
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2015-08-26

Lightweight Cryptography Meets Threshold
Implementation: A Case Study for SIMON
Aria Shahverdi
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Shahverdi, Aria, "Lightweight Cryptography Meets Threshold Implementation: A Case Study for SIMON" (2015). Masters Theses (All
Theses, All Years). 985.
https://digitalcommons.wpi.edu/etd-theses/985

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/985?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Lightweight Cryptography Meets Threshold
Implementation: A Case Study for Simon

by

Aria Shahverdi

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

August 2015

APPROVED:

Professor Thomas Eisenbarth Professor Berk Sunar
Major Advisor Thesis Committee

Professor Mostafa Taha Professor Yehia Massoud
Thesis Committee Department Head

Abstract

Securing data transmission has always been a challenge. While many crypto-

graphic algorithms are available to solve the problem, many applications have tough

area constraints while requiring high-level security. Lightweight cryptography aims

at achieving high-level security with the benefit of being low cost.

Since the late nineties and with the discovery of side channel attacks the approach

towards cryptography has changed quite significantly. An attacker who can get close

to a device can extract sensitive data by monitoring side channels such as power

consumption, sound, or electromagnetic emanation. This means that embedded

implementations of cryptographic schemes require protection against such attacks

to achieve the desired level of security.

In this work we combine a low-cost embedded cipher, Simon, with a state-

of-the-art side channel countermeasure called Threshold Implementation (TI). We

show that TI is a great match for lightweight cryptographic ciphers, especially for

hardware implementation. Our implementation is the smallest TI of a block-cipher

on an FPGA. This implementation utilizes 96 slices of a low-cost Spartan-3 FPGA

and 55 slices a modern Kintex-7 FPGA. Moreover, we present a higher order TI

which is resistant against second order attacks. This implementation utilizes 163

slices of a Spartan-3 FPGA and 95 slices of a Kintex-7 FPGA. We also present a

state of the art leakage analysis and, by applying it to the designs, show that the

implementations achieve the expected security. The implementations even feature

a significant robustness to higher order attacks, where several million observations

are needed to detect leakage.

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Thomas Eisen-

barth, for his guidance, patience and advice during my research. I also want to

thank him for providing such an excellent atmosphere for doing research. His pa-

tience and support made it easy to overcome the problems I faced throughout my

research. It was an honor to be able to work with him in the past two years.

I also want to thank Prof. Mostafa Taha for his help during this research. His

expertise in this field was invaluable. I would like to thank my thesis committee,

Prof. Berk Sunar, for his valuable suggestions and comments on my thesis.

I would like to thank Gorka Irazoqui Apecechea, Berk Gulmezoglu, Xin Ye, Wei

Dai, Michael Moukarzel, Marc Green, Yarkin Doroz, Gizem Selcan Cetin, Mehmet

Sinan Inci and Cong Chen for creating such a great atmosphere in Vernam Group.

Last but not least, I would like to thank my father Farhad, my mother Homa and

my sister Bahar. They have provided me with support and encouragement during

my graduate studies at Worcester Polytechnic Institute.

This material is in part based upon work supported by the National Science

Foundation under Grant No. 1261399.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Our Contribution . 4

1.3 Outline of the work . 4

2 Background 5

2.1 Side-Channel Attack . 6

2.1.1 Simple Power Analysis . 7

2.1.2 Differential Power Analysis . 9

2.2 Side-Channel Countermeasures . 14

2.2.1 Hiding . 14

2.2.2 Masking . 15

2.3 Simon . 18

2.3.1 Round Function . 20

2.3.2 Key Schedule . 20

3 Glitch-Free Implementations 24

3.1 Threshold Implementation . 24

3.1.1 Correctness . 25

3.1.2 Non-completeness . 26

ii

3.1.3 Uniformity . 29

4 Design Methodology 32

4.1 Bit-Serial Architecture of SIMON . 32

4.1.1 Round Function . 34

4.1.2 Key Schedule . 36

4.2 Loop Unrolling . 37

4.3 Threshold Implementation of SIMON 37

4.3.1 Simon with Two Shares . 38

4.3.2 Simon with Three Shares . 39

4.3.3 Parallel Simon . 40

4.3.4 Serial Simon . 41

4.4 Higher-Order Threshold Implementation of Simon 43

4.5 Implementation Results . 46

5 Analysis 53

5.1 Practical Attacks . 54

5.1.1 Attack Against Loop Unrolling 54

5.1.2 Attack Against Unprotected Core 57

5.2 Leakage Detection . 61

6 Conclusion 68

iii

List of Figures

2.1 New Way of Looking at Cryptography 6

2.2 Power Measurement Setup . 7

2.3 Power Consumption of an RSA algorithm 8

2.4 AES Power Consumption . 9

2.5 DPA model . 10

2.6 DPA analysis of AES . 11

2.7 Result of correlation-based DPA attack on first round of AES 13

2.8 Effect of different power model on correlation value 13

2.9 Masked AND gate . 18

2.10 Simon round function . 21

2.11 Simon key schedule (2 and 3 blocks) 21

2.12 Simon key schedule (4 blocks) . 23

3.1 Simple function . 25

3.2 Simple function broken into shares 26

3.3 Distribution of output shares (3 shares) 28

3.4 Distribution of output shares (3 shares with added randomness) . . . 29

3.5 Distribution of output shares (4 shares) 30

4.1 Data-path of the Simon cipher . 34

iv

4.2 Data flow in even rounds of Simon 35

4.3 Data flow in odd rounds of Simon 36

4.4 Key schedule of the Simon cipher . 37

4.5 Architecture of parallel Simon . 42

4.6 Architecture of Serial Simon . 43

5.1 Attacks against loop unrolling . 57

5.2 Attack against the unprotected core 60

5.3 Attack against the threshold implementation core 60

5.4 Results of leakage detection for unprotected core 63

5.5 Results of leakage detection for threshold implementation core 63

5.6 Leakage detection result for threshold implementation core 65

5.7 Leakage detection result for higher order threshold implementation

core . 66

5.8 Progress of t-test value . 67

v

List of Tables

2.1 Parameters for Simon . 19

4.1 Implementation result on Spartan-3 48

4.2 Implementation result on Kintex-7 49

4.3 Implementation result on FPGA . 50

4.4 Implementation result for ASIC . 51

4.5 Implementation result on ASIC . 52

vi

Chapter 1

Introduction

1.1 Motivation

In the past couple of years we have seen numerous small devices got connected

to each other. Some of these devices are not considered to be critical in terms of

security such as light bulb, smart TV and toaster while the others can be critical

such as heart monitoring implants. Based on the application of these devices some

minimum requirement is needed in term of transmitting data securely to servers or

within devices.

The solution for transmitting data securely has been studied for a long time

and cryptography provide us the secure channel. These algorithms work fine if

we assume that the adversary has access only to the data channel. This is not

the case anymore when we talk about small devices which can be found anywhere.

The modern adversary can get close to the device, measure the electromagnetic

emanation of the device. In some cases, an adversary has physical access to the

device and can even connects a wire to that.

Once these assumptions are taken into account those secure algorithms are not

1

secure anymore. An adversary with physical access to the device has the ability

to do the most dangerous type of attacks. Considering these adversaries, having

an implementation of the cryptographic algorithm is not enough and some type of

mitigation against physical attack needs to be applied.

As soon as power analysis attacks were discovered by Kocher et al. in [KJJ99],

effort has been made to propose ways in order to protect the implementation. One

of the first contribution was done by Chari et al. in [CJRR99]. In this work the

author first discusses the behavior of a device and how a device consumes power in

general way. They looked at the CMOS devices and assume that the main source of

power consumption is transition to other states and maintaining the current state

does not need much power. Based on this assumption and also the need for making

the intermediate value independent of key, they introduced splitting the state into

several parts by using some random numbers. This division is done in a way that

combining all the shares will recover the original value and combining all except one

will not reveal any information.

One of the practical implementation using this scheme is done by Akkar et

al. [AG01] for both AES and DES. Later, Oswald et al. [OMPR05] presented a way

to mask the AES S-Box. As it was shown in [MPO05], these two implementations

are vulnerable to more sophisticated attacks. Mangard et el. first show that by

using Hamming weight as a power model they can not successfully recover the key

from the protected design. However, they used the simulation to obtain a new power

model which is basically toggle count for a specific output. They used the mean of

the transition count as their power model and they showed that by doing so, the

implementation is prone to practical attacks. This model works because the delay

in the input of logical gates are not the same for each input. As a result of these

differences in arrival time the output of a circuit will toggle couple of times before

2

it reaches the final result. In a separate work, Mangard et al. [MPG05] show that

the power consumption of a device is correlated to unmasked value in the presence

of glitches.

One of the first efforts to counteract glitches is done by Fischer et al. in [FG05].

The first working solution, on the other hand, is proposed by Nikova et al. in [NRR06].

The idea is based on the secret sharing and it is called Threshold Implementation.

One of the interesting feature of their scheme is the need of randomness only in the

starting point of the algorithm and there is no need for fresh randomness after that.

We are going to introduce this scheme in more details in Section 3.

There are several works published based on the idea of threshold implementation.

Kutzner et al. in [KNP12] shows the implementation of 4-bit S-Boxes using 3 shares.

Another work by Moradi et al. [MPL+11] tries to implement the well-known cipher,

namely AES in a small area. It was shown that the threshold version of AES can be

implemented by using approximately 11000 GE. Bilgin et al. in [BGN+14a] improve

the result even more and implemented threshold implementation of AES using 9000

GE.

Recent works focus on the higher-order threshold implementation. For example,

Bilgin et al. in [BGN+14b] discussed the theory of higher-order threshold imple-

mentation as well as practical implementation. They also presented the resistance

of their core by analyzing 300 million traces and showed that there is no leakage in

those traces.

In this work, to analyze an implementation for leakage, a new methodology will

be used which was proposed by Goodwill et al. in [GJJR11]. This leakage detection

method can be used to observe whether the device leaks or not. An enhancement

to this method is published by Becker et al. in [BCD+13].

3

1.2 Our Contribution

In this work, we chose Simon as a cryptographic algorithm due to its small area

overhead. We focused on one of the existing solution, i.e. threshold implementa-

tion, against an attacker with physical access to the device. We first investigate the

vulnerability of unprotected Simon by presenting an actual attack as well as using

leakage detection methods. As a method for securing Simon against side-channel

attacks, a first order threshold implementation for Simon is proposed and its re-

sistance is also shown by leakage detection method [STE15]. The equation for a

core resistant against second order attacks is also proposed and its efficiency is also

shown by leakage detection method based on actual power traces.

1.3 Outline of the work

In Chapter 2 we start by introducing the background on attacks and ways of pro-

tecting against them. In the same chapter we present a lightweight cipher, namely

Simon in more detail. Then we introduce a mitigation method in Chapter 3. The

protected version of Simon is introduced in Chapter 4. We present our analysis in

Chapter 5 and conclude the work in Chapter 6.

4

Chapter 2

Background

Until around late nineties, the focus of research in cryptography was on proving

that only by observing plaintexts and ciphertexts the key being used by the system

will not be revealed. There has been some interests in breaking the cryptographic

schemes by using some novel ideas such as inducing an error [BDL97] or measuring

the computation time [Koc96]. The seminal work by Kocher et al. [KJJ99] was

among these efforts which shows that by observing the amount of power the device

uses during encryption, useful information can be extracted from the device, such

as when a certain operation is being done. From now on these types of observation

which leads to extraction of useful data are called leakage.

The most important information is the one that depends both on the plaintext

and the key being processed. Using this information can result in obtaining the

key. In order to protect the algorithm against these types of attacks numerous

countermeasures have been proposed. In this section we take a look at how the

attacks work and ways of protecting the device against them.

5

Crypto CorePlaintext Ciphertext

Leakage

Figure 2.1: New Way of Looking at Cryptography

2.1 Side-Channel Attack

As it was stated, the leakage can help the attacker to extract useful information

about the data being processed. As it can be seen in Figure 2.1, the attacker who

has access to the device can simply send his desired plaintext to it.

Then the cryptographic algorithm, which is shown by Crypto Core in the Fig-

ure 2.1, returns the ciphertext by using the plaintext as an input and key as its

secret internal value. The attacker has access to ciphertext and by having physi-

cal access to device he can also perform additional measurement in order to figure

out how the device acts during the run time of the cryptographic algorithm. As it

is also shown in Figure 2.1, there are different kinds of measurement that can be

performed such as measuring the computation time and electromagnetic emanation.

Power consumption is also one type of observation and throughout this thesis we

are going to focus on it as a source of leakage.

As it can be seen in Figure 2.2, resistor R is placed in the route of V CC to

GND. The amount of power that Crypto Device consumes will result in changes of

current going through the device. By simply measuring the voltage Vo and dividing

that value by R that current can be calculated. The power consumption of a device

can be formulated as follows:

6

R

Crypto
Device

Vcc

GND

Vo

Power
Consumtion

Figure 2.2: Power Measurement Setup

Power[Crypto Device] = V cc× Vo
R

(2.1)

The Equation 2.1 shows that the power consumption of a device depends directly

on the Vo. The common setup for measuring power is as it is shown in Figure 2.2.

The oscilloscope (which from now on we refer to it as a scope) records the value of

Vo and we treat that value as a power consumption of a device.

There are two main types of attacks that can be done based on this power

consumption. In the rest of this section we look at both of them.

2.1.1 Simple Power Analysis

In this type of attack it is assumed that the adversary has access to only one measure-

ment or a few measurements. As it is crucial to know exactly what is happening in

each time instance, in order for an attack to be successful, the attacker should know

the details of the implementation. As and example for this type of attack we look

7

0 1000 2000 3000 4000 5000
10

11

12

13

14

15

16

17

18

Sample Point
P

ow
er

 C
on

su
m

pt
io

n

Figure 2.3: Power Consumption of an RSA algorithm

at an algorithm which performs RSA. Figure 2.3 represents the power consumption

of a device which computes an RSA exponentiation using the square-and-multiply

algorithm after filtering noises based on the work by Do et al. [DKH+13]. The

square-and-multiply algorithm performs squaring operation in each steps but mul-

tiplication is only performed when the bit in the exponent is equal to a one bit.

As it can be seen in the figure, the peaks with smaller amplitude happen all the

time. The larger peaks, on the other hand, only happens at some points. From

this observation we can assign the power trace to the exponent. In the points where

only one pick (smaller peaks) happens the bit in the exponent is 0. The other points

which have both smaller and larger peaks can be corresponded to bit 1.

This attack works in this case because the implementation was completely known

to us. This is not always the case.

The power consumption of the first round of AES can be seen in Figure 2.4.

Although the AES algorithm is fully known to us, recovering the key from this

figure, just by looking at it, is not a trivial task.

In the next subsection we introduce Differential Power Analysis (DPA) which

can recover the key even in the scenarios where the details of implementation are

not known to us.

8

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

Sample Point
P

ow
er

Figure 2.4: AES Power Consumption

2.1.2 Differential Power Analysis

In this type of attack the adversary does not use the details of the implementation.

For attacking a device using DPA, large number of traces should be recorded. In

contrast to SPA where we look at one trace over time, in a DPA attack statistical

methods will be used to perform the attack. Figure 2.5 shows the steps to perform

DPA attack, we introduce them in the following.

Choosing A Point to Attack DPA attacks can recover the key. The interme-

diate variable that is chosen should depend on a known value (X) and an

unknown key (K). We focus on the AES algorithm in this example. As it can

be seen in Figure 2.6, the chosen point is the output of S-Box layer.

Z = S− Box(Y) = S− Box(X ⊕K)

Measurement The next step is to run the cryptographic algorithm for a large

number of known plaintexts. In our case we call them d = (d1, d2, . . . , dD).

The Crypto Device will perform encryption on this plaintexts and using the

scope we record the power consumption during this process. The number of

samples in each trace is denoted by T . The samples measured for encryption

9

d1

d2

dD

s1,1

s2,1

sD,1

s1,2

s2,2

sD,2

s1,T

s2,T

sD,T

k1 k2 kK

Crypto
Algorithm

v1,1

v2,1

vD,1

v1,2

v2,2

vD,2

v1,K

v2,K

vD,K

h1,1

h2,1

hD,1

h1,2

h2,2

hD,2

h1,K

h2,K

hD,K

r1,1

r2,1

rK,1

r1,2

r2,2

rK,2

r1,T

r2,T

rK,T

Power
Model

Crypto
Device

Statistical
Analysis

Scope

Figure 2.5: DPA model

10

X

S-Box

Z

K
Y

Figure 2.6: DPA analysis of AES

di is denoted by si The measured power consumption for input di is then

si = (si,1, si,2, . . . , si,T).

Simulation In this step we build a matrix based on known input di and key hy-

pothesis kj. Each element of this matrix which is called V is denoted by vi,j

and the equation for obtaining each element is

vi,j = S− Box(di ⊕ kj)

In the real measurement since the key value is fixed, only one column of matrix

V will be recorded. As a result of DPA attack the correct key will be found.

Modeling the Power Consumption Everything up to now was performed either

using simulation or by measuring the actual power consumption, in this step we

try to establish a link between them. The elements of matrix V represents the

value of the intermediate step of the algorithm. In this step, information about

the device is needed to estimate the power consumption of the device based

on these intermediate values. Among the accepted models Hamming distance

and Hamming weight, Least Significant Bit and Most Significant Bit

11

can be used. The Hamming distance model is based on how many bits tran-

sition occur from one state to another, while the Hamming weight model just

look at the result and does not care about the transition. In the LSB and

MSB model only the right most and left most bit will take into account, re-

spectively. The elements of this hypothesis matrix H is denoted by hi,j and

they can be derived from vi,j as following

hi,j = Model(vi,j)

As it was mentioned the most common Model functions are Hamming distance,

Hamming weight and LSB or MSB of a register. Based on how accurate this

Model function represents the true behavior of the device, the quality of DPA

attack will differ.

Comparing the Hypothesis Matrix with Actual Traces In this step a statis-

tical tool such as correlation is needed. The goal of this step is twofold. The

first result of doing the comparison will give some information on when the

chosen point is being processed. The second outcome is giving some informa-

tion on the actual key that was used in the Crypto Device.

Here we see an example of a DPA attack on the AES algorithm. The chosen point

is the output of the first S-Box in the first level of AES. The number of traces that

have been recorded is equal to 500 (D = 500), and each trace contains 30,000 points

(T = 30, 000). The matrices V and H are computed by computing the intermediate

result and modeling that intermediate result to hypothesis matrix by using Hamming

weight as power model. The result of correlation-based DPA attack can be seen in

Figure 2.7.

The black trace shows the correct key hypothesis and the rest of them are the

wrong hypothesis. As it can be seen for the correct key, the peaks show the time

12

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample Point
C

or
re

la
tio

n

Figure 2.7: Result of correlation-based DPA attack on first round of AES

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample Point

(2B, 6.939441e−01)

(a) HW as power model

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample Point

(2B, 3.410200e−01)

(b) MSB as power model

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Sample Point

(2B, 2.943305e−01)

(c) LSB as power model

Figure 2.8: Effect of different power model on correlation value

where the chosen point (in this case, the output of S-Box) is being processed. The

correct key in the figure can be distinguished from the wrong ones, which means

that the chosen power model was successful to describe the real power consumption

of the device.

Figure 2.8 represents the result of DPA attack on the first S-Box by using different

power model. As it can be seen the maximum value of correlation occurred in

Figure 2.8a. This means the Crypto Device that has been attacked is probably

leaking in a way that is close to Hamming weight model.

In the following we are going to look at some countermeasures that, to some

extent, can prevent these type of attacks.

13

2.2 Side-Channel Countermeasures

As it was shown in the previous section, the attacks that are based on power analysis

can extract the key from the side-channel leakages. The main reason that those

attacks were successful was because of the fact that the power consumption depends

one the intermediate value being processed. Countermeasures break this link. Since

the introduction of such attacks, countermeasures to prevent them have started to

developed [CJRR99, AG01]. In this section two of those countermeasures have been

discussed.

2.2.1 Hiding

The goal of hiding is to make the power consumption of a device independent of

the intermediate value. Hiding is implemented either through time or the amplitude

domain.

The algorithm can randomly change the time allotted to complete the operation.

This can be done by adding some random delay between two consecutive operations

or change the order of the operations. By adding the random delay to the algorithm,

the time instance where the leakage occurs will change. The attacker can try all

different possible time instances and perform the attack for all of them. The order of

some independent operations can be changed, e.g. S-Box look-up. By changing the

order (also known as shuffling) the attack will become harder but not impossible.

There are other ways to hide the power consumption which modify the amplitude.

In hardware, a natural way to achieve this is to perform several operations in

parallel. Another way is to add a separate unit to the circuit to generate additional

noise.

Another way to perform hiding is to design a circuit which consumes same

14

amount of power all the time. The idea is to add a parallel logic to the circuit

which processes the complement of the original data. If all the operands can be re-

alized using this encoding the circuit will consume constant power all the time. One

of the recent work is done by Cong et al. [CESY14]. In their paper they proposed to

use a special encoding for data that keeps the complement value of the data inside

the encoded value. They showed that by using this scheme they can reduce the

correlation coefficient of the DPA attack.

All the countermeasures proposed in this section will make the attack harder but

an adversary can break the algorithm with sufficiently many traces.

2.2.2 Masking

Another class of countermeasures is masking, which processes completely random

values, created from the original values by adding random masks, during the al-

gorithm and at the end combines them in a way that the correct result can be

recovered [CJRR99].

Lets assume the secret value is x and some random number m is also available.

From now on m will be called mask value. Masking can be applied both at the gate

level and at the algorithm level. Gate level masking is more generic and can be

applied to every new algorithm. On the other hand, the algorithmic level masking

needs to be redesigned for new ciphers. In this work we focus on masking schemes

that will be applied at the algorithm level.

There are two types of masking schemes, arithmetic masking and Boolean mask-

ing. In arithmetic masking the operation to create the random value is performed by

doing either modular addition or modular multiplication. In this work, the indepen-

dent values are obtained by XORing the secret with random mask which is a Boolean

masking. The circuit will process x⊕m and m in parallel and independently. At the

15

end the result of both circuit will be combined. The masking scheme can combine

the original data and the mask in different ways such as addition, multiplication

and modular addition (such as XOR). In the following we discuss how the masking

based on addition modulo two (XOR) works.

Lets assume that the data to be processed is x and y and the masks generated

for them are mx and my, respectively. Secret value x and y will be divided into two

shares as follows

x will become {xm,mx} xm = x⊕mx

y will become {ym,my} ym = y ⊕my

The different types of operation can be realized as following.

Linear Operation For performing such an operation, it is enough to do the same

computation on each share separately. Lets assume the linear operation is L

L(x) = L(xm ⊕mx) = L(xm)⊕ L(mx)

L(x, y) = L(xm ⊕mx, ym ⊕my) = L(xm, ym)⊕ L(mx,my)

From the above equations it is shown that the operation can be done on each

share separately and the final result of the operation is XOR of the result of

each share.

Non-linear Operation The only non-linear operation in modulo 2 is AND and the

steps to perform the masked version of AND is as follows which is based on the

16

work by Trichina et al. [TKL05].

NL(x, y) = x⊗ y = (xm ⊕mx)⊗ (ym ⊕my)

= (xm ⊗ ym)⊕ (xm ⊗my)⊕ (mx ⊗ ym)⊕ (mx ⊗my)

In order to use the result of the multiplication in the next stage of the circuit

a mask should be added to the above equation. We denote this mask with mz

and then the output masking of the multiplication becomes

z will become {zm,mz} zm = (x⊗ y)⊕mz

Figure 2.9 shows the implementation of such a circuit.

The masking algorithm explained above works under one condition and that is the

necessity that all the input to the circuit arrives at exactly the same time. In

hardware ensuring such a condition is not possible. Every input to the masked AND

comes from different part of the circuit and the delay of each path is different. Even

if we assume that all inputs are coming at the same time, there might be some delay

added by the circuits inside the gates.

The different arrival time for the circuit causes the output to toggle a couple of

times before reaching the final result. This effect is called glitches. Mangard et al.

in [MPG05] showed that a masked implementation of AND gate is not secure against

DPA attacks. In another work, Mangard et al. [MPO05] successfully attacked the

masked version of AES. They built a power model based on the simulation of back-

annotated netlist of their design. The power model was obtained by counting the

number of transition in the simulation also known as toggle count model. The

number of transition depends on the input of the circuit, even if the input is masked.

17

mX

mY

mX

Ym
Xm

mY

Xm

Ym

mz

YmYm
Z

Figure 2.9: Masked AND gate

Finally, they showed the possibility of attacking the masked version of AES in the

presence of glitches. This type of attacks motivates us to look at the other masking

schemes which can withstand glitches. This type of countermeasures is introduced

in Section 3.

2.3 Simon

Classical ciphers were designed with having the confidentiality of the plaintext given

only the ciphertext in mind. Recently some small ciphers, also known as lightweight

cryptographic ciphers, have been proposed for embedded systems. These lightweight

solutions were designed for environments where the area is a limitation. Simon and

Speck are two ciphers that have been recently proposed by NSA [BSS+13, BSS+15]

and it is shown that their implementation is low-cost. These two lightweight ciphers

accepts different types of plaintext and key as an input. The block size can be 32,

48, 64, 96 and 128 bits. For each input size, they have a set of allowable key sizes

ranging from 64 bits to 256 bits. In this chapter we look at Simon in more detail.

18

Simon is designed to be efficient in hardware. Simon will be denoted as Si-

mon2n/mn in which 2n shows the size of input block and mn is the size of key.

For performing key schedule the input key will be divided into m blocks of size n

bits each. For example Simon96/144 denotes a cipher with 96 bits plaintext which

accepts keys of size 144 bits and for performing key schedule the key will be divided

into 3 blocks with size of 48 bits. Simon has Feistel network structure which can be

implemented efficiently in hardware. Each round of Simon has simple operations,

namely, bitwise XOR and bitwise AND and also circular shifts which is simply done

by proper wiring. Based on the requirements imposed on the designer, different

configuration for Simon can be selected. Table 2.1 represents those configurations.

In the following we discuss in details how each part of the cipher works.

Plaintext Key Key Rounds Rounds
Size (bits) Size (bits) Words (m) Constant (T)

32 64 4 z0 32

48
72 3 z0 36

96 4 z1 36

64
96 3 z2 42

128 4 z3 44

96
96 2 z2 52

144 3 z3 54

128
128 2 z2 68

192 3 z3 69

256 4 z4 72

Table 2.1: Parameters for Simon

19

2.3.1 Round Function

As it can be seen in Figure 2.10, the plaintext will be divided into two parts each

consists of n bits. The structure is basically a Feistel network. The round function

G which maps the input state to output state can be written as follows.

G(L,R) = (F (L, ki)⊕R,L) (2.2)

Function F consists of shifting the input to the left by 1,2 and 8 positions which

are shown as S1(.), S2(.) and S8(.), respectively. It also has AND and also XOR with

the round key. Function F can be represented as follows.

F (L, ki) =
(
S(L)⊗ S8(L)

)
⊕ S2(L)⊕ ki (2.3)

All rounds of Simon are the same with only difference that round keys will be

different in each stage. It is worth noticing that Simon uses basic logic elements and

shifting can also be handled by wiring. The two mentioned properties made Simon

to be highly efficient in hardware. Low area design for Simon can be achieved easily

because first of all logic gates in the design are simple and second because round

functions can be used for all the stages. In the following we will look at the key

schedule of Simon.

2.3.2 Key Schedule

Based on Table 2.1 the proper setting for key schedule can be extracted. Once the

number of key blocks is known, the key schedule will be done based on either one of

the Figure 2.11a, 2.11b or 2.12 if the number of key blocks is 2,3 or 4, respectively.

The key schedule consists of shifting, XOR with key and also with constant. The

20

Li Ri

Li+1 Ri+1

1

8

2

ki

n

F(Li,ki)

Ri+2Li+2

F(Li+1,ki+1)

ki+1

&

Figure 2.10: Simon round function

ki+1

3

4

c

ki

(zj)i

n

(a) Simon key schedule (2 blocks)

ki+1

3

4

c

ki

(zj)i

n
ki+2

(b) Simon key schedule (3 blocks)

Figure 2.11: Simon key schedule (2 and 3 blocks)

21

circular shift is to the right, in contrast to round functions in which the rotations

were to the left. In each round the result will be XORed with a both constant value.

Constant c is equal to 2n − 4 = 0xff...fc, and it is the same for all rounds. The

other constant value is zj which is chosen based on Table 2.1.

Constant Sequence In order to obtain constant sequence zjs for j = {0, 1, 2, 3, 4}

we do the followings. The matrices U , V and W are defined as below

U =



0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 1


, V =



0 1 1 0 0

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 0


,W =



0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 0


Three sequences u, v and w are defined as below, where (u)i denotes the bit

at position ith of the sequence u. All of these sequences has period of 31, so

it is enough to compute the first 31 bits. In the following the first 62 bits of

those sequences are shown in hexadecimal notation.

(u)i = (0, 0, 0, 0, 1)U i(0, 0, 0, 0, 1)T , u0u1u2 . . . u61 = 3E8958737D12B0E6

(v)i = (0, 0, 0, 0, 1)V i(0, 0, 0, 0, 1)T , v0v1v2 . . . v61 = 23BE4C2D477C985A

(w)i = (0, 0, 0, 0, 1)W i(0, 0, 0, 0, 1)T , w0w1w2 . . . w61 = 212CF8DD4259F1BA

Let t denotes the sequence of 0s and 1s with period of 2, i.e. t = t0t1t2 . . . =

010101 The first 62 bits of each constant sequence zj is as follows, z0 and

22

ki+1

3

1

ki
n

ki+2

c

(zj)i

ki+3

Figure 2.12: Simon key schedule (4 blocks)

z1 have the period of 31 the rest has the period of 62.

(z0)i = (u)i , z0 = 3E8958737D12B0E6 . . .

(z1)i = (v)i , z1 = 212CF8DD4259F1BA . . .

(z2)i = (t)i ⊕ (u)i , z2 = 2BDC0D262847E5B3 . . .

(z3)i = (t)i ⊕ (v)i , z3 = 36EB19781229CD0F . . .

(z4)i = (t)i ⊕ (w)i , z4 = 3479AD88170CA4EF . . .

Then the equations for computing the round keys are as follows for each case

ki+m =


c⊕ (zj)i ⊕ ki ⊕ S−3(ki+1)⊕ S−4(ki+1) if m = 2

c⊕ (zj)i ⊕ ki ⊕ S−3(ki+2)⊕ S−4(ki+2) if m = 3

c⊕ (zj)i ⊕ ki ⊕ S−3(ki+3)⊕ S−4(ki+3)⊕ S−1(ki+1)⊕ ki+1 if m = 4

The above algorithm will be done for 0 ≤ i < T −m. The result of the key schedule

will be used in the round function. The first m levels in round function is done by

using the input key and the rest of the Simon will use the keys computed by key

schedule unit.

23

Chapter 3

Glitch-Free Implementations

The masking scheme which was introduced in the previous chapter can not resist

DPA attacks, because the glitches have not been taken into account. In this chapter

we introduce threshold implementation which is type of masking provably secure

against first order DPA attacks, even in the presence of glitches. Threshold Imple-

mentation countermeasure was proposed by Nikova et al. in [NRR06].

3.1 Threshold Implementation

Threshold implementation is an (n, d) secret sharing in which d is equal to n, or all

the shares are required to construct the secret value. The secret value is denoted by

X and its shares are represented by X1, . . . , Xn which is represented by X̂. The set

of n − 1 shares which is missing Xi is denoted by X̂i. Share generation function is

a simple XOR, and it can be realized as follows:

Definition 1 (share generation) For dividing secret X into n shares, n−1 random

24

f

X

Y

Z

Figure 3.1: Simple function

value Mi will be generated and the shares are

 Xi = Mi for 1 ≤ i ≤ n− 1

Xn =
(∑n−1

i=1 Mi

)
⊕X

In this section we only focus on the functions with only one output. Furthermore,

assume function f consists of two input value X and Y and produces Z as an output,

e.g., Z = f(X, Y) and it can be seen in Figure 3.1.

The shared version of output Z is denoted as Ẑ = (Z1, . . . , Zn). As it can be

seen in Figure 3.2 each output share Zi is produced by new function called fi. The

input to each function fi comes from some input shares Xi and Yi. The selection of

the input shares is discussed in the rest of this section especially in 3.1.2 and 3.1.3.

The next part of this section is dedicated to necessary properties for constructing

a threshold implementation of a function. These properties are called Correctness,

Non-completeness and Uniformity.

3.1.1 Correctness

We have seen that output value is divided into n shares. Correctness means that

by combining those output shares the original output can be retrieved in a correct

way. In other word as it can be seen in Figure 3.2

25

f1X1 Y1 Z1

f2X2 Y2 Z2

fnXn Yn Zn

w
irin

g

Figure 3.2: Simple function broken into shares

X =
⊕n

i=1Xi = X1 ⊕X2 ⊕ . . . Xn

Y =
⊕n

i=1 Yi = Y1 ⊕ Y2 ⊕ . . . Yn

Z =
⊕n

i=1 Zi = Z1 ⊕ Z2 ⊕ . . . Zn

3.1.2 Non-completeness

Non-completeness means that the equation used to evaluate any output share should

be missing at least one input share. This requirement enforces that the information

required to compute the secret value (all the shares) is not present in the system at

any time instance. Hence, any vulnerability in the implementation (e.g. glitches)

cannot leak the secret key. This property can be simply achieved if function f is

linear. We assume that the wiring in the Figure 3.2 is in a way that Zi = fi(Xi, Yi),

it can be shown that this wiring has non-completeness (each function depends on

only one input share) and correctness.

Z =
n⊕
i=1

Zi =
n⊕
i=1

fi(Xi, Yi) = f(
n⊕
i=1

Xi,
n⊕
i=1

Yi) = f(X, Y)

26

In case function f is non-linear the wiring should be done in a different way. Lets

assume that function f is a simple multiplication and each input and output shares

are divided into three shares. One possible way of doing the wiring is to rewrite the

equations in a way that function fi depends on X̂i and Ŷi

f(X, Y) = XY = (X1 ⊕X2 ⊕X3)(Y1 ⊕ Y2 ⊕ Y3)

= X1Y1 ⊕X1Y2 ⊕X1Y3

+X2Y1 ⊕X2Y2 ⊕X2Y3

+X3Y1 ⊕X3Y2 ⊕X3Y3

Then the output shares are written as

Z1 = X2Y3 ⊕X3Y2 ⊕X2Y2

Z2 = X3Y1 ⊕X1Y3 ⊕X3Y3

Z3 = X1Y2 ⊕X2Y1 ⊕X1Y1

It is obvious to see that each Zi is missing Xi and Yi component and also combining

all Zi will results in the correct output, i.e., XY .

Obviously, because of non-completeness property the attacker who has access to

the output of one of the fis can not infer anything about the input shares.

Nikova et al. [NRR06] proved that if the Equation 3.1 holds and two mentioned

properties are satisfied, all the intermediate results of the circuit will be independent

of inputs (X,Y) and output (Z). This equation ensures that for any input (x, y) all

the valid sharing (X̂, Ŷ) will happen with equal probability.

Pr(X̂ = x̂, Ŷ = ŷ) = αPr(X = x, Y = y) α is a constant value (3.1)

27

−1 0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

Output Share Value

N
um

be
r

of
 O

cc
ur

re
nc

e

Figure 3.3: Distribution of output shares when multiplication function is imple-
mented using three shares

These two properties are basic requirements for having threshold implementation.

In practice the functions we are interested in are complex functions with so several

levels. As the depth of the function grows there is a need for more shares. It is going

to be impractical to implement those functions just by having a combinational logic.

It was mentioned before that glitches occur due to difference in arrival time of each

input of a logic gate and also random delay inside a logic gate. If we assume that

an element can isolate its input timing and output timing we can break complex

designs into pieces. This element which can isolate its input and output timing,

as a result block the propagation of glitches, is called register. Our design can be

simply turned into pipeline. In each stage of pipeline a simple functionality will

be performed. In order for this design to be threshold implementation the input of

each pipeline stage must satisfy the Equation 3.1. The input of each pipeline stage

is the output of the previous stage. The next property is defined so that the output

shares satisfy Equation 3.1.

28

−1 0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Output Share Value

N
um

be
r

of
 O

cc
ur

re
nc

e

Figure 3.4: Distribution of output shares when multiplication function is imple-
mented using three shares with extra randomness added to the equations

3.1.3 Uniformity

If the input shares are uniformly distributed, the output shares must also be uni-

formly distributed.

Pr(Ẑ = ẑ|Z = z) = β β is a constant value (3.2)

It can be shown that the multiplication introduced in Section 3.1.2 with uniformly

distributed inputs does not satisfy the uniformity properties for the output. We

did the analysis and as it can be seen in the Figure 3.3 the distribution of the

output shares is not uniform. The x-axis in the figure denotes the number Z1Z2Z3

in decimal notation.

In order to achieve the uniform distribution two approaches can be pursued.

The first one is to add a new randomness to the set of previous shares in order

to make them look random [MPL+11, BGN+14a]. The second approach is to in-

crease the number of share and try to find a solution that satisfy all the mentioned

properties [NRR06].

29

−2 0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Output Share Value

N
um

be
r

of
 O

cc
ur

re
nc

e

Figure 3.5: Distribution of output shares when multiplication function is imple-
mented using four shares

Adding New Randomness In order to add new randomness we can add three

new random values to each equation, namely R1, R2 and R3. The Ris are

independently and uniformly distributed random variable. In order to satisfy

the correctness property the final result of Z1⊕Z2⊕Z3 should kept unchanged.

As a result adding these random numbers should not have effect on the result

or in other word R1⊕R2⊕R3 = 0. The set of new equations are shown below.

Z1 = X2Y3 ⊕X3Y2 ⊕X2Y2 ⊕R1

Z2 = X3Y1 ⊕X1Y3 ⊕X3Y3 ⊕R2

Z3 = X1Y2 ⊕X2Y1 ⊕X1Y1 ⊕R3

and the distribution of output shares can be seen in Figure 3.4.

Increase The Number of Shares Nikova et al. in [NRR06] chose the second

approach and proposed a new set of equations for constructing the output

30

shares.

Z1 = (X3 ⊕X4)(Y2 ⊕ Y3)⊕ Y2 ⊕ Y3 ⊕ Y4 ⊕X2 ⊕X3 ⊕X4

Z2 = (X1 ⊕X3)(Y1 ⊕ Y4)⊕ Y1 ⊕ Y3 ⊕ Y4 ⊕X1 ⊕X3 ⊕X4

Z3 = (X2 ⊕X4)(Y1 ⊕ Y4)⊕ Y2 ⊕X2

Z4 = (X1 ⊕X2)(Y2 ⊕ Y3)⊕ Y1 ⊕X1

The analysis for this set of equations can be seen in Figure 3.5. Comparing

Figure 3.3 and Figure 3.5 proves that using the new of equations will result in

the Uniform property to hold true and the construction based on this scheme

is threshold implementation and glitch free.

31

Chapter 4

Design Methodology

Before starting the design, the designer should clearly specify the goals of the design.

Being the fastest design or being the smallest design are examples of those goals.

In this chapter we introduce the smallest implementation of Simon which only

processes one bit at each cycle and apply the threshold implementation idea to

that.

4.1 Bit-Serial Architecture of SIMON

As we have already seen in Section 2.3, Simon is a block cipher based on the Feistel

structure. Simon accepts plaintexts of size 32, 48, 64, 96 and 128 bits. For each

input size, Simon has a set of allowable key sizes ranging from 64 bits to 256 bits.

The input is evenly split into two words, following the principles of Feistel structure.

The key is also split into two to four words. The input key words which are used

in the first rounds of Simon. The key scheduling algorithm is used to generate the

following round keys. The number of rounds in Simon ranges from 32 rounds to 72

rounds. We focus on the Simon128/128 which which has 68 rounds and the input

key will be divided into 2 blocks each one contains 64 bits.

32

The Equations 2.2 and 2.3 shows the round function. Assuming that the input

words of round i are li and ri, the output words are:

li+1 = ri ⊕ l2i ⊕ (l1i ∧ l8i)⊕ ki ri+1 = li

The upper index Xs indicates left circular shift by s bits. This can be expressed in

GF(2), where the XOR operation becomes addition and the AND operation becomes

multiplication, as:

li+1 = ri + l2i + (l1i × l8i) + ki ri+1 = li (4.1)

Also, assuming that the input words of the key, which are also the first round

keys, are k0 and k1 (and possibly k2 and k3, depending on the key size), the next

round key is computed as:

ki+2 = ki + k−3
i+1 + k−4

i+1 + αi Two and Three Words

ki+4 = ki + ki+1 + k−1
i+1 + k−3

i+3 + k−4
i+3 + αi Four Words

(4.2)

where αi is a the bitwise XOR of constant c and constant sequence (zj)i as it was

introduced in Section 2.3.2.

Aysu et al. in [AGS14] proposed a bit-serialized implementation of Simon where

only one bit of the internal state is processed in each clock cycle. Hence, a single

round of Simon completes after n cycles, where 2n is the size of input plaintext.

Moreover, two shift registers were used to store the internal states to simplify

the control of sequentially processing and storing individual bits. In fact, the left

share of the internal state is passed over as-is to the right share, hence only one shift

register of the same size as the input block is actually needed.

33

FIFO1 FIFO2

SRU

SRD

Key

8 bits

56 bits 64 bits

LUT 3

3

3

Input

Figure 4.1: Data-path of the Simon cipher

Here, Simon is implemented as a special class of non-linear feedback shift reg-

isters, where the output of the feedback function changes the state only after com-

pleting the round function. Since the feedback function requires only four bits of

the state, namely ri, l
1
i , l

2
i and l8i , only those bits need to be stored. This storage

is realized by an extra 8-bit shift register. An overview of this implementation is

shown in Figure 4.1.

One of the main reason for using such a scheme for round function is the efficiency

in area usage. As it can be seen in Figure 4.1, the basic elements used in the

structure are shift registers which can simply goes into one slice of FPGA. The

computation unit, i.e., LUT can also be mapped to one LUT of each slices. Shift

Register Up (SRU) and Shift Register Down (SRD) can also be mapped into several

slices. Although they are also simple shift registers, the fact that some internal

registers needed for LUT make those logic spread to several slices.

4.1.1 Round Function

At first, the input is loaded into the Shift Register Up (SRU), FIFO1 and FIFO2.

As it can be seen in Figure 4.2a, during the first 8 cycles, the look-up table (LUT)

34

FIFO1 FIFO2

SRU

SRD

Key

8 bits

56 bits 64 bits

LUT

3

(a) First 8 clock cycles

FIFO1 FIFO2

SRU

SRD

Key

8 bits

56 bits 64 bits

LUT

3

(b) Next 56 clock cycles

Figure 4.2: Data flow in even rounds of Simon where SRD is used for saving newly
computed data

processes three bits from the SRU, a key bit and the output of FIFO2. It basically

computes the result of Equation 4.1. The result is stored in the Shift Register Down

(SRD). During this phase, SRD stores the new values, while SRU stores the old ones

for further processing.

Once the SRD is full and before overflowing occurs, instead of SRU, SRD will be

connected to FIFO1, where the new values will be stored. This change can be seen

in Figure 4.2b. SRU will still work as the old register for storing old bit values from

FIFO1 output. This phase continues for 56 cycles until the round is completed. As

it can be seen, at the end of this round the state to be processed in the next round

is stored in SRD, FIFO1 and FIFO2. Since the input for the LUT unit should come

from SRD instead of SRU, there is a need for change in the data flow.

As it was mentioned, in the next round, the functionality of SRU and SRD will

be flipped. It can be seen in the Figure 4.3a that in the first 8 clock cycles, SRU will

be used to store new values while SRD holds the necessary values needed for further

computations. Once SRU is filled with new values its output will be connected to

FIFO1. As it is represented in Figure 4.3b at this point the new values will be

written into FIFO1 and SRD will keep holding the values for computation.

35

FIFO1 FIFO2

SRU

SRD

Key

8 bits

56 bits 64 bits

LUT

3

(a) First 8 clock cycles

FIFO1 FIFO2

SRU

SRD

Key

8 bits

56 bits 64 bits

LUT

3

(b) Next 56 clock cycles

Figure 4.3: Data flow in odd rounds of Simon where SRU is used for saving newly
computed data

4.1.2 Key Schedule

The structure of the key schedule is shown in Figure 4.4. The key will be loaded

into Shifter1, FIFO and Shifter2. The output of Shifter2 is the key that will be used

in each round of Simon. The key that will be used in the first two rounds are the

key loaded into in the first step and the key for the next rounds can be computed

according to Equation 4.2.

During the first 4 clock cycles the output of LUT will be loaded into Shift Register

(SR) and the data in FIFO will be moved to both Shifter2 and Shifter1. Once the

SR is full it will save the data inside and the rest of the computed result of LUT

will be moved to Shifter1 and FIFO will continue to move its data to Shifter2. This

will keep going for the next 60 clock cycles and the first round of key schedule will

be done.

From now on the input to LUT will be either from SR for the first clock cycle

of each round and from FIFO for the next 63 clock cycles. During the first 4 clock

cycles the output of SR will moved to both Shifter2 and Shifter1 and the result of

LUT will moved to SR. Once SR is full it will stop shifting data and FIFO will fill

Shifter2 and the result of LUT will move to Shifter1.

In each step constant is calculated by Equation 4.2 and the materials covered in

Section 2.3.2.

36

Shifter1 Shifter2

FIFO

60 bits 64 bits

LUT
Input

SR

4 bits

4 bits

constant

Figure 4.4: Key schedule of the Simon cipher

4.2 Loop Unrolling

The idea of loop unrolling first published in a work by Bhasin et al. [BGSD10]. They

proposed a method to compute the result of DES algorithm in only one clock cycle.

They showed that their implementation resist the correlation power analysis on

Hamming distance and Hamming weight model if the datapath get cleared after each

DES evaluation. Beaulieu et al. also proposed in [Smi15] to use the same method for

protecting Simon against side-channel attacks. They implemented Simon in a way

that computes four full rounds per clock cycle. Moradi et al. showed a correlation

collision attacks on four unrolled encryption rounds of AES in [MMP11]. Since this

method is not proven to be secure, in Section 5.1.1 we just present a practical attack

on the four unrolled encryption rounds of Simon32/64.

4.3 Threshold Implementation of SIMON

Threshold Implementation of block ciphers have been published for AES [MPL+11,

BGN+14a] and Present [KNPW13].

In this work, we propose the required equations to process Simon as a threshold

37

implementation. Although a three shares implementation is required to overcome

glitches in hardware modules, we start with a two shares implementation as a pre-

liminary step.

4.3.1 Simon with Two Shares

In order to process Simon in two shares, we use the following equations. We denote

the random mask that affects the input plaintext as m1 and m2. The input words

are given as:

(r1)0 = m1 (r2)0 = m1 + r0

(l1)0 = m2 (l2)0 = m2 + l0

(4.3)

Then, the round functions can be expressed as:

(r1)i+1 = (l1)i (r2)i+1 = (l2)i

(l1)i+1 = (r1)i + (l1)
2
i + (l1)

1
i × (l1)

8
i + (l1)

1
i × (l2)

8
i + (k1)i

(l2)i+1 = (r2)i + (l2)
2
i + (l2)

1
i × (l2)

8
i + (l2)

1
i × (l1)

8
i + (k2)i

(4.4)

where k1 and k2 are the two shares of the round key. We use a different mask to

process the key schedule. The size of the mask should be equal to the size of the

key. Equations for splitting the key schedule into two shares are straightforward,

being an entirely linear operation. It is just enough to split the key at the first step

into to shares and run the key schedule on each of them separately.

This masking scheme is correct and uniform. However, it is not non-complete

because the two input shares are required to process any output share. This masking

scheme can work in software implementations if we enforce the order of processing

the equation to be from left to right. Hence, we ensure that the compiler does not

generate any intermediate variable that is free from the random mask. However, this

38

masking scheme is not provably secure in hardware implementations where glitches

can leak the relation between the two shares. In order for the secret-sharing scheme

to provably work in hardware implementations, we need to enforce the requirement

of non-completeness. Hence, we propose the three-sharing scheme in the next sub-

section.

4.3.2 Simon with Three Shares

The equations used to process Simon in three shares follow the same reasoning of

the two shares. Here, we use two random variables, each with the same size as the

input plaintext. This generates three shares of each word, denoted by x1, x2 and

x3. The equations to process the r and l part are as follows:

(r1)i+1 = (l1)i (r2)i+1 = (l2)i (r3)i+1 = (l3)i (4.5)

(l1)i+1 = (r2 + l22 + l12 × l82 + l12 × l83 + l13 × l82 + k2)i

(l2)i+1 = (r3 + l23 + l13 × l83 + l13 × l81 + l11 × l83 + k3)i

(l3)i+1 = (r1 + l21 + l11 × l81 + l11 × l82 + l12 × l81 + k1)i

(4.6)

This masking scheme is correct, uniform and non-complete. It is non-complete

because the equation used to process any output share (e.g. 1) does not include

at least one input share (1). Although the system of equations in the data-path

(every term in the equations aside from the key) is not invertible, i.e., its mapping

is not guaranteed to be one-to-one, which suggests non-uniformity, uniformity is

guaranteed by the randomness brought by the key shares (k1, k2 and k3). The key

shares are uniformly distributed as the system of equations to generate them is

linear and invertible (assuming that the input random masks are uniform). Then, it

is easy to prove that the result of addition in GF(2) between an arbitrary variable

39

that is not necessarily uniform (the data-path) and a uniformly distributed random

variable (the key shares), is uniformly distributed. This implies that the above

system of equations is uniform. The distribution of the output shares of the above

equations are demonstrated in Figure 3.4. Although the random variable used in

one round depends on the random variables used in the previous rounds, this does

not result in any vulnerability for univariate attacks that harvest information from

a single point in the trace.

The number of randomness used in our design comes from the randomness in

datapath and the randomness in key schedule. As we divided the plaintext into

three shares we need two random mask each one being 128 bits. The same idea

holds for key schedule where we need 256 bits random data in total. As a result,

for threshold implementation of Simon there is a need for 512 bits randomness

which is smaller than the previous works by Moradi et al. [MPL+11] and Bilgin et

al. [BGN+14a] which uses 7680 and 7040 bits, respectively.

In order to design a threshold implementation for Simon there are two choices,

parallel and serial. In both cases the state will be divided into three shares.

4.3.3 Parallel Simon

The parallel implementation uses three copies of the data-path and key schedule

units, i.e. one for each share. Note that the three datapath units and key schedule

units need only one instance of the control unit. Throughout this section we use

f(s, k) to denote the modular addition between key bit k and state bit s, i.e.,

f(s, k) = s+ k. The state bit and key bit are as follows:

s = rα + l2α + l1α × l8α + l1α × l8β + l1β × l8α

k = kα

(4.7)

40

where α and β denote different input shares.

The r part of each share can be easily obtained by shifting the l part of that

share. For computing the l part the Equation 4.7 should be satisfied. As can be

seen in Figure 4.5, the input to the function block comes from two shares (denoted

by old) based on the above equation along with one bit from the key. The output is

written into one share (denoted by new). The function block is implemented using

LUTs. The old share is SRU (or SRD) and the new share is SRD (SRU), if the

round is even (odd). The parameters α and β can be extracted from Equations 4.6.

At each clock cycle the key schedule unit and data-path unit are enabled to ensure

that new values are written for all three shares at each clock cycle.

In order to ensure that each output share is independent of at least one input

share the “Keep Hierarchy” property of synthesize tool should be enabled. The keep

hierarchy property ensures that parallel LUTs are synthesized so that they never

share in one slice. The resistance analysis presented in the next section shows that

this level of separation is sufficient for security.

Although no component of this core receives all three shares as an input, hence

preventing glitches from leaking first-order information, the core as a whole still pro-

cesses all three shares in the same clock cycle. Under rare circumstances, this might

result in remaining first order leakage. For this reason, we propose the serialized

version of the protected core where each share is strictly accessed in different clock

cycles.

4.3.4 Serial Simon

The serial Simon processes only one share at each clock cycle as opposed to parallel

implementation. More specifically, in each clock cycle, only one bit is computed

and only one register is being shifted. So, updating the three shares takes three

41

Figure 4.5: Architecture of parallel Simon where all three shares are being processed
at the same clock cycle

clock cycles. To ensure the correctness of the design, Read After Write (RAW)

hazard should be prevented. This requires one extra register, added to one of the

shares to save the previous value of that share. In order to reduce the overhead

caused by the mentioned register, we modify the non-completeness of the equations

in Section 4.3.2, such that shares 1, 2 and 3 are independent of shares 3, 1 and 2,

respectively. The equation for this core is as follows:

(r1)i+1 = (l1)i (r2)i+1 = (l2)i (r3)i+1 = (l3)i (4.8)

(l1)i+1 = (r1 + l21 + l11 × l81 + l11 × l82 + l12 × l81 + k1)i

(l2)i+1 = (r2 + l22 + l12 × l82 + l12 × l83 + l13 × l82 + k2)i

(l3)i+1 = (r3 + l23 + l13 × l83 + l13 × l81 + l11 × l83 + k3)i

(4.9)

Based on the new set of equations, only share 1 will face the RAW hazard, so the

extra register is added for share 1. Figure 4.6 illustrates the new architecture. Since

the design is based on shift registers, adding an extra register is achieved by taking

one register out of FIFO1 and adding it to SRU and SRD. The design ensures that

at each cycle only one key bit along with proper states will go through the MUX.

The computed result will then be routed in the DEMUX unit and written into the

42

Figure 4.6: Architecture of Serial Simon where only one share is being processed at
each clock cycle

proper share.

4.4 Higher-Order Threshold Implementation of Si-

mon

The implementations which were just introduced will resist against first order attacks

but they are not resistant against higher order attacks. The set of equations for

satisfying a design which withstand higher order attacks are more complex. The

non-completeness property should be modified. Bilgin et al. [BGN+14b] proposed

the following property as non-completeness. We should remember that in threshold

implementation theory the original function f will be divided into n portions fi and

each one of them get some shares from the input.

Property dth-order non-completeness. Any combination of up to d output of fi

must be independent of at least one input share.

43

Bilgin et al. showed that the dth statistical moment of the power consumption of

a device which satisfies the above property is independent of the unmasked input

even in the occurrence of glitches.

For example, assume the function is f(a, b, c) = a + b × c. The sharing of a, b

and c will be denoted as ai, bi and ci, respectively. One possible set of equations to

satisfy the above property is as follows:

y1 = a2 + b2c2 + b1c2 + b2c1 y2 = a3 + b3c3 + b1c3 + b3c1

y3 = a4 + b4c4 + b1c4 + b4c1 y4 = a1 + b1c1 + b1c5 + b5c1

y5 = a5 + b5c5 + b2c5 + b5c2

y6 = b2c4 + b4c2 y7 = b2c3 + b3c2

y8 = b3c4 + b3c5 + b4c5 y9 = b4c3 + b5c3 + b5c4

(4.10)

In this equation the number of input shares is 5, while the number of output shares

is 9. By keeping the sharing of yi, the design will get bigger as more non-linear

function is to be computed. Hence, there is a need for decreasing the number of

shares. It was shown in [BGN+14b] that the following construction which combines

yis is still secure against dth-order DPA attack.

z1 = y1 + y6 z2 = y2 + y7

z3 = y3 + y8 z4 = y4 + y9

z5 = y5

(4.11)

The logic where computes yi should be separated from the unit which computes the

zi by registers.

Consider the case of Simon. The equation for computing the left part is shown

in Equation 4.1. The l part and r part of the equation are coming from the round

44

functions and they should have the same number of shares. The key, on the other

hand, can be divided into different number of shares. As long as the correctness

property and dth-order non-completeness holds it can be added to the same set of

equations. The equations for processing the round function is as follows:

y1 = (r2 + l12 × l82 + l11 × l82 + l12 × l81)i

y2 = (r3 + l13 × l83 + l11 × l83 + l13 × l81)i

y3 = (r4 + l14 × l84 + l11 × l84 + l14 × l81)i

y4 = (r1 + l11 × l81 + l11 × l85 + l15 × l81)i

y5 = (r5 + l15 × l85 + l12 × l85 + l15 × l82)i

y6 = (l12 × l84 + l14 × l82 + k1)i

y7 = (l12 × l83 + l13 × l82 + k2)i

y8 = (l13 × l84 + l13 × l85 + l14 × l85)i

y9 = (l14 × l83 + l15 × l83 + l15 × l84 + k3)i

(4.12)

After computing the yis, the result will be stored in a register. In the next clock

cycle, the stored values will be read from the registers and mixed together to reduce

the sharing to 5 shares. The last part of the Equation 4.1, which is (l2)i will be

added too. Since there is one clock cycle difference the actual value for (l2)i is shifted

and now is present at (l3)i. The architecture of the design will slightly change to be

able to read that value as well.

z1 = y1 + y6 + (l31)i z2 = y2 + y7 + (l32)i

z3 = y3 + y8 + (l33)i z4 = y4 + y9 + (l34)i

z5 = y5 + (l35)i

(4.13)

45

The amount of randomness in this core comes from the randomness needed in

datapath as well as key schedule. Since we divided the plaintext into five shares we

need four random mask each one being 128 bits. The key schedule, on the other

hand, will be divided into three shares so 256 bits of randomness will be used in

key schedule unit. In total, for higher order threshold implementation of Simon

there is a need for 768 bits randomness which is still smaller than the works by

Moradi et al. [MPL+11] and Bilgin et al. [BGN+14a] which uses 7680 and 7040 bits,

respectively.

4.5 Implementation Results

The proposed designs were implemented in Verilog HDL and synthesized using ISE

14.7. Table 4.1 represents the implementation result of the unprotected, threshold

implementation and higher order threshold implementation when it is synthesized for

Spartan-3 xc3s50. The first row for each mode of Simon represent the unprotected

core. The second row shows the result for the threshold implementation of Simon

and the third row shows the result for the higher order threshold implementation of

Simon.

Table 4.2 represents the implementation result of the unprotected, threshold

implementation and higher order threshold implementation when it is synthesized for

Kintex-7 xc7k70t. The first row for each mode of Simon represent the unprotected

core. The second row shows the result for the threshold implementation of Simon

and the third row shows the result for the higher order threshold implementation of

Simon.

Table 4.3 summarizes the results and provides a comparison to previous imple-

mentations on the same platform. Our proposed parallel implementation needs 96

46

slices when synthesized by setting the optimization goal to area. The occupied slices

are less than three times of the unprotected design, since the control logic is not

replicated for the parallel design. We also synthesized the parallel design by choosing

speed as the main optimization goal, letting synthesize tool pick slices. The serial

design is slightly larger than the parallel one, because of the overhead in control

logic and some minor changes in the data-path, as discussed before. As highlighted

in Table 4.3, our implementation is more compact than some unprotected ciphers,

namely AES and Present. In fact, the small AES implementation from [GB05]

is also outperformed in all compared metrics, though that implementation is not

protected against SCA. We implemented the higher-order Simon only in parallel

version. As it can be seen, the design is larger than the first-order resistant of Si-

mon. It can also be seen that because of the complex equations for higher order

version the number of LUTs utilized in the design is significantly higher than the

other two designs.

We synthesized the design for ASIC using Synopsys Design Compiler using the

TSMC 90 nm cell library. The results are shown in Table 4.4. The results of the

synthesize tool are divided by 5 (our estimation for the number of gates in each

cell) to give the Gate Equivalents (GE) number. As it can be seen for the case

of Simon128/128 the threshold implementation core is roughly three times bigger

than the unprotected version of the same core. The higher order implementation

core is roughly four times bigger than the unprotected core.

We also compared the performance result with some known ciphers, namely,

AES and Present. The results are shown in Table 4.5 and it can be seen that

even the higher order implementation of Simon is smaller than the threshold im-

plementation for AES. The other small cipher is Katan which accepts plaintext of

size 32, 48 and 64 bits and the key size for all of them is 80 bits.

47

Design
Area Max. Freq. Throughput

Slices FFs LUTs (MHz) (Mbps)

Simon32/64
29 29 53 125 6.25

95 81 129 149 5.7
150 109 216 143 4.9

Simon48/72
33 28 58 108 5.0
92 74 135 146 5.5
144 101 227 134 4.5

Simon48/96
39 32 67 99 4.5
106 84 155 134 4.7
161 111 247 121 3.9

Simon64/96
34 28 60 111 4.5
89 74 136 158 5.3
146 102 233 127 3.9

Simon64/128
36 31 64 111 4.2
102 83 150 138 4.3
159 111 248 130 3.7

Simon96/96
43 30 74 101 3.4
107 74 156 138 4.1
167 102 251 140 3.9

Simon96/144
44 30 77 101 3.3
110 76 164 138 3.8
172 104 263 134 3.5

Simon128/128
43 30 78 90 2.4
96 68 150 145 3.5
163 102 265 127 2.9

Simon128/192
48 30 87 88 2.3
110 76 176 149 3.4
169 104 277 138 3.0

Simon128/256
50 33 91 91 2.2
121 85 194 148 3.2
182 113 298 122 2.5

Table 4.1: Implementation result for Simon on Spartan-3. The first row in each
version represents the unprotected Simon the second and third row represent the
threshold implementation and higher order threshold implementation, respectively.

48

Design
Area Max. Freq. Throughput

Slices FFs LUTs (MHz) (Mbps)

Simon32/64
51 80 101 364 14.0

103 108 167 366 12.6

Simon48/72
44 74 97 401 15.1
95 102 166 391 13.3

Simon48/96
49 83 104 274 9.7
113 111 170 305 9.9

Simon64/96
52 72 99 277 9.3
101 100 165 350 10.8

Simon64/128
57 81 104 366 11.4
105 109 170 377 10.8

Simon96/96
56 72 109 275 8.3
94 100 179 366 10.2

Simon96/144
51 74 113 318 8.9
93 102 187 336 9.6

Simon128/128
55 71 107 315 7.6
95 99 176 310 7.1

Simon128/192
53 73 116 345 8.0
91 101 187 358 7.8

Simon128/256
60 82 124 346 7.5
100 110 195 359 7.3

Table 4.2: Implementation result for Simon on Kintex-7. The first and second row
in each version represent the threshold implementation and higher order threshold
implementation, respectively

49

Design
Area Max. Freq. Throughput

Slices FFs LUTs (MHz) (Mbps)

AES [GB05] 264 N/A N/A 67 2.2

Present [YK09] 117 114 159 113 28.4

Unpro-Simon [AGS14] 36 N/A N/A 136 3.6

TI-Simon

Parallel (area) 96 68 150 145 3.5

Parallel (speed) 108 178 172 191 4.6

Serial (area) 131 94 194 84 0.7

Serial (speed) 137 95 208 110 1

HO TI-Simon

Parallel (area) 163 102 265 127 2.9

Parallel (speed) 167 106 270 149 3.4

Table 4.3: Implementation result on FPGA in comparison to other ciphers with
similar key size. The numbers reported for AES and Present are for unprotected
version of them

50

Design Unprotected TI HO-TI

Simon32/64 454 1354 1741

Simon48/72 548 1590 2087

Simon48/96 642 1860 2362

Simon64/96 689 2014 2635

Simon64/128 805 2365 2992

Simon96/96 813 2366 3217

Simon96/144 982 2875 3719

Simon128/128 1039 3044 4122

Simon128/192 1265 3723 4795
Simon128/256 1493 4415 5485

Table 4.4: Implementation result for different implementations of Simon for ASIC.
The reported numbers from the synthesize tool are divided by 5 to give an estimation
for Gate Equivalents (GE) parameter

51

Design GE

Unprotected
KATAN-32 [BGN+14b] 1002
Simon48/96 [BSS+13] 763

AES [MPL+11] 2400
Present [BKL+07] 1569
Simon128/128 [BSS+13] 1317

Threshold Implementation
KATAN-32 [BGN+14b] 1720
Simon48/96 [this work] 1860

AES [MPL+11] 11031
AES [BGN+14a] 8171
Simon128/128 [this work] 3044

Higher Order Threshold Implementation
KATAN-32 [BGN+14b] 2556
Simon48/96 [this work] 2362

Simon128/128 [this work] 4122

Table 4.5: Implementation result on ASIC for different ciphers. Katan has key size
of 80 bits, AES and Present have key size of 128 bits

52

Chapter 5

Analysis

In this section, we propose a practical attack against the unprotected core of Si-

mon128/128 as defined in [AGS14]. We highlight that, the previous SCA attacks

proposed in [BGDN14] and [SSA14] were developed against the full-state implemen-

tation, and cannot be used against the bit-serialized version of our focus. Then, we

show the results of this attack against the threshold implementation core along with

a thorough leakage detection of the threshold implementation core and higher order

threshold implementation core. We implemented this design in a way that the input

to the core is already in masked form and the random masks are applied from an

external source. Here, we use x(a)b to denote bit number b ∈ [0 : 63] of the word

x : l∨r in round number a ∈ [1 : 68]. x can also denote the key k. The practical test

setup consists of a SASEBO-GII board to develop the hardware design, a Tektronix

DPO-5104 oscilloscope to collect the power traces and a ZFL-1000LN amplifier to

improve resolution of the collected traces.

53

5.1 Practical Attacks

The first step in DPA is to identify a sensitive intermediate variable, which depends

on both the input data and the secret key in a non-linear equation with as low

confusion as possible. Linear equations can also work (as used in [BGDN14]), but

the attack in this case will need more traces to distinguish between the correct key

and close-by ones. Low confusion means that the non-linear operation processes a

small number of the key-bits. This is recommended to break the complexity of the

secret key into smaller portions (divide-and-conquer). In this section first we look

at one attack against the unprotected core of Simon and present that performing

the same attack on the threshold implementation of Simon will not work anymore.

Then we will look at one proposal by Beaulieu et al. [BSS+15] and present a valid

way of breaking it.

5.1.1 Attack Against Loop Unrolling

Moradi et al. in [MMP11] presents the results of correlation collision attacks on

different countermeasure including the loop unrolling model. They showed that by

using this countermeasure the number of required traces to attack the algorithm

will increase significantly. The number of traces to attack the unrolled version of

AES will increase from 100,000 to 3,500,000 when the core processes four rounds

per clock cycle instead of one round per clock cycle.

In this work, Simon32/64 is selected as an example to simulate the behaviour of

loop unrolling. Due to the structure of Simon32/64 all the initial key will be used

and there is no need for updating the key.

Let us assume that the unrolled version of Simon maps the plaintext to the data

presented at the fifth round of Simon. Here, we use x(a)b to denote bit number

54

b ∈ [0 : 16] of the word x : l ∨ r in round number a ∈ [1 : 32]. We select r(5)0 as a

point to attack. Based on the round function of Simon we just have to write down

the equation of r(5)0 by only using the plaintext and initial key.

The equation for r(5)0 based on the data presented at round four is as follows.

r(5)0 = l(4)0

The bit l(4)0 can be written using the data at round three as following.

l(4)0 = r(3)0 + (l(3)15 × l(3)8) + l(3)14 + k(3)0

The data presented in the above equation can be presented by data at round two

as following.

r(3)0 = l(2)0

l(3)15 = r(2)15 + (l(2)14 × l(2)7) + l(2)13 + k(2)15

l(3)8 = r(2)8 + (l(2)7 × l(2)0) + l(2)6 + k(2)8

l(3)14 = r(2)14 + (l(2)13 × l(2)6) + l(2)12 + k(2)14

55

Finally, we can show all the previous data by just using the plaintext at round one.

r(2)15 = l(1)15

r(2)8 = l(1)8

r(2)14 = l(1)14

l(2)0 = r(1)0 + (l(1)15 × l(1)8) + l(1)14 + k(1)0

l(2)14 = r(1)14 + (l(1)13 × l(1)6) + l(1)12 + k(1)14

l(2)7 = r(1)7 + (l(1)6 × l(1)15) + l(1)5 + k(1)7

l(2)13 = r(1)13 + (l(1)12 × l(1)5) + l(1)11 + k(1)13

l(2)6 = r(1)6 + (l(1)5 × l(1)14) + l(1)4 + k(1)6

l(2)12 = r(1)12 + (l(1)11 × l(1)4) + l(1)10 + k(1)12

Now that we show bit r(5)0 can be shown by only data presented at round one, we

can do our attack. As it was mentioned before, the other property of Simon32/64

is that all the key bits presented in the previous equations are also the initial key.

This is not the case with the same unrolled version of Simon128/128 where the key

bits should also be extracted by key schedule function.

For the first simulation, only one bit, i.e., r(5)0 will be saved as power consump-

tion. The result of CPA by using Hamming distance model is shown in Figure 5.1a

and as it can be expected the correlation coefficient is 1 for the correct keys. For the

second simulation we assume more realistic power consumption and that is having

all the 32 bits of data being present in the power traces. The result of the CPA at-

tack by using Hamming distance model is also shown in Figure 5.1b. The correlation

coefficient reduced significantly but the correct key can still be found.

There are more than one correct key in both of the scenarios and the reason is

56

1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sample Point

C
or

re
la

tio
n

(a) CPA results for the loop unrolled Simon
when considering 1 bit

1 2 3 4 5 6 7 8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Sample Point

C
or

re
la

tio
n

(b) CPA results for the loop unrolled Simon
when considering all the state

Figure 5.1: Attacks against loop unrolling using simulated traces

that in the above equations some of the key bits will appear in a way that the XOR

of two key bits will be in a function. In this case there are two correct key bits. By

doing the CPA attack and iterate over all those 10 key bits presented in the above

equation we could be able to recover 7 bits of the initial key. We can select different

data at round five, i.e., x(5)i and try to extract different key bits each time.

5.1.2 Attack Against Unprotected Core

In order to satisfy the mentioned properties, we focus on attacking the output of the

non-linear operation (the AND gate) in the second round of Simon, where the first

key word k(1) becomes part of l(2) to compute l(3). We do this analysis bit-by-bit

following the bit-serialized implementation. The equation for the first bit of l(3) is:

l(3)0 = r(2)0 + (l(2)63 × l(2)56) + l(2)62 + k(2)0

where

r(2)0 = l(1)0 , and

l(2)i = r(1)i + (l(1)i−1 × l(1)i−8) + l(1)i−2 + k(1)i

57

where i ∈ {62, 63, 56} for this particular bit and the subtraction in indexes is done

modulo 64. A similar equation can be written for all the bits of the internal state.

In short, one bit of the left word in round three (e.g. l(3)0) depends non-linearly

on two key-bits (k(1)63 and k(1)56) and linearly on another two key bits (k(2)0 and

k(1)62), along with some input data.

The second step of a successful DPA attack is to select an accurate power model,

which is a function that converts the sensitive intermediate variable into relative

power consumption. In this work, we use the Hamming Distance (HD) power model

which is suitable for hardware modules. The HD represents the number of bit-flips

between two clock cycles. For example, we focus on the activity of the first register

of the left word, representing the operation of overwriting bit l(3)0 by bit l(3)1

between cycle 65 and 66. However, we first need to consider an equation for the

system power consumption.

The system power equation of the unprotected structure (only one share) is:

P = PSRU + PSRD + PFIFO1 + PFIFO2 +N

where PSRU , PSRD, PFIFO1 and PFIFO2 represent the power consumption of the SRU,

the SRD and the FIFO registers, respectively. N is a noise component which repre-

sents the measurement noise along with all on-board activities that do not depend

on the input data including the key-schedule circuit. We did not write a separate

term for the LUT as its effect can be included in its output register, which is the first

register of SRU or SRD depending on the clock cycle (SRU in our example). During

the update of cycle 65/66 and following the HD model, the power consumption of

58

each component is:

PSRU = HW
((
l(3)0||r(2)63:55

)
⊕
(
l(3)1||l(3)0||r(2)63:54

))

PSRD + PFIFO1 = HW
(
l(2)1 ⊕ l(2)2

)
PFIFO2 = HW

(
|(l(2)0||r(2))|64 ⊕ |(l(2)1||l(2)0||r(2))|64

)
where HW is the Hamming weight function (the number of set-bits), Xs is a circular

shift left by s bits and |x|64 denotes trimming x to the first 64 bits. PSRD + PFIFO1

and PFIFO2 depend linearly on the plaintexts and the bits of k(1). PSRU is the only

component in the system power consumption that depends non-linearly on key bits.

Figure 5.2a and 5.3a give the results of attacking the studied Simon cores with

Correlation Power Analysis (CPA) [BCO04]. In this attack, we used a 4-bit key

hypothesis to represent the non-linear key-bits involved in the computation of l(3)0

and l(3)1. Figures 5.2a and 5.2b show results for attacking the unprotected core.

Figure 5.2a shows the correlation coefficient as a function of time. Figure 5.2b shows

the correlation associated with the correct key against those of the incorrect keys as

the number of analyzed traces increases. Although the results highlight the success

rate of recovering only four bits of the secret key, the remaining key-bits could also

be recovered by selecting another points in the algorithm using the same number of

traces. These results shows that the unprotected core can be broken with less than

1200 traces.

Figures 5.3a and 5.3b show the results of the same attacks against the threshold

implementation core. In this experiment, we collected 500,000 traces of the parallel

version synthesized with speed optimization. If this core passes the attack and the

leakage quantification tests, the serialized version will pass for being designed with

59

0 500 1000 1500 2000 2500 3000 3500 4000
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Sample Point

C
or

re
la

tio
n

(a) CPA results for the core

0 0.5 1 1.5 2 2.5

x 10
4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of Traces

C
or

re
la

tio
n

(b) Number of required traces to successfully
break the core

Figure 5.2: Attack against the unprotected core, key can be extracted from the
implementation

0 500 1000 1500 2000 2500
-6

-4

-2

0

2

4

6
x 10

-3

Time instances

C
o

rr
e

la
tio

n

(a) CPA results for the core

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Number of Traces

C
or

re
la

tio
n

(b) Number of required traces to successfully
break the core

Figure 5.3: Attack against the threshold implementation core does not work with
as many as 500,000 traces

more conservative assumptions. Although serial version is designed more conserva-

tively one has to make sure that synthesize tool does not combine shares together

which might be the case for MUXes in FPGAs. It is clear that the attack fails to

recover any secret key, which supports our claim of secrecy.

60

5.2 Leakage Detection

Although the attack mentioned in Section 5.1.2 is necessary to prove the SCA-

security of the proposed module, the attack examines the leakage of a single point

in the trace which is not sufficient. The way to attack the threshold implementation

core is either by proposing a more complex key extraction attack or using other

generic methods to detect a leakage. The leakage detection technique examines the

entire trace searching for any point where the leakage can be distinguished from

random noise. Here, we do not use any key-recovery attack, but we use statistical

tools to prove the indistinguishably of the collected traces. These tests are stronger

than the previous DPA attack, as they search for the distinguishability in any trace

point that may or may not lead to a full key recovery.

We use the test suite developed in [GJJR11]. This work was mainly proposed

to satisfy two needs for such a detection methods. Firstly, there should be some

clear parameter in order to pass or reject a device. Secondly, The should be done in

an easy manner without the need for sophisticated attacks.This work gained a lot

of attention recently and it was also used in [LMW14, BGN+14b] to evaluate the

effectiveness of their countermeasures.

The concept of the test is to gather some measurements and partitioned them into

two group. Based on those measurements are obtained the partitioning method is

going to be different. The measurements can be obtained from the set of randomly

varying plaintext and the test based on that is called Random Versus Random

(RVR). It can also be based on a fixed plaintext and randomly varying plaintext

which is called Fixed Versus Random (FVR). The null hypothesis means that those

two set have similar means and variance. The other hypothesize is that the mean of

the two sets is different. The t-test performs the evaluation of the null hypothesize

61

and determines with a confidence level whether two sets of measurement are from

same distribution or not.

As it was mentioned the FVR test depends on collecting two sets of leakage

traces, one with a fixed plaintext while the other with randomly varying plaintexts.

The traces are collected in an interleaved way to minimize the effect of noise. We

compute the sample mean (µ) and sample standard deviation (σ) of the traces in

each set. Then, we compute the result of Welchs t-test:

t =
µa − µb√

(σ2
a/Na) + (σ2

b/Nb)

where a and b denote the two sets and Ni denote the number of traces in set i : a∨b.

The device fails the FVR test if the value of t exceeds a certain threshold. This

threshold corresponds directly to the confidence level which was mentioned before.

It is shown in [SM15] that if two sets of measurements have approximately equal

number of traces and similar variance by choosing ±4.5 as a threshold the confidence

level is going to be %99.999. This threshold, i.e. ±4.5, is also used in [GJJR11]

and [LMW14].

The RVR test applies the same analysis as above however, all the traces are

collected with randomly varying plaintexts. In this case, the two groups of traces

are separated based on an intermediate variable. We apply the RVR test to the HD

between the first bits of the left and right words of the first two rounds.

Figure 5.4a and 5.4b report results of the FVR and the RVR tests for the un-

protected core at 100,000 traces, respectively. Figures 5.5a and 5.5b report results

for the threshold implementation core at 2,000,000 traces. We applied the afore-

mentioned RVR tests and report results of only one intermediate variable (the HD

in the first register during cycle 65/66). The unprotected core failed all the leakage

62

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−80

−60

−40

−20

0

20

40

60

80

100

Sample Point

t−
te

st
 V

al
ue

(a) Fixed vs. Random

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−6

−4

−2

0

2

4

6

8

10

12

14

Sample Point

t−
te

st
 V

al
ue

(b) Random vs. Random

Figure 5.4: Results of leakage detection for unprotected core using 500,000 traces

 0 1000 2000 3000 4000 5000
−6

−4

−2

0

2

4

6

8

10

12

14

Sample Point

t−
te

st
 V

al
ue

(a) Fixed vs. Random

 0 1000 2000 3000 4000 5000
−6

−4

−2

0

2

4

6

8

10

12

14

Sample point

t−
te

st
 V

al
ue

(b) Random vs. Random

Figure 5.5: Results of leakage detection for threshold implementation core using
2,000,000 traces

quantification tests (as expected), while the threshold implementation core did pass

all the tests which again supports our claim of secrecy.

These tests can also be applied for higher order analysis but they require pre-

processing before the statistical test. To perform higher order test the traces should

be mean-free squared. Let us denote the random variable of the power traces with X

and as it was stated we use µ and σ as sample mean and sample standard deviation,

respectively.

In order to analyze second-order evaluations we use (X−µ)2 and for orders more

than 2 we use (X−µ
σ

)d. The natural way of computing the higher-order analysis is

by processing traces twice. First time to compute the mean and the second time to

63

calculate the mean-free traces. This model of analysis can be quite time consuming

since all the traces should be processed even if the device fails for rather small

number of traces. Schneider and Moradi in [SM15] introduced a way to compute

the mean-free traces in a one pass manner so that early exit from the analysis is

possible if the leakage is found in the early stages. This method can be done while

the traces are being collected so some overheads such as analysis time and some

other delays regarding to saving traces in memory will be reduced.

We gathered 20 million traces for the threshold implementation core as well as

higher order threshold implementation core. The traces are for the first four round

of Simon. As it can be seen in Figure 5.6 the threshold implementation of Simon

leaks at second order analysis while being resistant against first order analysis. The

number of traces are not sufficient to observe third and fourth order leakages.

As it was mentioned we gathered 20 million traces for the first four round of

Simon. It can be seen in Figure 5.7 that the higher order threshold implementation

of Simon does not leak at second order analysis as well as being resistant against

first order analysis. The number of traces are not sufficient to observe third and

fourth order leakages.

It is important to have an estimation on how many traces we need in order to

detect higher order leakage. Figure 5.8 represents the progress of second order t-

test value for one point throughout the measurements. As it can be seen, around

10 million traces the implementation starts to leak. Bilgin et al. [BGN+14b] also

presented the higher order analysis, in their paper they were able to detect fifth order

leakages for 300 million traces while there was no evidence of third order leakage.

The analysis of the higher order threshold implementation of Simon in order to see

third order leakage should be performed with more than just 20 million traces which

is beyond the scope of this work. Another open problem is to estimate the number

64

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(a) First order FVR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(b) Second order FVR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(c) Third order FVR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(d) Fourth order FVR

Figure 5.6: Leakage detection result for threshold implementation core for the first
four round of Simon using 20,000,000 traces

65

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(a) First order FVR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(b) Second order FVR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(c) Third order FVR

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

−4

−3

−2

−1

0

1

2

3

4

5

Sample Point

t−
te

st
 V

al
ue

(d) Fourth order FVR

Figure 5.7: Leakage detection result for higher order threshold implementation core
for the first four round of Simon using 20,000,000 traces

66

0 5 10 15

x 10
6

0

1

2

3

4

5

6

7

Number of Measurement

M
ax

im
um

 t−
te

st
 V

al
ue

Figure 5.8: Progress of t-test value over 15 million traces for one point throughout
the measurements

of required traces to be able to detect higher order leakages.

67

Chapter 6

Conclusion

In this work, we presented possible ways of protecting an implementation of a cryp-

tographic cipher. Threshold implementation as a possible way of achieving this goal

is introduced. We proposed a threshold implementation of Simon block cipher that

can be implemented in less than 100 slices of a low-cost FPGA platform. The thor-

ough leakage detection for the threshold implementation of Simon is also presented.

We showed that the threshold implementation of Simon is secure against first order

attacks, but it is vulnerable against second order attacks. To fix the vulnerability

against second order attacks, higher order threshold implementation of Simon is

introduced. We gathered 20 million measurement for this core and presented its

resistance against first order and second order attacks. Our future work will be fo-

cused on the analysis of higher order threshold implementations with more number

of measurements.

68

Bibliography

[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of
DES and AES, secure against some attacks. In Cryptographic Hardware
and Embedded Systems–CHES 2001, pages 309–318. Springer, 2001.

[AGS14] A. Aysu, E. Gulcan, and P. Schaumont. SIMON Says: Break Area
Records of Block Ciphers on FPGAs. Embedded Systems Letters, IEEE,
6(2):37–40, June 2014.

[BCD+13] G Becker, J Cooper, E DeMulder, G Goodwill, J Jaffe, G Kenworthy,
T Kouzminov, A Leiserson, M Marson, P Rohatgi, and S Saab. Test
vector leakage assessment (TVLA) methodology in practice, 2013.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power
Analysis with a Leakage Model. In Marc Joye and Jean-Jacques
Quisquater, editors, Cryptographic Hardware and Embedded Systems
— CHES 2004, volume 3156 of Springer LNCS, pages 135–152. 2004.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the im-
portance of checking cryptographic protocols for faults. In Advances in
CryptologyEUROCRYPT97, pages 37–51. Springer, 1997.

[BGDN14] S. Bhasin, T. Graba, J.-L. Danger, and Z. Najm. A look into SIMON
from a side-channel perspective. In IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), 2014, pages 56–59,
May 2014.

[BGN+14a] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. A More Efficient AES Threshold Implementation. In
David Pointcheval and Damien Vergnaud, editors, Progress in Cryp-
tology –AFRICACRYPT 2014, volume 8469 of Springer LNCS, pages
267–284. 2014.

[BGN+14b] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. Higher-Order Threshold Implementations. In Palash
Sarkar and Tetsu Iwata, editors, Advances in Cryptology–ASIACRYPT
2014, volume 8874 of Springer LNCS, pages 326–343. 2014.

69

[BGSD10] Shivam Bhasin, Sylvain Guilley, Laurent Sauvage, and Jean-Luc Dan-
ger. Unrolling cryptographic circuits: a simple countermeasure against
side-channel attacks. In Topics in Cryptology-CT-RSA 2010, pages
195–207. Springer, 2010.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar,
Axel Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte
Vikkelsoe. PRESENT: An ultra-lightweight block cipher. Springer, 2007.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK Families of
Lightweight Block Ciphers. IACR Cryptology ePrint Archive, 2013:404,
2013.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK lightweight
block ciphers. In Proceedings of the 52nd Annual Design Automation
Conference, page 175. ACM, 2015.

[CESY14] Cong Chen, Thomas Eisenbarth, Aria Shahverdi, and Xin Ye. Balanced
Encoding to Mitigate Power Analysis: A Case Study. In Smart Card
Research and Advanced Applications, pages 49–63. Springer, 2014.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
Advances in Cryptology–CRYPTO’99, pages 398–412. Springer, 1999.

[DKH+13] Anh Do, Soe Thet Ko, Aung Thu Htet, Thomas Eisenbarth, and Berk
Sunar. Electromagnetic Side-Channel Analysis on Intel Atom Proces-
sor. April 24, 2013.

[FG05] Wieland Fischer and Berndt M Gammel. Masking at gate level in
the presence of glitches. In Cryptographic Hardware and Embedded
Systems–CHES 2005, pages 187–200. Springer, 2005.

[GB05] Tim Good and Mohammed Benaissa. AES on FPGA from the fastest to
the smallest. In Cryptographic Hardware and Embedded Systems–CHES
2005, pages 427–440. Springer, 2005.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A
testing methodology for sidechannel resistance validation. Non-Invasive
Attack Testing Workshop, 2011.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. Lecture
Notes in Computer Science, 1666:388–397, 1999.

70

[KNP12] Sebastian Kutzner, Phuong Ha Nguyen, and Axel Poschmann. En-
abling 3-share Threshold Implementations for any 4-bit S-box. IACR
Cryptology ePrint Archive, 2012:510, 2012.

[KNPW13] Sebastian Kutzner, PhuongHa Nguyen, Axel Poschmann, and Huax-
iong Wang. On 3-Share Threshold Implementations for 4-Bit S-boxes.
In Emmanuel Prouff, editor, Constructive Side-Channel Analysis and
Secure Design, volume 7864 of Springer LNCS, pages 99–113. 2013.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Advances in CryptologyCRYPTO96,
pages 104–113. Springer, 1996.

[LMW14] Andrew J. Leiserson, Mark E. Marson, and Megan A. Wachs. Gate-
Level Masking under a Path-Based Leakage Metric. In Lejla Batina
and Matthew Robshaw, editors, Cryptographic Hardware and Embedded
Systems – CHES 2014, volume 8731 of Springer LNCS, pages 580–597.
2014.

[MMP11] Amir Moradi, Oliver Mischke, and Christof Paar. Practical evaluation
of DPA countermeasures on reconfigurable hardware. In Hardware-
Oriented Security and Trust (HOST), 2011 IEEE International Sym-
posium on, pages 154–160. IEEE, 2011.

[MPG05] Stefan Mangard, Thomas Popp, and BerndtM. Gammel. Side-Channel
Leakage of Masked CMOS Gates. In Alfred Menezes, editor, Topics in
Cryptology CT-RSA 2005, volume 3376 of Lecture Notes in Computer
Science, pages 351–365. Springer Berlin Heidelberg, 2005.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huax-
iong Wang. Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In Kenneth G. Paterson, editor, Advances
in Cryptology — EUROCRYPT 2011, volume 6632 of Springer LNCS,
pages 69–88. 2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Success-
fully attacking masked AES hardware implementations. In Crypto-
graphic Hardware and Embedded Systems–CHES 2005, pages 157–171.
Springer, 2005.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
Implementations Against Side-Channel Attacks and Glitches. In Peng
Ning, Sihan Qing, and Ninghui Li, editors, Information and Communi-
cations Security, volume 4307 of Springer LNCS, pages 529–545. 2006.

71

[OMPR05] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent
Rijmen. A side-channel analysis resistant description of the AES S-box.
In Fast Software Encryption, pages 413–423. Springer, 2005.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodol-
ogy - a clear roadmap for side-channel evaluations. Cryptology ePrint
Archive, Report 2015/207, 2015. http://eprint.iacr.org/.

[Smi15] Ray Beaulieu Douglas Shors Jason Smith. Simon and Speck: Block
Ciphers for the Internet of Things. 2015.

[SSA14] Dillibabu Shanmugam, Ravikumar Selvam, and Suganya Annadurai.
Differential Power Analysis Attack on SIMON and LED Block Ciphers.
In RajatSubhra Chakraborty, Vashek Matyas, and Patrick Schaumont,
editors, Security, Privacy, and Applied Cryptography Engineering, vol-
ume 8804 of Springer LNCS, pages 110–125. 2014.

[STE15] Aria Shahverdi, Mostafa Taha, and Thomas Eisenbarth. Silent Si-
mon: A Threshold Implementation under 100 Slices. Cryptology ePrint
Archive, Report 2015/172, 2015. http://eprint.iacr.org/.

[TKL05] Elena Trichina, Tymur Korkishko, and Kyung Hee Lee. Small size, low
power, side channel-immune AES coprocessor: design and synthesis re-
sults. In Advanced encryption standard–AES, pages 113–127. Springer,
2005.

[YK09] P. Yalla and J. Kaps. Lightweight Cryptography for FPGAs. In Inter-
national Conference on Reconfigurable Computing and FPGAs, 2009.
ReConFig ’09., pages 225–230, Dec 2009.

72

	Worcester Polytechnic Institute
	Digital WPI
	2015-08-26

	Lightweight Cryptography Meets Threshold Implementation: A Case Study for SIMON
	Aria Shahverdi
	Repository Citation

	tmp.1530275769.pdf._Fqxn

