7 
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As we can notice from this table, the Sobol sequence can be generated significantly faster than 

the Faure sequence and faster than most pseudo-random number methods. Advantages the Sobol 
sequence over Faure and Halton sequences is due to the use base 2 for all dimensions. So, there is 
some computational time advantage due the shorter cycle length. The time to construct Hybrid 
sequences is larger than for Halton sequences due to additional operations needed to calculate 
uniform permutations of the one-dimension sequence (base 2).  Faure sequences consume much 
more times that all other tested here sequences.  According to Traub, the generalized Faure method 
always converges as fast as the modified Sobol method and often faster, but this method is beyond 
our work. 

3. Standard error. We compare methods on the basis of the standard error obtained by 
implementation these methods to practice. 

As an example, we compute the standard error resulting in implementing these methods to 
European call evaluation.  

Table 7. Standard error of different sequences for different number of paths (N) and dimension M 
(M=6) in European call evaluation. 

Sequence N=1,000; M=6 N=10,000; M=6 Times of SE 
decreasing  

Pseudo-Random 0.0394 0.0192 2.05 
Halton 0.0333 0.0108 3.08 
Faure 0.0241 0.0085 2.84 
Sobol 0.0058 0.0046 1.26 
Hybrid 0.0381 0.0236 1.6 

 
As we can notice from this table, the Sobol sequence gives the least standard error, comparing 

to other methods. All quasi-random sequences perform better than pseudo-random, but Hybrid 
method gives the worst error among other low-discrepancy sequences. Faure sequences are 
outperforms all other sequences but Sobol ones, but we should remember from previous comments 
that Faure sequences consume more time.  

Sobol sequence can achieve the 1% accuracy (for the above example) with N=700 samples  
while pseudorandom sampling requires nearly 15,000 samples and consume 8 times more time than 
Sobol sequences to get the same accuracy.  

Actually, to evaluate a European call option it is enough to take just one dimension (in this case all 
low-discrepancy sequences will lead to the same result because they all use de van Corput sequence 
with base 2 for this dimension. The table 8 demonstrates power of QMC methods comparing simple 
MC in this case.  

Table 8. Standard error of different number of paths (N) and dimension M (M=1) in European call 
evaluation. 

Sequence N=1,000; M=1 N=10,000; M=1 N=25,000; M=1 
MC 0.0076 0.0132 0.0131 
QMC 0.0111 0.0044 0.0039 
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As we can notice from the table to improve accuracy we would require more pseudo-random 
numbers than low-discrepancy ones.  

4. High dimensional clustering. We compare methods on the basis of high dimensional 
clustering near zero. If the clustering occurs for some sequence it would result in decreasing 
its effectiveness and reliability.   

As was noted and demonstrated in chapters 2.4.1-2.4.4 the major problem for the simple 
quasi-random sequences is their degradation when the dimension is large. The generation process of 
uniformly distributed points in becomes increasingly harder as s increases because the space 
to fill becomes too large. While Sobol sequence "fills in the gaps" at higher rate in high-
dimensional problems (due its shorter cycle), there is the problem that at high-dimensions the Sobol 
points tend to repeat themselves across dimensions, resulting in high-dimensional clustering. The 
traditional solution is to discard the first n  points. As it was observed from the experience by the 
author the Faure sequences perform better if first n=Prime number used to generate this sequence 
are discard.  Boyle, Broadie, and Glasserman [

s)1,0[

Boyle at al.] discard the first 64 points for Sobol 
sequence, but this number can be chosen arbitrary. The Sobol sequence appears to resist more to the 
high-dimensional degradation. Galanti and Jung showed that the Sobol sequences presented no 
degradation at all up to the dimension 260. According our analysis Halton and the Faure sequences 
suffer from this problem with much lower dimension. Hybrid sequences as well as pseudo-random 
sequences do not have such problem, but as we noted before, they result in lower standard error and 
could not be considered as a good alternative to low-discrepancy sequences.  

5. Correlation between nearly dimensions. We compare methods on the basis of correlation 
between neighboring dimensions. If the neighboring dimensions are highly correlated it will 
lead to decrease its quality and multi-dimensional uniformity.   

As was noted and demonstrated in chapters 2.4.1-2.4.4 the nearly dimensions of some quasi-
random sequences in high-dimensional problems are highly correlated. Fig. 3 demonstrates such 
problem with Halton sequences. So, Halton sequence becomes unsatisfactory after dimension 14. In 
practice, due the correlation, many people prefer to avoid the use of Halton sequence for more than 
6 or 8 dimensions. Because the Hybrid quasi-points built as permutations of Corput sequence with 
base 2, this method does not experience problems with autocorrelation in high-dimension 
environment. Fig. 6-7 demonstrate the problem with Faure sequences: the Faure sequence exhibits 
high-dimensional degradation at approximately the 25th dimension. According to Fig. 9-10 Sobol 
sequences also express some correlation between neighboring dimensions, but this correlation is 
lower than for other low-discrepancy sequences and started at higher dimension.  

As the result of different comparisons that are discussed in this chapter some summary and 
recommendations could be made.  

The Halton sequence is dominated by the Faure and Sobol sequences. Although an 
implementation of Halton method is much easier than Sobol and Faure methods, it is not wise to 
use them in high dimensions. As will be shown later in finance application its performance falls 
dramatically with increasing dimensions. Hybrid Quasi method shows no degradation in high 
dimensions, but its uniform properties are worse than of other LD sequences. For low dimensions, 
all LD sequences can be successfully used. But with higher dimensions, it might be good to use 
Sobol sequences or the generalized Faure method to be positive in fast convergence and reliability. 
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2.5 Generating of Normally Distributed Sequences  

The uniform distribution can be generated with either pseudo random number or quasi-
random numbers. Algorithms are available to transform a uniform distribution in any other 
distribution. The main and direct way to do this transformation is by the cumulative distribution 
function inversion. The most important distribution for financial and other applications is the 
Standard Normal Distribution. 

For standard normal distribution, the cumulative distribution is:   

  ∫
∞−

−
=

x t
dtexY 2

2

2
1)(
π

. 

In a simulation problem, we have the Y(x) from uniform distribution, )(xY ~ U[0, 1], but we want 
the corresponding x samples for any distribution, e.g., the normal distribution. In other words, we 
want x(Y), the inverse of the cumulative distribution. Hence, given one uniformly distributed 
sample u we want to obtain the value x(u), that is, the correspondent sample for the desirable 
probability distribution.  

The best-known general way of generating normally distributed points is by using the Box-
Muller algorithm (see [Press at al.]). However, for low discrepancy sequences has been reported 
that this is not a good way to go because it damage the low discrepancy properties of the sequence 
(alters the order of the sequence or scrambles the sequence uniformity) [Moro], [Galanti and Jung]. 
In addition, it has been reported that the Box-Muller algorithm is slower than the Moro's inversion 
described below. The traditional normal inversion algorithm is given by Beasley and Springer (see 
Moro). However, this algorithm is not very good for the tails of the normal distribution. The best 
way to obtain the inversion from U[0, 1] to normal distribution is by using an algorithm presented 
in a famous short paper of Moro. Moro presented a hybrid algorithm: he uses the Beasley & 
Springer algorithm [Beasley and Springer] for the central part of the normal distribution and 
another algorithm for the tails of the distribution. Moro modeled the distribution tails using 
truncated Chebyshev series. The Moro's algorithm divides the domain for U (where U = uniform 
sample) into two regions: 

1. The central region of the distribution, 50420 .xU,.U −=≤ , is modeled as in 

[Beasley and Springer] :
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n na  nb  
0 2.50662823884 1.00 
1 -18.61500062529 -8.4735109309 
2 41.39119773534 23.08336743743 
3 -25.44106049637 -21.06224101826 
4  3.13082909833 
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2. The tails of the distribution, ,.U 420>  are modeled by a truncated Chebyshev series as  
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The constants  and are chosen such that 1k 2k 1−=z  when 920.)x( =Φ and  when 

. 

1=z
12101 −−=Φ )x(

n nc  nk  
0 7.7108870705487895  
1 2.7772013533685169 0.4179886424926431 
2 0.3614964129261002 4.2454686881376569 
3 0.0373418233434554  
4 0.0028297143036967  
5 0.0001625716917922  
6 0.0000080173304740  
7 0.0000003840919865  
8 9.9999999129707170  

That procedure has high accuracy for all values of x  in the interval [ ]1010 101,10 −− −  while the 
speed remains as with a simple rational approximation. 

To compare Moro’s Inversion with Standard Excel Inversion (STANDSINV( ) ), we use  a van der 
Corput quasi-random sequence in base 2 and random sequence. The table 9 shows that both 
inversions (Moro and Excel) in case of Quasi-Random sequences presented practically the same 
(acceptable) accuracy, but not for pseudo-random where Moro’s Inversion is more accurate for all 
parameters but variance with standard deviation. 

Table 9. Statistical Properties of Quasi-Random Inversion to Standard NORMSDIST (N=1000) 

  
Normal 
[0,1] Moro’s Inversion Excel’s  Inversion 

    
Pseudo- 
Random 

Quasi- 
Random 

Pseudo- 
Random 

Quasi- 
Random 

Mean 0 -0.0111 0.0002 -0.0235 0.0003 

Median 0 0.0009 0.0000 0.0033 0.0000 
St Deviation 1 0.9779 0.9886 1.0085 0.9940 
Variance 1 0.9562 0.9772 1.0170 0.9880 
Skewness 0 0.0533 0.0097 -0.1318 0.0121 
Kurtosis 3 2.8451 2.7870 3.1571 2.8914 

The Excel inversion weak side is in the tails accuracy. To prove that we can take uniform numbers 
(u) successively closer to zero so that the inverse numbers are successively more negative (in the 
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left tail of the Normal). The "exact" numbers and the idea for this kind of test is drawn from the 
paper of McCullough & Wilson (2001, p.6).  

Table 10. Comparison of Normal Standard Inversion Functions 

u Normal [0,1] 
Moro’s 

Inversion 
Excel 

NORMSINV 

0.001 -3.09023 -3.09023    -3.09025 
0.0001 -3.71902 -3.71902 -3.71909 
0.00001 -4.26489 -4.26489 -4.26504 
0.000001 -4.75342 -4.75342 -4.75367 
0.0000003 -4.99122 -4.99122 -4.99152 

On the contrary, note that the Moro's inversion get the same result of the column "exact" for 
the precision of 5 decimal digits. This nice performance of the Moro's inversion for the tails can 
make a significant difference for real options valuation. The "tail performance" is important for a 
large number of simulations (so that non-zero low discrepancy numbers get closer to the limits of 
the interval).  

To successfully use LD sequences in finance, transformed numbers from uniform 
distribution to normal must posses a good normality. The graphs below demonstrate transformed 
standard normal samples using Moro’s method. 
 
Fig. 15 Transformed standard normal samples using Moro’s method in different dimensions. 
 
Dimension 2:                                                                 Dimension 20: 
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Sobol (BiNormal)
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The graphs above confirm our claims about the usefulness of Sobol sequences to get a good 
practical implementation of normality.   
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CHAPTER 3  
 
 
GENERATION OF MATRICES OF BROWNIAN MOTION PATHS 

 
 

The generation of paths usually takes several steps: 

1. The generation of a (N by s) - matrix of (pseudo-) random numbers, where N is the 
number of samples and s is the dimension. Standard Monte Carlo or Quasi-Monte Carlo 
(Sobol, Faure, Halton etc. sequences) methods can be used for this purpose. 

2. Transformation of the matrix on the first step to a matrix of non-uniform random 
variables. To obtain normal random numbers from uniform numbers Moro’s inversion 
algorithm or Box-Muller transformation could be used. Once we know how to generate 
a sample Z from the standard normal distribution, we can generate a sample from the 
normal distribution with mean 

X
µ and standard deviation σ  by setting ZX ⋅+= σµ . 

3. The use of the matrix of the non-uniform random to build paths. 

 For example, in more basic option problem we can think the number of dimensions s as the 
number of discrete time intervals of one sample path, so s = T/∆ t, where T is typically the 
expiration of the options or the horizon of interest. The number of iterations N is the number of 
sample paths. The number of dimensions is at least the number of time-steps (that is tT ∆/ ). So, 
across the paths at one specific time instant, we want a good uniform sample numbers in order to 
generate for example a good Normal distribution of a Brownian motion that probably will result in 
a Log-normal distribution for prices. 

The key step in most finance cases is generating increments of the driving Wiener Process 
(Brownian motion). A standard Brownian motion [Hull] with parameters ),( σµ  is a stochastic 
process with following properties: }t:W{ t 0≥

1. Its paths are continuous function of time t. 
2. For increments ,t...tt m<<<≤ 210 ,m,i,WW

ii tt 1
1

=−
−

a mutually independent. 

3.  ).s,(N~WW tst
2σµ−+

4.  .W 00 =

In this case we can say that  ).t,t(B~Wt
2σµ

Moreover, the vector ( )
mtt W,...,W

0
 is multivariate normal with mean µ  and covariance matrix 

determined by .m,j,i),t,tmin(]W,W[Cov jitt ji
12 =⋅= σ   

µ  is called the drift, and σ  is called the volatility. When 10 == σµ , , we have a standard 
Brownian motion (SBM). 
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3.1 Generation BM paths using Forward Increments 
 
3.1.1 Generation Paths for general stochastic process 
 

Consider an underlying process that described by the stochastic differential equation (SDE)   
  (2) dW)t;S(bdt)t;S(adS +=  
 where S(t) is the asset price and dW is the increment of a standard Brownian motion, with zero drift 
and unit volatility. In general, the drift coefficient a and the volatility b can depend on time t and on 
the value of the state variable S. The continuous time stochastic process S is called an Ito process; its 
mean and variance are:  
 .  dt)t;S(b)dS(Var,dt)t;S(a)dS(E 2==
 These process gives continuous solution trajectories (with probability one) and over time 
intervals short enough that a and b are nearly constant, the distribution of price changes is Normal 
with 10 == σµ , . The solution to the SDE is a random variable: at each time t, the solution value 
S(t) has a specific probability distribution, and there is a certain covariance structure between the 
values at different times. We suppose that we are given a non-random starting value  at time  
= 0. Our goal is to provide a rule for computing m  random variables , corresponding to a 
given list of n different times , so that the random variables 

0S 0t
mS,...,S1

mt,...,t1 { } ,m,j,S j 1= have the same 
distribution structure as the samples { } m,j,)t(S j 1= , of the true solution. 
Given independent standard normal { } ,m,j,Z j 0=  we can generate Brownian process by setting  

(3) m,j,ZttWW,ZtW jjjttt jj
1100 10

=⋅−+=⋅= −−
.  

Alternative way to generate { } ,m,j,W
jt 0= is to compute the Cholesky factorization of the 

covariance matrix and using it to multiply the column vector ( )'.Z,...,Z m0  
We can construct an approximation to S(t) at  as mt,...,t1

(4)  10111 −=⋅−+−+= −++ m,j,Ztt)t,S(b)tt)(t,S(aSS jjjjjjjjjjj . 

According to Monte Carlo algorithm, we need to generate many paths to achieve a given 
accuracy. So, in practice, formula (4) corresponds to generating sample paths N,i,S i

j 1= , where 

N  is number of samples. 
(5) .N,i,m,j,Ztt)t,S(b)tt)(t,S(aSS i

jjjj
i
jjjj

i
j

i
j

i
j 110111 =−=⋅−+−+= −++  

Once we have this collection of sample paths, we can estimate whatever summary statistics we 
want.  
 
3.1.2 Generation Paths for Geometric Brownian motion (lognormal random 
walk) 
 

Geometric Brownian motion (GBM) with parameters ),( σµ  is a stochastic process 

 if  }t:X{ t 0≥ ( ) ),t,t/(B~)Xln( t
22 2 σσµ ⋅−  or write 

( ) )t,t/(LN~X t
22 2 σσµ ⋅− . 
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For this process the SDE (1) takes S)t,S(b,S)t,S(a ⋅=⋅= σµ . Therefore GBM is described 
by the SDE  

(6)                        dWdt
S

dS
⋅+⋅= σµ  , 

where the drift µ  and volatility  σ are constant parameters ( µ is the (constant) instantaneous 
expected return on the stock, σ is the (constant) instantaneous standard deviation of stock returns. 
Τhe equation (6) is the most widely used model of stock price behavior. 
This SDE has the explicit solutio  n
 (7)                      [ ]( )tt Wt/expSS ⋅+⋅−⋅= σσµ 22

0 . 
In this case, simulating values of  reduces to simulating values of  by formula (3). Generated 
values at a fixed time t of the underlying process is 

tS tW

 (8)      [ ]( ) ).,(N~Z,Zt/expSSt 1022
0 ⋅+⋅−⋅= σσµ  

Financial models that depend only on the underlying price at the time of maturity T (i.e. European 
options) will follow the above equation with Tt = .  

In case if a financial model depends on the price of some asset at certain specific times 
 approximations of the model in these intermediate times might be found. mt,...,t1

Since the coefficients of (4) are constant then the exact solution of this across discrete times is  
(9)    ( ) 102 11

2
1 −=⋅−⋅+−⋅−+= +++ m,j,Ztt)tt(/XX jjjjjjj σσµ . 

We can find by setting jS )Sln(X),Xexp(S jj 00 == . 

As an example, we might want to hedge the position every day during 6 months depending on what 
the prices do that day; in that case you could set  126=m (number of trading days in 6-month 
period).  

  
 
3.1.3 Generation Paths for Geometric Brownian motion of multiple correlated 
assets 
 

Now we generate values of multiple correlated assets, { } ,k,i,S )i(
t 1=  where each  is 

described by (4) with asset-specific parameters 

)i(
tS

iµ  and iσ , and driving Wiener process  If .W )i(
t

[ ] ,tW,WE ij
)j(

t
)i(

t ⋅= ρ where ijρ  is correlation between the Brownian Motions driving the 

assets  and  , then  )i(
tS )j(

tS
 (10)      [ ]( )iiii

)i()i(
t t/expSS Z⋅+⋅−⋅= σσµ 22

0 , 
where  is multivariate normal with mean zero and covariance matrix ( kZ,...,Z1=Z )

ijjiij ρσσ=Σ . Z can be generated, for example, through Cholesky factorization of Σ  [Broadie at 
al.]. To obtain a discrete path of asset prices the above process can be repeated: the price of some 
asset at certain specific times  for each asset is given by   mt,...,t1
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(11) 
( ) k,i,m,j,Ztt)tt(/XX )i(

jjjijjii
)i(

j
)i(

j 1102 11
2

1 =−=⋅−⋅+−⋅−+= +++ σσµ We 

can find by setting . )i(
jS )Xexp(S )i(

j
)i(

j =
  
 
3.1.4 Generation Paths of Term Structure models 
 

Short rates are the short term interest rates that might happen in the future (i.e. random 
variables).  Short rate process (a random process) can be described by the following SDE (Vasicek 
model specifies Ornstein-Uhlenbeck process) [Broadie at al.] 
 (12)         ttt dWdt)rb(dr ⋅+⋅−= σα  
This simple model specifies a diffusion process for (instantaneous, continuously-compounded) 
short rate (a short rate at timetr t ). In the model (9) parameters α  (the reversion speed),  (the 
reversion level), and 

b
σ  (the volatility) are all constant. Term dt)rb( t ⋅−α is a deterministic term 

(mean) with the drift )rb( t−α and term tdW⋅σ  is stochastic term with the volatility σ . The 
mean-reverting form of the drift is an attractive feature in modeling interest rates. The equation (12) 
remain solvable if  b  varies with time as it is usually necessary to match an initial term structure. In 
this case, the solution is 

(13)      . s

t
)st(

t
)st(t

t dWeds)s(berer ∫∫ ⋅+⋅⋅+⋅= −−−−−

00
0

ααα σα

 

Let denote . The integrand s

t
)st( dWe)t(X ∫ ⋅= −−

0

α ( )s
)st( dWe ⋅−−α  of this integral (which is 

stochastic) on the right is normally distributed with mean zero and variance  

(14)      ( )t
t

)st( edse αα

α
2

0

2 1
2
1 −−− −=⋅∫ . 

 Therefore, simulating values of  reduces to simulating values from a normal distribution. The right 
mean and variance can be defined as 

tr

(15)    ( ))st(
t

s

)ut( e)t,s(;du)u(be)t,s( −−−− −=⋅= ∫ αα

α
σσαµ 1
2

2
2 . 

Given  the interest rate at time ,ts,rs < t is normally distributed with mean 

 and variance  )s,t(re )st( µα +⋅−−
0 ).t,s(2σ

The path is generated recursively by setting  
  
(16)    ,m,i,Z)t,t(()t,t(rer iiiiit

)st(
t ii

1111
=++⋅= −−

−−
−

σµα   
where  are independent standard normal. The function b  should be chosen to reproduce 
the initial term structure and 

mZ,...,Z1
)t,s(µ should be evaluated numerically.  

To prevent this process from becoming negative (if and 0 if ()r 00 ≥ 22 σα >b ) Cox, 

Ingersoll, and Ross (CIR) proposed add factor tr  in the diffusion coefficient 
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(17)   tttt dWrdt)rb(dr ⋅⋅+⋅−= σα . 
 
Hull and White [Hull and White] (HW) model has a great level of analytical tractability and is 
currently popular. This model implies normally distributed interest rates and lognormal prices of the 
underlying process, and can be viewed as “Vasicek fitted to term structure” with the parameter 
α representing the speed of mean reversion.  
The defining stochastic differential equation for this model is given by  
 
 (18) tttt dWdt)r(dr ⋅+⋅⋅−= σαθ  
The single time-dependent parameter in the drift that allows the model to fit the observed term 
structure is given by 

(19)  ( )t
t e)t,(f

t
)t,(f ⋅−−+⋅+

∂
∂

= α

α
σαθ 2

2

1
2

00
, 

where f(0; t) is the instantaneous forward rate. 
 

The volatility structure of spot rates is therefore determined by both the volatility and rate of 
mean reversion of the reversion of the short rate: 

(20)    ( ).e
)ts(

)s,t( )ts(
R

−−−⋅
−

= α

α
σσ 1 . 

To apply Monte Carlo simulation, let B(t; T) = value of zero-coupon bond at time t, maturity T, 

( )T,t(Bln )
T

)T,t(f
∂
∂

−= is the instantaneous forward rate at time t  . Hull-White model is a 

special case of one –factor HJM [Heath, Jarrow, and Morton] model with  .e)T,t( )tT( −−⋅= ασσ

(21)    ∫∫ ++=
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where  . ∫⋅=
T

t
du)T,u()T,t()T,t( σσµ

Therefore, 
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so  is a deterministic function that is the same for all simulated paths.  So, 

we actually need to simulate only the last term of the right side (21):   

∫+
T

du)T,u()T,(f
0

0 µ

      is Markov, and 

therefore  

∫∫ −−− =⋅⋅=
T

)ut()tT(
T

)u(dWe)t(X),t(Xe)u(dW)T,u(
00

αασσ
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Thus, using equations (21-23) the value of  in a particular path is computed as )T,t(f k
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(24) 
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In case of more complex models (i.e. volatility depends on time) the exact distribution of the 
underlying process is generally either unknown or too complicated to work with directly. If the 
randomness in the drift and volatility is limited to dependence on the current state of the process, 
making the process Markovian, the model can be described by vector SDEs of the form 

 (25)   . ∑
=

⋅+⋅=
m

i

)i(
ttitt dW)t,X(dt)t,X(dX

1
σµ

If a process cannot be described by (24), its dynamics must depend on past history in complicated 
way, so simulation is likely to be difficult, if not impossible [Broadie at al.].  
 
 
3.2 Generation BM paths using some variance-reduction techniques 
 

 Variance-reduction techniques serve to improve the statistical properties of a collection of 
simulated paths (Chapter 3.1) but not to improve the way any one path is generated.  As we mention 
before, the accuracy of this simulation depends on the number of simulation paths, N.  A large number 
of simulation runs is usually needed for reasonable accuracy. However, variance reduction techniques 
can be used to modify the original problem to reduce s and achieve reasonable accuracy with a smaller 
number of runs N .   

Variance reduction methods work on exactly the same principle as that of hedging an option position 
that is the pay-off of a hedged portfolio will have a much smaller variability than an unhedged pay-off. 
This corresponds to the variance (a standard error) of a simulated hedge portfolio being much smaller 
than of the unhedged pay-off.    
 The most used in finance [Broadie at al.] is following variance-reduction techniques: 

 Antithetic variates 
 Control variates  
 Importance Sampling 
 Stratified sampling. 
 Brownian Bridge 
 Latin hypercube sampling. 

 
 
3.2.1 Antithetic variates  
 

Antithetic variates method is one of the most widely used because of its simplicity. 
Simulating with antithetic variates means that for each path )W,...,W(W

mttt 1
=  generated from a 

random sample (  of independent standard normal numbers we generate a second path )Z,...,Z m1

)W~,...,W~(W~
mttt 1

=  from a random sample )Z,...,Z( m−− 1 , that is also from a standard normal 

distribution. Under this construction, W~  is just the mirror image of W . Based on N  generated 
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sample paths, an unbiased estimator of the   ]W[E=µ is given by ∑
=

=
N

i
iW

N
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1µ . Similarly, 

each ∑
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i
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1µ  is also an unbiased estimator of µ . Therefore,  
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The intuition behind the antithetic variates method is that the random inputs obtained from 
the collection of antithetic pairs )Z,Z( ii − are more regularly distributed than a collection of 

N2 independent samples. Antithetic sampling makes the mean path always equals 0, whereas the 
mean over finitely many independent samples is almost surely different from 0.   

A price of underlying asset can be obtained by averaging the values from paths: 

 and their mirror images 

m2
)m(

t
)(

t W,...,W 1 )m(
t

)(
t W~,...,W~ 1 . 

Antithetic sampling effective if  
 0<)W~,W(Cov tt , this way the values computed from a path and its mirror image are 

negatively correlated. 
  f is monotone in each of argument. Particular, if f is linear then the antithetic estimate of 

 has zero error. )]Z,...,Z(f[E m1
 f is symmetric. In this case the variance of an antithetic sample of size 2m is the same as an 

independent sample of size m. 
 
 
3.2.2 Control variates 
 

This method adjusts the estimate computed from a set of paths rather than the paths 
themselves. The adjustment is made based on analytically available information about the 
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underlying assets or about prices of simpler instruments. The basic idea of control variates is to 
replace the evaluation of an unknown expectation with the evaluation of the difference between the 
unknown quantity and another expectation whose value is known. The standard Monte-Carlo 

estimate of )]Z(f[E]W[E tt ==µ  is ∑
=

N

i
iW

N 1

1
. If we know )]Z(g[E]W~[E~

tt ==µ  

with estimate of µ~  is given by ∑
=

N

i
iW~

N 1

1
, then the method of control variates uses the known error  

µ~W~
N

N

i
i −∑

=1

1
 to reduce the unknown error   µ−∑

=

N

i
iW

N 1

1
.  

The controlled estimator has the form   
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Since the term in parentheses has expectation zero, equation (26) provides an unbiased estimator of 
µ as long as β is independent. In practice, if the function   provides a close approximation 
of , we usually set 

)Z(g t

)Z(f t 1=β to simplify the calculation. The estimator with the smallest 

variance is given by .
)W~(Var

)W~,W(Cov

t

tt
* == ββ  

On practice, usually these variances and covariances are not known priori, but they can be estimated 
from the observed sample data as 
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where  W~,W are the sample means of  tt W~,W , respectively.  Variance of the process can be 
found as  

(28) [ ] ]).W~[EW~(W)(W,
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In the interest rate setting it is natural to use bond prices as controls, subtracting the term 
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from the payoff of an interest rate derivative and estimating the optimal β analogically (26).  

If ,m,j,ttt jj 11 =∀∆=− − equation (29) will simplify to  
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The control variates technique is efficient when there are some easily computed quantities 
that are highly correlated with the object of interest. This method is especially good for pricing 
Asian options depending on geometric averaging. In this case we can take the geometric average as 
a control variate to price Asian options which use arithmetic averaging. This technique is effective 
for it because analytical solutions for geometric case are often exact (depending on exactly how the 
averaging is defined). We will calculate a difference in value of the two options when they are 
evaluated along the same sample path. The control variates technique (see Hull and White) could 
also be successfully used when we deal with two similar options:  a simpler option problem which 
has an analytic solution, and uses that solution to improve the accuracy of the more complex 
problem at hand (that has no analytic solution). Suppose we want to estimate numerically the value 
of option A that has no analytic solution (e.g., the American put option without dividends). We can 
identify a similar option B for which an analytic solution is available (e.g., a European put without 
dividends). We can run two simulations in parallel using the same Z and ∆t to obtain estimates of 
the values FA  and FB  of options A and B, FA

* and FB
*, respectively. A more accurate estimate of the 

value of option A is then obtained as follows:  .  B
*
B

*
AA FFFF +−=

 
 
3.2.3 Importance sampling 
 

The technique builds on the observation that an expectation under one probability measure 
can be expressed as an expectation under another through the use of a likelihood ratio. The intuition 
behind the method is to generate more samples from the region that is more important to the 
practical problem at hand.  

Suppose we want to estimate )]X(h[E f=θ , where X has PMF (if X is a discrete 

random variable, PDF if X is continuous) )(f ⋅ . Let )(g ⋅  be another PMF (or PDF) with the 
property that 0≠)x(g whenever 0≠)x(f , and Y has PMF (PDF) )(g ⋅ . Other words, g has the 
same support as f. Then 

              ⎥
⎦

⎤
⎢
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⎡
=

)X(g
)X(f)X(hEgθ . 

If we set )]X(h[E
)X(g

)X(f)X(h:)X(h *
g

* =⇒= θ , where g  is the importance 

sampling PMF (PDF). An estimate of θ  and variance of the estimate are given 
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Variance reduction could be achieved by choosing h with the structure somewhat similar to 
gf ⋅ . In general, h should be large where f  and g  are, so we can concentrate our sample points 

in locations with big contribution to the final result. From the other hand, one can be efficient using 
importance sampling to make rare events less rare. The example is a deep out-of-the-money option. 
Here we can use a probability distribution corresponding to an artificially large value of the drift 
parameter so as to generate an artificially high probability of expiring in the money ([Boyle], 
[Broadie at al.]). Importance sampling technique is also efficient with eliminating singularities in 
the objective function, or with reduction of a problem with infinite variance to one with finite one.  

The most problematic cases for Monte Carlo based option pricing are options for which the 
probability of an occurrence of a strictly positive payoff is very small. Then we will get price and 
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variance estimates based on a few positive samples if we hit the payoff region or we get a zero 
payoff and variance if this improbable event does not occur. However in both cases we will get a 
very high relative error. More accurate results may be calculated by applying importance sampling 
to these options.  

The most difficult aspect to importance sampling is in choosing a good sampling density, g. 
In general, one needs to be very careful for it is possible to choose g according to some good 
heuristic such as the maximum principle, but to then find that g results in a variance increase. In 
fact it is possible to choose a g that could result in an importance sampling estimator that has an 
infinite variance! This situation would typically occur when g puts too little weight relative to f on 
the tails of the distribution. 
 
 
3.2.4 Stratification 
 

Like many variance reduction techniques, stratified sampling seeks to make the inputs to 
simulation more regular than the random inputs. In stratified sampling, rather than drawing 

randomly and independent from a given distribution, the method ensures that fixed fractions of 
the samples fall within specified ranges.  

iW

For example, we want to generate N  -dimensional random vectors from a given 
distribution 

m
)(F ⋅  for simulation input. The empirical distribution of an independent sample 

will look only roughly like the true density. Stratified sampling can be used to ensure 

that there is the only one observation  lies between the 

)W,...,W( N1

k
iW

N
i 1−

and 
N
i

quantiles ( N,i 1= ) of the 

k -th marginal distribution for each of the m components. One way to implement that is to generate 
mN ⋅  independent uniform random numbers on k

iU N,i;m,k],,[ 1110 ==    and set  

N,i,
N

Ui
FW

k
ik

i 1
11 =⎥

⎦

⎤
⎢
⎣

⎡ −+
= − . 

 In order to achieve satisfactory sampling results, a good numerical procedure to calculate is 
needed.  

1−F

 
An alternative is to apply the stratification only to the most important components 

(directions), usually associated to the eigenvalues of largest absolute value. 
The obvious advantage of stratified sampling is that leads to a variance reduction. But in 

practice, stratified sampling method quickly become infeasible as the dimension k  increases, 
unless N is made so small as to eliminate the effect on variance [Broadie at al.]. Generating a full 
stratified sample in this way requires generating kN points that is not viable if the dimension large 
than 5 or 6. But using just the initial portion of the full set of kN  points would leave a large part of 
the unit hypercube completely unsampled, that give a poor results. Also to reach a good estimation, 
the number of sub-intervals on each dimension should be large enough (e.g. N greater than 30). But, 
on the other hand, if N is large however, and each simulation run is computationally expensive, then 
it may be the case that a lot of effort is expended in trying to estimate the optimal ’s.  iN
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3.2.5 Latin Hypercube Sampling (LHS)  

Latin hypercube sampling [Broadie at al.] is an alternative to full stratification in high 
dimensional problems. It generates N  of the kN  full-stratification bins in a particularly effective 
way. Those N points in dimension k  are chosen so that all k marginal distributions are perfectly 
stratified.  

The Latin Hypercube Sampling method was first introduced by McKay at al.. To generate a 
Latin hypercube sample of size N in dimension k we can imply the algorithm: 

1. Generate a )kN( × matrix of independent and uniform over [0,1] numbers 

N,i,k,j,U i
j 11 == . 

2. Compute a vector ,k,j,j 1=π  independent random permutations of }N,...,,{ 21 sampled 

uniformly from all !N such permutations. 

3. Calculate ,
N

U)i(
V

i
jji

j

+−
=

1π
 k,j 1= . 

4. The N  points N,i),V,...,V(V i
k

ii 11 == , constitute a Latin hypercube sample of size 
N in dimension k . 

 Each of these vectors can be transformed into vectors of given distribution. In the Latin 
Hypercube Sampling method, the range of probable values for each component  is divided into i

jU
N segments of equal probability. For example, for the case of dimension 3=k and 

10=N segments, the parameter space is divided into 310101010 =×× cells. The next step is to 
choose 10 cells from the cells. First, the uniform random numbers are generated to calculate the 
cell number. The cell number indicates the segment number the sample belongs to, with respect to 
each of the parameters. For example, a cell number (2, 8, 4) indicates that the sample lies in the 
segment 2 with respect to first parameter, segment 8 with respect to second parameter, and in 
segment 4 with respect to the third parameter. At each successive step, a random sample is 
generated, and is accepted only if it does not agree with any previous sample on any of the segment 
numbers.  

310

As an advantage of LHS method is that it asymptotically eliminates the contribution to the 
variance due the additive part of the function being integrated. Disadvantage of this method is it 
does not provide a means of estimating a standard error to be used to form a confidence interval 
around a point estimate. Because the sample points are so highly correlated in hypercube sampling, 
proper estimation of error requires careful batching of the sample data. So, to obtain a good estimate 
of the error we should relax some of the variance reduction properties. 
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3.2.6 Generation BM paths using Brownian Bridge 
 

Techniques for reducing the effective dimension (Brownian Bridge (BB) and the principal 
components (PC) can greatly improve the performance of QMC methods (see [Acworth], 
[Caflisch], [Morokoff]). The idea of BB was first used in finance by Caflisch.  
 The idea of BB construction lays in generation a discrete Wiener path ( )

ktt W,...,W
1

 by 
sampling the terminal value first and then filling in the rest of the path recursively.  

1. Generate 1010 −= k,i),,(N~Zi , from uniform pseudo-random or quasi-random 
numbers (Chapter 2). 

2. Set 0ZtW ktk ⋅= , . 00 =W

3. Calculate ,k,i,W
it 20 −=  recursively using the formula:   
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This construction follows from the Brownian Bridge properties: 

 The distribution of conditional on and is normal with the mean that lies on 

the line sequent connecting and . 
1+itW

itW
ktW

itW
ktW

 A standard deviation equal to the factor multiplying in (32). 1+iZ
The variance of the random part of the Brownian Bridge formula (32) is less than in Brownian 

motion formula (5) since 
( ) ( )ii

ik

ikii tt
)tt(

)tt(tt
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−
−−

+
++

1
11 . Because much more of the 

variance is contained in the first few steps of the Brownian bridge discretization due to the 
reduction in variance in the BB formula this results in reduction of effective dimension of the 
random walk simulation which increases the accuracy of Quasi-Monte Carlo methods.  

 
Brownian Bridge discretization (BBD) is another method that is based on formula (32). The 

algorithm to determine the path ( )
ktt W,...,W

1
 as follow (for convenience we assume that k is a 

power 2): 
1. Generate k,i),,(N~Zi 010 = , from uniform pseudo-random or quasi-random numbers 

(Chapter 2). 
2. Denote 0ZtW)t(B ktk k

⋅== , 00 =W . 

3. In formula (32) use  to generate the value at the midpoint ,  for 

,   for , etc.  
1Z )t(B ]/k[ 2 2Z

)t(B ]/k[ 4 3Z )t(B ]/k[ 43

 
This can be done easily since for u<v<w, the distribution of B(v) given B(u) and B(w) is 

normal with parameters depending only on u, v, w.  The reason why this can be helpful for 
QMC is that by generating the Brownian motion path in this way, more importance is given to 
the first few uniform numbers, and thus the effective dimension of a function depending on   

 should be decreased by doing that.  )t(B),...,t(B k1
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Also we can decompose the variance-covariance matrix of the prices to be simulated using 
principal components, and then generate the prices using this decomposition [Acworth]. An 
advantage of this approach over BB is that it can be used to generate prices of correlated assets 
whereas BB can only be applied for generating prices coming from a single path. However, PC 
requires more computation time than BB for the generation of the prices. But using techniques from 
[Akesson] PC methods could be speed up. 

But the Brownian Bridge is not a panacea. It has several disadvantages.  It can demand 
additional computation complexity/time (reordering the path) for path-dependent problems. 
Papageorgiou also shows that the Brownian Bridge does not offer a consistent advantage in Quasi-
Monte Carlo Integration for lognormally distributed asset prices. Covariance matrix decomposition 
can be interpreted as a change to the integrand or to the sample points. Such a change may yield a 
harder problem relative to a fixed set of sample points. 

 

3.3 Demonstration of BM paths for different variance-reduction 
techniques 

The graphs below are used for evaluation of European Call Option with different variance reduction 
techniques with N=50 (number of paths) and s=12 (Number of dimension -time-intervals). Faure 
sequences with base 13 were used. 
 
 
Fig. 16 Without any variance-reduction techniques 
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Fig. 17 With Brownian Bridge 
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Fig. 18 With Brownian Bridge Discretization 
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Fig. 19 With Latin Hypercube technique 
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We can observe from the graphs above that Brownian Bridge technique allow us to reach 

smaller variance between the paths. Influence of other variance reduction techniques as well as 
above techniques will be demonstrated more while evaluating path-depending financial securities in 
next chapter. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 49

 
CHAPTER 4  
 
APPLICATION TO FINANCE PROBLEMS 
 

 
 
 
Simulation is a powerful tool for generating the relevant risk-neutral probability distributions 

that allow discounting of expected terminal option values at the risk-free rate. Simulation is rather 
simple and flexible in that it can handle complex derivative structures, can be easily modified to 
accommodate different (even complex) underlying stochastic processes (e.g., mean reversion, jump, or 
mixed jump-diffusion processes), or can be used when the sample security prices are drawn from an 
empirical distribution. MC (especially QMC) simulation is especially effective for valuing 
(European) path-dependent options where the option payoff depends on the history of the underlying 
state variable and not just its terminal value (e.g., lookback options that depend on the maximum or 
minimum price reached during the option's life, or Asian options that depend on the average price 
achieved). The procedure can also be successfully extended to cases where the payoff from the 
derivative depends on several underlying market variables.  It also can handle complex payoffs and 
complex stochastic processes. MC and QMC simulation tends to be even more numerically efficient 
than other procedures (as trees and finite difference methods etc.) when there are three or more 
stochastic variables. This is because the running time, even for MC simulation, increases 
approximately linearly [Hull] with the number of variables, whereas in most other procedures it 
increases exponentially.  It also has the advantage that it can provide confidence limits via the 
standard error of the estimated option value. One of disadvantages of MC (QMC) approach is it is not 
naturally suited to valuing American-style options. There are two ways to adapt this method to 
handle the options [Hull]. One of them uses a least-squares analysis to relate the value of continuing 
(i.e. not exercising) to the values of relevant variables. Another one is parameterization the early 
exercise boundary and determination it iteratively by working back from the end of the life of the 
option to the beginning.   

 
For example, in risk-neutral world, it takes several steps to evaluate the price S of the security: 

 Generate a matrix of random paths for S from a risk-neutral world. It can be done with 
techniques from Chapter 3. 

 Calculate the payoff for each path from the security (here we should use appropriate payoff 
formulas for the security). 

 Calculate the mean of the sample payoffs to obtain an estimate of the expected payoff in a 
risk-neutral world. 

 Discount the expected payoff at the risk-free rate to get an estimate of the value of the 
security. 
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4.1 Evaluating European options 

A European call (put) option gives the holder the right to buy (sell) the underlying asset 
with current price by a certain date (0S T  is a maturity or expiration date) for a certain price ( K is 
the strike price). Suppose is the final price of the asset at maturity. The payoff from a long 
position in a European call option is 

TS
),KSmax( T 0− . The payoff to the holder of a short position 

in the European call option is  ),SKmin( T 0− . The payoff from a long position in a European put 
option is . The payoff to the holder of a short position in the European put option 
is  .  

),SKmax( T 0−
),KSmin( T 0−

 The European call option solved by Monte Carlo simulation is given by the integral below:  
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Where   is the payoff expectation under risk-neutral (or martingale) measure conditional to 
the information at the (current) time t; is the risk-neutral transition density 
function of S, which is lognormal for the geometric Brownian motion (GBM);  is the value of 
the underlying asset at the (current) instant t,  and 

[.]tE
)t,S|T,S(f TT

tS
r=µ  for a non-dividend paying stock, r is the 

risk-free interest rate, σ  is a volatility. We can easily apply Monte Carlo (QMC) technique to 
estimate a price of the European option under Geometric Brownian motion as follows  

1. Calculate payoff for each path ( N,i 1= ), where N is number of simulations. For example, 
for a European call the payoff along the i -th path is:   
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      r=µ - for a non-dividend paying stock. 

2. Take an average of those payoffs: ∑
=
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N

i
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N
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1
. 

3.  Discount this value by the risk-free rate to get the price of the option: . T
rT ĈeC ⋅= −
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4. Compute the standard error: 
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The exact solution for the prices at time zero of a European call option on a dividend-paying 
stock is given the Black-Scholes pricing formula [Hull]: 
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δ is a dividend yield. 

The Table below shows the number simulations needed for different methods to achieve the price 

with error 020.=ε . For Monte Carlo method this value can be found as 
2
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Note that to compute European option under distribution other then GBM, we should divide the 
time period )T,( 0  into M equal intervals such that M/Tt =∆ and then generate values of  
at the end of these intervals as follows 
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To reduce a variance we can implement antithetic variates technique (see Chapter 3.2.1). For 
example, for a European call the implementation of this technique as follow:   
 

1. Calculate two payoffs for each path ( N,i 1= ), where N is number of simulations: 
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   r=µ - for a non-dividend paying stock. 

2. Take an average of those payoffs: ∑
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3.  Discount this value by the risk-free rate to get the price of the option: . T
rT ĈeC ⋅= −

4. Compute the standard error: 
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This way we obtain a much more accurate estimate from N pairs of )C,C( )i(

T
)i(

T  than 

from N2  of , and is also computationally cheaper (we need less computational operations). 
This method also ensures that the mean of the normally distributed samples Z is exactly zero which 
also helps improve simulation. 

)C( )i(
T

 

As an practical implementation, suppose 1002511001000 .%,%,r,T,K,S ====== σδ . 

Table below represent the results of evaluating the European call option by different techniques and 
compare them with exact solution. Sobol sequences were used to generate uniform samples in QMC 
method. 

Table 11. Comparison of different variance reduction techniques for European Call (N=1000, 
s=12) 

 Price Standard Error Computation 
time (sec) 

Black-Scholes solution 5.4713 - - 
Simple MC 5.6539 0.0334 6 
Simple QMC (none of VR 
techniques used 

5.3367 0.0246 8 

Antithetic Variates 5.3531 0.0216 12 
Control Variates * 5.4307 0.0074 8 
Control Variate* with 
Antithetic Variate 

5.4471 0.0044 12 

Latin Hypercube with 
BBD 

5.4528 0.0034 8 

Brownian Bridge 5.4485 0.0042 5 
Brownian Bridge 
Discretization 

5.4485 0.0042 8 

*For this case Delta is used as Control variate 

Using QMC method we could decrease the standard error comparing to simple Monte Carlo, 
and this difference rises with increasing number of paths. For example, in case N=10,000 and s=1 
(that is enough to evaluate European option) the standard error given by QMC method is 
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SE=0.0054 whereas this error is more then twice as higher with standard Monte Carlo: SE=0.0132. 
Also the standard error can be reduced by using some variance-reduction techniques. Thus, the 
implementation of Brownian Bridge techniques allows us to significantly decrease the standard 
error and computation time (approximately by 8 times comparing to simple Monte Carlo and by 5.9 
times comparing to QMC method). Also, the variance could be reduced by using the addition of 
Latin hypercube and Brownian Bridge Discretization techniques.  

Notice: Computational time in Table 11-Table 14 is relative time that includes time spent on 
transfer simulated stock prices to Excel spreadsheet and using them to evaluate the derivative. In 
case if  the derivative is evaluated using a  matrix of simulated prices in Visual Basic without 
transferring it to Excel, the computational time would be significantly less.  

 
4.2 Evaluating Barrier Options 
 
 Barrier option is an option whose payoff depends on whether the path of the underlying 
asset has reached a barrier (i.e. a certain predetermined level). Barrier options can be classified as 
either knock-out options or knock-in options [Hull]. A knock-out (down-and-out and up-and-out) 
option ceases to exist when the underlying asset price reaches a certain barrier; a knock-in option 
comes into existence only when the underlying asset price reaches a barrier (down-and-in and up-
and-in). For example, a down-and-out call is a type of knock-out option that ceases to exit if the 
asset price falls below a certain barrier level, H.  The barrier level is below the initial asset price. A 
down-and-in call is a type of knock-in option that comes into existence only if the asset price falls 
below the barrier level, H. The sum of the prices of a down-and-out call and down-and-in call gives 
us the value of a regular European call: T,diT,doT CCC += . A down-and-out is a put option that 
ceases to exit when a barrier less than the current asset price is reached. A down-and-in put is a put 
option that comes into existence only when the barrier is reached.  

Barrier option is an example of path-dependent derivatives [Clewlow at al]. If we assume 
that the underlying asset price is checked continuously for the crossing of the barrier, then we can 
apply analytical formulas to price it [Hull, p.439].  But if the underlying asset prices are checked 
(fixed) at most once a day or even less frequently then the price of the option will significantly be 
affected because the price is much less likely to be observed crossing the barrier in this case. So, 
implementing of analytical formulas becomes problematical, due to increasing complexity of the 
formulas. This option can be easily priced by Monte Carlo (or QMC) simulation. 
 Let assume that the asset price follows GBM then the simulation of the asset is given by 
    m,j),Zttexp(SS jjj 01 =⋅∆⋅+∆⋅⋅=+ σµ , 

where t∆ is one day (for example) and ),(N~Z 10 . The Monte Carlo simulation proceeds in 
exactly the same way as for standard option, except that at time step we check whether the asset 
price has crossed the barrier level H. If so then for down-and-out call option, for example, we 
terminate the simulation of that path and the pay-off for that path is zero. The value of the option for 
each path is given by  

(33)     N,i;
m,j,HSif),,KSmax(e

),m,j(HS:jif,
C

)i(
jT

rT

)i(
j)i( 1

10

10
=

⎪⎩

⎪
⎨
⎧

=∀>−⋅

=≤∃
=

−
. 

The “true” value of the option over N simulated paths is  
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The price for an up-and-out call option is similar to the price of down-and-out option with 

difference that we terminate the simulation of a path when the price on a step become equal or 
greater the barrier level and the pay-off for that path is zero.  

An important issue for barrier options is the frequency that the asset price is observed that 
used to investigate whether the barrier has been reached. As it was mentioned before, the analytic 
formula (Hull) assume that the price is observed continuously and sometimes this is in case, but 
usually the price is observed daily. To adjust the analytical formulas to price a barrier option where 
the price of underlying asset observed discretely, Broadie, Glasserman, and Kou proposed to 
replace the barrier level H by )m/T.exp(H ⋅⋅⋅ σ5820  for an up-and-out (in) options and by  

)m/T.exp(H ⋅⋅−⋅ σ5820  for down-and-out (in) options.   

Suppose we want to evaluate a Down-and-Out Barrier option with following parameters: 
1002511001000 .%,%,r,T,K,S ====== σδ , H=$99.  

Table below represent the results of evaluating the Barrier call option by different techniques and 
compare them with exact solution. Sobol sequences were used to generate uniform samples in QMC 
method. 

Table 12. Comparison of different variance reduction techniques for Down-and-Out Call (N=1000, 
s=12) 

 Price Standard Error Computation 
time (sec) 

Black-Scholes solution 3.0774 - - 
Simple MC 3.3869 0.1006 8 
Simple QMC (none of VR 
techniques used 

3.2766 0.0647 5 

Antithetic variate 3.2675 0.0618 11 
Brownian Bridge 3.1648 0.0284 5 
Latin Hypercube with BB 3.1325 0.0179 7 

 
Using QMC method we could decrease the standard error comparing to simple Monte Carlo 

(approximately by 1.55 times), and this difference rises with increasing number of paths and 
implementing of some variance-reduction techniques. For example, the implementation of 
Brownian Bridge techniques allows us to significantly decrease the standard error (approximately 
by 3.54 times) and computation time.  To achieve this reduction with the simple Monte Carlo would 
require increasing the number of simulations by 3.54 5312543543 ... =×  times that would result 
in significant increase in the computation time. The addition of the Latin hypercube and Brownian 
Bridge techniques result s in even more variance-reduction: the standard error decreases 
approximately by 5.62 times comparing to simple Monte Carlo method and by 1.59 times 
comparing to Brownian Bridge techniques.    
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4.3 Evaluating Asian Options 
  
 Asian option [Hull] is an option with a payoff dependent on the average price of the 
underlying asset during a specified period. 
 The payoff from an average price call is )KS,max(C aveave −= 0 and the payoff from 
an average price put is  )SK,max(P aveave −= 0 , where is the average value of the 
underlying asset calculated over life of option. Asian options are less expensive than regular options 
and are arguably more appropriate than regular option for meeting some of the needs of risk 
management. The payoff from an average strike call is  and from 

an average strike put is . Average strike options can guarantee that 
the average price paid (received) for a asset in frequent trading over a period of time is not greater 
(not less) than the final price. If Asian options are defined in term arithmetic averages 
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, exact analytic pricing formulas are not available. We can easily apply 

Monte Carlo (QMC) methods to price this derivative: 
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2. Calculate payoff of the -th path. For example, for an average price call the payoff is i
N,i),KS,max(C )i(
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3. Discount this value by the risk-free rate to get the price of the option: . )i(
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If the average price found as geometrical average then there are analytical formulas for valuing 

European average price option (since the price of the asset is assumed to be lognormally distributed 
and geometric average of a set of lognormally distributed variables is also lognormal). The 
geometric average is defined as  
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Therefore the price of the geometric Asian call option is given by a modified Black-Scholes 
formula [Clewlow at al.]: 
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where is the current geometric average and tG k is the last known fixing.  
  

A common approach to pricing an arithmetically averaged Asian option is to use the 
geometrically averaged Asian option as the control variate (Chapter 3.2.2).  

 
The Monte Carlo (QMC) implementation to price this derivative: 
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2. Calculate payoff of the -th path. For example, for an average price call the payoff is i
N,i),KG,max()KS,max(C )i(

T
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simplicity. 

3. Discount this value by the risk-free rate to get the price of the option: 
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5. Compute the standard error: 
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6. Calculate the price of the Asian call option with control variate as 

Asian_GPortfc_Asian CĈC +=  , where price of the geometrical Asian call option can be 
found by formulas (35). 

 
Applying the Monte Carlo technique to more complicated options such as path-dependent 

options requires a partitioning of the option’s life into time periods, as in the binomial model, so the 
longer life of the option the higher dimension problem we have and the more computational time is 
needed to price this option. For example, to price an Asian option, in which the average price be 
computed by collecting the daily closing price over 100 day life. Then a run would consist of 100 
random drawings, each used to simulate the stock price at the end of each of the 100 days. The 
formula for each S would be based on the previous day’s closing price. The value of t∆ would be 
1/365. Then the average of the 100 stock prices would determine the option payoff at expiration. 
You would then need to repeat the procedure at least 50,000 times. The more complex options, 
however, would probably require at least 100,000 runs.  

By applying both antithetic variates and control variates techniques to value the Asian call 
option we can significantly reduce the standard error (by 37 times) whereas the computation time 
increases by 30%.  
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Suppose we want to evaluate an Asian option with following parameters: 
1002511001000 .%,%,r,T,K,S ====== σδ .  

Table below represent the results of evaluating the Asian call option by different variance-reduction 
techniques. Sobol sequences were used to generate uniform samples in QMC method. 

Table 13. Comparison of different variance reduction techniques for Asian Call (N=1000, s=12) 

 Price Standard Error Computation 
time (sec) 

Simple MC 3.3182 0.1348 7 
Simple QMC (none of VR 
techniques used 

3.1675 0.1295 6 

Antithetic variate 2.9209 0.1161 9 
Control variate*  2.9887 0.0026 6 
Latin Hypercube 3.3236 0.1361 6 
Brownian Bridge 3.1778 01291 7 

 
           * Geometric mean Asian option is used as Control Variate 

 
Using QMC method we could decrease the standard error comparing to simple Monte Carlo, 

and this difference rises with increasing number of paths. So, in this case the implementation of 
antithetic variates allows us to decrease the standard error but the computation time increases. Also 
the significant variance reduction can be obtained by using geometrical mean option as a control 
variate. Control variate reduces the standard error by approximately 52 times. To achieve this 
reduction with the simple Monte Carlo would require increasing the number of simulations by 

 times that would result in significant increase in the computation time.  70425252 ,=×
 
4.4 Evaluating Mortgage with Prepayment Options 
 

Mortgage-backed securities [Fabozzi] are securities backed by a pool (collection) of 
mortgage loans. Mortgage-backed securities subdivide into 1) mortgage passthrough securities; 2) 
collateralized mortgage obligations; and 3) stripped mortgage-backed securities. A mortgage loan 
(mortgage) is a loan that secured by the collateral of some specified real estate property which 
obliges the borrower to make a predetermined series of payments. The interest rate on the mortgage 
loan is called the mortgage rate or contract rate.    

The cash flows of a mortgage backed-security consist of net interest (interest after servicing 
and guarantor fees), regularly scheduled principal payments, and prepayments. In order to price a 
mortgage-backed security, all its cash flows need to be projected. But usually cash flows are 
unknown because of prepayments. The only way to project cash flows is to make some assumption 
about the prepayment rate over the life of the underlying mortgage pool. The prepayment rate  
sometimes referred to as the speed. Conditional prepayment rate and Public Securities Association 
prepayment benchmark are two conventions that could be used as a benchmark for prepayment 
rates. Prepayment rates are affected by following factors: 1) the prevailing mortgage rate, 2) 
characteristics of the underlying mortgage, 3) seasonal factors, and 4) general economic activity.   

i
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The periodic cash flows of a mortgage-back security are interest rate path-dependent due to 
1) refinancing burnout, and 2) payments rules for collateralized mortgage obligations (CMO). A 
path-dependent cash flow is one in which the cash flow received in one period depends not only on 
the current interest rate level, but also on the path that interests took to get the current level.   Monte 
Carlo (QMC) simulation (Chapter 2) is the most flexible and effective method to value these 
interest rate path-dependent fixed income securities. The Monte Carlo model involves randomly 
generating many scenarios of future interest rate paths. The interest rate paths are generated based 
on some volatility assumption for interest rates. In case of mortgage backed securities, this model 
involves generating a set of cash flows based on simulated future mortgage refinancing rates. The 
random paths of interest rates should be generated from an arbitrage-free model of the future term 
structure of interest rates. An arbitrage-free model is a model that replicates today’s term structure 
of interest rates, an input of the model, and for all future dates there is no possible arbitrage within 
the model.  

Assume we want to simulate N paths for M -dimensional security (for example, a 
mortgage loan that matures in M=360 months with monthly payments). To value a mortgage-
backed security using Monte Carlo (QMC) technique we can follow the steps  

1. For each path ( )N,i 1=  simulate M monthly future interest rates M,j),i(f j 1= . For 

example,  is a simulated future 1-month interest rate for month on path i . These 
could be done by techniques discussed in Chapter 3.1.4 implementing MC or QMC for 
generating uniform random numbers.  

)i(f j j

2. Simulate paths of monthly spot rates .N,i,M,j),i(z j 11 ==  The spot rate for month 
j on a path i can be obtained from the simulated future rates along the path: 

[ ] [ ] [ ]{ } N,i,M,j,)i(f...)i(f)i(f)i( j/
j 111111 1

21 ==−++⋅+=z j .  

3. For each path ( )N,i 1=  simulate M monthly mortgage refinancing rates M,j),i(rj 1= . 
They are needed to determine the cash flows because it represents the opportunity cost the 
mortgagor is facing at that time. For example, if the refinancing rates are high relative to the 
original mortgage rate, the mortgagor will have less incentive to refinance and opposite. 

4. Simulate Cash flows M,j),i(C j 1= on each of the interest rate paths N,i 1= , based on 

simulated mortgage refinancing rates N,i,M,j),i(rj 11 == .     

5. Calculate the present value of the cash flows for month M,j,j 1= , on -th path as 
follow (K is spread):  

i
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6. Compute the present value for each path )]i(Path[PV N,i, 1= , as the sum of the 
present value of the cash flow for each month on this path:  
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7. Obtain the theoretical value of the security by calculating the average of the theoretical 
values of all the interest rate paths ( N is number of interest rate paths).  
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The theoretical value of a security on any interest rate path is the present value of the cash 
flows on that path where the spot rates are those on the corresponding interest rate path.  
 

Using the information above we can also simulate the average life of a mortgage-backed 
security as the weighted average time to receipt of principal payments (scheduled payments and 
projected prepayments). The average life of the security along the N paths is 
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where )i(Life.Av  is the average life of the security along the path N,i,i 1= , and  
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1 , M is number of moths.  

 
To provide reliable estimate of the price of a mortgage-backed security, some adjustment to 

the interest rate paths should be made to prevent interest rates from reaching levels that are believed 
to be unreasonable (e.g. an interest rate of zero or below or an interest rate too high (more than 
30%). This can be done by mean reversion: the interest rate is forced toward some estimated 
average (mean) value.  Also, the correlation between the short-term rates and refinancing rates must 
be estimated.  

Some form of variance-reduction techniques (Chapter 3.2-3.3) could be implemented to 
reduce the number of sample paths needed to achieve a good statistical sample. With variance 
reduction methods we can obtain price estimates within a tick. That means that generating more 
scenarios than N will not cause the price estimates to change more than a tick.  

 
As an example, consider a mortgage of $100,000 for T=1 and T=3 years payable monthly. 

Current annual interest rate is 5%. Volatility is 4%.    
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Fig. 20 Brownian motion path for the  term structure (M=12) 
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Fig. 21 Brownian motion path for the term structure (M=36) 
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Table 14. Comparison of MC and QMC methods for pricing Mortgage-Backed security (N=1000, 
s=12) with prepayment option 

 M=12 M=12 M=36 M=36 
 Standard Error 

(w/o 
prepayment) 

Standard 
Error (with 

prepayment) 

Standard 
Error (w/o 

prepayment) 

Standard 
Error (with 

prepayment)
Simple MC 5.86 4.00 26.42 3.69 
QMC 5.54 3.87 16.52 3.03 

 
As we can notice again quasi-random sequences perform better in this problem too. To 

generate quasi-random numbers Faure sequences were used.  With increasing of dimension the 
standard error without prepayment in case of both MC and QMC methods increases also but the 
percentage of increase for QMC methods is smaller than in case of  simple Monte Carlo (the 
standard error increases by 2.98 times for QMC comparing to 4.5 times for MC).  The standard 
error with prepayment in case of both MC and QMC methods decreases but once again the 
percentage of decrease for QMC methods is higher than in case of  simple Monte Carlo (the 
standard error decreases by 1.28 times for QMC comparing to 1.08 times for MC).  The results 
confirm our previous conclusions about comparison between MC and QMC methods. Using the 
same variance-reduction techniques simultaneously for both MC and QMC methods will result in 
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even more distinction in accuracy. Also, the difference in accuracy become larger when larger 
number of sample is generated to price this security. 
 
CONCLUSIONS 
 

In this paper first we gave a review of Monte Carlo and quasi-Monte Carlo with stating 
advantages and disadvantages of each method and independent comparison pseudo-random and 
quasi-random sequences.  

  
Some summary of the finding in this paper regarding MC and QMC methods: 

 
 Low discrepancy sequences sets routinely outperformed the pseudo-random sequences. 

Quasi-random sequence presents a better performance than typical pseudo-random 
sequences for all four probabilistic moments, indicating that quasi-random sequence is more 
representative of U[0, 1] than pseudo-random numbers. 

 The Sobol sequence can be generated significantly faster than the Faure sequence and faster 
than most pseudo-random number methods. Advantages the Sobol sequence over Faure and 
Halton sequences is due to the use base 2 for all dimensions. So, there is some 
computational time advantage due the shorter cycle length. The time to construct Hybrid 
sequences is larger than for Halton sequences due to additional operations needed to 
calculate uniform permutations of the one-dimension sequence (base 2).  Faure sequences 
consume much more times that all other tested here sequences.  As an advantage of pseudo-
random sequences is that the point sets can be reused if they are shifted. 

 The Sobol sequence gives the least standard error, comparing to other methods. All quasi-
random sequences perform better than pseudo-random, but Hybrid method gives the worst 
error among other low-discrepancy sequences. Faure sequences are outperforms all other 
sequences but Sobol ones, but we should remember from previous comments that Faure 
sequences consume more time. 

 Quasi-random methods, especially Sobol sequence, can achieve the given accuracy with 
much less samples (sometimes in 10-1000 times less) than pseudorandom sampling 
requires.  Moreover, larger number of samples used by simple Monte Carlo to achieve this 
accuracy will result in significant increase of the computational time.  

 To improve accuracy one would require more pseudo-random numbers than low-
discrepancy ones. 

 The Halton sequence is dominated by the Faure and Sobol sequences. Although an 
implementation of Halton method is much easier than Sobol and Faure methods, it is not 
wise to use them in high dimensions. For example, in some finance application its 
performance falls dramatically with increasing dimensions. 

 The Monte Carlo method is sensitive to the initial seed. 
 For functions that typically arise in security pricing, many studies have found the 

performance of QMC methods to equal or exceed that of standard Monte Carlo.  
 Hybrid Quasi method shows no degradation in high dimensions, but its uniform properties 

are worse than of other LD sequences. 
 In low dimensions, the performance of some low discrepancy sequences is often much 

better than Monte Carlo. 
 With higher dimensions problem, it might be good to use Sobol sequences to be positive in 

fast convergence and reliability. 
 Some problems with Low Discrepancy sequences are: 1) high-dimensional clustering; 

possible high correlation of neighboring dimensions; 3) possible transformation difficulties. 
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 The major problem for the simple quasi-random sequences is high-dimensional clustering. 
According our analysis Halton and the Faure sequences suffer from this problem with much 
lower dimension. Hybrid sequences as well as pseudo-random sequences do not have such 
problem, but as we noted before, they result in lower standard error and could not be 
considered as a good alternative to low-discrepancy sequences. The Sobol sequence appears 
to resist more to the high-dimensional degradation. One of the solutions to prevent high-
dimensional clustering near zero is to discard first n points. Faure sequences perform better 
if first n=Prime number used to generate this sequence are discard.  

 Some quasi-random sequences in high-dimensional problems are highly correlated. Halton 
sequence becomes unsatisfactory after dimension 14. Because the Hybrid quasi-points built 
as permutations of Corput sequence with base 2, this method does not experience problems 
with autocorrelation in high-dimension environment. The Faure sequence exhibits high-
dimensional degradation at approximately the 25th dimension. Sobol sequences also show 
some correlation between neighboring dimensions, but this correlation is lower than for 
other low-discrepancy sequences and started at higher dimension.  

 To implement QMC methods to finance problems, generated quasi-random sequences must 
have not good only uniform quality but also posses a good normal quality after using some 
transformation techniques.  Chapter 2.5 demonstrates usefulness of Sobol sequences to get a 
good practical implementation of normality. 

 The relative advantage of QMC over standard MC decreases as the dimension of the 
problem increases. 

 For some high-dimensional problems the relative advantage of QMC can be increased by 
judicious use of the sequences. 

 Sometimes problems with a high nominal dimension may have a much lower effective 
dimension (with uses of Brownian Bridge or principal component constructions).  

 
As was shown in Chapter 4 the performance of quasi-Monte Carlo methods can also be 

improved by using traditional variance reduction techniques (importance sampling, stratification, 
antithetic variables, control variables, Brownian Bridge, Latin hypercube, or even implementing 
several variance-reduction techniques simultaneously). Here we need to be aware of possible 
increasing computational time when dealing with antithetic variates. Before implementing specific 
variance-reduction techniques, following recommendation might be helpful. 
Antithetic sampling ffective if   e

 0<)W~,W(Cov tt , this way the values computed from a path and its mirror image are 
negatively correlated. 

  f is monotone in each of argument. Particular, if f is linear then the antithetic estimate of 
 has zero error. )]Z,...,Z(f[E m1

 f is symmetric. In this case the variance of an antithetic sample of size 2m is the same as an 
independent sample of size m. 

The control variates technique is efficient when 
 There are some easily computed quantities that are highly correlated with the object of 

interest.  
 This method is especially good for pricing Asian options depending on geometric 

averaging. In this case we can take the geometric average as a control variate to price Asian 
options which use arithmetic averaging. 

  The control variate could also be successfully used when we deal with two similar options:  
a simpler option problem which has an analytic solution, and uses that solution to improve 
the accuracy of the more complex problem at hand (that has no analytic solution). 
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Importance sampling is  
 Can be efficient used to make rare events less rare. 
 Efficient with eliminating singularities in the objective function, or with reduction of a 

problem with infinite variance to one with finite one. 
 one needs to be very careful with choosing a good sampling density. 

   Latin hypercube 
 Asymptotically eliminates the contribution to the variance due the additive part of the 

function being integrated (that is advantage of this method). 
 Does not provide a means of estimating a standard error to be used to form a confidence 

interval around a point estimate (that is disadvantage of this method). 
 Technique requires careful batching of the sample data because the sample points are highly 

correlated in hypercube sampling. To obtain a good estimate of the error we should relax 
some of the variance reduction properties.  

Brownian Bridge 
 Can result in decreasing of effective dimension, because by the construction more 

importance is given to the first few uniform numbers (advantage).  
 Can demand additional computation complexity/time (reordering the path) for path-

dependent problems (disadvantage). 
According to Chapter 3.3, Brownian Bridge Discretization for some financial problems 
provides a good way to reduce variance.  

 
To summarize this work, next steps should be done to evaluate path-dependent or other 

financial security using Monte Carlo or QMC. 
 
1. Generate a matrix of uniform random numbers. Pseudo-random or quasi-random numbers 

discussed in Chapter 2.3-2.4 could be used. 
2. Transform this matrix of uniform random numbers to a matrix of the same size with 

standard normal numbers. Moro’s inversion method discussed in Chapter 2.5 could be used. 
3. Generate Brownian motion paths based on the matrix of standard normal numbers. 

Corresponding methods from Chapter 3.1 could be used. 
4. Evaluate the given financial security using information along the Brownian motion paths. 

Chapter 4 gives examples of evaluating European options, Asian options, Barrier options, 
and mortgage-backed securities with prepayment option. 

5. To achieve higher accuracy some variance-reduction techniques could be implemented. 
Such techniques as were discussed in Chapter 3.2 could be used. One should carefully 
investigate the given financial problem to understand which variance-reduction technique 
would be more appropriate and effective in that case. As was shown in Chapter 4, for 
different financial problems different variance-reduction techniques could result in most 
variance reduction. Thus, for example, with Geometrical mean Asian option as Control 
variate could be achieved a  significant decrease in error for Asian option, while Delta as 
Control variate for European option is not as good as addition Latin hypercube sampling and 
Brownian Bridge construction.     
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