
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2006-05-03

Association Rule Based Classification
Senthil Kumar Palanisamy
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Palanisamy, Senthil Kumar, "Association Rule Based Classification" (2006). Masters Theses (All Theses, All Years). 661.
https://digitalcommons.wpi.edu/etd-theses/661

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/661?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Association Rule Based Classification

by

Senthil K. Palanisamy

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

May 2006

APPROVED:

Professor Carolina Ruiz, Thesis Advisor

Professor Matthew Ward, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

In this thesis, we focused on the construction of classification models based on

association rules. Although association rules have been predominantly used for data

exploration and description, the interest in using them for prediction has rapidly

increased in the data mining community. In order to mine only rules that can be

used for classification, we modified the well known association rule mining algo-

rithm Apriori to handle user-defined input constraints. We considered constraints

that require the presence/absence of particular items, or that limit the number of

items, in the antecedents and/or the consequents of the rules. We developed a char-

acterization of those itemsets that will potentially form rules that satisfy the given

constraints. This characterization allows us to prune during itemset construction

itemsets such that neither they nor any of their supersets will form valid rules.

This improves the time performance of itemset construction. Using this charac-

terization, we implemented a classification system based on association rules and

compared the performance of several model construction methods, including CBA,

and several model deployment modes to make predictions. Although the data min-

ing community has dealt only with the classification of single-valued attributes,

there are several domains in which the classification target is set-valued. Hence, we

enhanced our classification system with a novel approach to handle the prediction

of set-valued class attributes. Since the traditional classification accuracy measure

is inappropriate in this context, we developed an evaluation method for set-valued

classification based on the E-Measure. Furthermore, we enhanced our algorithm by

not relying on the typical support/confidence framework, and instead mining for the

best possible rules above a user-defined minimum confidence and within a desired

range for the number of rules. This avoids long mining times that might produce

large collections of rules with low predictive power. For this purpose, we developed

a heuristic function to determine an initial minimum support and then adjusted it

using a binary search strategy until a number of rules within the given range was

obtained. We implemented all of our techniques described above in WEKA, an open

source suite of machine learning algorithms. We used several datasets from the UCI

Machine Learning Repository to test and evaluate our techniques.

2

Acknowledgement

I would like to thank Prof. Carolina Ruiz for her guidance and encouragement

in completing the thesis. This would not have been possible if not for her belief in

me. I am also grateful to Prof. Matthew Ward for his comments in shaping the

thesis. I would also like to thank fellow students of Knowledge Discovery and Data

Mining Group (KDDRG) at WPI for their insights and advice when I needed. I

cannot thank enough my wife, Elisabeth, for all her support and encouragement in

completing this work. Finally, I would like to dedicate this work to my parents who

have been there all along to support me.

i

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 4

2 Background and Related Work 6

2.1 Association Rules . 6

2.1.1 Problem Description . 7

2.1.2 Apriori Algorithm . 7

2.2 Classification . 9

2.2.1 Classifier Performance . 11

2.3 Classification Association Rules . 13

2.4 Other Classifiers . 14

2.4.1 Zero-R . 14

2.4.2 J4.8 . 14

2.5 The WEKA System . 14

3 Classification of Single-Valued Class Attributes 17

3.1 Classification based on Association Rules (CBA) 17

3.2 Post Pruning Classification Association Rules 20

3.3 Association Rule Based Classification Model Construction 21

ii

3.3.1 Generating Classification Association Rules 22

3.3.2 Generating Rules with Semantic Constraints 22

3.3.3 Classification Models . 28

3.3.4 Single Rule and Multiple Rules Classification 30

3.4 Implementation . 32

3.5 Experimental Evaluation . 38

3.5.1 Evaluation Metrics . 38

3.5.2 Experimental Results . 40

4 Adaptive Minimum Support 45

4.1 Adaptive Minimum Support . 45

4.2 Approach . 46

4.3 Initial MinSupport Selection . 47

4.4 Adaptive Minimal Support Algorithm 48

4.5 Experiments . 50

4.5.1 Experiment Design . 50

4.5.2 Summary . 52

5 Classification of Multi-Valued Attributes 53

5.1 Association Rule Mining with Set-Valued Attributes 53

5.2 Classification with Set-Valued Class Attribute 54

5.2.1 Set-Valued Class Prediction 54

5.2.2 E-Measure . 54

5.2.3 Building Classification Models 56

5.2.4 Model Prediction . 58

5.3 Experimental Evaluation . 60

5.4 Further Experiments . 64

iii

6 Conclusions and Future work 66

6.1 Itemset Pruning . 66

6.2 Classification Models . 67

6.2.1 Single-Valued . 67

6.2.2 Set-Valued . 68

6.3 Adaptive Minimal Support . 69

iv

List of Figures

2.1 Generation of candidate itemsets and frequent itemsets from the

dataset in Table 2.1 when support count is 3 10

2.2 Generated rules from frequent itemsets with confidence greater than

or equal to 50% . 11

3.1 Architecture of WPI Classification System 33

3.2 Parameter Menu For Associative Classification 34

3.3 Parameter Menu for Our Extended Association Rule Mining 39

4.1 Sample Run . 52

v

List of Tables

2.1 Subset of the contact-lenses data set 8

3.1 Attribute-values renumbered to give lower numbers to required at-

tributes . 23

3.2 Candidate itemsets in the second level of itemset generation 26

3.3 Candidates itemsets in the third level of itemset generation 27

3.4 Generated itemsets and their support in the third level of itemset

generation . 27

3.5 Dataset Properties . 41

3.6 Experimental Parameters . 41

3.7 Comparison of Constraint-based Pruning vs. Non-Pruning for Mush-

room Dataset . 41

3.8 Comparison of Constraint-based Pruning vs. Non-Pruning for Census-

Income Dataset . 42

3.9 Comparison of Constraint-based Pruning vs. Non-Pruning for Forest-

Cover Dataset . 42

3.10 CBA, ARM, J48 and Zero-R on Sonar Dataset (minsupp = 1%, min-

Conf = 50%) . 43

3.11 CBA, ARM, Zero-R and J48 on Census-Income Dataset (minsupp =

1%, minConf = 50%) . 43

vi

3.12 CBA, ARM, J48 and Zero-R on Mushroom Dataset (minsupp = 1%,

minConf = 50%) . 44

3.13 CBA, ARM, J48 and Zero-R on Forest Cover Dataset (minsupp =

1%, minConf = 50%) . 44

4.1 Dataset Properties . 51

4.2 Comparison of binary vs linear minSupport strategies in autos dataset 51

4.3 Comparison of binary vs linear minSupport strategies in mushroom

dataset . 52

5.1 Classifier Model. C stands for confidence and S stands for support . . 58

5.2 Instance whose classification will be predicted 59

5.3 Experimental Parameters . 60

5.4 Properties of Movie Dataset . 61

5.5 Adaptive Classification-CBA over the Movie Dataset 63

5.6 Adaptive Classification-AR over the Movie Dataset 63

5.7 Non-Adaptive Classification using CBA and AR over the Movie Dataset 64

5.8 Set-Valued Based Classification of Motifs 65

vii

Chapter 1

Introduction

1.1 Overview

Knowledge Discovery and Data Mining (KDD) is playing an important role in ex-

tracting knowledge in this era of data overflow. KDD consists of many methods

and techniques that can be applied to different data to extract knowledge. Some

of the methods include association, classification, and clustering. In this work, we

primarily focus on association and classification.

Association rule mining is the discovery of association relationships among a set

of items in a dataset. Association rule mining has become an important data mining

technique due to the descriptive and easily understandable nature of the rules. Al-

though association rule mining was introduced to extract associations from market

basket data [AIS93], it has proved useful in many other domains (e.g. microarray

data analysis, recommender systems, and network intrusion detection). In the do-

main of market basket analysis, data consists of transactions where each is a set

of items purchased by a customer. A common way of measuring the usefulness of

association rules is to use the support-confidence framework introduced by [AIS93].

1

Support of a rule is the percentage of transactions that carry all the items in the

rule, and the confidence is the percentage of the transactions that carry all the items

in the rule among those transactions that carry the items in the antecedent of the

rule.

The problem of association rule mining can be stated as: Given a dataset of

transactions, a threshold support (minsupport), and a threshold confidence (min-

confidence); Generate all association rules from the set of transactions that have

support greater than or equal to minsupport and confidence greater than or equal

to minconfidence.

Classification is another method of data mining. Classification can be defined

as learning a function that maps (classifies) a data instance into one of several

predefined class labels [Mit97]. The data from which a classification function or

model is learned is known as the training set. A separate testing set is used to test

the classifying ability of the learned model or function. Examples of classification

models include decision trees, Bayesian models, and neural nets. When classification

models are constructed from rules, often they are represented as a decision list (a

list of rules where the order of rules corresponds to the significance of the rules).

Classification rules are of the form P → c, where P is a pattern in the training data

and c is a predefined class label (target).

As part of this thesis, we study and compare different ways of building models

or classifiers from association rules. Given that association rules are descriptive

in nature, they are useful in learning about relationships in the data. The learned

relationships can be helpful in analyzing the domain. But usefulness of the rules can

be further extended if predictive models can be extracted from the rules. Given that

the number of rules produced is a function of the minsupport and the minconfidence

thresholds, the challenge is to generate an appropriate number of rules that can be

2

useful in developing predictive models.

Association rule based classification is introduced in [LHM98]. They propose an

Apriori like algorithm called CBA-RG for generating rules and another algorithm

called CBA-CB for building the classifier. The rules generated by CBA-RG are

called classification association rules (CARs), as they have a predefined class label

or target. From the generated CARs, a subset is selected based on the heuristic

criterion that the subset of rules can classify the training set accurately.

Many other classification systems have been built based on association rules

[ZAC02] and [YLW01]. In our work, we have implemented an association rule-based

classifier system in the WEKA [FW00] framework. WEKA is a data mining sys-

tem developed at the University of Waikato and has become very popular among

the academic community working on data mining. We have chosen to develop this

system in WEKA as we realize the usefulness of having such a classifier in the

WEKA environment. To generate classification association rules, we make use of

the AprioriSetsAndSequences algorithm [Pra04] with some optimizations. Apri-

oriSetsAndSequences is an extended version of the Apriori algorithm that is capable

of mining associations from set-valued and temporal datasets. We have optimized

the AprioriSetsAndSequences algorithm to generate only itemsets that can poten-

tially yield classification rules that we desire (with the class label as the consequent).

More generally, we have adapted the algorithm to generate only rules that satisfy

user specified constraints. We achieve this by integrating these constraints into the

mining phase so that we can use the constraints to prune itemsets that would not

yield rules of the type that the user desires.

We have also extended our classification system to handle set-valued classes. To

the best of our knowledge, the problem of multi-class classification has not been

studied in the association rule mining domain. We evaluate our system with gene

3

expression data and compare our results with previous projects which have used

this application domain.

In many cases, the number of rules produced by an association rule mining

system is either too low or too high to be useful. Therefore, a goal of this thesis

is to experiment with techniques to limit the cardinality of the set of association

rules to predefined ranges. We hope to achieve this by using an adaptive minimum

support approach [LAR02], where the support is modified based on the cardinality

of the set of association rules, until the cardinality matches the predefined range.

1.2 Problem Statement

The overall goal of this thesis is to design and develop a classification system that

is based on Association Rule Mining in the WEKA environment. Our problem can

be further broken down as follows:

• Adapt the Apriori algorithm to generate classification association rules (CARs)

efficiently.

• Build Classification Models.

– Build a framework to generate models from CARs.

– Provide different modes for deploying a model in order to classify novel

instances.

– Extend the framework to handle set-valued class attributes.

• Implement an adaptive scheme that searches for an optimal minimum support

threshold allowing the user to specify only the desired range of rules and the

minimum confidence threshold.

4

As part of our extensions to the classification system to handle set-valued class

labels, we propose and discuss two different methods for predicting set-valued at-

tributes. In this regard, we use the notions of E-measure [LG94] and F-measure

[LG94] from information theory to compare the predicted set attribute with the

actual set attribute.

5

Chapter 2

Background and Related Work

In this chapter, we introduce association rules, classification, and integrated asso-

ciative classification. Also, we look at different existing classification systems built

upon association rule mining systems.

2.1 Association Rules

Association rule mining was introduced in [AIS93] as a way to find associative pat-

terns from market basket data. The market basket data consist of transactions

where a transaction is a set of items purchased by a customer. The motivation

for applying this data mining approach on market basket data was to learn about

buying patterns and use that information in catalog design, and store layout design.

Since then, association rule mining has been studied and applied in many other

domains (e.g. credit card fraud, network intrusion detection, genetic data analysis).

In every domain, there is a need to analyze data to identify patterns associating

different attributes. Association rule mining addresses this need.

Many association rule mining algorithms have been proposed in the data mining

literature. Apriori [AS94] and FP-growth [HPY00] are two of them. Apriori uses

6

the property, all nonempty subsets of an frequent itemset must also be frequent

[AS94] to prune the search space. Apriori follows a breadth-first-search strategy

while FP-growth follows a depth-first search strategy. Several extensions of the basic

association rule mining algorithm have been published. One of them is the CBA-

RG algorithm [LHM98], which adapts Apriori to generate classification association

rules efficiently. The generated rules are used in CBA-CB [LHM98] to extract a

classification model. We have implemented CBA-CB as part of our model building

system. Other extensions to Apriori include mining rules with constraints [SVA97a].

2.1.1 Problem Description

The general problem of association rule mining is: Given a data set of transac-

tions where each transaction is a set of items, a minimum support threshold and

a minimum confidence threshold, find all the rules in the data set that satisfy the

specified support and confidence thresholds. Let I be a set of items, D be a data

set containing transactions (i.e, sets of items in I) and t be a transaction. An

association rule mined from D will be of a form X → Y , where X, Y ⊂ I and

X ∩ Y = ∅. The support of the rule is the percentage of transactions in D that

contain both X and Y . The confidence is, out of all the transactions that contain

X, the percentage that contain Y as well. Confidence of a rule can be computed as

support{X ∪ Y } ÷ support{X}. The confidence of a rule measures the strength of

the rule (correlation between the antecedent and the consequent) while the support

measures the frequency of the antecedent and the consequent together.

2.1.2 Apriori Algorithm

The Apriori algorithm was introduced in [AS94] as a way to generate association

rules from market basket data. The Apriori algorithm is a two stage process: A

7

frequent itemset (itemsets that satisfy minimum support threshold) mining stage

and a rule generation stage (rules that satisfy minimum confidence threshold).

In Table 2.1, we show a subset of the contact-lenses data set from the University

of California Irvine (UCI) Machine Learning Repository [KPSB00]. We will generate

association rules from this data set (Figure 2.1).

age astigmatism tear-prod-rate contact-lenses
young no normal soft
young yes reduced none
young yes normal hard
pre-presbyopic no reduced none
pre-presbyopic no normal soft
pre-presbyopic yes normal hard
pre-presbyopic yes normal none
presbyopic no reduced none
presbyopic no normal none
presbyopic yes reduced none
presbyopic yes normal hard

Table 2.1: Subset of the contact-lenses data set

Each attribute-value pair is referred to as an item. For brevity, attribute-value

pairs are denoted only by their values. For example, age = young will be written as

young.

2.1.2.1 The Frequent Itemset Mining Stage

In the first iteration of Apriori’s frequent itemset mining stage, each item becomes

part of the 1-item candidate set C1. The algorithm makes a pass over the data set

to count support for C1, see Figure 2.1. Those itemsets satisfying the minimum

support will form L1, the set of frequent itemsets of size 1. The ones that have

support less than the minimum support threshold are shown in gray in Figure 2.1.

To generate candidates of size 2 (C2) itemsets, the level 1 collection of frequent

itemsets is joined with itself. This join is denoted by L1 on L1 and is equal to the

8

collection of all set unions of different itemsets in L1. The algorithm scans the

database for support of the items in C2. Those itemsets satisfying the minimum

support condition will form L2.

When generating candidates of size 3 (C3), L2 on L2 is performed but with a

condition. Apriori assumes that the items in an itemset are sorted according to a

predefined order (e.g. lexicographic order). The join, Lk on Lk for k > 1, has the

condition that for two itemsets from Lk to be joined, the first k − 1 item(s) must

be the same in both itemsets. This ensures that the generated candidate is of size

k and that most of the subsets of the set are frequent. Before counting support for

all the items in C3, the Apriori property is applied. The Apriori property [AS94]

states that all nonempty subsets of an itemset must be frequent for this itemset to

be frequent. The Apriori property prunes the search space.

The Apriori algorithm continues to generate frequent itemsets until it cannot

generate any more candidate itemsets.

2.1.2.2 The Rule Generation Stage

The frequent itemsets produced are used to generate association rules that satisfy

minimum support and minimum confidence. For each frequent itemset, all possible

splits of the itemset into two part (antecedent and consequent) are generated and

the rule so generated is outputted by the Apriori if the rule satisfies the minimum

confidence condition as seen in Figure 2.2.

2.2 Classification

Classification is the process of learning a function or a model from a data set (training

data) so that the function can be used to predict the classification of a novel instance,

9

Itemset

Hard

None

Soft

Reduced

Normal

Yes

No

Pres

Pre-pres

Young

Supp CountItemset

3Hard

6None

2Soft

4Reduced

7Normal

6Yes

5No

4Pres

4Pre-pres

3Young

Supp CountItemset

3Hard

6None

4Reduced

7Normal

6Yes

5No

4Pres

4Pre-pres

3Young

C1 C1

Count
support for

C1

L1

1Pre-pres, Hard

1Young, Reduced

1Young, None

1Young, Hard

2Young, Normal

0Young, pres

1Young, No

2Young, Yes

0Young, Pre-pres

2Pres, Reduced

2Pres, Normal

2Pres, Yes

Supp CountItemsets

2Pres, No

2Pre-pres, None

1Pre-pres, Reduced

3Pre-pres, Normal

2Pre-pres, Yes

2Pre-pres, No

0Pre-pres, Pres

Supp CountItemsets

0None, Hard

0Reduced, Hard

4Reduced, None

3Normal. Hard

2Normal, None

0Normal, Reduce

3Yes, Hard

3Yes, None

2Yes, Reduced

4Yes, Normal

0No, Hard

3No, None

2No, Reduced

3No, Normal

0No, Yes

1Pres, Hard

3Pres, None

C2

L2

4Reduced, None

3Normal, Hard

3Yes, Hard

3Yes, None

4Yes, Normal

3No, None

3No, Normal

3Pres, None

3Pre-pres, Normal

Supp CountItemsets

0Yes, None, Hard

3Yes, Normal, Hard

1Yes, Normal, None

1No, Normal, None

Supp CountItemsets

C3
Itemset’s support < min support

Itemset’s support >= min support

3Yes, Normal, Hard

Supp CountItemsets

L3

Figure 2.1: Generation of candidate itemsets and frequent itemsets from the dataset
in Table 2.1 when support count is 3 10

Tear-prod-rate = reduced
�

contact-lenses = none [Conf: 1.0, Sup: 0.36]

Contact-lenses = none
�

tear-prod-rate = reduced [Conf: 0.67, Sup: 0.36]

Astigmatism = yes
�

tear-prod-rate = normal [Conf: 0.67, Sup: 0.36]

Tear-prod-rate = normal
�

astigmatism = yes [Conf: 0.57, Sup: 0.36]

Figure 2.2: Generated rules from frequent itemsets with confidence greater than or
equal to 50%

whose classification is unknown. Classification models are frequently represented as

rules of this form: P → c where P is a pattern in the training data (P forms the

set of predicting attribute(s)) and c is the class label or target attribute.

Some of the common classification techniques are decision trees, näıve Bayes,

and neural nets [HPY00]. In this thesis, we will study the building of classification

models or classifiers from association rules.

2.2.1 Classifier Performance

Classifier performance is usually measured by accuracy, the percentage of correct

predictions over the total number of predictions made. Many other measures are also

used to understand the different aspects of the generated model such as: sensitivity,

specificity precision and recall [HPY00]. In this thesis, we will primarily focus on

precision and recall, which are measures borrowed from information retrieval. These

measures are defined as follows:

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

11

To understand true/false positives and negatives, let us use an example from

information retrieval. One common example would be a web search engine returning

results based on a user query. Let us define Q as the query. For any given Q, the

answer space, G, can be split into what is relevant and what is not relevant. The

returned answer A may contain some relevant information and/or some non-relevant

information. Among the results A, the relevant information is called true positives,

and the non-relevant information is called false positives. Among results that are

not returned (G - A), the relevant information for Q is called false negatives and the

non-relevant information is called true negatives. So precision is a ratio of relevant

results to all results and recall is a ratio of relevant results to all relevant information.

The initial phase of the process is model(classifier) construction. A model is

defined as a function that can map an unlabeled instance to a predefined class label.

A model is constructed from data where each instance has a class label. These data

are called the training set. The constructed model is tested to determine how well it

predicts new instances. Testing can be done in different ways: test over the training

set or test over an independent test set. Testing the classifier over the training set is

usually not a good way to measure the accuracy of the classifier since the classifier

has been constructed from the same data. But the testing on the training set is

useful in identifying any errors in model construction. A poor accuracy rate on the

training set may mean a poorly learned classifier. Using a separate test set is a good

way of determining how well the classifier will perform on novel instances.

Training and testing can be accomplished in different ways depending on the

amount of available data. If the number of instances available is large, the available

data set may be split into a training set and a testing set (usually 66% for training

and the rest of testing is considered a good split). This method of training is often

a luxury in many domains as the data available for training may be insufficient.

12

The number of training instances has a direct effect on the classifying ability of the

model built from that number of instances. When there is a limited amount of data

for training and testing, n fold cross-validation is a preferred way to maximize the

use of available data to produce a good classifier. In n fold cross-validation, the data

is divided into n folds, and each fold in turn is used for testing, while the other folds

are used for training. The reported accuracy is the average over the n iterations of

training and testing.

2.3 Classification Association Rules

The use of association rules for classification was proposed in [LHM98]. In as-

sociative classification, the focus is to produce association rules that have only a

particular attribute in the consequent. These association rules produced are called

class association rules(CARs).

Associative classification differs from general association rule mining by introduc-

ing a constraint as to the attribute that must appear on the consequent of the rule.

The produced rules can be used to build a model or classifier. CARs are a particular

case of constrained association rules. There has been research in this area about

integrating (pushing) these constraints into the mining phase rather than filtering

the enormous number of rules produced using the constraints as post-processing

filters. One paper on this area [SVA97b] proposes different ways of pushing the

constraints into the mining phase. The general advantages are faster execution and

lower memory utilization.

The CBA-RG algorithm is an extension of the Apriori algorithm. The goal of

this algorithm is to find all rule items of the form < condset, y > where condset is a

set of items, and y ∈ Y where Y is the set of class labels. The support count of the

13

rule item is the number of instances in the data set D that contain the condset and

are labeled with y. Each rule item corresponds to a rule of the form: condset → y.

Rule items that have support greater than or equal to minsup are called fre-

quent rule items, while the others are called infrequent rule items. For all rule

items that have the same condset, the one with the highest confidence is selected as

the representative of those rule items. The confidence of rule items are calculated

to determine if the rule item meets minconf. The set of rules that is selected af-

ter checking for support and confidence is called the classification association rules

(CARs).

2.4 Other Classifiers

2.4.1 Zero-R

Zero-R is a very basic classification technique that predicts the majority class from

the training set and is useful as a benchmark to compare performances of other

classifiers [FW00]. In the case of numeric attributes, Zero-R predicts the average

value of the target attribute from the training set.

2.4.2 J4.8

J4.8 is Weka’s [FW00] implementation of the C4.5 decision tree algorithm [Qui93].

2.5 The WEKA System

The Waikato Environment for machine learning, Weka, [FW00] is an open source

machine learning environment with many useful data mining and machine learning

14

algorithms. Currently, Weka is the de-facto machine learning and data mining envi-

ronment at Worcester Polytechnic Institute (WPI). Members of the WPI Knowledge

Discovery and Data mining Research Group (KDDRG) have modified algorithms as

well as embedded their work into the Weka environment. One such work includes

merging the Apriori implementation in Weka with the Apriori implementation in

another data mining system called ARMiner [SS02]. This work has improved the

working of the association rule mining part in terms of speed and memory utilization.

The ARMiner system was adapted earlier by Shoemaker [Sho01] to generate asso-

ciation rules from set-valued datasets. The merged algorithm is called AprioriSets

[SS02].

AprioriSets was further modified to handle sequence type data [Pra04]. The

new algorithm is known as AprioriSetsAndSequences [Pra04]. Algorithm 1 outlines

Weka’s procedure for generating association rules. The input parameters include

minimum confidence, upperBoundMinSupport, lowerBoundMinSupport, delta, and

minNumberOfRules. The upperBoundMinSupport and the lowerBoundMinSupport

form the support range within which the algorithm tries to satisfy the minNum-

berOfRules required. The delta parameter is the value by which the support gets

lowered each time the Apriori algorithm is repeated. Initially, support is set to

upperBoundMinSupport and if the number of rules generated does not satisfy the

minNumberOfRules, the support is reduced by delta and the process is repeated

until either the number of rules generated satisfies the minNumberOfRules or the

support becomes smaller than the lowerBoundMinSupport. In Step 5, the 1-item

itemsets are generated (refer to Section 2.1.2 for the working of Apriori algorithm).

In steps 6-10, candidates and frequent itemsets of size starting two are generated

until no more candidates can be generated. In step 11, maximum frequent itemsets,

that is frequent itemsets that have no frequent supersets, are generated from the

15

frequent itemsets. In step 12, all possible rules are generated satisfying the min-

Confidence condition. If the number of rules produced is greater than or equal to

minNumberOfRules or if the minSupport is lower than the lowerBoundMinSupport,

the while loop is broken and the rules are returned.

In the AprioriSetsAndSequences algorithm, each attribute-value pair is repre-

sented by an integer. A mapping of the numbers to the attribute-value pair is

stored in a hash table. Before the rules are generated, each number is replaced by

its corresponding attribute-value pair.

Algorithm 1 Weka’s Procedure for Generating Association Rules
Inputs: UpperBoundMinSupport, LowerBoundMinSupport, delta, minNumberOfRules,
minConfidence
Output: rules

1. rules = ∅;
2. freqItemsets = ∅;
3. support = UpperBoundSupport;
4. while (support ≥ LowerBoundSupport AND rules.size < minNumberOfRules) do

5. L1 = {1-item itemsets};
6. for (k = 2; Lk−1 6= ∅) do

7. Ck = generateCandidates(Lk−1);
8. Lk = evaluateCandidates(Ck);
9. freqItemsets ∪ L(k);

10. end for

11. maxFreqItemsets = genMaxFreqItemset(freqItemsets);
12. rules = GenerateAllRules(maxFreqItemsets, minConfidence);
13. support = support - delta;
14. freqItemsets = ∅;
15. end while

16. return rules;

16

Chapter 3

Classification of Single-Valued

Class Attributes

3.1 Classification based on Association Rules (CBA)

In this chapter, we focus on generating association rules for building classification

models. The chapter consists of our proposed modifications to an association rule

mining algorithm to generate classification rules. The generated rules are used to

build a classification model, which is evaluated with different prediction modes to

study its predictive capability.

The rules resulting from Associative Classification mining can be evaluated to

select a subset of the rules that will form the model or classifier. To the best of

our knowledge, Liu, Hsu, and Ma [LHM98] were the first to produce a classifier

based on association rules. They show that the classifier built performs as well as or

better than well known decision tree algorithms. Since then, many association rule

based classifiers have been built for various domains. Among others, [ZAC02] for

classifying mammography images, [YLW01] for classifying web documents, [LAR02]

17

for recommender systems, [CAM04] for classifying spatial data, [YL05] for document

classification, and [CYZH05] for text categorization. The process of building the

classifier involves selecting rules by confidence or support. Confidence is a popular

criterion for rule selection to the classifier as it denotes the strength of a rule. In

the case of CBA [LHM98], they use a heuristic to select a subset of the rules that

classifies the training set most accurately. In some cases, the pruning is as simple as

removing contradicting rules [ZAC02] or more complicated like using post pruning

techniques that are used in decision trees [YLW01].

In CBA-CB [LHM98], the generated CARs are ordered based on the following

definition.

Definition 3.1. Rule Ordering (�) Association

Given two rules, ri and rj, ri � rj (ri precedes rj) if

• the confidence of ri is greater than that of rj or,

• their confidence are the same, but the support of ri is greater than that of rj,

or,

• both the confidence and the support of ri and rj are the same, but ri is generated

earlier than rj.

Let R be the set of CARs and D be the training data. The aim of the model con-

struction algorithm is to choose a set of highly predictive rules in R to cover the train-

ing data D. The classifier built is of the following form: < r1, r2, ..., rn, default class >

where ri ∈ R, ra � rb if a < b. Default class is the default label used when none of

the rules can classify an instance.

Algorithm 2 shows the CBA-CB procedure[LHM98]. In step 1, the rules are

sorted according to the order mentioned above; then each rule is considered in turn.

18

Algorithm 2 CBA-CB Algorithm
Inputs: rules R, training set instances D
Output: classifier C

1. R = sort(R);
2. for each rule r ∈ R in sequence do

3. temp = ∅
4. for each instance d ∈ D do

5. if d satisfies the conditions of r then

6. store d.id in temp and mark r if it correctly classifies d;
7. end if

8. end for

9. if r is marked then

10. insert r at the end of C;
11. delete all the cases with the ids in temp from D;
12. select the default class for the current C;
13. compute the total number of errors of C;
14. end if

15. end for

16. Find the first rule p in C such that Cp, the list of rules in C up to p, has the lowest
total number of errors. and drop all the rules.

17. Add the default class associated with p to the end of C, and return C

The rule under consideration is marked if it can classify at least one instance in

the training set correctly (steps 5 and 6). If the rule is marked, all the instances

covered by the rule are removed from the training set and the majority class of the

rest of the training instances becomes the default class label (steps 11 and 12). The

marked rule is added to the end of the classifier.

Let Cr denote the lists of rules ending in rule r that have been selected for

inclusion in the classifier so far. In step 13, the classifier Cr is used to classify the

instances of the training set, and evaluate the performance of the classifier. Since

the classification values of the instances are known, each classification attempt or

prediction can be recorded as a correct classification or wrong classification. When

all the instances are classified, the classifier will be assigned an error rate which is

the total number of wrong classifications over the total number of classifications.

The rule for which Cp has the lowest number of errors is found and all rules

19

added after this rule are removed. The default class label attached with that rule

becomes the default class label of the classifier (step 17).

3.2 Post Pruning Classification Association Rules

With association rule mining, the number of rules produced might be overwhelming.

As all the produced rules may not be interesting or significant, it is important to

prune those rules deemed uninteresting or overfitting (rules that are very specific

to the training set). Similar to decision tree post-pruning, association rules can be

post-pruned to reduce the number of rules produced. Many ideas on post-pruning

of decision trees were introduced by Quinlan [Qui93]. There are basically two ap-

proaches to post-pruning based on error rates [FW00]. One is to divide the data

set into training, validation and testing sets. With this approach, the rules will be

built using the training set, and pruning will be done based on the performance

of the rules on the validation set. With the second approach, there is no separate

validation set, but the training set is used as the validation set. The latter technique

is known as pessimistic error pruning.

Pessimistic error pruning is a heuristic based on statistical reasoning [Qui93] (see

also [FW00]). For each rule, let the number of errors on the training set be E and

the number of cases covered on the training set be N (those instances containing

the antecedent of the rule). The observed error rate is f= E/N . Let the true error

rate (unknown) be q. Here, we assume the N instances are generated by a Bernoulli

process with probability q and error rate E.

The mean and variance of a single Bernoulli trial with success rate p are p and

p(1− p) respectively. For N Bernoulli trials, the success rate f is a random variable

with mean equal to p, and the variance is reduced to p(1− p)÷N . For large N , the

20

value of the random variable f approaches a normal distribution.

The probability that a random variable, X, with 0 mean lies within a confidence

range of width 2z is

Pr [−z ≤ X ≤ +z] = c

where c is the confidence level.

For random variable f to have a 0 mean and unit variance, we subtract mean p

from f and divide by standard deviation σ, where σ =
√

p(1 − p)/N .

Pr

[

f − q
√

q(1 − q)/N
> z

]

= c

The upper confidence limit for q in the expression above provides a pessimistic

estimate of e (see [FW00]) error rate at a given node:

e =
f + z2

2N
+ z

√

f

N
− f2

N
+ z2

4N2

1 + z2

N

Rule R is compared with its subrules, that is rules in which one or more items

are removed from the antecedent of R. If a rule R has a higher pessimistic error

rate than any of its subrules, R is pruned while retaining the subrules.

3.3 Association Rule Based Classification Model

Construction

In this section, we describe the approach we have taken to accomplish our primary

goal of building a classification system based on association rules. This includes

generating classification rules from AprioriSetsAndSequences and carrying out post-

pruning to reduce the cardinality of the set of generated rules and building models

from the pruned rules.

21

3.3.1 Generating Classification Association Rules

As we mentioned in the Chapter 2, classification association rules (CARs) are a

subset of association rules with a predefined target or class in the consequent. An

inefficient way of obtaining CARs is to generate all the frequent itemsets for a data

set and in the process of generating rules from these itemsets, prune away rules that

do not conform to CARs.

In our work, we have generated only those frequent itemsets that can produce

CARs while the others are pruned away at the frequent itemset mining phase. Every

CAR has a class attribute or target on the consequent of the rule. As this target

is predefined, we can use this target as a semantic constraint to generate frequent

itemsets consisting of the class attribute.

Definition 3.2. Semantic Constraints

A semantic constraint is a requirement that an attribute(s) must appear or must not

appear in the antecedent and/or consequent of a rule.

Definition 3.3. Syntactic Constraints

A Syntactic constraint is a requirement placed on the number of attribute-value pairs

on either the antecedent or consequent of a rule.

3.3.2 Generating Rules with Semantic Constraints

In many cases, we are interested in generating rules with one or more semantic

constraints. In the contact-lenses data set depicted in Table 2.1, we may want to

generate rules such that the contacts, age and tear prod rate are represented in each

of them. These three attributes contribute to the semantic constraints. For the rules

to have these three attributes, the frequent itemsets must contain them. Therefore,

it will suffice if we generate only items sets that include the three attributes we

22

are interested in. The frequent itemset may have other attributes. We are able to

use the semantic constraints as conditions in the join step of the Apriori candidate

generation phase.

The approach we have used to prune itemsets that do not contain the required

attributes is closely related to the implementation of AprioriSetsAndSequences. Our

goal is to generate only itemsets that have all the required attributes (constraints).

In the AprioriSetsAndSequences algorithm [Pra04], each attribute value pair is

mapped to a number (item number), see Section 2.5. This numbering is done in

such a way that the attribute values of the first attribute in the data set receives

the lowest numbers followed by the attribute values of the second attribute and so

on. A hash table stores the mapping between the numbers and the attribute values.

Numbers assigned to an attribute’s values are consecutive.

To allow for pruning of itemsets that may not contain the attributes we desire, we

reorder the attributes so that the attributes that are semantic constraints (required

attributes) are given smaller numbers than the non-required attributes. Therefore,

in the contact-lenses data set, attribute-values of contacts, age, and tear prod rate

will be assigned smaller numbers than the values of the other attribute, astigmatism,

as show in Table 3.1.

contact-lenses=soft 1
contact-lenses=none 2
contact-lenses=hard 3
age=young 4
age=pre-presbyopic 5
age=presbyopic 6
tear-prod-rate=normal 7
tear=prod-rate=reduced 8
astigmatism=yes 9
astigmatism=no 10

Table 3.1: Attribute-values renumbered to give lower numbers to required attributes

23

Definition 3.4. Sorted Set of Semantic Constraints

Let A = {a1, a2, ..., an} be the set of attributes in the data set. A sorted set C =

{c1, c2...ck} is defined as the set of semantic constraints such that ci ∈ A for all

i, 1 ≤ i ≤ k, and constraints are sorted such that ci precedes ck if i < k and

a1 = c1, a2 = c2 . . . ak = ck.

Modified Itemset Generation Join Step

A candidate itemset of size (k + 1) is generated from 2 itemsets X and Y of size

k where X precedes Y in lexicographic order if the following two conditions are

satisfied:

• if X contains m constraints where m > 1, the constraints must be the first m

constraints from the set of constraints (i.e., c1, c2, . . . cm).

• if X contains less than k constraints, it cannot contain a non-constrained item.

Theorem 3.1. Let A = {a1, a2, . . . , an} be the set of attributes in the data set. Let

C = {c1, c2, . . . , ck} be the set of semantic constraints such that ci ∈ A for all i,

1 ≤ i ≤ k. Let X and Y be two itemsets such that X ≤ Y and a1 = c1, a2 =

c2 . . . ak = ck. If itemsets X and Y do not satisfy the the following conditions then

the join of X and Y cannot generate a rule that satisfies all the constraints in C.

• if X contains m constraints where m > 1, the constraints must be the first m

constraints from the set of constraints (i.e., c1, c2, . . ., cm).

• if X contains less than k constraints, it cannot contain a non-required attribute

(non-constrained attribute).

Proof. We reiterate that the attribute-value pairs will be ordered such that those

that are required attributes(constrained attributes) will be placed lower than the

24

non-required attributes in the lexicographic order. In the join step, we can make a

determination as to whether the join of X and Y will produce an itemset that has

the potential to end up with all the required attributes.

Given X = {x1, x2, .., xn−1, xn} and Y = {y1, y2, .., yn−1, yn} where x1 . . . xn and

y1 . . . yn are items representing attribute-value pairs. For X and Y to join, the

apriori join condition, x1 = y1, x2 = y2, xn−1 = yn−1 and xn 6= yn must be true. The

join of X and Y will result in an itemset of size n + 1.

The first condition we have introduced as part of theorem 3.1 is that if X con-

tains items from m constraints, those m constraints must be the first m constraints

based on lexicographic order. Otherwise, X will join with a Y that does not have the

constraint. Let us suppose that X does not contain an item from cj where j ≤ m.

As we know that X will join with Y such that the first n − 1 items from both X

and Y are the same, which means Y will also not contain an item from cj. The

resulting itemset Z of size n + 1 will not contain cj. Using the previous argument,

we know that Z cannot join with another itemset such that the missing constraint

cj can be included in the resulting set. This shows that any itemsets resulting from

the original X will not have cj and therefore neither X nor any of its supersets will

form rules that satisfy all the constraints.

The other condition we have introduced as part of theorem 3.1 is that the X

cannot contain item(s) from non-required attributes as long as it does not contain

all the required attributes. Let us consider the different cases that X can take in

terms of having required and non-required attributes:

Case 1: If itemset X contains only items from required attributes while adhering

to the first condition mentioned above, i.e., items from 1 . . . n are required and are

in order. In this case, X can join with Y , such that the X and Y have the same

number of items n and the first n − 1 items of X and Y are the same. This join

25

will go ahead as we cannot make a determination as to if this resulting itemset will

have all the constraints.

Case 2: If itemset X contains items some required attributes, c1, c2, cj where j <

k and one non-required attribute am. In this case, X can only join with a Y that has

the same set of items from the same set of required attributes, c1, c2, cj with one non-

required attribute. The resulting Z itemset will not become a potential candidate

for rule generation as it is missing the required attributes cj+1 . . . ck. Therefore, X

will not be joined with Y .

Case 3: If itemset X contains all the required attributes and one non-required

attribute. In this case, as X has met the criteria, we can join X with the appropriate

Y .

3.3.2.1 Generating Frequent Itemsets

Let us generate frequent itemsets from the contact-lenses data set:

In Figure 3.1, we showed the attribute-value pairs and how they are numbered.

The required attributes are: contacts, age and tear prod rate.

itemset Support itemset Support itemset Support itemset Support

{ 1, 2 } 0 {1, 3} 0 {1, 4} 1 {1, 5} 1

{1, 6} 0 {1, 7} 2 {1, 8} 0 {1, 9} 0

{1, 10} 2 {2, 3} 0 {2, 4} 1 {2, 5} 2

{2, 6} 3 {2, 7} 2 {2, 8} 4 {2, 9} 3

{2, 10} 3 {3, 4} 1 {3, 5} 1 {3, 6} 1

{3, 7} 3

Table 3.2: Candidate itemsets in the second level of itemset generation

In Tables 3.2, 3.3 and 3.4 we show the candidate itemsets generated and

their support until no more candidate itemsets can be generated. We use minimum

support as 1, at least one data instance must contain the itemsets for the itemsets

to be considered for the next level. Those itemsets with support less than 1 were

26

itemset Support itemset Support itemset Support

{1, 4, 5} 0 {1, 4, 7} 1 {1, 4, 10} 1

{1, 5, 7} 1 {1, 5, 10} 1 {2, 4, 5} 0

{2, 4, 6} 0 {2, 4, 7} 0 {2, 4, 8} 0

{2, 4, 9} 0 {2, 4, 10} 0 {2, 5, 6} 0

{2, 5, 7} 1 {2, 5, 8} 1 {2, 5, 9} 1

{2, 5, 10} 1 {3, 4, 5} 0 {3, 4, 6} 0

{3, 4, 7} 1 {3, 4, 9} 1 {3, 5, 6} 0

{3, 5, 7} 1 {3, 5, 9} 1 {3, 6, 7} 1

{3, 6, 9} 1

Table 3.3: Candidates itemsets in the third level of itemset generation

itemset Support itemset Support itemset Support

{1, 4, 7, 10} 1 {1, 5, 7 , 10} 1 {2, 4, 8, 9} 0

{2, 5, 7, 8} 0 {2, 5, 7, 9} 1 {2, 5, 7, 10} 0

{2, 5, 8, 9} 0 {2, 5, 8 , 10} 1 {3, 4, 7, 9} 1

{3, 5, 7, 9} 1 {3, 6, 7, 9} 1

Table 3.4: Generated itemsets and their support in the third level of itemset gener-
ation

dropped from the frequent itemsets group that was used in generating candidate

itemsets for the next level.

In Table 3.2, we observe that only itemsets starting with an item from the first

attribute, contact-lenses, is generated. This is a result of itemset pruning that is

part of itemset generation.

3.3.2.2 Generating Maximal Frequent Itemsets

All the frequent itemsets generated from the itemset generation step are used to

generate maximal frequent itemsets. A maximal frequent itemset is an itemset that

is not a subset of any other itemset. This stage reduces the number of itemsets we

are working with significantly.

27

3.3.2.3 Counting Support for those Itemsets without Support

Using the maximal itemsets, we generate all the subsets of the maximal itemsets

and determine if each subset has support counted. As we know from the item-

set generation stage, some itemsets may not be generated because of the itemset

pruning step and therefore will not have their support counted. Those itemsets

without support will need to have their support counted prior to the rule gener-

ation stage. When generating rules from the maximal itemsets, a pruned itemset

may appear on the antecedent or consequent of a rule. Suppose X represents the

antecedent and Y represents the consequent, confidence of a rule is computed as

support{X ∪ Y } ÷ support{X}. Therefore, it is essential that all subsets of a max-

imal itemset have their support counted.

3.3.2.4 Generating Classification Association Rules

In the case of generating association rules, all possible splits of a frequent itemset

into antecedents and consequents are considered. However, in generating classifica-

tion association rules, syntactic constraints are placed such that the rule generated

has only items from the classification attribute on the consequent side, while no

items from the classification attribute are present on the antecedent side. Further,

confidence is calculated for each rule and those rules with confidence greater than or

equal to the minimum confidence will form the final set of classification association

rules.

3.3.3 Classification Models

In the previous sections, we discussed generating constrained classification associ-

ation rules (CARs). In this section, we focus on building and using classification

28

models.

3.3.3.1 Building Classification Models

A classification model is a function that maps a novel unlabeled instance to a prede-

fined class. In our work, we consider two types of models, all rules models (where all

the produced CARs are used in the model) and the CBA model [LHM98], described

in Section 3.1

The CBA algorithm [LHM98] is based on a heuristic and selects a subset of rules

that classifies the training set most accurately. The CBA algorithm satisfies the

condition that each new instance is predicted by the rule with the highest confidence.

3.3.3.2 Deploying Classification Models

Given a model and a new instance whose class is unknown, the problem of predicting

the instance’s class using the model is an interesting problem. There is more than

one way to use the model to predict the instance’s class. In association rule based

classification models, rules in the model are ordered as follows:

• if rule ri has greater confidence than rj, then ri precedes rj, or

• if ri has the same confidence as rj, then the rule with greater support will

precede the other, or

• if ri has the same support and the same confidence as rj, then the rule with

then smaller number of items in the antecedent will precede, or

• if ri has the same support, confidence and antecedent size as rj, then the order

between the two rules is random.

29

Rules of high confidence are thought to be good for classification. Confidence

alone may not make a rule very good. For instance, a rule from an instance that

appears only once (high confidence but low support) may not be a good rule for clas-

sification. Rules with very high confidence and low support are useful in identifying

rare events.

3.3.4 Single Rule and Multiple Rules Classification

In CBA [LHM98], a single rule is used to classify a new case. Though this may

be a simple and logical way to classify, it has been shown to be less effective than

using multiple rules [LHP01]. Suppose, we want to determine if a person is eligible

for a bank loan with the following attributes (housing = rent, employ status = yes,

income ≥ 50K). Imagine we have a model to classify a new case as eligible for loan

or ineligible for loan. If the top three rules that match this case are as follows:

• housing = rent → loan = NO (Sup:0.01, Conf:1.0)

• income ≥ 50K → loan = YES (Sup:0.05, Conf:0.93)

• employ status = yes → loan = YES (Sup:0.15, Conf:0.9)

If we use just one rule to classify as in CBA[LHM98], we would classify the new

case as loan = NO. If we consider all the three rules together, we would classify the

new case as loan = YES. This shows that the class label assigned will depend on

the modes of classification and it is important to have both the modes available to

be able to compare and contrast the accuracies resulting from the two modes.

The following sample model will be used to explain the different ways of predict-

ing an unknown subject or case. Let us assume our model consists of three rules in

the following order:

30

1. age=young −→ contact-lenses=none [Sup:0.05, Conf: 0.9]

2. age=young AND tear-prod-rate=normal −→ contact-lenses=none [Sup:0.03,

Conf: 0.8]

3. age=young AND astigmatism=no −→ contact-lenses=none [Sup:0.02, Conf:0.78]

4. age=young AND astigmatism=yes −→ contact-lenses=soft [Sup:0.015, Conf:0.75]

Let us consider the data instance: age = young AND tear-prod-rate=normal

AND astigmatism=yes and assume that we want to predict the class label for this

instance, that is, if the user requires a contact-lenses and if so what type.

3.3.4.1 Single Rule Prediction

All the rules are sorted by confidence and then by support. The class associated

with the first rule that covers the instance is selected as the prediction.

If we have to use the above mentioned model to predict the contact-lenses type

for a young individual, we will select the first rule (has the highest confidence) and

the prediction is that contact-lenses are not prescribed.

3.3.4.2 Prediction by Weighted Majority

All rules that cover the new instance are selected and confidence (or support) is used

to weigh the predictions made by each of these rules. The majority of this weighted

prediction is selected as the model’s prediction.

In this mode, we will use confidence to select the appropriate class label. Rules

1, 2 and 4 can be used to predict the contact-lenses type. We will use confidence

as the weight to select which class is appropriate. The weight of each prediction is

calculated by summing up the confidence values for different classifications from the

rules which cover the new instance:

31

∑

ConfRclass
= 1.70 where class = none

The weight of the new instance being soft is:

∑

ConfRclass
= 0.75 where class = soft

We select the class label with the highest weight and contact-lenses=none is

predicted as the class label for the test instance.

3.4 Implementation

We have implemented our classification system in WEKA [FW00]. WEKA is an

open-source suite of machine learning algorithms. The motivation for implement-

ing our thesis in WEKA is the extensive use of this system in WPI’s Knowledge

Discovery and Data Mining Research Group. WEKA is developed in the Java Pro-

gramming Language. Figure 3.1 shows the architecture of our classification system.

We modified the existing Apriori like algorithm, AprioriSetsAndSequences [Pra04]

(see Section 2.5), to generate classification association rules. The generated rules

are used for building models. The resulting models are tested for accuracy.

32

WPI.CLASSIFICATION

AssociativeClassification

CARs Generation

Classification Model Building

Model

Prediction Scheme
(Single Rule, Multiple Rule)

WPI.ASSOCIATIONRULES

AprioriSetsAndSequences

Frequent Item set Mining
(Constraints Integrated)

Classification Association Rule
Generation

CARs Pruning

WPI-WEKA

Figure 3.1: Architecture of WPI Classification System

Referring to Figure 3.1, the association rule based classification algorithm is

called AssociativeClassification and is part of the Wpi.Classifiers package. We show

the interaction between AssociativeClassification and AprioriSetsAndSequences. We

also show the different modules in both the algorithms.

33

Figure 3.2: Parameter Menu For Associative Classification

Figure 3.2 shows the parameter menu for AssociativeClassification. In this

menu, the user can specify the following options: minimum confidence, minimum

support, starting support, support delta, minimum number of rules, which model

to build (CBA or All Rules Model), if post-pruning is allowed, and how to pre-

dict (single rule or multiple rule). The new parameters added by our work include:

modelSelection, predictionMode and usePostPruning. For description of other pa-

rameters, please see Chapter 2.

• modelSelection - the type of algorithm used to select a classification model

34

(e.g., CBA, All Rules Model)

• predictionMode - which prediction method to follow (e.g., Single Rule, Multi-

ple Rules)

• usePostPruning - whether to post prune the association rules based on pes-

simistic error before building a classification model. See Section 3.2

Algorithm 3 is the modified control procedure to mine (constrained) CARS.

In this thesis, we have modified the original control procedure (see Algorithm 1)

to allow pruning of rules based on pessimistic error. We have also modified the

algorithm to allow for presence or absence of items (semantic constraints) in the

rules. More precisely, users can specify an item to appear or not to appear on either

the antecedent or the consequent of a rule. We use a pruning technique to generate

only itemsets that can potentially become part of the user specified rules. In the

rule generation step, before a rule is generated, it is checked to see if it satisfies the

user specified constraints and, if so, the rule gets generated. WEKA contains many

well known classification algorithms and one significant contribution of this thesis

is the classifier based on Association rule mining algorithm.

Input parameters include requiredAntecedent, requiredConsequent, disallowedAn-

tecedent and disallowedConsequent. The while loop in Step 5 repeats itself until

the support threshold is below the minsupport or the number of rules generated

suffices according to the user specified number of rules. If we look into the iterative

process of generating itemsets and rules from them: In Step 6, we generate the

1-item itemsets. In steps 11-15, the condition exhausts all possible itemsets that

can be produced until no more items of size k can be joined to produce items of

size (k+1). Only those itemsets that will potentially yield rules with the required

itemsets are generated. The algorithm for this can be seen in Section 3.3. The

35

Algorithm 3 Modified AprioriSetsAndSequences Control Procedure
Inputs: requiredAntecedents, requiredConsequents, disallowedAntecedents, disallowedCon-
sequents, numRules
Outputs: rules

1. rules = ∅;
2. support = UpperBoundSupport;
3. freqItemsets = ∅;
4. requiredItems = requiredAntecedents ∪ requiredConsequents
5. while (support > minsupport AND rules.size < numRules) do

6. L1 = {1-item itemsets};
7. for (k = 2; Lk−1 6= ∅) do

8. Ck = generateCandidates(Lk−1, requiredItems);
9. Lk = evaluateCandidates(Ck);

10. freqItemsets ∪ L(k);
11. end for

12. maxFreqItemsets = genMaxFreqItemset(freqItemsets);
13. rules = GenerateAllRules(maxFreqItemsets, requiredAntecedents, requiredConse-

quents);
14. rules = PruneRules(rules);
15. if (rules.size > minRules) then

16. return rules;
17. end if

18. support = support - delta;
19. end while

36

generated candidates are evaluated to see if they have minimum support (step 13).

In step 16, the frequent itemsets are used to generate the maximal frequent itemsets.

In 17, we generate all rules according to user requests on required antecedents and

consequents. In step 18, the rules may be pruned if the pruning option is set on.

If the resulting number of rules is equal to or exceeds the user desired number of

rules, the rules are returned.

Algorithm 4 is the AssociativeClassification algorithm that we have developed

as the core of our classification system. In step 1, the input parameters are passed

to AprioriSetsAndSequences algorithm to generate classification rules. Using the

user specified model parameters, a model is generated from the classification rules.

In step 4, the model is tested against the test set and the results are shown on the

screen.

Algorithm 4 AssociativeClassification
Inputs: minrules, minimum confidence, minimum support, starting support, rule post-
pruning (boolean), model, prediction, trainingSet
Output: modelTestResults

1. rules = AprioriSetsAndSequences(trainingSet, numRules, minSupport, startingSup-
port, minConf, numRules);

2. rules = sort(rules);
3. model = generateModel(rules, model);
4. testModel(model);
5. outputStats();

Figure 3.3 shows the parameter menu for association rule mining. In this thesis,

we included the following parameters:

• disallowedAntecedents - those attributes not to appear on the left hand side

of the rules.

• disallowedConsequents - those attributes not to appear on the right hand side

of the rules.

37

• adaptMinSupport - switch to use adaptive minimum support (see Chapter 5).

• numRules - applies in the case when adaptive minimum support is used.

• useItemSetPruning - switch to use itemset pruning in the mining stage based

on required antecedents and consequents or do not prune itemsets.

• usePostPruning - switch to use post pruning based on pessimistic error to

reduce the number of generated rules.

• maxEvents - AprioriSetsAndSequences is capable of handling set-valued and

sequential data. See [Pra04] for details on this and other sequence related

parameters.

3.5 Experimental Evaluation

In this section, we describe the experiments carried out to compare and evaluate our

classification system. We break down this section into data description, evaluation

metrics and experimental results. We show the performance improvement obtained

by pushing pruning of itemsets at the frequent itemset generation level and the

models built by the classifier with different experimental settings.

3.5.1 Evaluation Metrics

We evaluate the classifier based on error rate with different prediction schemes.

We also report the accuracy rate. The error rate signifies the number of wrong

predictions over the total number of predictions. The accuracy rate signifies the

number of correct predictions over the total number of predictions.

38

Figure 3.3: Parameter Menu for Our Extended Association Rule Mining

39

accuracy =
number of correct classifications

total number of classifications made

error =
number of incorrect classifications

total number of classifications made

A prediction involves selecting an appropriate class label for a case whose class label

is unknown. For example, let < x1, x2, ... xk, ? > be a data instance whose class

label is unknown (denoted by a question mark). xi represents the value of attribute

i of the instance. If this data instance is given as an input to a model, the rule(s)

that covers this instance (the features of the rule are a subset of the features in the

data instance) will determine the class label for the data instance.

3.5.2 Experimental Results

We divide this section into two parts. In part 1, we focus on the improvements made

to AprioriSetsAndSequences by itemset pruning in the presence of constraints. Here

we evaluate performance based on time taken for mining and generating rules and

the number of maximal frequent itemsets generated. A frequent itemset is considered

maximally frequent if none of its supersets is frequent.

3.5.2.1 Data Set

We tested the classification system with the following datasets obtained from the

UCI Machine Learning Repository [SHM98]: census-income, mushroom and forest

cover. Table 3.5 shows the properties of these datasets. As part of pre-processing,

continuous valued attributes were discretized using WEKA’s instance based dis-

cretization filter with the number of bins set to 10 [FW00].

40

Dataset # attr class # class values # instances

sonar 61 rocks/mines 2 208

census-income 15 income-level 2 32,561

mushroom 23 edible/poisonous 2 8,124

forest cover 17 forest cover type 7 74,056

Table 3.5: Dataset Properties

3.5.2.2 Itemset Pruning in the presence of Constraints

As part of our experiments, we were interested in comparing itemset pruning vs.

non-pruning. We ran experiments with the mushroom, census-income and forest

cover datasets. We generated single and multiple constraint classification rules. We

observed the resulting parameters such as the number of itemsets produced, number

of maximal itemsets produced and time taken for generating rules.

Table 5.3 shows the parameters used in running the experiments. In these

experiments, the goal was to generate as many rules as possible with the support

greater than or equal to 1%. The minimum confidence was set to 50%.

Support Confidence

1% 50%

Table 3.6: Experimental Parameters

Prune Req. Ant Req. Con itemsets Rules Max. itemsets Time(s)

No none class 45391 21101 158 4951

Yes none class 42620 21101 42 4357

No odor class 45391 8288 158 1153

Yes odor class 33160 8288 26 1813

Table 3.7: Comparison of Constraint-based Pruning vs. Non-Pruning for Mushroom
Dataset

In Table 3.7, we present the results for the mushroom dataset. The first column

shows if constraint based pruning was selected or not. In the case of pruning being

switched off, all candidate itemsets are used in generating valid itemsets at each level

of the Apriori process. In comparing the first two rows (single constraint), we observe

41

the reduction in the number of itemsets produced and the reduction in time taken

for generating the rules. But interestingly, in the next two rows (double constraint)

even though the number of itemsets produced decreases, the time taken increases.

We figured this is a case where a large number of item-subsets are dropped from

consideration due to the constraint based pruning. The final scan of the database

for support of those items costs a significant time, increasing the overall time (see

Section 3.3.2.3).

Prune Req. Ant Req. Con itemsets Rules Max. itemsets Time(s)

No none class 1071 350 82 85

Yes none class 410 350 36 88

No relationship class 1071 22 82 87

Yes relationship class 100 22 31 16

Table 3.8: Comparison of Constraint-based Pruning vs. Non-Pruning for Census-
Income Dataset

As seen in Table 3.8, in the case of a single constraint, the results for pruning

and non-pruning are very similar. In the case of two constraints, the pruning leads

to better performance in terms of time, approximately 1/5 of the time taken without

pruning.

Prune Req. Ant Req. Con itemsets Rules Max. itemsets Time(s)

No none class 4297 1247 45 651

Yes none class 2673 1247 19 613

No aspect class 4297 144 45 678

Yes aspect class 605 144 22 208

Table 3.9: Comparison of Constraint-based Pruning vs. Non-Pruning for Forest-
Cover Dataset

In Table 3.9, we observe reduction in time with pruning in both single constraint

and double constraint.

42

3.5.2.3 Comparison of Different Classifiers

In this set of experiments, we compared the performance of the CBA classifier with

the All Rules Model (ARM) classifier. We also compared these performances with

other well-known classifiers such as Zero-R and J-4.8 (Decision Trees). In the case

of CBA and ARM, we also experimented with the different prediction modes such

as Single Rule and Weighted by Confidence. In these experiments, we used a split

of 66% for the training set and the rest for the testing set.

Classifier Pred Mode Test Option Accuracy Num Rules
CBA Single Rule 66% split 74.65% 44
CBA Weight(conf) 66% split 73.42% 44
ARM Single Rule 66% split 76.05% 33733
ARM Weight(conf) 66% split 64.78% 33733
Zero-R - 66% split 54.93% 1
J4.8 - 66% split 70.43% 11

Table 3.10: CBA, ARM, J48 and Zero-R on Sonar Dataset (minsupp = 1%, minConf
= 50%)

Table 3.10 shows the results for the sonar dataset using CBA, ARM and other

classifiers. Both CBA and ARM perform better than J48, Prism and Zero-R. In

fact, ARM produces the best accuracy of 76.05% with single rule prediction. In

the case of CBA, the best accuracy is obtained with Single Rule prediction mode of

74.65%.

Classifier Pred Mode % Split Accuracy Num Rules

CBA Single Rule 66% 83.5% 545

CBA Weight(conf) 66% 83.5% 545

ARM Single rule 66% 80.87% 9754

ARM Weight(conf) 66% 80.87% 9754

J4.8 66% 84.07% 331

Zero-R 66% 76.27% 1

Table 3.11: CBA, ARM, Zero-R and J48 on Census-Income Dataset (minsupp =
1%, minConf = 50%)

43

Table 3.11 shows the results for CBA, ARM and other classifiers with the cen-

sus income data. In this case, J4.8 performs marginally better than CBA. ARM

performs below CBA in both modes. In the case of CBA, both modes perform

similarly.

Classifier Pred Mode % Split Accuracy Num Rules

CBA Single Rule 66% 99.02% 23

CBA Weight(conf) 66% 99.02% 23

ARM Single Rule 66% 98.58% 12496

ARM Weight(Conf) 66% 98.58% 12496

J4.8 66% 100% 25

Zero-R 66% 50.4% 1

Table 3.12: CBA, ARM, J48 and Zero-R on Mushroom Dataset (minsupp = 1%,
minConf = 50%)

Table 3.12 shows the results for CBA, ARM and Other classifiers on the mush-

room dataset respectively. CBA performs well, just marginally below J4.8. Again,

Single Rule Prediction mode performs better than other modes.

Classifier Pred Mode % Split Accuracy Num Rules

CBA Single Rule 66% 62.53% 144

CBA Weight(Conf) 66% 62.53% 144

ARM Single Rule 66% 61.74% 6901

ARM Weight(Conf) 66% 61.74% 6901

J4.8 66% 88% 5801

Zero-R 66% 61% 1

Table 3.13: CBA, ARM, J48 and Zero-R on Forest Cover Dataset (minsupp = 1%,
minConf = 50%)

Table 3.13 shows results for classification of the forest cover dataset using CBA,

ARM, Zero-R and J4.8 Classifiers. There is marginal difference of less than 1%

between CBA and ARM. In both CBA and ARM, the prediction modes do not dif-

ferentiate the results. J4.8’s ability to handle numeric attributes directly, in contrast

with association rules, gives it a clear advantage on the Forest Cover dataset, which

contains several numeric attributes.

44

Chapter 4

Adaptive Minimum Support

4.1 Adaptive Minimum Support

The problem of association rule mining can be broken down into two subproblems:

generating all combinations of items(frequent itemsets) that appear in transactions

with support greater than or equal to a support threshold, called minsupport; and

generating rules from the frequent itemsets that have confidence greater or than

equal to a confidence threshold, called minconfidence. When mining for associations,

picking the right minsupport is a challenging problem. By the right minsupport we

mean the minsupport that will produce a number of rules within a desired range,

denoted as [Rmin, Rmax]. It is best if rules can be produced so that their number is

within [Rmin, Rmax] and ensure those rules have the highest support out of all the

possible rules for a given minconfidence. However, to be able to produce a number

of rules within [Rmin, Rmax], we need a way to automate the process of finding the

right minsupport. In [LAR02], an adaptive minimal support algorithm is introduced

that will oversee the mining process to ensure the number of rules returned falls

within a desired range. The proposed algorithm is used in association rule mining

45

for classification.

Although adaptive-minsupport has been discussed in the general framework of

association rule mining, we find that it applies more importantly to classification

associative rules [LHM98]. In classification association rules, target items are spec-

ified by users to appear in the consequent of the rule. The general association rule

mining problem is narrowed to mining rules with specific items in the consequent.

These rules are called classification association rules(CARS). Classification associ-

ation rules have been used in real-time recommender systems [LAR02]. According

to [LAR02], the number of rules generated is important to ensure a good recom-

mendation. If too many rules are generated, the runtime can be too long, and a

small number of rules can lead to poor recommendations. We mined for CARS us-

ing our adaptive-minsupport approach. Given a database of instances, range [Rmin,

Rmax], minconfidence and a class variable, CARS were mined to build a classifica-

tion model. A classification model was built from the generated rules. The rules

were sorted according to a score, and the model constructed progressively by adding

a rule with high score and testing the classifier accuracy. When accuracy starts

falling, the model construction was ceased, and the current model formed the final

classifier.

4.2 Approach

In our work, we have used a binary search strategy to adapt minsupport until we

produce rules in the desired range or very close to it. The use of binary search in this

context was suggested to us by S.A. Alvarez [Alv02]. We have a fixed minsupport

that is used to start the mining process and then the minsupport is adapted either

by reducing by half or doubling depending on the number of rules produced and the

46

range in number of rules wanted. The higher level description of our algorithm is as

follows:

Given a minimum confidence and the number of rules wanted in range [Rmin,

Rmax]

• Set the initial minsupport based on heuristics.

• Mine association rules until the number of rules produced falls within the range

[Rmin, Rmax] by adjusting the minsupport and running the mining process

again as described in Section 4.4.

4.3 Initial MinSupport Selection

Guessing an initial minsupport is an interesting problem. We can use a fixed value

for minsupport, but a way of determining a value based on the data set may be

more useful in reducing the number of times the mining process repeats itself. We

find x, the number of items required to produce approximately Rmax rules, ignoring

support as a criterion in selecting items. Then we sort the 1-item itemsets and select

the support of the xth item from the sorted itemsets as the initial minsupport.

Rmax =
∑x−2

k=2

∑k−1
i=1

(

x

k

)(

k

i

)

(

x

k

)

selects the k items that will appear in the rule and the
(

k

i

)

selects from these

k items the ones that will appear in the antecedent of the rule.

Rmax =
∑x−2

k=2

(

x

k

)
∑k−1

i=1

(

k

i

)

Rmax =
∑x−2

k=2

(

x

k

)

2k−1

Rmax = 1
2

[
∑x−2

k=2

(

x

k

)

2k]

Rmax = 1
2
[(1 + 2)x]

x = log(2∗Rmax)
log3

47

The support of the xth item, we use as the initial minsupport is an optimistic

value as not all items will result in a rule. This support will give us a better starting

point than using a fixed value. Then we reduce the minsupport as needed to find

the cardinality of rules that will intersect with the specified range.

4.4 Adaptive Minimal Support Algorithm

Algorithm 5 Adaptive Minimal Support Algorithm
Inputs: Data instances D, target attribute T, Rules Range [Rmin,Rmax], Minimum Confi-
dence minConf
Output: Rules

1. minsupport = heuristicFunction(D, Rmax)
2. upperLimitForSupp = 100%
3. lowerLimitForSupp = 0%
4. rules = generateRules(D, T, minConf, Rmax, minsupport)
5. while (RulesNotInRange && ((upperLimitForSupp - lowerLimitForSupp) ≥ 1%))

do

6. if rules.size > Rmax then

7. lowerLimitForSupp = minSupport
8. minSupport += Min(5, ((upperLimitForSupp - lowerLimitForSupp) / 2))
9. else

10. upperLimitForSupp = minSupport
11. minSupport -= Min(5, ((upperLimitForSupp - lowerLimitForSupp) / 2))
12. end if

13. rules2 = rules
14. rules = generateRules(D, T, minConf, Rmax, minsupport)
15. end while

16. if (NOT rulesInRange) then

17. return maxof(rules, rules2)
18. end if

19. return rules

Algorithm 5 is the algorithm for the binary strategy we use for adaptive min-

Support. The inputs to the algorithm include the data instances D, target attribute

T , rules range [Rmin, Rmax], and minimum confidence minConf. The upperLimit-

ForSupp is set to 100%, while the lowerLimitForSupp is set to 0%. The upperLim-

itForSupp and loweLimitForSupp used in this algorithm are not the same as the

48

upperBoundForSupp and lowerBoundForSupp used in the association rule mining

algorithm in Weka. In this algorithm, upperLimitForSupp and lowerLimitForSupp

are modified based on the number of rules returned during each generateRules pro-

cedure call, in an attempt to narrow down the support range to find the number

of rules requested. Whereas in the association rule mining algorithm in Weka, the

upperBoundForSupp and lowerBoundForSupp are fixed during runtime and act as

the upper and lower limit for minSupport.

The initial minsupport is calculated by a heuristic process as explained in section

4.3. The association rule generation procedure is invoked with D, T , minConf, Rmax

and minSupport. In line 5, the while loop is entered if the number of rules generated

is outside the range [Rmin,Rmax] or the (upperLimitForSupp - lowerLimitForSupp) ≥

1%. Inside the while loop, in line 7, we check to see if the number of rules generated

is greater than Rmax. If so, the lowerLimitForSupp is increased to minSupport and

a new minSupport is increased by the minimum of 5% or (upperLimitForSupp -

lowerLimitForSupp)/2. The intention here is to limit the delta of minsupport to at

most 5%. In the case that the number of rules generated is less than Rmin (line 9),

upperLimitForSupp is set to minSupport and the minSupport is decreased by the

minimum of 5% or (upperLimitForSupp - lowerLimitForSupp)/2. Using the altered

minSupport, the rule generation process is repeated. When the while loop is exited,

if the generated number of rules is not within the range [Rmin, Rmax], the last run

or the previous run, whichever produced the most number of rules, is returned.

The generateRules procedure is the same as the one discussed in Chapter 2.

It is an Apriori algorithm that uses a two-stage mining process. In the first stage,

frequent itemsets are generated. These are itemsets that satisfy the minSupport

threshold. In the second stage, association rules are generated from those frequent

itemsets such that the confidence of each rule satisfies the minConf threshold. We

49

have altered the second stage to stop generating rules when Rmax + 1 is reached,

thereby preventing the routine from generating all rules. Note that Rmax is a pa-

rameter to the generateRules procedure.

4.5 Experiments

4.5.1 Experiment Design

We wanted to compare the adaptive minSupport algorithm with the linear algorithm

used in the WEKA Apriori algorithm. In the linear algorithm, there is only a lower

bound on the desired number of rules. There are also bounds on the support, and

the mining is repeated until the lower bound for the number of rules is reached or

the lower bound for the support (minimum support) is reached. Note the lower and

upper bound for support is not the same as the upper and lower limit for support

used in the Adaptive Minimal Support (AMS) algorithm shown in Algorithm 4.4.

The linear algorithm starts out with support set to the upper bound value and if

the number of rules generated is less than the user defined lower limit, the minimum

support is reduced by delta (default value is 5%) and the process is repeated until

either the number of rules generated satisfies the lowerbound limit or the minimum

support becomes lower than the lowerbound value for minimum support. In our

experiments, we used the default values for upperbound, lowerbound support and

delta, which are 90%, 10% and 5% respectively. In both the experiments, the

minimum confidence was set to 50%.

50

Dataset # attr # classes # instances

mushroom 23 2 8124

autos 20 7 205

Table 4.1: Dataset Properties

We use the autos and mushroom datasets from the UCI Machine Learning Repos-

itory [SHM98] for the experiments. Table 4.1 shows the properties of the above

mentioned datasets.

Binary Linear
Rules Range

] Rules Time(s)] Rules Time(s)
10-20 16 3 24 1
50-100 52 1 52 1
200-250 220 3 296 3
500-600 552 6 558 3
1000-2000 1698 18 1254 5
5000-10000 8526 904 6435 317
10000-11000 10056 2926 15034 1626

Table 4.2: Comparison of binary vs linear minSupport strategies in autos dataset

In Table 4.2, we show the results for the autos dataset. As we mentioned earlier,

the linear strategy has only a lower bound on the desired number of rules. We see

that the linear strategy performs better in terms of time taken consistently over the

binary strategy. However, the number of rules produced does not consistently fall

in the desired range in the case of linear strategy as opposed to the binary strategy.

In Table 4.3, we show the results for the mushroom dataset. The Binary adaptive

approach takes more time than the linear approach in most instances. The number

of rules returned is within the range consistently in the binary adaptive approach,

while in the linear strategy, the number of rules produced exceeds the range in 2

instances.

51

Binary Linear
Rules Range

] Rules Time(s)] Rules Time(s)
10-20 12 41 12 7
50-100 50 36 50 21
200-250 220 40 218 57
500-600 526 52 662 81
1000-2000 1148 20 1148 104
5000-10000 9819 1037 5767 292
10000-11000 11121 3747 16945 2569

Table 4.3: Comparison of binary vs linear minSupport strategies in mushroom
dataset

Required Number of Rules: 10-20 MinConf: 0.5
Minsupport: 0.847 rules: 02
Minsupport: 0.797 rules: 24
Minsupport: 0.822 rules: 16

Figure 4.1: Sample Run

In Figure 4.1, we show a sample run and how the minsupport is modified to

generate the required number of rules.

4.5.2 Summary

Our experiments with autos and mushroom dataset show that the binary strategy

generates rules whose cardinality can be controlled by the available settings. Though

the time taken may be more than the time taken for a similar run with linear strategy,

the advantage lies knowing the range for the number of rules that will be returned.

It is possible when using the binary strategy, the minsupport is adjusted such that

the number of rules produced exceeds Rmax. This will be followed by a decrease in

minsupport in an attempt to obtain a number of rules in [Rmin, Rmax]. These kinds

of adjustments are the likely reason why time taken with the binary approach is

greater than the time taken with the linear approach.

52

Chapter 5

Classification of Multi-Valued

Attributes

5.1 Association Rule Mining with Set-Valued At-

tributes

In many domains, set-valued attributes are common. Some examples are linguistics,

movies, and gene expression data. Shoemaker and Ruiz [SR03] propose extensions

to Apriori Algorithm to mine association rules from datasets containing set-valued

and single-valued attributes. The proposed algorithms are called Set Based Apri-

ori (SBA) and Transformation based Apriori (TBA). In SBA, frequent itemsets are

mined from set-valued attributes as the first step, then followed by mining frequent

itemsets across the set-valued itemsets and single-valued attributes. In the case

of TBA, the set-valued attributes are transformed into single-valued or binary at-

tributes (using various transformations) and the Apriori algorithm is applied over

the transformed data set. In our work, we make use of TBA to generate rules and

build classifiers from set-valued attributes.

53

5.2 Classification with Set-Valued Class Attribute

It is not uncommon to come across domains where the target attribute is set-valued.

One such domain is that of gene expression analysis. We have extended our classifier

to be able to handle set-valued class attributes and have developed novel strategies

to predict set-valued classification. There has been work done in the area of using

set-valued attributes in classification of a nominal attribute [Coh96].

5.2.1 Set-Valued Class Prediction

Classification where the class label is set-valued is an interesting problem that to the

best of our knowledge has not been looked at in the association rule based classifi-

cation domain. How we solve this problem depends on how the set-value attribute

is treated before mining frequent itemsets. In the case of AprioriSetsAndSequences,

set-valued attributes are transformed into single-valued attributes. To produce rules

with set-values on the consequent, the support threshold must be set very low, but

this is likely to produce lots of rules and a long running time. We have developed

two approaches to solve this issue.

5.2.2 E-Measure

When the target attribute is set-valued, we cannot employ the traditional way

(boolean) of measuring if a prediction is the same as the actual value or not. If

we did so, the classifier performance is likely to be below par; also we will lose

information on the proximity between the predicted value and the actual value.

Therefore, we have borrowed E-measure [LG94], discussed in Chapter 2, from the

domain of information theory to measure the difference between the two sets.

When comparing two sets, we know that the sets could be the same, may have

54

some overlap, or no overlap at all. So we are interested in measuring the similarity

between the two sets, rather than using accuracy in the traditional sense. But in

the real world, it may be necessary to know how close the predicted set value is from

the actual set value.

We compute E-measure for each prediction using the recall and precision values.

For more on precision and recall, see Chapter 2.

Definitions for recall and precision are as follows:

recall =
True Positives

True Positives + False Negatives

precision =
True Positives

True Positives + False Positives

In [cR79], recall and precision are fused to form a single measure called E-

measure.

E-Measure = 1 −
(β2 + 1) ? precision ? recall

β2 ? precision + recall

The parameter β ranges between 0 and infinity and is used to control the relative

weight given to recall and precision. F-measure is a particular case of E-measure

introduced by [LG94] where β = 1.0. Hence, the F-measure weights precision and

recall equally.

F-Measure = 1 − Eβ=1

A β value of 0.5 will be used if the user is twice as interested in precision as

recall.

We use the E-measure and the F-measure to evaluate the classification of set-

55

valued target attributes. Note that since the E-measure is a measure of error, the

lower the E-measure of a prediction, the better the prediction is. In contrast, the

higher the F-measure value, the better.

5.2.3 Building Classification Models

We generated two types of models:

• models derived from all CARs using a CBA like procedure

• models consisting of all CARs

5.2.3.1 SCBA Algorithm

We modified the CBA algorithm described in Section 3.3.3 to handle set-valued

classification attributes. We call the resulting algorithm Set-valued Classification

Based on Association (SCBA), see Algorithm 6. We recap the CBA algorithm and

point out the modifications we made to use it with set-valued attributes. The CBA

algorithm selects a subset of rules that predicts the training set most accurately.

As explained in Section 5.2.2 the notion of classification accuracy is undefined for

set-valued classification. Our SCBA algorithm uses the E-Measure to evaluate the

accuracy of a prediction. After a rule is added to the classifier C, the classifier’s

performance on the training set is evaluated and quantified in terms of E-Measure.

In line 16, the process of computing the average E-Measure involves using the

training set instances as unlabeled instances and using the classifier to classify each

training instance. If the classifier has n rules in order of 1 . . . n, starting with rule 1,

each rule is applied on the data instances. If a rule fires on an instance, the rule’s

prediction is compared against the instance’s target value and an E-Measure value

is generated. Each instance that is classified by a rule is removed from the instance

56

collection. The process is repeated until there are no more instances to be classified

or rules to classify. The E-Measure value is summed across all classifications and an

average E-Measure value is calculated by dividing the total E-Measure by the total

number of classifications. This Average E-Measure is stored along with the newly

inserted rule in the classifier.

After all the instances have been classified or left unclassified, the rule that

produced the lowest average E-Measure value becomes the last rule in the classifier

and the rest of the rules are removed.

Hence our algorithm selects a subset of rules that produce the lowest E-Measure

value.

Algorithm 6 SCBA Algorithm
Inputs: Instances D, Rules R
Output: Classifier C

1. R = sort(R);
2. for each rule r ∈ R in order do

3. temp = ∅
4. for each instance d ∈ D do

5. if d satisfies the conditions of r then

6. store d.id in temp

7. if consequent of rd 6= then

8. mark r
9. end if

10. end if

11. end for

12. if r is marked then

13. insert r at the end of C
14. delet all the data instances with the ids in temp from D
15. select the default class for the current C
16. compute the Average E-Measure for C and attach it with r
17. end if

18. end for

19. Find the first rule p in C such that Cp = {r1, r2, ..rp} has the lowest Average E-Measure
20. Output Cp

We have made two modifications to the CBA-CB algorithm to be able to classify

set-valued attributes. We mark a rule if the antecedent of the rule is contained in the

57

data instance and if at least one attribute-value pair of the consequent is contained

in the data instance. Instead of computing the accuracy of the classifier, we compute

E-Measure and treat it like accuracy in eliminating all rules that increase E-Measure.

5.2.3.2 All Rules Model

The All Rules Model, as it name states, is a model consisting of all the produced

rules. It is a naive approach and the results of this approach are used to compare

the results of the SCBA approach.

5.2.4 Model Prediction

We described in Section 5.2.3 how to construct association rule models. In this sec-

tion, we describe how we use the models to predict the classification of an unlabeled

instance when the classification target is set-valued.

In Table 5.1, we show a sample model that will be used in explaining the different

approaches that we have developed to predict an unlabeled case. The model consists

of five rules. The attributes shown are Year (movie release year), Award Won

(any prestigious awards such as an Academy Award), DirCountry (movie director’s

country of origin), Print (color or black and white) and genre (set-valued target

attribute). For more information on the attributes, refer to Section 5.3.

Classifier

Year=(1937 - 1944) ⇒ Genre= {classic,family} [C:1.0, S:0.2]

Award won=Academy ⇒ Genre= {drama} [C:0.95, S:0.2]

Year=(≥ 1989)∧ DirCountry=US ∧ Print=col ⇒ Genre={action, drama} [C:0.5, S:0.05]

DirCountry=US ∧ Print=col ⇒ Genre={action, thriller} [C:0.5, S:0.04]

DirBirth=(1926-1935) ⇒ Genre={drama, adventure} [C:0.5, S:0.02]

Table 5.1: Classifier Model. C stands for confidence and S stands for support

Figure 5.2 depicts an instance or case for which the above mentioned classifier

will be used to predict the unknown class label.

58

Year=(≥ 1989)∧ DirCountry =US ∧ Print=col ∧ Award=Academy ∧ Genre= ?

Table 5.2: Instance whose classification will be predicted

5.2.4.1 Single Rule Prediction

Given an unlabeled instance, we gather all the rules that cover the instance ordered

by confidence and support. The rule with the most number of items in the conse-

quent is selected as the rule to classify the instance. We have taken this approach

to predict the class value with a set of values instead of a single value. If we used

the approach of predicting the unlabeled instance with the rule that has the highest

confidence as in the case of traditional associative classification, we are likely to

predict every time with a single value class attribute.

The success of this approach depends on the number of rules that are generated,

the more rules generated, the better the chance that there is a rule with multiple

consequent values with high confidence.

When we try to predict the genre for the unlabeled instance in Table 5.2 using

the classifier, we have rules 2, 3 and 4 predict the instance. Rule 3 has the highest

consequent cardinality and highest confidence from the predicted class and therefore,

the prediction for genre is {action, drama}.

5.2.4.2 Multiple Rule Prediction

In this approach, we collect all the consequents of the rules that cover the test

instance and predict the union of those consequents as the test instance’s class. If

we use multiple rules to predict the case in Table 5.2, we have rules 2, 3 and 4

predict the instance. The union of the set-valued consequents from these three rules

will make the prediction for genre as {action, drama, thriller}.

59

5.3 Experimental Evaluation

We tested the set-valued based classification system using a movie dataset con-

structed by [Kaw03] from three online movie-related databases: Each Movie Database

[McJ97], Movie Lens Database[Gro], and the Stanford Database [Wie]. This movie

dataset consists of 1628 instances. For experimental purposes, we used a 66% split,

where 66% of the instances were used for training and the rest of the instances were

used for testing the classifier.

Parameter Value

Confidence ≥ 50%

Support ≥ 1%

Table 5.3: Experimental Parameters

These are the movie attributes of the dataset:

• Year of Release

• Director’s Name

• Director’s Year of Birth

• Director’s Year of Death

• Director’s Nationality

• Leading Actors’ Names (set-valued attribute)

• Leading Actors’ Roles (set-valued attribute)

• Print Type - Color, BW

• Awards Received - AA, AAN, AFI, BFA, Emmy, Halliwell’s Film Guide, Palm

60

Attribute % Missing Value
Director’s Name 7%

Director’s Year of Birth 53%
Director’s Year of Death 93%
Director’s Nationality 56%

Leading Actors’ Names 55%
Leading Actors’ Roles 89%

Print Type 52%
Awards Received 66%

Genre 3%

Table 5.4: Properties of Movie Dataset

• Movie Genre - action, adventure, animation, children, comedy, crime, drama,

family, fantasy, foreign-art, horror, romance, sci-fi, thriller, war (set-valued

target attribute)

Movie Genre was used as the target or class attribute.

Table 5.4 shows the sparseness of the dataset used in the experiment. We

selected Genre as the classification attribute based on its relatively low missing

value percentage.

In Table 5.5, we show the results for our set-based classification system using

our adaptive minsupport strategy to mine association rules and CBA to build a

classification model on the movie dataset. The parameters that have been included

in the table are as follows:

• Range for Rules - This is an input parameter to the mining algorithm and

the algorithm uses it as a condition to the number of rules generated. More

details on this parameter are given in Chapter 4

• Pred.Mod - mode of Prediction (Single Consequent(SC) or All Consequents(AC))

•]Rules - number of rules produced by the adaptive association rule miner

61

described in Chapter 4

• C] - number of rules in the classifier

• E-M - value for E-Measure 1st Quadrant - 2nd Quadrant - 3rd Quadrant

• Prec - value for Precision 1st Quadrant - 2nd Quadrant - 3rd Quadrant

• Rec - value for Recall 1st Quadrant - 2nd Quadrant - 3rd Quadrant

• Ave E-M - average E-Measure

• Ave Prec - average Precision

• Ave Rec - average Recall

• Uncl - percentage of unclassified instances

Results from Table 5.5 show the 20-30 rules range requirement has produced

lower E-M values than the 500-1000 rules range requirement. Remember that the

lower the E-measure of a prediction, the better the prediction is. We also notice

the number of unclassified instances is significantly high, too high to be conclusive,

in all four results. Given the fact that the classifier made with 20-30 rules range

requirement had just one rule makes the results skewed. It is interesting to note

that there is no difference between the two prediction modes with in a given rule

range requirement. The precision values are high for all the four experiments. The

recall values are 45% and 60%, not as high as precision.

Table 5.6 shows the results for set-based classification using adaptive minsupport

technique and All Rules model on the movie dataset. The parameters are the same

as defined for Table 5.5. With the All Rules (AR) Model, we notice that the

number of unclassified instances is cut down significantly. This is a result of using

62

E-M Prec Rec
Range] Rules C] Pred.Mod

Ave E-M Ave Pr Ave Rec
Uncl

0.33-0.5-0.6 1.0-1.0-1.0 0.25-0.33-0.5
500-1000 403 27 AC

0.45 0.83 0.45
88.89%

0.33-0.5-0.6 1.0-1.0-1.0 0.25-0.33-0.5
500-1000 403 27 SC

0.45 0.83 0.45
88.89%

0.0-0.33-0.6 1.0-1.0-1.0 0.25-0.5-1.0
20-30 26 1 AC

0.32 0.93 0.60
97.41%

0.0-0.33-0.6 1.0-1.0-1.0 0.25-0.5-1.0
20-30 26 1 SC

0.32 0.93 0.60
97.41%

Table 5.5: Adaptive Classification-CBA over the Movie Dataset

all the rules produced in the mining stage. The prediction modes make a difference

in E-M, precision and recall values. When using the All Consequent (AC) mode,

the recall values are better than when using Single Consequent (SC) mode. This is

contrast to precision, which registers low values when using All Consequent (AC)

mode. Average E-M is lower with All Consequents (AC).

E-M Prec Rec
Range] Rules C] Pred.Mod

Ave E-M Ave Pr Ave Rec
Uncl

0.33-0.5-1.0 0.0-0.5-1.0 0.0-0.5-1.0
500-1000 403 403 AC

0.55 0.53 0.45
49.26%

0.33-0.55-1.0 0.0-0.5-1.0 0.0-0.33-0.5
500-1000 403 403 SC

0.6 0.55 0.33
49.26%

0.33-0.6-1.0 0.0-0.75-1.0 0.0-0.75-1.0
20-30 26 26 AC

0.62 0.54 0.32
52.2%

0.33-0.6-1.0 0.0-1.0-1.0 0.0-0.25-0.5
20-30 26 26 SC

0.63 0.56 0.30
52.2%

Table 5.6: Adaptive Classification-AR over the Movie Dataset

In Table 5.7, we show the results for non-adaptive set-based classification, where

all rules with support ≥ 1% were generated. Both CBA and All Rules models were

used to create the classifier. CBA performs much better than AR in comparison,

except for the number of unclassified instances. The precision values are excellent

(91%) in the case of CBA. The Average E-M for CBA is 0.36 , much lower than the

average E-M for AR. In the case of CBA, both modes produce the same results. In

the case of AR, All Consequents (AC) does marginally better than SC, and this is

63

consistent with the previous experiments.

E-M Prec Rec
Model] Rules C] Pred.Mod

Ave E-M Ave Pr Ave Rec
Uncl

0.0-0.33-0.6 1.0-1.0-1.0 0.25-0.33-1.0
CBA 88 4 AC

0.36 0.91 0.54
95.74%

0.0-0.33-0.6 1.0-1.0-1.0 0.25-0.33-1.0
CBA 88 4 SC

0.36 0.91 0.54
95.74%

0.33-0.5-1.0 0.0-0.5-1.0 0.0-0.33-0.5
AR 88 88 AC

0.59 0.54 0.36
49.63%

0.33-0.6-1.0 0.0-1.0-1.0 0.0-0.25-0.5
AR 88 88 SC

0.63 0.54 0.29
49.63%

Table 5.7: Non-Adaptive Classification using CBA and AR over the Movie Dataset

5.4 Further Experiments

We carried further experiments with the Motif Dataset gathered by [Tha06]. The

Motif Dataset is derived from 85 promoter regions from C. elegans model organism.

The dataset consists of two attributes, motifs and expression, both are set-valued.

Each instance in the dataset corresponds to a gene. The gene’s value of the motif

attribute consists of the set of motifs (candidate binding sites) that appear in the

promoter region of the gene; and the gene’s value of the expression attribute consists

of the set of cell types where the gene is expressed (i.e., transformed into protein).

Table 5.8 gives the results for set-value based classification on the motif dataset.

The original dataset consisted of 85 instances. 66% of the data was for model build-

ing and the rest of the data was used for model testing. The expression attribute is

used as the target of the classification. The parameters used to constraint the rules

were: support 15% and confidence 50%.

Using All Rules (AR) Model, we are able to classify all the instances, while the

CBA models fails to classify 35% of the instances. Overall, CBA produces lower

E-M values which is mainly contributed by the high precision values relative to those

64

produced by AR. We notice a significant difference between the precision values in

these experiments between the two models. AR producers higher recall values than

CBA.

E-M Prec Rec
Model] Rules C] Pred.Mod

Ave E-M Ave Pr Ave Rec
Uncl

0.33-0.55-0.71 0.0-0.5-0.5 0.0-0.5-1.0
CBA 15413 22 SC

0.55 0.44 0.50
35.71%

0.33-0.55-0.71 0.0-0.5-0.5 0.0-0.5-1.0
CBA 15413 22 AC

0.55 0.44 0.50
35.71%

0.55-0.71-0.75 0.14-0.17-0.28 0.5-1.0-1.0
AR 15413 15413 SC

0.65 0.26 0.76
0.0%

0.55-0.71-0.75 0.14-0.17-0.28 0.5-1.0-1.0
AR 15413 15413 AC

0.65 0.26 0.76
0.0%

Table 5.8: Set-Valued Based Classification of Motifs

65

Chapter 6

Conclusions and Future work

6.1 Itemset Pruning

We developed a technique to incorporate user-defined input constraints during the

mining of association rules. We considered two types of constraints namely seman-

tic and synctatic. Semantic constraints require the presence/absence of particular

itemsets in the rules; while synctatic constraints limit the number of attribute-value

pairs in either the antecedent or the consequent of a rule. We developed a char-

acterization of those itemsets that will potentially form rules that satisfy the given

constraints. This characterization allows us to filter out from consideration all the

itemsets such that neither they nor any of their supersets will form valid rules.

Our results show that using itemset pruning in the presence of constraints de-

creases the number of resulting maximal itemsets and also improves the time taken

for the process of itemset mining. However, in our current implementation the over-

all mining time (i.e., the itemset mining time plus the rule construction time) may

take longer than the overall mining time when non-itemset pruning is used. This

happens when the pruning process throws away too many itemsets that will be re-

66

quired later in the rule generation stage to calculate confidence of a rule. Further

work should be done in this area to improve the rule construction process so that

the rule generation time does not overshadow the time savings obtained by itemset

pruning during itemset generation.

6.2 Classification Models

We developed a classification system that is based on association rule mining in the

WEKA environment. We implemented the CBA model building algorithm [LHM98]

and compared the performance of CBA with All Rules Model (ARM) where all

the mined rules are part of the model. We developed multiple modes to predict

an unclassified instance such as single rule or multiple rule prediction weighed by

confidence/support.

6.2.1 Single-Valued

We studied building an association rule based classifier and particularly tested and

evaluated the CBA classifier [LHM98] with different prediction modes. Our results

show that ARM performs as well as CBA if not better using the single prediction

mode. Multiple rule prediction results in lowered accuracy leading to the conclusion

that using many rules is likely to introduce noise that affects accuracy significantly.

In some cases, the J4.8 classifier exceeds the performance of both CBA and ARM,

especially on datasets that contain numeric attributes. This is expected however, as

J4.8 has the ability to handle numeric attributes directly, in contrast with association

rules.

67

6.2.2 Set-Valued

We enhanced the classification system to handle the prediction of set-valued class

attributes. We developed two modes, single consequent and all consequent to use

in predicting the set-valued class attribute. In single consequent, we use the rule

with the most number of items in the consequent that classifies a given instance.

While in all consequent, we merge the consequents from all the rules that classify a

given instance. We adopted E-Measure to compare the predicted set-value against

the expected set-value and quantify the prediction.

In comparison of performance of CBA and ARM over the movie dataset, CBA

produces lower E-measure values than ARM. However, the results can be deemed

inconclusive because of the high number of unclassified instances in the case of CBA.

In the case of ARM, the prediction mode All Consequents (AC) produces lower E-

measure values; while with CBA, there is no difference between the two modes. The

results with the motif dataset are far more acceptable in terms of the percentage

of unclassified instances. Again, CBA produces lower E-measure values with higher

number of unclassified instances.

Further work should be done to reduce the number of unclassified instances.

When using associative classification to produce an accurate model, we require a

large number of rules be generated. We think this problem can be solved if we

can mine itemsets for each class label separately, thereby setting different minimum

supports for the classes. This should ensure the presence of a good number of strong

rules for each class label.

68

6.3 Adaptive Minimal Support

We modified the association rule mining algorithm to produce rules within a range

[Rmin, Rmax] given by user input. In this pursuit, we heuristically determined a

starting minimum support and adjusted the minimum support using a binary search

strategy until we obtained a number of rules within the given range.

Using this adaptive minimum support strategy, we were able to generate rules

in the range [Rmin, Rmax] consistently. We encountered many cases where the time

taken with the binary search approach is greater than the time taken with a linear

approach. It is likely that this has happened because our heuristic function to select

an initial minimal support produced values that were too high. Further work should

be done in determining a starting support that will be closer to the actual support

that produces the number of rules desired.

69

Bibliography

[AIS93] Rakesh Agrawal, Tomasz Imirlinksi, and Arun Swami. Mining association

rules between sets of items in large databases. In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data, pages 207–216,

1993.

[Alv02] Sergio A. Alvarez. Binary search strategy for adaptive minimal support. Per-

sonal Communication, 2002.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-

ciation rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors,

Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan

Kaufmann, 12–15 September 1994.

[CAM04] Michelangelo Ceci, Annalisa Appice, and Donato Malerba. Spatial associative

classification at different levels of granularity: A probabilistic approach. In

PKDD, pages 99–111, 2004.

[Coh96] William W. Cohen. Learning trees and rules with set-valued features. In

Proceedings of the Thirteenth National Conference on Artificial Intelligence

and the Eighth Innovative Applications of Artificial Intelligence Conference,

pages 709–716, Menlo Park, August 4–8 1996. AAAI Press / MIT Press.

[cR79] C. J. can Rijsbergen. Information retrieval. Butterworths, 1979.

70

[CYZH05] Jian Chen, Jian Yin, Jun Zhang, and Jin Huang. Associative classification in

text categorization. In ICIC (1), pages 1035–1044, 2005.

[FW00] Eibe Frank and Ian H. Witten. Data Mining. Morgan Kaufmann Publishers,

2000.

[Gro] GroupLens Dataset. Grouplens research project.

http://www.cs.umn.edu/Research/GroupLens. Department of Computer

Science and Engineering. Univ. of Minnesota.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without can-

didate generation. SIGMOD Record (ACM Special Interest Group on Manage-

ment of Data), 29(2):1–?, 2000.

[Kaw03] Takeshi Kawato. Multi-expert neural networks for recommendation. Under-

graduate Graduation Project (MQP). Worcester Polytechnic Institute, April

2003.

[KPSB00] Dennis Kibler, Michael J. Pazzani, Padhraic Smyth, and Stephen D. Bay. The

UCI KDD archive of large data sets for data mining research and experimen-

tation, December 30 2000.

[LAR02] W. Lin, S.A. Alvarez, and C. Ruiz. Efficient adaptive–support association

rule mining for recommender systems. Data Mining and Knowledge Discovery,

6(1):83–105, January 2002.

[LG94] David D. Lewis and William A. Gale. A sequential algorithm for training

text classifiers. In W. Bruce Croft and Cornelis J. van Rijsbergen, editors,

Proceedings of SIGIR-94, 17th ACM International Conference on Research and

Development in Information Retrieval, pages 3–12, Dublin, IE, 1994. Springer

Verlag, Heidelberg, DE.

71

[LHM98] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and associa-

tion rule mining. In Knowledge Discovery and Data Mining Integrating, pages

80–86, 1998.

[LHP01] Wenmin Li, Jiawei Han, and Jian Pei. CMAR: Accurate and efficient classifi-

cation based on multiple class-association rules. In Nick Cercone, Tsau Young

Lin, and Xindong Wu, editors, ICDM, pages 369–376. IEEE Computer Society,

2001.

[McJ97] P. McJones. Eachmovie collaborative filtering data set.

http://www.research.compaq.com/SRC/eachmovie, 1997. Compaq Sys-

tems Research Center.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[Pra04] K. Pray. Mining association rules from time sequence attributes. Master’s

thesis, Department of Computer Science, Worcester Polytechnic Institute, May

2004.

[Qui93] J. Ross Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann

Publishers, 1993.

[SHM98] C.L. Blake S. Hettich and C.J. Merz. UCI repository of machine learning

databases, 1998.

[Sho01] Christopher A. Shoemaker. Mining association rules from set-valued data.

Technical report, Worcester Polytechnic Institute, May 2001.

[SR03] Christopher A. Shoemaker and Carolina Ruiz. Association rule mining algo-

rithms for set-valued data. In Jiming Liu, Yiu ming Cheung, and Hujun Yin,

editors, IDEAL, volume 2690 of Lecture Notes in Computer Science, pages

669–676. Springer, 2003.

72

[SS02] Zachary Stoecker-Sylvia. Merging the association rule mining modules of the

weka and arminer data mining systems. Undergraduate Graduation Project

(MQP). Worcester Polytechnic Institute, April 2002.

[SVA97a] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association

rules with item constraints. In David Heckerman, Heikki Mannila, Daryl Preg-

ibon, and Ramasamy Uthurusamy, editors, Proc. 3rd Int. Conf. Knowledge

Discovery and Data Mining, KDD, pages 67–73. AAAI Press, 14–17 August

1997.

[SVA97b] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association

rules with item constraints. In David Heckerman, Heikki Mannila, Daryl Preg-

ibon, and Ramasamy Uthurusamy, editors, Proc. 3rd Int. Conf. Knowledge

Discovery and Data Mining, KDD, pages 67–73. AAAI Press, 14–17 August

1997.

[Tha06] D. Thakkar. Distance-based sequential data mining for genetic data. Mas-

ter’s thesis, Department of Computer Science, Worcester Polytechnic Institute,

2006. In progress.

[Wie] G. Wiederhold. Stanford movie database. http://www-

db.stanford.edu/pub/movies/doc.html.

[YL05] Yongwook Yoon and Gary Geunbae Lee. Practical application of associative

classifier for document classification. In AIRS, pages 467–478, 2005.

[YLW01] Qiang Yang, Tianyi Li, and Ke Wang. Building association-rule based sequen-

tial classifiers for web-document prediction. Technical report, Simon Fraser

University, School of Computing Science, 2001.

73

[ZAC02] Osmar R. Zaiane, Maria-Luiza Antonie, and Alexandru Coman. Mammogra-

phy classification by an association rule-based classifier. International Work-

shop on Multimedia Data Mining, 2002.

74

	Worcester Polytechnic Institute
	Digital WPI
	2006-05-03

	Association Rule Based Classification
	Senthil Kumar Palanisamy
	Repository Citation

	tmp.1530275769.pdf.ox8c8

