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Abstract 

 
This paper investigates the application of tuned mass damper (TMD) systems to bridge pier systems for 

structural impact damage mitigation and thus reduce the risk of collapses.  A bridge superstructure and 

substructures are designed in accordance with The American Association of State Highway and 

Transportation Officials (AASHTO) specifications.  A variety of vessel collision forces are obtained from 

collision testing of a scaled reinforced concrete pier. The optimal parameters of TMD systems are then 

determined such that the drift and displacement of the bridge superstructure are minimized for various 

impact scenarios. The structural impact mitigation performance of the pier equipped with the proposed 

optimal TMD system is compared with five different TMD systems employing the benchmark TMD 

optimal parameters. The uncontrolled responses are used as a baseline. It was demonstrated from the 

extensive simulations that the control effectiveness of the proposed TMD system was 25% better than all 

of the existing TMD models in reducing structure responses.  
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1 Introduction 
 

In the United States, there were 503 bridge failures: 13.73% are directly related to the impact accidents 

between the bridge and vehicle/barge/ship/tanker, causing multiple deaths (Wardhana and Hadipriono, 

2003). Although AASHTO section 3.14 provides guidelines on bridge pier design to protect against vessel 

collisions, these provisions simply make a stronger pier so that the vessel does not completely take out the 

pier upon impact. In addition to the AASHTO, different methods are also utilized to protect bridge pier 

structure against ship collision. Such examples include placing the pier in a safe area that is impossible to 

be reached by the ship; and installing artificial islands or guide structures (Svensson, 2009). However, all 

of these methods either are difficult to retrofit the existing structure or do not effectively address all of the 

potential scenarios of the structure collision events. For example, in an independent research to design 

protection scheme for a bridge pier, the great water depth prevented protective islands or guide structures. 

A solution to install floating protection was proposed but then was made impossible by its vulnerability to 

being pushed underwater by the ships and the corrosion attacked of anchorage devices (Svensson, 2009). 

There exist other more effective ways to tackle this problem but none has been implemented or even 

suggested for such purposes: the use of vibration observer such as tuned mass damper (TMD) is one of 

the alternative solutions to this problem. 

 

1.1 Vibration absorber 

 

TMD refers to a type of vibration-absorber that consists of a mass that is able to move freely relatively to 

the primary structure. TMDs are used to reduce the amplitude of a structure’s vibrations caused by an 

excessive force.  The purpose of this is to prevent damage and complete failure of the structure. The 

connection between the mass and the structure is usually an elastic spring with a specific stiffness and 

damping (Sladek and Klingner, 1983). The mass, spring stiffness, and the damping of the TMD are 

designed in such a way so that when a force is applied, the structure and substructure begin to sway, the 

TMD will act to mitigate the amplitude of the structural vibrations by the dissipation of energy. 

For most cases, TMD systems have been designed for earthquake and wind forces hitting high rise 

structures such as skyscrapers and telecommunication towers (Sladek and Klingner, 1983). Moreover, 

they have also been used in automobiles to reduce the vibrations caused when traveling at high speeds 

and in footbridges to dampen the vibrations caused by excusive walking on the bridge (Dallard et al., 

2001). The most notable research work on the design of TMDs with optimum parameters for such 

applications is from Den Hartog (Hartog, 1956). As the dynamic systems are getting more and more 



8 

 

complex, the formulas have also been updated for different cases (Warburton, 1982; Sadek et al., 1997; 

Leung and Zhang, 2009).  

With a TMD system, the actual bridge vibrations can be mitigated, keeping the primary structural 

members in its elastic conditions, and thus have a greater chance of preventing a collapse of the bridge as 

well as reducing downtime for maintenance after any collision (Hoang et al., 2008). In addition to the 

saving in decreased downtime and maintenance cost, the TMD system could be installed on bridge piers 

to save the material cost because the newly installed TMD system can provide a better performance 

without having to design a big strong pier. As a result, it could be used to improve the performance of 

bridge structure. 

 

1.2 Real life application of TMD applications in the civil engineering field 

 

The actual use of TMD systems is a relatively new concept in civil engineering dating back to just 1976 

when a passive TMD system was placed on the CN TowerTV antenna in Toronto, Canada.  TMDs have 

been used in famous buildings such as: the John Handcock Building in Boston, Massachusetts, which was 

the one of the first building application of a TMD in the United States and in the world, with the two 

270000 kg (300t) steel blocks, first installed to reduce discomfort for residence but then found to also 

reduce wind responses by up to 40% (Sladek and Klingner, 1983; Gutierrez Soto and Adeli, 2013). 

Probably the most famous bridge employing a TMD is the Millennium Bridge in London, England 

(Dallard et al., 2001).  The largest current TMD in use is in the Taipei 101 building in Taipei, Taiwan 

which, until 2010, was the world’s tallest building (Ctbuh.org, 2015).  The TMD is placed near the top of 

the building to reduce vibrations caused by strong winds and earthquakes known to that area.  

Despite its wide use in infrastructure systems, there is no research on the application of TMD to bridge 

piers under vessel collision events. Therefore, this paper is the first to investigate the use of TMD to 

prevent collapse of bridges due to vessel collisions. 

The organization of this paper is as follows: The approach for modeling a bridge structure is presented in 

Section 2. The optimal design of the bridge equipped with TMD systems is shown in Section 3. The 

results and the associated analysis are presented in Sections 4 followed by a proposal of a hybrid design 

with improved performance in Section 5. Finally, Section 6 includes the conclusion remarks. 

 

2 System modelling 
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In this paper, to demonstrate the effectiveness of the proposed TMD system in mitigating the structural 

impact responses of bridge structures, a lumped mass bridge pier-deck-TMD model is investigated. The 

bridge model is first discussed and then the TMD is integrated with the bridge model. Finally, the 

governing equations of the bridge-TMD model are transformed into state space equations. 

2.1 Bridge pier model   

 

A bridge pier model is first derived using the Spring-Mass Model for Barge Flotillas Impacting Bridge 

Piers proposed by Peng Yuan (Yuan, 2005). In this model, a 2 degree-of-freedom (DOF) reinforced 

concrete bridge pier is excited by a 15-barge flotilla, which is also simplified as a system of 15 DOF using 

elastoplastic connections. Several examples and studies were conducted to compare this model with finite 

element models of different software (LS-DYNA, SAP2000). The results show that despite significantly 

reduction of computation time (10 minutes by this method and 8 hours by LS-DYNA simulation), the 

results show similar results of pier displacement in 2 out of 3 examples. In the last example, where the 

soil, comprising of 5 layers of clayey sands, was also included in the finite element model, the simplified 

model produced displacement of the pier top 12.7% more than the finite element model (193 m and 171 

mm). Due to these reason, it is shown that this model, despite its simplification, provides a good 

estimation for bridge-pier interaction. 

In this paper, the vessel impact forces are replaced by the time-history impact forces measured from the 

high impact testing facility, and the total number of DOF of the Yuan model is reduced to 2. The reason 

for this omission of the DOF for vessel/barge in the system is that it significantly increase the system 

complexity, introducing non-linear behavior of the interaction between the components of the barge. 

Thus, the computational time for each simulation would be drastically increased – and this approach 

would not be efficient anymore.  

The bridge pier substructure and super structure then are modeled as a 2 DOF model as shown in Figure 

1. The 1
st
 DOF includes from the base to the point of impact, and the 2

nd
 DOF is the remaining part of the 

structure (from the point of the impact to the top of the pier and the deck).  
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Figure 1: Lumped model of the bridge pier employing a TMD  

 

Initially, each lump mass had 2 DOF: 1 lateral and 1 rotational displacement. Thus, the initial stiffness 

equation is as follows: 
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where E is the Young's modulus of materials, I is the moment of inertia, Li is height of the i
th
 component 

of the structure. This model is then converted to a 2 DOF model (1 DOF for each lump mass) by the static 

condensation (Meirovitch, 1975). The new stiffness matrix K is obtained: 
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where k  is the rotational stiffness, kx is the lateral stiffness. The mass matrix is calculated according to 

the equations: 
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where m  is the average mass of the pier (mass per length), sm  is the mass of the super structure. Using 

these parameters to solve for eigenvalues with  the assumption that the damping ratio is not so high to 

affect the natural frequencies, the two natural frequencies are computed as: 
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Finally, damping matrix is defined using Rayleigh’s approximation as 
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where  and   are the Rayleigh Damping constants. 

 

2.2 Bridge Pier equipped with a TMD  

As the pier substructure and superstructure vibrate, the TMDs should be installed in the location that has 

the most vibration (Hoang et al., 2008). Therefore, the TMD is installed on the 2
nd

 DOF. After the 

installation of the TMD, the system becomes a 3-DOF system in which the top (or the 3
rd

) DOF is the 

TMD. In reality, the TMDs are not necessarily installed on top of the superstructure; it could be installed 

below the deck for usage convenience. As a result, the new stiffness, mass and damping matrices are 

defined as: 
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where  Kij is the element of the stiffness matrix in Eq. (2), mi is the element of the mass matrix in Eq. (6), 

ci is the element of the damping matrix in Eq. (11), ktmd is the stiffness of the TMD, ctmd  is the damping of 

the TMD. 

 

2.3 Governing equations 

 

Consider a structure in which the equations of motion are written as 
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The second order differential equation of the structure response can be converted into a state space model  
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where I is the identity matrix. 
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3 Model Parameters 
 

With the intention of setting a simulation as realistic as possible in mind, several parameters are derived 

directly from a bridge design in accordance to the ASSHTO. These parameters are then input into the 

simulation model for the purpose of designing the TMD. Due to the simplification of modelling and the 

aim to significantly reduce the computation time, several assumptions were made to define the 

uncertainties: 1) The point of impact is at 40% from the base of the pier to maximize deflections. This 

value can vary depending on vessel sizes and water levels 2) All other conditions such as wind load, live 

load, water wave force, and water damping, are out of the scope of this paper, and thus were neglected. 

 

3.1 Setting the scene 

 

For a realistic investigation the main superstructure and substructure of a 39.624 m (130 ft) long by 

11.582 m (38 ft) wide bridge is designed.  The bridge has two equal spans of 19.812 m (65 ft) with a pier 

in the center.  The superstructure is composed of a composite rolled steel girders and reinforced concrete 

slab configuration.  There are four W14x370 girders spaced 3.048 m (10 ft) apart with a 1.219 m (4 ft) 

overhang at each end and the reinforced concrete slab is 20.32 cm (8 in) thick.  The following given 

factors and values are also crucial to the bridge design as well as this TMD investigation: 1) Two CF-PL2 

barriers (one running along each of the longitudinal end of the bridge); 2) Weight of the diaphragm 

beams, shear studs, cross bracing is 437.817 N/m (30 lb/ft) on each interior girder, 291.878 N/m (20 lb/ft) 

on each exterior girder; 3)Concrete modulus of elasticity = 20.684 GPa (3000 ksi); 4) Steel modulus of 

elasticity = 200 GPa (29000 ksi). The structure is illustrated in Figure 2. 
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Figure 2: Bridge pier superstructure and substructure 

The substructure is a reinforced concrete pier comprised of three 3.394 m (11.135 ft) tall oval columns 

that are 0.914 m by 1.524 m (3 ft by 5 ft) each having a 0.914 m by 0.65 square meter (3 ft tall by 7 

square ft) cross sectional footing with a 1.219 m by 1.067m (4 ft tall by 3.5 ft) wide top slab connecting 

the 3 piers with the superstructure, the width of the top slab is the width of the bridge (11.582 m  or 38 ft). 

The Mississippi River is one of the most well-known rivers in the United States.  Therefore the bridge is 

fictionally spanning the Mississippi River.  It is crucial to choose an actual river for calculating the vessel 

collision force because average water flow of the river is needed. 

 

3.1.1 Vessel collision force 
 

ASSHTO section 3.14.1 states that a substructure should be designed for a minimum impact force caused 

by an empty hopper barge that is drifting at a velocity equal to the average yearly current flow at the 

bridge waterway location (ASSHTO, 2012).  The barge is stated to be 10.668 m by 59.436 m (35 ft by 
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195 ft) that weighs 200 tons empty.  The impact force provided in AASHTO section 3.14.8 using the 

equation 3.14.8-1 is as follows: 

 

𝑃𝑠 = 8.15𝑣√𝐷𝑊𝑇 (24) 

 

where 𝑃𝑠 is the impact force in kips, 𝑣 is the vessel’s velocity at impact in feet per seconds, and 𝐷𝑊𝑇 is 

the vessel weight in tons. By varying this impact force, different scenarios of vessel size and velocity 

could be simulated. Following this method, different forces are applied and collected to select the best 

design for many different collision cases.  

As previously stated, the vessel impact velocity is calculated as the average yearly current flow at the 

bridge waterway location; the vessel impact velocity was taken as the average velocity of the entire river 

in this paper.  This is calculated by dividing the river length by the amount of time it would take to travel 

the river from start to end.  There are competing claims as to the exact length of the Mississippi River 

which begins at Lake Itasca in Minnesota and ends along the Louisiana shore depositing into the Gulf of 

Mexico. An average of four lengths from Itasca State Park (4107.05 km or 2,552 miles), the US 

Geological Survey (3701.49 km or 2,300 miles), the Environmental Protection Agency (EPA) (3733.68 

km or 2,320 miles), and the Mississippi National River and Recreation Area (3781.96 km or 2,350 miles) 

is determined to be 3831.04 km (2,380.5 miles) long.  For the average flow rate, it has been shown that it 

takes roughly 90 days for a raindrop falling into the Lake Itasca to deposit into the Gulf of Mexico 

(Mississippiriverresource.com, 2015). By dividing the average length by the time to travel the average 

Mississippi River velocity is determined to be 0.493 m/sec (1.616 ft/sec). This value is verified using 

information provided by National Park Service, which states that the river velocity is 0.536 m/sec 

(Nps.gov, 2015). Having all of the needed values, the impact force is calculated as 828.704 kN (186.3 

kips). 

  

3.1.2 Bridge design parameters 
 

Once the impact loads are determined, the mass, stiffness and damping parameters should be determined 

next. Basically, the tributary length for each entity of the bridge deck is the tributary length of the bridge 

pier (19.812 m or 65 ft) and is applied to the self-weight of each entity.  In general, the masses are found 

by taking the self-weight of each entity of the bridge multiplied by a combination of either the cross-

sectional area or the tributary length or both. The calculation results are shown in Table 1. 
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Table 1: Mass of bridge pier substructure and superstructure components 

Component Mass (kip-sec
2
/ft) Mass (kg) 

Concrete Deck Slab Mass 7.948 115992.341 

Total Girder Mass 2.988 43606.582 

Bracing Mass 2.988 43606.582 

Barrier Mass 1.881 27451.132 

Total Composite Deck Mass 13.019 190000.000 

Pier Mass 6.371 92977.756 

Total Mass 19.455 283924.383 

 

Different from the mass, the stiffness is calculated using the model proposed by Yuan: Eq. (2), Eq. (3), 

Eq. (4), and Eq. (5). The results are shown in Table 2. 

 

 

Table 2: Stiffness of bridge pier substructure and superstructure components 

Component Stiffness (kips/ft) Stiffness (N/m) 

Bridge pier – lower 1060.900 15482618.721 

Bridge pier – upper and composite deck 278.613 4066037.185 

 

Just like the mass, the bridge components are grouped into 2 DOF and their damping are calculated using 

Rayleigh’s damping where 𝛼 was selected as 0.05, and the associated parameter 𝛽  was calculated using  

Eq. (12) and Eq. (13).  𝜉 is the damping ratio which is based on the material type.  For steel, the average 

𝜉𝑆 is 0.0004 and for concrete the average 𝜉𝐶 value is 0.013 (Bachmann, 1995).  As these concrete and 

steel 𝜉 values are different, a value of 𝜉 for each bridge entity was determined by taking a ratio of the 

masses of steel and concrete in the bridge entity under investigation.  𝜔𝑖 is the natural frequency of the 

bridge system which can be determined through modal analysis. Table 3 shows the damping values for 

each entity of the bridge.  It is important to note that, similar to the stiffness, the total damping of the 

composite deck is the damping of the concrete slab and the steel girders. It is assumed that because of the 

superstructure stiffness, the resists the impact force is zero, thus, the damping of the superstructure 

resisting the impact force is also zero. 
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Table 3: Damping of bridge pier substructure and superstructure components 

Component Damping (kips-sec/ft) Damping (N-sec/m) 

Bridge pier – lower 0.638 9310.878 

Bridge pier – upper and composite deck 0.1722 2513.061 

 

3.2 Impact testing 

 

As briefly discussed above, a number of impact tests are conducted to collect the real time impact load 

data.  A single reinforced concrete pier is designed first such that its stiffness is the same with the full 

scale bridge pier.  Then, the impact forces are also scaled down with a scale factor of 1/150. The 

dimensions of the structural member are 0.25 m x 0.15 m x 0.56 m (9.88 in x 5.93 in x 22.01 in). The 4#3 

bars are used as the reinforcing bars. The bridge pier is then loaded underneath a 44482.22 N (10,000 

pound) impact tester.  One end of the member is clamped in order to act as a fixed end while the other end 

is left free just like a real bridge pier, as shown in Figure 3. Figure 4 shows a sample data set collected 

from an impact test. 

The similar approach has been done before in the dynamic tests of Meier-Dornberg (Meier-Dornberg, 

1983), in which he used a pendulum drop-hammer for the purpose of collecting impact force. There are 

some pointed out drawbacks, which limit the models from accounting for barge-bridge-soil interaction, 

important dynamics effect of inertial forces, damping forces and are effects (Cowan, 2007). However, 

these two setbacks have been solved by the verified lump-mass model by Yuan (2005), allowing the 

assumption that the model used for simulation in this paper is a linear model. 

 
Figure 3: Impact testing 
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Figure 4: Sample time history impact force 

4 Optimal design of TMD systems 
 

A set of impact force signals is used to optimally design the TMD system. Then, the performance of the 

optimal TMD system is validated using different data sets that are not used for the optimization process. 

The process of the simulations is summarized as follows: 

 

Step 1: The bridge pier and deck are designed based on AASHTO codes. The full scale model is scaled 

down and then a laboratory beam model is with same stiffness is used for impact forces data 

collection by real tests.  

Step 2: 145 tests are conducted to collect impact forces.  

Step 3: Conduct impact simulations using the scaled down model with different designs of TMDs, 

with damping ratio and mass ratio ranging from 0 to 20%. Then choose best design cases of 

the TMD system.   

Step 4: The optimized TMD system is validated and updated using evaluation criteria and different 

impact force data sets that were not used for the training process.  
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4.1 Parametric study 

 

In this paper, a parameter study-based optimization process is conducted for 140 impact force cases 

ranging from 8896.443 N to 40033.995 N (2000 lbs to 9000 lbs). For each case of impact forces, 10,000 

design case studies of TMDs with varying mass ratios and damping ratios ranging from 0% to 20% are 

conducted for the performance evaluation. It should be noted that in real scenario, even though the 

heavier, the more effective TMD is, it is not practical to use a heavy mass that could potentially harm the 

structure. Hence, the TMD mass is assumed to be between 1% to 10% of the overall structure mass 

(Farghaly eta al, 2012). This value helps engineers focus on designing the damping and spring stiffness. 

However, the mass ratios from 10% to 20% are still considered in this parametric study to investigate the 

full potential of the TMD system. The best 0.1% (10 sets of TMD parameters) design that produces the 

best performance criteria of peak displacement and drift is recorded and selected first to investigate the 

trend in their parameters of the mass, frequency and damping ratios, as shown in Figure 5. In this figure, 

the one on the left if the design of optimum TMD frequency as a function of mass ratio, on the right is the 

design of TMD damping ratio as a function of mass ratio. By taking the median values of all the grey 

transparent lines (as the results of all the simulations), the solid black line is obtained as the general trends 

for our design. This trend is then used as our design to investigate its efficiency and performance.  
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Figure 5: Optimal design trends for TMD parameters 

 

In this paper, the main design criteria include: the minimum deck displacement and the minimum drift 

between the 1
st
 and 2

nd
 DOF. Figure 6 and Figure 7 show the selected sample control performance of the 

proposed TMD-pier system under an impact load. Both figures show a good improvement of the structure 

displacement and drift, especially, the peak response. This performance is then compared against the 

conventional designs for possible update if necessary. 
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Figure 6: Uncontrolled and controlled deck displacement 

 

Figure 7: Uncontrolled and controlled drift 

 

4.2 Comparative study and model validation 

 

To further evaluate the performance of the proposed TMD system, the designed TMD system 

performance is compared with the well-known benchmark models, including Hartog (1956), Warburton 

(1982), Sadek (1997), and Leung and Zhang (2009), as shown in Table 4. Figure 8 visualizes the 

parameters of the proposed TMD system with the ones of the benchmark models. It should be noted that 
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all of these benchmark formulas are derived for either harmonic, earthquake or wind load on a structure.  

Due to the distinctive initial peak impact force occurring in a much shorter duration than the other types, 

the objective is to minimize the peak displacement due to this peak force as much as possible. On the 

other hand, most of the conventional design aims to reduce only the vibration energy of the structure 

because of the long duration of the earthquake or wind load. Therefore, a distinctive design is expected 

for this scenario.  

Table 4: Previous optimal designs of TMD 

Method , /opt d opt sf w w   , , ,/ (2 )d opt d opt d d optc m w    

Hartog, 1956 
1

1 
 (25), 

3

8(1



 
  (26) 

Warburton, 

1982 

1 (

1





  


 (27), 

(1

4(1 (1

 

 

  

    
  (28) 

Sadek et al., 

1997 

1
1

1 1




 

 
 

  
 (29), 

1 1

 

 


 
  (30) 

Leung & 

Zhang, 2009 

2

1 (

1

( 4.9453

20.2319

39.9419 )

( 4.8287

25.0000 )







 

 

 



  



  

 (31), 
25.3024

4(1

 
 

 

  


   

 

 (32) 

 

where 
optf  is the optimum frequency of TMD, 

,d optw  is the optimum angular damped frequency of 

TMD,  sw  is the natural frequency of the structure, 
,d opt  is the optimum damping ratio of TMD, 

,d optc  is 

the optimum damping of TMD, dm  is the mass of TMD,  is the mass ratio between TMD and structure, 

and   is the damping ratio of structure. Figure 8 compares the optimal parameters of the proposed design 

with previous studies. As shown in figures, it is observed that the optimal frequency ratio of the proposed 

impact TMD system is much higher than the previous models while the optimal damping ratio of the 

collision TMD system is much lower than the benchmark models. This is because the benchmark 

formulas were derived from the assumption of that the structure is excited by sinusoidal, wind or 

earthquake loads. It would infer that the parameters of existing TMD systems designed for 

earthquakes/wind loads should be tuned for structural high impact collision forces.  
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Figure 8: Comparison of the proposed TMD and the previous TMDs 

 

To further evaluate the performance of the proposed system, a design result using the median values of 

optimum frequency and optimum damping is compared with the design of the four benchmark models in 

all the 140 impact force cases, using the ASCE structural control benchmark evaluation indices (Spencer 

et al. 1998). The uncontrolled responses used as baseline for the quantitative analysis results are shown in 

Table 5.  

 

Table 5: Uncontrolled Peak Response Quantities of the Structure 

Criterion Maximum Minimum Mean Median Standard deviation 
max

( )cm
x  

0.214 0.041 0.135 0.138 0.038 
max

( /sec)cm
x  

8.038 1.453 4.910 5.088 1.434 

2

max

( /sec )
a

cm

x  
2388.563 571.612 1510.195 1567.347 430.882 

max

( )
n
cm

d  
0.211 0.041 0.134 0.136 0.038 
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where  
max

( )in
x is the maximum uncontrolled displacement, 

max

( /sec)in
x is the maximum uncontrolled velocity,  

2

max

( /sec )
a

in

x is the maximum uncontrolled acceleration, and max

nd is the maximum inter-story drift. 

 

The evaluation indices are shown in Table 6.    

 

Table 6: Definition of evaluation criteria 

1J  

max140

max ( )

max

i
t
i

impact
force sets

x t

x



 
 
 
 
 

for the displacement relative to the ground (33) 

2J  

max140

max ( )

max

i
t
i

impact
nforce sets

d t

d



 
 
 
 
 

 for the normalized inter-story maximum drift (34) 

3J  

max140

max ( )

max

i
t
i

impact
force sets

x t

x



 
 
 
 
 

 for the normed displacement relative to the ground 

 

(36) 

4J  

max140

max ( )

max

i
t
i

impact
nforce sets

d t

d



 
 
 
 
 

for the normed inter-story drift 

 

 

(37) 

 

where  ={1, 2} represents the set of states corresponding to the horizontal displacement. 

The results of the evaluation criteria are then computed and shown in Table 7, Table 8 and Table 9 – each 

represents the result of a different mass ratio μ (μ=0.03, μ=0.05 and μ=0.1, respectively). Figure 9 then 

sums up the evaluation criteria values for a range of mass ratio from 0 to 20% 
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Table 7: Evaluation Criteria for μ=0.03 

Criterion Proposed 

design 

Hartog, 1956 Warburton, 

1982 

Sadek et al., 

1997 

Leung & 

Zhang, 2009 

J1 0.9246 0.9495 0.9512 0.9504 0.9492 

J2 0.9254 0.9494 0.9513 0.9503 0.9491 

J3 0.9506 0.7561 0.7467 0.8042 0.7498 

J4 0.9504 0.7556 0.7462 0.8037 0.7493 

 

Table 8: Evaluation Criteria for μ=0.05 

Criterion Proposed 

design 

Hartog, 1956 Warburton, 

1982 

Sadek et al., 

1997 

Leung & 

Zhang, 2009 

J1 0.8803 0.9204 0.9214 0.9242 0.9230 

J2 0.8807 0.9205 0.9213 0.9246 0.9229 

J3 0.9030 0.6971 0.6903 0.7484 0.6949 

J4 0.9028 0.6963 0.6896 0.7478 0.6942 

 

  

Table 9: Evaluation Criteria for μ=0.1 

Criterion Proposed 

design 

Hartog, 1956 Warburton, 

1982 

Sadek et al., 

1997 

Leung and 

Zhang, 2009 

J1 0.8023 0.8587 0.8626 0.8669 0.8665 

J2 0.7986 0.8590 0.8625 0.8679 0.8663 

J3 0.7830 0.6260 0.6286 0.6691 0.6362 

J4 0.7828 0.6250 0.6276 0.6682 0.6352 
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Figure 9: Evaluation criteria as a function of mass ratio 

 

Tables 7, 8 and 9 and figure 9 all show that the main objective of this design has been achieved, which 

means that the conventional approaches have about the same values of J1 and J2 for each mass ratio and 

all are higher than our approach. However, the disadvantage of using this design is while the peak 

displacement and drift are significantly reduced, the normed dispacement and inter-story drift are 

worsened, reducing the performance in long term. Therefore, another study to come up with a new design 

to achieve a better overall performance is necessary. 

5 Hybrid design proposal 
 

As observed in figure 9, the proposed design in section 4 is the best in reducing peak displacement and 

drift of the structure. However, in the criterion of reducing total impact energy over time, it is not. This 

means as the structure is excited by the impact force, while the member stresses are kept in their elastic 

region, the whole structure continues vibrating much longer than it should and may fail due to other 
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reasons. Therefore, it is essential to create another design that satisfies all the criteria, reducing both peak 

displacement and total energy. 

 

5.1 Design proposal 

 

A second design is then proposed as a hybrid of the 2 designs based on 2 criteria: one is to reduce peak 

displacement and one is to reduce total impact energy. The design is formulated as follows: 

 

Minimize 
max max

( )
( sec )

in
in

F ax b x


   

 

(38) 

Subject to  
0, 0

a b

a b

 

 
 

 

 

5.2 Design coefficients selection and finalization 

In formula 38, as a and b coefficients change, design of the TMD and performance of the overall 

objective function change. In addition, as the performance is judged for different mass ratio, the final 

design and selection of a and b coefficients is totally dependent on the mass ratio of the TMD. In this 

paper, the mass ratio is assumed to be 10%. Other reference evaluation criteria J1 and J3 of 5% and 20% 

mass ratio are also shown in figure 10 and 11. 
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Figure 10: Performance criterion J1 as a function of a coefficient for various mass ratios 

 

Figure 11: Performance criterion J3 as a function of a coefficient for various mass ratios 

 

As shown in the two figures 10 and 11, the performance value of J1 gets closer to the performance of the 

pure displacement design as a gets closer to 1 (or b gets closer to 0). On the other hand, J3 gets closer to 

performance of the pure norm displacement design as a gets closer to 0 (or b gets closer to 1). Another 

trend to be pointed out is that for mass ratio μ small (5%), the performance doesn’t change until a 

researches 0.8. This point marking the change for higher mass ratios (10% and 20%) are 0.5 and 0.7, 

respectively. In this paper, the design is based on 10% mass, thus, the a value is taken as 0.5. The design 

trends and performance are then shown in figures 12 and 13. 
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Figure 12: Proposed hybrid design trend 

 

 

Figure 13: Evaluation criteria as a function of mass ratio 
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Figure 13 presents evaluation values of J as functions of mass ratios of the new hybrid design. The 

effectiveness of reducing peak displacement and drift (J1 and J2) of the proposed model is proportional to 

mass ratio. Our proposed TMD system can reduce the peak displacement of the superstructure by 

maximum of 30% at its full potential (20% mass ratio), while the traditional designs only can reach 22% 

reduction (25% lower). This difference is critical enough to reduce crack in the concrete and keep the 

materials from yielding. 

One more notable remark in this figure is the superior improvement in the normed value of the 

displacement and drift. Overall, with this quantitative study, it can be confirmed that our design 

outperforms all of the conventional designs with significant improvement in peak displacement reduction, 

which is critical to impact force mitigation. The quantitative study is further investigated and compared 

against the previous designs is shown in Table 10. 

 

 

Table 10: Evaluation Criteria of the Hybrid design for μ=0.1 

Criterion Final Hybrid 

Design 

Hartog, 1956 Warburton, 

1982 

Sadek et al., 

1997 

Leung and Zhang, 

2009 

J1 0.8413 0.8587 0.8626 0.8669 0.8665 

J2 0.8411 0.8590 0.8625 0.8679 0.8663 

J3 0.6229 0.6260 0.6286 0.6691 0.6362 

J4 0.6220 0.6250 0.6276 0.6682 0.6352 

 

Finally, the optimally designed TMD system is tested under 5 different data sets with various peak impact 

forces for the model validation. These data sets were not used for the TMD optimization process. The 

testing results of the optimal TMD system with mass ratio of 10% under this data set are shown in Figure 

14 to Figure 18. It could be seen that the proposed hybrid TMD is very robust in reducing both peak and 

normed displacement and drift of newly untrained impact excitation.  
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Figure 14: Time history response of data validation 1 

 

Figure 15: Time history response of data validation 2 
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Figure 16: Time history response of data validation 3 

 

 

 

Figure 17: Time history response of data validation 4 
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Figure 18: Time history response of data validation 5 

 

6 Conclusion 
 

In this paper, the use of TMD for structural impact hazard mitigation has been proposed. To demonstrate 

the proposed TMD system, a reinforced concrete bridge pier structure under a variety of impact loads was 

investigated. Based on the measured impact loads, a TMD parameters were optimally determined such 

that the peak displacement and drift of the structure are minimized, keeping the structural elements in 

their elastic conditions while maintaining an acceptable vibration energy reduction. The optimum TMD 

system was validated using different structural control evaluation criteria and impact loads that were not 

used in the optimization process. The effectiveness of the proposed optimal TMD system was compared 

with the ones of four different benchmark TMD models. The uncontrolled bridge pier system was used as 

a baseline. It is demonstrated from the optimization processing and testing results that the use of TMD is 

a successful method to mitigate the response of bridges due to vessel collisions and thus reduce the 

chance of damage and complete collapse. The simulation results also showed that the proposed hybrid 

optimal TMD system is more effective in mitigating structural impact responses than all the benchmark 

designs. Using the proposed TMD could improve the performance drastically by about 25%, which in 

some situation, could prevent the structure from cracking and yielding. Such improvement can result in 

reduction of maintenance cost and downtime.  
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As a remark for implementation, although the conventional design also showed acceptable potential for 

seismic and wind forces cases, our proposed approach outperformed them when large mass ratios were 

used. This, however, might present problems to install and maintain as well as the design of the bridge. If 

because of these issues, the lower mass ratios are selected for a TMD solution, information of the seismic 

and wind activity of the area should be obtained to decide which design is more effective. In addition, 

multiple TMD system or smart dampers with different tuning modes could also be used to address this 

problem.  

As the future studies, a more complex problem including 3-dimentional bridge model with various impact 

force types, angle and heights and multiple-TMD design will be considered. In addition, other factors 

regarding the cost efficiency of this approach also need to be studied for real life implementation.  
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