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Abstract 

The purpose of this project was to investigate the safety of urban arterial non-

access controlled roads in Worcester, Massachusetts.  An investigation into the dependent 

variable proved inconclusive and the historical accident rate was used.  The best 

functional form for these roads was unclear so both linear and log-linear models were 

developed.  A linear model was developed that predicted the total accident crash rate and 

log-linear model was developed to predict the same thing.  A second linear model was 

developed to predict the total injury accident crash rate.  The models were validated using 

independent data where the linear total accident crash rate model was found to be the 

most robust of the three in that both state primary roads and other arterial roads could 

have crash rates predicted to a better than fifty percent error.   
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1 Introduction 
Road safety is important to all of society.  Even though people seldom 

consciously think about road safety, almost everyone uses the road network in one 

capacity or another and expect to survive the experience without injury.  More than that, 

people don’t even consider the event something “to survive” and consider traveling on 

the roads to be a basic part of life.  Since there is such a large volume of road users, 

safety is important.  Everything from cars and trucks, to public transportation and 

pedestrians needs the transportation network to be safe and efficient.   

United States (1987)

53%37%

10%

Rural Roads
Urban Roads
Interstate

 
Figure 1: Distribution of Fatalities for Different Road Categories in the United States 

Crashes can occur on any road at any time when a vehicle comes in conflict with 

a fixed or moving object.  The majority of accidents occur on “two-lane rural roads … 

which are the locations of 50 to 60 percent of all severe accidents in Europe and the 

United States (Lamm, 9.1).”  Rural roads have the majority of crashes occurring on them, 

so the majority of safety research has been focused on those roads.  That still leaves 

approximately 40 to 50 percent of crashes occurring on urban roads and interstates (See 

Figure 1).  Patrons of those roads also deserve to be treated to safe roads.   
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When looking at the numbers of fatalities and injuries that occur annually on the 

roadway system in the United States, the safety issue becomes even more evident.  In 

1998, in the Unites States alone there were 41,171 fatalities that occurred on the roadway 

system.  There were even more injuries, almost 3.2 million injures (See Figure 2).  With 

approximately half of these occurring in urban areas that is a staggeringly large number 

of accidents that safety improvements can strive to eliminate.   

  
Figure 2:Fatalities and Injuries by Transportation Mode  in the United States (1998) 

  (Pedestrian Safety Roadshow) 

The calculated costs of accidents come from wage and productivity losses, 

medical expenses, administrative expenses, vehicle damage, and employer costs.  In 1993 

the cost of a death due to traffic accidents was calculated to be $900,000, a disabling 

injury was calculated to be $32,000 and a property-damage only (PDO) accident was 

calculated to cost $5,800 (Poch and Mannering 105).  These values, however, 

underestimate the cost of accidents by not including the value of a “person’s natural 

desire to live longer or to protect the quality of one’s life” (Poch and Mannering 105).  

This desire is difficult to place a monetary value on and in 1995 the willingness to pay for 

this was estimated at $3,000,000 (Poch and Mannering 105).  Even if some percentage of 

these accidents can be prevented, millions of dollars could be saved each year. 
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The safety of urban roads has not yet been fully examined due to the complex 

nature of the issues and the lack of resources available to devote to the problem.  The 

main factors exerted on driving behavior include human factors, physical features of the 

site, traffic, legal issues, environment, and the vehicle (Choueiri et al 34), all which 

contribute to the complex mix of causes of traffic accidents.   

Urban roads can be divided by more than just location in terms of population 

centers, but by the type of traffic using the roads.  Table 1 shows the typical distribution 

of travel volume and length of roadways of the functional systems for urban areas.  Road 

systems developed for urban areas usually fall within the percentage ranges shown.  This 

table shows that the majority of travel in urban areas occur on the arterial roads.  These 

arterial roads account for up to 25% of the urban roadway length indicating that the 

majority of travel occurs on a minority of roads.  Accidents may not be exactly linearly 

distributed between these types of roads, but the most efficient way to improve the 

overall safety of the road system is to focus on the areas with the most traffic.  

Fortunately, this area of arterial roads has the least number of actual miles, making 

improvements to this area effect the majority of drivers.     

Table 1:Typical Distribution of Urban Functional Systems  

Range  
Systems Travel Volume (%) Length (%) 
Principal arterial system 40-65 5-10 
Principal arterial plus minor arterial street 
system 

65-80 15-25 

Collector Road 5-10 5-10 
Local Road System 10-30 65-80 

(Greeenbook, Exhibit 1-7, 12) 
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1.1 Problem Statement 

Quantifying the safety of urban and suburban roads and streets has not attracted 

the same attention as two-lane rural roads.  Since two-lane rural roads have been 

examined and analyzed in depth, determining the safety of urban and suburban arterials is 

the next area to be attacked.  The creation of a method that can quantify the safety of 

urban arterials would enable transportation planners and managers to determine the safety 

of their particular network and help prioritize road creation and improvement projects.  

Currently the agencies that are responsible for all the road systems do not have 

quantifiable tools for considering safety in their decisions.  Often when difficult choices 

need to be made, priority is given to factors such as cost, operational impacts, 

environmental impacts and experience, but not necessarily safety improvement.  The 

purpose of this research is to help predict the safety performance of various elements 

considered in planning, design, and operation of non-limited-access urban arterials.  By 

monitoring accident rates at a specific site, traffic safety engineers and researchers hope 

to be able to detect when or if safety has deteriorated.  An accurate prediction of the 

number of accidents, or accident rate, occurring at a particular site is invaluable in the 

assessment of the effectiveness of an improvement program (Higle & Witkowski 24).  An 

accurate way to help prioritize improvement projects will allow the limited dollars to be 

used in such a way as to make the most of them and the most possible improvement.  

Safety is often defined as the accident rate of a road section.  “Vehicle accidents 

are complex events involving the interactions of five major factors: drivers, traffic, road, 

vehicles, and environment (e.g., weather and lighting conditions)” (Miaou, 7).  

Developing accident prediction models is a way to summarize these complicated 
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interactive effects and try to explain the variation between sites from one time to another.  

Once a model is found that represents the relationship between all factors, it can be used 

to aid in finding cost-effective methods to reduce accident frequency/severity over the 

long term.  Traffic and safety engineers would like to control all of these major factors, 

but are limited to what they can actually influence, which puts limits on how effective 

prediction models can be.  Driver behavior is a complex issue that has been attempted to 

be modeled, but to no great success and is therefore usually left out of prediction models.  

Environmental conditions cannot be controlled and vehicles are available today in greater 

number of types and quality causing many areas where uncertainty can occur in 

prediction models.  This leaves only roadway and traffic characteristics that can be 

controlled by highway engineers and used with any level of certainty in prediction 

models.   

This project will develop an accident prediction model for the safety of urban, 

non-access controlled, arterial roadways.  This will involve looking at variation in 

accident frequency due to both systematic variations due to differences in sites and 

random variation.  Systematic variation can be explained as the variation of long-term 

means among different sites and time intervals while random variation can only be 

explained as the accident variation without physical explanation.  The random variation 

is, however, assumed to follow probability laws and relatively homogeneous sites are 

often characterized by a probabilistic distribution.  Researchers typically use normal 

distributions, Poisson distributions or negative binomial distributions.  Variation also 

enters modeling because not all the needed information is readily available and the 

available sample size is finite.  There is also the issue that the accident rate associated 
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with a particular site is itself a random variable, which cannot be predicted with absolute 

certainty (Higle & Witkowski 24).  The variables this project will examine as possible 

regressor variables are limited to ones that are either already available, or easily 

obtainable without complex collection procedures, which would restrict the use of any 

developed models.    

A standard practice for identifying unsafe locations is based on historical data 

where a site is classified as hazardous if accident history exceeds a specified level usually 

defined as a certain accident rate or number of accidents per year (Higle & Witkowski 

24).  A common method used in practice is to identify a site as hazardous if its accident 

rate exceeds the mean accident rate over all sites in the region plus a multiple of the 

standard deviation (Higle & Witkowski 24).  But, due to the random variations that are 

inherent in accident phenomena, historical accident data do not always accurately reflect 

long-term accident characteristics making this an inaccurate method for identifying 

hazardous sites (Higle & Witkowski 24).  A better method for identifying hazardous 

locations includes looking at factors other than just historical accident data.  The more 

factors used the more accurate identification as a hazardous site can be.  In short, arterial 

roads in Worcester, Massachusetts will be examined for their traffic, land use, access, 

alignment, hazards and other characteristics that can affect the causes of accidents and 

models will be developed to predict the safety of urban arterial roads.  

Chapter 2 gives background information related to the types of roads under 

consideration and some background on the mathematical theory.  Chapter 3 gives an 

overview of the methods used to complete this project while chapter 4 covers what data 

was collected and how that was done.  Chapter 5 consists of the majority of the 
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mathematical analysis while chapter 6 gives the results of that analysis with an overview 

of the three models developed in this project.  The validation of the three models is 

covered in chapter 7 and chapter 8 gives the conclusion that can be draw from this work.  
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2 Background Information 
For an accident prediction model, there are several areas where some background 

information would be useful.  These areas encompass topics relating to roadway and 

traffic concern as well as those that are related solely to modeling.   

2.1 Functional Classification 

Functional classification is the grouping of highways by the type of service they 

provide and was developed to help with transportation planning (Greenbook 1).  The 

classification system recognizes that individual roads do not serve travel independently; 

rather, travel involves movement through a network of roads, which can be separated by 

use (Greenbook 4).  Roads are classified in the United States according to the 

combination of mobility and access on each roadway.  The type of classification 

determines and aids in the design and maintenance of the road networks.  The major 

divisions between access and mobility necessitate the differences in the functional classes 

(Greenbook 6).  The higher the access function of a road, the lower its mobility function 

becomes, similarly the higher the mobility function the lower the access function; this can 

be seen in Figure 3.  Limited access on arterials enhances their primary function of 

mobility while full access on local roads promotes accessibility to individual land parcels.   
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Figure 3: Relationship of Functionally Classified Systems in Serving Traffic Mobility and Land 

Access  

(AASHTO Greenbook Exhibit 1-5) 

Highways and streets are described as rural or urban roads, depending on their 

location.  This differentiation is due to fundamental differences in characteristics between 

urban and rural areas specifically in land use and population density, which significantly 

influence travel patterns (Garber & Hoel 658).  After the primary classification, highways 

are then classified under the following categories: arterials, collectors, and local roads.  

Local roadways emphasize the access function.  Arterials emphasize mobility for through 

movements over long distances, while collectors offer approximately balanced service for 

both mobility and access.   

2.1.1 Urban Roads 

Urban roads are facilities located in urban areas, which are designated by state 

and local officials.  Areas designated as urban can vary slightly by state though they are 

usually classified as having populations of 5,000 or more (Garber & Hoel 658).  Urban 
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locations can be further divided into areas with population of 50,000 or more, urbanized 

areas, and areas with populations between 5,000 and 50,000, small urban areas (Garber 

& Hoel 658).  Urban areas have a high intensity of land use and large amounts of travel, 

which makes the placement of urban roads more critical than those in rural areas, since 

urban roads have less space in which to be built.  The high density of roads and traffic 

makes the safety of these roads critical.  Figure 4 shows the basic layout of an urban 

network.  

 
Figure 4: Schematic of the Functional Classes of Urban Roads  

(Garber and Hoel 659) 

2.1.1.1 Urban Arterial System 

The urban arterial system is divided into principal arterials and minor arterials.  

Urban principal arterials serve the major activity centers, which consist of the highest 

traffic volume corridors, which carry the longest trips.  They carry a high proportion of 

the total vehicle-miles of travel within the urban areas, even though they amount to a 
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relatively small percentage of the total network (Greenbook 11).  Principal arterials tend 

to bypass the central business districts and carry most of the trips entering and leaving 

cities.  All controlled access facilities are within this system, though access control is not 

necessarily a condition.  Principal arterials can also be further divided into subclasses 

based mainly on access control: (1) interstates with full access control and grade-

separated interchanges, (2) expressways which have controlled access but may also 

include at-grade interchanges and (3) and other principal arterials which have little or no 

access control.  (Garber & Hoel 659).   

Streets that interconnect with and augment the urban primary arterials are 

classified as urban minor arterials.  This system places more emphasis on access and 

offers lower mobility than the primary arterials.  Although minor arterials “may serve as 

local bus routes and may connect communities within the urban areas, they do not 

normally go through identifiable neighborhoods” (Garber & Hoel 659, Greenbook 11).  

Despite the differences that exist between principal arterials and minor arterials, they are 

all classified as high mobility and low access facilities.  

2.1.1.2 Urban Collector System and Local Road System 

Urban collector streets’ main purpose is to gather traffic from local streets in 

residential areas or central business districts and channel it into the arterial system.  

Collectors, therefore, go through residential and commercial areas and ease traffic 

circulation through neighborhoods and business districts.  Collectors can penetrate 

residential neighborhoods, distributing trips from the arterials through the area to their 

ultimate destinations. 
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The urban local road system includes all other streets in urban areas that have not 

been included in the previous systems.  The main purpose of these streets is to provide 

access to abutting land and furthermore to allow traffic on that land access to the 

collector system  (Garber & Hoel 660).  The local roads are intended to serve multiple 

types of traffic, including pedestrians and cyclists, and due to the many users through 

traffic is discouraged to improve safety for the slower ones (Lamm 3.1).  This system has 

the lowest level of mobility, but the highest level of accessibility. 

2.1.2 Rural roads 

Rural roads consist of all other roads not located in an urban area.  They function 

by connecting separate cities together instead of connecting parts of cities together as is 

commonly found in urban roads (Garber & Hoel 660).  Arterial highways in rural 

network provide direct service between cities and larger towns, while collectors serve 

smaller towns connecting them to the arterial network, gathering traffic from the local 

roads, which serve individual farms and other uses. This network can be viewed in Figure 

5.  Similar to the urban network, the rural network is divided into arterial, collector and 

local roads.  
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Figure 5: Schematic of the Functional Classes of Rural Roads  

(AASHTO Greenbook Exhibit 1-3) 

2.1.2.1 Rural Arterial System 

The rural arterial system is divided into principle arterials and minor arterials.  

The principle arterials are composed of most of the interstate and account for most 

statewide trips.  Freeways are a special type of arterial consisting of divided highways 

with full access control and no at-grade crossings (Garber & Hoel 660).  This class of 

highway includes the heavily traveled routes that warrant multilane improvements and 

most of the existing rural freeways (Greenbook 8).  The minor arterials assist in 

connecting cities and towns and all the rural arterials are characterized by uninterrupted, 

high-speed flow.  Due to the large traffic volume on these roads much time has been 

spent researching the safety of this part of the road network.  

2.1.2.2 Rural Collector System and Local Road System 

Highways classified as rural collectors primarily carry traffic within individual 

counties.  Major collector roads mostly carry traffic to and from large cities that are not 

directly served by the arterial system, and also carry the majority of the intra-county 
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traffic (Garber & Hoel 660).  The rural minor collectors bring traffic from local roads and 

transport it to the arterial systems.  Collectors are all characterized by more moderate 

speeds than arterials, and a larger amount of accessibility, though some can have access 

control. 

 The rural local road system contains all the roads still remaining within the rural 

classification.  These roads serve trips of short distances and provide direct access to 

individual residences (Garber & Hoel 661).  Conversely, the system also links the 

individual properties to the collector system.  Like all local roads, rural local roads are 

characterized by low speeds and high access. 

2.2 Roadway Alignment 

A roadway’s alignment is composed of its horizontal and vertical orientation.  

Vertical alignment includes tangent grades and sag, or crest, vertical curves.  Horizontal 

alignment, similarly, consists of level tangents and circular curves.  These elements all 

contribute to the safety of the road design.   

Many studies have been conducted to investigate the effects of various alignment 

designs on safety including those by Lamm, Hadi, and Gibreel (Lamm et al) (Hadi et al 

169) (Gibreel et al 305).  Many elements have been found to affect safety through all 

aspects of alignment design.  Studies have also indicated that improvements to highway 

alignment could significantly reduce the number of crashes that occur on those roadways 

(Gibreel et al 305) (Poe & Mason) (Miaou et al A).  But, only quantitative relationships 

can adequately show the relationship between design elements and crash rates allowing 

highway planners and designers to use the information to make informed decisions about 

better designs.  
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2.2.1 Cross Section 

Much of the research on cross-section design safety has been devoted to two-way 

two-lane rural highways.  Figure 6 shows the major components in a divided cross-

section design.  The cross slope, lane width, shoulder width and type are the elements 

given the most focus during the design process. 

 

 
Figure 6: Cross-section of a Divided Roadway 

2.3 Cross slope 

Undivided roads have a crown or high point in the middle with a downward slope 

towards both edges, though unidirectional slopes may also be used.  The primary purpose 

of having a cross slope is to facilitate drainage.  A steep crown is desirable to make the 

water flow as quickly as possible away from the main traveled path, but too large of a 

slope can cause vehicles to drift towards the lower edge of the road (Greenbook 313).  

The two elements need to be balanced in order to get the most benefit from the crown 

before the negative consequences come into play.  American Association of State 

Highway and Transportation Officials (AASHTO) has produced a generalized set of 

guidelines to help designers in choosing the proper amount of cross slope to use on road 

designs.  Accepted cross slope rates range from 1.5 to 2 percent for two lane roads.  As 

additional lanes are added the cross slope rate may be increased by 0.5 to 1 percent.  
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Slopes larger than two percent are not desired on high-speed roads due to the fact that 

high crowns can cause trucks with high centers of gravity to sway when traveling at high 

speeds (Greenbook 313).  In areas of high rainfall, cross slopes can be extended to 2.5 

percent to handle the large volume of water (Greenbook 314).   

2.3.1.1 Lane width 

The lane width of roads can greatly influence the safety and comfort of driving.  

Lane widths generally range between nine and twelve feet where the minimum width is 

limited by the width of the design vehicle for the road.  The maximum width for lanes is 

limited by the amount of space needed where drivers could perceive a lane where one 

does not actually exist.  The recommended lane width for all new roads by AASHTO is 

twelve feet (Greenbook 316).  Increasing lane width to the maximum value can reduce 

crash rates for urban freeways and undivided highways (Hadi et al 176).  In some 

situations such as low-speed facilities, urban areas with restrictive development and right-

of-way, and low volume roads in rural and residential areas, smaller lane widths are 

permitted.  Russia and European countries have developed an empirical relationship 

between pavement width and accidents 
21.0173.0

1
−

=
W

N where N is the number of 

accidents per million-vehicle kilometers and W is the pavement width in meters.  This 

shows that accident rate decreases with an increase in pavement width (Gibreel et al 308).  

The above relationship helps support the idea that lane widths affect roadway safety.  

2.3.1.2 Shoulder Types and Width 

Shoulders are the area of the road intended for stopped vehicles, emergency 

vehicles and structural support of the roadway.  Shoulders can vary in width and type, 
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surfaced or un-surfaced.  Surfaced shoulders use asphalt or concrete pavement, gravel, 

shells, and crushed rock as surfacing material while un-surfaced shoulders are typically 

dirt and grass.  In urban situations, parking lanes can help to provide some of the same 

services as shoulders on rural roadways.  Widths range from two feet wide on minor rural 

roads to twelve feet on major roads with most shoulders ranging between six and eight 

feet (Greenbook 318).  Research has shown that increasing the outside shoulder width to 

between ten and twelve feet helps to decrease accident rates (Hadi et al 176). 

Choueiri et al found that there is a tendency for accident rates to decrease with 

increasing overall pavement width up to 7.5 meters (25 feet) on two-lane roads (Choueiri 

et al 37).  This was confirmed by many studies in countries including the United States, 

Germany, Canada, and the former United Soviet Socialist Republic (Choueiri et al 37).  

Though the accident rate decreased, the accident cost rate, an indication of severity 

tended to go up with increased pavement widths (Choueiri et al 37).  This is due to the 

fact that roads with wide lanes and shoulders tend to have higher speeds and the accidents 

that occur on them tend to be very severe.  This shows why the individual lane and 

shoulder widths, as well as the overall pavement width of the road, are important.  

Some roads, especially in urban areas have shoulders that are used primarily for 

parking.  This allows space for parallel parking, but increases the number of roadside 

hazards that can be struck by moving vehicles.  The problem of hazards versus need for 

parking in commercial urban areas needs to be balanced to prevent problems occurring 

from the presence of parked vehicles.  This balance is mostly necessary in locations 

where the road has been divided to allow for higher speeds, where the parked vehicles 

permit for increased pedestrian presence. 
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2.3.1.3 Curbs 

The type and location of curbs can affect driver behavior, especially their feelings 

of comfort.  Curbs can make drivers more comfortable by illuminating the edge of the 

road. Curbs are primarily intended for drainage and delineation of road and sidewalks.  

They consist of a vertical or raised portion to physically create a barrier between spaces 

with different purposes such as roads for vehicle travel and sidewalks for pedestrian 

travel.  Curbs are used on all types of low speed urban highways, though caution needs to 

be applied when placing curbs on high-speed roads (Greenbook 323).  Caution is needed 

because curbs can cause problems when they are struck at high speeds causing vehicles to 

flip.  The positive benefits of curbs, for delineation and directional control of water, need 

to be balanced with their adverse affects on safety for high-speed vehicles.   

2.3.2 Horizontal Alignment  

Horizontal alignment describes the variation in placement of horizontal design 

elements of the roadway, which consists of level tangents separated by curves.  

Horizontal curves can consist of simple curves, single circular arcs or compound curves 

of two circular arcs on the same side of a common tangent (Easa 1).  A simple curve is 

bordered on both sides by tangents and consists of a single circular curve.  Compound 

curves consist of two or more curves in a row, which all turn in the same direction and 

any two successive curves have a common tangent point (Garber & Hoel 701).  Reverse 

curves consist of two simple curves of equal radii turning in opposite directions with a 

common tangent point.  Reverse curves are generally used to alter the alignment of a 

highway (Garber & Hoel 706).  Designers try to avoid reverse curves whenever possible, 

in order to avoid the sudden radical change in alignment which can cause the driver to 
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have problems staying in their own lane (Garber & Hoel 707).   Spiral curves are also 

known as transition curves and gradually increases or decreases the radial force as a 

vehicle is entering or departing from a circular curve (Garber & Hoel 707).    

A large number of accidents tend to occur at horizontal curves.  A study by 

Choueiri et al showed that a negative relationship between radius of curve and accident 

rate exists, meaning the smaller the radius the more accidents occurred (Choueiri et al 

44).  To combat this safety issue, when there is space available, large radii should be used 

on horizontal curves.  Once radii became greater than 400 to 500 meters (1,650 feet), the 

marginal increase in safety per increase in radius is very low (Choueiri et al 44).   

Horizontal alignment uses design speed as an overall design control and uses 

friction, superelevation and curvature to set specific limits.  The limits are based on 

mechanical relationships, but the values used in design are adjusted due to practical limits 

determined empirically over the range of values allowed (Greenbook 131).   A design 

speed, superelevation, and friction factor have to be chosen and then the minimum radii 

can be determined by ( )sfe
uR
+

=
15

2

 where R is the minimum radius (ft), u is the design 

speed (mph), e is the superelevation, and fs is the coefficient of side friction. 

Superelevation is an “inclination of the roadway towards the center of the curve” 

(Garber & Hoel 67) and is regulated by AASHTO with maximum values being limited by 

design speed and environmental factors.  In areas with snow and ice the super elevation is 

restricted to less than eight percent, though in other areas it can be as high as ten or 

twelve percent (Greenbook 141).  The relationship between geometric design, 

specifically horizontal design and operating speed has been shown in studies for all types 

of roadways.  Relationships between geometric design and operating speed on two-lane 
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rural highways show that horizontal curvature is a significant effect on operating speed 

(Poe & Mason 18).  High-speed geometric design is based on design values for geometric 

elements that promote speed consistency and safety (Poe & Mason 18).  Low-speed 

design tries to provide access and accommodate mixed types of users such as bicyclists 

and pedestrians with the goal of maintaining lower speeds to achieve the functionality of 

the road and improve overall safety (Poe & Mason 18).   

Due to the relationship between horizontal alignment and operating and design 

speeds, many researchers have attempted to create a quantifiable relationship between the 

two.  Lamm and Glennon independently examined this relationship in depth.  Both 

groups developed models for predicting the 85th percentile speeds of vehicles using 

degree of curvature (degrees/100 ft) as a variable.  

V85=94.37-1.83DC (Lamm’s group) 

V85=93.8-2.59DC (Glennon’s group) (Poe & Mason 19) 

Both models displayed very similar relationships with only minor differences.  

The constant reflects the differences in the maximum speeds allowed on the tangent or 

straight sections of roads and then an adjustment is made based on the specific curve. 

Lamm and Choueiri’s work in the late 1980’s confirmed the importance of the radius of 

curve (degree of curve) by concluding that it is the most influential parameter in 

determining accident rates on horizontal curves (Gibreel et al 309).  The probability of 

accidents is higher on curves than on tangents since the road is changing causing the 

driver to do more work allowing room for more mistakes and can be especially dangerous 

when high-speed roads have sharp curves that abruptly slow traffic making the situation 

ripe for an accident.   
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2.3.3 Vertical Alignment 

Vertical alignment consists of straight sections of grades, or tangents connected 

by vertical curves.  The curves consist of single parabolic arcs (sag or crest) or compound 

curves (unsymmetrical curves) of two parabolic arcs with a common tangent (Easa 1).   

Design of vertical alignment, therefore, consists of choosing the proper grade and the 

layout of the curve. The proper grade is important since vehicles traveling upward tend to 

loose speed due to the downward force from the weight of the vehicle unless the driver 

accelerates (Garber & Hoel 56).  Trucks and buses are especially affected by long grades, 

on upgrades speed reduction can be extreme and on downgrades the brakes may not be 

strong enough to slow and stop heavy vehicles.  This is a key concern on higher speed 

roads (45 mph and up), but is less of a concern on slower speed roads.  The sharpness of 

the grade will also affect this, with larger grades having a more significant effect on 

traveling vehicles.   

The selection of maximum grades for a highway depends on the design speed, and 

a general heuristic is that grades of 4 to 5 percent have little to no effect on passenger cars 

(Garber & Hoel 675).  Table 2 shows the maximum allowable grades for urban arterials 

as recommended by AASHTO.  Similar tables exist for urban and rural collectors and 

local roads with the allowable grades increasing slightly as roads increase in accessability 

and decrease in mobility.  Maximum grades are specified by design speed and terrain 

type.   
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Table 2: Maximum Grades for Urban Arterials                                 

US Customary Units 
Maximum Grade (%) for Specified Design Speed (mph) 

Type of Terrain 30 35 40 45 50 55 60 
Level 8 7 7 6 6 5 5 
Rolling 9 8 8 7 7 6 6 
Mountainous 11 10 10 9 9 8 8 

 (AASHTO Exhibit 7-10)  

Some studies have examined the point when grade starts playing a significant role 

in increasing accident rates.  A study done in 1973 with data from the United Kingdom, 

the former Soviet Union and Germany found a direct relationship between accident rate 

and grade.  2023.0105.0265.0 GGN ++=  where N equals the number of accidents and 

G is the percent of grade.  This shows that accident rates increase with an increase in 

grade (Gibreel 309).  A later study in 1994 concluded that accident rate slightly increases 

with increases in grade up to six percent and sharply increase at grades higher than six 

percent indicating that for rolling and mountainous terrain, the grade plays a large role in 

effecting accidents (Choueiri et al 44). Minimum grades can also be an important issue.  

They are based on the need to provide adequate drainage especially when there are curbs 

present, which prevent free drainage from all parts of the roadway (Garber & Hoel 676).  

If the minimum grade is not large enough, water can collect on the pavement and 

contribute to the road’s deterioration and increase accidents by causing vehicles to 

hydroplane.   

Vertical curves are supposed to provide a gradual change from one grade to the 

next for a smooth overall ride and are mostly parabolic in shape and can be classified as 

crest or sag curves (Garber & Hoel 676).  To design a vertical curve, the criteria to 

consider includes the minimum stopping sight distance for crest curves, headlight sight 

distance for sag curves, drainage, comfort and appearance for both types of curve.  
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Headlight glare and minimum sight distance work in a similar fashion, by providing 

minimum allowable lengths for the curves.  Available sight distance should be designed 

to be equal or greater than the required sight distance to make certain that all the design 

requirements are met.  Headlight glare conditions are most important on sag vertical 

curves where on-coming traffic can blind the driver if the curve is designed improperly.  

Driver comfort is also most important in sag vertical curve conditions where gravitational 

and vertical centripetal forces are acting in opposite directions, so the rate of change of 

grade needs to be kept within “tolerable limits” (AASHTO Greenbook 269). The 

appearance consideration is that long curves have a more pleasing appearance than short 

ones, which can give the appearance of a sudden break in the profile (AASHTO 

Greenbook 270).  Appearance and comfort are only given a passing consideration, as 

most curves that are designed for the minimum sight distance will already be appropriate 

for comfort and appearance.   

2.4 Access Control 

The function of a highway system is to provide both mobility and access.  Arterial 

roadways can be designed with various levels of both accessibility and mobility.  

Arterials often have infrequent access points and barriers to prevent crossing, as found in 

the interstate system or principal arterials, or they can be designed with low access 

control with many direct access points for all land uses as in the minor arterials.  

Improving safety is an important goal of access control management.  To help in 

evaluating the possible benefits, models to predict crashes based on road geometry and 

access control characteristics are being developed.   
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One of the major indications of access control management is the presence of 

medians and islands on the roads and at intersections.  A common access control 

technique involves the use of medians and refuge islands to increase safety by decreasing 

the number of possible vehicle or pedestrian conflicts.  The definition of a median is “the 

portion of a highway separating opposing directions of the traveled way”(Green Book, 

341).  This definition does not, however, state what the function of a median is or how it 

is to be constructed. There are a variety of different median types in use where some are 

combined with barriers designed to prevent out-of-control vehicles from crossing into 

opposing vehicles and wider medians relying on their width to prevent opposing vehicle 

crashes.  Medians can be divided into three major types: raised, depressed or flush, and 

installed for several different reasons. 

2.4.1 Median Purpose 

Medians are an effective method for increasing safety and vehicle capacity on 

arterials and are generally considered to improve pedestrian safety. The main goals of a 

median include a) separating opposing vehicles b) providing vehicles with a safe clear 

zone to avoid other moving vehicles and reduce roadside object collisions and c) 

providing a refuge for turning or crossing vehicles and pedestrians (Knuiman et al 71).  

Medians can be designed for one or more of these general goals.  One way for reaching 

these goals is for medians to provide an additional lane for thigh speed traffic by creating 

left turn bays and removing the turning vehicles from blocking the traffic flow.  

Similarly, medians will protect entering vehicles that want to cross one or both directions 

of traffic. Medians on a divided highway can provide a recovery area for out-of-control 

vehicles, by allowing space for the vehicle to regain control before crossing into the 
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opposing traffic.  A side benefit of medians on arterials is that they can provide a 

landscaping area, as long as vegetation is frangible and will not cause fixed object 

collisions.  Despite these opportunities for medians to protect vehicles and pedestrians, 

their safety benefits are largely unknown and theoretical since the true effects of medians 

are difficult to quantify. 

Similar to medians, refuge islands are designed to provide a place of safety for 

pedestrians who cannot safely cross the entire roadway at one time due to changing 

traffic signals, oncoming traffic, or the pedestrian’s own capabilities.  They are 

particularly useful at locations where heavy volumes of traffic make crossing difficult 

especially on multilane roadways, large or irregularly shaped intersections and at 

signalized intersections (Bowman & Vecellio a 180).  However many studies done on the 

effect of medians on improving pedestrian safety have been called into question due to 

the researchers disregard of changing pedestrian and vehicular volumes throughout the 

time period of the study (Bowman & Vecellio a 183).   

The before and after studies of pedestrian accidents in areas with median 

installations often do not take into account the increased number of pedestrians when a 

median or island is installed.  Larger numbers of pedestrian accidents at a specific 

location may not be alarming if the accident rate is calculated, but getting realistic 

pedestrian counts is difficult and rarely done.  Therefore, Bowman and Vecellio’s 

findings of higher accident rates for undivided arterials than for arterials with raised or 

two-way-left-turn-lane may be due to larger volumes of pedestrians being attracted to the 

areas with undivided cross sections than the median treatment being effective.  Medians 

and refuge islands are both techniques intended to increase pedestrian safety, but the 
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actual effect on pedestrian safety is unclear and, like medians, difficult to quantify 

especially as most studies have focused on the safety benefits to motorized vehicles.  

2.4.2 Median types 

There are three major types of medians, raised, depressed, and flush.  Depressed 

medians are generally used on freeways to help create more efficient drainage and snow 

removal.  According to AASHTO’s Policy on Geometric Design of Highways and 

Streets, depressed medians should have side slopes of 1V:6H, but 1V:4H also may be 

adequate (Green Book 341).  Figure 7 shows the layout of typical depressed medians.  

This type of median separates the opposing traffic, but may cause problems in providing 

a safe clear zone between the two directions.  This can be due to the depression intended 

to aid with drainage not being properly maintained and vegetation growing up.  Also, if 

the slopes are built too steep a vehicle could roll over while in the median.  

  
Figure 7: Depressed Median  

Exhibit 7-7 AASHTO’s Green Book 
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Raised medians, on the other hand, are seldom used in freeway situations any 

more.  On freeways, raised medians cause problems for out-of-control vehicles.  The 

slope, while separating the traffic flows, does not allow for the out-of-control vehicles to 

use the median as a place of refuge and avoid vehicles and objects.  The out-of-control 

vehicle cannot climb the slope and the high slope tends to cause the vehicles to roll over 

and land back in the traffic stream that was just left.    

However, raised medians of a different style have an application on arterial streets 

where it is desirable to regulate left-turn movements, by limiting left turns and U-turns 

except at designated points.  Separating the traffic in arterial streets also increases the 

comfort level of the driver and increases the traffic speed.  In this situation, the term 

raised median implies the use of a curb and ability to be used as a pedestrian refuge as 

seen in Figure 8.  In order to be officially called a pedestrian refuge, medians must be at 

least 4 feet wide, though 6 feet is needed for multiple pedestrians, bicyclists and 

wheelchairs.   
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Figure 8: Raised Curb Median 

Raised curb medians were the predominant treatment first used in urban areas.  

They were found to be effective in controlling left turn movements and separating 

opposing traffic flows as well as providing pedestrian refuge.  Table 3 shows a compiled 

list of the advantages and disadvantages of raised medians.  Use of raised medians 

increases traffic flow and speed limits while reducing the number of mid block collisions 

by limiting the number of conflict points.  However, there is often an increase in crashes 

at intersections and sometimes an increased number of fixed object collisions.  Increasing 

congestion, limited right-of-way, high construction cost, and the need for more left turn 

opportunities resulted in the increasing use of flush medians, specifically two-way left-

turn lanes in urban locations where previously a raised curb median would have been 

installed (Bowman & Vecellio a 181).   
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Table 3: Advantages and Disadvantages of Raised Medians 

Advantages Disadvantages 
1. Discourages new strip development and 
encourages large planned development 

1. Reduces operational flexibility for 
emergency vehicles and others 

2. Allows better control of land use by 
local government 

2. Increases left turn volume at major 
intersections and median openings 

3. Reduced number of conflicting vehicle 
maneuvers at driveways 

3. Increases travel time for vehicles 
desiring to turn left where median openings 
are not provided 

4. Safer on major arterials with high (>60) 
number of driveways per mile (>37 
driveways per km) 

4. Reduces capacity at signalized 
intersections 

5. Increases traffic flow 5. Possible increase of accidents at 
intersections and median openings 

6. Desirable for large pedestrian volumes 6. Usually increases fixed object accidents  
7. Permits circuitous flow of traffic in grid 
patterns 

7. Requires motorists to organize their trip 
making to minimize the need for U-turns 
and use the arterial only for relatively long 
through movements 

8. Allows greater speed limits on through 
road 

8. To minimize delay requires inter-parcel 
access, which may not be under 
government control or would be expensive 
to purchase and construct 

9. Safer than TWLTL in 4 lane sections 9. Restricts direct access to adjoining 
property 

10. Safer than TWLTL in 6 lane sections 
but depends on number of signals/mile, 
driveways/mile, ADT and approaches/mile 

10. Installation costs are higher 

11. Encourages access roads and parallel 
street development 

11. Can create on over concentration of 
turns at median openings 

12. Reduces accidents in mid-block areas 12. Indirect routing may be required for 
some vehicles 

13. Reduces total driveway maneuvers on 
the major roadway 

13. When accidentally stuck, curb may 
cause driver to lose control of the vehicle 

14. Low maintenance cost of raised 
medians, depending on final design 

14. A median width of 25 ft (7.6 m) is 
needed to accommodate U-turns 

15. Studies have shown that delay per left 
turning vehicle does not increase, up to the 
studied volume of 3700 vph 

 

16. Curbs discourage arbitrary and 
deliberate crossings of the median 

 

17. Reduces number of possible median 
conflict points 

 

18.Provides separation between opposing 
traffic flows 

 



 47

Table 3: Advantages and Disadvantages of Raised Medians Continued 

Advantages Disadvantages 
19. Provides a median refuge area for 
pedestrians 

 

20. With raised grass medians, an open 
space is provided for aesthetics 

 

Bowman & Vecellio 

Two-way left-turn lanes are a type of flush or traversable median, which is a 

median treatment type that is delineated but does not physically restrict traffic 

movements.  Delineation comes from marking the pavement with appropriate stripping.  

Common types of flush medians are narrow divider strips, alternating left turn lanes and 

two-way left-turn lanes, which are collectively referred to as painted medians (Bowman 

& Vecellio a 180).  Two-way left-turn lanes (see Figure 9) are intended to remove left 

turning vehicles from the main traffic throughways and to provide a storage area until a 

large enough gap in traffic is available to complete the turning movement.   

 
Figure 9: TWLTL 

Garber & Hoel 164 

A compiled list of advantages and disadvantages that come from installing two-

way left-turn lanes can be seen in Table 4.  Two-way left-turn lanes help to improve 

safety by removing the turning vehicles from the through-traffic lanes, but at the same 

time maximizing access for the turning vehicles.  This is a beneficial solution because 

emergency vehicles do not run into access problems and the two-way left-turn lanes 

eliminates island fixed objects, which occur with raised medians.  Problems can occur, 

however, with conflicting turning movements, visibility problems and safety for 

pedestrians.  Visibility problems range from problems seeing he turning vehicles to 
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problems, especially at night, in determining the location of the two-way left-turn lane, 

while pedestrians loose their island refuge and have a further lane of traffic to cross.   

Table 4: Advantages and Disadvantages of TWLTL 

Advantages Disadvantages 
1. Left turning vehicles are removed from 
through traffic while maximum left turning 
access to side streets and driveways is still 
provided 

1. There are conflicting vehicle maneuvers 
at driveways 

2. Delay to left turning vehicles and others 
is often reduced 

2. Poor operation of roadway if stopping 
sight distance is less than AASHTO 
minimum design 

3. Operational flexibility for emergency 
vehicles and others is enhanced 

3. No pedestrian refuge areas for 
pedestrians free from moving vehicles 

4. When less than 60 commercial 
driveways per mile (37 driveways per km) 
are permitted to be constructed two-way 
left turn lanes appear to be safer 

4. Operate poorly under high volume of 
through traffic 

5. Roads with two-way left turn lanes are 
operationally safer than roadways with no 
separate left turn lanes in the median 

5. Should not be used when access is 
required on only one side of the street 

6. Detours can be easily implemented when 
required by maintenance in adjacent lanes 

6. Visibility problem of painted median 
especially with snow and rain or when 
pavement markers outlive their design life 

7. Provides spatial separation between 
opposing traffic flows 

7. A safety problem when they are used as 
a passing lane 

8. Eliminates the median island fixed 
object 

8. High maintenance cost of keeping the 
pavement striped and raised pavement 
markers in proper operating condition 

9. Provides temporary refuge for disabled 
vehicles 

9. Must continually instruct the public on 
proper use and operation 

10. Can be used as a reversible lane during 
peak hours 

10. Delays to left turning vehicles increase 
dramatically when two way through 
volume reaches 2800 vpd 

11. Permits direct access to adjoining 
properties 

11. Limits operating speed to a maximum 
rate 45 mph (73 km/hr) 

 12. Does not guarantee unidirectional use 
at high volume intersections 

 13. Are not aesthetically pleasing for some 
people 

 14. Allows numerous potential traffic 
conflict points 

Bowman & Vecellio 
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Another type of flush median that has attempted to eliminate some of these 

problems is the alternating left turn lane which provides left turn opportunities for one 

direction at a time with both directions have turning capabilities over limited sections of 

the roadway (Bowman & Vecellio a 181).  Alternating lanes have similar properties to 

two-way left-turn lanes, but eliminate possible conflicts by turning vehicles at the price of 

eliminating some access.  This type of median works well in small urban areas especially 

where only one side of the road is developed otherwise the access restrictions can create 

more problems.  

2.4.3 Median Width 

Median width is defined as the width separating the traveled ways and includes 

the median width as well as the inside shoulder width.  This is an important distinction, 

especially with traversable medians, because shoulder width provides some of the same 

services as a median, recovery room specifically, and may sometimes be difficult to 

distinguish especially for unpaved shoulders next to grass medians.  It has been suggested 

that median widths should be at least 60 feet wide on rural highways and as narrow as 10 

feet on urban highways if a barrier is used, but these are just heuristics and few studies 

have provided quantitative measures on the effect of median width on frequency and 

severity of accidents (Knuiman et al 70).  Little guidance is given for median widths even 

by AASHTO.  AASHTO’s guidelines give a general range of median widths ranging 

from four to eighty feet or more, with no apparent upper limit.  In urban arterial 

situations, a minimum width of four feet is used under the assumption that “a median 4 ft 

wide is better than none” (Green Book 478).  When left turn lanes are desired, the median 

should be at least eighteen feet wide allowing room for the lane and a separator, though 
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in restricted locations a twelve foot median may be used (Green Book 478).  Overall, the 

median must be wide enough to give the motorist the perception of safety for whatever 

movements are being completed, turning, crossing or straight movements (Knuiman et al 

79).  While minimal guidelines are given by AASHTO on the widths of medians, there is 

no agreed upon way to quantify what widths should be used to increase or even to ensure 

safety of either vehicles or pedestrians.  The following sections go into further detail 

about the effects medians have on safety. 

2.4.4 Effects of Medians on safety 

Medians have long been recognized as an effective method of increasing vehicle 

safety and capacity on urban arterials.  But, a summary of quantitative results for flush 

medians on highways has only shown that wider medians have lower accident rates.  

There is not a fixed amount of safety gained per increase in width.  This unknown 

quantity of safety is reflected in the limited amount of guidelines for median widths.  

Since the safety benefit of medians is unknown, the best width to maximize safety is 

equally unknown.   

Knuiman et al looked at the effect of median width on frequency and severity of 

accidents on homogenous highway sections with a traversable median (Knuiman et al 

70).  A homogenous section in this case means that the geometric and cross-section 

variables (lane width, pavement type, shoulder width, shoulder type, number of lanes) are 

constant.  The aims of Knuiman et al’s modeling process were to obtain standard errors 

and confidence intervals for estimated accident rates and to determine whether the 

observed reduction in crude accident rates for wider medians persisted after adjusting for 

other roadside characteristics.   
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Using a log-linear regression model, Knuiman et al included variables such as 

functional classification, posted speed limit, access control (none, full, partial) curvature, 

average daily traffic and section length in their models. Many of the variables considered 

were correlated with median width, which made the fitting of the interactions between 

median width and other variables difficult.  The estimated effects of median width 

obtained from the fitted models may, therefore, be conservative due to the inclusion of 

variables correlated with the width (Knuiman et al 73).  Knuiman et al found that there is 

little reduction in accident rates for medians up to twenty-five feet and decline in rates is 

most apparent for median widths beyond twenty to thirty feet with the decreasing trend 

leveling off somewhere between sixty to eighty feet (Knuiman et al 76).   

While not giving exact numbers, Knuiman et al did manage to give a better range 

of median widths to use than do earlier assumptions.  They found that the decrease in 

accident rates tapers off after sixty to eighty feet, showing that building medians larger 

than eighty feet will not be cost effective in reducing accidents.  A few more accidents 

may be prevented by larger medians, but not to any noticeable degree.  Also shown was 

that the minimum width should really be approximately twenty-five to thirty feet which is 

where observable decreases in accident rates can be seen.  The study concluded “accident 

rates decrease with increasing median width, even when other confounding variables are 

controlled for” (Knuiman et al 77).  What was not found with the decreasing accident 

rates was a concurrent decrease in the severity of accidents.  Median width affected as 

many of the severe crashes as the less severe ones, and primarily lowered multi-vehicle 

crashes but had no effect on single vehicle run-off-the-road crashes (Knuiman et al 79).  
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So while a more effective median width can be chosen, there are still many other 

confounding variables that affect safety of vehicles. 

2.4.5 Comparison of Median treatment safety 

Urban locations primarily use raised curb medians or two-way left-turn lanes.  

Studies looking at the relative safety between the two have discovered conflicting results.  

Some researchers have found no difference in the accident rates of the two treatment 

types, some found two-way left-turn lanes to have higher rates and still other researchers 

found raised medians to have the higher accident rates.   When examined individually, 

the installation of a median whether raised or painted typically resulted in a lowering of 

accident rates and improvement of safety (Bowman & Vecellio a 182).  Both median 

types showed typical reduction in total number of vehicle accidents in the 25 to 35-

percentage range (Bowman & Vecellio a 186) and both resulted in a reduction in accident 

severity (Bowman & Vecellio a 187).   

Brown and Tarko have developed prediction models for total number of crashes, 

number of property-damage only crashes and number of fatal and injury crashes with the 

prime interest of seeing if controlling access does improve safety.  Brown and Tarko 

chose to make crash frequencies proportional to traffic volume, despite this not being an 

exact fit, the data showed this to have an insignificant effect on the models (Brown and 

Tarko 71).  Brown and Tarko found more access points to results in a higher crash rate, 

the presence of an outside shoulder reduces crashes, the presence of traffic signals to 

increase rates, and medians with no opening to decrease accident rates (Brown and Tarko 

72).  Brown and Tarko concluded that in general access control has a beneficial effect on 

safety.  
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Bonneson and McCoy also developed models for predicting the safety of urban 

arterial streets focusing on use of specific median types (Bonneson & McCoy 33).  They 

created three median specific models for raised medians, two-way left-turn lanes and 

undivided cross sections.  For arterial streets the independent variables included in the 

accident prediction models include traffic demand, road length, driveway density, median 

type, number of lanes, and adjacent land use.  Bonneson and McCoy found several trends 

from their modeling, including raised-curb median treatments having the lowest accident 

rate, two-way left-turn lanes slightly higher and undivided segments the highest rates 

(Bonneson & McCoy 35).  Land use was also show to be important with business and 

office land use locations having consistently higher accident rates than residential and 

industrial areas.  Despite being unable to yet agree on the safer median treatment between 

raised medians and two-way left-turn lanes, most researchers agree that either treatment 

will reduce accident rates compared with an undivided cross section, so that proper use of 

access control methods does result in safer roads.    

2.5 Intersection Accidents 

A major theory behind intersection accidents is that the number of accidents at an 

intersection is proportional to the sum of flows that enter the intersection (Hauer et al 49).   

This is sometimes referred to as the traffic intensity or the total number of vehicles 

entering an intersection per year and is often one of the most important factors in 

predicting injury accidents (Lau & May 63). Several problems exist with this type of 

thinking including that problems occur when looking at specific accident types, it is an 

overly simplistic version of events and is very dependent on correlation.  Another theory 

is that accidents relate to the products of conflicting flows (Hauer et al 49).  Hauer et al 
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found that accidents tend to be related to the product of flows with each flow raised to a 

power of less than 1 (Hauer et al 49).  This cross street traffic, traffic from the minor road 

is an indication of how many possible conflicts could exist at the intersection.  Accidents 

between vehicles proceeding in the same direction have to be estimated separately from 

accidents between vehicles (turning, left) in multiple approaches.  Customary 

categorization of accidents by initial impact (rear end, turning movement, sideswipe, etc) 

is not very informative (Hauer et al 56).  It cannot be assumed that classification of an 

accident as an angle accident implies that vehicles were traveling at right angles to each 

other.  To be specific the categories need to clearly show the relationship between the 

vehicles involved in the accident.  This becomes an important issue when categorizing 

accidents.   

Important factors when developing models that deal exclusively with intersection 

accidents include traffic intensity, percent of cross street traffic, intersection type, signal 

type, number of lanes on the main and side streets, and left turning arrangements (Lau & 

May 65).  At the time of Lau and May’s work the current intersection models in 

California only used traffic intensity and intersection type to predict accidents (Lau & 

May 65).  Other factors such as turning movement counts and conflict analysis may help 

in creating prediction models, but these types of data are more time intensive and difficult 

to collect and are not readily available for use in developing prediction models.  

Hauer et al find that intersection accidents are not proportional to the sum of 

entering volumes.  Accident rates should not be calculated on the “basis of the sum of 

entering volumes to compare the safety of two different intersections” (Hauer et al 57). 
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Another issue with junction models is that they are usually limited to major 

intersections with roads of collector or arterial classification.  There are many minor 

junctions that exist where knowledge of the traffic flows on the minor roads are unknown 

and the collection of such data would prohibit the usefulness of such a model.  Separate 

models of minor junctions are not possible without data collected just for that purpose 

(Mountain 705).  The separation and delineation made between link sections and minor 

and major intersections make the combination of the three important and the effect of one 

on the other significant.  

2.6 Modeling Types and Issues Related to Modeling 

Mathematical modeling is a technique to create a quantifiable method to predict 

the occurrence of certain events.  An accident prediction model is an equation that 

expresses accident frequency as a function of traffic flow and other road characteristics.  

Many models have been created to calibrate relationships between shoulder width, lane 

width and shoulder type on two-lane rural highways and several studies have looked at 

the effects of median width and type.  Hadi et al looked at roads in Florida separated by 

location, access type and number of lanes (Hadi et al 170).  Many issues have been 

brought to light due to issues relating to both modeling and the nature of traffic accidents.  

Several of the more important issues comprise the following sections.  

2.6.1 Generalized Linear Modeling 

Generalized linear modeling (GLM) is the most straight forward method used to 

develop mathematical models.  A GLM is usually made up of three components: a 

random component, a systematic component, and a link function that connects the other 

two to produce a linear predictor (Lord & Persaud, 103).  In generalized linear modeling 



 56

an important assumption is that random error occurs only in the dependent variable and 

that the explanatory variables are known without error (Maher & Summersgill 293).  This 

is an important assumption to keep in mind since not all the necessary variables 

contributing to car accidents are known without error.  For geometric and control 

variables such as number of lanes and presence of a median, the variables are known 

without error, but not so for all the traffic characteristic variables such as volume and 

percentage of heavy vehicles.  Ideally traffic flow should be the average annual daily 

traffic (AADT) over the whole time period under consideration, but data often comes 

from a “snapshot” of a single day from the study period and some time not even that 

(Maher & Summersgill 293).  Since volume studies are very time consuming, they are 

not performed on a regular basis and are adjusted based on state factors.   

The GLM is flexible in the choice of probability distribution for the random 

component, making this kind of model effective for traffic safety where number of 

accidents and other variables follow a Poisson or negative binomial distribution and 

further variables follow a normal distribution.  In the past, models have been developed 

that follow all of these distributions depending on what exactly is being studied.   

2.6.2 Linear Modeling 

There have been many studies which have the goal of establishing relationships 

between traffic accidents and road geometry, as well as determining the effect of road 

and intersection design on the frequency of accidents (Maher & Summersgill 281).  The 

majority of studies have historically used conventional analysis, linear regression, which 

assumes that the dependent variable is continuous and normally distributed with a 
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constant error variance.   Most often the regression coefficients are found by the 

traditional method of least squares (ordinary least squares).   

This method results in point estimators, β , that have minimum variance.  

Analysis of variance (ANOVA) approach is typically used and separates the sum of 

squares and degrees of freedom associated with the dependent variable.  The mean 

squared error, MSE, can be found on the ANOVA table and is an unbiased estimator of 

variance ( 2σ ).  The variance of the error terms ( iε ) is also an indication of the variance 

of the probability distributions of the dependent variable.   

The variance is used to calculate the coefficient of determination, 2R , which 

represents the proportion of variability explained by the regression function.  The 

coefficient of determination is the most common method for determining the quality of 

the model in question and ranges between zero and one.  An 2R  value near zero indicates 

that there is not a strong linear relationship between the dependent and independent 

variables.  A value of 2R  near one indicates a strong linear fit where the model explains 

the variability in the data.  The use of 2R should be used with caution to ensure the 

correct interpretation and be accompanied by the examination of scatter plots (Garber and 

Ehrhart 78).  2R  is only a useful parameter when looking at linear regression models; it 

does not apply to anything other than a normal distribution.  A low value may not just 

mean that the model is a bad fit for the data, but that there is not a linear relationship 

between the examined variables and another functional form (logarithmic, exponential) 

or distribution (Poisson, negative binomial) should be used.  

 Some traffic engineers believe that the coefficients of accident prediction models 

can not be properly estimated by ordinary least-squares or weighted least-squares 



 58

regression methods due to the non-negative, discrete nature of accident counts and the 

fact that variance of the number of accidents increases, but not linearly, as traffic flow 

increases (Lord & Persaud, 103).  In approximately the last ten to twenty years there has 

been a tacit agreement among modelers that conventional normal or lognormal regression 

models don’t have the necessary statistical properties to describe vehicle accidents. A 

major problem with linear/multilinear modeling is that it may predict negative accidents, 

which is not a possibility in real life (A Miaou et al 12).  A location with no accidents can 

occur, but not a location with negative ones.  The relationships between accidents and 

related factors do not always reflect linear behavior causing multi-linear regression to be 

inappropriate for analyzing the causes of accidents (Saccomanno & Buyco 24).   Instead, 

as modeling programs have become more accessible, sophisticated and user friendly, 

transportation professionals have begun to estimate model coefficients by using 

maximum-likelihood methods to calibrate generalized linear models.  The use of other 

types of distributions has also become more popular.  The favored choice of models 

appears to be the Poisson and negative binomial distributions.  Another natural choice of 

function due to the nature of accidents is the exponential function, which has been widely 

used by statisticians and econometricians (Miaou, 8). 

2.6.2.1 Model Fit 

Once a model has been developed, it needs to be shown to work for the 

application for which it has been applied.  The quality of the model must also be 

obtained.   

The coefficient of determination (R2) has traditionally been used over the past 

approximately thirty years as a criterion to determine how well the developed models fit 
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the observed data (Miaou 6).  R2 has been used to determine overall quality and usability 

of a model.  “The R2 statistic is a measure of the percentage of unconditional variance of 

the dependent variable explained by the available covariates” (Miaou, 13).  For any given 

data set the R2 value of the developed model has a minimum lower bound of zero and an 

maximum upper bound of one.  So a model with a coefficient of determination of 0.85 

would be considered good while a model with a coefficient of 0.36 would be considered 

as a poor candidate.  An R2 value of 0.7 or less is often considered the breaking point and 

models with lower values are typically not recommended for use (Miaou 6).  The R2 is 

often used to indicate the model fit to the data but also as a way to compare models.  

When comparing two or more models that predict the same thing, whether vehicle speed 

or accident rates, often models can look very different from each other with different 

variables and coefficients.  Using the R2 values to compare the relative quality of models 

from different studies helps by standardizing the model quality and simplifying the 

comparison process.  The decision to try and add variables to the model can also be 

formed from the R2  value.  Using a constant upper bound of one, many researchers look 

at ( )21 R−  as a measure of potential improvement that can be gained by including 

additional covariates (Miaou 6).  Increasing the number of variables is not, however, 

always the best move.  

The adjusted coefficient of determination, or 2
aR , is a modified measure that 

allows the total number of degrees of freedom (DOF) in the model to be reflected in R2 .  

2
aR  is used in model’s developing phase to decide which explanatory variables should be 

included.  The model with the largest 2
aR value is typically considered the best.  The 

reason for using the adjusted coefficient is that it includes information about the degrees 
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of freedom in the model.  Including more variables in a model may slightly improve the 

R2 value, but if the increase in the coefficient is not large enough, the loss of degrees of 

freedom can counteract the minimal benefits.  This adjusts for the fact that more variables 

is not always better.  Both the coefficient of determination and the adjusted coefficients 

are most commonly used for models with normal distributions and can loose some or all 

of their true meaning if applied to non-normal distributions (Bonneson & McCoy 31).  

Miaou et al. found that the R2 statistic is only meaningful in measuring the goodness-of-

fit for “normal linear regression models with additive mean functions” (Miaou 13).  

Accident prediction models are non-normal and typically non linear. Miaou et al. showed 

by example that R2 is not always an appropriate way to make decisions about quality and 

goodness-of-fit for accident models.  Since the use of these coefficients is relatively 

simple (larger value equals better quality) the temptation to use coefficients of 

determination with non-normal distributions must be avoided. 

Another major pitfall of coefficients of determination comes with the use of 

binary response models.  The upper bound for a perfect model can be less than one, 

implying that a model with a low value of R2 does not mean the fit is poor.  Brűde and 

Larsson showed that the R2 value of “Poisson regression models is dependent on the 

mean level of the dependent variable (i.e., the mean level of accident frequency)” (Miaou 

6).  It was shown that the higher mean accident levels would result in higher R2 values 

regardless of the quality of the model.  This is a reason why R2 values of accident 

prediction models for urban areas have typically been reported higher than those for rural 

areas, based solely on the higher accident rates (Miaou 6).  This also implies that R2 

values should not be the only method chosen for comparing goodness-of-fit of models 
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when they are from different studies especially when different locations, accident types, 

or time periods are involved (Miaou 7).   

There are many statistical tests and criteria that are available for evaluating the 

quality of the goodness-of-fit of a model and several should be used in conjunction to 

determine the quality for accident prediction models.  A good check of model fit is the 

statistical significance of the variable coefficients, which can be found by looking at the 

standard error and 95 percent confidence intervals for each coefficient (Bonneson & 

McCoy 30).  Checking that the individual variables are significant and that with 95 

percent confidence their coefficients won’t become zero helps to ensure the quality of the 

model. 

Other well-known statistics to measure the quality of the fit between the observed 

iY and the fitted values iµ̂  are the scaled deviance (SD) and the Pearson 2χ statistic.  
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When there is perfect agreement these statistics are zero, otherwise they are 

positive.  The scaled deviance is based on the log likelihood function and the estimation 

of parameter estimates are obtained through the maximum likelihood and is the more 

commonly used of the two statistics (Maher & Summersgill 283).  This statistic follows 

the 2χ distribution with n-p-1 degrees of freedom, where n is the number of observations, 

and p is the number of model variables.  This statistic is asymptotic to the 2χ distribution 

for large sample sizes and exact for normally distributed error structures (Bonneson & 
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McCoy 30).  However, this statistic is not well defined in terms of minimum sample size 

and non-normal distributions (Bonneson & McCoy 30).  This is a statistic that people 

tend to take at face value, but since it is not well defined for non-normal distributions, 

care should be taken to ensure that it is applied mainly to linear models, but if it is used 

for non-normal distribution models, that it is not the only qualification for goodness of 

the model. 

Other model fit techniques include the Cumulative Residuals Method (CURE), 

which investigates the quality of fit by plotting the cumulative residuals for each 

independent variable.  This is a graphic method that allows the fit of the function to the 

data to be observed (Lord & Persaud 106).  An advantage of this and other graphical 

methods is that CURE is not dependent on the number of observations as other 

techniques are which allows models developed from any sample size to be assessed with 

this method (Lord & Persaud 106).    

Akaike’s information criterion, AIC, can be used for multivariate models to 

predict the fit of a model based on the expected log likelihood  (Garber and Ehrhart 78).  

It is based on the Kullback-liebler information criterion, which measures the distance 

between the true model and the hypothesized model  (Garber and Ehrhart 78).  

( ) kLACI 2ln2 +−=  where L is the Gaussian likelihood of the model and K is the 

number of free parameters in the model.  In terms of sum of square of the errors 

k
kn

SSEnACI 2ln +







−
=  where n is the number of model residuals, 

( )∑ −= 2ˆii yySSE iy is the observations ŷ =model estimates.  The first term measures 

badness of fit or bias and the second measures complexity of the model.  The goal for 
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selecting the model is to minimize the criterion and select the best fit with the least 

complexity (Garber and Ehrhart 78).   

The dispersion parameter, 2σ , can also be used to measure fit by assessing the 

amount of variation in the observed data.  A dispersion parameter near one indicates that 

the assumed error structure is approximately equivalent to that found in the data 

(Bonneson & McCoy 31).   

2.6.3 Bernoulli Random Variables 

A Bernoulli random variable, named after the Swiss mathematician James 

Bernoulli, can take on only two values (e.g. 0/1, on/off, yes/no, present/not present, 

success/failure) with respective probabilities of 1-p and p (Ross 144). 

( ) pp =1  

( ) pp −= 10  

( ) 0=xp  if 0≠x  or 1≠x  

A Bernoulli trial consists of selecting and testing one item from a finite set of 

items and seeing which value it has (Petruccelli et al 136).  The probability of success in 

a Bernoulli trial is always nonnegative and at most unity.  

An indicator variable is used to designate whether or not an event occurred or if a 

characteristic is present.  If A is an event, then the indicator random variable AI  takes on 

the value of 1 if A occurs and the value of zero if A does not occur.   

( ) 1=zI A , if Az ∈   

( ) 0=zI A , otherwise (Rice 34) 

Indicator random variables are, therefore, a special case of Bernoulli random 

variables with only probabilities of zero or one.  Both Bernoulli random variables and the 
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more specific indicator variables are commonly used in traffic models.  For instance in a 

model that is predicting the 85th percentile speed of a vehicle an indicator variables could 

be used to show the presence of horizontal curves where a zero would mean a straight 

road and a value of one would men that one or more curves were present.      

2.6.4 Binomial Distribution 

There are n independent experiments or trials performed in a binomial distribution 

where each trial results in a “success” with the same probability p or a “failure” with the 

same probability 1-p.  “The total number of successes, X, is a binomial random variable 

with parameters n and p” (Rice 34).  K is the number of successes that occur throughout 

the entire experimental program.  Each experiment is constructed from independent 

Bernoulli trials.   

A classic example used in binomial distributions is the situation of tossing a coin 

multiple times.  A coin is tossed 10 times (i.e., n, the number of trials, equals 10) and the 

total number of tails is recorded (i.e., k, the number of successes, equals the number of 

tails observed).  The probability that X=k or ( )kp  can be found by the following method: 

( ) ( ) ( ) knk pp
k
n

kpXP −−







== 1 where K,2,1,0=k .   

The distribution for tossing a coin 10 times is shown in Figure 10 as a binomial 

distribution.  “There are 







k
n

 ways to assign k successes to n trials” (Rice 34).  The 

combinatorial notation 







k
n

 can also be written in the following way: 

( )!!
!

knk
n
−

(Petruccelli et al 167).  This allows the entire probability distribution to be 
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shown by: ( ) ( ) ( ) knk pp
knk

nkp −−
−

= 1
!!

! .  The mean of the binomial distribution is 

np=µ , the variance is ( )pnp −= 12σ , and the standard deviation is ( )pnp −= 1σ  

(Petruccelli et al 1168).   
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Figure 10: Binomial Frequency Function n=10. p=0.5 

The binomial distribution can consist of Bernoulli trials and other types of 

situations.   In the Bernoulli trial, there are only two options, but binomial distributions 

can be used when there are more than two optional answers.  For instance, a die typically 

has six sides.  This can be used in binomial distributions in many different ways.  For 

example, a success could be considered rolling an even number (2, 4, or 6).  Therefore 

there are multiple chances for a success to happen, but there is still only the two options 

of  “success”(even number) and “failure” (odd number).  There are three key assumptions 

in binomial distributions: (1) each trial is independent, (2) each trial results in only one of 

two possible outcomes, and (3) the probability of a success in each trial is constant 

(Montgomery and Runger 74).  The binomial distribution is used extensively in statistical 

and probability applications.  In spite of the need for the individual trials to be 
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independent, certain continuous problems can be modeled using this distribution.  For 

example, time and space problems, which are generally continuous, may be modeled by 

discretizing time into finite intervals with only two possibilities within each interval.  

Then what happens in each time (or space) interval becomes a trial (Ang & Tang 109). 

2.6.5 Log-Linear Models 

Log-linear models assume that the effect of variables on the accident rate is 

multiplicative rather than additive as in linear models (Knuiman et al 72).  Estimated 

rates from log-linear models cannot be negative, which fit accident rates in that you can 

have zero accidents or a positive number of accidents, but negative accidents do not exist.  

“Zegeer et al considered both additive and multiplicative (log-linear) models and 

concluded that the multiplicative models provided a better fit to the data” (Knuiman et al 

72).  Knuiman et al assumed a negative-binomial variance function for the accident count 

per section so ( ) ( ) ( )[ ]2* YEkYEYVar +=  where k is the same for all section and Var(Y) 

and E(Y) are the variance and expected value respectively.   

This has the form of ( ) kk XXX βββαλ ++++= ...log 2211  where 

λ= ( ) ( ) 810*
**365* 



==

LTADT
YERER  and Xi is the indicator variable for categorical 

roadway characteristics or actual values for quantitative roadway characteristics. 

Loglinear models are where the predictive variable is really the log of the variable. 

Advantages of using loglinear models include having continuous and categorical 

variables.  “A loglinear approach allows the statistical significance of partial and 

marginal association to be tested for a given combination of categorical factors” 

(Saccomanno & Buyco 25).  Multiplicative models also assume that the effects of 
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individual variables work together and that they do not act independently from one 

another, so that combinations of characteristics rather than individual ones better explain 

events.  

2.6.6 Poisson Modeling 

The majority of studies, historically, have used conventional regression analysis, 

which assumes that the dependent variable is continuous and normally distributed with a 

constant variance.  Early modeling work used multiple linear regression modeling with 

assumed normally distributed errors, but as work progressed the nature of traffic 

accidents showed that it is better to assume a Poisson distribution for the frequency of 

accidents.  The assumption of a normal distribution is not correct when applied to 

crashes, which are discrete, non-negative variables whose variance depends on its mean 

(Hadi et al 169).  Beginning in the early 1990’s, researchers started to try to over come 

some of the problems associated with linear regression.  Poisson regression models, 

widely used in modeling accident and mortality data in epidemiology, began to be 

applied to traffic accidents (A Miaou et al 12).  Poisson regression and negative binomial 

regression have both been used to combat the incorrect assumptions of normality for 

accident counts.  The Poisson model “although representing a significant advance in 

accurate and reliable modeling capability, is not without its weaknesses and technical 

difficulties which must be overcome if it is to be used effectively” (Maher & 

Summersgill 282).   

Poisson regression is a nonlinear approach to modeling where the response 

variable is a count, or a discreet event, with large outcomes being rare events (Neter et al 

609).  The Poisson distribution model was named for the French mathematician S. D. 
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Poisson who lived from 1781 to 1840 (Petruccelli et al 147).  He introduced the concept 

in a book regarding the application of probability theory to lawsuits and criminal trials 

(Ross 154).   The book was designed as a contribution to judicial practices and contains 

“so much preliminary material of a purely mathematical and probabilistic nature that it 

must be regarded as a textbook on probability with illustrations from the courts of law” 

(Haight 113).  The following are examples of random variables that usually obey the 

Poisson probability laws: 

• The number of people in a community living to 90 years of age, 

• The number of customers entering a post office on a given day, or 

• The number of α-particles discharged from radioactive material over a given 
time. 

Count data has been analyzed by ordinary linear regression and the advantage of 

using Poisson regression comes from the fact that the distribution is tailored to the 

discrete and often highly skewed distribution of the dependent variables.   

In a Poisson distribution, there are two main sources of variability; the differences 

in mean accident frequency among similar segments and randomness in accident 

frequency.  In spite of similarity between roadway segments, each has its own unique 

mean accident frequency (m), where the distribution of m within a group of similar 

segments can be described by a probability density function with mean E(m) and 

variance Var(M) (Bonneson & McCoy 29).  This distribution has been adequately 

described by the gamma density function (Bonneson & McCoy 29).  If accident 

occurrence at a segment is Poisson distributed then the distribution of accidents around 

the E(m) of a group of segments can be described by the negative binomial distribution. 
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Poisson regression models discreet events ( ,...2,1,0=iY ) where a large number of 

occurrences is rare.  The dependent variable follows a Poisson distribution where  

( ) ( )
!

exp
Y

Yf
Y µµ −=  ,...2,1,0=iY  

( )Yf  is the probability that the outcome is Y 

Y!=Y(Y-1)(Y-2)…3*2*1 

While Y can take on only nonnegative, integer values, µ can be any positive 

number.   As can be see in Figure 11, where µ =1.75, the probabilities for the Poisson 

distribution are graphed.  The probability mass function is defined for an infinite set of 

possible values of Y, though there will be a finite upper bound on the values of Y that are 

actually observed (Petruccelli et al 147).  Despite there being an upper bound on the 

observed values of Y, the Poisson distribution allows for modeling of random phenomena 

without having to know the maximum value that the random variable can take 

(Petruccelli et al 148).   
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Figure 11: Probability Mass Function of a Poisson distribution with µ =1.75 
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As µ gets larger, the mode moves away from zero causing the distribution to 

resemble more and more that of a normal distribution (Allison 218).  A unique feature of 

the Poisson distribution is that the mean is equal to the variance.  

{ } µ=YE  

{ } µσ =Y2  

The parameter µ depends on the explanatory variables and it is standard to let µ 

be a log-linear function of the X variables ikkii XX βββµ +++= ...log 110 .   

In the above model form it is assumed that the counts were collected over a 

certain period of time.  The Poisson distribution can also be applied when the dependent 

variable is collected over different lengths of time or space for different individuals.  In 

ordinary regression analysis, the individual event count could be simply divided by the 

length or time interval.  That will not work in “Poisson regression because a division by 

time implies that the resulting model no longer has a Poisson distribution” (Allison 228) 

and the observed number of accidents at a site is assumed to be Poisson distributed about 

a mean of iµ , which is assumed to be proportional to the length of the observation period 

iT  (Maher & Summersgill 282).  When this situation arises, the probability distribution 

can be adapted by t the number of units of time or space to which the Y value 

corresponds.  

( ) ( ) ( )
!

exp
Y

ttYf
Y µµ −=  ,...2,1,0=iY  

The Poisson regression model can be stated as { } ii YEY ε+=  ni ,...2,1= .  The 

mean response for the ith case, µ, is assumed to be a function of the set of predictor 

variables 11,..., −pXX .  ( )βµ ,iX  denotes the function that relates the mean response iµ to 
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iX , the values of the predictor variables for case i and β the values of the regression 

coefficients (Neter et al 610).  There are several commonly used functions for Poisson 

regression including: 

( ) ββµµ ', iii XX ==  

( ) ( )ββµµ 'exp, iii XX ==  

( ) ( )ββµµ 'log, ieii XX ==  

In all of the cases the mean response iµ  is a nonnegative value.  The distribution 

of the error terms iε is a function of the distribution of the response variable which is 

Poisson distributed.  The Poisson model can be stated as: iY  are independent Poisson 

random variables with expected values iµ  where ( )βµµ ,ii X= . 

Poisson distributions model the probability of discrete events by ( )
!Y

eYP
Yµµ−

= .   

The Poisson distribution can be derived as the limit of a binomial distribution as the 

number of trials, n, approaches infinity and the probability of success on each trial, p, 

approaches zero in such a way that λ=np (Rice 39).  Where Y is the number of events 

in a chosen period and µ is the mean number of events in the chosen period.  The Poisson 

regression model assumes that the mean number of events is a function of regressor 

variables.  To estimate crash frequencies, they are assumed to be Poisson distributed by 

( )
( ) ( )[ ]

!
,

i

Y
ii

X

i Y
Xe

YYP
ii βµβµ−

== . Yi equals the number of crashes at road section ‘i’ for a 

chosen time period. β is the vector of parameters to be estimated ( )βµ ,ii X is the mean 

number of crashes on section ‘i’ which is a function of a set of regressor variables X.  Xi 
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is the vector of regressor variables for segment i.  The function ( )βµ ,ii X , which relates 

the distribution mean to regressor variables, is the link function ( ) ββµ iX
ii eX =, .  The 

regressor or explanatory variables are items such as traffic glows and geometric 

characteristics.  The vector X, containing the explanatory variables has 1 as its first term 

so that the first term in vector β is the interceptor or constant.  When sites are lengths of 

road rather than junctions it is usually assumed that iµ  is also proportional to the length 

iL as well as the time period, so that iλ  is in terms of accidents per kilometer per year.   

One of the main problems is the phenomenon of overdispersion where the 

assumption of a pure Poisson error structure can be seen to be inadequate.  The negative 

binomial model is often chosen to overcome this issue as an extension to the Poisson 

model.  Often, however, variances greater than the mean are observed due in part to not 

including all the relevant variables in the model (Knuiman et al 72).  When variances 

greater than the mean are observed, it is called overdispersion.   

2.6.6.1 Overdispersion 

It is important for models to try and explain the variation in accidents between 

sites.  A model should have terms for the relevant flows, then explanatory variables for 

physical characteristics and control variables.  But final models still are often in the 

technical sense inadequate, with the explanatory variables not providing complete 

explanation of the variability between sites.  The major reasons for this are that there are 

(a) unobserved explanatory variables, (b) there are errors in the explanatory variables, 

and (c) the model was mis-specified (Maher & Summersgill 288).  Overdispersion is the 

term used to describe this problem of not fully explaining the variability in the model and 
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is a problem often associated with Poisson regression.  This occurs when variances 

greater than the mean are observed which can be due in part to not including all the 

relevant variables in the model (Knuiman et at 72).   

Overdispersion occurs because there is no random disturbance term in the 

equation ikkii XX βββµ +++= ...log 110 that would allow for omitted explanatory 

variables (Allison 223).  This is because a disturbance term would produce larger 

variances in the dependent variable.  Overdispersion does not produce a bias in the 

regression coefficients, but it will cause underestimation of standard errors and 

overestimation of chi-square test statistics, which can cause a model to be regarded more 

highly than it should.  Also, implied by overdispersion is that the “conventional 

maximum likelihood estimates are not efficient, meaning that other methods can produce 

coefficients with less sampling variation” (Allison 223).  If the lack of efficiency is 

ignored, it is relatively simple to correct the standard errors and test statistics for 

overdispersion. “Take the ratio of the goodness-of-fit chi-square to its degrees of 

freedom, and call the result C. Divide the chi-square statistic by C.  Multiply the standard 

error of each coefficient by the square root of C.” (Allison 223)  

The deviance and the Pearson chi-square are both goodness-of-fit chi-square 

values and the theory of quasi-likelihood estimation proposes the use of the Pearson chi-

square statistic (Allison 223).  Adjustment for overdispersion can greatly affect the 

significance of the regression coefficients.  Comeeron and Trivedi have suggested a test 

involving simple least-squares regression to test the significance of the overdispersion 

coefficient (Hadi et al 171).   
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Statistical Analysis System (SAS) can control for overdispersion by using either 

of the above methods: the deviance or the Pearson chi-square value.  To do this 

automatically, SAS has the options of PSCALE (for Pearson) and DSCALE (for 

deviance) as options in the MODEL statement.  This produces the corrected standard 

deviations without the uncorrected ones being present in the output.  

There are several ways in which a basic Poisson model can be modified to correct 

for overdispersion.  One that has been suggested is the quasi-Poisson (QP) model where 

the variance of iY is given by µ2k .  The parameter 2k can be estimated by any of the 

statistics ( )pN
SD
−

, ( )pN
X
−

2

, and ( )SDE
SD  (Maher & Summersgill 288).  The parameters 

estimated are identical to those of a pure Poisson model with the difference occurring in 

the magnitude of the standard errors, which are inflated by a factor of k.  Due to this, 

some model variables would no longer be found to be significant.  In terms of 

significance thee types of models perform badly when the percent of fitted values less 

than 0.5 gets over 60 percent (Maher & Summersgill 288).   

2.6.6.2 Maximum Likelihood 

The maximum likelihood method is commonly used to estimate regression 

coefficients.  
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A functional form is chosen and the maximum likelihood estimates of the regression 

coefficients are produced.  Numerical search procedures, iteratively reweighed least 
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squares and statistical software can be used to obtain the maximum likelihood estimates 

(Neter et al 610)  

2.6.6.3 Test of Fit 

A formal test of the fit of the response function is based on the model deviance 

( )110 ,..., −pXXXDEV .  If n is large then the deviance follows an approximate chi-square 

distribution with n-p degrees of freedom (Neter et al 595).  If 

( ) ( )pnXXXDEV p −−≤− ;1,..., 2
110 αχ then Ho is concluded 

If ( ) ( )pnXXXDEV p −−>− ;1,..., 2
110 αχ then Ha is concluded 

Where Ho is the model is a satisfactory fit for the type of model chosen. 

2.6.6.4 Deviance Residuals 

A large ratio of deviance to degrees of freedom suggests that a problem with the 

model exists.  A large deviance relative to the degrees of freedom exemplifies the 

problem of overdispersion (Allision 222).  

Residual analysis helps to show if models follow the model assumptions.  This 

type of analysis is most useful when using a normal distribution and must be modified 

when being applied to different distributions.  Instead of just residual analysis, the 

deviance residual is more useful when dealing with Poisson distributions.  The deviance 

residual for case i, idev is defined as  
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and the overall deviance is defined as 
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where iµ̂ is the fitted value for the ith case (Neter et al 611).  The sign of the 

deviance residual is selected according to whether iiY µ̂−  is positive or negative.  

A graphic display of the deviance residuals that helps to identify outlying 

residuals is the index plot.  Index plots and half-normal probability plots are useful in 

identifying outliers and checking model fit (Neter et al 611).  

Inferences for a Poisson regression model can be carried out.  The mean response 

for predictor variables hX can be estimated by substituting hX  into ( )bX ,ˆ µµ = .  

Estimation of probabilities of certain outcomes for given predictor variables can also be 

obtained by substituting hµ̂ into ( ) ( )
!

exp
Y

Yf
Y µµ −= .  Interval estimation of individual 

regression coefficients can be carried out by using the large-sample estimated standard 

deviations furnished by regression programs (Neter et al 612).   

2.6.7 Geometric Distribution 

The geometric distribution is constructed from independent Bernoulli trials, but 

instead of a fixed number of trials, trials are conducted until a success is obtained.  A 

success occurs with probability p, and X is defined as the total number of trials up to and 

including the first success.  “In order that X=k there must be k-1 failures followed by a 

success” (Rice 36). ( ) ( ) ( ) ppkXPkp k 11 −−=== , K,3,2,1=k   

Figure 12 shows an example of a geometric probability mass function.  The 

distribution acquires its name from the fact that the probabilities decrease in a geometric 

progression (Montgomery and Runger 78). 
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Figure 12: Probability Mass Function of a Geometric Random Variable with p=0.1 

2.6.8 Negative Binomial Regression 

The negative binomial distribution is a natural extension from the Poisson 

distribution, which accounts for the excess variability that is sometimes observed in 

accident prediction model.  This distribution has gained favor for use in transportation 

studies, being used to help overcome the problems that occur with Poisson modeling, 

specifically the variance is allowed to be different from the mean in negative binomial 

regression (Hadi et al 171).  Both models are related to the Bernoulli sequence (Ang & 

Tang). The negative binomial model can be considered a more generalized distribution 

for count data than the Poisson model due to a disturbance term that helps to overcome 

the overdispersion problems that Poisson modeling is prone to (Allison 226).  The beta 

coefficients in the model were estimated by the method of quasi-likelihood (Knuiman et 

al 72).  Maximum likelihood estimation is also an efficient way to estimate parameters in 

negative binomial regression.  iikkii XX σεβββλ ++++= ...log 110  The dependent 

variable Y is assumed to follow a Poisson distribution with the expected value 

iλ conditional on iε (Allison 226).  The expected value of iε  is assumed to follow a 
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standard gamma distribution.  It then follows that the unconditional distribution of 

iY follows a negative binomial distribution (Allison 226).   

The negative binomial distribution is based on a negative binomial random 

variable where the number of successes is fixed and the number of trials is random.  This 

is different from the binomial distribution, where the number of trials is fixed (Devore 

111).  There are several conditions that need to be satisfied for an experiment with a 

negative binomial random variable and distribution.  These include the following: 

1. The experiment consists of independent trials, 

2. Each trial can result in a success or a failure, 

3. The probability of success is constant from trial to trial, and 

4. The experiment continues until a total of r successes have been observed, 
where r is a specified positive integer (Devore 111).  

The random variable of interest is X = the number of failures which precede the 

rth success.  X has possible values of 0,1,2… The probability mass function for the 

negative binomial distribution can be written as ( ) ( ) rkr pp
r
k

kXP −−







−
−

== 1
1
1

where 

,...1, += rrk  . Figure 13 shows the probability mass function of a negative binomial 

random variable.  “Suppose that a sequence of independent trials is performed until there 

are r successes in all; let X denote the total number of trials.  To find P(X=k), we can 

argue in the following way: Any particular such sequence has probability ( ) rkr pp −−1 , 

from the independence assumption.  The last trial is a success, and the remaining r-1 

successes can be assigned to the remaining k-1 trials in 







−
−

1
1

r
k

ways” (Rice 37).  If the rth 

occurrence happens at the kth trial, there will be exactly r-1 occurrences of the event in 
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the prior n-1 trials and at the kth trial, the event also occurs (Ang & Tang 113).  ‘X’ is 

usually defined as the total number of trials in the distribution, but is sometimes defined 

as the total number of failures in the distribution (Rice 38).  The way of writing the 

probability mass function allows for the relationship between the binomial distribution 

and the negative binomial distribution.  Both distributions consist of a sequence of 

independent trials.   

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 10 20 30 40 50 60

x

f(x
)

 
Figure 13: Probability Mass Function of a Negative Binomial Random Variable with k=1/9 

and r=2 

Since the mean does not have to be equal to the variance in a negative binomial 

distribution, it follows that the mean does not equal the variance.  The mean for a 

negative binomial random variable is equal to ( ) p
rxE ==µ .  The variance is equal to 

( ) ( ) 22 /1 pprxV −==σ (Montgomery and Runger 82). 

Brown and Tarko have used negative binomial regression models with the 

following form ( )∑= ii XAADTYRSLENkY *exp**** βγ  where Y=expected number 

of total, fatal injury or PDO crashes, k=intercept coefficient, LEN = length of the 

segment, YRS =number of years of accident data, AADT =average annual daily traffic, γ, 
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β are model parameters, and Xi are variables representing segment characteristics.  The 

models found all employed the same parameters of access density, indicator variable for 

outside shoulder, indicator variable that a TWLTL is present, indicator variable if median 

has no openings, and proportion of access points that are signalized (Brown and Tarko).   

2.6.8.1 Goodness of fit 

Hadi et al found overdispersion to be significant for all the highway types they 

investigated and chose negative binomial regression to estimate the model parameters 

(Hadi et al 172).  All Poisson and negative binomial models used by Hadi failed to pass 

the chi-squared goodness of fit test at the 0.05 percent confidence level.  Hadi et al found 

similar results reported by other researchers.  The chi-squared goodness of fit test is not 

truly suitable for non linear problems, which includes models following a Poisson or 

negative binomial distribution (Hadi et al 172).  Due to the goodness of fit test not being 

truly applicable, other criteria have been suggested for determining model acceptance 

including the following: 

• The signs of all parameter coefficients are as expected, 

• AIC is the lowest possible value, and 

• Each individual parameter is accepted when tested with appropriate statistical 
methods (Hadi et al 172).  

2.6.9 Variable Selection 

In addition to choosing the correct model distribution, there needs to be methods 

for choosing the correct variables to include in a regression model.  Most studies that 

evaluate the effects of road safety measure are observational studies, non-experimental, 

in which the treatment being studied is not assigned at random.  There are many such 

variables that exist, some of which can be evaluated and some which cannot.  “A 
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confounding variable is any exogenous (i.e., not influenced by the road safety measure 

itself) variable affecting the number of accidents or injuries whose effects, if not 

estimated, can be mixed up with effects of the measure being evaluated” (Elvik, 631).  

“Controlling, or not controlling, for confounding factors may profoundly affect study 

results” (Elvik, 635), some of this must be done in the early stages of the study when first 

selecting variables to gather information on, and some can be done in the later stages of 

modeling.  

Several different methods are available to select the variables once they have been 

included in the study.  To determine which variables to include in the model with non-

normal distributions, Hadi et al prefer the Akaike’s information criterion (AIC).  AIC=-

2*ML+2*K; K is the number of free parameters in the model and ML is the maximum 

log likelihood(Hadi et al 171).  The smaller the AIC value is the better the model (Hadi et 

al 171).   

The development of a model is typically obtained by including additional terms 

one at a time and testing their significance by the drop in scaled deviance or by the t-ratio 

(ratio of the estimated coefficient to its standard error) (Maher & Summersgill 283).  The 

drop in scaled deviance should be compared with a 2χ  distribution with as many degrees 

of freedom as there are extra parameters in the model (Maher & Summersgill 283).  A 

well fitting model or adequate model, the value of the scaled deviance and 2x  should 

come from a 2χ  distribution with ( )pN −  degrees of freedom where N is the number of 

observations and p is the number of parameters which have been estimated (Maher & 

Summersgill 283).   
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A formal method for testing that an individual parameter should be included in 

the regression model exists.   Individual parameters, regression coefficients from the β-

vector, can be tested to see if the null hypothesis that a given parameter βj is zero is true.  

The method used by Hadi et al was based on the standard errors of coefficients 

( )2

2
2

j

j

SE

b
=χ  where bi is the estimate of βj and SEj is the standard error of the coefficient 

βj.   A chi-square test with one degree of freedom was used to test the hypothesis (Hadi et 

al 171).  This test allows for enough evidence to exist to show either that a βj is equal to 

zero, that the corresponding X –variable should not be included in the model, or that βj is 

not equal to zero and the corresponding X-variable should be included in the model.   

An important part of determining if a variable should be included is that the 

coefficient should have the expected sign and the t-statistic should show that the variable 

is significant (A Miaou et al 13).  The level of statistical significance needs to be 

carefully considered.  Maher and Summersgill did not accept variables at less than five 

percent level and did not reject any variables at the one percent level or better without 

careful thought (Maher & Summersgill 284).  A level of significance of five to ten 

percent is commonly used, depending on the study parameters.  The stability of the model 

should also be considered.  When variables are associated with one another then 

introducing one will tend to strongly affect model parameters.  Care should be taken to 

minimize the correlation between variables that are likely to appear in the models.  It is 

also important that the effect of the variables is understandable and makes sense.  Mainly 

the sign of the parameter should make sense in the context of the study.  If the volume is 

a variable and the sign is negative, that would mean the more traffic, the fewer accidents 
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and that is not typically the case.  The size of the effect and ease of measurement is 

important in that variables which have a large effect on accidents in relation to their range 

and were straight forward to measure are preferred for ease of duplication (Maher & 

Summersgill 285).  

2.6.9.1 Variable Transformations 

Transformations on certain variables can improve their statistical power for 

identifying possible relationships.  Typically curve radius and grade are variables that are 

transformed (Fitzpatrick et al (2001) 20).  Fitzpatrick et al (2001) kept grades at +/-4 

percent or essentially flat and constant between all sites so were not used as a variable.  

Common transformations for curve radius are square root of radius and inverse of radius 

(Fitzpatrick et al (2001) 20).   

During data analysis, modifications of variables may occur.  In Fitzpatrick et al 

(2001) access density was originally modeled as a continuous variable but analyses 

showed that access density was not significant.  Further investigation was done due to the 

preliminary work.  A break point was identified for a reasonable division and access 

density was changed to a class or indicator variable with classes of low density (<12 

points/km) and high density (>12 points/km) (Fitzpatrick et al (2001) 20).  Another 

modification that was done by Fitzpatrick et al (2001) was changing median type from 

three classes (raised, TWLTL, none) to two classes (presence or absence of median).  

Transforming variables whether by a mathematical change such as a square root, or by 

content change, by changing a continuous variable into an indicator variable, is done to 

increase the statistical power of both the individual variable, but more importantly that of 

the model as a whole.   
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2.6.9.2 Multicollinearity 

Focusing on a specific group of roads gives some variables a limited range of 

possible values.  Due to the limited range, some variables may be correlated with others 

and in some cases can be explained and expected.  In some circumstances the limited 

range in variables can create apparent relationships that may not be valid and can 

significantly affect the results of regression analysis (Fitzpatrick et al (2001) 20).  “Using 

Statistical Analysis System (SAS) and the proc CORR command, those variable pairs 

with multicollinearity problems were identified.  The value of 0.05 for alpha was used.” 

(Fitzpatrick et al (2001) 20).  To help minimize the effects of multicollinearity, 

Fitzpatrick et al (2001) averaged inside and outside lane widths to create one lane width 

variable, similarly inside and outside super-elevation rates were averaged to create one 

value for each curve (Fitzpatrick et al (2001) 20).  The correlation between variables 

means that the variation in the data explained by one is replicated by the other and that 

there is no statistical gain from including both in the final model.  To have the best 

possible model, it would be advantageous that the included variables explain different 

part of the variation within the data set.  

2.6.9.3 Outliers 

In addition to knowing what type of data to include, it is important to know what 

type of data to not include.  Outliers are data points that were collected using the same 

methods as all the other points, but do not fall within the same range as the remainder of 

the data.  Points that are outliers are often summarily discarded.  This is a problem, 

because the only points that should be discarded are if there is a known error that occurs 

with the measurements, otherwise the points may be showing a valid trend in the data that 
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there is not enough other data to strongly support, or the point could be different due to 

lack of an additional explanatory variable.   

In addition to outliers, influential points also need special consideration.  These 

are points that do not deviate significantly from the rest, but by including them in the 

model they have a stronger influence on the model than other points do.  Schurr et al 

began the modeling process by identifying “influential study sites” or outliers that would 

strongly influence the model  (Schurr et al 63).  The sites so identified were removed 

from the data set before the model was built.  The blanket removal of outlying points 

from a data set needs to be carefully considered and have valid reasoning behind it, else 

the model will not be a good reflection of the truth.  In the collection process, data can be 

discarded due to instrumental errors or incomplete data points.  But once the model 

building process is begun, none of the data points should be removed from the data set.  

This could cause relationships that are not truly present to be seen and conversely cause 

relationships that are present to be overlooked.   

2.6.10 Uncertainty of Predictions 

Once the model has been fitted and the parameter estimates found, the amount of 

uncertainty attached to predictions from the model needs to be considered.  The 

parameter coefficients are only estimates of the true values and as such each has standard 

errors.  Uncertainty in the coefficients leads to uncertainty in the linear predictor and 

finally to uncertainty in the prediction value.  The uncertainty of the prediction, measured 

by its error variance can be approximated by ( ) ( ) 2̂ˆˆ ληλ VarVar ≈ where xTβη ˆˆ =  (Maher 

& Summersgill 290).  The uncertainty of the estimate to the true mean λ consists of the 
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regression effect (uncertainty in λ) and overdispersion (uncertainty in λ about λ, where 

( ) ( ) ( )λλλ ˆˆ VarXVarVar += M ) (Maher & Summersgill 290).   

 Quasi-Poisson model: ( ) ( ) ( ) 22 ˆˆˆ1 ληλλ VarkVar +−=  

 Negative Binomial model: ( ) ( ) 













 ++=

α
η

α
λλ 11ˆ12̂ VarVar  

The predicted error variances of the negative binomial and quasi-Poisson models 

are very different especially for extreme values.  While the choice of model has little 

effect on the form of the fitted model, it can greatly affect the estimate of the uncertainty 

of the model (Maher & Summersgill 290).  

2.6.11 Trend 

Accident counts can show trends due to transitory changes in factors such as flow, 

weather, economy, and accident reporting practices.  Accident models that account for 

these types of trends should provide better estimates of safety than the more traditional 

models in identifying hazardous locations and evaluating treatments (Lord & Persaud, 

102).  There are three main categories of proposed methods to deal with trend: marginal 

models (MM), transition models (TM), and random-effects models (REM).  These three 

procedures all have different limitations:  

• Temporal correlation in the data is ignored (REM & MM), 

• Model type may not be appropriate for accident prediction models (REM & TM), 
or 

• Too complicated for average modelers (TM & MM). 

The generalized estimating equations (GEE) procedure overcomes these 

limitations (Lord & Persaud, 102).  Lord and Persaud found when comparing generalized 

linear models and GEE with and without trend that the temporal correlation contributes to 
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approximately half of the standard errors (Lord & Persaud, 105).  The standard errors for 

the GEE models were roughly twice those of the GLM models.  If time trend is not of 

interest, the dispersion parameter was found to be slightly higher for the GEE than the 

GLM procedure (Lord & Persaud, 105).  Using time trend also allows for potentially 

dangerous trends to be identified and investigated earlier.   
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3 Methodology 
 In order to see what previous research methods have been used, existing methods 

for the determination of safety of two lane rural roads will be reviewed.  This will include 

a literature search and review of existing techniques.  Different techniques will be 

examined and reviewed for their applicability to urban arterial streets and roads.  Work 

on urban roads will also be assessed to see if it can be applied to urban arterials and to see 

what types of analysis tools were considered to be reliable.  

Miaou dissected the modeling process into five major tasks which are required to 

develop accident prediction models: (1) find a good probability function to describe the 

random variation, (2) determine an appropriate functional form and parameterization to 

describe the effects of multiple variables, (3) select the right variables, (4) obtain 

estimates of the regression parameters and (5) assess the quality of the model, ways to 

improve it, and to ensure the model fits the required specifications (Miaou, 8).  Sample 

size is always a crucial point of throughout the modeling process.  By nature, sample 

sizes are limited and minimum sizes need to be chosen to ensure that the best possible 

model can be developed.   The impact of omitted variables should be considered, as well 

as the potential for variables that were not considered.  In addition to considering all 

possible variables the chosen sites used to create the models should be fairly 

homogeneous to help eliminate the unforeseen variations.  

After a thorough examination of existing research, data will be collected.  This 

will occur by one or more of the following methods, including receiving data from local 

or regional agencies and gathering data from roads neighboring Worcester Polytechnic 

Institute.  Many different variables need to be considered and then either rejected or 
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accepted as explaining a significant amount of variation in the final model.  Two major 

types of variable data area needed: geometric and non-geometric data.   

 Non-geometric data includes information regarding the traffic characteristics and 

vehicle crashes.  This includes traffic flow (AADT), vehicle distribution (trucks, 

passenger vehicles, vulnerable road users (pedestrians and cyclists)), speed limit, one/two 

way traffic, surrounding land use, bus stops, parking conditions, and accident number and 

type.  

 Geometric data is also needed to help fit the model to the specific location where 

it is being applied.  The geometric data includes segment length, number of lanes, 

number of minor crossings/side roads, sidewalks (access point frequency), road width, 

number of driveways (two-way total)/km, number of bus stops (two-way total), 

crosswalk frequency, type of median (none, TWLTL, raised), traffic islands, type of land 

use (residential, business, and other (industrial)), and percentage of segment length on 

which parking is allowed.  Some of the variables will be used directly as numerical input 

values, but some will be used as an indicator variable. 

 One specific issue that has to be determined is what defines a section length.  One 

rule of thumb is that signalized intersections are natural delineators of road sections since 

major changes in volume occur at those locations.  Traffic signals imply that there is 

considerable traffic on both roads and the mixing of traffic streams can create an issue in 

regards to what causes an accident.  It could be that the junction is not safe due to the 

combination of the two different road geometries and usage, but not that the design of the 

roadway itself is unsafe.  The mixture of traffic streams makes it difficult to assign an 
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accident to only one of the intersecting roads causing discrepancies in the accident data.  

Another group identified road sections by the type of median.  

Once all the data has been acquired, it has to be assembled in order and placed 

into models.  The most common method is to use generalized linear modeling techniques.  

With linear modeling techniques it has to be assumed that the distribution of accidents 

follows a pattern (discrete, nonnegative and rare) and is not just a random occurrence.  

The two most widely used distributions are the Poisson distribution and negative 

binomial distribution.  There are positive and negative aspects to using either major type 

of distribution.  Poisson distribution is easier to use than the negative binomial one, but 

problems can arise due to the phenomenon of “overdispersion.”  Overdispersion is when 

the observed variance is actually greater than the mean and causes standard errors to be 

underestimated (Greibe, 275).  Negative binomial distribution is more difficult to 

implement, but allows for a greater variance in the data, which eliminates the 

overdispersion issue.   

Separate models can be determined for a combination of all accidents, including 

property-damage-only accidents, all injury and/or fatality accidents and for specific types 

of accidents that it may be important to look at more closely (single vehicle accidents, 

rear-end accidents, crossing accidents, and turning accidents).  

 Once the model has been developed, it needs to be verified showing it to be an 

accurate representation of accidents falling into the study’s characteristics (size of 

roadway and AADT).  Statistical methods will be used to show that model is a good fit 

for the data used to develop it.  The final step includes using the developed model to 

compare the predicted results with the actual accident records.  A technique known as 
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bootstrapping allows for the use of part of a database for model development and part of 

the data base for model verification, which allows for this comparison otherwise a new 

data set can be used.  If the difference in the model’s results and the accident records is 

statistically insignificant then the model is a good representation of the urban arterial 

roadways that fall into the study’s criteria.   
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4 Data Collection 
Data are needed to develop a model for predicting accidents on any road type.  

“Accuracy of prediction models depends on the details of the information base on which 

the models are built” (Lau & May 62) which indicates that the better and more accurate 

the data collection, the better the prediction models will be.  The following sections 

describe the types of data that were collected and how the data were obtained.  The site of 

the road sections used was mostly random in nature.  Due to using only sites in a single 

geographic area, the findings of this study should only be interpreted as explaining the 

relationships in this study sample and only extrapolated to similar areas (Tarris et al).  A 

goal of the study by Schurr et al was to minimize uncertainty in the final results by 

reducing the number of extraneous variables, which could influence operating speeds, the 

variable they were most interested in.  Only sites with pavement of fair or better were 

chosen to eliminate the pavement influence.  If there were roadside elements near the 

curve site such as bridges, guardrails, intersections within 1000 feet of the point of 

curvature on the approach the curve, the site was not used (Schurr et al 62).  For this 

reason, each possible variable was carefully collected so that its importance could be 

considered and if necessary, used to eliminate outlying data points from the study.  An 

important issue was to keep data collection simple, so if the data was available it was 

used, otherwise if collection was simple, counting or easy to measure, it was collected in 

the field.  If data collection was difficult or time consuming, such as new volume counts 

and turning movement counts, then it was not considered a viable variable.   

Roadways included in this study were urban arterial roads, consisting mainly of 

state routes.  Belmont Street and Highland Street are both part of Route 9.  Chandler 
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Street is part of Route 122, while Park Avenue is part of Route 12.  These roads were 

chosen in part due to their geographical location of spanning Worcester from east to west.  

Figure 14 shows the roads used in the study to create the prediction models.  The map 

also displays the boundaries of the City of Worcester and most of the arterial roadways 

throughout the city.  

 
Figure 14: Worcester City Limits Displaying the Study’s Road Sections 
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4.1 On-Site Data 

A form was developed in order to assist in the collection of geometric data.  This 

form covers the data that needed to be collected from each site, consisting mainly of 

geometric, land use, and roadside data.  This can be seen in Figure 15.  

  
Figure 15: Data Collection Form 

4.1.1 Speed Limit 

The posted speed limit was gathered to help give an indication of how fast drivers 

should be going on the road.   The posted speed limit also gives an expectation of how 

the traffic should be flowing.  When there is not a posted speed limit in Worcester, the 

city follows Massachusetts State Law, Chapter 90, Section 17 

(www.state.ma.us/legis/laws/mgl/90-17.htm).  If a vehicle is on a divided roadway 

outside of thickly settled areas or business districts, it can travel at 50 mph.  If a vehicle is 

on any other road outside of a thickly settled area or business district, it can travel at 40 

mph.  Inside thickly settled areas or business districts, vehicles can travel at 30 mph and 

in school zones are limited to 20 mph.  These general rules are superceded by posted 

speed limits.  Most of the road segments examined in this study did not have posted 
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speed limits.  Only ten segments had posted speed limits and the remainder of the 

segments had their speeds inferred from the Massachusetts State Law or surrounding 

sections with posted speeds.  Speeds throughout the study area range from 25 mph to 40 

mph.   

4.1.2 Length 

Section length plays an important role in predicting accidents.  Accidents are 

usually transformed into accident rates, where the number of accidents is normalized by 

time, traffic volume and length and then the accident rate is used as the dependent 

variable.  Determining whether accidents are distributed linearly by segment length and 

traffic volume is key to that assumption.  If accidents are not linearly distributed than the 

use of accident rates is not appropriate.  Segment length is also important in that the 

longer the segment is the more crashes are expected to occur on it.  The relationship 

between accidents and segment length may be linear or exponential in nature, but 

intuitively the longer a segment the more area where an accident can occur.   

Due to the various ways segment length can play a role with crashes and accident 

rates the way roads are divided into sections is very important. There are two main 

schools of thought.  In rural conditions, where most prior roadway research has been 

done, segments are divided by changes in geometry, such as changes in lane width or 

shoulder width or changes in paving materials.  In urban locations, segments tend to be 

defined by intersections.  The segment length may include intersections with local roads, 

while intersections with collectors or arterials indicate the end of the segment (Brown and 

Tarko 71).  The definition of Brown and Tarko’s segment length is more appropriate in 

this situation than the definition used in rural locations.  Major intersections with traffic 
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signals on urban arterials show that there is a significant change in traffic conditions at 

that point.  That change of conditions between one segment and the next is important to 

recognize.  Major intersections also provide a very exact way to identify the segments 

without the possibility of mistaking the ends of the segment.  The segment lengths in this 

study ranged in length between 226 ft to 5,245 ft with an average segment having a 

length of 1,346 ft.  The variation between residential and commercial land use areas helps 

to explain the variation in length of the segments.  

4.1.3 Access Control 

Access points on urban arterial streets consist of major intersections (i.e., 

intersection with traffic signals), minor intersections (i.e., without traffic signals) and 

entry points such as driveways and parking lots.  The number of access points gives an 

indication of how many places there are were vehicles could get into turning conflicts and 

possibly crashes.  Brown and Tarko’s study used access density as a variable to 

characterize conflict points and driveway accidents.  According to studies in Indiana, 

driveway accidents compose between 14 and 33 percent of all accidents in cities (Brown 

and Tarko 68).  It included driveways, signalized and un-signalized roads (Brown and 

Tarko 70).  Access density is one way to use the data, but that assumes that the access 

points are linearly related to the segment length.  Using the data as a continuous count 

variable or as a density variable are both possibilities for variables for predicting 

accidents.  Access points need to be examined to be certain that there is a linear 

relationship between access points and segment length before using density as a variable 

in an accident prediction model.  Some studies have used access density as a qualitative 

variable listing the density into groups of high, medium, and low density.  This may be an 
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effective method if access density as a continuous variable is insignificant in an accident 

prediction model.  In this study, the road segments were divided by major intersection, so 

that there are only minor intersections, driveways, and parking lots that make up the 

access points.  The three classes were recorded separately so that each can be examined 

individually for any relationships to accident occurrence.  

  
Figure 16: Examples of Minor Access Points 

This study defined minor access points as public roadways that intersect the road 

segment but do not have any signalized control.  There may, however, be stop or yield 

controls present.  The occurrence of minor access points ranged from zero to thirteen per 

segment with an average of four points per segment.  Driveway counts varied 

dramatically between zero and sixty-six per segment with an average of eight driveways 

per segment.  Figure 16 shows an example of a driveway access point and a minor road 

access point.  Some of this variation is due to the fact that some of the road segments 

were located in fully residential areas and some were located in commercial areas.  

Parking lot counts varied due to similar reasons as driveways with a range of zero to 
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thirty-three with an average value of seven per segment.  The land use surrounding the 

segment strongly influences the division between driveways and parking lots and the 

number of access points is important in showing locations where vehicles can enter the 

traffic stream.   

 

4.1.4 Vertical Alignment 

Vertical alignment has an important role in helping to determine safe design 

criteria, specifically maximum grade allowances.  Vertical grades affect the ability of 

some vehicles, especially large trucks and buses, to safely traverse some roads.  The 

grades found on the road segments ranged from less than one percent up to a maximum 

of 10.9 percent grade.  As can be seen Table 5 in from AASHTO’s Green book, the 

maximum grade observed falls under the maximum for its design speed of 30 mph in 

mountainous terrain.  Most of the grades observed fall well below the maximum 

allowable values recommended by AASHTO. 

Table 5: Maximum Grades for Urban Arterials  

 
Maximum Grade (%) for Specified Design Speed 
(mph) 

Type of Terrain 30 35 40 45 50 
Level 8 7 7 6 6 
Rolling 9 8 8 7 7 
Mountainous 11 10 10 9 9 

From Exhibit 7-10 AASHTO’s Greenbook 

4.1.5 Land Use 

Land use gives an indication of the type of traffic that is expected to use the 

roadway.  Residential areas tend to have drivers who are familiar with the roadway and 

expect turning vehicles and pedestrians throughout the area.  Commercial areas, on the 
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other hand, lend themselves to fewer places for turning, with more parking lots than 

driveways, while also having pedestrians, the drivers will not be as familiar with the 

roads and traffic patterns in commercial areas.  Examples of residential and commercial 

land use can be seen in Figure 17.  The other main alterative for land use is industrial use.  

The residential category indicates land use from both single-family dwellings to 

apartment complexes.  Commercial areas are associated with customer trips that occur 

throughout the business day.  Industrial use refers to land where non-professional 

employees make the majority of trips with the trips taking place during shift changes 

(Bonneson & McCoy 28).  Large trucks are associated with both commercial and 

industrial areas, which have very different dimensions from passenger vehicles and roads 

with high percentages of trucks need to be designed to accommodate the larger 

dimensions. 

  
Figure 17: Examples of Commercial and Residential Land Use 

Land use can vary drastically along the length of an arterial, but also can vary 

significantly between each side of the road.  When there were multiple uses along a 

segment Bowman and Vecellio assigned a type on the basis of observed activity at the 

time of the field survey (Bowman & Veccellio b 170).  Similarly, when Bonneson and 

McCoy observed varied land use, the most dominant type would be chosen (Bonneson & 
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McCoy 28).  This method of picking one type of land use has the result of eliminating the 

variation of use throughout the segment, but this variation may strongly influence the 

travel patterns.  With this in mind, land use was categorized by the percentage of land use 

between all three possible types in each segment; residential, commercial, and industrial.  

This allows for the possibility of having multiple land uses in a single road segment and 

does not disregard the differences.  If multiple land use does not have a strong influence 

on the prediction model, the dominant type of use can still be identified and used as a 

variable in the prediction model.  The sections that were used in this study were divided 

mainly between residential and commercial areas.  There was only one segment that had 

any industrial land use.  Overall, approximately 25 percent of the land examined was 

residential and 75 percent was commercial.   

4.1.6 Medians 

Medians have always been important in terms of roadway safety.  Experts have 

agreed that the use of medians increases safety, but that affect has not been quantified.  

Safety experts have also disputed the type of median that provides the best safety 

measure.  The undisputed fact remains, however, that median treatments do have an 

effect on vehicular safety.  An example of a common median treatment in Worcester can 

be seen in Figure 18 that of a raised and curbed median.  
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Figure 18: Raised Median from the Study Area 

Three major types of median treatments were included; raised median, two-way 

left turn lanes (TWLTL), and undivided treatment.  Due to the area chosen for data 

collection (i.e., Worcester, MA) there were not any TWLTL available in the study area.  

There were a few segments that had raised median treatments consisting of curbs 

surrounding grass or pavement, but most had undivided treatments.  The lack of 

variability in the existing conditions will not allow for a full exploration of this issue with 

the data available but a partial one may be possible.  The width of a median has also been 

shown to play an important part in the safety of a roadway.  Due again to the small 

number of available sites with suitable treatment, there is not a large enough variability 

among the sites with raised medians to show effects on safety due to median width.  The 

four sites identified as having raised median treatments had widths ranging from 5.5 feet 

to eight feet.   

4.1.7   Cross-Sectional Alignment 

Cross section alignment plays an important role in helping drivers to feel that they 

are using a safe road especially when referring to lane and shoulder widths.  When lanes 

are narrow, drivers feel crowded by passing vehicles and are more prone to feeling 
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uncomfortable.  Increasing lane widths up to the AASHTO standard of 12 feet helps to 

alleviate that discomfort.  In studies, the number of accidents has been shown to decrease 

as the lane width increases up to the standard width.  For this reason the lane widths were 

all recorded, to see first if the roadways are being built according to the AASHTO 

recommendations, and secondly to see if the road sections that are built with 12-foot 

lanes have fewer accidents than road segments that are smaller.  For the same reasons the 

number of lanes was recorded.  Most of the segments had one or two lanes going in each 

direction, with a few exceptions of three lanes and one case of four lanes.  The widths 

similarly varied depending on the section being examined.  There was an overall average 

lane width of 12.5 feet, which is due to the fact that many of the roads with one lane in 

each direction were twenty feet wide.  These lanes are not truly twenty feet wide but 

there is no distinction between the parking lane and the traveling lane leading to this large 

lane width.  If a segment had on-street parallel parking, the parking area was included in 

the lane width measurement because the lanes were not well delineated and some times 

no vehicles were present at the time of the on-site investigation to mark the parking lane.  

Similar to number of lanes and lane width is the effect of shoulder width.  

Shoulder widths have been examined in great detail in many studies to determine their 

safety benefits.  For that reason the type of shoulders and their widths were recorded.  

Possible shoulder types include paved shoulders and dirt/grass shoulders.  However, in 

urban settings, roadway shoulders are not a requirement and due to space constrictions 

are seldom used.  This was found to be the case in the sections reviewed during this 

study.  No segments were found to possess actual shoulders, and a variable that has been 
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thoroughly studied and found to be an important factor in rural settings has little impact 

in an urban location. 

A different variable exists that is seldom found in rural settings and is frequent in 

urban settings that of sidewalks.  Sidewalks provide a place for pedestrians to safely walk 

along busy roads without intruding on the traveled way.  Since wider lanes make drivers 

safer and feel safer, it has been suggested that the same could hold true for pedestrians 

feeling safer on wider sidewalks.  Therefore both the presence of sidewalks and their 

width were noted at the physical inspection of each site (See Figure 19).  The width of 

sidewalk was recorded for both sides of the road if it was present, but if a sidewalk was 

present on at least one side of the road, it was concluded to be present along the entire 

length.  It was found, by this definition of a sidewalk on at least one side of the road, that 

every road segment reviewed had a sidewalk with widths ranging from five to 12.5 feet.  

The minimum width of sidewalks should be determined by the necessary width needed to 

accommodate people with disabilities and strollers.  The maximum width is determined 

by space availability and convention.  An average sidewalk width of nine feet was found 

in the study area in Worcester.     

 
Figure 19: Example of a Sidewalk in a Residential Area 
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Drainage becomes an important consideration when there is not a large amount of 

land available for building roads.  Water on road surfaces can become a hazard, 

especially with large rainfall amounts and during winter months when hydroplaning and 

black ice are of major concern.  To investigate whether or not drainage could be a cause 

of accidents, its presence was noted for each segment.  That was accomplished by 

recording if there were curbs present on the side of the road to help direct water flow and 

by recording the presence of any drainage structures, such as catch basins or manholes.  

For each segment in the study, a curb was found to exist on both sides of the road, and 

drainage structures were present along the entire study length.  Figure 20 shows an 

example of what drainage structures were found throughout all of the roadway segments.  

 
Figure 20: Example of Roadside Drainage 

Another feature that assists with drainage is the crest of the road, which helps to 

direct water away from the main travel path and into the catch basins.  The crest was 

measured along the road segments to see if there was adequate provision for this issue.  

The values found for the amount of cross slope on the roadway ranged from 0.3 to 6.8 



 105

percent with an average of four percent.  There were four sections where the cross slope 

exceeded 6 percent, the maximum recommended value by AASHTO and two cases were 

the cross-slope was less than the recommended 1.5 percent minimum.  This could 

indicate problems with drainage and may also indicate an increase in accidents on 

segments that do not meet AASHTO’s recommendations.   

4.1.8 Roadside Hazards 

Roadside hazards provide opportunities for vehicles to hit objects located on the 

roadside.  The more hazards that exist on a given road, the more opportunities are present 

for a vehicle to collide with those objects.  During the on-site inspection, the number and 

type of roadside hazards were recorded.  This was done for the possibility that a 

relationship exists between either the total amount of hazards or a specific type or 

combination of hazards.  The types of hazards recorded included fire hydrants, 

mailboxes, light poles, utility poles, benches, trees, monuments, fences, buildings, sign 

poles, overhead sign poles, parking meters, rocks and electrical boxes (See Figure 21).  

The number of hazards ranged from ten to 338 per segment with an average of 79 hazards 

per segment.  This is also an area where a rate, or a density, may be a more appropriate 

representation of the hazards, so the possibility of normalizing the roadside hazards by 

length may have a better effect for predicting accidents.  Either a continuous variable of 

number of hazards per segment or a qualitative variable of hazards per mile could be used 

as a variable in the accident prediction model.  Some researches have used hazard density 

as an indicator variable, separating section into high medium and low-density locations, 

which is another way that the data could possibly be used.  



 106

   
Figure 21: Examples of Roadside Hazards 

4.1.9 Horizontal Alignment and Sight Distance 

Like vertical alignment and cross sectional alignment, horizontal alignment can 

have a significant effect on accidents.  Horizontal curvature is often a controlling factor 

for safe speeds on roadways and for the comfort of drivers.  If a curve is too sharp for a 

given design speed, it can cause discomfort for drivers and passengers even if the car can 

safely travel around the curve.  Horizontal alignment can also cause sight distance 

problems in high-speed areas.  There were fifteen curves identified throughout the study 

segments.  Of these curves none were identified as having a radius that was inappropriate 

for the design speed of the segment.  Of the sight distance problems identified throughout 

the segments, only one was due to the horizontal alignment.  The other two were due to 

vertical alignment that blocked the sight of the traffic signals, but in both cases signs and 

other warning devices were present to help eliminate the problems.  The only horizontal 

curve that caused possible sight distance problems was like the other sites, marked with 

signs, specifically chevrons, and at the posted speed limit would be safe.   
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4.1.10 Other On-Site Data 

Several other pieces of information were collected in the hopes that one or more 

of them may be identified as having a significant influence on accident occurrence.   

Pavement quality was identified as something that could cause accidents to occur.  

Data for this issue was collected at each segment and the pavement was identified to be in 

good, fair or poor condition.  A pavement was classified as a good pavement if there were 

very few disturbances in the surface of the pavement.  A few cracks or patching would 

qualify a pavement as good.  A fair pavement would have significant amounts of 

cracking and rutting.  Bad pavement would have to have visible potholes, large ruts or 

other serious problems.  Problems that can occur to negatively effect pavement quality 

include rutting and cracking and can be seen in Figure 22.  At the sites used in the study, 

all the pavements fell into either the good or the fair category.  This was to be expected 

due to the usage patterns of the roads investigated.  Urban arterial roads have heavy 

volumes of traffic and poor conditions can cause large congestion problems quickly.  

Poor conditions on arterial roads are avoided by having significant amounts of repair on 

the roads. 

  
Figure 22: Examples of Problems in Pavement Quality 
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Pavement marking, like pavement quality, was theorized to have an influence on 

accidents on urban arterial roadways.  Again, like pavement quality, pavement markings 

were categorized as good, fair or poor quality.  A good pavement marking was all present 

and able to been easily seen, while a fair marking was starting to fade in places.  A bad 

pavement marking, on the other hand, was very faded and in places not even visible.  The 

majority of pavement markings qualified for fair or good status with only five segments 

having bad pavement markings.  The greater variation in quality is because the lifetime of 

pavement markings is significantly shorter than that of the pavement, allowing the 

pavement to still be in good condition while the markings have worn away.  Figure 23 

shows two locations of pavement markings with the left hand side representing a bad 

marking and the right hand side representing a fair pavement marking.       

  
Figure 23: Exampled of Pavement Markings 

Lighting is an issue of major concern on rural roads.  Due to its importance in that 

type of road, the amount of roadway lighting was recorded.  The urban setting, however, 

makes lighting a much less prominent issue.  Of all the segments in the study, only one 

did not have roadway lighting along its entire length, and that segment was only 

approximately 20 percent unlit.  Due to the high volume and high speed of urban arterials 

and their position in important areas of cities with many turning possibilities, the urban 
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arterials are usually well lit.  This has the effect of lighting not playing such a large role 

for urban arterials as they do in rural locations and possibly urban collectors and local 

streets.   

Another possible variable for consideration is the amount of on street parking.  

The amount of on street parallel parking gives an indication of the type of expected 

traffic on the roads.  Areas that do not allow on-street parking tend to have higher 

volumes and higher speeds.  Conversely, areas with a large amount of street parking will 

have slower speeds, but may still have high volumes.  Some segments examined had no 

on-street parking while other segments had 100 percent on-street parking.  Twelve 

segments, in fact, allowed no parking at all.  The average amount of parking was 40 

percent for each segment.  One segment even had a small section of perpendicular 

parking.     

4.2 Off-site Data 

Some data was also needed that could not be collected at the individual sites.  

This was used to supplement the geometric, land use and roadside data by identifying 

accident and traffic conditions. 

4.2.1 Volume Data 

Average daily traffic (ADT) and average annual daily traffic (AADT) are used to 

indicate traffic conditions or congestion levels of a road section.  ADT plays an important 

role in determining the safety of a roadway by helping to characterize the types of 

accidents that are likely to occur on roads.  It is also important because the more traffic 

on a road the more possibilities exist for conflicts and crashes.  Studies performed on 

two-lane rural highways in the former Soviet Union show that the number of accidents 
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increased in proportion to the traffic volume (Gibreel et al 309).  In Sweden single 

vehicle accident rates decreased as traffic volume increase, and the accident rate of 

multiple vehicle accidents increased as traffic volume increased (Gibreel et al 309).  

Depending on the type of accident being reviewed ADT can have varying effects.  The 

study on Swedish accidents shows this.  The more traffic present the more multi-vehicle 

accidents occur.  In the same way as there is more traffic, it is less likely that only a 

single vehicle will be involved in an accident.  This shows why it is important to consider 

the ADT when looking at accidents in general and at specific types of accidents such as 

multi-vehicle crashes or single-vehicle run-off-the-road crashes.  Hadi et al also found 

that crash frequency increases with higher ADT for all highways types investigated 

during their study, including two-way two-lane and four-lane undivided urban highways 

and divided urban highways (Hadi et al 173).   

The number of lanes varies from one road section to another, especially in urban 

areas and the differences in number of lanes can sometimes have a large effect on the 

ADT.  In a study on truck accidents and geometric design, ADT was generalized by 

considering the AADT per lane (A Miaou et al 15).  This was done to help make the 

volume more representative of the actual road conditions.   Using just the volume 

numbers can be misrepresentative when some roads have only two lanes and others have 

more.  By using just the AADT by lane, comparisons between road segments with 

differing geometric characteristics can be more easily completed.  The above are reasons 

why it is important to have information available on the ADT in order to develop an 

accurate prediction model.  
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Due to time constraints, the ADT needed to be gathered from existing data and 

could not be gathered specifically for this study over the exact roadway segments.  

Counts were gathered from several different sources, including the Worcester 

Department of Public Works, Traffic Engineering Division, the Central Massachusetts 

Regional Planning Commission (CMRPC) and the Massachusetts Highway Department 

(MHD).  The data from CMRPC consisted of un-factored ADT’s throughout Worcester 

that were gathered by public and private companies.  The data from the Worcester 

Department of Public Works, Traffic Engineering Division was in the original raw data 

listed by hour.  The data from the MHD was already factored and given by year for 

locations that have had multiple counts over several years.  The un-factored data was 

multiplied by a weekday monthly factor that was obtained from the MHD website.  

Factoring allows for a more accurate value for the ADT.   

The study period covers three years from 2000 to 2002.  The most accurate way to 

deal with volume data would to have volume counts for each of the three years.  This 

however, is unpractical in that the data was not available and counts are not conducted 

annually through out the study area.  Due to those facts the most recent and available data 

was used and if necessary projected to the center of the study time period.  An average 

growth rate of 2 percent per year was used as the value used by the Worcester Traffic 

Engineering Division.  The ADT’s of the road sections ranged from 11,000 vehicles per 

day to 47,000 vehicles per day with an average ADT of 25,000 vehicles per day.   

4.2.2 Heavy Vehicles 

The percentage of heavy vehicles can be very influential on the number of 

accidents.  Heavy vehicles have different characteristics than smaller vehicles (Figure 
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24).  The major differences are that heavy vehicles take longer to speed up and slow 

down, need larger turning radii, on long upgrades they can slow down considerably, and 

on long downgrades their brakes may not be able to stop the vehicle.  This is mostly a 

concern over the long distances in rural locations, but in the idea that what is important in 

one region can be important in another the data was gathered.  The data came from the 

Central Massachusetts Regional Planning Commission (CMRPC) and is taken from their 

list of peak period turning movement counts.  When both an morning and evening period 

was listed, an average of the two was used for the data point.  The amount of heavy 

vehicles ranged from 0.4 to 3.1 percent with an average of 1.7 percent of traffic being 

heavy vehicles.   

 
Figure 24: Example of a Heavy Vehicle 

4.2.3 Crash Data 

The other main type of off-site data gathered was the number of observed crashes.  

The crashes were complied from the Worcester accident database, which lists all reported 

accidents in the city of Worcester.  Three years of crash data was used from 2000 to 

2002.  Accident data can be separated in many ways: accident type, location and time 

period.  “It might be asked whether data could, or should, be disaggregated so that each 

year/site combination provides a unit of data”  (Maher & Summersgill 292).  This can 
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make a difference in modeling overdispersion because one cause of overdispersion is the 

influence of variables not included in the model that remain the same from year to year 

which can be thought of as a site effect (Maher & Summersgill 292).  Using each 

year/site as a data point does not allow for the errors to all be seen as independent as the 

errors in the same site in different years are likely to be highly correlated (Maher & 

Summersgill 292).  But using each year/site as a data point allows for more data points to 

be used when considering the data.   Use of multiple observations from each intersection 

could cause the “gamma error term in the negative binomial model could be correlated 

from one observation to the next, which is a violation of the error-term independence 

assumption made to derive the model” (Poch and Mannering 111).  This results in a loss 

of estimation efficiency (standard errors of coefficients will become larger) and could 

lead to wrong conclusions regarding coefficient estimates (Poch and Mannering 111).  

The way the accident data was recorded allows for this possibility if it is found to be 

necessary.  If at all possible it is better to avoid the problems associated with correlation 

of the data points.  

The accidents were recorded by which segment they occurred on.  Further 

separating the accidents was categorizing them by occurring on the main part of the 

segment or occurring on the major intersection of the segment.  The major intersection of 

the segment was defined as the intersection occurring at the end of the road segment.  

The beginning of the roadway segment was the end with the lowest street number and the 

end of the segment had the highest street numbers.  Hadi et al performed separate 

analyses for non-intersection or mid-block crashes and all crashes, which include 

intersections, interchanges and railway crossing crashes (Hadi et al 171).  The accidents 



 114

were recorded in such a way that separate analyses for mid-block and all crashes can be 

done.  The crashes were also recorded by type of crash; fatal, injury, and property-

damage only (PDO) crashes.  Throughout the study period there were 2,842 reported 

crashes, but there was only one fatal crash on the roads in the study.  There were also a 

total of 1,930 PDO crashes.  It is believed that the reporting level for injury accidents is 

between eighty to ninety percent and that for PDO accidents it is around fifty percent or 

less of the accidents being reported (Lau & May 58).  Since fatality crashes are rare and 

PDO’s are often not reported, Lau and May suggest that injury accidents are the best 

category for using to develop prediction models (Lau & May 58).  The reporting levels 

for accidents however are not likely to change suddenly, so that if the number of reported 

PDO accidents is used it represents an unknown but constant percentage of the true 

number of accidents and therefore is acceptable to use for predictive purposes.  

The separation of the observed crashes allows for the possibility of multiple 

prediction models being developed.  Other researchers, including Brown and Tarko, have 

been able to create prediction models for total number of crashes, fatal crashes, injury 

crashes and PDO crashes (Brown & Tarko).  Due to the nature of the data collected 

models for total number of crashes, total injury and fatal crashes and PDO crashes can 

possibly be developed for the data from Worcester.  The classification of the accidents 

was kept simple with just injury, fatal and PDO as options.  Lau and May kept to this 

classification in their intersection crash study and advantages of this include easy 

comprehension of the type of accident and there can be a simple translation to monetary 

terms (Lau & May 58).  A major disadvantage of this technique is that it is an inadequate 

way to reflect the overall collision process and the concept of collisions.  Further 
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classification, however, is difficult since the main descriptive terms, sideswipe and 

angled collision, usually describe more than one situation.  An angled collision can be 

caused when a vehicle is turning left or right or slides sideways, all very different 

situations described with the same phrase.  Further classification, can get complicated 

very quickly with many possible types of collisions and become a time consuming and 

tedious process. The accidents can be used in the model to predict the total number of 

accidents or a more common way is to predict an accident rate.  Accident rates can 

normalize the number of accidents by time, ADT and length.  Knuiman et al calculated 

accident rate per 100 million vehicle miles traveled which they calculated by: 

LTADT
YR

**365*
=  (Knuiman et al 71) 

where: R= the observed accident rate 

Y= the observed number of accidents 

ADT= the average daily traffic in vehicles per day 

T=the number of years of crash data 

L=the section length 

  Another way to construct accident rates is to use the rate per million of entering 

vehicles (RMEVs) which is the number of accidents per million vehicles entering the 

study location.   

V
ARMEV 000,000,1*=  (Garber & Hoel, 139) 

where: RMEV=accident rate per million entering vehicles 

A=total number of accidents or number of accidents by type occurring in 1 year at 
the study location 

V=Average daily traffic (ADT) * 365 
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This type of rate is commonly used to measure accident rates at intersections.  

Garber and Hoel also developed a rate per 100 million vehicle miles (RMVM) which is 

the number of accidents per 100 million vehicle miles of travel over the study section 

(Garber & Hoel).  

VMT
ARMVM 000,000,1*= (Garber & Hoel, 140) 

where: RMVM= number of accidents per 100 million vehicle miles of travel 

A=total number of accidents or number of accidents by type during a given period 
at the study period 

VMT=total vehicle miles of travel during the given period 

=ADT*(days in study period)*(length of road) 

The number of accidents compared to volume over a roadway segment is small, 

so that multiplying by a large factor helps in the analysis.  The accident rate can 

correspond to different accidents depending on the desired parameters.  Rates for serious 

injury accidents, all injury accidents, PDO accidents, multi-vehicle accidents, head-on 

accidents, sideswipe opposite direction accidents, single vehicle accidents, single vehicle 

rollover accidents and any other type that in depth study is desired for can be calculated 

and each analyzed individually using regression modeling.   
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5 Analysis 
The analysis procedure began with trying to identify the exact form the dependent 

variable will take.  Traditionally, this would be an accident rate and it was investigated 

and was found to be the best variable to be used as the dependent variable.  Then once the 

dependent variable was determined a prediction model was developed.   

5.1 Accident Rate Analysis 

Most traffic and safety engineers take a great deal of their information about a 

road’s safety from its calculated accident rate.  An accident rate is a mathematical 

representation of the relationship between the major factors that influence accidents.  

This rate allows comparison between different sites, by normalizing the number of 

accidents on the road by time, length, and volume.  If one road has many accidents and a 

very large volume it can have a lower accident rate and therefore be deemed safer than 

another road with fewer numbers of accidents but a greatly smaller ADT.  Accident rates 

are usually expressed as a ratio of the number of accidents divided by the amount of 

travel for a comparable mix of mitigating factors.  The amount of travel or exposure 

measures the number of opportunities available for each accident to occur (Saccomanno 

& Buyco 23).  “The relationship between accidents and traffic flow, the most common 

measure of exposure, has been shown actually to follow a nonlinear relationship, in 

which accident counts usually increase at a decreasing rate as traffic flow increases” 

(Lord 17).  Due to this relationship between accident rate and assumed level of safety, the 

mathematical relationships that go into accident rates were investigated, including total 

number of accidents per segment, ADT, time period of the study and segment length.  

One significant issue that occurs when looking at traditional accident rates is that the 
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numerator and denominator in accident rates are both random quantities that can 

contribute to the overall uncertainty about accident rates.  Accident counts have been 

found to be an inaccurate estimation of safety since they are usually random and 

independent events (Lord 18).  Since more exact data is not available, these inexact 

figures must be used.  
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Figure 25: Accident Rate vs. ADT with Linear Trend Line 

Figure 25 shows the relationship between accident rate in accidents per million 

vehicle miles and ADT.  The trend line helps to show that as volume increases the 

number of accidents increase.  This is a linear trend line to give the general impression of 

how the data is represented.  The large amounts of scatter make a more specific 

relationship difficult to assess with the Worcester data.   
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5.1.1 Linear Accident Rate Analysis 

Working towards the goal of finding each segment’s accident rate, the first thing 

that was examined was the linear relationship between the traditional variables involved, 

specifically the relationship between total number of accidents, volume, and length.  

5.1.1.1 Accident Rate and Volume 

Volume versus total number of accidents per segment was the first relationship 

examined.  A linear model predicting the total number of accidents for the entire study 

period per segment by volume was developed: ADTAcc 00199.067658.54 += .  The 

parameter estimate for volume (ADT) is positive which means that the higher the volume 

becomes, the more accidents there will be.  This is to be expected because the more 

vehicles that are present on the road the more possibilities exist for conflicts between the 

different movements of the vehicles.  A problem with this model is that if there is no 

traffic (ADT=0) the model still predicts accidents.  Numerically this is not a problem, but 

in practice if there are no vehicles on the road, no traffic accidents can take place on the 

road.  The Analysis of Variance (ANOVA) table given below gives the highlights of the 

model.  The coefficient of determination is only 0.0853, showing that volume alone is not 

a good representation of the variability in the data.  

Table 6: ANOVA Table for Total Number of Accidents and Volume 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 1 7894.04451 7894.04451 2.33 0.1393 
Error 25 84631 3385.2463   
Corrected 
Total 

26 92525    

Root MSE 58.18286  R-Square 0.0853  
Dependent 
Mean 

105.25926  Adj. R-Sq 0.0487  

Coeff Var 55.27577     
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One way to see what is happening with a linear regression is to plot the regression 

line in relationship to the points from which it was formed.  This allows the viewer to see 

if there are any outlying points that are affecting the regression line or if there are any 

patterns that could be taking place.  Including confidence bands on this plot also allows 

for an observer to see where points should be falling in order for the regression line to be 

a valid reflection of what is occurring.  Figure 26 shows the regression line, the actual 

points, and the 95 percent confidence bands.  The 95 percent confidence bands present 

with the regression line show the location of where with 95 percent confidence the true 

regression line of this relationship lies.  The use of only volume does not seem to be the 

best idea for a relationship, as most of the points, showing the actual data, fall far outside 

of the confidence bands. 
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Figure 26: Confidence bands for Regression of Total Number of Accidents and Volume 

The assumptions of any model need to be tested in order to determine if the model 

is an appropriate way to look at the relationships in question.  An assumption of linear 
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regression is that the variables follow a normal distribution.  The plot of the predicted 

values versus the residuals is a good way to see if any deviation from normality exists.  

By examining Figure 27, there does not appear to be a strong deviation from normality 

(i.e. there points do not form a pattern) and the variance appears to be fairly constant (i.e. 

the points lie within a constant band around zero) with the model using only total number 

of accidents and volume.  Constant variance is another assumption in linear modeling.  

There is a certain amount of symmetry in the residuals with half falling above and half 

falling below the zero line.  No obvious outliers can be identified by lying far from the 

majority of the points, which are all good indications of following the model 

assumptions. 
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Figure 27: Predicted Values vs. Residuals for Total Number of Accidents and Volume 

 
The normal probability plot in Figure 28 also shows that there is not a significant 

deviation from normality.  The solid line is the normal probability distribution.  The 

dashed line is the distribution from the data set and the histogram is also from the data 
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set.  The model has a distribution with a flatter and lower peak value and a slightly wider 

base than the normal distribution.  These minor departures could also be due to the small 

sample size used for this investigation.  A departure from normality would mean that a 

model of this functional form would be inappropriate for the given data.   Since the dash 

line follows the solid line closely, normality is assumed.  
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Figure 28: Normal Probability Plot for Total Number of Accidents and Volume 

 
The investigation in the linear relationship between total number of accidents and 

annual daily traffic shows that while the relationship most likely is linear, there is some 

minor deviations from normality.  Also found was that while there may be a relationship 

between total number of accidents and ADT, volume does not explain much of the 

variation that occurs in accident data.  
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5.1.1.2 Accident Rate and Length   

Similarly to the investigation of volume versus total number of accidents, segment 

length versus total number of accidents per segment was examined with linear regression.  

A model of the form LenAcc 00199.067658.54 +=  was found.  The parameter estimate 

for segment length is positive which means that the longer the segment is the more 

accidents there should be.  This like the volume study is an intuitive conclusion as the 

longer the segment is, the more possibilities for vehicle conflicts.  A problem that exists 

with this model is that if a segment has no length, that there are still accidents occurring.  

This is impossible in reality.   

The analysis of variance table below shows some of the important statistics 

relating to this model.  The coefficient of determination, most often used to compare 

models is equal to 0.0674 in this case.  This shows that the use of length as an 

explanatory variable can explain only 6.74 percent of the variation in the data and also 

implies that there are most likely other variables that can explain some of the variation.  

This combination explains even less of the variation in the data than did the total number 

of accidents versus volume.  

Table 7: ANOVA Table for Total Number of Accidents and Segment Length 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 1 6237.13397 6237.13397 1.81 0.1909 
Error 25 86288 3451.52205   
Corrected 
Total 

26 92525    

Root MSE 58.74966  R-Square 0.0674  
Dependent 
Mean 

105.25926  Adj. R-Sq 0.0301  

Coeff Var 55.81424     
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Again, looking at a plot with the regression line, the actual points and 95% 

confidence bands, length alone is not a good indication of total accidents (see Figure 29).  

As with volume, most of the points fall outside of the confidence bands.  This helps to 

show that a better model is most likely needed to explain the majority of the variation in 

accident data.  
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Figure 29: Confidence Bands for Regression of Total Number of Accidents and Segment 
Length 

Checking the model assumptions, as with total number of accidents and volume, 

there does not appear to be a strong deviation from normality in the predicted versus 

residual plot in Figure 30.  One point appears to be located further away than the others, 

but not enough to be called an outlier. There appears to be a constant variance, as the 

points lie in a mostly constant band around zero, which is one of the assumptions for 

linear modeling.  The clustering of the points on the left side of the graph has to do with 

the selection of the data points rather than with systematic departures from the basic 
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assumptions.  These observations indicate that linear modeling is an acceptable way to 

look at this relationship.  
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Figure 30: Predicted Values vs. Residual for Total Number of Accidents and Segment 

Length 

 
The probability plot below does not appear to have a strong deviation from 

normality.  The solid line is the normal distribution.  The dashed line is the distribution of 

the residuals and the histogram is of the residuals.  The peak of the distribution from the 

model is further towards the left than the normal distribution as is the base of the 

distribution. Since there are only minor departures from normality, the plot shows that the 

data most likely follows a normal distribution, meaning that a linear relationship is 

present and the model assumptions hold true.  
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Figure 31: Normal Probability Plot for Total Number of Accidents and Segment Length 

The normal quantile plot also reveals a small departure from normality, but this 

departure could be explained by the use of other explanatory variables (See Figure 32).  

The solid line shows where the data points would be for perfect normality and the dotted 

line shows where the data is actually located.  This small amount of deviation is not a 

large concern, but with a larger data set, could prove to be showing that the data is not 

truly linear.   
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Figure 32: Normal Quantile Plot for Total Number of Accidents and Segment Length 

There is a small possibility that the total number of accidents and segment length 

do not have a linear relationship, but there is no doubt that segment length alone does not 

describe an adequate amount of the variation in the crash data.  The relationship may be 

linear, but the models formed by both segment length and traffic volume alone, do not 

correctly represent what happens in actual situations.  The fact that according to the two 

above models developed, accidents can occur when there is no traffic volume on the road 

or not length to the segment is worrisome. This means that further steps must be taken in 

looking at accident rates.  

5.1.1.3 Accident Rate with Length and Volume 

As both volume versus total number of accidents and segment length versus total 

number of accidents appear to follow a normal distribution but do not explain a large 

amount of the variation in the data a model was developed that combined the two 

explanatory variables in one model.  The parameter estimate for length is positive which 
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means that the longer the segment is the more accidents there should be.  The coefficient 

for ADT is also positive which means that the more traffic the more accidents occur.  

These are the expected values for the sign of each of the two coefficients.  By combining 

these two variables into one equation, much more of the variability in the model is 

explained.  Individually, just using length explained 6.74 percent of the variation and just 

using volume as an explanatory variable explained 8.53 percent of the variation in the 

model.  Using both variables in the model increased the variation explained to 25.4 

percent, which is more than the individual amounts combined.  Key numbers, including 

the coefficient of determination can be seen in Table 8.   

Table 8: AVOVA Table for Accidents, Segment Length and Volume 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 2 23545 11773 4.10 0.0295 
Error 24 68980 2874.15623   
Corrected 
Total 

26 92525    

Root MSE 53.61116  R-Square 0.2545  
Dependent 
Mean 

105.25926  Adj. R-Sq 0.1923  

Coeff Var 50.93249     
The regression procedure found the following formula to be representative of the 

given data. ADTLenAcc 00321.002302.048971.7 ++−= .  Both predictor variables, Len 

and ADT, have the expected positive sign, but the intercept term is problematic.  The 

negative intercept shows that if there was no volume and no segment length there would 

be negative accidents.  This is not possible in reality, so this cannot be used to show the 

relationships between the total number of accidents, segment length and traffic volume.  

The significance of each of the three parts of the equation can be tested using statistical 

methods, which show that while the parameters for segment length and ADT are 
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significant to greater than five percent, the intercept term is not significant and does not 

help in explaining the variation in the data as shown in Table 9.  

Table 9: Parameter Estimates for Accidents, Segment Length and Volume 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -7.48971 41.80557 -0.18 0.8593 
Length 1 0.02302 0.00987 2.33 0.0283 
Vol 1 0.00321 0.00131 2.45 0.0218 

To check that the model assumptions are met, the predicted values versus the 

residual values were examined in Figure 33.  This residual plot shows that the there is not 

a substantial departure from normality in the data.  There is no discernable pattern in the 

points and they are evenly distributed between positive and negative values.  A constant 

variance can be seen, by the points being distributed in two constant bands, above and 

below zero.  One point falls slightly further away then the rest at –110 but this remains 

close enough to not be considered an outlying point and not be considered a departure 

from a constant variance.  This plot allows for the linear modeling assumptions to be met, 

and for linear regression to be an adequate representation of this particular data.  
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Figure 33: Predicted Values vs. Residuals for Accidents, Segment Length and Volume 

Similarly, the boxplot of the residuals shows that they are evenly distributed by 

the plot being symmetric (See Figure 34).  The symmetry helps to confirm that the choice 

of a linear distribution was appropriate.  This also helps to show that no one point is a 

major outlier and affecting the overall model.  There is a slightly larger variation of 

residuals on the negative side.  
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Figure 34: Boxplot of Residuals for Accidents, Segment Length and Volume 

The normal quantile plot, shown in Figure 35, demonstrates that there may be 

some minor deviations from the normal distribution.  The solid line represents normality 

and the dotted line represents the actual data.  There is a minor pattern that may be 

explained by a sinusoidal wave, or could be natural variation in the given data set.   The 

departure from normality, however, is not enough to cause the linear relationship to be 

entirely disregarded.   But due to previous investigations there is a non-linear relationship 

between accident rate and especially traffic volume.  That is what is most likely causing 

the data to not fully follow a normal distribution, but due to the small data set, the non-

linear relationship discussed by Lord (Lord 17) cannot be fully duplicated.  
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Figure 35: Normal Quantile Plot for Accidents, Segment Length and Volume 

5.1.2 Accident Rate with Non-Linear Distributions 

Due to the uncertainty about the relationship between length, volume and total 

accidents, these variables were examined under a Poisson distribution and a negative 

binomial distribution.  The reason for exploring other distributions can from the issue that 

traffic accidents themselves are non-negative discrete counts that do not follow a normal 

distribution.  Therefore distributions that consider count data as their basis were reviewed 

as possibly being more appropriate for predicting the number of accidents.   

5.1.2.1 Accident Rates with Poisson Distribution 

The model developed that used the Poisson distribution showed a large amount of 

overdispersion, which is an indication that the mean is very different from the variance.  

This violates a very basic model assumption.  The deviance divided by the degrees of 

freedom shows this quality.  This value was 27.7869.  A value of one indicates that there 

is not a problem of overdispersion; the larger the value, the greater the variance and mean 
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differ.  This can be seen in Table 10.  This is also an indication that the data does not 

adequately fit this functional type of model.   

Table 10: Criteria for Assessing Goodness of Fit for Accident Rates using a Poisson 
Distribution 

Criterion DF Value Value/DF 
Deviance 24 666.8856 27.7869 
Scaled Deviance 24 24.0000 1.0000 
Pearson Chi-Square 24 644.1454 26.8394 
Scaled Pearson X2 24 23.1816 0.9659 
Log Likelihood  377.8728  

The model using the Poisson distribution is as follows: 

vollengthentsTotalaccid 0000.00002.05914.3 ++= .   

All of the variables are significant to greater than 95 percent.   This can be seen in 

Table 11.  The confidence limits also show that there is a possibility that the coefficients 

for both segment length and volume can be zero, which is a questionable result: having a 

coefficient of zero means that the variable in question does not affect the number of 

accidents that occur.  Based on observation, the idea that volume and segment length 

have no effect on the number of accidents that occur is ludicrous.  Since the model 

assumptions do not hold true this relationship is invalid.  

Table 11: Analysis of Parameter Estimates for Accident Rates using a Poisson Distribution 

Parameter DF Estimate Standard 
Error 

Wald 95% 
Confidence Limits 

Chi-
Square 

Pr> 
ChiSq 

Intercept 1 3.5914 0.4115 2.7848 4.3980 76.16 <0.0001 
Length 1 0.0002 0.0001 0.0000 0.0004 5.55 0.0184 
Volume 1 0.0000 0.0000 0.0000 0.0001 6.04 0.0140 
Scale 0 5.2713 0.0000 5.2713 5.2713   

5.1.2.2 Accident Rate with Negative Binomial Distribution 

Using the negative binomial distribution to model length, volume and total 

accidents allows for the problems of overdispersion to be overcome.  The model is almost 

identical to that which follows the Poisson distribution, but the problem of overdispersion 
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is almost completely overcome.  vollengthentsTotalaccid 0000.00002.06605.3 ++=  

The coefficients are very similar, but the elimination of the overdispersion problem, 

makes the data better fit this distribution.  The deviance divided by the degrees of 

freedom value is 1.1713, which is a very low value, making this a very good model for 

these variables (See Table 12).  A value of 1.0 would show that there is no problem of the 

variance being greater than it is allowed to be.   

Table 12: Criteria for Assessing Goodness of Fit for Accident Rates using a Negative 
Binomial Distribution 

Criterion DF Value Value/DF 
Deviance 24 28.1119 1.1713 
Scaled Deviance 24 24.0000 1.0000 
Pearson Chi-Square 24 24.9062 1.0378 
Scaled Pearson X2 24 21.2632 0.8860 
Log Likelihood  9199.8261  

The variables are almost significant to the 95 percentile, with volume being 3.99 

percent and length being 5.61 percent.  This can be seen in Table 13.  Again as with the 

model developed using the Poisson distribution, the 95 percent confidence limits show 

that the coefficients for both segment length and volume have a chance of being zero, but 

as zero is at the lower limit of the confidence band is not a likely situation.  Both models, 

using the Poisson distribution and the negative binomial distribution, however, do not 

provide a good method for constructing an accident rate.   

Table 13: Analysis of Parameter Estimates for Accident Rages using a Negative binomial 
Distribution 

Parameter DF Estimate Standard 
Error 

95% Confidence 
Limits 

Chi-
Square 

Pr> 
ChiSq 

Intercept 1 3.6685 0.4185 2.8483 4.4886 76.85 <0.0001 
Length 1 0.0002 0.0001 -0.0000 0.0004 3.65 0.0561 
Volume 1 0.0000 0.0000 0.0000 0.0001 4.22 0.0399 
Dispersion 1 0.2546 0.0755 0.1424 0.4551   
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5.1.2.3 Accident Rate with Natural Logarithm 

In hopes that the accident rate can be reconstructed, a model using the natural 

logarithm of volume, length and total number of accidents was developed.  This was done 

assuming the variables all followed a normal distribution. By using 

CB lengthADTAN )()(=  as the base model where N equals the total number of accidents, 

and length equals the segment length, if the coefficients are found to be equal to 

approximately positive one (i.e. B=C=1), then that will show that the traditional formula 

for accident rates is valid.  Since rate
LengthADT

N =
*

 to equate the accident rate to the 

model LengthADTrateN **=  where the coefficient A is equal to the accident rate and B 

and C should be approximately positive one.  For ease of modeling, the following is what 

was actually modeled: )ln()ln()ln()ln( lengthCvolBAN ++= .  The model then gives 

values for each of the predictive variable’s coefficients.   The model that resulted from 

this is the following: )ln(32276.0)ln(66394.043339.4)ln( lengthvolentstotalaccid ++−= .  

The coefficient of determination of this model is 0.1915, which means that 19.15 percent 

of the variation in the variables is explained by this model.  This model does not explain 

all of the variation that occurs in the data, but the rest can hopefully be explained by 

additional variables.  See Table 14 for more detailed numerical analysis.   
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Table 14: ANOVA Table for Accident Rates with Natural Logarithm 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 2 1.94447 0.97224 2.84 0.0780 
Error 24 8.20810 0.34200   
Corrected 
Total 

26 10.15257    

Root MSE 0.58481  R-Square 0.1915  
Dependent 
Mean 

4.48268  Adj. R-Sq 0.1242  

Coeff Var 13.04601     
As with other investigations above, the significance of the coefficients was 

examined.  The natural logarithm of segment length and volume are significant to more 

than 90 percent, which is a common cut off point for including variables in a regression 

model.  The parameter estimates and their F-values for the significance tests can be seen 

in Table 15. 

Table 15: Parameter Estimates for Accident Rates with Natural Logarithm 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -4.43339 4.01313 -1.10 0.2802 
ln(Length) 1 0.66394 0.34040 1.95 0.0629 
ln(Vol) 1 0.32276 0.15509 2.08 0.0483 

This investigation results in having 323.0664.043.4 lengthADTeN −= .  Here the 

coefficients for B and C are not equal to positive one, but closer to positive one half.  

These were not the expected values, which implies that the traditional accident rate 

formula is not applicable to at minimum this data set and at maximum all accident data.  

The above investigations show that the traditional relationships used to calculate accident 

rates are not applicable to this data and another way of determining the accident rate or 

risk of an accident occurring must be found.  
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5.1.3 Accident Risk Analysis 

The goal of the accident rate analysis is to be able to determine the safety of 

different road segments based on roadway and traffic characteristics.  To compare 

segments, an accident rate tends to be more helpful than just an accident count.  The rate 

that is being search for is the accident "risk" or the probability that a vehicle on a segment 

will be involved in an accident.  The risk should be different for each road segment.  

Based on the above work, Poisson regression had severe overdispersion problems, so the 

negative binomial distribution was examined to try to overcome those problems.  Use of 

the negative binomial distribution and natural logarithm did not appear to adequately 

describe how the accident data related to ADT and segment length.  The earlier linear 

regression was also not helpful in describing the relationships between volume, length 

and number of accidents.  

The preliminary problem is determining the risk of an accident on an individual 

segment.  This has traditionally been accomplished by using an accident rate.  The above 

analysis has shown that with this data, this is not an adequate way to describe the 

accidents that occur on the segments.  Instead, an accident risk will be used.  This is the 

probability of an accident occurring to an individual vehicle on the segment.  Each 

occurrence of an accident is an independent action.  There are a known number of 

accidents that occur on each segment over the three year time period.  There are also a 

know number of trials, or possibilities of accidents over the three year time period, which 

is the total number of vehicles that have passed through the segment which is calculated 

by an accurate estimation of the volume by multiplying the ADT by 365 days per year by 

three years.   
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With a known number of trials and known number of successes, or accidents, the 

best way to determine the actual risk of an individual vehicle being in an accident is 

through the binomial distribution.  The binomial distribution is often used to find the 

probability of an event with a given number of trials and successes.   The binomial 

distribution deals with independent events, which is true with accident occurrences.  The 

risk of an accident is equal for any passing vehicle and each vehicle has an equal chance 

of being in a crash.    

The traffic volume ranges from 11,000 to 47,000 vehicles per day.  Time is 

constant over all the segments, with each segment lasting three full years.  This allows 

the number of trials per segment to vary from twelve to fifty-one million vehicles.  The 

number of accidents per segment similarly has a large amount of variation between 26 

and 254 accidents per segment.  The binomial distribution’s probability mass function is 

( ) ( ) knk pp
k
n

kXP −−







== 1 .  There are n trials and k successes.  Since this is a 

distribution, there are infinite possibilities for what the actual probability is.  However, 

the best point estimate, which will be used to identify the risk of an accident occurring for 

an individual vehicle, is 
n
k .  The best point estimate allows for the most likely probability 

on each segment to be used as the accident risk for each road segment.   

The risk for an accident to occur varies according to the roadway segment.  These 

risk range between 710*537.9 −  and 510*03.1 − .   After further consideration the accident 

risk was normalized by length converting it back into the more traditional accident rate.  
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5.2 Accident Risk Prediction Model Development 

The first step in the model development was reducing the number of variables to a 

workable number.  The combinations of the variables can be made to produce the best 

possible model.  

5.2.1 Primary Elimination of Variables 

Since the data set has a relatively small number of data points, and there exist a 

potentially large number of variables, some of them need to be eliminated early on in the 

development process.  The primary elimination was to look at groups of variables and 

remove the ones that do not help explain variation in the data.  The fifty-six primary 

variables were divided up into groups, which have similar characteristics.  The variables 

were divided into six major groups to try and to an initial elimination of variables that do 

not have a large influence on the data.  The groups consist of hazard variables, cross-

section variables, traffic characteristic variables, horizontal and vertical alignment 

variables, access variables and the remaining variables.  Each group is examined 

individually to see if there are any variables that can quickly be eliminated to help lower 

the number of possible variable to consider for the final model to a more workable size. 

5.2.1.1 Variables Relating to Roadside Hazards 

There are many of variables that relate to the number and type of roadside hazard.  

It was decided to try and determine which were the most influential and important of 

these variables to include in a prediction model that includes the influence of more than 

just the roadside hazards.  Using a selection process of the adjusted coefficient of 

determination, the variables were compared in multiple combinations to determine the 

optimum combination.  The adjusted coefficient of determination adjusts 2R  by dividing 
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each sum of squares by its associated degrees of freedom.  The adjusted coefficient may 

actually become smaller when additional X variables are introduced into a model, 

because any decrease in the error sum of squares may be more than offset by the loss of a 

degree of freedom in the denominator (Neter et al 231).  This is what makes comparisons 

by adjusted coefficient of determination fit better than comparisons by just the coefficient 

of determination.  

Due to the goal of finding hazard variables of most interest, more possible models 

other than the model with the greatest adjusted coefficient of determination were 

examined.  The top models sorted by adjusted coefficient of determination were 

examined to show which variables were used most often in these models.  All seventeen 

possible hazard variables were included in the top models, but as the reasoning for 

looking at these was to eliminate some possible variables, an in depth look at the 

variation of the use of the variables was done.  The variables hydrant (number of fire 

hydrants on the segment) and benches (number of benches on the segment) were included 

in all the top models.  Variables upole (number of utility poles on each segment), 

building (number of buildings on each segment), ospole (number of overhead sign poles 

on each segment), and hazards, representing the total number of hazards were found in 

more than eighty percent of the top models.  The other variables that were used in more 

than fifteen percent of the models were electrical (number of electrical/traffic control 

boxes), pmeter (number of parking meters), fence (number of fences), trees (number of 

trees), pole (number of telephone poles, light poles, and sign poles), spole (number of 

sign poles) and density (the number of hazards per mile).  Some of the variables that were 



 141

excluded from further consideration include the counts of mailboxes, stone monuments, 

rocks, and light poles on each segment.  

Table 16: ANOVA Table for the Best Model using only Hazard Variables 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 6 3898.85678 649.80946 6.35 0.0007 
Error 20 2048.15673 102.40784   
Corrected 
Total 

26 5947.01352    

Root MSE 10.11968  R-Square 0.6556  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.5523  

Coeff Var 43.71840     
The model that had the largest adjusted coefficient of determination for hazards 

included just six variables: hydrant, upole, benches, building, ospole, and hazards.  

Hydrant is the total number of fire hydrants on the segment while benches is the total 

number of benches observed on the road segment.  Upole is the number of utility poles 

on the road segment while ospole is the total number of overhead sign poles observed on 

the segment.   Hazards is the variable that represents the total number of roadside hazards 

observed and building represents the number of buildings throughout the segment.  The 

adjusted coefficient of determination for this model is 0.5523; meaning that 55 percent of 

the variation in the model can be explained by this model and the coefficient of 

determination is 0.6556.  These and other informative numbers can be seen in Table 16.  

The coefficients for the different variables may not be what were actually expected 

(hazards and hydrant had negative coefficients), but the model is not of what was of 

primary interest in this situation (See Table 17).  The model was mainly to show what 

hazard variables are of main interest.   
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Table 17: Parameter Estimates for the Best Model using only Hazard Variables 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr>|t| 

Intercept 1 26.47713 5.26992 5.02 <0.0001 
Hydrant 1 -4.14853 1.91712 -2.16 0.0427 
Upole 1 0.79928 0.43373 1.84 0.0802 
Benches 1 7.28857 3.69220 1.97 0.0624 
Building 1 0.69990 0.30342 2.31 0.0319 
Ospole 1 5.74825 1.46561 3.92 0.0008 
Hazards 1 -0.23315 0.12022 -1.94 0.0667 

Some further analysis was done primarily to confirm that that best model from 

this group followed the basic model assumptions.  Figure 36 shows the distribution of the 

residuals for this model.  This figure shows that the residuals are basically evenly 

distributed about zero with approximately half falling above and below zero.  Normally 

distributed residuals are a sign that the data fits the normal probability model.   
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Figure 36: Boxplot of Residuals for the Best Model using only Hazard Variables 

An assumption when dealing with multiple linear regression is that the data 

follows a normal distribution and the variance is constant.  The graph in Figure 37 shows 

the studentized residuals versus the predicted values for this model.  This conveys that 
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there is a constant variance in this model.  The studentized residual plot helps to show 

that there are no severe outlying data points.  A heuristic for outliers is that if they are 

greater than four in the studentized residual plot then the point could be considered an 

outlier.  None of data points follows that heuristic.   
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Figure 37: Residuals and Studentized Residuals vs. Predicted Values for the Best Model 

using only Hazard Variables 

Another way to visually check that the data follows a normal distribution is to 

look at the normal probability plot (See Figure 38).  The solid line is the normal 

probability distribution, while the dashed line represents the distribution that can be 

developed using the data from the model.  The two lines almost exactly line up, showing 

that using the normal probability distribution was a good assumption for this data.  
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Figure 38: Normal Probability Plot for the Best Model using only Hazard Variables 

Similarly the normal quantile plot is effective in showing when the data does not 

follow a normal distribution.  When the assumption is correct, the residuals fall along the 

straight line.  If the assumption is wrong, the residuals will not fall along the straight line, 

but may follow a different pattern.  Figure 39 show that the residuals fall along the 

straight line, showing that the assumption of normality is correct with using the hazard 

variables regressed against the rate variable.   
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Figure 39: Normal Quantile Plot for the Best Model using only Hazard Variables 

The best model using only hazard variables does follow all the assumptions of 

linear regression.  This shows that this is so far a good choice of distributions for this data 

set and allows the four variables to be removed from further consideration since hazard 

variable models are normal in distribution.   

5.2.1.2 Variables Relating to Cross-Section Alignment 

There are also many variables that relate to the different elements that compose 

cross-sectional alignment.  Of the nineteen identified variables, it was felt that some of 

them would not have strong influences on accident rates.  It was decided to try and 

eliminate the least influential of these variables.  Using a selection process of the adjusted 

coefficient of determination, the variables were compared in multiple combinations to 

determine the optimum combination.   

The top models, sorted by adjusted coefficient of determination, were examined 

to show which variables were used most often in these models.  Only eighteen of the 
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nineteen possible variables were present in the top models.  The missing variable was 

perpendicular, which represents the amount of perpendicular parking on each road 

segment, however, this only occurred on one segment so was not expected to be 

influential.  A further examination was made of the remaining eighteen variables.  The 

variables of widthsr (width of the right shooulder), widthsidl (width of the left sidewalk), 

and widthl2 (width of the second lane in the left direction) were included in more than 80 

percent of the top models.  Variables that appeared in more than fifteen percent of the top 

models were retained for inclusion in further model development.    

Some of the variables that were excluded from further consideration include the 

percentage of parking, the number of lanes going in the right direction, and the width of 

the second and third lanes going in the right direction.  By eliminating these variables, 

there is a more reasonable number of variables that are related to cross-sectional 

alignment to include in further model development.   

Table 18: ANOVA Table for the Best Model using Cross-Section Variables 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 5 2474.03957 494.80791 2.99 0.0342 
Error 21 3472.97395 165.37971   
Corrected 
Total 

26 5947.01352    

Root MSE 12.86000  R-Square 0.4160  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.2770  

Coeff Var 55.55700     
The model that had the largest adjusted coefficient of determination for hazards 

included just five variables: crest, llanes, widtha, widthsr, and widthsidl.  Crest is the 

maximum recorded value of the crest on each segment while llanes is the total number of 

lanes in the left direction on the road segment.  Widtha is the average width of the lanes  
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on each road segment while widthsr is the width of the should on the right side of the 

road.  It is interesting that this variable was shone to be such a significant one, since there 

was only one segment with a recorded shoulder.  Widthsidl is the variable that represents 

the width of the left hand sidewalk.  The adjusted coefficient of determination for this 

model is 0.2770, meaning that 27 percent of the variation in the model can be explained 

by this model and the coefficient of determination is 0.4160.  These and other informative 

numbers can be seen in Table 18.  The coefficients for the different variables may not be 

what were actually expected (llanes has a negative coefficient meaning that the more 

lanes in the left direction there are the fewer accidents occur), but the model is not of 

primary interest in this situation (See Table 19).  The model was mainly to show what 

cross-section variables are of primary concern.   

Table 19: Parameter Estimates for the Best Model using Cross-Section Variables 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr>|t| 

Intercept 1 80.02889 32.53926 2.46 0.0227 
crest 1 2.20930 1.77988 1.24 0.2282 
llanes 1 -11.57391 6.94379 -1.67 0.1104 
Widtha 1 -4.74875 1.58690 -2.99 0.0069 
widthsr 1 -3.87422 2.01539 -1.92 0.0682 
Widthsidl 1 2.77757 1.29274 2.15 0.0435 

Some further analysis was done primarily to confirm that that best model from 

this group followed the basic model assumptions.  Figure 40 shows the distribution of the 

residuals for this model in a boxplot.  This figure shows that the residuals are basically 

evenly distributed about zero with approximately half falling above and below zero.  

Normally distributed residuals are a sign that the data fits the normal probability model.   
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Figure 40: Boxplot of Residuals for the Best Model using Cross-Section Variables 

An assumption when dealing with multiple linear regression is that the data 

follows a normal distribution and the variance is constant.  The graph in Figure 41 shows 

the studentized residuals versus the predicted values for this model and shows that there 

is a constant variance in this model.  The studentized residual plot also helps to show that 

there are no severe outlying data points.  A heuristic for outliers is that if they are greater 

than four in the studentized residual plot then the point could be considered an outlier.  

None of data points follows that heuristic.   
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Figure 41: Studentized Residuals vs. Predicted Values for the Best Model using Cross-

Section Variables 

Another way to visually check that the data follows a normal distribution is to 

look at the normal probability plot (See Figure 42).  The solid line is the normal 

probability distribution, while the dashed line represents the distribution that can be 

developed using the data from the model.  The two lines almost exactly line up with the 

model’s distribution peaking to the left of the normal distribution, showing that using the 

normal probability distribution was a good assumption for this data.  
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Figure 42: Normal Probability Plot for the Best Model using Cross-Section Variables 

Similarly the normal quantile plot is effective in showing when the data does not 

follow a normal distribution.  When the assumption is correct, the residuals fall along the 

straight line.  If the assumption is wrong, the residuals will not fall along the straight line, 

but may follow a different pattern.  Figure 43 shows that the residuals fall along the 

straight line, showing that the assumption of normality is correct with using the hazard 

variables regressed against the rate variable.   
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Figure 43: Normal Quantile Plot for the Best Model using Cross-Section Variables 

The best model using cross-sectional alignment variables follows all the 

assumptions of linear regression.  This shows that this is an acceptable choice of 

distributions for this data set.   

5.2.1.3 Variables Relating to Traffic Characteristics 

There are two variables that relate to traffic characteristics.  It was decided to try 

and determine if both would be important in a prediction model.  Again, using a selection 

process of the adjusted coefficient of determination, the variables were compared in 

together individually to determine if they should be combined or kept separate.   

Due to the goal of finding the traffic characteristics of most interest, all three 

models including the one with the greatest adjusted coefficient of determination were 

examined.  The two possible traffic characteristic variables examined were vol and 

heavyveh.  Vol is the annual daily traffic of each roadway segment and heavyveh is the 
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percentage of volume that is composed by heavy vehicles.  The top model consisted both 

of the traffic characteristic variables.   

Table 20: ANOVA Table for the Best Model using Traffic Characteristics 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 2 1536.79919 768.39959 4.18 0.0277 
Error 24 4410.21433 183.75893   
Corrected 
Total 

26 5947.01352    

Root MSE 13.55577  R-Square 0.2584  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.1966  

Coeff Var 58.52681     
The adjusted coefficient of determination for this model is 0.1966, meaning that 

19 percent of the variation in the model can be explained by this model and the 

coefficient of determination is 0.2584.  These and other informative numbers can be seen 

in Table 20.  The coefficients for the variable may not be significant to the desired 

amount of 01.0=α , with volume being significant to a 0.12 level, but the model is not of 

what was of primary interest in this situation (See Table 21).  The model was mainly to 

show which traffic characteristics are of major importance.   

Table 21: Parameter Estimates for the Best Model using Traffic Characteristics 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr>|t| 

Intercept 1 -4.91602 11.50883 -0.43 0.6731 
Vol 1 0.00051943 0.00032341 1.61 0.1213 
heavyveh 1 7.65513 2.72203 2.81 0.0096 

Some analysis was done to confirm that that the model from this group of 

variables followed the basic model assumptions.  Figure 44shows the distribution of the 

residuals for this model, which shows that the residuals are basically evenly distributed 

about zero with approximately half falling above and below zero.  There is a small lack 

of symmetry in that there is a larger variance on the positive side for the residuals, but 
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this is not large enough to cause serious concern.  Normally distributed residuals are a 

sign that the data fits the normal probability model.   
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Figure 44: Boxplot of Residuals for the Best Model using Traffic Characteristics 

An assumption when dealing with multiple linear regression is that the data 

follows a normal distribution and the variance is constant.  The graph in Figure 45 shows 

the studentized residuals versus the predicted values for the traffic characteristics model 

and conveys the basic principle that there is a mostly constant variance in this model.  

This can be seen by the even distribution of the residuals around zero and by the lack of a 

pattern in the locations.  A heuristic for outliers is that if they are greater than four in the 

studentized residual plot then the point could be considered an outlier.  Based on this rule 

of thumb there are no outlying points in this data set.    
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Figure 45: Studentized Residuals vs. Predicted Values for the Best Model using Traffic 

Characteristics 

Another way to visually check that the data follows a normal distribution is to 

look at the normal probability plot (See Figure 46).  The solid line is the normal 

probability distribution, while the dashed line represents the distribution that can be 

developed using the data from the model.  The two lines match closely; deviating only on 

the right side of the plot, showing that using the normal probability distribution was a 

good assumption for this data.  
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Figure 46: Normal Probability Plot for the Best Model using Traffic Characteristics 

Similarly the normal quantile plot is effective in showing when the data does not 

follow a normal distribution.  When the assumption is correct, the residuals fall along the 

straight line.  If the assumption is wrong, the residuals will not fall along the straight line, 

but may follow a different pattern.  Figure 47 shows that the residuals almost all fall 

along the straight line, showing that the assumption of normality is correct with using the 

hazard variables regressed against the rate variable.   
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Figure 47: Normal Quantile Plot for the Best Model using Traffic Characteristics 

While not being able to eliminate any of the traffic characteristic variables, the 

model using them follows all the assumptions of linear regression.  This continues to 

shows that a normal distribution is a good choice for this data.   

5.2.1.4 Variables Relating to Horizontal and Vertical Alignment 

There are five variables that relate to horizontal and vertical alignment.  Using a 

selection process of the adjusted coefficient of determination, the variables were 

compared in multiple combinations to determine the premier combination.  The five 

possible horizontal and vertical alignment variables examined were length, SD, curve, 

type, and grade.  Length is the overall length of the segment, while SD represents the 

presence of a stopping sight distance problem.  Curve is an indication of how many 

horizontal curves there are in the roadway segment.  If this variable proves to be 

insignificant during the model development process it may be converted to a simple 

indicator variable showing that the segment is either straight or curved.  type indicates 
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what the terrain is classified as with zero representing level terrain, one representing 

rolling terrain and two representing mountainous terrain.  Grade indicates the maximum 

grade observed on the roadway segment.   

The goal of examining this group is to find which variables are of most interest in 

further model development.  The models with the highest adjusted coefficient of 

determination were examined to see which of the alignment variables occurred most 

often.  All of the possible alignment variables were included in the top models, but as the 

reasoning for looking at these was to eliminate some possible variables, a further 

examination of the use of the variables was done.  The findings of this review show that 

each variables was used the same number of times as the other variables in the top 

models with each variable appearing in over fifty percent of the top models sorted by 

adjusted coefficient of determination.  This shows that there is not enough of a difference 

between the variable that would support dropping any of them at this time.  

Table 22: ANOVA Table for the Best Model using Alignment Variables 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 3 2807.71384 935.90461 6.86 0.0018 
Error 23 3139.29968 136.49126   
Corrected 
Total 

26 5947.01352    

Root MSE 11.68295  R-Square 0.4721  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.4033  

Coeff Var 50.47195     
The model with the largest adjusted coefficient of determination included the 

variables length, SD and curve.  The adjusted coefficient of determination for this model 

is 0.4033; meaning that 40 percent of the variation in the model can be explained by this 

model and the coefficient of determination is 0.4721.  These and other informative 
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numbers can be seen in Table 22.  This model was examined in further depth than the 

others, to ensure that the model assumptions are being followed.  The coefficients for the 

variable may not be significant to the desired amount of 01.0=α , with SD being 

significant to a 0.28 level, but the model is not of what was of primary interest in this 

situation (See Table 23).  The model was mainly to show which variables relating to 

horizontal and vertical alignment are of greatest interest in further modeling 

development.   

Table 23: Parameter Estimates for the Best Model using Alignment Variables 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr>|t| 

Intercept 1 34.67169 3.79513 9.14 <0.0001 
Length 1 -0.01237 0.00307 -4.03 0.0005 
SD 1 8.03475 7.31378 1.10 0.2833 
curve 1 7.63052 3.56643 2.14 0.0432 

Some analysis was done to confirm that that the model from this group of 

variables followed the basic model assumptions.  Figure 48 shows the distribution of the 

residuals in a boxplot for this model, which shows that the residuals are basically evenly 

distributed about zero with approximately half falling above and below zero.  Symmetric 

residuals are a sign that the data follows the normal probability model.   
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Figure 48: Boxplot of Residuals for the Best Model using Alignment Variables 

An assumption when dealing with multiple linear regression is that the data 

follows a normal distribution and the variance is constant.  The graph in Figure 49 shows 

the studentized residuals versus the predicted values for the alignment model and conveys 

the basic principle that there is a mostly constant variance in this model.  This can be seen 

by the even distribution of the residuals around zero and by the lack of a pattern in the 

locations.  A heuristic for outliers is that if they are greater than four in the studentized 

residual plot then the point could be considered an outlier.  Based on this rule of thumb 

there are no outlying points in this data set.   There is a slight bias towards positive 

residuals, but this is not strong enough to imply that the data does not follow a normal 

distribution.  
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Figure 49: Studentized Residuals vs. Predicted Values for the Best Model using Alignment 

Variables 

Another way to visually check that the data follows a normal distribution is to 

look at the normal probability plot (See Figure 50).  The solid line is the normal 

probability distribution; while the dashed line represents the distribution that can be 

developed using the model developed with just horizontal and vertical alignment 

variables.  The two lines match closely, deviating only slightly with the model having a 

lower and flatter peak than the normal distribution, showing that using the normal 

probability distribution was a good assumption for this data.  
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Figure 50: Normal Probability Plot for the Best Model using Alignment Variables 

Similarly the normal quantile plot is effective in showing when the data does not 

follow a normal distribution, which does not apply in this situation.  Figure 51 shows that 

the residuals almost all fall along the straight line, showing that the assumption of 

normality is correct with using the hazard variables regressed against the rate variable.   
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Figure 51: Normal Quantile Plot for the Best Model using Alignment Variables 

While not being able to eliminate any of the horizontal and vertical alignment 

variables, the model using those variables follows all the assumptions of linear 

regression.  Not being able to eliminate any of the variables also leads to the assumption 

that these may all prove to be important variables for safety purposes.    

5.2.1.5 Variables Relating to Access Control 

There are several variables that relate to the number and type of access control.  It 

was decided to try and determine which were the most influential and important of these 

variables to include in a prediction model that includes the influence of more than just 

access control.  Using a selection process of the adjusted coefficient of determination, the 

variables were compared in multiple combinations to determine the optimum 

combination.   

Due to the goal of finding access control variables of most interest, more possible 

models other than the model with the greatest adjusted coefficient of determination were 
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examined.  The top models sorted by adjusted coefficient of determination were 

examined to show which variables were used most often in these models.  All of the five 

possible access control variables were included in the top models, but as the reasoning for 

looking at these was to eliminate some possible variables, an in depth look at the 

variation of the use of the variables was done.  The variables considered were maccess 

(the number of minor street access points on each segment), driveways (the number of 

driveways on each segment), parkinglots (the number of parking lots on each segment), 

drivepark (the total number of driveways and parking lots on each segment), and 

allaccess (the total number of access points on each segment).  Out of the top twenty-

three models, each variable was used either nine or ten times.  So each access control 

variable was present in over forty percent of the top models.  This prevents any of the 

access control variables from being immediately eliminated from the list of potential 

variables. 

Table 24: ANOVA Table for the Best Model using only Access Variables 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 1 1073.64374  5.51 0.0272 
Error 25 4873.36978    
Corrected 
Total 

26 5947.01352    

Root MSE 13.96191  R-Square 0.1805  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.1478  

Coeff Var 60.31736     
The model that had the largest adjusted coefficient of determination for hazards 

included just one variable: allaccess.  Allaccess is a continuous variable that represents 

the total number of access points on each roadway segment.  The access points include 

minor roads, driveways and parking lots.  The adjusted coefficient of determination for 
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this model is 0.1478; meaning that 14 percent of the variation in the model can be 

explained by this model and the coefficient of determination is 0.1805.  These and other 

informative numbers can be seen in Table 24.  The coefficients for the variable may not 

be what were actually expected, allaccess has a negative coefficient meaning that the 

more access points present the fewer accidents occur, but the model is not of what was of 

primary interest in this situation (See Table 25).  The model was mainly to show what 

access control variables are of main interest.   

Table 25: Parameter Estimates for the Best Model using only Access Variables 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr>|t| 

Intercept 1 29.14389 3.70789 7.86 <0.0001 
Allaccess 1 -0.32124 0.13688 -2.35 0.0272 

Further analysis was done primarily to confirm that that best model from this 

group followed the basic model assumptions.  Figure 52 shows the distribution of the 

residuals for this model.  This figure shows that the residuals are basically evenly 

distributed about zero with approximately half falling above and below zero.  Normally 

distributed residuals are a sign that the data fits the normal probability model.   
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Figure 52: Boxplot of Residuals for the Best Model using only Access Variables 

An assumption when dealing with multiple linear regression is that the data 

follows a normal distribution and the variance is constant.  The graph in Figure 53 shows 

the studentized residuals versus the predicted values for the best access model and 

conveys the basic principle that there is a mostly constant variance in this model.  A 

heuristic for outliers is that if they are greater than four in the studentized residual plot 

then the point could be considered an outlier.  Based on this rule of thumb there are no 

outlying points in this data set.    
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Figure 53: Studentized Residuals vs. Predicted Values for the Best Model using only Access 

Variables 

Another way to visually check that the data follows a normal distribution is to 

look at the normal probability plot (See Figure 54).  The solid line is the normal 

probability distribution, while the dashed line represents the distribution that can be 

developed using the data from the model.  The two lines match closely; showing that 

using the normal probability distribution was a good assumption for this data.  
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Figure 54: Normal Probability Plot for the Best Model using only Access Variables 

Similarly the normal quantile plot is effective in showing when the data does not 

follow a normal distribution.  When the assumption is correct, the residuals fall along the 

straight line.  If the assumption is wrong, the residuals will not fall along the straight line, 

but may follow a different pattern.  Figure 55 shows that the residuals follow the straight 

line, showing that the assumption of normality is correct with using the hazard variables 

regressed against the rate variable.   
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Figure 55: Normal Quantile Plot for the Best Model using only Access Variables 

The best model using only access control variables follows all the assumptions of 

linear regression.  This shows that this is a good choice of distributions for this data set.   

5.2.1.6 Variables Relating to All Other Characteristics 

There are several variables that have not found a home in any of the earlier 

categories.  It was decided to put any remaining variables in a group and determine which 

were the most influential and important of these variables to include in a prediction 

model.  Using a selection process of the adjusted coefficient of determination, the 

variables were compared in multiple combinations to determine the optimum 

combination.   

There were four variables that did not fit into any of the other categories which 

include markings, lanelength, pavement, and lighting.  Markings is the variable that 

considers the condition of the pavement markings on each segment.  These can be 

classified as good, fair or poor depending on their quality.  Similarly, pavement is the 
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variable that considers the condition of the pavement and again it can be classified as 

good, fair or poor.  Lighting represents the percentage of each roadway segment that has 

lighting, this is important as lack of lighting is often a cause of accidents.  Lanelength is 

the variable that represents the total miles of lanes on each segment.  This helps to 

normalize segments that have different lengths and different numbers of lanes.  

Due to the goal of finding the variables of most interest, the top models were 

sorted by adjusted coefficient of determination and examined to show which variables 

were used most often in these models.  All of the possible variables were included in the 

top models, but as the reasoning for looking at these was to eliminate some possible 

variables, an in depth look at the variation of the use of the variables was done.  The top 

models were compared to see how often the variables appeared in each.  There was no 

clear division with one or more of the variables not appearing in the top models.  Each 

variable was present in over fifty percent of the top models.  This prevents any of the 

variables from being eliminated from the list of potential variables. 

Table 26: ANOVA Table for the Model using Other Variables 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 2 2130.96238 1065.48119 6.70 0.0049 
Error 24 3816.05114 159.00213   
Corrected 
Total 

26 5947.01352    

Root MSE 12.60960  R-Square 0.3583  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.3049  

Coeff Var 54.47524     
The model that had the largest adjusted coefficient of determination for hazards 

included just two variables: markings and lanelength.  The adjusted coefficient of 

determination for this model is 0.3049; meaning that 30 percent of the variation in the 
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model can be explained by this model and the coefficient of determination is 0.3583.  

These and other informative numbers can be seen in Table 26.  The coefficients for the 

variable may not be what were actually expected, allaccess has a negative coefficient 

meaning that the more access points present the fewer accidents occur, but the model is 

not of what was of primary interest in this situation (See Table 27).  The model was 

mainly to show what access control variables are of main interest.   

Table 27: Parameter Estimates for the Model using Other Variables 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr>|t| 

Intercept 1 39.47000 5.79125 6.82 <0.0001 
Markings 1 -4.23065 3.80893 -1.11 0.2777 
lanelength 1 -14.62690 4.17076 -3.51 0.0018 

Some further analysis was done primarily to confirm that that best model from 

this group followed the basic model assumptions.  Figure 56 shows the distribution of the 

residuals for this model.  This figure shows that the residuals are evenly distributed about 

zero with approximately half falling above and below zero.  Normally distributed 

residuals are a sign that the data fits the normal probability model.   
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Figure 56: Boxplot of Residuals for the Model using Other Variables 

An assumption when dealing with multiple linear regression is that the data 

follows a normal distribution and the variance is constant.  The graph in Figure 57 shows 

the studentized residuals versus the predicted values for the best other model and conveys 

the basic principle that there is a mostly constant variance in this model.  There is a slight 

unevenness with the positive residuals having a larger variance, but this is not large 

enough to be of any concern.  A heuristic for outliers is that if they are greater than four 

in the studentized residual plot then the point could be considered an outlier.  Based on 

this rule of thumb there are no outlying points in this data set.    
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Figure 57: Studentized Residuals vs. Predicted Values for the Model using Other Variables 

Another way to visually check that the data follows a normal distribution is to 

look at the normal probability plot (See Figure 58).  The solid line is the normal 

probability distribution, while the dashed line represents the distribution that can be 

developed using the data from the model.  The two lines match closely; showing that 

using the normal probability distribution was a good assumption for this data.  
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Figure 58: Normal Probability Plot for the Model using Other Variables 

Similarly the normal quantile plot is effective in showing when the data does not 

follow a normal distribution.  When the assumption is correct, the residuals fall along the 

straight line.  If the assumption is wrong, the residuals will not fall along the straight line, 

but may follow a different pattern.  Figure 59 shows that the residuals closely follow the 

straight line, showing that the assumption of normality is correct with using the hazard 

variables regressed against the rate variable.   
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Figure 59: Normal Quantile Plot for the Model using Other Variables 

The best model using other variables follows all the assumptions of linear 

regression.  This shows that this is a good choice of distributions for this data set.  

5.2.1.7 Summary of Primary Variable Elimination 

The primary elimination was intended to be a rough elimination of variables that 

do not have a strong effect on predicting crashes.   The variables eliminated at this stage 

deal mainly with roadside hazards and geometric alignment.  This is too be expected 

since these are the areas with the largest number of possible variables.  The variables that 

were eliminated include the number of mailboxes, the number of stone monuments, the 

number of rocks, the number of light poles, the percent of perpendicular parking, the 

percent of parallel parking, the number of lanes going in the right direction, the width of 

the second and third lanes in the right direction.  The first of these can be eliminated 

based on the fact that they were not used often or found to be significant and that they are 

accounted for in the overall variable that accounts for all the roadside hazards present on 
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the road segment.  The number of light poles again is counted in the variable pole, which 

is a count of all the poles on the segment.  The percent of perpendicular parking was a 

variable that was expected to have little or no effect with predicting crashed due to the 

fact that perpendicular parking was only found to exist on one road segment and is an 

unusual style of parking on urban streets.  The information in the other variables relating 

to the number of lanes traveling in the right direction and the width of the second and 

third lanes traveling in that direction is also duplicated in other variables that remain for 

further consideration.  The total number of lanes and the average lane width take these 

variables into account.  This primary elimination however did allow for some variables to 

be eliminated from further consideration and it allowed for information to be gathered 

relating to how the different variables relate to each other and to the crashes that occurred 

over the arterial segments.  

5.2.2   Secondary Variable Elimination 

The first round of variable elimination allowed for eight variables to be discarded 

at this stage of the model development.  This reduction brought the total number of 

possible variables down to forty-eight which can be seen in Table 28.  The variables were 

divided into two groups that could be run together and the most common variables 

examined, in the same way as the primary variable elimination method.  There were still 

too many variables to be run in one modeling attempt, so a secondary elimination process 

was undertaken.   

Looking at variables that could be combined into one overall variable and looking 

at correlations between similar variables was the basis of the second elimination method.  

By looking at correlations, it can be seen if variables are describing the same variation in 
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the data.  A high correlation value means that the variables in question describe the same 

variation in the data and are highly correlated, while a low correlation value means that 

the variables do not describe the same variation in the data.  

Table 28: Variables Remaining after the Primary Elimination 

Variables:    
ospole drivepark length llanes 
upole allaccess grade widthl3 
vol benches SD median 
Pmeter hydrant curve widthm 
maccess building curves widthr1 
Fence other/electrical crest widthsida 
Spole hazards widthl2 lane 
residential density widthl1 widtha 
commercial  driveways markings widthsidr 
pole heavyveh widthsidl widthsr 
parkinglots trees pavement lighting 
lanelength industrial type parking 

Six variables describe the access on each roadway segment.  The correlation 

between these variables was reviewed to try and eliminated some of them from further 

investigations.  The variable of allaccess was considered the basic variable in that as it is 

a count of all access points on a road segment, it should explain the majority of the 

variation in the data.  Two of the other access variables, driveways and drivepark, have 

high correlation coefficients with 0.9041 and 0.9854 respectively (See Table 29) allowing 

them to be removed from further consideration.  Since the data variation can be almost 

equally described by another variable, they are not needed for further model 

development.  It was also determined on further reflection that the variable density should 

be eliminated since it is the number of hazards per mile for each segment.  It is a 

compiled variable that takes into account the total number of roadside hazards and the 

segment length.  Since it is made up of variables that are already included in the model 

development it can be left out of further development.   
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Table 29: Pearson Correlation Coefficients for Access Variables 

  maccess parkinglotsdriveways drivepark allaccess density 
maccess 1 0.2549 0.5775 0.5713 0.7027 -0.29 
parkinglots 0.2549 1 0.2493 0.6381 0.606 0.208 
driveways 0.5775 0.2493 1 0.9047 0.9041 -0.06 
drivepark 0.5713 0.6381 0.9047 1 0.9854 0.042 
allaccess 0.7027 0.606 0.9041 0.9854 1 -0.02 
density -0.288 0.2081 -0.0628 0.0416 -0.0238 1 

There were three variables that describe the width of the existing sidewalks: a 

variable for the ‘left’ sidewalk width, the ‘right’ sidewalk width and the average sidewalk 

width.  The correlation between the three variables was examined to see if they were 

describing the same variation in the data.  The Pearson correlation coefficients can be 

seen in Table 30.  There is a strong correlation between the variables of widthsida and 

widthsidl with a coefficient of 0.9635.  Strong correlation also exists between widthsida 

and widthsidr with a coefficient value of 0.9670.  These coefficients show that there is a 

high correlation between the variables in question and that these variables are describing 

almost the same variation in the base data.  Since the variables are describing the same 

variation, they are not all needed to be in the final model.  This allows for both widthsidr 

and widthsidl to be eliminated from further models with widthsida covering the same data 

variation. 

Table 30: Pearson Correlation Coefficients for Sidewalk Widths 

  widthsida widthsidl widthsidr
widthsida 1.0000 0.9635 0.9670 
widthsidl 0.9635 1.0000 0.8644 
widthsidr 0.9670 0.8644 1.0000 

Similarly to the variables describing sidewalk width above, there are three 

variables that explain the number of lanes that exist on each roadway segment: llanes, 

rlanes, and lane.  These describe the total number of lanes in the ‘left’ direction, the total 
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number of lanes in the ‘right’ direction and the total number of lanes on the segment.  

The Pearson correlation coefficients (as seen in Table 31) were examined in the hope that 

two of the variables could be eliminated, having the variation in the data that they explain 

be covered by the joint variable of lane which can be described as llanes + rlanes.  The 

correlation between lane and the other two variables were greater than 95 percent 

allowing both llanes and rlanes to be removed from further consideration.  

Table 31: Pearson Correlation Coefficients for Lane Variables 

  rlanes llanes lanes 
rlanes 1.0000 0.8637 0.9675
llanes 0.8637 1.0000 0.9631
lane 0.9675 0.9631 1.0000

There are variables that describe the width of the different lanes in addition to the 

variables that describe the number of lanes on each road segment.  The correlation 

coefficients can be seen in Table 32.  In this set widtha was the variable assumed to be 

the base, since it contained the information from the other variables by being an average 

width of all the lanes.  Using this assumption of a base variable, it was determined that 

two other variables are highly correlated with widtha, that of widthl1 and widthr1, the 

widths of the centermost lane going in both directions.  They were correlated with 

Pearson coefficients of 0.9048 and 0.9176 respectively.  This allows the two variables to 

be eliminated from further use in the final model development.  The variables of widthl2 

and widthl3 were also looked at because their values are included in the average width 

variable, which means that including them and the average width lets that information be 

double counted in the final model development.  Due to this repetition of the data the two 

variables were also removed from further consideration.   
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Table 32: Pearson Correlation Coefficients for Lane Width Variables 

  widthl1 widthl2 widthl3 widthr1 widtha 
widthl1 1.0000 -0.6562 -0.2717 0.8329 0.9048 
widthl2 -0.6562 1.0000 0.0760 -0.7353 -0.5517 
widthl3 -0.2717 0.0760 1.0000 -0.3112 -0.4125 
widthr1 0.8329 -0.7353 -0.3112 1.0000 0.9176 
widtha 0.9048 -0.5517 -0.4125 0.9176 1.0000 

In terms of cross section variables there are two that describe the presence of a 

median, by use of an indicator variable, or its width, by the use of a continuous variable.  

The two variables show a very high correlation with each other, allowing the base 

variable to be kept for further model development (See Table 33 for correlation 

coefficients).  It was decided to use the presence of a median as the more important of the 

two variables.  This was done because on the range of segments examined there was not a 

large amount of variation in the median widths observed, with variation existing only 

from 5.5 to 8 feet.  Then the indicator variable was used as the base variable and the 

continuous variable was removed from further development.  

  Table 33: Pearson Correlation Coefficients for Median Variables 

  median widthm 
medain 1.000 0.987 
widhtm 0.987 1.000 

There are a lot of possible variables that can be used to describe roadside hazards.  

In order to eliminate some of them, first all the variables that describe a pole were 

examined.  These included variables that describe overhead sign poles, utility poles, and 

sign poles.  Pole was used as the base variable since it consists of all the other pole 

variables added together.  The correlation between pole and spole is very high with a 

Pearson’s coefficient of 0.9822, which means the pole variable describes the same 

variation, as does the spole variable, letting spole be removed from further consideration.  
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This can be seen in Table 34 with the correlation coefficients for the pole variables.   

There is also a fairly high correlation between upole and pole with a coefficient of 

0.7643.  Though this is a slightly lower correlation that would be discarded without any  

thought, it was deemed large enough to allow the variable to be discarded and get the 

total number of variable to be used in further model development to become smaller.  

Table 34: Pearson Correlation Coefficients for Pole Variables 

  upole spole ospole pole 
upole 1.0000 0.6580 -0.0631 0.7643
spole 0.6580 1.0000 0.0331 0.9822
ospole -0.0631 0.0331 1.0000 0.0313
pole 0.7643 0.9822 0.0313 1.0000

The other variables that represent roadside hazards were also looked at for 

possible correlations.  Hazards was used as the base variable, which represents the total 

number of hazards on each road segment.  This comparison took place in several steps to 

make looking at the correlation matrixes easier.  Table 35 shows the first set of 

correlations that show a large correlation between hazards and hydrants, buildings and 

trees.  All three of these correlation coefficients are greater than 0.8 allowing the 

variables to be removed from further evaluations.  The variable electrical was also 

removed from further consideration based on the fact that only three segments have the 

variable and it does not appear to be significant in the amount of variation in the data that 

it can explain.  So in an effort to reduce the total number of variables electrical was 

discarded.  
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Table 35: Pearson Correlation Coefficients for Hazards (1) 

  hazards hydrant buildingelectrical trees 
hazards 1.0000 0.8382 0.9296 0.0652 0.8603 
hydrant 0.8382 1.0000 0.7352 -0.0322 0.7388 
building 0.9296 0.7352 1.0000 0.0512 0.7464 
electrical 0.0652 -0.0322 0.0512 1.0000 0.0670 
trees 0.8603 0.7388 0.7464 0.0670 1.0000 

Looking at the second matrix of correlation coefficients in Table 36, there is only 

one variable that has a strong correlation to the base variable of hazards.  The variable 

pole has a correlation coefficient of 0.9528 meaning that most of the variation in the data 

that is explained by the variable pole is also explained by the variable hazards, allowing 

pole to be disregarded.  

Table 36: Pearson Correlation Coefficients for Hazards (2) 

  hazards benches pole  fence pmeter ospole 
hazards 1.0000 0.1209 0.9528 0.5242 -0.0365 -0.0769 
benches 0.1209 1.0000 0.0730 0.1602 -0.0543 -0.1335 
pole 0.9528 0.0730 1.0000 0.5581 -0.1427 0.0313 
fence 0.5242 0.1602 0.5581 1.0000 -0.1518 -0.0505 
pmeter -0.0365 -0.0543 -0.1427 -0.1518 1.0000 -0.0982 
ospole -0.0769 -0.1335 0.0313 -0.0505 -0.0982 1.0000 

There are two variables that describe vertical alignment that of grade and type.  

Grade is a continuous variable giving the maximum vertical grade observed on the road 

segment.  Type classifies the segments according to level, rolling, or mountainous terrain, 

so both variables give similar information.  The correlation matrix between the two 

variables was examined and the coefficient was found to be 0.8888 (See Table 37).  This 

is large enough to allow one of the variables to be removed from further examination.  

The variable of grade was kept as the base variable on the understanding that in this case, 

the divisions of the type variable may not be the best possible and that the maximum 

grade would be more useful.    
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Table 37: Pearson Correlation Coefficients for Vertical Alignment 

  grade type 
grade 1.0000 0.8888
type 0.8888 1.0000

Similar to the variables relating to vertical alignment, there are two variables that 

describe a segments horizontal alignment.  Curve and curves are a continuous and 

indicator variable respectively that represent either the number of horizontal curves or the 

presence of one or more horizontal curves.  The coefficient between curve and curves is 

0.7906, meaning that 79 percent of the variation in the data is explained by the two 

variables (See Table 38).  This allows one of the two to be eliminated from further 

evaluation.  It was determined that the presence of horizontal curvature was more 

important than the actual number of horizontal curves that where present on each road 

segment.  The variable curve was removed from further consideration.  

Table 38: Pearson Correlation Coefficients for Horizontal Alignment 

  curve curves
curve 1.0000 0.7906
curves 0.7906 1.0000

There are three variables that describe land use on each road segment.  The 

variable that represents the percentage of industrial land use was eliminated from further 

consideration by several reasons.  It did not appear in the top models when half the 

variables were run together to look at the top models.  Another reason for discarding this 

variable was that only one road segment had industrial land use, so for the areas under 

consideration in this study, industrial land use is not a large percentage so should not 

have a large effect on the overall prediction model.  The correlation between the 

remaining variables that describe residential and commercial land use was very high with 

a coefficient of –0.9997.   Table 39 shows the full correlation matrix for the land use 
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variables.  The negative sign in this case means that the two variables are present in 

opposite conditions, when one segment shows ninety percent residential use, commercial 

use will then conversely be ten percent.  Despite being negatively correlated, the two 

variables are still strongly correlated meaning that one of them can be removed from 

further evaluation.  It was decided to leave the variable representing the percentage of 

residential land use for use in further model developments.  

Table 39: Pearson Correlation Coefficients for Land Use Variables 

  commercial residential
commercial 1.0000 -0.9997 
residential -0.9997 1.0000 

One final variable was eliminated from further evaluation during the secondary 

variable elimination stage.  This variable, widthsr, is the width of the shoulder on the road 

segment and was eliminated since shoulders only occurred on one road segment, it was 

determined that the variable did not carry enough information that could be used to make 

further conclusions about the data.  The secondary variable elimination stage allowed for 

many variables to be eliminated and the total number to be used for further model 

development brought down to a manageable twenty-five.  

5.2.3 Linear Model Groups 

After the primary and secondary variable elimination methods were used, three 

models were contenders for accident prediction models.  There were three sets of 

variables ranging from 24 to 26 variables.  A model selection criterion of the highest 

adjusted coefficient of determination was used to choose the most significant model from 

the three variable groups.  
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5.2.3.1 Variable Group One 

The first group was run with the remaining 24 variables after the primary and 

secondary elimination methods had been used to bring the total number of variables 

down to a workable number.  The adjusted R-square selection method was used in that 

the best models were sorted by the largest adjusted R-square values, but the coefficient of 

determination was also give for comparison purposes.   See Table 40 for the list of 

possible variables.  

Table 40: Variable Group One 

 

 

 

 

 

 

 

 

The best model that was developed from the top group of variables included 19 

variables with a coefficient of determination of 0.9451 and an adjusted coefficient of 

0.7961, both values are extremely good.  The analysis of variance table seen below shows 

important values relating to this model, including the F-statistic value and the P-statistic 

value which indicate that the overall model is significant to a greater than 0.05 percent.   

 

 

Variable  
ospole Length 
vol Grade 
pmeter SD 
maccess Curves 
fence Crest 
residential Markings 
parkinglots Pavement 
allaccess Median 
benches Widthsida
hazards Lane 
heavyveh Widtha 
parking lighting 
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Table 41: ANOVA Table for First Model from Variable Group One 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 19 5620.52175 295.81693 6.34 0.0093 
Error 7 326.49177 46.64168   
Corrected 
Total 

26 5947.01352    

Root MSE 6.82947  R-Square 0.9451  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.7961  

Coeff Var 29.50426     
The parameter estimates and standard errors can be seen in Table 42.  All but four 

of the variables are significant to greater than 0.1 percent.  And twelve variables are 

significant to greater than 0.05 percent which leaves only three variables significant 

between 0.1 and 0.05 percent.   This shows that most of the included variables are 

important to the model.  It is desirable, however, to have a model where all of the 

variables are significant.  As the model currently stands this is not the case and the model 

is cumbersome with so many variables being included.  

Table 42: Parameter Estimates for First Model from Variable Group One 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -129.33712 69.27231 -1.87 0.1041 
Benches 1 -14.91338 3.69498 -4.04 0.0050 
Fence 1 2.73710 1.02511 2.67 0.0320 
Ospole 1 3.30055 1.70866 1.93 0.0947 
Pmeter 1 -0.51043 0.43612 -1.1 0.2801 
parkinglots 1 -1.75103 0.55093 -3.18 0.0155 
allaccess 1 0.85415 0.32706 2.61 0.0348 
Vol 1 0.00287 0.00051511 5.57 0.0008 
Length 1 -0.02017 0.00453 -4.45 0.0030 
Grade 1 -3.91493 1.53683 -2.55 0.0382 
SD 1 18.37744 10.87777 1.69 0.1350 
Curves 1 17.41656 5.78500 3.01 0.0196 
Crest 1 10.54793 1.87318 5.63 0.0008 
Widtha 1 -6.51575 1.85164 -3.52 0.0097 
widthsida 1 5.11999 1.47432 3.47 0.0104 
Parking 1 0.20599 0.09052 2.28 0.0570 
Median 1 14.13734 7.94326 1.78 0.1183 
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Table 42: Parameter Estimates for First Model from Variable Group One Continued 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Lane 1 -16.19383 4.96841 -3.26 0.0139 
markings 1 6.55813 4.31383 1.52 0.1723 
Lighting 1 1.45846 0.66942 2.18 0.0658 

In an attempt to have a more workable model and one where the variables are 

significant, further work was done.  By looking at the individual variable’s significance 

and coefficient of partial determination, variables were removed from the model.  An 

alpha level of 0.10 was set and a coefficient of partial determination level was set at 150.  

This criterion must be met to be kept for further model development.  The coefficient of 

partial determination “measures the marginal contribution of one X variable when all 

others are already included in the model” (Neter et al 274).  If this contribution is small 

and the variable insignificant then the variable was removed from further development.  

The graphical diagnostics showed this model to follow a normal distribution and 

the overall model was significant.  Despite these attributes, four variables were not 

significant enough and had low coefficients of partial determination so were eliminated.   

Based on significance less than 0.1 and coefficients of partial determination less than 

150, the variables pmeter, SD, median and markings were be eliminated to produce a 

better model.   

The model was rerun with the remaining fifteen variables and overall was again 

significant.  The coefficients of determination and P-value can be seen in Table 43.  But, 

once more, not all the individual variables were significant.  Six more variables were 

identified for removal. 
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Table 43: ANOVA Table for Second Model from First Variable Group 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 15 4967.41170 331.16078 3.72 0.0167 
Error 11 979.60182 89.05471   
Corrected 
Total 

26 5947.01352    

Root MSE 9.43688  R-Square 0.8353  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.6107  

Coeff Var 40.76863     
This process was repeated three more times until all the remaining variables were 

significant to better than 10.0=α .  This resulted in all but two variables being removed 

from the model.  The variables that remained were ospole and length.  So now all the 

variables in the model and the model as a whole were significant as can be seen Table 44 

in by the F-statistic.  Unfortunately, the coefficient of determination was lowered as more 

variables were eliminated to such a level that the model no longer explains an acceptable 

amount of the variation in the data.  With 4095.02 =R not even half the variation is 

explained so that the model is not effective at predicting an accident rate.  

Table 44: ANOVA Table for Best Model from Variable Group One 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 2 2435.48284 1217.74142 4.26 0.0063 
Error 24 3511.53068 146.31378   
Corrected 
Total 

26 5947.01352    

Root MSE 12.09602  R-Square 0.4095  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.3603  

Coeff Var 52.25649     
lengthospoleRate 0069.09903.26167.24 −+= The coefficients are mostly the 

expected signs and even with a 90 percent confidence level do not become zero.  The 

parameter estimate for ospole is positive indicating that the more overhead sign poles on 

the road segment the higher the accident rate becomes.  The coefficient’s sign for the 
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length parameter by intuition would be positive meaning that the longer the segment the 

more accidents but turned out to be negative implying that the longer segments have 

lower accident rates.  This is due to the division of road segments by major signalized 

intersections where the shorter the road segment the closer together the signalized 

intersections are which is where there are large numbers of conflicts and accidents are 

more likely to occur.  
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Figure 60: Normal Probability Plot for Best Model from Variable Group One 

In spite of the fact that the model does not violate any of the assumptions and 

follows a normal distribution as seen in Figure 60 this model does not perform well.  The 

coefficient of determination is low and only two variables are included in the model.  

This model could possibly be used to compare whether or not a road segment has an 

accident rate extremely different from other similar segments, but even that would not 

produce reliable results or be helpful in determining what is causing an accident problem 

on a segment.  
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5.2.3.2 Variable Group Two 

Variable group two consists of twenty-six variables that can be seen in Table 45.  

The difference between group one and group two are the two variables of pole and 

lanelength.  These two variables are compilations from other variables that are also in the 

group of variables, which is why they were excluded from variable group one.  Pole and 

lanelength were accidentally left into the calculations, but the resulting adjusted 

coefficient of determination and the coefficient of determination were very high, so the 

top model was left in for consideration.  The top model from this set of variables included 

twenty-five of the possible twenty-six variables and had a coefficient of determination of 

0.9997 and an adjusted coefficient of determination of 0.9925, both of which are 

extremely high values.   

Table 45: Variable Group Two 

 

 

 

 

 

 

 

 

In addition to the high coefficients, the overall model is significant to greater than 

0.1 percent with a P-value of 0.0669.  The parameter estimates can be seen in Table 46.  

Nine of the variables are not significant to greater than 0.1 percent.  Nine variables are 

also significant to greater than 0.05 percent, leaving eight that are significant between 0.1 

Variables  
ospole length 
vol grade 
pmeter SD 
maccess curves 
fence crest 
residential markings 
pole pavement
parkinglots median 
lanelength widthsida
allaccess lane 
benches widtha 
hazards lighting 
heavyveh parking 
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and 0.05 percent.  The graphical diagnostics show that the normal distribution and model 

assumptions are not violated, but despite that there is some concern since many of the 

variables have a possibility that their parameters could be zero, so this is not the best 

possible model.  Since there are so many variables in this model, it is very cumbersome 

to use and since so many of the variables are not significant in this model, further work 

will be done looking for the best model.  

Table 46: Initial Model from Variable Group Two 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -432.53610 31.46908 -13.74 0.0462 
Benches 1 -10.06556 1.73497 -5.80 0.1087 
Fence 1 6.62433 0.90468 7.32 0.0864 
Ospole 1 9.89939 0.58810 16.83 0.0378 
Hazards 1 1.13725 0.08916 12.76 0.0498 
Pole 1 -1.16616 0.11494 -10.15 0.0625 
Maccess 1 2.16695 0.77721 2.79 0.2192 
Parkinglots 1 -4.74461 0.21713 -21.85 0.0291 
Allaccess 1 0.78614 0.18859 4.17 0.1499 
Vol 1 0.00233 0.00034406 6.76 0.0935 
Heavyveh 1 -11.00644 1.16075 -9.48 0.0669 
Lanelength 1 11.43583 4.04092 2.83 0.2162 
Residential 1 -0.33445 0.06253 -5.35 0.1177 
Length 1 -0.04953 0.00679 -7.29 0.0868 
Grade 1 -2.70225 0.84165 -3.21 0.1922 
SD 1 10.49614 4.06884 2.58 0.2354 
Curves 1 18.03077 1.34017 13.45 0.0472 
Crest 1 16.58164 0.89836 18.46 0.0345 
Widtha 1 -10.77932 0.65018 -16.58 0.0384 
widhtsida 1 7.88668 0.77867 10.13 0.0627 
Parking 1 0.02956 0.01891 1.56 0.3624 
Median 1 18.23474 4.30093 4.24 0.1475 
Lane 1 -18.03378 1.67547 -10.76 0.0590 
Pavement 1 -43.05961 5.03997 -8.54 0.0742 
Markings 1 21.79006 1.50729 14.46 0.0440 
lighting 1 4.68225 0.33764 13.87 0.0458 

The second variation of a model from variable group two consisted of sixteen 

variables.  This model had a coefficient of determination of 0.8199, an adjusted 
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coefficient of 0.5317, and overall was significant with a P-statistic of 0.049.  This model 

has all the indications of a good predictor.  The overall model is significant, only three 

individual variables are insignificant and none of the model assumptions were violated. 

The normal probability plot in Figure 61 shows how closely this model follows the 

normal distribution.  
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Figure 61: Normal Probability Plot from the Second Model from Variable Group Two 

Since this model was so close to working, the three insignificant variables were 

removed and the model was rerun in the hope that this would be a final model.  

Unfortunately, this was not to be.  The model was run with thirteen variables, and only 

one variable remained significant.  A model with only one variable, besides not doing a 

good job at predicting an accident rate, will not be useful in finding areas where the road 

segment differs from other similar section and needs improvement.  The lack of 

significant variables makes this stream of models unacceptable for a final model.  
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5.2.4 Variable Group Three 

Variable group three consists of one more variable than does group one with the 

addition of the variable lanelength.  This can be seen in Table 47.  This is because in the 

model elimination process, this variable as a combination of other variables slipped 

passed the elimination process.  By keeping this variable in the group of possible 

variables, the adjusted coefficient of determination of the primary model increased from 

0.7961 to 0.8114.     

Table 47: Variable Group Three 

 

 

 

 

 

 

 

 

 

The overall model is also significant to greater than 0.05 percent.  That and other 

important numbers can be seen in the ANOVA table below.   

 

 

 

 

Variables  
ospole length 
vol grade 
pmeter SD 
maccess curves 
fence crest 
residential markings 
parkinglots pavement
lanelength median 
allaccess widthsida
benches lane 
hazards widtha 
heavyveh lighting 
 parking 
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Table 48: ANOVA Table for First Model from Variable Group Three 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 17 5558.71886 7.58 6.34 0.002 
Error 9 388.29466 43.14385   
Corrected 
Total 

26 5947.01352    

Root MSE 6.56840  R-Square 0.9349  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.8114  

Coeff Var 28.37639     
   The parameter estimates of the seventeen variables included in this model are 

mostly significant and can be seen in Table 49.  Only two are significant to less than 0.1 

percent and eleven are significant to more than 0.05 percent, leaving four variables than 

are significant to between 0.05 and 0.1 percent.  This appears to be a good start of a 

model with most of the variables being significant.  

Table 49: Parameter Estimates from First Model from Variable Group Three 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -128.80349 60.38898 -2.13 0.0617 
Benches 1 -13.45230 3.96662 -3.39 0.0080 
Ospole 1 4.03357 1.61127 2.50 0.0337 
Pmeter 1 -0.70446 0.32812 -2.15 0.0603 
Maccess 1 2.00412 0.88028 2.28 0.0488 
parkinglots 1 -1.57689 0.46397 -3.40 0.0079 
lanelength 1 -10.73818 5.26643 -2.04 0.0719 
Vol 1 0.00170 0.00054720 3.11 0.0124 
residential 1 -0.19403 0.09163 -2.12 0.0633 
Grade 1 -0.74894 0.59604 -1.26 0.2406 
Curves 1 16.46455 4.77198 3.45 0.0073 
Crest 1 7.89294 1.69974 4.64 0.0012 
Widtha 1 -5.32279 2.05407 -2.59 0.0291 
widthsida 1 2.49877 1.12959 2.21 0.0543 
Parking 1 0.21567 0.08139 2.65 0.0265 
Lane 1 -11.11592 4.40139 -2.53 0.0325 
markings 1 7.03538 4.409001 1.72 0.1195 
Lighting 1 1.68026 0.67519 2.49 0.0345 
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The coefficients of partial determination are also relatively high, which is a good 

indication of the quality of the parts of the model.  As with any model the model 

assumptions must be reviewed to ensure that the data and the model do not violate any of 

the assumption.  Looking at both the diagnostic graphs, it can be seen that the model 

assumptions are not violated.  The residuals versus the fitted values give a good 

impression if the model fits the assumptions by showing that there is a constant variance 

and symmetry about zero, implying that the model follows the normal distribution.  This 

is seen in Figure 62. 
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Figure 62: Residuals versus Fitted Values for first Model from Variable group Three 

The box plot of the residuals also helps to show this by showing the symmetry in 

the residuals. In this particular instance there is a small lack in symmetry as there is a 

greater variation of values on the positive side as can be seen in Figure 63.  There are also 

several points that fall outside of the range of the majority.  This would lead to questions 
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of outlying points expect that there are no points that appear to quality as outliers when 

looking at the residual scatter plots, so that this is not a cause for concern.  
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Figure 63: Boxplot for first Model from Variable group Three 

Since there were two variables that were insignificant in the model, they were 

removed and the model was run again.  The coefficient of determination and the adjusted 

coefficient decreased a small amount from 0.9349 and 0.8114 to 0.8882 and 0.7358 

respectively, but the overall model was still significant.  The new version of the model 

had fifteen variables, but sadly the previous removal of two insignificant variables caused 

an avalanche reaction of more variables being insignificant.  Now seven variables 

became insignificant to the model.  The model diagnostics still showed that the type of 

model was appropriate, but the variable parameters being insignificant over rules the 

positive aspects.    
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Once again the model was rerun with the insignificant variables removed.  This 

created a model with eight variables and a coefficient of determination of 0.7788.  The 

overall model is highly significant with a P-statistic of 0.0001 (See Table 50).   

Table 50: ANOVA Table from Second Model from Variable Group Three 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 8 4631.70060 578.96258 7.92 0.0001 
Error 18 1315.31292 73.07294   
Corrected 
Total 

26 5947.01352    

Root MSE 8.54827  R-Square 0.7788  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.6805  

Coeff Var 36.92971     

lightingparkingcrest
curveslresidentiasparkinglotospolebenchesRate

59.013.051.3
4.538.069.107.541.149.48

+++
+−−+−−=

 

This time three variables were shown to be insignificant those of benches, curves, and 

lighting.  The fact that the number of benches was shown to be insignificant was not 

unexpected and the percentage of lighting on the segment is also not surprising since 

most urban arterials have some amount of lighting many with 100 percent lighting. The 

presence of horizontal curves being found to be insignificant is less expected since 

horizontal curvature is typically an area where many accidents occur in rural areas.   

Again, the insignificant variables were removed and the model was rerun.  This 

time, however, the overall model was shown to be significant and all the remaining 

variables were shown to be significant.  The coefficient of determination was 0.7301 and 

the adjusted coefficient was 0.6658, both of which are only slightly lower than those of 

the previous model.  The parameter estimates and their standard errors can be seen in 

Table 51.  The only parameter estimate that is not significant is that of the model’s 

intercept.  The 95 percent confident interval for the intercept is –4.534 to 21.463 which 
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does mean that there is a possibility that the intercept is zero.  This however is not such a 

problem that the intercept could be zero as it would be if a parameter estimate for the 

variable was zero.  If the variable’s parameter was zero it would mean that the variable 

possibly should not be included in the model at all, but the intercept gives a value when 

the variables do not affect the model and a zero value is acceptable.   

Table 51: Parameter Estimates for Significant model from Variable Group Three 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 8.46399 6.25048 1.35 0.1901 
Ospole 1 5.49178 1.26238 4.35 0.0003 
parkinglots 1 -1.56312 0.30367 -5.15 <0.0001 
residential 1 -0.30680 0.05085 -6.03 <0.0001 
Crest 1 3.32415 1.18981 2.79 0.0109 
Parking 1 0.16131 0.05364 3.01 0.0067 

 

The graphical diagnostics show that the model does not violate any of the model 

assumptions.  The residuals versus the fitted values show that there is a constant variance 

and no points appear to be strong outliers as can be seen in Figure 64.  The box plot of 

the residuals shows a slight tendency for the model to predict accident rates that are lower 

than those that are actually experienced by the road segments.  This can be seen in Figure 

65.  This is, however, not a large tendency and is not cause for any concern.  
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Figure 64: Residuals versus Fitted Values for Significant Model 
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Figure 65: Boxplot for Significant Model 

 
The normal probability plot shows that the model closely follows a normal 

distribution with only very minor deviations.  Figure 66 shows that with the model’s 

distribution falling a little lower than that of the normal distribution.  The maximum 
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value falls along the same plane and minor variations appear on the left hand side of the 

graph.  
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Figure 66: Normal Probability Plot for Significant t Model 

 
This model is composed of only five variables, which will allow for road 

segments to compare their accident rates to that of other segments with similar 

characteristics to give a base line to determine if a road segment has an abnormally high 

accident rate.  Since the number of variables is on the low side, it does make identifying 

locations were improvements could be made more difficult.  To try and improve this 

quality in the model, the last three variables that were removed at one time from the 

model were removed one at a time to see the effect each one has on the overall model.   

The variable representing the total number of benches on the segment was the 

first to be removed.  This was for several reasons including primarily that it had the 

lowest significance between itself and lighting and curves.  Another reason was that so 

few segments had benches and it was more likely representing the presence of 
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pedestrians and the use of residential land type helps to represent the major types of 

pedestrian use that would be seen on the segment.  The model without benches had a very 

similar coefficient of determination to the model with eight variables changing from 

0.7788 to 0.7759, but had a better adjusted coefficient changing from 0.6805 to 0.6933.  

This improvement in the adjusted coefficient of determination helps to show that more 

variables do not always create a better model.  In this instance, it was better to remove the 

variable benches rather than keep it in the model.   

This new version of the model was overall significant, but the remaining two 

variables curves and lighting still proved to be insignificant as can be seen in Table 52 

showing the parameter estimates.  The coefficients of partial determination held out the 

same information, identifying lighting and curves as variables that should be removed 

from the model.  Looking at the 95 percent confidence intervals for the parameter 

estimates also identified lighting and curves as the only two variables that could possibly 

have parameters with zero value coefficients making them the only variables that maybe 

should not be included in the model.  

  Table 52 : Parameter Estiamates for 7 Variable Model 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -43.92377 45.93690 -0.96 0.3510 
Ospole 1 5.01303 1.26393 3.97 0.0008 
parkinglots 1 -1.65882 0.29631 -5.60 <0.0001 
residential 1 -0.31326 0.05289 -5.92 <0.0001 
Curves 1 5.83270 4.46161 1.31 0.2067 
Crest 1 3.32708 1.14025 2.92 0.0088 
Parking 1 0.12963 0.05576 2.32 0.0313 
Lighting 1 0.54114 0.45446 1.19 0.2484 

The graphical diagnostics continue to show that these models do not violate the 

model assumptions.  The plot of the residuals versus the fitted values in Figure 67 show 



 201

the constant error variance and show that there is a fairly even distribution around zero, 

with a slight tendency toward larger negative residuals but not a strong one.   
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Figure 67: Residuals versus Fitted Values for 7 Variable Model 

 
The normal probability plot shows that there is very little difference between a 

normal distribution and the distribution that occurs in the residuals which indicates an 

almost exact normal distribution of the residuals.  This can be seen in Figure 68.  
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Figure 68: Normal Probability Plot for 7 Variable Model 

To check that lighting was the better of the remaining variables to remove, the 

model was run with the variable lighting and without the variable curves.   When this 

happened, the coefficient of determination was slightly lower than then model with both 

curves and lighting in it with a value of 0.7557 versus 0.7759.  The adjusted coefficient 

of determination was also slightly lower at 0.6824 as opposed to 0.6933.  The overall 

model was still significant and the variable lighting was still insignificant. 

Since a six variable model with lighting was still insignificant, a six variable 

model without lighting but with curves was explored.  In the seven variable model curves 

was of higher significance than was lighting, so this model was expected to perform 

better.  The coefficient of determination is again slightly lower than that of the model 

with eight variables changing from 0.7788 to 0.7557.  The adjusted coefficient of 

determination, however, is again larger than that of the eight variable model going from 

0.6805 to 0.6869.  The overall model exhibits full significance with the variable curves 
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remaining insignificant in this version of the model.  The alpha level for significance was 

set at 0.10 and the value from curves is only 0.136 which is only slightly above the limit 

set.  All of the coefficients of partial determination indicate that the variables should 

remain in the model, so that there is some debate that could occur on whether or not 

curves should be removed.  Since the presence of horizontal curves historically plays a 

large role in identifying potential accident locations it would be informative if it were left 

in as a variable in the model.  In looking at the 95 percent confidence levels for the 

parameter estimates, again, the only questionable estimate where the value could be zero 

is for the one variable that does not reach the full significance that was indicated.  

parkingcrest
curveslresidentiasparkinglotospoleRate

13.030.3
87.633.065.192.429.10

++
+−−+=

 

The graphical diagnostics show that there is no problem perceived with this model 

violating the linear model assumptions.  The plot of the residuals versus the fitted values 

in Figure 69 shows a very constant error variance and an even distribution between 

positive and negative residuals.  No extreme points are observed on the graph that would 

imply an outlying point.  
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Figure 69: Residuals versus Fitted Values for 6 Variable Model with Curves 

 

Only slight departures from normality can be observed in Figure 70 of the normal 

probability plot.  The distribution for the model has a slightly lower maximum value, but 

other wise is very similar.   



 205

-27 -21 -15 -9 -3 3 9 15 21

0

5

10

15

20

25

30

35

P
e
r
c
e
n
t

Resi dual
 

Figure 70: Normal Probability Plot for 6 Variable Model with Curves 

This last version of the model from variable group three with six variables 

including the number of overhead sign poles, the number of parking lots, the percentage 

of residential land use, an indication of horizontal curves, the largest crest value and the 

percentage of on-street parking, was the best model in terms of having an acceptable 

coefficient of determination and adjusted coefficient while also being overall significant 

and having variables that are significant under statistical testing.  

5.2.4.1 Linear Model Summary 

In the search for the best possible model to predict the total accident rate, two 

viable contenders were developed.  Variable group one and group three yielded models 

where the overall model was significant and the individual variables were significant.   

The coefficients of determination and the adjusted coefficients can be seen in Table 53 to 

establish the better model.  
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Table 53: Comparison of Final Linear Accident Rate Models 

Variable Group # of Variables 2R  2
aR  

1 2 0.4095 0.3603 
3 6 0.7591 0.6869 

As can be seen in the above table the better of the two models comes from 

variable group three.  This model has a higher coefficient of determination and a higher 

adjusted coefficient.  The overall significance of model is also greater than the model 

from variable group one.  Since the coefficients of the model from group three are higher 

it is the better choice of a model to predict the total accident rate.  The higher coefficients 

mean that that model can explain more of the variation in the data.  Comparison by the 

coefficients of determination is possible because the models were developed at the same 

time from the same data set.  If they had been created at different times with different 

data sets, more care would need to be taken instead of this straightforward comparison.  

5.2.5 Multiplicative Model Development Process  

An additive model silently assumes that the effect of different roadside 

characteristics are separate and don’t effect each other.  This is not the best assumption so 

a multiplicative model was attempted where the roadside characteristics would work with 

each other to predict the accident rate.  The same method was used as when looking for 

the best risk and accident rate compilation in section 3.4.  The first attempt used the 

variables that were determined to have some significance from the additive model 

development.  The variables that appeared in the top additive models were considered for 

the multiplicative model.  The problem that developed from this automatic transference 

of variables, is that any variable that had a zero value, whether it was an indicator 

variable or just a value of zero, did not work well with the multiplicative methodology.  
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To do the multiplicative model, the log of each variable was taken. So that what is 

actually modeled is the log of the variable.   

The characteristic of not being able to take the logarithm of zero caused many of 

the variables to be unable to be just transferred from the additive model variable set.  

Several variables were eliminated totally due to their status as an indicator variable or as 

a count variable where many segments have a value of zero.  A few transformations were 

attempted were count variables are concerned.  If the count variable had values on almost 

every segment, the zero value was changed to a very small number that represents zero 

without actually being written as zero.  The variables parkinglots, allaccess, parking, 

maccess, and residential were transformed this way.  Using the logarithm of the variable 

also increased the correlation of several of the variables causing some to be eliminated 

from further model development.  

The first attempt at the multiplicative model had a very large coefficient of 

determination with 977.02 =R .  The large coefficient of determination may be indicating 

more than that the model is a good fit for the data, but also may be showing that the 

model is overfit to the data set and not transferable to other data sets.  The adjusted 

coefficient was not as large, but it was still good with 7241.02 =aR .  Another issue that 

was found is that of the P-statistic for the overall model.  It shows that the overall model 

is insignificant, with a statistic of 0.3791, implying that there is something incorrect with 

the model  

The variable coefficients for this model also have a P-statistic that shows that 

none of the variables were significant to the selected level of 0.10.  Since none of the 

variables were significant, for further investigation any variable that was significant to 
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less than 0.5 was eliminated.  This created a basic level to see if the variables were 

significant in further development and if a multiplicative model developed this way was 

possible.  

In addition to the significance of the model and the variables being a problem, 

some of the graphical diagnostics also indicated this.  The most severe problem was seen 

in the normal quantile plot, which should show the residuals falling along or near the 

solid line (See Figure 71).  The points in this situation are all well above the line which 

implies that this model does not do a good job at explaining the variation in the data.  
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Figure 71: Normal Quantile Plot for First Multiplicative Model 

The next step in the multipliable model development looked at the model created 

from the remaining variables after the five least significant variables were removed from 

further consideration.  The new model has an overall significance that is acceptable as 

can be seen by the P-statistic of 0.0005.  The coefficient of determination is lower than in 

the previous model, but is still high at 0.6707.  In this model, besides the overall model 
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being significant, some of the individual coefficients are also significant, with length, 

lighting, and pole being significant to greater than 10.0=α . 

581.0587.70608.00088.0968.0107.0091.23 polelightingcrestgradelengthvoleRate −−−−=  

There is some concern with some of the coefficients due to their standard errors.  

Some of the standard errors show that with only one deviation the coefficient could 

become zero, which causes some concern for the overall model, but this only affects the 

variables that are not significant in the model to begin with.  Unlike the first model, the 

diagnostics do not give any indication of a violation in model assumption.  

The second model, like the first, still had variables included in the final version 

that were not significant.  So despite the overall model working, the insignificant 

variables were removed in anticipation of the remaining variables keeping their 

significance and the overall model being significant. 

The third model is significant and while the coefficient of determination 

decreased slightly than from the second model, 0.6672 from 0.6707, the adjusted 

coefficient of determination increased from 0.5719 to 0.6238, showing that this is the 

better of the two models.  The coefficients and other numbers of interest can be seen in 

Table 54 below.  

Table 54: ANOVA Table for Multiplicative Model 

Source DF Sum of Squares Mean Square F Value Pr>F 
Model 3 10.05655 3.35218 15.37 <0.0001 
Error 23 5.01511 0.21805   
Corrected Total 26 15.07167    
Root MSE 0.46696  R-Square 0.6672  
Dependent Mean 2.90341  Adj. R-Sq 0.6238  
Coeff Var 16.08302     

The significance for the individual coefficients also increased slightly with all of 

the variables, including the intercept, being significant to greater than 0.10.  The standard 
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errors for all of the coefficients are also acceptable in that one deviation can be taken and 

there is no concern with the parameter estimate possibly becoming zero.  This can be 

seen in Table 55.  

Table 55: Parameter Estimates for Multiplicative Model 

Variable DF Parameter Estimate Standard Error F Value Pr>|t| 
Intercept 1 -28.29984 10.22157 -2.77 0.0109 
llength 1 -0.95851 0.25768 -3.72 0.0011 
llighting 1 7.80913 2.17984 3.58 0.006 
lpole 1 0.56736 0.30369 1.87 0.0745 

The final diagnostics to check since the model and all variables are significant are 

the graphs to check model assumptions.  The residuals versus the fitted values show that 

there is a constant variance (See Figure 72).  The studentized residuals versus the fitted 

values shows the same thing with the addition of being able to identify outliers, of which 

there are none to be concerned about in this model that can skew the model in one 

direction or the other (See Figure 73).  
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Figure 72: Residuals versus Fitted Values for Multiplicative Model 
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Figure 73: Studentized Residuals versus Fitted Values for Multiplicative Model 

The box plot of the residuals in Figure 74 shows that they are highly symmetric 

with a slight skewness towards positive residuals, which implies that the model will have 

a tendency to predict a higher accident rate than the actual rate.  This is, however, a very 

minor tendency and not a reason to disregard this model.   
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Figure 74: Boxplot of Multiplicative Model 

The normal quantile plot, seen in Figure 75, also shows that the model follows the 

assumptions for a normal distribution with the residuals falling along the line.  There is 

no obvious departure from the normal line in a recognizable pattern that could indicate a 

model violation.  
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Figure 75: Normal Quantile Plot of Multiplicative Model 

There are only very minor deviations from normality that can be seen in the 

normal probability plot in Figure 76.  The dashed line, which represents the model’s 

distribution, almost exactly follows the solid line, which is a normal distribution.  This 

indicates that the model does not violate any of the model assumptions.  
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Figure 76: Normal Probability Plot of Multiplicative Model 

The parameter estimates for the variable length, in the second and third variations 

of this model had a negative coefficient near negative one.  This is suggestive of a rate.  

The remaining variables were transformed into densities, to explore whether or not the 

variable length could be dropped from the model.  Despite, the coefficient near negative 

one, the variable length was never shown to be insignificant even when all the other 

variables were densities or percentages.  This implies that length in this model format 

remains an important factor towards predicting the crash rates for the total number of 

accidents.    

567.0809.7959.03.28 polelightinglengtheRate −−=  is the only model that was developed where 

the overall model and each of the individual variables passed their significance tests, and 

while this is the best version of the multiplicative model, only three variables are 

included in it; length, lighting, and pole.  From a modeling standpoint this is fine, but for 

traffic engineers hoping to tell what part of a road section to improve this is not 
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completely helpful. The engineers will be able to determine if their road section differs 

greatly from other similar sections, but with so few variables included in the model there 

is no clear way to be able to estimate changes in accident rate by improvements.  Length 

can be improved by becoming shorter or longer only by changing signal locations, which 

is rare in urban settings.  Lighting can also be improved only so much until the full 

segment is lit, but in urban locations most arterial roads are already fully lit.  The number 

of poles can also be changes, but some will be necessary to mark street names and other 

important driving directions.  So while this model does a good job at predicting accident 

rates, it does not do a good job in helping to make decisions on where to spend the 

limited roadway improvement/safety dollars.  

5.2.6 Injury Accident Model 

In the same way that there were three variable groups when looking for the model 

to predict the total number of accidents, the same three variable groups were used in the 

process for an injury accident model.  This is possible since the same data set is being 

used and the correlation between variables does not change with a change in dependent 

variables, allowing the same variables to be eliminated from further consideration.  The 

dependent variable in this model is the accident rate for injury accidents only.  This 

classification includes all types of injuries, including fatalities, and excludes property-

damage only accidents.  Injury accidents account for approximately one-third of the 

crashes observed in the study area.  Being able to predict the number of injury accidents, 

or the injury rate is important because the majority of resources for responding to 

accidents and the care of their victims come from this group.  The more injury accidents 
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prevented the fewer resources needed to be set aside and earmarked toward emergency 

response and care and could be used for repairing and updating roadway conditions.   

5.2.6.1 Variable Group One 

Variable group one consisted of the top twenty-four variables under 

consideration.  The possible combinations of variables were sorted by their adjusted 

coefficients of determination to choose the best possible model that could come from the 

twenty-four variables.  The top model contained seventeen variables with an adjusted 

coefficient of determination of 0.8508.  The coefficient of determination and other values 

can be seen in Table 56.  The same α level of significance is used for the injury accident 

model as was used for the total accident model, that of 0.01.  

Table 56: ANOVA Table of Injury Accident Model Variable Group One Trial One 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 17 924.0355 54.35503 9.72 0.0008 
Error 9 50.32513 5.59168   
Corrected 
Total 

26 974.36063    

Root MSE 2.36467  R-Square 0.9484  
Dependent 
Mean 

7.9237  Adj. R-Sq 0.8508  

Coeff Var 29.84303     
The overall model passed the test for significance with a P-statistic of 0.0008.  

Almost all of the variables in the model also passed their individual significance test with 

only two failing.  The variables that represent the number of minor access points and the 

percentage of heavy vehicles in the traffic mix did not pass their significance tests.  With 

P-values of 0.2668 and 0.1536, respectively, these two variables needed to be removed 

from the model by the significance a criteria.  The same two variables were the only ones 

whose 95 percent confidence limits for the parameter estimates included zero which 
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indicates that there is a chance for the coefficient to be zero and the variable not part of 

the model.  Similarly, the partial coefficient of determination only indicates maccess and 

heavyveh for exclusion.   
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Figure 77: Residuals versus Fitted Values for Injury Accident Rate Variable Group One 

The graphical diagnostics for this model indicate that none of the model 

assumptions are violated.  Figure 77 shows the residuals versus the predicted values 

which indicates that there are not any outlying points and that the variance is 

approximately constant based on the small data set available.   
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Figure 78: Normal Probability Plot for Injury Accident Rate Variable group One 

The normal probability graph indicates how closely the residuals of the model 

follow a normal distribution.  There is a small amount of variation on the left hand side of 

the graph and on the top as can be seen in Figure 78.  Despite the good qualities of this 

model, there are two variables that are insignificant and further development is needed.  

The next step in the model development consisted of a model that had only fifteen 

variables with maccess and heavyveh being removed from the potential variables.  This 

second model passes the overall significance test with a P-statistic of 0.0002.  The 

coefficient of determination decreased slightly from 0.9484 to 0.9319 with a 

corresponding minimal decrease in the adjusted coefficient from 0.8508 to 0.839; these 

and other statistics can be seen in Table 57.   
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Table 57: ANOVA Table for Variable Group One Final Model 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 15 907.99025 60.53268 10.03 0.0002 
Error 11 66.37038 6.03367   
Corrected 
Total 

26 974.36063    

Root MSE 2.45635  R-Square 0.9319  
Dependent 
Mean 

7.9237  Adj. R-Sq 0.839  

Coeff Var 31.00006     
Surprisingly, at this early stage in the model selection, all of the variables passed 

their individual significance tests at the specified alpha level of 0.10.   The partial 

coefficient of determination also did not identify any variables for possible elimination.  

Review of the 95 percent confidence limits, did show one variable whose interval 

included zero that of curves, which indicates the presence of one or more horizontal 

curves.  So there is a possibility that one variable maybe should not be in this model, but 

only one of the possible identifying traits of that indicates that to be true.   

The graphical diagnostics do not indicate any reason for this model to be 

unacceptable.  The residuals versus the predicted values plot indicates that the residuals 

have a constant variance and are basically symmetric about zero, with perhaps a slight 

tendency towards the negative side, predicting values that are lower than they really are 

as can be seen in Figure 79.   
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Figure 79: Residuals versus Fitted Values for Variable Group One Final Model 

The distribution that the residuals follow almost completely follows that of a 

normal distribution without the slight extra peak on the left hand side that the previous 

model had.  The residual distribution and a normal distribution can be seen in Figure 80.  

The normal distribution is the solid line while the dashed line that follows closely is the 

distribution from the residuals from this data set.   
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Figure 80: Normal Probability Plot for Variable Group One Final Model 

5.2.6.2 Variable Group Two 

 Variable group two consists of twenty-six possible variables.  This 

includes two more over group one, those of pole and lanelength.  This is the same second 

group of variables that was used for the development of the prediction models for the 

total number of accidents that occur on a road segment.  The variables were run through a 

selection process that used the adjusted coefficient of determination to determine the top 

models.  The top model from variable group two consisted of twenty-five variables with a 

coefficient of determination of 1.0.   While this is the maximum allowable value for the 

coefficient of determination, it is not always a good idea to reach the maximum allowable 

value.  This shows that while the model is a good representation of the given data set, 

with other data, there will most likely be a problem since the model is over fit to the 

original database.  Event the adjusted coefficient of determination indicates that the 

model is over fit with a value of 0.9998.  Though the coefficients of determination were 
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very high, almost all of the variables passed their individual significance tests with only 

one variable failing the test.  The variable that represents the percentage of on-street 

parking was found to not pass the significance test, and only just barely.  Parking had a P-

statistic of 0.103 and it needed to be smaller than 0.100.  So this was a very close call.   

The overall model was significant with not as a high a P-statistic as would be thought 

with such a high coefficient of determination.  The P-statistic was only 0.0121, but that is 

enough to call the model significant.  The graphical diagnostics hold true to the good 

quality of the model as expected by the coefficients of determination.  The boxplot of the 

residuals shows that they are symmetrical about zero implying the constant variance of 

the error residuals.  This can be seen in Figure 81.   
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Figure 81: Boxplot for Variable Group Two Preliminary Model 

The normal probability plot also indicates the high quality of the model with the 

distribution created from the residuals closely following that of a normal distribution as 

can be seen in Figure 82.  There are only minor deviations on the left side of the 
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distribution with the peak of the residual distribution being slightly higher than that of the 

normal distribution.   
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Figure 82: Normal Probability Plot for Variable Group One Preliminary Model 

Since one of the variables failed its significance test, it was removed and the 

model was rerun.  There was little change in the coefficients of determination and the 

adjusted coefficient with a change from 1.0 to 0.9996 and from 0.9998 to 0.9953 

respectively.  This model, however, passes the overall significance test with a higher 

statistical value of 0.0043 instead of 0.0121.    

In this second draft of the model, all of the remaining twenty-four variables 

passed their individual significance tests.  In this second draft of the model, all of the 

remaining twenty-four variables passed their individual significance tests. The only 

variable were there is some concern is that of SD, an indicator variable for problems with 

stopping sight distance, where the 95 percent confidence limits show that there is a 

possibility that the coefficient for this variable could be zero. That shows that there is a 
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small possibility that SD should not be included in the overall model, but since it passed 

the individual significance test, this variable was left in the model.  It has historically 

been found to be significant in affecting accidents, so there was not a strong concern with 

leaving the variable in the model.   

The graphical diagnostics showed that while the model does not violate any of the 

model assumptions, such as constant variance, this is not the best possible model 

available.  Figure 83 shows the studentized residuals versus the predicted values which 

shows the residuals to be evenly distributed about zero and have a constant variance.   
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Figure 83: Studentized Residuals versus Predicted Values for Variable Group Two Final 

Model 

The normal quantile plot on the other hand, shows a variation in the data that 

appears to possibly have a variation that could be describe by some function.  The points 

deviate from normal on the positive or negative side and then abruptly switch with a 

sharp increase in deviance as can be seen in Figure 84.  This implies that there could be a 

model that follows the normal distribution closer.   



 225

-2 -1 0 1 2

-0. 4

-0. 2

0

0. 2

0. 4

R
e
s
i
d
u
a
l

Normal  Quant i l es
 

Figure 84: Normal Quantile Plot for Variable Group Two Final Model 

The normal probability plot confirms this idea that other models conform to the 

model assumptions better.  The distribution formed from the residuals rises sharply above 

that of the normal distribution with the peak falling between 30 and 40 percent higher.  

There is also a deviation in both extreme sides with the distribution formed from the 

residuals having small peaks on each of the extremities while the normal distribution 

remains smooth.  This can be seen in Figure 85.  These graphical diagnostics show that 

while numerically this model appears to be a close fit to the data and a good 

representation, there should be a model where the residuals follow the normal distribution 

closer.  
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Figure 85: Normal Probability Plot for Variable Group Two Final Model 

5.2.6.3 Variable Group Three 

Variable group three consist of the variables in group one with the addition of the 

variable lanelength (Refer to Table 47 in section 5.2.4).  Using the same methods as the 

other variable groups, the model selection criteria of the adjusted coefficient of 

determination was used to choose the top model that could be formed from this group of 

variables.  The first version of this model had the highest adjusted coefficient of 

determination at 0.9026 and consisted of twenty-one variables.  The coefficients of 

determination can be seen in Table 58.   
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Table 58: ANOVA Table for Variable Group Three Preliminary Model 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 21 956.10864 45.52898 12.47 0.0054 
Error 5 18.25199 3.65040   
Corrected 
Total 

26 974.36063    

Root MSE 1.91060  R-Square 0.9813  
Dependent 
Mean 

7.92370  Adj. R-Sq 0.9026  

Coeff Var 24.11248     
The model overall passed its significance test with an F-value of 12.47.  The 

individual variables mostly passed their significance test with only the variables benches 

and curves not passing.  These two variables were only barely insignificant with P-values 

of 0.1064 and 0.1381 respectively.  They were also the only variables were zero appeared 

in their 95 percent confidence limits for the parameter estimates, which shows that there 

is a possibility that the variables should not be included in the final model.   

The graphical diagnostics support the fact that the model form chosen is the 

correct one.  There was no indication of an inconstant variance and the residuals follow 

closely along a normal distribution as can be seen in Figure 86.   
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Figure 86: Normal Probability Plot for Variable Group Three Preliminary Model 

Since two of the variables were not significant in the model, the model needed to 

be rerun without those two variables.  This second version of the model had nineteen 

variables and an only slightly lower coefficient of determination at 0.9379 from 0.9813 

previously.  The adjusted coefficient of determination, however, changed more 

dramatically at 0.7692 from the previous 0.9026.  This is a large change in the 

coefficient, but the value is still large enough to make exploring this avenue worthwhile.    

The model for the second version was found to pass the overall significance test 

with a P-value of 0.0136.  The individual parameter estimates did not fair so well as in 

the previous model, with four failing to pass their significance tests.  The variables 

allaccess, witha, lane and markings were found to be insignificant to this overall model. 

Due to the variables insignificance the process was repeated again, with the insignificant 

variables removed from further consideration.  
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The third version of this model contained fifteen variables.  As expected the 

coefficient of determination and the adjusted coefficient again had lower values, but the 

model still provides a good prediction value for the injury accident rates as can be seen in 

Table 59. 

Table 59: ANOVA Table for Variable Group Three Final Model    

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 15 850.98591 56.73239 5.06 0.0050 
Error 11 123.37472 11.21588   
Corrected 
Total 

26 974.36063    

Root MSE 3.34901  R-Square 0.8734  
Dependent 
Mean 

7.92370  Adj. R-Sq 0.7007  

Coeff Var 42.26574     
The model again passed the overall significance test, but in addition to that all the 

variables this time passed their individual significance tests.  There was no indication of 

problems with the variables when looking at the partial coefficients of determination.  

There was a slight indication that one of the variables may not be vital to the model when 

looking at the 95 percent confidence levels.  One variable, ospole, the number of 

overhead sign pole, had a confidence limit that included zero which implies that the 

variable might not be important to the overall model.  As this was the only indication of 

such a problem, however, the variable was left in the model.   

The graphical diagnostics did not indicate that there were any problems with 

model violations.  The plot of the residuals versus the predicted values indicates a 

constant variance and a symmetric division about zero as seen in Figure 87.   
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Figure 87: Residuals versus Fitted Values for Variable Group Three Final Model 

The normal proability plot also shows that there are no problems with this 

model’s residuals not following a normal distribution.  There are only minor variations 

from the normal as can be seen in Figure 88 where the model’s distribution is slightly left 

of normal and has a slightly lower peak value.   
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Figure 88: Normal Probability Plot for Variable Group Three Final Model 

5.2.6.4 Injury Accident Model Summary 

In the search for the best possible model to predict the injury accident rate, three 

viable contenders were developed.  Variable group one and group three yielded models 

with fifteen variables while variable group two developed into a model with twenty-four 

variables.  Each of these three models had coefficients of determination and adjusted 

coefficients that would allow them to be used as good models.  These coefficients can be 

seen to compare in Table 60.  

Table 60: Comparison of Final Injury Accident Rate Models 

Variable Group # of Variables 2R  2
aR  

1 15 0.9319 0.839 
2 24 0.9996 0.9953 
3 15 0.8734 0.7007 

Despite having higher coefficients the model developed from variable group two 

was not selected as the best model.  This model appears to be over fit to the database used 

to develop it, which would make it less useful when applying the model to other data sets.  
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This model also has a large number of variables which makes is fairly cumbersome to 

work with.  The remaining models from variable groups one and three both have the 

same number of variables, so that does not separate them.  Model one des have both the 

higher coefficient of determination and adjusted coefficient of determination.  Since both 

are possible models the significance of the models were also compared.  Model one had a 

P-statistic of 0.0002 while Model 3 had a P-statistic of 0.005.  The model with the larger 

significance also had the larger coefficient values and therefore was selected as the best 

model to predict injury accident rates.    
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6 Results 
The results of this research are three different crash prediction models.  One 

model predicts the total number of accidents on a road segment using an additive model 

while the second uses a multiplicative or log-linear model.  The last model predicts the 

total number of injury accidents on each road segment.  The models predict the total 

number of crashes meaning the ones that occur on the main (straight segment part) 

segment and at the major intersection of each segment, which is at the end of the segment 

with the largest street numbers.  This is an important distinction to make since most 

prediction models are limited by either predicting crashes just at an intersection or just on 

the segment.   

6.1 Final Linear Model 

The best model developed fort predicting the total number of accidents on a 

segment with an additive model consists of six independent variables.  The variables are 

the number of overhead sign poles, the number of parking lot entrances, the percentage of 

residential land use, an indication of whether or not horizontal curves are present, the 

percentage of the crest on the road, and the percent of parallel on-street parking allowed 

on the road segment.  This model does a good job at explaining the variation in historical 

accident data on the segments with a coefficient of determination of 0.7591 and an 

adjusted coefficient of 0.6869.  These coefficients are important in that a coefficient of 

determination of less than 0.7 is typically considered as the break even point with models 

with greater coefficients being acceptable for use and models with lower coefficients not 

being used.  The model statistics can be seen in Table 61.  The overall model exhibits full 

significance with an F-value of 10.51 leading to a P-statistics of less than 0.0001.  This 
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indicates that there is only a very small chance that this overall model is not the correct 

one.  The acceptable limit that was set as a model requirement was that this value must be 

significant to greater than or equal to 90 percent, which the model more than meets.  

Table 61: ANOVA Table for the Total Accident Prediction Model 

In addition to the overall model being significant, the individual parameters were 

examined for their significance and to determine what exactly the parameter estimates 

were saying in the model.  The only parameters that did not pass their significance tests 

were that of the intercept and of the variable curves as shown in Table 62.  The alpha 

level for significance was set at 0.10 and both parameter estimates just barely fail their 

significance tests.  The intercept fails by just over one percent with a value 0.1106 and 

the variable curves fails by less than four percent with a value of 0.1359.   

Table 62: Parameter Estimates for the Total Accident Prediction Model 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 6 4514.59295 752.43216 10.51 <0.0001 
Error 20 1432.42057 71.62103   
Corrected 
Total 

26 5947.01352    

Root MSE 8.46292  R-Square 0.7591  
Dependent 
Mean 

23.14741  Adj. R-Sq 0.6869  

Coeff Var 36.56099     

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 10.29065 6.16320 1.67 0.1106 
Ospole 1 4.92627 1.27494 3.86 0.0010 
parkinglots 1 -1.65091 0.29932 -5.52 <0.0001 
residential 1 -0.33020 0.05147 -6.42 <0.0001 
Curves 1 6.86994 4.42122 1.55 0.1359 
Crest 1 3.29592 1.15180 2.86 0.0096 
Parking 1 0.12747 0.05631 2.26 0.0349 
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All the parameter estimates have some flexibility in that based on the standard 

error of the estimate there is at least one standard error amount of space before there is a 

question of the parameter estimate becoming zero.  The coefficients of partial 

determination also indicate that all the variables should remain in the model, so that there 

is some debate that could occur on whether or not curves should be removed.  There were 

two major criteria for allowing a variable to remain in the model, that of the variable’s 

individual significance and that of the coefficient of partial determination.  The 

coefficients of partial determination can be seen in Table 63.  Type I SS indicates that 

that is the value of the coefficient of partial determination if all the previous variables are 

in the model.  The value for residential is 1791.21721 which is the value gained by 

adding the variable residential to a model that already contains the variables of ospole 

and parkinglots.  Type II SS is the coefficient of partial determination if the variable in 

question is added to a model already containing the other variables.  For instance, the 

value for crest is 586.46737 which is the value gained by adding the variable crest to a 

model that also contains the variables ospole, parkinglots, residential, curves and 

parking.  The remainder of the table lists the limits within which with a 95 percent 

confidence it can be stated that the parameter estimate should be located.   

Table 63: Parameter Estimate Statistics for the Total Accident Prediction Model 

Variable DF Type I SS Type II SS 95% Confidence Limits 
Intercept 1 14467 199.67010 -2.56557 23.14686 
Ospole 1 798.66967 1069.28885 2.26679 7.58576 
parkinglots 1 565.28903 2178.83710 -2.27527 -1.02655 
residential 1 1791.21721 2947.73249 -0.43757 -0.22284 
Curves 1 478.60265 172.92665 -2.35257 16.09245 
Crest 1 513.75622 586.46737 0.89332 5.69853 
Parking 1 367.05818 367.05818 0.01002 0.24492 
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Since the presence of horizontal curves historically plays a large role in 

identifying potential accident locations it would be informative if it were left in as a 

variable in the model.  In looking at the 95 percent confidence levels for the parameter 

estimates, again, the only questionable estimate where the value could be zero is for the 

one variable that does not reach the full significance that was indicated.  The easiest way 

to notice a problem is when one side of the confidence limit has a negative value and the 

other side a positive one which happens only with the intercept and the variable curves.  

Looking closer at the parameter estimates shows that for the most part the signs of 

the coefficients are as expected or can be explained.  The intercept has a positive 

coefficient, which means that there is a base accident rate for urban arterials.  If the 

coefficient were negative, this would be impossible in reality as there can only be 

positive accident rates.  The coefficient for the variable residential also makes sense in 

much the same way.  It is intuitive that residential locations would have lower accident 

rates than busy commercial areas.  The type of traffic in residential areas is mostly 

restricted to only the people who live or are visiting in the area with the majority of 

traffic occurring when people are traveling to and from work; otherwise people do not 

traverse these areas.  Commercial areas, on the other hand, have people who can be 

unfamiliar with the area and large amounts of traffic at most times of the day, leading to a 

higher possibility for accidents.  The negative coefficient for the residential variable 

demonstrates that where the land use is residential, there is a lowering of the accident 

rate.   

The other parameter estimate that has a negative sign with it is that of the 

variables parkinglots.  This states that the more entrances to parking lots the lower the 
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expected crash rate should be.  At first glance this could seem contradictory.  Why, with 

more places for turning vehicles, would the number of parking lots decrease the number 

of accidents?  This can be explained in that the parking lot variable does not really 

represent just parking lots, but helps to represent the land use and the traffic patterns on 

the segment.  Besides creating places where turning conflicts can occur, parking lots have 

the affect of removing parked vehicles from the sides of the road and of concentrating 

pedestrians away from the roadway.  Parking lots put many vehicles together in one area 

and possibly remove some of those vehicles from the street. Parking on the street can 

cause sight distance problems and create hazards by placing more objects around that can 

be struck, but also by people entering and exiting their vehicles and entering and exiting 

their parking spaces.  If a driver is not paying attention, a person entering or leaving a 

parked vehicle can cause a problem with the driver side door opening in the traffic path.  

The same way a vehicle in the process of parallel parking can potentially cause problems 

with other inattentive drivers.  These problems are removed by having locating the 

parking vehicles in lots where speed is slower and drivers are aware of the constant 

parking maneuvers.  

In the same way, that parking lots can remove vehicles from the side of the road, 

the percentage of on-street parallel parking can add to crash rates.  The coefficient of the 

variable parking, which represents the percentage of on-street parallel parking that is 

allow on a road segment, was found to be positive in this model indicating that the more 

on-street parking is available the higher the crash rates should be expected to be.  For 

similar reasons why the variable parkinglots lowered the crash rates, the percent of 

parking increases them.  The presence of vehicles doing parking maneuvers and 
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pedestrians going to and from their vehicles and nearby buildings can cause situations 

that a driver is not expecting.  While on an arterial, a driver typically expects to be able to 

continuously move except when at a traffic light. When more pedestrians and parking 

maneuvers occur on a segment they can startle a driver who is not expecting many of 

these motions to occur.  

The signs of the remaining parameter estimates are what would be intuitively 

expected.  The number of overhead sign poles has a positive coefficient, indicating that 

the more sign poles the more crashes will occur.  This can be for several reasons 

including the fact that there are more hazards that can be struck by passing vehicles.  

Overhead signs typically indicate that the entrance to a major arterial is nearby which 

causes the need for turning movements onto the arterial and also sudden movements of 

drivers who may have found themselves in the wrong lane to get onto the arterial.  Both 

of these actions can lead to the occurrence of crashes, which implies the positive sign of 

the parameter estimate.  

The variables crest and curves also have positive values for their parameter 

estimates.  Historically the presence of curves has been an indication of a location where 

accidents can occur.  This has been observed in many studies that have occurred on rural 

and urban roads and much attention has been given to the proper design of horizontal 

curvature, so it comes as no surprise that the presence of one or more horizontal curves in 

this study indicates an increase of accident rates.  If drivers are not expecting a change in 

horizontal alignment or are traveling at speeds that are unsafe for the particular design 

crashes are more likely to occur.  This variable also has the parameter with the largest 
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value of a coefficient either positive or negative, which implies that the presence of 

horizontal curvature has a large impact on crashes.   

Similarly, the variable crest has a positive coefficient signifying that segments 

with larger crests will have larger accident rates.  This is more likely an indication of the 

road surface and condition rather than a reflection on the actual crest value because the 

allowable limits for crests on new roads are rather limited.  In New England where 

problems such as frost heave and freeze-thaw problems are very important, the crest of 

the road can increase with these problems or with the actual structure of the pavement 

failing and causing part of the road way to sink.  Another environmental problem that 

develops with large crests, includes that of rain.  During heavy rains water can build up in 

the edge of the crest and cause vehicles to hydroplane and have problems.  Variables such 

as the quality of the pavement and the pavement markings were not found to be 

significant in this model, but the crest could be representing some of these variables 

qualities.  This is a little difficult to state exactly, due to the small nature of the data set 

from which this model was built.  These parameter estimates all lead to the following 

model: 

parkingcrest
curveslresidentiasparkinglotospoleRate

13.030.3
87.633.065.192.429.10

++
+−−+=

Every model needs to ensure that it is not violating any of the model assumptions.  

Reviewing the graphical analysis of the model mostly covers the model assumptions.  

The boxplot in Figure 89 shows that the residuals are centered on zero as is expected 

based on the form of the model.  The boxplot also shows where the quarter points of the 

locations of the residuals fall, this is ideally a symmetric distribution.  This plot suggests 

that this model has a larger variation when it predicts lower than expected rates.   
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Figure 89: Boxplot of the Total Accident Prediction Model 

The graphical diagnostics show that there is no problem perceived with this model 

violating the linear model assumptions.  The plot of the residuals versus the fitted values 

shows a very constant error variance and an even distribution between positive and 

negative residuals (See Figure 90). 
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Figure 90: Residuals versus Predicted Values for the Total Accident Prediction Model 

There are no points that can be perceived as outliers either.  This can more clearly 

be seen in the studentized residuals versus the predicted values plot in Figure 91.  The 

heuristic for knowing whether to qualify a point as an outlier is if the studentized residual 

is greater than four.  For this model there is not even a point that deserves consideration 

as an outlier, as the largest studentized residual value that occurred was -2.387.   
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Figure 91: Studentized Residuals versus Predicted Values for the Total Accident Prediction 

Model 

The normal quantile plot in Figure 92 indicates that there is a strong inclination 

towards normality as the majority of the points closely follow the line that indicates a 

linear relationship.  There are few points that deviate from following the line and are 

mostly clustered around it.   This is an indication that the model assumptions are not 

violated.  
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Figure 92: Normal Quantile Plot Values for the Total Accident Prediction Model 

Again, only slight departures from normality can be observed in Figure 93 of the 

normal probability plot.  The solid line represents a normal distribution, while the dashed 

line represents the distribution of the residuals from this model.  The distribution for the 

model has a slightly lower maximum value, and deviates slightly from normal with a 

small skewness toward the right, but other wise is very similar to the normal distribution.   
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Figure 93: Normal Probability Plot for the Total Accident Prediction Model 

This model predicts the rate for the total number of accidents that occur on an 

arterial road segment.  Overall it appears to be a good model to use to predict these 

crashes and it takes an additive form.  The additive form indicates that the variables in 

question tend to act individually upon the roadway in terms of causing crashes to happen.  

They do not act together to change crash rates, which will allow each item to be reviewed 

separately if the segment is about to be repaired or redesigned.  This allows each variable 

to be independently adjusted by traffic engineers and a visible effect to be noticed.   

6.2 Final Multiplicative Model 

A model that predicted the total number of accidents, but in a multiplicative form, 

was also developed alongside the previous model.  The final model chosen as the best 

model that can predict the total number of accidents included only three variables: length, 

lighting and pole. For this the coefficient of determination was 0.6672 and the adjusted 
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coefficient of determination was 0.6238.  These values, while not low, are in a range that 

is generally not acceptable for an accurate model.  The coefficient of determination is 

lower than that of the linear model at 0.7591.  This makes the linear model appear to be 

the better of the two for predicting the total number of accidents.  The coefficients and 

other statistics can be seen in Table 64 below.  Having a lower coefficient of 

determination and adjusted coefficient does not stop this multiplicative model from 

passing the overall significance test with a value of less than 0.0001 when anything less 

than 0.10 would be acceptable.   

Table 64: ANOVA Table for Multiplicative Model 

Source DF Sum of Squares Mean Square F Value Pr>F 
Model 3 10.05655 3.35218 15.37 <0.0001 
Error 23 5.01511 0.21805   
Corrected Total 26 15.07167    
Root MSE 0.46696  R-Square 0.6672  
Dependent Mean 2.90341  Adj. R-Sq 0.6238  
Coeff Var 16.08302     

The significance for the individual coefficients including the intercept, were 

found to be significant to greater than 0.10.  With pole having the lowest passing statistic 

at 0.0745.  The standard errors for all of the coefficients are also acceptable in that one 

deviation can be taken for all of the variables and in most cases two standard deviations, 

eliminating the majority of the concern that the parameter estimates could possibly 

become zero.  This can be seen in Table 65.  

Table 65: Parameter Estimates for Multiplicative Model 

Variable DF Parameter Estimate Standard Error F Value Pr>|t| 
Intercept 1 -28.29984 10.22157 -2.77 0.0109 
Llength 1 -0.95851 0.25768 -3.72 0.0011 
Llighting 1 7.80913 2.17984 3.58 0.006 
lpole 1 0.56736 0.30369 1.87 0.0745 

The model created has the form of 567.0809.7959.03.28 polelightinglengtheRate −−= . 
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The parameter estimate for the variable length has a negative coefficient 

approaching negative one.  This is suggestive of a rate.  A transformation had been 

attempted where all the variables were rates or densities in order to try and determine if 

length should be removed from the model.  Despite the estimate near negative one the 

variable length was never shown to be insignificant even when all the other variables 

were densities or percentages.  This implies that length in this model format remains an 

important factor towards predicting the crash rates for the total number of accidents.  The 

parameters for the other two variables are not suggestive of a rate and so no 

transformations were tried on them.  

The final diagnostics to check, since the model and all variables are significant, 

are the graphs to check model assumptions.  The residuals versus the fitted values show 

that there is a constant variance (See Figure 94).  This can be a little difficult to see due to 

the way that the majority of the points are all clustered together towards the right hand 

side of the plot, but the cluster does not show any signs of a systematic departure from 

normality.    
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Figure 94: Residuals versus the Predicted Values for the Multiplicative Model 

The studentized residuals versus the fitted values show a similar view as the 

residuals versus the predicted values with the addition of being able to identify outliers.  

Based on the heuristic of needing to be greater than four before being considered an 

outlier, none of the points quality or cause concern in this model. Figure 95 shows the 

studentized residual plot.   
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Figure 95: Studentized Residuals versus the Predicted Values for the Multiplicative Model 

The box plot of the residuals in Figure 96 shows that the residuals are highly 

symmetric with a slight skewness on the positive side, which implies that the model will 

have a tendency to predict with a higher variance when overestimating the accident rate.  

This is, however, a very minor tendency and not a significant reason to regard this model 

as suspect.   
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Figure 96: Boxplot for the Multiplicative Model 

The normal quantile plot, seen in Figure 97, also shows that the model follows the 

assumptions for a normal distribution with the residuals falling along the line.  There is 

no obvious departure from the normal line in a recognizable pattern that could indicate a 

model violation.  This is a good indication that the model assumptions are being met.  
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Figure 97: Normal Quantile Plot for the Multiplicative Model 

There are only very minor deviations from normality that can be seen in the 

normal probability plot in Figure 98.  The dashed line, which represents the model’s 

distribution, almost exactly follows the solid line, which is a normal distribution.  The 

distribution from the model has a slightly higher peak than does the normal distribution 

and a small jag on the left side of the distribution.  The jag is not duplicated on the right 

side of the plot where the model’s distribution mimics the normal distribution.  The 

graphical diagnostics all indicate that the model does not violate any of the model 

assumptions and the model form is appropriate for the given dataset.  
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Figure 98: Normal Probability Plot of Multiplicative Model 

This model predicts the total number of accidents that occur on an urban roadway 

segment.  It is a fairly good model, but not quite as good as the linear model that predicts 

the rate of the total number of accidents based on the coefficient of determination.  The 

model form, that of a multiplicative or log-linear model, appears to not be the best choice 

of functional form for a model in an urban area.  This form has been used, but most often 

in rural areas, where geometric and traffic characteristics greatly effect one another and 

there combined effects cause the crashes.  It appears that a linear, or additive model, is 

more appropriate in an urban setting where most geometric and traffic characteristics 

appear to work independently of each other.  

6.3 Final Injury Accident Model 

The best model developed that predicts the total number of injury accidents only 

on a segment with an additive model consists of a fifteen independent variable model.  

The variables include fence, ospole, hazards, parkinglot, vol, residential, length, grade, 
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curves, crest, widtha, widthsida, pavement, markings, and lighting.  This model does a 

good job at explaining the variation in historical injury accident data that exists on the 

segments with a coefficient of determination of 0.9319 and an adjusted coefficient of 

0.8390.  These coefficients are important in that a coefficient of determination of less 

than 0.7 is typically considered as the break even point with models with greater 

coefficients being acceptable for use and models with lower coefficients not being used.  

These statistics can be seen in Table 66.  The overall model exhibits full significance with 

an F-value of 10.03 leading to a P-statistics of 0.0002.  This indicates that there is only a 

very small chance that this overall model is not the correct one.  The acceptable limit that 

was set as a model requirement was that this value must be significant to greater than or 

equal to 90 percent, which the model more than meets.  In this model the dependent 

variable is the injury accident rate.  The number of injury accidents consists of all types 

of accidents, including fatalities, because in this data set fatalities were very rare, so they 

were treated as if they were a very bad injury.   

Table 66: ANOVA Table for the Injury Accident Model 

In addition to the overall model being significant, the individual parameters were 

examined for their significance and to determine what exactly the parameter estimates 

were saying in the model.  All of the parameters passed their significance tests with an 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr>F 

Model 15 907.99025 60.53268 10.03 0.0002 
Error 11 66.37038 6.03367   
Corrected 
Total 

26 974.36063    

Root MSE 2.45635  R-Square 0.9319  
Dependent 
Mean 

7.92370  Adj. R-Sq 0.8390  

Coeff Var 31.00006     
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alpha value of 0.1.  Only one variable had a significance value that was greater than even 

0.05.  This can be seen in Table 67.  All the parameter estimates have some flexibility in 

that based on the standard error of the estimate there is at least two standard error 

deviations of space before there is a question of any of the parameter estimates becoming 

zero.  

Table 67: Parameter Estimates for the Injury Accident Model 

There were two main criteria for allowing a variable to remain in the model, the 

primary being the variable’s individual significance.  The coefficients of partial 

determination can be seen in Table 68 and were also reviewed to see if they indicated that 

a variable should be removed from the model.  There was no specific limit set for the 

coefficient of partial determination, but if they appeared low then special care was taken 

in regard to those variables.  The table lists the limits within which with a 95 percent 

confidence it can be stated that the parameter estimate should be located.  By reviewing 

the 95 percent confidence limits, it can be seen whether or not there is a possibility for the 

Variable DF Parameter 
Estimate 

Standard 
Error 

F Value Pr>|t| 

Intercept 1 -127.70032 26.22728 -4.87 0.0005 
Fence 1 2.02433 0.37825 5.35 0.0002 
Ospole 1 1.81684 0.44240 4.11 0.0017 
hazards 1 0.23576 0.05119 4.61 0.0008 
parkinglots 1 -1.58959 0.19219 -8.27 <0.0001 
Vol 1 0.00044898 0.00015171 2.96 0.0130 
residential 1 -0.13374 0.03427 -3.90 0.0025 
Length 1 -0.00999 0.00292 -3.42 0.0058 
grades 1 -0.78490 0.26125 -3.00 0.0120 
Curves 1 2.90953 1.37192 2.12 0.0575 
Crest 1 3.45836 0.55909 6.19 <0.0001 
Widtha 1 -1.00710 0.38811 -2.59 0.0249 
widthsida 1 2.09122 0.40398 5.18 0.0003 
Pavement 1 -16.96193 3.24304 -5.23 0.0003 
Markings 1 4.10381 1.08137 3.80 0.0030 
lighting 1 1.03749 0.23049 4.50 0.0009 
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parameter estimate to be zero.  As long as the confidence limits have the same sign for 

the upper and lower limits, there is no concern.  One variable only had confidence limits 

that encompassed both a positive and a negative sign.  That variable was curves, 

representing an indication of whether a segment had one or more horizontal curves on it.  

The confidence interval of -0.11005 to 5.92911 is strongly positive, but there is a small 

negative range displaying the possibility of the parameter estimate actually being zero 

and consequently not part of the model.  Despite this possibility of the parameter estimate 

becoming zero, the variable was left in the model for several reasons.  There does not 

appear to be a strong possibility of the estimate becoming zero and also the variable was 

in the linear model predicting the total number of crashes on a segment.  The variable has 

also played a large role in prediction models for crashes that occur in rural areas, so it 

was decided to leave it in the model.    

Table 68: Parameter Estimate Statistics for the Injury Accident Model 

Variable DF Type I SS Type II SS 95% Confidence Limits 
Intercept 1 1695.19717 143.04048 -184.42618 -69.97445 
Fence 1 116.16753 172.81621 1.1911 2.85685 
Ospole 1 57.39137 101.76015 0.84311 2.79056 
hazards 1 114.78938 127.98072 0.12309 0.34843 
parkinglots 1 7.18908 412.76577 -2.01259 -1.16659 
Vol 1 22.65698 52.84756 0.00011508 0.00078288 
residential 1 241.80529 91.88955 -0.20917 -0.05834 
Length 1 12.77385 70.37872 -0.01643 -0.00355 
grades 1 0.32334 54.46064 -1.35992 -0.20988 
Curves 1 24.60478 27.13734 -0.11005 5.92911 
Crest 1 24.75725 230.86339 2.22781 4.68892 
Widtha 1 6.42181 40.62676 -1.86133 -0.15287 
widthsida 1 74.50164 161.68351 1.20207 2.98037 
Pavement 1 55.12456 165.05443 -24.09982 -9.82405 
Markings 1 27.23838 86.89846 1.72375 6.48388 
lighting 1 122.24501 122.24501 0.53017 1.54480 
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Looking a little closer at the parameter estimates shows that for the most part the 

signs of the coefficients are as expected or can be explained.  The intercept has a negative 

coefficient, which is not the best possible one.  It would be more appropriate if it were 

positive because there cannot be a negative accident rate in nature.  This base rate for 

injury accidents is negative however due to the fact that the variable vol, representing the 

average daily traffic on each segment, was included in the model.  Due to the large 

volume of the traffic this is somewhat counteracted. The other variable that was included 

in the model that helps to counteract this large, negative coefficient is that of lighting.  

The majority of urban streets are fully lit and as lighting has a positive coefficient, it is 

instrumental in countering the majority of this coefficient.   

The coefficients for the variables fence, ospole and hazards are what they would 

be based on intuition.  All three variables represent either a specific roadside hazard or 

the total number of roadside hazards observed on the segment, with fence representing 

the number of fences or retaining walls observed on the segment, ospole representing the 

number of overhead sign posts and hazards representing the total number of roadside 

hazards observed.  These indicated that the more hazards there are on the segment the 

higher the crash rate is going to be which makes intuitive sense.  The more places a driver 

can run into things, the more likely that will happen.   

For the same reasons as were stated in the section on the total number of accidents 

model above, the parameter estimate of the variable parkinglots was negative.  The more 

parking lots on a segment the lower the crash rate becomes.  This is mainly due to the 

fact that the variable is representative of how the traffic is behaving.  Removing the slow 
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traffic and parking maneuvers and confining them to a parking lot, instead of the street, 

can avoid conflicts.   

The variable vol, representing the volume or ADT on the segment has a positive 

coefficient as was expected.  The main school of thought behind that is the more traffic 

on the roadway the more expected accidents.  While some researches find that this is not 

a linear increase but an exponential increase, there is still an upward trend.  The 

parameter estimate is one of the smallest numerically because it is multiplied by the 

ADT, which is in the tens of thousands for the arterials in the database.  

Residential also has the expected coefficient sign of a negative value.  This shows 

that the more residential an area is the less crashes occur because of the differences in 

mindsets of the drivers.  When a driver is in a residential area, he knows that there will be 

slower traffic more turning vehicles and pedestrians and adjusts his behavior accordingly.  

There is also a more regular pattern to the traffic, in that the majority of it happens at the 

beginning and the end of the workday with only scattered times between then.  Despite 

these residential areas occurring on arterials as opposed to residential neighborhoods, 

there are fewer people who need to access the adjoining land during the day.   

Commercial areas tend to attract large volumes of traffic throughout the day and do not 

have a time when people are not going there.   

Length is one of the variables where the sign of the parameter estimate at first 

glance seems contradictory.  Intuitively the longer a road segment is the more accidents 

there should be, but the negative sign implies that the longer the road segment the fewer 

crashes happen.  This is not as counterintuitive as it first seems due to the way that 

crashes were assigned to segments.  The crashes were assigned to a segment by the 
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location of the incident with crashes occurring on the long stretch of the segment clearly 

going to that segment, but this model predicts the total number of injury accidents which 

includes accidents at the major intersection of each segment.  Most models focus on 

either segment or intersection crashes and they are rarely combined in one model, but 

when traffic engineers are looking at problem locations, they can often include both 

segment and intersections at the same location when major reconstruction is planned.  

Due to this inclusion of what would normally be considered intersection accidents, the 

parameter estimate for the segment length was negative.  This means that the longer the 

segment is the fewer accidents.  This is because the short segments have only a small 

distance before the intersection accidents start taking effect.  The longer segments have 

more space where the intersection does not influence the accidents and intersections have 

long been agreed to be a location where many crashes happen.   

The variables crest and curves have positive values for their parameter estimates.  

Historically the presence of curves has been an indication of a location where accidents 

happen.  This has been confirmed by many studies that have looked at rural and urban 

roads and much attention has been given to the proper design of horizontal curvature, so 

it comes as no surprise that the presence of one or more horizontal curves in this study 

indicates an increase of accident rates.  If drivers are not expecting a change in horizontal 

alignment or are traveling at speeds that are unsafe for the particular design, crashes are 

more likely to occur.  Similarly, the variable crest has a positive coefficient signifying 

that segments with larger crests will have larger accident rates.  This is more likely an 

indication of the road surface and condition rather than a reflection on the actual crest 

value because the allowable limits for crests on new roads are rather limited.  In New 
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England where problems such as frost heave and freeze-thaw problems are very 

important, the crest of the road can increase with these problems or with the actual 

structure of the pavement failing and causing part of the road way to sink.  Another 

environmental problem that can occur is the build up of rain water on the edge of the road 

when the crest is too large, this can cause vehicles to hydroplane and get into problems.  

Continuing to look at the variables that relate to geometric alignment, the variable 

grade has a negative value for its parameter estimate.  This appears to mean that the 

larger the grade becomes the lower the accident rate becomes.  This goes against intuitive 

thought, because it seems that the larger the grade becomes the more crashes should 

occur.  In an urban area, however, there is so much happening that the geometric 

alignment of the road does not play as important a role as it does on rural arterial roads.  

There is much more traffic and commotion, that in an urban setting, the steeper the grade 

becomes on the road, the fewer accidents occur because drivers slow down, so that 

pedestrians and traffic becomes easier to see and easier to determine the relative distances 

from these objects.   

The variables widtha and widthsida both relate to the geometric design of the 

road.  Widthsida is the average width of the sidewalks on the segment, which is an 

average of the two sides of the road.  This has a positive parameter estimate, which 

makes intuitive sense.  The wider the sidewalk is, the more accidents occur.  This is due 

to similar reasons as that of why the coefficient for the residential parameter is negative.  

The sidewalks become wider as they are used more and they get used more in areas 

where there are the most attractions such as shops and parks.  It is in these locations 

where pedestrians can be found in large numbers.  The more pedestrians that are around 
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the more possibilities there are for accidents to occur.  This is due to the fact that 

pedestrian accidents can occur, but by watching to ensure that the pedestrians are safe, 

drivers may loose sight of the other nearby vehicles or be forced to take actions to protect 

the pedestrians, such as stopping quickly, that they wouldn’t have ordinarily taken.  

Where the sidewalks are narrower, there are fewer pedestrians and problems are less 

likely to happen.  

On the other side, the coefficient for widtha is negative meaning that the wider the 

traffic lanes are the fewer crashes occur.  This is the expected value of the coefficient due 

to the wider lanes making drivers feel more comfortable with oncoming traffic and 

putting more distance between the passing vehicles.     

The variable pavement has a positive value for the parameter estimate.  Pavement 

has two possible values that of zero meaning the pavement is of fair or bad quality and 

that of one meaning the pavement is of good quality.  The sign of the parameter reflects 

this.  The better the pavement is, so if the pavement qualifies as having a good condition, 

the less crashes occur.  This would be the expected condition because when the pavement 

is in bad shape whether due to patching and cracking, or rutting on the road, there are 

more problems that could occur.  If the cracks are severe or if potholes develop, there is 

no problem in seeing how crashes can happen.  Even if the problems are not so severe, 

they cause the driver to need to devote more attention to the road surface and remove the 

driver’s attention from the other events that are occurring on the road at the same time, 

including other drivers. 

The parameter estimate for the variable that represents the quality of the pavement 

markings is positive.  At first glance this means that the better the pavement markings are 
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the more crashes are going to occur.  This statement however is not as contradictory as it 

first may seem.  When roads are well marked, drivers are more comfortable with their 

surroundings and more likely to pay less attention to the task of driving.  This parameter 

does not represent itself as much as it represents more the driver’s attitude.  If they can 

clearly see the road and the lane markings and where they should be located, then their 

attention can wander.  If the markings are harder to see, then the drivers pay closer 

attention in order to determine where they and their vehicle should be located.  

The variable lighting indicates the percentage of each segment that is lit.  The 

parameter estimate is positive which at first review seem to mean that the more lighting 

the more accidents occur and conversely the less lighting available the fewer accidents 

occur.  This however is not truly the situation.  This variable helps to counteract the 

majority of the intercept value.  Since most urban minor arterials have full lighting, this 

brings the intercept coefficient closer to zero.  So while playing an important role in the 

model, the value of the coefficient cannot be interpreted in the conventional way.    

These parameter estimates all lead to the following model: 

lightingmarkingspavmentwidthsida
widthacrestcurvesgradelengthlresidentia

VolsparkinglothazardsospolefenceRate

04.110.496.1609.2
01.146.391.278.0001.013.0

00045.059.124.082.102.27.127

++−
+−++−−−

+−+++−=
 

Every model needs to ensure that it is not violating any of the model assumptions.  

This is mostly done by reviewing the graphical analysis of the model.  The boxplot in 

Figure 99 shows that the residuals are centered on zero as is expected based on the form 

of the model.  The boxplot also shows where the quarter points of the locations of the 

residuals fall, this is ideally a symmetric distribution.  This plot suggests that this model 

has a larger variation when it predicts lower than the expected rates.   
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Figure 99: Boxplot of the Injury Accident Model 

The graphical diagnostics do not indicate that this model violates any of the 

model assumptions.  The residuals versus the predicted values plot indicates that the 

residuals have a constant variance and are basically symmetric about zero, as can be seen 

in Figure 100.  The residuals on the positive side can be easily seen to fall under a 

constant line at approximately 2.75.  On the negative side there is one point that falls 

outside of this range by a small amount with a value of approximately -3.75 but all the 

other points fall under the -2.75 constant line.   
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Figure 100: Residuals versus Predicted Values for the Injury Accident Model 

There are no points that can be perceived as true outliers despite the one point not 

exactly behaving in the residual versus predicted values plot.  This can more clearly be 

seen in the studentized residuals versus the predicted values plot in Figure 101.  The 

heuristic for knowing whether to qualify a point as an outlier is if the studentized residual 

is greater than four.  For this model there is not any points that deserve consideration as 

an outlier as none of the studentized residual values are larger than 2.0.  So despite one 

point not being ideal, there are not any outlying points.    



 263

St udent i zed Resi dual

-2

-1

0

1

2

Predi ct ed Val ue of  rat e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 

Figure 101: Studentized Residuals versus Predicted Values for the Injury Accident Model 

The normal quantile plot in Figure 102 indicates that there is a strong inclination 

towards normality as the majority of the points closely follow the line that indicates a 

linear relationship with several even falling on the line.  Most of the points cluster around 

the line with only a few deviating ones.  This is an indication that the model assumptions 

are not violated.  
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Figure 102: Normal Quantile Plot for the Injury Accident Model 

The distribution that the residuals follow almost completely follows that of a 

normal distribution as can be seen in Figure 103.  The peak of the model’s distribution is 

only slightly lower than that of the normal distribution and skewed slightly towards the 

right.  The normal distribution is the solid line while the dashed line that follows closely 

is the distribution from the residuals from this data set.  This indicates that the residuals 

from the model follow a normal distribution, which is one of the model assumptions.  
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Figure 103: Normal Probability Plot for the Injury Accident Model 

This model predicts the rate for the total number of injury accidents that occur on 

arterial road segments.  Overall it appears to be a good model to use to predict these 

crashes and it takes an additive form.  The additive form indicates that the variables in 

question tend to individual act upon the roadway in terms of causing crashes to happen.  

They do not act together to change crash rates, which will allow each item to be reviewed 

separately if the segment is about to get repaired or redesigned.  This allows each variable 

to be independently adjusted by traffic engineers and a visible effect to be noticed.  More 

variables were included in the model that predicts injury accidents than were in the model 

that predicts the total number of accidents.  This is because the total number of accidents 

is more difficult to predict, since property-damage-only accidents can be caused in many 

more occasions than are injury accidents.  The more exact influence of traffic and 

geometric characteristics on injury accidents allows for more variables to be included in 

the final model.  
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7 Validation 
The final step in the modeling process involves validation of the model through 

independent data by comparing the results from the model with the actual values from a 

data set that was not used to help create the model.  This allows for a review of how well 

the new data is represented by the model.    

For the validation process, two data samples were used.  One sample contained 

what would have been the next segments added to the database had data collection 

continued.  These segments were located on parts of Park Avenue that were not 

previously sampled.  Since these six segments would have been included in the model 

building database, they fit the exact profile of streets where the model can be 

appropriately applied.  The second data sample consisted of six segments from 

Shrewsbury Street, which is classified as an urban arterial, though it is not a state primary 

as were all the other segments.  This set of segments was useful in seeing how robust the 

developed models are and if some further application of the model is appropriate.   

7.1 Linear Model Validation 

The linear model from a surface review appears to be more robust than the model 

that predicts injury accident rates.  This is due to the fact that only five variables are 

involved in this model as opposed to the fifteen in the injury accident rate model.   

The first data grouping used for validation of the total accident model came from 

Park Avenue in Worcester.  These segments would have been the next to be surveyed if 

more time had been available for collection of data for the model building.  These 

segments fit the profile of the segments used to develop the model: an urban arterial, 
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preferably a state primary, with an average volume between ten and fifty thousand 

vehicles per day.   
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Figure 104: Predicted Values vs. Actual Values for Total Accident Rate Model with Park 

Avenue Data 

When the six Park Avenue segments were entered into the model there was a 

fairly good result.  As can be seen in Figure 104 there was a decent linear trend of the 

actual values of the total accident rate versus the predicted values from the model for four 

of the six segments.  Two points, however, fall away from the linear trend.  One does so 

due to the model predicting a negative accident rate, which would translate into a zero 

accident rate occurring on that segment since negative values do not occur.   The other 

outlying point is when the actual accident rate of the segment was very low and the 

model forecast a much higher one.  These both raise different concerns.   

The one point where there is a very low actual accident rate may be indicating 

that this segment, BPP, has an unusually low occurrence of crashes compared with other 

similar road segments.  This is not a bad thing, just a segment with better than average 

conditions.  The accident prediction model, gives what could be considered an average 

accident rate, based on volume, length, percentage of residential land, number of parking 
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lots, and several other factors.  This allows for segments that are better than ‘average’ to 

have low actual rates, while the predicted ones are much higher.  Salisbury Street and 

Sagamore Road bound this segment on Park Ave and the most unusually thing about this 

road segment is that, while there was some commercial land use, there were no parking 

lots observed.  This is mainly due to the fact that the few businesses were located in 

converted residential buildings that only had limited space for customer parking with 

parking provided by driveways and on-street parking.  While this is not the most common 

conditions it is not unheard of and several segments that were used in the model 

development phase had similar characteristics of combined commercial and residential 

land use and no observed parking lot entrances.   

The second point that leads to some concerns due to its lack of linearity compared 

with the other points comes from the fact that the model did not predict a positive 

accident rate. Instead the of the actual crash rate of 24.71 crashes per million vehicle 

miles, a rate of –13.25 crashes per million vehicle miles was predicted.  There does not 

seem to be a particular reason why this negative rate would be observed.  The only 

unusually characteristic noted on the segment that spans between Chandler Street and 

May Street, CPP, was a very large number of parking lot entrances, but the number of 27 

falls below the maximum of 33 that was used to develop the model.   

If the two outlying points are disregarded the amount of error in the predictions is 

relatively low with the four remaining points all having percent of error of less than 

twenty percent and two points less than ten percent as can be seen in Table 69.   
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Table 69: Error Table for Total Accident Rate Model with Park Avenue Data 

Segment Actual Accident Rate Predicted Rate % Error 
APP 15.39 15.76 2.39 
BPP 6.59 22.53 241.65 
CPP 24.71 -13.25 153.64 
DPP 21.88 19.56 10.62 
EPP 23.77 21.60 9.12 
FPP 10.49 8.47 19.27 

The second data group used to validate the model came from Shrewsbury Street 

in Worcester.  While an urban arterial, this road is not a state primary and throughout its 

length does not have a large variety in areas such as land use and alignment.  The use of 

these segments will help show how robust the model is in its ability to be applied to more 

streets than originally designed for.  
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Figure 105: Predicted Values vs. Actual Values for Total Accident Rate Model with 

Shrewsbury Street Data 

  The predicted values versus the actual values for the data from Shrewsbury 

Street can be seen in Figure 105.  As with the data from Park Avenue, there are two 

points that do not follow the linear relationship that is observed with four of the segment 

points.  In terms of linearity Shrewsbury Street appears to perform just as well as Park 

Avenue does in the model with only two of six points as outliers.  Like one of the points 

in the Park Avenue data, the outlying point on the negative side of the y-axis is due to the 
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prediction model producing a negative accident rate for the segment of Shrewsbury Street 

bounded by Adams Street and Fantasia Street (Segment DS).  The only thing that appears 

different in this segment than in the others is again a fairly large number of parking lot 

entrances at 23 for this segment and while this is less than the maximum number used in 

the model database, the next highest number of parking lot entrances was in the high 

teens.  On both occasions where large numbers of parking lots were observed, negative 

crash rates are predicted.  This leads to a restriction needing to be placed on the 

prediction model of segments needing to possess less than a certain number of parking lot 

entrances.  This limit set at sixteen comes from the second highest number of parking lots 

observed in the database with several segments having parking lot counts in the mid-

teens.  This sensitivity of the model due to the number of parking lot entrances 

emphasizes the fact that urban roads especially state primary ones have characteristics 

that influence crashes that are different than on rural roads where geometry plays the 

main role.    

The second point that appears to be outlying from Figure 105 is similar to the 

Park Avenue data has a vastly different actual crash rate than would be supposed from 

the predicted rate.  In the Park Ave. data the outlying point had an unusually low crash 

rate, in this Shrewsbury Street data the opposite is true with the segment displaying a 

very high crash rate of 36.63 while the predicted rate is 19.75 crashes per million vehicle 

miles.  This segment, FS, is bounded by Belmont Street (Rt. 9) on one side and the 

entrances to a McDonalds and the Piccadilly Shopping Plaza on the other side.  The 

segment is also relatively short though not so much that it would not fit parameters in the 

database.  The practice of including both link and intersection crashes most likely is the 
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cause of this deviation between actual and predicted rates.  The intersection that is 

included on this segment is with a state primary route and is in a configuration not of a T-

intersection, but of a three-way angled intersection and this combination, despite the 

traffic lights regulating vehicles is the most probable explanation for the large actual 

crash rates.   

Table 70: Error Table for Total Accident Rate Model with Shrewsbury Street Data 

Segment Actual Accident Rate Predicted Rate % Error 
AS 17.52 24.84 41.8 
BS 16.37 19.48 19.0 
CS 10.23 14.78 44.5 
DS 8.82 -18.57 310.5 
ES 6.14 10.24 66.8 
FS 36.63 19.75 46.1 

The error observed from the segments on Shrewsbury Street is more than those 

segments from Park Avenue, but fairly reasonable with the exception of the one segment 

with a negative accident rate as can be seen in Table 70.  Without that segment the error 

rate is under seventy percent.  
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Figure 106: Predicted Values vs. Residuals for Validation of Total Accident Rate Model 

The standard graphical diagnostic to check the model assumptions is looking at 

the plot of the predicted values versus the residuals (See Figure 106).  With the exception 
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of the two points that do not fit the model by having too many parking lot entrances the 

other points from both Shrewsbury Street and Park Avenue show a constant error 

variance that follows that of the overall model.  The variance for the segments used to 

develop the model ranged from approximately negative twenty to positive twenty and the 

validation data follows this trend.  Two points even in this range could be considered 

outlying where the true range would be between negative ten and positive ten.   These 

two points are the ones with either an unusually high or unusually low real crash rate as 

opposed to what the model predicted.    

The linear total accident rate model is fairly robust.  Restrictions must be placed 

on the allowable number of parking lots that can be on a segment in order for it to work 

properly.  There is an indication that predicting the accidents on state primary roads 

works well, with an error rate at maximum of twenty percent, and the predicting crash 

rates for urban arterials that are not state primaries has a larger error rate, closer to sixty 

percent.  While not originally designed for general urban arterials this model can be used 

and if reworked with a larger database, even perform well for these roads.  

7.2 Multiplicative Model Validation 

The multiplicative model appears to be less robust than the linear model that 

predicts total accident rates.  This is due to the fact that fewer variables are involved in 

the multiplicative model and the multiplicative model has a lower coefficient of 

determination, 0.6672.   

The same two groups of data were used for validation of the multiplicative model 

as were used to validate the linear model; Park Avenue and Shrewsbury Street.  The first 
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data grouping used for validation of the total accident model came from Park Avenue in 

Worcester.     
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Figure 107: Predicted Values vs. Actual Values for Multiplicative Model with Park Avenue 

Data 

When the six segments were entered into the model there was a fairly good result.  

As can be seen in Figure 107 there was a decent trend of the actual values of the total 

accident rate versus the predicted values from the model.  Two points, however, fall away 

from the trend of the remaining points.  One of these points is the one that was removed 

from applying to the total accident rate linear model in the previous section CPP.  It is 

located below the trend line.  The second of the two points was also previously discussed 

due to the segment having a particularly low accident rate and therefore the more average 

rate developed from the model does not fit segment BPP causing it to be located above 

the trend of the model.  The characteristics observed in the total accident rate linear 

model remain true with the log-linear model.  The same restriction on the database based 

on the number of parking lot entrances should remain true in spite of the fact that the 

number of parking lots was not determined to be a significant variable in the 

multiplicative model.  
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If the two outlying points are disregarded the amount of error in the predictions is 

relatively low with the four remaining points all having percent of error of less than 

twenty percent and three points less than ten percent as can be seen in Table 71.  This low 

error means that the model is doing a good job at predicting values that are near the 

actual ones.  

Table 71: Error Table for Multiplicative Model with Park Avenue Data 

Segment Actual Accident Rate Predicted Rate % Error 
APP 2.73 2.77 1.5 
BPP 1.89 2.75 45.9 
CPP 3.21 2.73 14.8 
DPP 3.09 2.91 5.6 
EPP 3.17 3.03 4.5 
FPP 2.35 2.74 16.5 

The second data group used to validate the model came from Shrewsbury Street 

in Worcester.  While an urban arterial, this road is not a state primary and throughout its 

length does not have a large variety in areas such as land use and alignment, but with so 

few variables in this model, the lack of variety in the data may not have a strong effect on 

the outcome of the model.   
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Figure 108: Predicted Values vs. Actual Values for Multiplicative Model with Shrewsbury 

Street Data 
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  The predicted values versus the actual values for the data from Shrewsbury 

Street can be seen in Figure 108.  As with the data from Park Avenue, there are some 

points that do not follow the relationship that is observed with the other four segments, 

however there is not a strong deviation from the noticed trend.  These outliers depend on 

where the trend is assumed to be, but there is not a clear indication of this location.  The 

previous outliers DS and FS are not as apparent in deviating from the remaining points.   

Table 72: Error Table for Multiplicative Model with Shrewsbury Street Data 

Segment Actual Accident Rate Predicted Rate % Error 
AS 2.86 2.76 84.2 
BS 2.80 3.11 81.0 
CS 2.32 2.96 71.1 
DS 2.18 2.62 70.3 
ES 1.81 2.90 52.7 
FS 3.60 3.69 89.9 

The error observed from the segments on Shrewsbury Street is significantly 

higher than those segments from Park Avenue, but all within the same range of each 

other as can be seen in Table 72.  The jump from error rates of less than twenty percent to 

error rates around eighty percent show how while the model does work in that it predicts 

reasonable values for non-state primary roads, it does best with the exact type of roads 

that it was modeled for.  If a larger database was originally collected that included all 

types of non-access controlled urban arterial roadways then it would probably yield a 

better match with the data from Shrewsbury Street.  
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Figure 109: Predicted Values vs. Residuals for Validation of Multiplicative Model 

The standard graphical diagnostic to check the model assumptions is looking at 

the plot of the predicted values versus the residuals (See Figure 109).  With the exception 

of the two points that do not fit the model by having too many parking lot entrances the 

other points from both Shrewsbury Street and Park Avenue show a constant error 

variance that follows that of the overall model.    

The total accident rate log-linear model is fairly robust.  The slightly lower 

coefficients of determination and the adjusted coefficient have values that are typically 

not acceptable for working models with 0.6672 and 0.6238 respectively, but that does not 

prevent the model from giving a general range of what the crash rate on a segment should 

be near.  It was found that restrictions placed on the allowable number of parking lots in 

other models should also be carried over to this model for it to work properly.  There is 

an indication that predicting the accidents on state primary roads works well, with an 

error rate at maximum of twenty percent, and the predicting crash rates for urban arterials 

that are not state primaries has a larger error rate of closer to eighty percent.  While this 
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model works well for the roads it was designed for, extending this exact model to other 

urban arterial roads is not suggested.    

7.3 Injury Accident Model Validation 

The total accident rate linear model appears to be more robust than the linear 

injury accident rate model.  Though having the same functional form of a linear model 

with a normal error distribution, the injury accident model has many more variables, 

fifteen as opposed to six, which may cause it to be too specific to the model building data 

set.  The use of many more variable shows that more factors are needed when predicting 

the injury accident rate, but this can be due to the fact that injury crashes compose only 

approximately one third of all crashes.    

The first data grouping used for validation of the injury accident model came 

from Park Avenue in Worcester.  These segments would have been the next to be 

surveyed if more time had been available for collection of data for the model building.  

These points fit the parameters of the model, an urban arterial, preferably a state primary, 

with an average volume between ten and fifty thousand vehicles per day minus the one 

point that has found to not fit the model parameters by reason of having too many parking 

lot entrances.  



 278

0

1

2

3

4

5

6

7

8

9

-15 -5 5 15

Predicted Values

A
ct

ua
l V

al
ue

s

 
Figure 110: Predicted Values vs. Actual Values for Injury Accident Rate Model with Park 

Avenue Data 

When the six segments were entered into the model there was a fairly good result.  

As can be seen in Figure 110 there was a fairly linear trend of the actual values of the 

total accident rate versus the predicted values from the model for four of the six points.  

This can be more fully seen when segment CPP, that has been removed from eligibility 

for the model, is no longer in the plot (See Figure 111).  Even though one segment has a 

negative accident rate predicted, it remains along the line defined by the other data points 

in the plot.  The segment removed from the model parameters in the total accident rate 

model, is again removed based on those same considerations.  
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Figure 111: Predicted Values vs. Actual Values for Injury Accident Model with Valid Park 

Avenue Data 

The two points that lead to concern are the same points that brought concern in 

the total accident rate model.  In the injury rate model, both of these points have a 

prediction of negative crash rates, which should effectively translate into a zero accident 

rate occurring since negative accidents do not occur.  The remaining point that is 

removed from the range of acceptable predictions does not appear to have any specific 

area where its characteristics are extreme from those that the model was formed from.  

The segment does have a relative low actual accident rate, but not by any means the 

lowest that was used to create the model, so no particular cause can be identified as the 

reason for the negative injury accident rate.   

 Even when the extreme points are disregarded the amount of error in the 

predictions is relatively high.  Only two segments had an error less than 100 percent 

positive or negative and only one segment had a percent error less than fifty percent as 
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can be seen in Table 73.  These large errors show that while the injury accident rate 

model may have a large coefficient of determination at 0.9319, this does not mean that 

the model will be robust enough for other data to be well represented and able to be 

predicted accurately.  

Table 73: Error Table for Injury Accident Rate Model with Park Avenue Data 

Segment Actual Accident Rate Predicted Rate % Error 
APP 4.6 0.45 90.2 
BPP 1.06 -7.47 808.4 
CPP 6.72 -11.02 264 
DPP 5.39 11.90 120.6 
EPP 8.00 16.26 103.2 
FPP 3.37 4.84 43.6 

The second data set used to validate the model came from Shrewsbury Street in 

Worcester.  While an urban arterial, this road is not a state primary and throughout its 

length does not have a large variety in areas such as land use and alignment.   
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Figure 112: Predicted Values vs. Actual Values for Injury Accident Rate Model with 

Shrewsbury Street Data 

  The predicted values versus the actual values for the data from Shrewsbury 

Street can be seen in Figure 112.  As oppose to the data from Park Avenue, none of the 

points follow the expected linear relationship.  With the Shrewsbury Street data, no 
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positive injury accident rates were predicted, in spite of the fact that injury accidents did 

occur.  The actual injury accident rates are in the same range as those as the Park Avenue 

data and the same range as those from which the model was built.  This lack of any viable 

accident rates, whether with a large amount of error or not makes this model not 

applicable to non-state primary roads.  
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Figure 113: Predicted Values vs. Residuals for Validation of Injury Accident Rate Model 

The standard graphical diagnostic to check the model assumptions is looking at 

the plot of the predicted values versus the residuals (See Figure 113).  The data from Park 

Avenue when the segment that does not fit with the number of parking lots is removed 

from the data set mostly shows that the error terms follow the normal assumptions.  They 

show that there is a constant variance that falls within that of the model.  The Shrewsbury 

Street data on the other hand does not follow the normal assumptions, and as the model 

does not appear work for the non-state primary roads, this does not create any surprises.   

It appears that there is some systematic error in the residuals, but as the residuals did not 
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exhibit this trait when building the model a transformation is not likely to help at this 

stage leaving this model to provide very inexact results.  By putting the residuals of both 

validation data sets together it can be easily seen how the Shrewsbury Street data does 

not work and how the Park Avenue data does work better.  The conclusions that can be 

drawn from this validation process include that the injury accident rate model is not 

nearly as robust as that of the total accident rate model.      

7.4 Summary of Validation 

Some important issues have been brought to light during the validation process.  

One of these is that the model is limited by the number of parking lot entries a segment 

has. Segments with large number of parking lot entries did not perform well in either the 

total accident rate model or the injury accident rate model.  This sensitivity to the number 

of parking lot entrances should be further examined in the future.  

The total accident rate model was found work well for roads that exactly fit the 

profile of urban state primary roads with volumes between ten and fifty thousand vehicles 

per day with error rates of less than twenty percent.  With other urban roads the total 

accident rate model performed adequately but with error rates closer to fifty percent.  The 

total accident rate model can be used with a degree of confidence for state primary roads 

and with a lesser amount of confidence for other urban roads.  

The injury accident rate model was found to be less robust than the total accident 

rate model.  With the data that matched the model specifications (Park Avenue data), the 

error rates were very high, and when the Shrewsbury Street data was used the model did 

not perform well at all predicting only negative injury accident rates.  While a general 
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idea can be gained about injury accident rates on state primary roads, this injury accident 

rate model should not be applied to other urban roads. 

The multiplicative model was found to be of median robustness.  It works well 

with error rates under twenty percent for the urban roads it was designed for, but this 

model’s range cannot be extended.  When applied to non-state primary roads, the model 

routinely produced error rates around eighty percent.  
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8 Conclusions 
The study of the causes of vehicle crashes is a complex mixture of vehicle, driver, 

environment, traffic and road characteristics.  These all combine in a myriad of ways that 

a mathematical model can only attempt to duplicate.  The major classifications of rural 

and urban roads, followed by the classifications of arterial, collector and local roads all 

have their own patterns and relationships that need to be examined individually and 

separate from the others.  Rural arterials have long been given much attention based on 

the large number of miles of the roads and the large percentage of crashes that occur on 

them and many advances have been made in the art of predicting crashes and speed on 

those roads.  But, closer spaced junctions, difference in land use patterns, geometric 

consideration and traffic patterns along with different layout of link and junctions lend 

themselves toward a different approach in urban locations than in the longer studied rural 

ones.  The urban environment is similar to the rural one, in that there are geometric and 

traffic issues that occur, but with the larger populations and numbers of vehicles and 

pedestrians using the roads, the urban locations become more complex with closely 

spaced buildings, access points, roadside hazards and people.  

In crowded environments the possibilities that exist for crashes to occur are 

numerically greater leading to more actual crashes with the corresponding damage to 

property and people.  This large number of crashes and limited amount of funds to 

respond to these incidents and to maintain and improve the roadway network is why the 

ability to predict where and how many of these incidents will occur is an important skill.  

A prediction model is also useful in that even if the exact crash rate it predicts is not exact 

the model does give an idea of what similar road segments should have and allows for 
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especially hazardous or safe sites to be identified and then examined for the 

characteristics that are causing the extreme conditions.  

The prediction of crashes has many level not the least of which is what should 

actually be the depended variable, the number of crashes, a crash rate or something else.  

Historically, crash rates and the total number of crashes have been the choice for 

dependent variables.  Both offer unique challenges as a primary choice.  Crash rates are 

typically normalized by length and volume leading to the question of whether crashes are 

linearly related to these two items.  The other common choice of dependent variable of 

total number of crashes causes problems in that crashes are discrete and non-negative 

which causes the normal distribution typically used for the error structure of prediction 

models to not apply to the dependent variable.  The issues relating to the relationships of 

the variables in crash rates have not been verified repeatedly to be linear or non-linear in 

nature.  Experimenting with the database used in this research no clear relationship 

between crash rate variables was established as linear or non-linear.  The relationship of 

the number of crashes following a Poisson or negative binomial distributions was found 

to be equally unclear.  This uncertainty lead to no clear trend being identified in the data 

and the more conventional choice of crash rate chosen as the dependent variable.  

Using a dependent variable of crash rate meant that the error structure is normally 

distributed.  The other major choice in modeling that occurs is how the independent 

variables interact with each other.  The forms that were considered as the most likely 

form for predicting crash rates in urban area were linear relationships and multiplicative 

relationships.  Both have been used to develop models in rural areas but no agreed upon 

relationship has been found in urban areas.  Models were developed to predict the total 
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crash rate with both a linear and multiplicative form.  The linear form was found to have 

a better fit for the data and to be a more robust model in that both state primary roads and 

other arterial roads could have crash rates predicted to a better than fifty percent error.  

The multiplicative model while working well for the state primary roads did not perform 

well on other urban arterial roads.  In addition to the functional form, it is necessary to 

specify the form of the crash rate.  The linear model that predicts the total crash rate has 

many more independent variables that were found to be significant to predicting the crash 

rate with fifteen variables as opposed to the six in the total accident rate model.   

The models that were developed due to this research help show that the complex 

nature of crashes in an urban environment need to have a different approach than those in 

rural areas.  The difference in the interaction between variables in the different 

environments needs to have more exploration since both forms produce workable models 

and the true model most likely lies in between the two forms.  Limitations were also 

placed on the model due to the small size of the database used to develop the models.  

With a larger database the relationships between variables should be easier to identify.   
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A1 

A Appendix: Database for Creating Model 
 

This appendix has the datasheets for the arterial segments that were used to create 

the models in this paper.  The summary sheet of that data is also included. 

































































































































B1 

B Appendix: Databases for Validation Data 
 

This appendix has the datasheets for the arterial segments that were used to 

validate the models in this paper.  This includes the data from both Park Avenue and 

Shrewsbury Street.  The summary sheets of that data are also included.  The data from 

Park Avenue is first followed by that of Shrewsbury Street starting on page B-16.



























































C1 

C Appendix: SAS Code and Output 
 

This appendix has SAS code that was used to create the three final models for this 

paper.  The main output from that code is also included.  The code and output for the 

linear total accident rate model is first starting on page C-2 followed by the multiplicative 

model starting on page C-10.  The injury accident rate model’s code and output is the last 

part of this appendix starting on page C-21.  
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