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Abstract

We present an annotation management system for cloud-based platforms, which is

called CloudNotes. CloudNotes enables the annotation management feature in the

scalable Hadoop and MapRedue platforms. In CloudNotes system, every piece of

data may have one or more annotations associate with it, and these annotations

will be propagated when the data is being transformed through the MapReduce

jobs. Such an annotation management system is important for understanding the

provenance and quality of data, especially in applications that deal with integration

of scientific and biological data at unprecedented scale and complexity. We propose

several extensions to the Hadoop platform that allow end-users to add and retrieve

annotations seamlessly. Annotations in CloudNotes will be generated, propagated

and managed in a distributed manner. We address several challenges that include

attaching annotations to data at various granularities in Hadoop, annotating data

in flat files with no known schema until query time, and creating and storing the

annotations is a distributed fashion. We also present new storage mechanisms and

novel indexing techniques that enable adding the annotations in small increments

although Hadoops file system is optimized for large batch processing.
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Chapter 1

Introduction

1.1 Motivation

Todays emerging applications in science are all generating and collecting data at

unprecedented scale and complexity. Its not only the data is large and complex,

but also the processing and analytics of data are complex. Thus, scientific applica-

tions are turning into cloud computing and scalable cloud-based platforms such as

Hadoop [1, 10], which is the open source implementation of Google MapReduce [2].

Hadoop is a widely used cloud-based platform due to its superior properties, such as

scalability to peta bytes of data over thousands of machines, flexibility in managing

(un)structured data, elasticity in growing and shrinking resources, cost-effectiveness,

and availability as an open source.

On the other hand, Annotating and curating the data plays a significant role in

scientific experimentation and discovery process [3, 4, 5, 6]. Annotations can capture

scientists notes and comments in all stages of the discovery process. They can also

be unstructured free-text objects used for exchanging knowledge and Q/A messages

among scientists, highlighting erroneous or conflicting values, and capturing users
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understanding of data. Furthermore, annotations can be of specific type with well-

defined structure and semantics to capture, for example, the provenance and lineage

information for tracking the origin of the data.

With the advances in data management, there was a pressing need to capture

and query the annotations in more systematic and efficient ways. Annotation man-

agement has been extensively studied in the context of relational database systems.

Most of these techniques built generic frameworks for managing annotations, e.g.,

storage, indexing, and propagation at query time. Other systems create special-

ized systems for specific types of annotations, e.g., provenance tracking, and belief

capturing.

We address the annotation management in the Hadoop platform. Although few

systems have exploited specific types of annotations in Hadoop, i.e., the Ramp [7, 8]

and PigLipstick [9] systems for tracking the data provenance and Stubby engine [11]

for capturing the execution statistics and optimizing performance. We demonstrate

that our proposed system (called CloudNotes) enables a general-purpose annotation

management platform, and supports different types of annotation and meeting the

diverse requirements of scientific applications. In this project, we propose to design

and develop the CloudNotes system, an extensible annotation management system

for cloud-based scientific applications.

1.2 Motivation Scenarios

1.2.1 Scenario 1: Data Verification and Revision

Scientific data are always subject to verification and possible corrections. With

the current Hadoop-based technology, each step in this process must create a new

dataset as presented in Figure 1.1. For example, a data verification tool may scan the

2



Figure 1.1: Motivation Scenario1: Data Verification and Revision

original dataset and create another dataset for the in-doubt records. Then, a revision

phase, which may involve external activities, e.g., running wet-lab experiments, will

create a third dataset for the proven-wrong and revised records. Now, the system

has three datasets loosely connected and none of them is complete or directly query

able, i.e., the original dataset still contains the wrong records, while the third dataset

has only the revised records. The management of these datasets can easily go out

of control, especially with multiple possible revisions. Note that the provenance

tracking systems may help in propagating the provenance from the original dataset

to the in doubt one. However there is no way to link the third dataset to the existing

ones or to efficiently integrate them at query time. With CloudNotes (See Figure

1.1), scientists will be able to annotate the original dataset and highlight the in-

doubt tuples, mark the ones proven wrong or correct, and even provide corrections

and link them to the original records. Thus, there will be no need to fragment the

data across multiple datasets, and the querying will be more efficient since these

annotations will automatically propagate along with the original dataset whenever

queried.
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1.2.2 Scenario 2: Exchange of Auxiliary Information

Figure 1.2: Motivation Scenario2: Exchange of Auxiliary Information

It is typical in scientific applications to share the data among multiple users as

illustrated in Figure 1.2. Users may want to exchange information about the data

stored in Hadoop, e.g., one user asks about the configuration parameters, a third

user supplies an article matching and confirming the values in the dataset. These

auxiliary and valuable information is typically exchanged outside the system, e.g.,

through emails, simply because there are no means inside Hadoop to share or cap-

ture this knowledge. This will, most probably, lead to the loss of the exchanged

information will not be available. In contrast, CloudNotes will enable these anno-

tations to be captured in a systematic way, persistently kept with the data, and be

available to users at query time. Furthermore, CloudNotes can analyze the available

annotations and infer, for example, that the record under investigation is of a high

quality because its content is support by two users as well as an article.
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1.2.3 Scenario 3: Fine Grained Data Authorization

Authorization in Hadoop is at the file level. Although useful, the records in a

given file may contain data at different level of sensitivity, and hence warrant the

need for a finer-grained access control (at the record level), which is not currently

possible. With the current Hadoop-based technology, the original file may be broken

into multiple fragments; each contains a set of records with the same access level.

This approach is cumbersome for applications reading records across fragments.

Moreover, it is problematic (almost infeasible) if the authorization levels change

over time. With CloudNotes, the authorization levels can be modeled as annotations

attached to each record according to its content. At query time, users jobs will be

granted access to specific records based on their attached authorization levels. Note

the unlike the original data that is read-only, annotations can be incrementally

added to the data to reflect changes in the authorization levels over time.

1.2.4 Scenario 4: Assessment and Propagation of Data Qual-

ity

Scientific records may have different qualities based on their sources, the accuracy

of their values, or even the observations and comments from users. Hence, scientists

may want to run software tools over their data and assign quality scores to each

record. And then, at query time, we may want to carry (or aggregate) these quality

scores from the input records to the derived ones. With the current technology, this

scenario is very challenging to handle. In contrast, in CloudNotes, the quality scores

(can be many from different tool) will be modeled as annotations attached to each

data record, and then users can define propagation strategies that allow automatic

propagation (and aggregation) of these scores from the input records to the derived
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ones.

In summary, these scenarios, which are very common in science domains, have

demonstrated critical shortcomings in the current Hadoop-based technology, and

have motivated the need for supporting annotation management in such scalable

platforms to boost the progress and discoveries in scientific in scientific applications.

1.3 Challenges

Since the development of MapReduce computing model and its open-source im-

plementation Hadoop, and they became a data magnet in various application do-

mains due to their superior properties such as scalability to peta bytes of data over

thousands of machines, flexibility, elasticity in growing and shrinking resources, cost-

effectiveness, and availability as an open-source. This contributed to economic boost

by making scalable computing more accessible for the common application developer

opening the doors to building applications quickly that otherwise may not have been

built. A flurry of research activities have been recently proposed around Hadoop

platform ranging from high-level query languages, workflow management, indexing

techniques and query optimization, and physical data layout optimizations, to on-

line data processing, and provenance management. We envision a great potential

in Hadoop as scalable, fault tolerant and open-source platform for large-scale data

analytics. However, to flourish this potential in the context of scientific data the

two features of annotation management and proactive recommendation of executing

paths need to be coherently integrated inside Hadoop. Certainly, this integration in-

volves many challenges and warrants fundamental changes and extensions to Hadoop

infrastructure. These challenges include:

(1) Lazy Interpretation of Data: Data in Hadoop are stored in flat files with
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no known structure or schema until query time. Thus, adding annotations that

reference specific data pieces, especially at different granularities from record, task,

to job level, is not straightforward. Nevertheless, the support for annotation data

while it is begin generated (on-the-fly annotations).

(2) Lack of Incremental Updates: Annotations can be incrementally added in

small batches over existing data. However, Hadoop file system is not optimized for

handling small files and incremental updates. Therefore, new storage mechanisms

are needed to handle annotations.

(3) Computing Model with Black-Box Operators: Unlike RDBMSs with well-

defined, modularized operators, Hadoop has two black-box operators, namely map

and reduce. Therefore, it is more challenging to optimize the annotation propagation

at query time since the operators semantics are not explicit known to the system.

(4) Scalability and Distributed Processing: As data scales up, annotations also

scales up and they get generated/stored in a distributed fashion, which are issues

that have been overlooked by existing annotation management techniques, as they

mostly focus only on centralized RDBMSs.

(5) Black-Box Execution Flow: In order for the system to be proactive in rec-

ommending execution paths and possible ways for exploring the data, it needs to

gather as much information such as the data structure, the used functions or work-

flows, execution statistics, etc. Clearly, this against Hadoops nature of the black-box

execution of users map and reduce tasks.

There has been a large body of work in ”CloudNotes”, including for general

workflows. Although map and reduce functions as data transformations have become

increasingly popular, we are unaware of any work that focuses specifically on building

annotation manage system for Cloud-based platform. Also, we explore the overhead

of annotation storage and cost of annotation propagation. Our goal is to enable
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efficient and transparent annotation management in distributed platforms while

keeping the overhead low. Overall, our contributions are: after describing the basic

idea and the outline of the framework in Chapter 2, in Chapter 3 and Chapter 4, we

introduce more implementation details. And we have already built a system called

CloudNotes that implement the functionalities in the design phase. The experiment

section reports the performance results using CloudNotes on the time and space

overhead. Finally, we give the conclusion and discuss future work, including more

functions and optimizing options for CloudNotes.
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Chapter 2

System Overview

In this project, we proposed to design and develop the ”CloudNotes” system, an

extensible annotation management system for cloud-based scientific applications.

In Figure 2.1, we extend Hadoop execution model to detect and track annotations.

Storage layer in Hadoop file system includes data repository and annotation reposi-

tory. We add a new component: Annotation Manager to coordinate annotations in

”CloudNotes”.

”CloudNotes” is driven by three fundamental and challenging research prob-

lems are: distributed fashion, lazily-interpreted data, and batch processing. In the

following, I will describe each challenge in some more details.

Figure 2.1: System Overview
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2.1 Processing Annotations in a Distributed Fash-

ion

Annotations in CloudNotes will be generated, stored, and processed in a distributed

manner. These issues of scalability and distributed processing of annotations, al-

though fundamental in cloud-based environment, are overlooked by existing tech-

niques that focus mostly on centralized DBMSs.

Query Model: ”CloudNotes” system is an extended query and data manipulation

model that enables new functionalities such as annotating data and querying not

only data but also the annotations associated with them by introducing high-level

interfaces to seamlessly perform these functionalities.

Execution Infrastructure: The system has been built to capture and provide

annotations base on the Map-Reduce working model. MapReduce is a programming

model and an associated implementation for processing and generating large data

sets. Users specify a map function that processes a key/value pair to generate a set

of intermediate key/value pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key.

Our system uses a wrapper-based approach, requiring little if any user interven-

tion in most cases, and retaining Hadoop’s parallel execution and fault tolerance.

2.2 Linking Annotations to Lazily-Interpreted Data

Data in Hadoop is stored in flat files with no known structure or schema until

query time, and hence the notion of records is vague. Therefore, linking annota-

tions to specific data segments is not straightforward, especially when considering

annotations at various granularities, e.g., record-, file- levels. Therefore, an unique
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identifier needed to identify the location of each record or each file in HDFS, which

also used to connect with the row data and annotations. In our system, we define

this structure to apply basic functionalities and assist the system to manipulate the

annotations workflow.

2.3 Storing Annotations Into Batch-Optimized Stor-

age

Annotations can be incrementally added in small batches. However, Hadoop’s file

system (HDFS) is not optimized for handling small files and incremental updates.

Therefore, new storage mechanisms and novel indexing techniques are needed to

efficiently store the annotations.

Besides considering the efficient storage structure of annotations, choosing proper

annotation repository needs to be considered as well. Our system provide two-

level storage structure: first level needs to support efficient incremental uploads of

small annotation batches and also enable key-based retrieval at query time. Second-

level storage can adaptively materialize not frequently used annotations in the local

machines.

11



Chapter 3

Cloud-Enabled Annotation

Management

In this chapter, we focus on adding the building blocks of annotation mechanism

into CloudNotes. These building blocks will enable users’ functions and processing

tools to seamlessly and transparently annotate the data stored in Hadoop. As we

illustrate in Figure 3.1, CloudNotes will create a wrapper around the Record Reader

function in Hadoop that augments a new Object Identifier (OId) to each reported

key-value pair. Assuming the data are read from HDFS files, the OIds will represent

the beginning offsets of the data records inside the files. These OIds are of a newly

introduced data type OID over which the abstract interfaces for manipulating the

annotations will be created.

12



Figure 3.1: Flow of Adding Annotations in CloudNotes

3.1 Extending the MapReduce execution model

3.1.1 Object Identifier (OID)

The definition of OID (Object Identifier): We assume each input element has a

Unique ID in Hadoop File System called OID. This OID identifies the location of

each record in HDFS, and can be captured anytime during the MapReduce jobs.

Assuming the data is read from HDFS files, the OIDs will represent the beginning

offsets of the data record inside the files. The relationship between the original data

and annotation attached on it is shown in Figure 3.2.

We will introduce new interfaces, AddAnnotation( ) and GetAnnotation( ), on

top of OID for users code to manipulate the annotations corresponding to each

record. However, the concept of OID is not physically exist in the Hadoop, so each

object identifier is constructed just before run the map function on the certain key

13



value pair, and it will be deconstructed till the content of annotations are sent to

the repository.

Figure 3.2: OID Concept and Hierarchy

3.1.2 Annotate Input Data: Map-Side Function

In Hadoop, all data elements are assumed to be key/value pairs. When running a

MapReduce job consisting of a map function and a reduce function, the map output

elements are grouped by their key before being processed to the reduce function.

Otherwise, keys are simply part of the data.

Hadoop users supply the following ve components to dene a MapReduce job [1]:

Record-reader : Reads the input data and parses it into input key/value pairs for

the mapper.

Mapper : Defines the map function.

Combiner : Defines partial aggregation by key (optional).

Reducer : Defines the reduce function.

Record-writer : Writes output key/value pairs from the reducer in a specied out-

put format.

The mapper class of Hadoop will be extended to accept triplets of (Key, Value,

OId) instead of the standard (Key, Value) pairs as shown in the Figure 3.1. Actually,

Hadoop provides two Java MapReduce APIs. This new API, sometimes referred to

14



as Context Objects, was designed to make the API easier to evolve in the future.

Our system extends the new interface only.

On the other side, when map task dealing with its data, numbers of annotations

are generated, which are collected in the temporary annotation buffer in the map

context. The map task needs to measure the size of annotations generated, and

stream the batch of annotations to the repository, when it beyond the threshold.

Here is an example (See Figure 3.3) of AddAnnotation() function used to anno-

tate input in a map only job:

Figure 3.3: Annotate Input Data

In a single job, a user can define normal operations on data and annotation

management as well. In this example, OIDs construct for input are part of argu-

ments of map function. If user want to annotate records that State is ”MA” or

”CA”, map function filters out particular records and the corresponded OID calls

AddAnnotation( ) to annotate certain record.
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3.1.3 Annotate Output Data: Map-Side Function

In addition to these extensions for annotating the input data, CloudNotes will en-

able annotating the output data while being generated, i.e., on-the-fly annotations

instead of using another job to annotate output, which is expensive. To achieve this

goal, we extend the reporting mechanism in Hadoop to keep track of and report

back the position (offset) of each newly produced record within the output buffer

(although it is not physically written to disk yet).

Actually, there is a byte counter in output context, to keep track of size of

output data, on the other hand, the block size is defined when the HDFS starts, and

the output directory is also given in the job configuration information. Therefore,

combine these three components, we can construct an OId for each output data

record, with its exact identical location in the HDFS, which is the OId return to Map

function. Then Map function can use this OId to annotate their output records.

Note that, the annotations in CloudNotes are always associated with the actual

physical file (not the logical directories) and the OIds always refer to offsets relative

to these files.

Figure 3.4: Annotate Output Data
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Here is an example (See Figure 3.4) of AddAnnotation() function used to anno-

tate output in a map only job:

In this job, user wants to annotate each record in output. When write( ) func-

tion is called to collect output record, corresponded output OID is constructed and

returned to user. By using this new generated output OID, AddAnnotation( ) is

provided to annotate particular output record as well.

3.2 Design Storage Scheme for Annotations

The output of a map task is of two types now, the regular key-value pair records (the

original data records) that will be stored in HDFS, and the newly added annotations

either on the input or output data. Storing the annotations directly into HDFS can

be extremely inefficient because HDFS is optimized only for writing/reading big

batches of data, files that are hundreds of megabytes, gigabytes, or terabytes in

size. While annotations can be added in small batches from many jobs. Therefore,

our design is to stream the annotations to a newly introduced Task-Level Annotation

Manager that buffers the annotations till the completion of the map task, and then

re-organizes the annotations for efficient storage in the Annotation Repository (See

Figure 3.1).

3.2.1 Annotation Manager

The Annotation Manager is a distributed component that runs on each data node

and communicates with the local Task Tracker for managing tasks. And this compo-

nent is managed by the task tracker distributed on each data node. The Annotation

Manager decides on the optimal timing for flushing its buffer to the Annotation

Repository. And the statistics collected by Annotation Manager are stored in the
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local file system.

However, The MapReduce model is to break jobs into tasks and run the tasks

in parallel, that means, a classic failure mode to consider: failure of running task.

There are various failure cases, like runtime exception, the task tracker marks the

task attempt as failed or killed, then frees up a slot to run another task. However the

annotation collected may have been sent to Annotation Manager, as the failed task

will be executed again, then the annotations in Annotation Manager is duplicated.

In order to avoid duplication, our idea is let Annotation Manager communicate

with the running tasks, therefore, if the task failed, the Annotation Manager can

notice status changed, and expire the annotation from certain task. Fortunately,

the Annotation Manager is part of task tracker, which has built in task progress

information collected mechanisms, which makes our idea easily implemented.

In addition, based on the annotations rate generated from the map tasks, the

Annotation Manager may decide to combine the results from multiple mappers run-

ning on the same node before flushing them to the Annotation Repository. The fault

tolerance mechanism of CloudNotes will be extended to take into account the pos-

sible failures of Annotation Manager, and to ensure that the generated annotations

are permanently written to their repository before finalizing a job.

3.2.2 Annotation Pipeline in Hadoop

However, we need to consider that how does Annotation Manager, a sub-thread

running as part of task tracker, to collect annotation from other map tasks, running

as child processes. The communication approach among these processes is required

to be efficient. Our implementation is extending the original protocol interface

among all of them, which is used to report task status to task tracker basically.

So we add our abstract sending annotation functions and other assisting functions
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inside the protocol. Then, another problem raised, there is a limitation of this

protocol, the size of data that can go through this protocol once is limited. In order

to solve this bottleneck problem, we did test to estimate the threshold of annotation

size that can be passed at one time, and we send annotations in batches. And to

make the pipeline work smooth, we also need to serialize the OID object to String

or bytes.

So, for this part of our annotations pipeline, the distributed component – Anno-

tation Manager is working on each data node, and running independently to collect

annotation from different tasks or jobs that on it own node. While Annotation

Manager buffering annotation from running tasks, it also talks with these tasks to

check the status, in order to give the proper status to certain collected block of

annotations, and do the normalization and further steps.

3.3 Optimizing the Annotation Repository

Our idea as illustrated in Figure 3.1, is to store the annotations in Hbase system, a

”Distributed Storage System for Structured Data”[12]. HBase system can efficiently

supports incremental uploads of small annotation batches and also enables efficient

key-based retrieval at query time. HBase is a distributed column-oriented database

built on top of HDFS as well. And our annotations and OIds are structured data,

but distributed in the cloud-based cluster which fit features in HBase. On the other

hand, annotations are required as query-time retrieval, and high query speed. See,

the HBase is the Hadoop application to use when you require real-time read/write

random access to very large datasets[1], which satisfies all the requirements.

However, to efficiently store the annotations in Hbase, the Annotation Orga-

nizer which is part of the Annotation Manager needs to perform several crucial
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optimizations including:

Figure 3.5: Promoting and Normalizing Annotation

3.3.1 Promoting Annotations to Block Level

CloudNotes typically reads the data in HDFS blocks, and hence it is more efficient

to retrieve all annotations related to a given block at once. Therefore, CloudNotes

promotes the annotations to the block-level and indexes them inside Hbase based

on the Block Ids instead of the OIds (notice that Bid is part of OId).

Since the annotations sent from tasks are in several waves, different tasks can

add annotation at same time, so we classify the annotation batches by their block

id (See Figure 3.5). The advantage is, it’s easier to mark the annotation status,

especially, when a single task fails for some reason, we can roll back the annotation

efficiently and clean the annotations from the certain task.
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3.3.2 Normalization of the Annotation Schema

The Annotation Organizer needs to efficiently normalize the storage of annotations

to avoid any unnecessary replication or storage overheads. In the distributed envi-

ronment like Hadoop, the normalization process is not straightforward. Our idea is

to investigate the map-, and node- normalizations, which normalize the annotations

within the output of a single map task, the output of map tasks on a single data

node, or the output from the entire job across all nodes, respectively.

That means, in our Annotation Manager, two level normalizations need to be

implemented. The first level is the in-block level normalization: during the anno-

tation de-serialized in the buffer, we hash the annotation text, and link the OIds

which share the same piece of annotation together, so in general, a batch of original

annotations will finally be normalized as a hash table for each block in memory

(See Figure 3.5). The second level normalization, called cross blocks normalization,

based on the first level normalization, with the continuous annotation coming into

the buffer, these normalized hash tables generated, and they are merged one more

time.

3.3.3 Compressing the OIds Using Bitmap

Figure 3.6: OIDs Compression

When promoting a record-level annotation to the block level, CloudNotes needs

to keep track of the actual OIds of the records it is attached to. The Annotation
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Organizer will make use of the fact that the list of OIds is fixed within given block.

Hence, the list of OIds will be maintained once per block, and then each annotation

will keep an array of bitmaps specifying the corresponding OIds it is attached to.

The bitmap can be further compressed using Run-Length Encoding (RLE) [68] for

compact representation.

This step is done while we de-serialize the annotations, to make the annotations

stored efficiently in the Annotation Manager buffer and this compression phase

also reduce the I/O consumption when Annotation Manager sends them into the

Annotation repository (HBase).

3.4 Supporting Higher-Granularity and Reduce-

Side Annotations

3.4.1 Define Fine-Granularity Annotation

We discussed how to add record level annotations inside map tasks. The next step

is to support higher-granularity (record- and file-level) annotations. To enable this

capability, we create the same set of annotation interfaces, e.g., AddAnnotation( )

and GetAnnotation( ), over the File (FID) data types (Refer to the Object Hierarchy

in Figure 3.1).

To annotate a file, a corresponding FID object needs to be constructed based

on the files unique name in HDFS, and then used to annotate the file. We extend

Hadoops Setup( ) and Close( ) function that are called once per map task to receive

the Bid of input of the input data block. Hence, users can annotate the input

data file in Setup function by inFID, annotate output data file in Close function by

outFID (See Figure 3.1).
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To note that, to annotate the file level annotation is an optimization choice for

user. Instead of calling AddAnnotation() function in the map function to execute

adding operation for each single record, user can call file level adding annotation to

the whole file directly, the system will treat it specifically to avoid executing same

operation multiple times, which reduce the CPU consumption and I/Os.

The Annotation Organizer will ultimately re-organize the block level annotations

and expand them to all records in the block (the storage is still efficient using the

RLE-compressed bitmaps).

3.4.2 Reduce-Side Annotation

Reduce-side annotations are more straightforward that the map-side annotations

because reducers can only annotate their output data (the input data are interme-

diate and get purged after the job completion). Reducers use the same proposed

mechanisms to annotate their outputs. That means, user can call write( ) function

in the reduce task, which returns the OID for output data. Same function is called

the map task to annotate it output data. Add we extend Close( ) function in reduce

side allows user annotate reduce side output file as well.
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Chapter 4

Annotation Propagation and

Query-Time Optimization

In this chapter, we focus on the efficient propagation of annotations at query time.

How to retrieve, index, and possibly cache, the annotations from their repository?

How to adaptively learn whether or not users jobs are interested in accessing the

annotations?

4.1 Retrieval and Main-Memory Indexing of An-

notations

4.1.1 Annotation Propagation from HBase

The main idea is to retrieve all the annotations attached to the input block at

once, which show as Figure 4.1. More specifically, when a map task is scheduled to

run over a given data block, the Annotation Manager will retrieve all annotations

related to that block (based on its BId) from Hbase. Then, the Annotation Manager
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Figure 4.1: Annotation Propagation Pipeline

will build a two-level main-memory index structure (as depicted in Figure 4.2) that

consists of an Annotation-Table (A-Table) storing the distinct annotations on the

given block, and an inverted index (OID-2-Ann) mapping each record id (OId) in

this block to the related entries in the A-Table.

This process will be performed before the start of each map task to enable

efficient execution of GetAnnotation( ) function inside the map tasks. Thant’s why

we implement the fetching phase before running the map function. The steps to fetch

annotation from HBase are simple as shown in the figure 4.1, which are: connecting

the HBase, scan the data by the row key BlockID, then, the annotations returned

from query are kept in the Task Level Annotation Manager buffer. Next, build
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2-level-index showed in Figure 4.2, finally, when we construct input OId in map

function, we extract the certain annotations from index.

4.1.2 Proactive Mechanisms

We also proposed proactive mechanisms, which can significantly enhance the per-

formance, for predicating the future data blocks to be accessed on each data node,

and pre-fetching /indexing the annotations for those blocks.

Figure 4.2: Annotation Index

The challenge here is to estimate which block is assigned to the local machine.

Actually, the job tracker will split an input file for a new job into several map or

reduce tasks, for each map task, it will deal with its own block of data, and be

assigned to the proper task tracker in data node to execute. And the task tracker

26



will also communicate with job tracker by heartbeat, which contains its availability

information [1]. By Analyzing these statistics, job tracker schedule the tasks to

certain data nodes, and in the task tracker, there is a queue to store all the tasks

assigned by the job tracker and are ready to be launched. Our proposed idea is

to check this queue, and get the target block information in the job configuration

in order to pre-fetch the annotations from HBase. The pre-fetched annotations are

buffered in the Annotation Manager, then when the certain task starts, instead of

sending query to HBase and wait for annotations, Annotation Manager can provide

the annotations to the task. The function then can construct the two-level-index

directly and execute the map function.

4.2 Adaptively Suppressing/Resuming Annotation

Propagation

Users jobs in Hadoop-like environment can be black-box functions. Although this

execution model is good for broader applicability, it poses more challenges in opti-

mizing the systems performance, e.g., the system does not know in advance whether

or not the users job is accessing the annotations. Therefore, CloudNotes deploys

techniques to adaptively suppress/resume the propagation process.

The proposed idea is that if the first map task on each data node did not

invoke GetAnnotation(), then the Annotation Manager will suppress the annotation

propagation in the subsequent map tasks, i.e., it will not pay the cost of retrieving

them from Hbase. The propagation will be resumed with the first explicit invocation

of the GetAnnotation() function.

In order to implement this idea, we setup a flag for each job in the Annotation

Manager running on particular nodes, to mark whether we need to fetch annotation
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in this job or not. The default value is false although, the system fetch the annotation

for the first map task of a job running on this data node. On the other hand, this flag

can be invoked by the GetAnnoattion( ) function. If the GetAnnotation function is

invoked, the flag will be set to true, that means system will keep fetching annotations

at beginning of subsequent map tasks. However, if the GetAnnotation( ) function

is not called in the whole task, the flag stays false, then the subsequent tasks check

this flag, these tasks will not fetch annotations anymore.

Another case we also need to concern is that, the GetAnnotation function can

be hidden in the if/else statement block, that means, although the first map task

does not call the GetAnnotation() function and not update the flag to true, the

subsequent tasks may still need the annotations. If the case happens, we force to

fetch the annotation, then the tasks need annotations need to wait for the HBase’s

response. And the flag is modified to true means the job need annotations fetched.

Our mechanism is, once, the GetAnnotation function is invoked, the flags are then

never changed again.

These decisions will be made in a totally distributed fashion by each Annotation

Manager on each data node. We plan to investigate different strategies for effective

adaptability. For example, the strategy described resembles an eager adaptability

strategy, but lazy adaptability is also applicable where the retrieval from Hbase is

suppressed by default until the first explicit GetAnnotation() invocation is detected

on each node.
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4.3 Caching/Materialization of Annotations and

Annotation-Aware Task Schedule

4.3.1 Caching and Materialization Mechanisms

As annotations move from Hbase to the compute nodes, the Annotation Manager

may decide to materialize and store the annotations of a given block into HDFS

and co-locate them with their data block (See the Annotation Repository in Figure

3.1). Colocation mechanisms can have significant impact on performance. However,

several challenges need to be addressed including as follows:

(a) Avoiding creating small HDFS files, so annotations need to be grouped in

large batches when materialized in HDFS.

(b) Selectively choosing which data blocks to materialize their annotations in

HDFS it does not have to be performed for all blocks.

(c) Tracking whether the materialized annotation files are up-to-date or new

annotations over the data block have been added to Hbase, and how to combine the

two sources when needed.

(d) Tracking where the annotation files are locates and whether or not they are

replicated with all replicas of corresponding data block.

Job Tracker: The JobTracker is the service within Hadoop that farms out

MapReduce tasks to specific nodes in the cluster, ideally the nodes that have the

data, or at least are in the same rack. Client applications submit jobs to the Job

tracker. The JobTracker talks to the NameNode to determine the location of the

data and locates TaskTracker nodes with available slots at or near the data. The

JobTracker submits the work to the chosen TaskTracker nodes. The TaskTracker

nodes are monitored. If they do not submit heartbeat signals often enough, they
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are deemed to have failed and the work is scheduled on a different TaskTracker.

Task Tracker: A TaskTracker is a node in the cluster that accepts tasks - Map,

Reduce and Shuffle operations - from a JobTracker. Every TaskTracker is configured

with a set of slots, these indicate the number of tasks that it can accept. When the

JobTracker tries to find somewhere to schedule a task within the MapReduce oper-

ations, it first looks for an empty slot on the same server that hosts the DataNode

containing the data, and if not, it looks for an empty slot on a machine in the same

rack.

The mechanism of caching and materialization: the Annotation Manager keeps

the statistics that, each block of data (use BlockID as key) with annotation attached

has its statistics to keep track of how many times the annotation is used in the user

jobs. For considering the accuracy, the size of annotations and recent used times-

tamps etc. are part of statistics as well. Then the Annotation Manager can make

decision that the annotations are frequently visited or annotations are in large size

can be materialized in the local file system, and the directory (store the materialized

annotations) information will also updates in the statistics correspondingly.

To note that, these statistics have replication in the local file system. However,

we also need to consider that the data node may fail. If that happens, we need to

protect the statistics that kept in the local file system. The job tracker has all the

statistics from each data node collected, so when there is a data node fails or loses

connection, we can copy the certain statistics from job tracker to the new setup

node. Although they are not perfectly updated, but it can avoid loss of the whole

statistics.

Therefore, instead of ask HBase for annotation immediately for each map task,

Annotation Manager checks the statistics. If the annotation is materialized locally,

the map task will cache the annotation from the directory stored in the Annotation
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Manager and index the annotations for further use.

4.3.2 Annotation-Aware Scheduler

On the other hand this opens another issue of the annotation-aware scheduler where

for users jobs accessing the annotations, the data blocks will no longer have the same

cost/benefit some blocks will have their annotations co-located with them while

others do not. This warrants an interaction between the Job Tracker (responsible

for scheduling tasks) and the Annotation Manager (responsible for tracking the

location of annotations) to generate the best possible annotation-aware scheduling

plan for tasks.

The original Hadoop scheduler is ”Fair Scheduler”. Fair scheduling is a method

of assigning resources to jobs such that all jobs get, on average, an equal share of

resources over time. When there is a single job running, that job uses the entire

cluster. When other jobs are submitted, tasks slots that free up are assigned to the

new jobs, so that each job gets roughly the same amount of CPU time. Unlike the

default Hadoop scheduler, which forms a queue of jobs, this lets short jobs finish

in reasonable time while not starving long jobs. It is also an easy way to share a

cluster between multiple of users. Fair sharing can also work with job priorities -

the priorities are used as weights to determine the fraction of total compute time

that each job gets.

Our implementation is extending the heartbeat and the jobtracker and fair sched-

uler:

heartbeat: each data node sends periodic heartbeat messages to its name node.

Besides the basic health status information included in the heartbeat, we add statis-

tics updates and send to jobtracker to report the materialization status of each data

node.
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jobtracker: There is a map contains all the data nodes’ availabilities, collected

by the heartbeats from all the data nodes. Since task tracker name is the key of

the map, we extend the value part, to contain the materialization statistics get

from heartbeats for each certain data node. This information can be used for fair

scheduling algorithm to decide tasks distribution.

fair scheduler: After fair scheduler calculate appropriate candidate nodes the

do the task, if the number of candidates is not only one, usually this happens among

the candidate nodes that all of them have input data replications and available at

the same time, in such case, the scheduler will randomly choose one node to do the

task. Our idea is to add another step here, to check the data node materialization

statistics, to choose the node which has the annotation materialized to do the task.

If none of them has the local annotation stored, we still randomly choose one node

among the candidates.

4.4 Reduce-Side Annotation Propagation

Reduce-side annotation propagation will require further architectural extensions to

the MapReduce engine as illustrated in Figure 4.1. The main idea of the proposed

mechanism is to allow the map functions to annotate their intermediate results that

will flow to the reduce functions.

4.4.1 Map-Side Output Collector Extension

Mappers can annotate its output data on the fly as described in Chapter 3.1. The

only difference is that the Annotation Manager will keep the annotations on the

local disk instead of shipping them to the Annotation Repository. In general, map

task can freely annotate their output records, e.g., copy the annotations from the
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Figure 4.3: Reduce Side Annotation

inputs to outputs, or add new annotations.

The shuffling/sorting phase in Hadoop will be also extended to shuffle (but not

sort) the annotations and ship them along with their data records to the corre-

sponding reducers (See Figure 4.3). A challenging task is to carefully maintain the

correct links between the annotations and their data records even after the sorting

phase.

To make annotation bind with corresponding intermediate data record, while

map function write output record with outOID, the system will serialize both value

and outOID to map output buffer instead of sending outOIDs to Annotation Man-

ager. And system uses global delimiter to distinguish original output value with

outOIDs. After shuffle and sort phase, when values are de-serialized, the system

needs to separate value and OID into two iterators, one is values, another is OIDs,

which are part of arguments in new reduce function.
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4.4.2 New Reduce-Side API

On the reduce side, two main modifications will take place:

First, the reduce functions will be extended to accept triplets of (k, [v1, , vn],

[OId1, , OIdn]) instead of the standard (k, [v1, , vn]) pairs as depicted in the Figure

4.3 where each OIDi references the record corresponding to value vi and carries its

propagated annotations. The user-defined reduce function can then manipulate the

annotations as desired for each key group, e.g., summarize, aggregate, or consolidate

the annotations.

Second, the Annotation Manager will index in main memory whenever possible

the annotations received by the reducer based on their <k, OId> pairs before the

reducers start consuming their input records.
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Chapter 5

Experiments and Evaluation

5.1 Experiment Setup

Our experiments are focused on attaching annotation and annotation propagation.

Here are the details of our experiments:

Cluster Environment

The cluster we used for our experiments consisted of 4 WPI compute cloud

instances, each with 8GB instance memory, 3 Dual-Core AMD @2.2 GH, and 45

GB instance storage in HDFS. We launch all instances with 64-bit Linux and Java

1.6.0-30 and modified version of Hadoop 1.0.4. And the HBase we use is hbase-

0.90.5.

Hadoop Configuration

One instance served as the master node and acted as both name node and job

tracker ; the other 3 instances served as data nodes. Each slave node is allowed to

run two map tasks and two reduce tasks concurrently, and the number of reduce

tasks was set to 100. The algorithm chosen for job tracker to scheduling tasks is

Fair Scheduler. We configure Hadoop following the guidelines for real-world cluster
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configurations. The changes from the default configuration included increasing the

numbers of streams(100) merged at once while sorting files and higher memory-

limit while sorting data (set io.sort.mb to 200). Finally, the replication factor for

our output file was set to 1.

Dataset

We use 10 GB of input text generated randomly from 2000 thousands distinct

words, and each line of record starts with ID randomly chosen from 1 to 100. And

all data has same formats, we use 108 random records as input (11 GB respectively).

Annotations are defined short context, so we randomly chosen a word from 5

distinct English words as annotation.

Preliminary Jobs

We present performance experiments conducted on two workflows, a Map-only

job and a Map-Reduce job. The map only job in our experiment is to filter out

input records. Another job performs aggregation function: group-by operation, a

Map Reduce job.

5.2 Performance Results

Our performance results are summarized as follows:

5.2.1 Phase 1: Enable Add Annotation

We prepare our experiment for enable adding annotation phase. In the map only

test job, it randomly chooses a number of input records and output records have

annotation added, and this number is changing from 0 percent of original record

number to 20 percent, as X-coordinate axis shows. With the percentage grows, the

Y-coordinate axis represents the CPU time consuming for each run of job. Same
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Figure 5.1: Adding Annotations

way to the map reduce job, the only difference is that instead of add annotations for

the map output, we annotate the reduce side output data, however, the numbers of

annotations does not change.

In the left Figure 5.1, for a map-only job, when we add 1% annotations, the time

consumed increased 10%; when we add 10%, it increases linearly as 20%; and then

20% annotations added, CPU time grows to 28%.

In the right Figure 5.1, for a map-reduce job, which is more complex than the

map only job. When we add 1% annotations, 4% extra CPU time consumed; when

it’s for 10% annotation target, 12% extra time consumed, and for 20%, CPU time

increased 15%.

5.2.2 Phase 2: Annotation Propagation

Figure 5.2: Adding Annotation to Data File

In the phase of Annotation propagation, two testing jobs we used are very similar,

37



since no matter it’s a map only job or a map reduce job, for the normal propagation,

we can only propagate annotations from HBase in map function. Our target is, with

numbers of annotations stored in the repository increased, as numbers changed from

0% to 20% at X-coordinate axis, basically that’s the annotation added in the phase 1,

we keep records of CPU time consumed for each time we run the jobs to propagation

different sizes of annotations as showed in Y-coordinate axis.

In the left Figure 5.2, for a map-only job, when we propagate 1% annotations,

the time consumed increased 5%; when we get 10%, it increases linearly as 10%;

and then 20% annotations got, CPU time grows to 17%.

In the right Figure 5.2, for a map-reduce job, which is more complex than the

map only job. When we get 1% annotations, 3% extra CPU time consumed; when

it’s for 10% annotation target, 5% extra time consumed, and for 20%, CPU time

increased 8%.

5.2.3 Phase 3: Reduce Side Annotation Transmission

Figure 5.3: Reduce Side Annotation Transmission

In this phase, we only test the Map Reduce job, to pass annotations from map

side as output to reduce side as a part of input, then annotations are propagated in

the map side, and go through the intermediate part to reduce side, used in the reduce

function. Our test case is that, each job need to propagate 20% annotations from
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HBase in the map function, which is same as the phase 2, and call sendtoReduce()

function to transmit OIDs to reduce function, and we call getAnnotation() then.

However we need to test the overhead of intermediate annotation transmission, the

range of annotation transmission size is ranging from 0% to 20%, which is showed

as X-coordinate axis in the Figure 5.3. And CPU time consumed showed in Y-

coordinate axis.

In the Figure 5.3, for this job, when we transmit 1% annotations, the time

consumed increased 2%; when we pass 10%, it increases linearly as 8%; and then

20% annotations passed, CPU time grows to 11%.

5.3 Performance Evaluation

Enable Add Annotation

We report the time and space overhead associated with adding annotations in our

experiments. For each annotation percentage, we ran both jobs three times.

For adding annotations, the reasons that have extra time consuming mainly

is normalization, especially for the second level normalization. As mentioned in

chapter 3.3, we need to invert hash the annotation text to make it fit for storage.

We observe in Figure5.1, compare with map only job, map reduce job itself takes

much more time. However, the time consumed for adding annotations operation is

similar with it consumed in map only jobs. On the other hand, the ratio of extra time

for add annotation operation takes, is decreasing, that means, when adding larger

size of annotations, the overhead in total will not impact much on the execution

time for the whole job. And the data size or the job complexity has little impact on

the execution time, because the entire map output data set fit in the sort buffer.

Observation 1 : when size of annotations added gets larger, it doesnt affect much
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on the execution time for the whole job.

Figure 5.4: Comparison of Job complexity Effects on Adding Annotation

Meanwhile, base on same experiments, in Figure 5.4, Y axis means time ratio

for each run of certain job. Red line is trend of map-reduce job, which is even lower

than map-only job. That means time consumed on adding annotation compared

with whole job is not significant.

Observation 2 : the job complexity has little impact on efficiency of adding an-

notation.

Annotation Propagation

We report the time and space overhead associated with annotations propagation in

our experiments. For each annotation percentage, we ran both jobs three times.

When map task propagate annotation, we need to ask result from HBase and

construct two-level-index and send annotations in map function. However building

this index is expensive, that’s why we have time overhead on annotation propagation.

We analyze the Figure 5.2, with the numbers of annotations we get from reposi-

tory, (in our environment, HBase is installed in each instance), extra time increased,

but it’s not linearly increasing. That means, when Propagate larger size of anno-

tations, the overhead in total will not impact much on the execution time for the

whole job. The only thing need to mention is: the compare 1% propagation with
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no annotation propagation, time increased significantly, because our resuming and

suppressing checking here, when the first map task check no annotation needed, the

sequential tasks won’t ask annotation from HBase anymore. That’s why propagation

operation will not impact much on jobs without annotations.

Observation 3 : when size of annotations propagated gets larger, it doesnt affect

much on the execution time for the whole job.

Reduce Side Annotation Transmission

We report the time and space overhead associated with annotations transmission in

our experiments. For each annotation percentage, we ran both jobs three times.

The extra time consumed here basically is made of serialization/de-serialization

and read/write disk. In particular, our annotation will be serialized as part of

map output data written to local file system, and passed to the reduce task after

de-serialized as OID as part of input argument in reduce function. From the Fig-

ure 5.3, the overhead of intermediate annotation transmission is showed, which is

consistently small.

Figure 5.5: Comparison of Job complexity Effects on Annotation Propagation

Base on second and third experiments, in Figure 5.5, Y axis means time ratio

for each run of certain job. Red line is trend of map-reduce job with annotation

transimitted in between, and blue line is map-only job with annotation propagated
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for map input data. These two lines are very close. That means time consumed on

annotation propagation in both sides compared with whole job is tiny.

Observation 4 : the job complexity has little impact on efficiency of annotation

propagation.
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Chapter 6

Related Work

In this project, we address the annotation management on the Hadoop platform,

which is the open source implementation of Google MapReduce, is widely used cloud-

based platform due to its superior properties. Few recent systems have exploited

specific types of annotations in the Hadoop.

Cloud and Hadoop-based analytics

Cloud computing, e.g., Amazon S3 [22, 23], Elastic MR [24], and Google Cloud [25],

is an emerging and widely spreading computing paradigm because of its unique

desirable features. Hadoop [1] is a popular cloud-based computing platform for

scalable data analytics. It is used by industrial sectors, e.g., Facebook, Yahoo,

Amazon, and IBM use Hadoop for their own data as well as their products [26]. As

open-source software, Hadoop is also a very attractive platform for research activities

that have been recently proposed ranging from high-level query languages [9, 28,

29, 30, 31, 32, 40], workflow management [33, 27, 8, 35], and indexing techniques

and query optimizations [36, 37], to physical data-layout optimizations [37, 38, 36],

statistical and mining techniques [39, 40, 41, 42], and provenance management [7,
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8, 9, 14, 15, 16]. However, annotation management in the context of Hadoop has

not been addressed before. The closest related work are the Ramp [8] and Stubby

[11, 34] systems. However, as we discussed in the chapter 1, these systems are not

general-purpose annotation management systems, and they cannot support the wide

range of functionalities offered by CloudNotes.

Scientific databases

Scientific databases and algorithms [3, 4, 5, 6, 43, 45, 47, 48, 49, 50] have been

proposed to extend traditional database management system [3, 4, 5] with new

features and functionalities. These extensions address the entire data management

stack ranging from new data models [47, 48], physical data layouts, and access meth-

ods [45, 46], to provenance and annotation management mechanisms [44], sharing

techniques [44], and workflow models and query languages [49, 50]. Most of these

techniques and extensions have focused on relational database systems. Some sys-

tems have addressed other data models, e.g., SciDB for the array data model [51],

and Pregel and GraphLab for the graph data model [52, 53]. However, these recent

systems do not support annotation management, and part of our long-term research

agenda (in chapter 1) is to address the annotation management over these systems

and their complex data models.

Annotation management

Annotation management is widely applicable to a broad range of applications, yet

it gained its significance from scientific applications [3, 4, 5]. Several generic frame-

works for annotation management have been proposed, e.g., DAVID [54], Artemis

and ACT [55], Pfam protein families database [56]. However, all of these techniques

have focused on centralized relational databases, and hence none of them is appli-
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cable to scalable and cloud-based platforms such as Hadoop. Moreover, none of

these systems have addressed the extensibility feature to instantiate different types

of annotations within a single system, nor they apply mining techniques to extract

hidden knowledge from the annotations.

Provenance techniques

Data provenance has two main approaches: inversion-based, e.g., [57], in which the

system maintains the inverse of the processing operations to re-generate the origin

of the data, and annotation-based, e.g., [7, 8, 9, 16], in which the lineage information

are stored as annotations attached to the generated data. Provenance is extensive

studied in the context of relational databases [3, 4, 5], scientific workflows [58], and

update/exchange and heterogeneous systems [59]. Recently, provenance tracking

in Hadoop has been addressed in Ramp [8], PigLipstick [17], and Hadoop/Kepler

[23, 22]. The most similar system is Ramp. In the Ramp, data provenance can be

captured for map and reduce functions transparently. And it supports backward

tracing and forward tracing, by using a wrapper-based approach. However, as we

presented in the section1, CloudNotes has broader applicability and solves problems

beyond what provenance techniques can handle.

Extensible systems

Extensibility has shown to be very effective in systems’ design and has been ad-

dressed in different contexts. It has been addressed in prototype databases, e.g.,

ProsgreSQL [60] and GENESIS [61], and in commercial products, e.g., Oracle [62],

IBM Starburst [63], and Sybase [65]. Extensibility ranges from extending new data

types [64], new indexes and access methods [66], to new query optimization rules

[67]. The Proposed project is novel in addressing the extensibility in the context of
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annotation management.

46



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This project designs annotation management framework on the top of Hadoop,

with two directional pipelines: Annotating original data and Annotation propaga-

tion. And ”CloudNotes” also provides different properties based on annotation in

MapReduce workflow, such as design OID to trace and track the data workflow

via data unique location as its identity in the Hadoop file system. We have built

a prototype system as an extension to Hadoop that supports various functions for

annotations. On the other hand we defines several optimization choices for users.

Our system supports fine-grained annotations, basically, record-level annotation and

file-level annotation. And annotate output data on the fly is implemented in our

system. In the end, the performance numbers and evaluations based on experiments

are reported as well.
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7.2 Future Work

Our future work mainly contain three parts, optimization for current ”CloudNotes”

system, annotation type extension, and data mining techniques on annotations in

distributed system.

System implementation optimizations:

As described in the chapter4.2, we provide a basic method to make decision on sup-

pressing and resuming annotations for map reduce tasks. We also plan to investigate

different strategies for effective adaptability. For example, the strategy described in

the section 4.2 resembles an eager adaptive strategy, but lazy adaptability is also

applicable where the retrieval from HBase is suppressed by default until the first

explicit GetAnnotation() function invocation is detected on each node.

Extensibility for typed and action-enabled annotations

We plan to focus on the extensibility feature of CloudNotes for rapid instantiation

of a wide variety of annotation types having different semantics and different prop-

agation strategies. The main idea is that on the top of the CloudNotes’s core, we

provide pluggable modules where users plugin their methods to instantiate different

types of annotations. Few examples of these types include:

(a) Provenance for keeping track of the origin of the data as they evolve.

(b) Fine-Grained Authorization for providing record level access control based

on the records’ content.

(c) Versioning for associating corrections and chaining newer versions to existing

records.

The challenges include:
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(1) Extending CloudNotes execution model to support extensibility: We plan to

extend the MapReduce framework with pluggable modules that execute automati-

cally at specific stages of the execution plan. These modules will define how each

annotation type behaves at query time. More specifically, we plan to add pre- and

post- modules for the main stages of MapReduce, i.e., map, reduce and combine

stages.

(2) Language extensions and instantiation of typed annotations: We will ex-

tend the CloudNotes’s language to allow defining and instantiating new types of

annotations. Each type will have: unique name, set of user-defined functions for

the pluggable modules, set of properties that will enable customized and optimized

execution as will be described in sequel.

(3) Optimized execution for typed annotations: CloudNotes will enable various

optimizations based on the annotations’ properties including: Bypassing module

execution: that Annotation Manager can keep track of the records that have typed

annotations; Suppressing annotations: it is possible that an annotation type does

not access (retrieve) the existing annotations; Checking prerequisites and halting

propagation: An annotation type may mandate certain properties of users’ job to

hold in order to guarantee correct propagation semantics.

(4) Data versioning as annotation: Data versioning has been widely adopted

in database systems. Versioning is desirable feature especially in scientific applica-

tions. The key challenges addressed by these systems are how to chain the versioned

records, and how to access them efficiently. We will study two approaches for sup-

porting data versioning as annotations like Versioning as regular annotations or

versioning as typed annotations.
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Data mining techniques on annotations:

With the annotation size increasing, instead of retrieving all the annotations at-

tached to the target data, summary is required. Or annotation may need to support

key word search and semantic search to reducing annotation propagation time over-

head and return concise results to user. The challenge for this work is very obvious:

the annotations are stored in cloud-based platform, and treated in distributed be-

haviors. Not like centralized annotation repository, each data node only has its own

annotation and meta-data. So the normal data mining strategies are hard to apply

in the CloudNotes.
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