
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2005-05-04

Low Power Elliptic Curve Cryptography
Erdinc Ozturk
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Ozturk, Erdinc, "Low Power Elliptic Curve Cryptography" (2005). Masters Theses (All Theses, All Years). 691.
https://digitalcommons.wpi.edu/etd-theses/691

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/691?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F691&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Low Power Elliptic Curve
Cryptography

by

Erdinç Öztürk

A Thesis
Submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Electrical Engineering

by

April, 2004

Approved:

Dr. Berk Sunar
Thesis Advisor
ECE Department

Dr. Brian King
Thesis Committee
ECE Department

Dr. David Cyganski
Thesis Committee
ECE Department

Dr. Fred J. Looft
Department Head
ECE Department

Abstract

This M.S. thesis introduces new modulus scaling techniques for transforming a class

of primes into special forms which enable efficient arithmetic. The scaling technique

may be used to improve multiplication and inversion in finite fields. We present an

efficient inversion algorithm that utilizes the structure of a scaled modulus. Our in-

version algorithm exhibits superior performance to the Euclidean algorithm and lends

itself to efficient hardware implementation due to its simplicity. Using the scaled mod-

ulus technique and our specialized inversion algorithm we develop an elliptic curve

processor architecture. The resulting architecture successfully utilizes redundant rep-

resentation of elements in GF (p) and provides a low-power, high speed, and small

footprint specialized elliptic curve implementation.

We also introduce a unified Montgomery multiplier architecture working on the

extension fields GF (p), GF (2m) and GF (3m). With the increasing research activity

for identity based encryption schemes, there has been an increasing need for arith-

metic operations in field GF (3m). Since we based our research on low-power and

small footprint applications, we designed a unified architecture rather than having a

seperate hardware for GF3m. To the best of our knowledge, this is the first time a

unified architecture was built working on three different extension fields.

i

Preface

In this thesis I describe research work I performed in the Cryptography and Infor-

mation Security Lab during my graduate studies at WPI Electronics and Computer

Engineering Department. I would like to use this place to thank many people who

contributed to this work. First, I would like to thank our sponsors, the Intel Corpora-

tion and the National Science Foundation (ANI-0133297, ANI-0112889), for partially

funding my research. I would like to thank my advisor Prof. Berk Sunar for his advice

and support throughout the past years. His guidance and ancouragement made it

possible for me to finish this work. I look forward to continue my research with him

being my advisor for my Ph.D.

I also would like to thank Prof. Erkay Savas who introduced me into the world of

cryptography. I am grateful to him for having me involved with cryptography. With

his support and guidance during my last years of undergraduate studies, I was able to

understand the notion of cryptography and attend the CRIS lab in WPI later on. I

am very grateful to the members of my committee, Prof. Brian King and Prof. David

Cyganski, for their support, advice and time they provided. I also want to thank my

colleagues in the CRIS lab, Gunnar Gaubatz and Jens Peter Kaps, for all of their

helps during my work, and sharing their knowledge.

Erdinc Ozturk

April 2005

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Modular Arithmetic . 3

1.3 Thesis Outline . 5

2 Previous Work 6

3 Modulus Scaling Techniques 8

3.1 General Method . 8

3.2 Special Primes . 9

3.2.1 Heuristic 1 . 9

3.2.2 Heuristic 2 . 11

3.3 Scaled Modular Inversion . 13

4 The Elliptic Curve Architecture 18

iii

CONTENTS iv

4.1 Design Methodology . 18

4.2 Implementation of the Control Block 20

4.3 Implementation of the Arithmetic Unit 21

4.3.1 Comparison . 22

4.3.2 Modulo Reduction . 23

4.3.3 Subtraction . 23

4.3.4 Multiplication . 24

4.3.5 Inversion . 25

4.4 Performance Analysis . 27

4.5 Results and Comparison . 29

5 Unified Multiplier Architecture 33

5.1 Introduction . 33

5.2 Redundant Signed Digit (RSD) Arithmetic 35

5.2.1 Number Representations . 36

5.3 Unified Arithmetic Core . 37

5.3.1 Architecture . 38

5.3.2 Addition . 41

5.3.3 Subtraction . 42

5.3.4 Comparison . 42

5.4 Montgomery Multiplication . 43

CONTENTS v

5.4.1 The Multiple-Word Radix-2 Montgomery Multiplication Algo-

rithm for GF (p) . 43

5.4.2 Multiple-Word Radix-2 Montgomery Multiplication Algorithm

for GF (2m) . 45

5.4.3 Multiple-Word Radix-3 Montgomery Multiplication Algorithm

for GF (3m) . 46

5.5 Multiplier Architecture . 48

5.5.1 Pipeline Organization . 48

5.5.2 Processing Unit . 50

6 Conclusion 53

A Modulus Scaling 60

B Inversion Algorithm for Mersenne Primes of the Form 2q − 1 63

List of Figures

3.1 Distribution of k . 17

4.1 Block diagram of the arithmetic unit 21

4.2 Comparator unit built using tri-state buffers 23

4.3 Implementation Results . 30

5.1 Generalized full adders . 38

5.2 Logic tables of the three generalized full adders 39

5.3 RSD adder unit with both inputs and outputs in RSD form 40

5.4 RSD adder . 41

5.5 Pipeline organization . 49

5.6 Processing Unit (PU) with w = 3. 51

vi

Chapter 1

Introduction

1.1 Motivation

The incredible improvements in ubiquitous computing, and its indispensable implica-

tions gives rise to its being an effective domain of interest. As the notion of ubiquitous

computing is becoming more and more part of our lives, various applications consist-

ing of this new technology can be encountered. RFIDs are currently being introduced

into the supply chain. Wireless sensor networks are widely used for many applica-

tions. In some cities most of the people carry at least one contactless smart card in

their pockets.

These applications are becoming widespread, with an ultimate need of security.

Currently, RFID applications have no security at all. Moreover, these applications

1

CHAPTER 1. INTRODUCTION 2

have limited power resources, which make them ultra-low power devices. Power-

efficient implementations need to be used. Security applications are a part of the

implementations, so they also have to be power-efficient.

So far, public key cryptography has not even been considered for these devices

due to its perceived complexity. The common perception of public key cryptography

is that it is complex, slow and power hungry, and as such not at all suitable for use

in these environments.

It is therefore common practice to emulate the asymmetry of traditional public

key based cryptographic services through a set of protocols using symmetric key based

message authentication codes (MACs). Although the low computational complexity

of MACs is advantageous, the protocol layer requires time synchronization between

devices on the network and a significant amount of overhead for communication and

temporary storage. The requirement for a general purpose CPU to implement these

protocols as well as their complexity makes them prone to vulnerabilities and prac-

tically eliminates all the advantages of using symmetric key techniques in the first

place.

Our aim is to challenge the basic assumptions about public key cryptography

which are based on a traditional software based approach. We propose a custom

hardware assisted approach for which we claim that it makes public key cryptography

feasible for low-power applications, provided we use the right selection of algorithms

CHAPTER 1. INTRODUCTION 3

and associated parameters, careful optimization, and low-power design techniques.

Several public key schemes can be used to provide the security services described

above. We take a closer look at Elliptic Curve Cryptosystems (ECC) as the most

promising candidate for low-power implementations. We implemented the hardware

design of a low-power and novel ECC architecture.

1.2 Modular Arithmetic

Modular arithmetic has a variety of applications in cryptography. Many public-key

algorithms heavily depend on modular arithmetic. Among these, RSA encryption

and digital signature schemes, discrete logarithm problem (DLP) based schemes such

as the Diffie-Helman key agreement [DH76] and El-Gamal encryption and signature

schemes [Nat91], and elliptic curve cryptography [Kob87, Men93] play an important

role in authentication and encryption protocols. The implementation of RSA based

schemes requires the arithmetic of integers modulo a large integer, that is in the form

of a product of two large primes n = p · q. On the other hand, implementations of

Diffie-Helman and El-Gamal schemes are based on the arithmetic of integers modulo

a large prime p. While ECDSA is built on complex algebraic structures, the un-

derlying arithmetic operations are either modular operations with respect to a large

prime modulus (GF (p) case) or polynomial arithmetic modulo a high degree irre-

ducible polynomial defined over the finite field GF (2) (GF (2k) case). Special moduli

CHAPTER 1. INTRODUCTION 4

for GF (2k) arithmetic were also proposed [Ber68, SOOS95]. Low Hamming-weight

irreducible polynomials such as trinomials and pentanomials became a popular choice

[SOOS95, AMV93] for both hardware and software implementations of ECDSA over

GF (2k). Particularly, trinomials of the form xk + x + 1 allow efficient reduction. For

many bit-lengths such polynomials do not exist; therefore less efficient trinomials, i.e.

xk + xu + 1 with u > 1, or pentanomials, i.e. xk + xu + xv + xz + 1, are used instead.

Hence, in many cases the performance suffers degradation due to extra additions and

alignment adjustments.

In this thesis we utilize integer moduli of special form, which is reminiscent of

low-Hamming weight polynomials. Although the idea of using a low-Hamming weight

integer modulus is not new [Cra92], its application to Elliptic Curve Cryptography

was limited to only elliptic curves defined over Optimal Extension Fields (i.e. GF (pk)

with mid-size p of special form), or non-optimal primes such as those utilized by the

NIST curves [Nat91]. In this work we achieve moduli of Mersenne form by introducing

a modulus scaling technique. This allows us to develop a fast inversion algorithm that

lends itself to efficient inversion hardware. For proof of concept we implemented a

specialized elliptic curve processor. Besides using scaled arithmetic and the special

inversion algorithm, we introduced several innovations at the hardware level such

as a fast comparator for redundant arithmetic and shared arithmetic core for power

optimization. The resulting architecture requires extremely low power at very small

CHAPTER 1. INTRODUCTION 5

footprint and provides reasonable execution speed.

1.3 Thesis Outline

After a short introduction into the motivation of the work done in this thesis and

a brief introduction to the modular arithmetic in Chapter 1, Chapter 2 will present

some of the earlier works in the field. The concepts that we used in our research will

be analyzed for useful ideas.

Following that, in Chapter 3, modulus scaling techniques that were used for the

background research of this thesis will be presented. Also in this chapter, the inversion

algorithm that was achieved by modulus scaling techniques will be described and

analyzed for hardware implementation. Chapter 4 presents the reader the system

architecture of the design that has been developed as part of this thesis.

Chapter 5 presents a unified multiplier architecture that can work for three ex-

tension fields. First the background research is presented, than the structure of the

presented hardware is described. The algorithms used for Montgomery multiplication

are examined in this chapter.

Finally, Chapter 6 summarizes the research done for this thesis. It briefly explains

the results of the research done.

Chapter 2

Previous Work

A straightforward method to implement integer and polynomial modular multipli-

cations is to first compute the product of the two operands, t = a · b, and then to

reduce the product using the modulus, c = t mod p. Traditionally, the reduction

step is implemented by a division operation, which is significantly more demanding

than the initial multiplication. To alleviate the reduction problem in integer modular

multiplications, Crandall proposed [Cra92] using special primes, primes of the form

p = 2k − u, where u is a small integer constant. By using special primes, modular

reduction turns into a multiplication operation by the small constant u, that, in many

cases, may be performed by a series of less expensive shift and add operations.

Let the number t represent the 2k-bit result of a multiplication operation of two

k-bit numbers. Let tl represent the low k-bits and th represent the high k-bits:

6

CHAPTER 2. PREVIOUS WORK 7

t = th2
k + tl

hence c = th2
k + tl (mod p)

which can be reduced for p = 2k − u to

c = th · u + tl (mod 2k − u) .

It should be noticed that th · u is not fully reduced. Depending on the length of

u, a few more reductions are needed. The best possible choice for a special prime is

a Mersenne prime, p = 2k − 1, with k fixed to a word-boundary, i.e. k = 16, 32, 64.

In this case, the reduction operation becomes a simple modular addition c = th +

tl mod p. Similarly primes of the form 2k + 1 may simplify reduction into a modular

subtraction c = tl − th mod p. Unfortunately, Mersenne primes and primes of the

form 2k + 1 are scarce. For degrees up to 1000 no primes of form 2k + 1 exist and

only the two Mersenne primes 2521 − 1 and 2607 − 1 exist. Moreover, these primes

are too large for ECDSA which utilizes bit-lengths in the range 160 − 350. Hence,

a more practical choice is to use primes of the form 2k − 3. For a constant larger

than u = 3, and a degree k that is not aligned to a word boundary, some extra shifts

and additions may be needed. To relax the restrictions, Solinas [Sol99] introduced a

generalization for special primes. His technique is based on signed bit recoding. While

increasing the number of possible special primes, additional low-level operations are

needed. The special modulus reduction technique introduced by Crandall [Cra92]

restricts the constant u in p = 2k − u to a small constant that fits into a single word.

Chapter 3

Modulus Scaling Techniques

3.1 General Method

The idea of modulus scaling was introduced by Walter [Wal92]. In this work, the

modulus was scaled to obtain a certain representation in the higher order bits, which

helped the estimation of the quotient in Barrett’s reduction technique. The method

works by scaling to the prime modulus to obtain a new modulus, m = p · s. Reducing

an integer a using the new modulus m will produce a result that is congruent to the

residue obtained by reducing a modulo p. This follows from the fact that reduction

is a repetitive subtraction of the modulus. Subtracting m is equivalent to s times

subtracting p and thus (a mod m) mod p ≡ a mod p . When a scaled modulus is

used, residues will be in the range [m− 1, 0] = [s · p− 1, 0]. The number is not fully

8

CHAPTER 3. MODULUS SCALING TECHNIQUES 9

reduced and essentially we are using a redundant representation where an integer is

represented using dlog2 semore bits than necessary. Consequently, it will be necessary

that the final result is reduced by p to obtain a fully reduced representation. Here we

wish to use scaling to produce moduli of special form. If a random pattern appears

in a modulus, it will not be possible to use the low-weight optimizations discussed in

Chapter 2. However, by finding a suitable small constant s, it may be possible to scale

the prime p to obtain a new modulus of special form, that is either of low-weight or

in a form that allows efficient recoding. To keep the redundancy minimal, the scaling

factor must be small compared to the original modulus. Assuming a random modulus,

such a small factor might be hard or even impossible to find. We concentrate again

on primes of special forms.

3.2 Special Primes

We present two heuristics that form a basis for efficient on-the-fly scaling using primes

of special forms:

3.2.1 Heuristic 1

Heuristic 1 If the base B representation of an integer contains a series of repeating

digits, scaling the integer with the largest possible digit, produces a string of repeating

zero digits in the scaled and recoded integer.

CHAPTER 3. MODULUS SCALING TECHNIQUES 10

The justification of the heuristic is quite simple. Assume the representation of the

modulus in base B contains a repeating digit of arbitrary value D. We use the

constant scaling factor s = B−1 to compute m. When a string of repeating D-digits

is multiplied with the scaling factor, and written in base B we obtain the following

(DDDD . . . DDD)B · (B − 1) = (DDDD . . . DDD0)B − (DDDD . . . DDD)B

= (D000 . . . 000D̄)B.

The bar over the least significant digit denotes a negative valued digit.

We provide the following example:

Example 1 We select the following prime

p = (51234567812345678123456781234567812345678123456807)16.

By inspection we identify (12345678)16 as a repeating pattern. By selecting the base

B = 232, the repeating pattern becomes a digit. The scaling factor is the largest digit

s = B − 1 = 232 − 1 = (FFFFFFFF)16. The scaled modulus is computed as

m = s · p

= (51234567300000000000000000000000000000000000000085DCBA97F9)16

The representation may contain more than one repeating digit. For instance, the

prime

p = (57777777777777333333333338B)16

CHAPTER 3. MODULUS SCALING TECHNIQUES 11

has two repeating digits 7 and 3. Since both fit into a digit in base B = 16, scaling

with B − 1 = 15 will work on both strings:

m = p · s

= (57777777777777333333333338B)16 · (F)16

= (51FFFFFFFFFFFFC0000000000525)16.

= (520000000000004̄0000000000525)16.

The presented scaling technique is simple, efficient, and only requires the modulus

to have repeating digits. Since the scaling factor is fixed and only depends on the

length of the repeating pattern – not its value –, a modulus with multiple repeating

digits can be scaled properly at the cost of increasing the length of the modulus by a

single digit. We present another heuristics for scaling, this technique is more efficient

but more restrictive on the modulus.

3.2.2 Heuristic 2

Heuristic 2 Given a modulus containing repeating D-digits in base B representation,

if B − 1 is divisible by the repeating digit, then the modulus can be efficiently scaled

by the factor B−1
D

.

CHAPTER 3. MODULUS SCALING TECHNIQUES 12

As earlier the heuristic is verified by multiplying a string of repeating digits with the

scaling factor and then by recoding.

(DDD . . . DDD)B ·
B − 1

D
= ((B − 1)(B − 1)(B − 1) . . . (B − 1))B

= (1000 . . . 01̄)B.

The following example shows the power of this simple technique.

Example 2 Let the prime p be

p = (D79435E50D79435D79435E50D79435E50D79435E50D79435E50D79435E50‖

D79435E50D79435E50D79435E50D79435E5)16

By inspection the repeating pattern is detected as D = (0D79435E5)16. The digit D

fits into 36-bits, thus the base is selected as B = 236. Since D|(B − 1) the scaling

factor is computed as

s =
236 − 1

(0D79435E5)16

= 19.

The scaled modulus becomes

m = s · p = 2384 − 2320 − 1.

We have compiled a list of primes that when scaled with a small factor produce

moduli of the form 2k ± 1 in Table 4 (see Appendix A). These primes provide a wide

range of perfect choices for the implementation of cryptographic schemes.

CHAPTER 3. MODULUS SCALING TECHNIQUES 13

3.3 Scaled Modular Inversion

In this section we consider the application of scaled arithmetic to implement more

efficient inversion operations. An efficient way of calculating multiplicative inverses

is to use binary extended Euclidean based algorithms. The Montgomery inversion

algorithm proposed by Kaliski [Kal95] is one of the most efficient inversion algorithms

for random primes. Montgomery inversion, however, is not suitable when used with

scaled primes since it does not exploit our special moduli. Furthermore, it can be

used only when Montgomery arithmetic is employed. Therefore, what we need is

an algorithm that takes advantage of the proposed special moduli. Thomas et al.

[TKL86] proposed the Algorithm X for Mersenne primes of the form 2q − 1 (see

Appendix B).

Due to its simplicity Algorithm X is likely to yield an efficient hardware implemen-

tation. Another advantage of Algorithm X is the fact that the carry-free arithmetic

can be employed. The main problem with other binary extended Euclidean algo-

rithms is that they usually have a step involving comparison of two integers. The

comparison in Algorithm X is much simpler and may be implemented easily using

carry-free arithmetic.

The algorithm can be modified to support the other types of special moduli as

well. For instance, changing Step 4 of the algorithm to b := −(2q−eb) (mod p)

will make the algorithm work for special moduli of the form 2q + 1 with almost no

CHAPTER 3. MODULUS SCALING TECHNIQUES 14

penalty in the implementation. The only problem with a special modulus, m is the

fact that it is not prime (but multiple of a prime, m = sp) and therefore inverse of

an integer a < m does not exist when gcd(a,m) 6= 1. With a small modification to

the algorithm this problem may be solved as well. Without loss of generalization the

solution is easier when s is a small prime number. Algorithm X normally terminates

when y = 1 for integers that are relatively prime to the modulus, m. When the

integer a is not relatively prime to the modulus, then Algorithm X must terminate

when y = gcd(a,m) = s resulting b = a−1 · s (mod m). In order to obtain the

inverse of a when gcd(a,m) 6= 1, an extra multiplication at the end is necessary:

b = b · (s−1 (mod p)) (mod m)

where s−1 (mod p) needs to be precomputed. This precomputation and the task

of checking y = s as well as y = 1, on the other hand, may be avoided utilizing

the following technique. The integer a, whose inverse is to be computed, is first

multiplied by the scale s before the inverse computation: a′ = a ·s . When the inverse

computation is completed we have the following equality

a′ · b + m · k = s

and thus

a · s · b + p · s · k = s .

CHAPTER 3. MODULUS SCALING TECHNIQUES 15

When both sides of the equation is divided by s we obtain

a · b + p · k = 1.

Therefore, the algorithm automatically yields the inverse of a as b = a−1 if the input

is taken as s · a mod m instead of a. Although this technique necessitates an extra

multiplication before the inversion operation independent of whether a is relatively

prime to modulus m or not, eliminating the precomputation and a comparison is a

significant improvement in a possible hardware implementation. Furthermore, this

multiplication will reduce to several additions when the scale is a small integer such

as the s = 3 in p = (2167 + 1)/3. Another useful modification to Algorithm X is to

transform it into a division algorithm to compute operations of the form d/a. The

only change required is to initialize b with d instead of 1 in Step 1 of the algorithm.

This simple modification saves one multiplication in elliptic curve operations. The

Algorithm X modified for division with scaled modulus is shown below:

CHAPTER 3. MODULUS SCALING TECHNIQUES 16

Algorithm X - modified for division with scaled modulus

Input: a ∈ [1,m− 1], d ∈ [1,m− 1], m, and q where m = 2q ± 1

Output:b ∈ [1,m− 1], where b = d/a (mod m)

1: a := a · s (mod m);

2: (b, c, u, v) := (d, 0, a,m);

3: Find e such that 2e||u

4: u := u/2e; // shift off trailing zeros

5: b := ∓(2q−eb) (mod m); // circular left shift

6: if u = s return b;

7: (b, c, u, v) := (b + c, b, u + v, u);

8: go to Step 3

It should be noted that the notation 2e||u stands for the largest integer value of e

such that 2e exactly divides u.

One can easily observe that the Algorithm X has the loop invariant b/u (mod m) ≡

d/a (mod m) . Note that the Step 3 of Algorithm X can be performed using simple

circular left shift operations. The advantage of performing the Step 3 with simple

circular shifts may dissappear for moduli of the form 2q−c with even a small c. Many

inversion algorithms consist of a big loop and the efficiency of an inversion algorithm

CHAPTER 3. MODULUS SCALING TECHNIQUES 17

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

iteraton number − k

Mersenne inv.
Montgomery inv.

Figure 3.1: Distribution of k

depends on the number of iterations in this loop, k , which, in turn, determines the

total number of additions, shift operations to be performed. The number of iterations

are usually of random nature (but demonstrates a regular and familiar distribution)

and only statistical analysis can be given. In order to show that Algorithm X is also

efficient in terms of iteration number, we compared its distribution for k against that

of Montgomery inversion algorithm. We computed the inverses of 10000 randomly

chosen integers modulo m = 2167 + 1 using Algorithm X. Since p = m/3 is a 166-bit

prime we repeated the same experiment with the Montgomery inversion algorithm

using p. Besides having much easier operations in each iteration we observed that the

average number of iterations of Algorithm X is slightly lower than the total number

of iterations of the Montgomery inversion algorithm (Figure 3.1).

Chapter 4

The Elliptic Curve Architecture

We developed an elliptic curve architecture using the scaled modulus technique and

our specialized inversion algorithm. Our aim in implementing this hardware was to

actually see the outcomes of our techniques.

4.1 Design Methodology

We built our elliptic curve scheme over the prime field GF ((2167 +1)/3). This partic-

ular prime allows us to use a scaled modulus m = 2167 + 1 with a very small scaling

factor s = 3. To implement the field operations we use Algorithm X as outlined in

Chapter 3.3. Our simulation for this particular choice of prime showed that our inver-

sion technique is only by about three times slower than a multiplication operation.

Furthermore, the inversion is implemented as a division saving one multiplication

18

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 19

operation. Thus the actual ratio is closer to two. Since inversion is relatively fast,

we prefer to use affine coordinates. Besides faster implementation, affine coordinates

provides a significant amount of reduction in power and circuit area since projective

coordinates requires a large amount of extra storage. For an elliptic curve of form

y2 = x3 + ax + b defined over GF (2167 + 1)/3) we use the standard point addition

operation defined in [Men93].

For power efficiency we optimize our design to include minimal hardware. An

effective strategy in reducing the power consumption is to spread the computation

to a longer time interval via serialization which we employ extensively. On the other

hand, a reasonable time performance is also desired. Since the elliptic curve is de-

fined over a large integer field GF (p) (168-bits) carry propagations are critical in the

performance of the overall architecture. To this end, we built the entire arithmetic

architecture using the carry-save methodology. This design choice regulates all carry

propagations and delivers a very short critical path delay, and thus a very high limit

for the operating frequency.

The redundant representation doubles all registers in the arithmetic unit, i.e. we

need two separate registers to hold both the carry part and the sum part of a number.

Furthermore, the inherent difficulty in comparing numbers represented in carry-save

notation is another challenge. In addition, shifts and rotate operations become more

cumbersome. Nevertheless, as evident from our design it is possible to overcome these

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 20

difficulties.

In developing the arithmetic architecture we primarily focused on finding the

minimal circuit to implement Algorithm X efficiently. Since the architecture is built

around the idea of maximizing hardware sharing among various operations, the mul-

tiplication, squaring and addition operations are all achieved by the same arithmetic

core. The control is hierarchically organized to implement the basic arithmetic opera-

tions, point addition, point doubling, and the scalar point multiplication operation in

layers of simple state machines. The simplicity of Algorithm X and scaled arithmetic

allows us to accomplish all operations using only a few small state machines.

4.2 Implementation of the Control Block

Since the arithmetic core is a general purpose hardware, we needed a control block

that can handle the desired arithmetic operations by switching the select inputs of

the multiplexers accordingly. We have a 15-state state machine implementing the

inversion algorithm. Each state corresponds to a step in the algorithm. Mainly there

are three states in the state machine: Initialize, shift right, and add.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 21

−12167

−12167
2n

shifted

R0

R3

R2

R1

MUX

MUX MUX

MUX

MUX MUX

Rtemp0 Rtemp1

0
x2 x1y1

shifted

y2

n nnn

n n n n n n

n
n

nn

n n
n

2n 2n

2n 2n

2n

2n 2n

n

2n

2n

2n 2n p

0

CSA1 CSA2

Figure 4.1: Block diagram of the arithmetic unit

4.3 Implementation of the Arithmetic Unit

The arithmetic unit shown in Figure 4.1 is built around four main registers R0, R1, R2, R3,

and two extra registers Rtemp0, Rtemp1 which are used for temporary storage. Note

that these registers store both the sum and carry parts due to the carry-save repre-

sentation. For the same purpose the architecture is built around two (almost) parallel

data paths.

We briefly outline the implementation of basic arithmetic operations.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 22

4.3.1 Comparison

Comparing a two numbers in carry-save architecture is difficult since the redundant

representation hides the actual values. On the positive side, the comparison in Al-

gorithm X is only with respect to a constant value of s = 3. Such a comparator

may be built using a massive OR tree with 2n inputs. Unfortunately, such an OR

tree would cause serious latency (O(log2 n) gate delays) and significantly increase the

critical path delay. We instead prefer a novel comparator design that works only for

comparing a number with zero. In order to compare a number with 3, extra logic is

needed for the first two bits, which is nothing more than a pair of xor gates. The

rest of the bits are connected directly to the comparator. The comparator is built

by connecting three-state buffers together as shown in Figure 4.2. The input lines

are connected together and set to logic 1. Similarly the output lines are connected

together and taken as the output of the comparator. We feed the bits of the data

input in parallel to the enable inputs of the three-state buffers. Hence, if one or more

of the bits of the data input is logic 1, which means the number is not equal to 0, we

see logic 1 at the output of the comparator. If the number is 0, none of the three-state

buffers is enabled and therefore we see a Hi-Z (high impedance) output. Note that

our comparator design works in constant time (O(1) gate delays) regardless of the

length of the operands.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 23

out

n n n nk−1 k−2 1 0

1

Figure 4.2: Comparator unit built using tri-state buffers

4.3.2 Modulo Reduction

Since the hardware works for m = 2167 + 1, 168-bit registers would be sufficient.

However, we use an extra bit to detect when the number becomes greater than m. If

one of the left-most bits of the number (carry or sum) is one, the number is reduced

modulo m. Note that

2168 = 2 · (2167 + 1)− 2 = 2m− 2 = m− 2 (mod m).

Hence, the reduction is achieved by subtracting 2168 (or simply deleting this bit) and

adding m− 2 = (11 . . . 11111)2 (167 bits) to the number. If both of the leftmost bits

are 1 then: 2 · (2168) = 4 · (2167 + 1) − 4 = 4m − 4 = m − 4 (mod m) . Therefore

m − 4 = (111 . . . 11101)2 (167 bits) has to be added to the number and both of the

leftmost bits are deleted.

4.3.3 Subtraction

Suppose k is a 168 bit number which we want to subtract from another number

modulo m. The bitwise complement of k is found as

k′ = (2168 − 1)− k = 2 · (2167 + 1)− 3− k = −3− k (mod m) .

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 24

Thus −k = k′ + 3 mod m. This means that to subtract k from a number we simply

add the bitwise complement of k and 3 to the number. There is a caveat though.

Remember that our numbers are kept in carry save representation, so, there are

two 168-bit numbers representing k. Let ks and kc denote the sum and carry parts

of k, respectively. Since k = ks + kc then −k = −ks − kc = (k′

s + 3) + (k′

c + 3) =

ks
′+kc

′+6 mod m. Therefore the constant value 6 has to be added to the complements

of the carry and sum registers in order to compute −k.

4.3.4 Multiplication

We serialize our multiplication algorithm by processing one bit of one operand and all

bits of the second operand in each iteration. The standard multiplication algorithm

had to be modified to make it compatible with the carry save representation. Due

to the redundant representation, the value of the leftmost bit of the multiplier is not

known. Hence, the left to right multiplication algorithm may not be used directly.

We prefer to use the right to left multiplication algorithm. With this change, instead

of shifting the product we multiply the multiplicand by two (or shift left) in each

iteration step.

There are 3 registers used for the multiplication: R0 (multiplicand), R1 (product)

and R2 (multiplier). The multiplication algorithm has 3 steps :

1. Initialization: This is done by the control circuit. The multiplicand is loaded

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 25

to R0, the multiplier is loaded to R2 and R1 is reset.

2. Addition: This step is only done when the rightmost bit of register R2 is 1. The

content of register R0 is added to R1.

3. Shifting: The multiplier has to be processed bit by bit starting from the right.

We do this by shifting register R2 to the right in each iteration of the multi-

plication. Since the register R2 is connected to the comparator, the algorithm

terminates after this step if the number becomes 0 else the algorithm continues

with Step 2. Note that no counters are used in the design. This eliminates

potential increases in the critical path delay. The multiplicand needs to be dou-

bled in each iteration as well. This is achieved by shifting register R0 to the

left. This operation is performed in parallel with shifting R2, so no extra clock

cycles are needed. However, shifting to the left can cause overflow. Therefore,

the result needs to be reduced modulo m if the leftmost bit of the register R0

is 1.

4.3.5 Inversion

To realize the inversion operation there are four registers used to hold b, c, u and

v, two temporary registers are used for the addition of two numbers in carry-save

architecture. Two carry-save adders, multiplexers and comparator architecture are

also utilized.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 26

The inversion algorithm shown in Algorithm X has 5 steps:

1. Initialization: This is done by the control circuit. Load registers with b = 1, c =

0, u = x (the data input) and v = m = (2167 + 1).

2. u = u/2e: This operation is done by shifting u to the right until a 1-bit is

encountered. However, due to the carry-save architecture this operation requires

special care. The rightmost bit of the carry register is always zero since there

is no carry input. Thus just checking the rightmost bit of the sum register is

sufficient. Also, the carry has to be propagated to the left in each iteration.

This is done by adding 0 to the number. If a 1-bit is encountered, the operation

proceeds to the next step.

3. b = (−2q−e · b) mod m: Assume u holds a random pattern, e will be very small

(not more than 3 for most of the cases). Thus, q − e is most likely a large

number. Therefore, multiplication by 2q−e would require many shifts to left. To

compute this operation more efficiently, this step is rewritten using the identity

2q = −1 mod m as b = 2−e · b (mod m) . Therefore, b needs to be halved

e-times. If b is even we may shift it to the right and thereby divide it by two.

Otherwise, we add m to it to make it even and then shift. Since this step takes e

iterations, it can be performed concurrently with the 2nd step of the algorithm.

Hence no extra clock cycles are needed for this step.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 27

4. Compare u with s = 3:The comparator architecture explained above is used to

implement this step. There are two cases when u = 3: us = (11)2, uc = (00)2

and us = (01)2, uc = (10)2. Therefore, the rightmost two bits need a special

logic for the comparison, and the rest of the bits are connected directly to the

three-state comparator shown in Figure 4.2.

5. Additions in (b, c, u, v) := (b+ c, b, u+v, u). Two clock cycles are needed to add

two numbers in carry-save architecture, since a carry-save adder has 3 inputs

and there are 4 numbers to add. During the addition operation to preserve the

values of b and u the two temporary registers are used.

4.4 Performance Analysis

In this section we analyze the speed performance of the overall architecture and

determine the number of cycles required to perform the elliptic curve operations.

The main contributors to the delay are field multiplications and inversion operations.

Field additions are performed in 1 cycle (or 2 cycles if both operands are in the

carry-save representation). Therefore field additions which take place outside of the

multiplication or inversion operations are neglected.

The multiplication operation iterates over the bits of one operand. On average

half of the bits will be ones and will require a 2 cycle addition. Hence, 168 clock cycles

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 28

will be needed. The multiplicand will be shifted in each cycle and modulo reduced

in about half of the iterations. Hence another 1.5 · 168 = 252 cycles are spent. The

multiplication operation takes on average a total of 420 cycles.

The steps of the inversion algorithm are reorganized in Table 1 according to the

order and concurrency of the operations. Note the two concurrent operations shown

in Step 2. In fact this is the only step in the algorithm which requires multiple clock

cycles, hence the concurrency saves many cycles. In Step 2, u is shifted until all zero

bits in the LSB are removed. Each shift operation takes place within one cycle. For

a randomly picked value of u the probability of the last e bits all being zeroes is

(1/2)e, hence the expected value of e is E(e) =
∑

∞

i=1 i(1/2)i = 2. In each iteration

of the algorithm we expect on average of 2 cycles to be spent. Step 3 does not

spend any cycles since the comparator architecture is combinational. The additions

in Step 4 require 2 clock cycles. Hence a total of 4 cycles is spent in each iteration

of the inversion algorithm. Our simulation results showed that (see Section 3.3) the

inversion algorithm would iterate on average about 320 times. The total time spent

in inversion is found as 1, 280 cycles. This is very close to our hardware simulation

results which gave an average of 1, 288 cycles.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 29

1: Initialize all registers

(b, c, u, v)← (1, 0, a,m)

2: Shift off all trailing zeros and rotate b

u← u >> e b← b >> e (mod m)

3: Check terminate condition

if u = s return b

4: Update variables

(b, c, u, v)← (b + c, b, u + v, u);

go back to Step 2

Table 1: Hardware algorithm for inversion.

The total number of clock cycles for point addition and doubling is found as 2, 120

and 2, 540, respectively. The total time required for computing a point multiplication

is found as 545, 440 cycles.

4.5 Results and Comparison

The presented architecture was developed into Verilog modules and synthesized using

the Synopsys tools Design Compiler and Power Compiler. In the synthesis we used

the TSMC 0.13 µm ASIC library, which is characterized for power. The resulting

architecture was synthesized for three operating frequencies. The implementation

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 30

0 100 200
3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45
x 104

A
re

a
(k

ga
te

s)

0 100 200
0

1

2

3

4

5

6

7

8

9

10

Operating Frequency(MHz)

P
ow

er
 (m

W
)

0 100 200
0

5

10

15

20

25

30

35

A
ve

ra
ge

 D
el

ay
 (m

se
c)

Figure 4.3: Implementation Results

results are shown in Figure 4.3. As seen in the figure the area varies around 30 Kgates.

The circuit achieves its intended purpose by consuming only 0.99 mW at 20 Mhz.

In this mode the point multiplication operation takes about 31.9 msec. Although

this is not very fast, this operating mode might be useful for interactive applications

with extremely stringent power limitations. On the other hand, when the circuit is

synthesized for 200 Mhz operation, the area is slightly increased to 34 Kgates, and

the power consumption increased to 9.89 mW. However, a point multiplication takes

now only 3.1 msec.

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 31

We performed a research to obtain the resutls from the previously built ECC ar-

chitectures. However, we concluded with a result that there has not been any work

done for low-power ECC architecture design. We compare our design with another

customized low-power elliptic curve implementation presented by Schroeppel et al. in

CHES 2002 [SBM+02]. Their design is the closest to a low-power ECC design. Their

design employed an elliptic curve defined over a field tower GF (2178) and used spe-

cialized field arithmetic to minimize the design. A point halving algorithm was used

in place of the traditional point doubling algorithm. The design was power optimized

through clock gating and other standard methods of power optimization. The main

contribution was the clever minimization of the gate logic through efficient tower field

arithmetic. Note that their design includes a fully functional signature generation ar-

chitecture whereas our design is limited to point multiplication. Although a side by

side comparison is not possible, we find it useful to state their results: The design was

synthesized for 20 Mhz operation using 0.5 µm ASIC technology. The synthesized

design occupied an area of 112 Kgates and consumed 150 mW. The elliptic curve

signature was computed in 4.4 msec. Unfortunately, since we did not have access to

the 0.5 µm technology, which would have made the comparison precise.

An architectural comparison of the two designs shows that our design operates bit

serially in one operand whereas their design employs a more parallel implementation

strategy. This leads to lower critical paths and much smaller area in our design. The

CHAPTER 4. THE ELLIPTIC CURVE ARCHITECTURE 32

much shorter critical path allows much higher operating frequencies requiring more

clock cycles to compute the same operation. However, due to the smaller area, when

operated at similar frequencies our design consumes much less power.

Chapter 5

Unified Multiplier Architecture

5.1 Introduction

There has been an increase in research activity for the cryptosystems on pairing

based operations. Schemes utilizing these pairing schemes, such as identity based

encryption [BF01] and signature algorithms have been developed. Identity based

cryptography was first proposed by Shamir [Sha85] in 1985. Rather than deriving a

public key from a private information, which would be the case in traditional schemes,

in identity based schemes a user identity, an arbitrary string, plays the role of a public

key. This reduces the computations for authentication and has a number of security

characteristics. These identity based schemes are implemented the most efficient on

the field GF (3m).

33

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 34

Previously we designed an ECC hardware which works on the extension field

GF (p). Since the identity based encryption schemes are getting more important and

there is more research being conducted on these schemes, we realized the importance

of adding the field GF (3m) to our design for identity based cryptography. Since we

based our design on small footprint and low-power application, we aimed on building

a unified architecture that supports arithmetic in three fields, GF (p), GF (2m) and

GF (3m) rather than having separate hardware for all of them. The results of our

research on previous work showed that previously a unified architecture for GF (p)

and GF (2m) has been built ([STK00]). Also, hardware architectures for arithmetic

in characteristic three have appeared in [PS02], [TKM04]and [BGK+03]. However, to

the best of our knowledge, a unified architecture working for all the three fields has

not been appeared.

The basic arithmetic operations (i.e., addition, multiplication and inversion) in

the arithmetic extension fields GF (p), GF (2m) and GF (3m) have several applica-

tions in elliptic curve cryptography. The most important of these three arithmetic

operations is the field multiplication operation since it is the core operation in many

cryptographic functions. The Montgomery multiplication algorithm [Mon85] is an ef-

ficient method for performing modular multiplication. With this motivation and, we

designed a Unified Montgomery Multiplier Architecture for the arithmetic extension

fields GF (P), GF (2m) and GF (3m) using a different number representation.

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 35

5.2 Redundant Signed Digit (RSD) Arithmetic

Although carry-save arithmetic decreases the propagation delay in addition oper-

ations, the use of carry-save arithmetic for modular subtraction operations, which

is required for arithmetic in algebraic fields introduces significant problems. When

two’s complement representation is used for subtraction, the carry overflow must be

ignored. If there is no carry overflow, the result is negative. Since there can be hidden

carry overflow with carry-save representation, it is hard to be sure that the result is

positive or negative. It requires additional operations and additional hardware, which

increases both latency and area.

RSD arithmetic was introduced by Avizienis [Avi61] and is quite similar to carry-

save arithmetic. An integer is still represented by two positive integers, however the

non-redundant form of the representation is the difference between these two positive

integers, not the sum. If the number X is represented by x+ and x− then X = x+−x−.

One advantage of using RSD is the fact that it eliminates two’s complement form

to handle negative numbers. It is thus much easier to do both addition and subtraction

operations without worrying about the carry and borrow chain. Furthermore, the

subtraction operation does not require taking two’s complement of the subtrahend.

It is thus a more natural representation if both addition and subtraction operations

have to be performed, which is the case in the Montgomery inverse algorithm. Also,

comparison of two integers is much easier with RSD representation. After subtracting

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 36

one integer from the other one, sign test can be performed directly by testing the first

nonzero bit, which is an easy way of telling which number is bigger than the other

one.

5.2.1 Number Representations

As mentioned before, the integer X is represented by two integers, x+ and x−, and

X = x+−x−. For RSD representations, we can use the notation (x+, x−) to represent

the number X.

The RSD number representation for the given extension fields are described as

follows:

1. GF (p) In the extension field GF (p), the integers are in binary form and a digit

can have three different values: 1, 0 and −1. In RSD form, these three digits

are represented as:

1 → (1, 0)

0 → (0, 0)

−1 → (0, 1)

2. GF (2m) In field GF (2m), the integers are also in binary form. However, since

there is no carry chain in GF (2) arithmetic, a digit can have the values 1 or 0.

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 37

These are represented as:

1 → (1, 0)

0 → (0, 0)

3. GF (3m) In field GF (3m), the integers are in base 3. Digits can have the values

−2 −1 0 1 and 2. However, since there is no carry chain in GF (3m) arithmetic,

the digit values −2 and 2 are congruent to 1 and −1, respectively. The RSD

representations are:

2 → (0, 1)

1 → (1, 0)

0 → (0, 0)

−1 → (0, 1)

−2 → (1, 0)

5.3 Unified Arithmetic Core

We first build a unified arithmetic core for the basic arithmetic operations (i.e., ad-

dition, subtraction and comparison). The core is unified so that it can do the arith-

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 38

c s

z

yx

c s

z

yx

c s

z

yx

Logic
symbol

Function

Type

−x+y−z=−2c+sx−y+z=2c−sx+y+z = 2c+s

GFA−0 GFA−1 GFA−2

Figure 5.1: Generalized full adders

metic operations in three extension fields, GF (p), GF (2m) and GF (2n). Since the

elements of these fields are represented using almost the same data structure inside

the computer, and the algorithms for basic arithmetic operations in all three fields

have structural similarities, we were able to build a unified arithmetic core.

5.3.1 Architecture

The conventional 1-bit full adder assumes positive weights for all of its three binary

inputs and two outputs. However, full adders can be generalized to have both positive

and negative weight inputs and outputs. This allows us to construct an adder design

with both inputs and outputs in RSD form, since we can have negative weight numbers

as inputs. In our core design, we used two forms of the generalized full adders (Figure

5.1), one negative weight input (GFA-1) and two negative-weight inputs (GFA-2).

The logic behaviors of these generalized full adders are shown in Figure 5.2). As

can be seen from the truth table, they have same logical characteristics. The only

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 39

s c

GFA−0 GFA−1 GFA−2

s c s cx y z

0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0 0

1 0

1 0

0 1

1 0

0 1

0 1

1 1

0 0

1 1

0 1

0 0

1 1

1 0

0 0

1 1

0 0

1 1

0 1

0 0

1 1

1 0

0 0

1 1

Figure 5.2: Logic tables of the three generalized full adders

difference is the order of the inputs and outputs. Same hardware is used for both

of the generalized full adders. However, it should be noted that the decoding of the

outputs are different. For GFA-1, the result is decoded as 2c − s. For GFA-2, the

result is decoded as −2c + s.

A 1-digit adder unit is constructed using two of the generalized full adders (Figure

5.3). This adder unit has two integers in RSD representation as inputs and one integer

in RSD representation as output. This 1-digit unit also has carry inputs and outputs,

which are only used for arithmetic in GF (p). In total, the unit has 5 bits of input

and 3 bits of output.

We started designing the hardware for the extension field GF (p) first. Two gener-

alized full adders connected as shown in figure 5.3 without any other logic in between

handles the arithmetic operations in GF (p).

Since the carry chain in GF (2m) arithmetic is neglected, all we had to do to make

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 40

x x

y

1’b0

c

y

zz

c

p n

p

in

n

pn

out

cout

Figure 5.3: RSD adder unit with both inputs and outputs in RSD form

this architecture also work for GF (2m) was suppressing the carry chain. Also, since

the digits can have the values (0, 0) and (1, 0), the negative weight inputs of the adder

are initialized as logic 0.

Modifying this hardware design so that it will also work for GF (3m) is the most

complex part of the design. Since the numbers are in base 3 form and we have

a hardware that works for base 2, the design became complicated. The carry-free

structure of the GF (3m) arithmetic operations allowed us to build an adder which

works for both base 3 and binary forms.

When doing arithmetic operations in GF (3m), the outputs of the adders has to

be decoded. Since the generalized full adder works in binary form, the output is also

binary. We needed to convert this output to base 3 before entering the data into the

second generalized full adder. An XOR gate and an AND gate is sufficient enough

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 41

xn
n−1 yp

n−1
n
n−1yxp

n−1

nzp

...

xp
0 yp

0xn
0

n
0y

zp zn
0 0

xp
1 yp

1xn
1

n
1y

zp zn
1 1

1’b0

cout

zn−1n−1

RSD
Adder

RSD
Adder

RSD
Adder

Figure 5.4: RSD adder

for this conversion (figure 5.3). There is also need for multiplexers, and the select

inputs of the multiplexers determine in which field the adder is working. The carry

bits seen are only used for GF (p).

Now all we need to do is to connect the 1-digit RSD units back to back in order to

build an n-bit RSD adder. Figure 5.4 shows the backbone of the structure. There are

n 1-digit RSD adders and just one GFA-1 adder to handle the last carry bit, which

is omitted in GF (2m) and GF (3m).

5.3.2 Addition

The addition operation is done as shown in Figure 5.4. The negative and positive

parts of the numbers are entered accordingly and the select inputs of the multiplexers

are set for desired field operations. There are two control inputs for selecting the

field, sel2 and sel3. These inputs are decoded accordingly and they determine the

select inputs of the multiplexers.

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 42

5.3.3 Subtraction

Subtraction operation is identical to the addition operation. The only difference is

that the positive and the negative parts of the numbers in RSD form are swapped

before the operation. Swapping the positive and negative parts negates the number:

X = (x+, x−) = x+ − x−

Y = (y+, y−) = y+ − y−

X − Y = (x+, x−)− (y+, y−) = (x+, x−) + (y−, y+)

5.3.4 Comparison

In order to perform comparison between two numbers, one must be subtracted from

the other one. After subtraction, a sign test is applied to the result. Doing the sign

test is a simple process as it can be performed directly by testing the first nonzero bit

pair. If the positive part of first nonzero bit pair is logic 1, the subtracted number is

smaller than the other one. If the negative part of the first nonzero bit pair is logic

1, the subtracted number is greater than the other one. If all the bit pairs are zero,

the numbers are equal. Since our proposed hardware does not allow both of the bit

pairs be logic 1 at the same time, there is no need to check if both of the bit pairs

are logic 1.

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 43

5.4 Montgomery Multiplication

The proposed adder design is used to build a Montgomery multiplier architecture.

Since there are three different extension fields upon which we want our hardware to

work on, the algorithm had three different versions. We tried to find the similarities

of these versions and integrate them together into a single hardware implementation.

5.4.1 The Multiple-Word Radix-2 Montgomery Multiplica-

tion Algorithm for GF (p)

The use of a fixed precision word alleviates the broadcast problem in the circuit

implementation. Furthermore, a word-oriented algorithm allows design of a scalable

unit.

For a modulus of m-bit precision, and a word size of w-bits, e = dm + 1/we words

are required. Note that an extra bit is used for the variables holding the partial sum

in the Montgomery algorithm for GF (p), since the partial sums can reach m + 1-

bit precision. The algorithm [TK99] we used scans the multiplicand operand (B)

word-by-word, and the multiplier operand (A) bit-by-bit.

The vectors used in multiplication operations are expressed as

B = (B(e−1), ..., B(1), B(0)),

A = (A(m−1), ..., A(1), A(0)),

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 44

p = (p(e−1), ..., p(1), p(0)),

where the words are marked with superscripts and the bits are marked with subscripts.

For example, the ith bit of the kth word of B is representeed as B
(k)
i . A particular

range of bits in a vector B from position i to j where j > i is represented as Bj..i.

(x|y) represents the concatenation of two bit sequence. Finally, 0m stands for an

all-zero vector of m bits. The algorithm is given below:

Input: A,B ∈ GF (p) and p

Output:C ∈ GF (p)

Step 1: T := 0m

Step 2: for i = 0 to m− 1

Step 3: (Carry|T (0)) := ai ·B
(0) + T (0)

Step 4: Parity := T
(0)
0

Step 5: (Carry|T (0)) := Parity · p(0) + (Carry|T (0))

Step 6: for j = 1 to e− 1

Step 7: (Carry|T (j)) := ai ·B
(j) + T (j) + Parity · p(j) + Carry

Step 8: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

Step 9: T e−1 := (Carry|T
(e−1)
w−1..1)

Step 10: C := T

Step 11: if C > then C := C − p

Step 12: return C

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 45

We use the RSD form for every vector used in the multiplication algorithm, so

every bit expressed in this algorithm is represented by actually two bits, positive and

negative parts of the numbers. As an example: T 0
0 = (T 0

0,p, T
0
0,n).

5.4.2 Multiple-Word Radix-2 Montgomery Multiplication Al-

gorithm for GF (2m)

The Montgomery multiplication algorithm for GF (2m) is given below. Since there is

no carry computation in GF (2m) arithmetic, the intermediate addition operations are

replaced by bitwise XOR operations, which are represented below using the symbol

⊕.

Input: A,B ∈ GF (2m) and p

Output:C ∈ GF (2m)

Step 1: T := 0m

Step 2: for i = 0 to m− 1

Step 3: T (0) := aiB
(0) ⊕ T (0)

Step 4: Parity := T
(0)
0

Step 5: T (0) := Parity · p(0) ⊕ T (0)

Step 6: for j = 1 to e− 1

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 46

Step 7: T (j) := aiB
(j) ⊕ T (j) ⊕ Parity · p(j)

Step 8: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

Step 9: T (e−1) := (0|T
(e−1)
w−1..1)

Step 10: C := T

Step 12: return C

Notice that this algorithm differs from the previous one only with the carry chain.

5.4.3 Multiple-Word Radix-3 Montgomery Multiplication Al-

gorithm for GF (3m)

Montgomery multiplication algorithms for GF (p) and GF (2m) are similar to each

other because they are both implemented in r‘adix-2 and they only differ in the carry

chain. Since we implement Montgomery multiplication algorithm for GF (3m) in

radix-3, there have to be some changes in the implementation. We already explained

the differences for the addition part in RSD representation and we showed that radix-2

and radix-3 representations can be both implemented on a single hardware.

For a modulus of m-bit precision and a word size of w-bits, e = dm + 1/we words

are required. Since there is no carry computation in GF (3m) arithmetic, there won’t

be any extra digits used other than the variable vectors. Every digit is represented

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 47

by two bits in the hardware, one for positive and one for negative, since the numbers

are in RSD representation. The algorithm scans the operand B word-by-word, and

the operand A digit-by-digit. In radix-3 representation, the digits are marked with

subscripts. For example, the ith digit of the kth word of B is represented as B
(k)
i .

(x, y) represents a digit in RSD representation. The algorithm is given below:

Input: A,B ∈ GF (3m) and p

Output:C ∈ GF (3m)

Step 1: T := 0m

Step 2: for i = 0 to m− 1

Step 3: T (0) := ai ·B
(0) + T (0)

Step 4: if T
(0)
0 = p

(0)
0 then

Step 5: T (0) := T 0 − p(0)

Step 6: for j − 1 to e− 1

Step 7: T (j) := ai ·B
(j) + T (j) − p(j)

Step 8: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

Step 9: else

Step 10: T (0) := T 0 + p(0)

Step 11: for j − 1 to e− 1

Step 12: T (j) := ai ·B
(j) + T (j) + p(j)

Step 13: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 48

Step 14: T (e−1) := ((0, 0)|T
(e−1)
w−1..1)

Step 15: C := T

Step 16: if C < T then C := C + p

Step 17: return C

5.5 Multiplier Architecture

5.5.1 Pipeline Organization

All of the three different algorithms are concurrent in the loops, outer and inner loops

with the variables i and j. Each processor unit is responsible for one step of the outer

loop with the variable i. Each processor unit gets the ai digit as input. Also, every

processor unit gets B(j), p(j) and T (j) as inputs, according to the inner loop variable

j. The pipelined structure is shown in Figure 5.5.

An important aspect of this pipeline organization is the register file design. The

digits ai of the multiplier A are given serially to the PUs, and are used only for

one iteration of the outer loop. So they can be discarded immediately after use.

Therefore, a simple shift register with a load input would be sufficient. Also, rather

than registering the multiplier A in the hardware, we can have a serial input for

every digit and we register the necessary ai digits inside the hardware, whenever

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 49

B

p

T

. . .

T0 T0

SR−T

SR−B

SR−p

a0 ak−1

SR−A

PU

Stage 1

PU

Stage k

Figure 5.5: Pipeline organization

needed. This will reduce the area and power use of the hardware. The registers for

the modulus p and multiplicand B can also be shift registers.

The multiplication starts with the first PU unit. It starts by processing the first

iteration of the outer loop of the algorithms. As can be seen from the algorithm,

enough data will be ready for the second iteration to start in 2 clock cycles. Therefore,

the second PU has to be delayed from the first PU by 2 clock cycles. This is done by

using two stages of registers in between. Also, these registers are handling the shift

operations for the partial sum (Step 8 of the algorithms) as shown in Figure 5.5.

When the first PU is done with the operations of an iteration step of the outer

loop, it starts working on the next available iteration loop, and the second PU will

be done in 2 clock cycles and start working on the next available iteration, and this

goes on for the entire pipeline organization. If there is no pipeline stall, which means

if the first PU is done with an iteration when the last PU operated on an iteration

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 50

for clock cycles, there is sufficient enough PUs and no need for intermediate shift

registers to hold the data. The pipeline can go on working without stalling. However,

if the number of PUs is not sufficient enough, which means if pipeline stalls occur,

the modulus and multiplicand words generated at the end of the pipeline have to be

registered. SR − T , SR − p and SR − B are shift registers to hold these data when

there is pipeline stall. The length of these shift registers are of crucial importance

and are determined by the number of pipeline stages (k) and the number of words

(e) in the modulus. The width of the shift registers is equal to w, the word size. The

length of these registers can be given as

L =















e− 2 · (k − 1) : if(e + 1) > 2k

0 : otherwise.

The global control block was not mentioned since its function can be inferred from

the algorithms.

5.5.2 Processing Unit

The processing unit consists of two layers of adder blocks, which we call Unified

Arithmetic Core. The function of a Unified Arithmetic Core was described in section

5.3. It is capable of doing addition and subtraction operation in fields GF (p), GF (2m)

and GF (3m). The block diagram of a processing unit with the word size w=3 is shown

in figure 5.6.

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 51

(a * B)i

(a * B)i

(a * B)i

(a * B)i

(a * B)i

(a * B)i

Pairty*p

Pairty*p

Pairty*p

0

1

2

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

Arithmetic
Core

T1

T1
p

n

T

T2
p

n

1

p

1
n

0

p

0
n

2

p

2
n

2

T0

T0
p

n

T1

T1
p

n

T

T2
p

n
2

T0

T0
p

n

Figure 5.6: Processing Unit (PU) with w = 3.

As can be seen in the figure, a PU is responsible for performing the operation:

ai ·B
(j) + T (j) ± p(j)

This step is common for all the three fields, so this part of the PU is a very simple

combination of the unified arithmetic cores. The inputs to these adders come from

decoders designed to handle arithmetic in three different fields.

We need a simple logic for multiplying one digit ai of the multiplier A with one

word B(j) of the multiplicand B (for the part ai · B
(j)). Since ai can only have the

values (0, 0), (1, 0) or (0, 1), the result of ai ·B
(j) can be 0, B(j) or −1·B(j) respectively.

Negating an integer is simply swapping positive and negative bits of digits, so a simple

and small special encoder would be sufficient for this.

CHAPTER 5. UNIFIED MULTIPLIER ARCHITECTURE 52

We need another logic to find the parity for every iteration of the outer loop.

We check the right-most digit of the modulus, (p0
0) and the right-most digit of the

operation T (0) = a0 ·B
(0) + T (0), T 0

0 and find the parity:

Parity =































(0, 0) : ifT 0
0 = (0, 0)

(0, 1) : ifp0
0 = T 0

0

(1, 0) : otherwise

So, this is very similar to the previous encoder logic we used. One difference is

that since the parity is calculated only once for every iteration step, it needs to be

registered after being calculated by the PU.

Chapter 6

Conclusion

In this thesis we demonstrated that scaled arithmetic, which is based on the idea of

transforming a class of primes into special forms that enable efficient arithmetic, can

be profitably used in elliptic curve cryptography. To this end, we implemented an

elliptic curve cryptography processor using scaled arithmetic. Implementation results

show that the use of scaled moduli in elliptic curve cryptography offers a superior

performance in terms of area, power, and speed. We proposed a novel inversion

algorithm for scaled moduli that results in an efficient hardware implementation. It

has been observed that the inversion algorithm eliminates the need for projective

coordinates that require prohibitively a large amount of extra storage. The successful

use of redundant representation (i.e. carry-save notation) in all arithmetic operations

including the inversion with the introduction of an innovative comparator design leads

53

CHAPTER 6. CONCLUSION 54

to a significant reduction in critical path delay resulting in a very high operating

clock frequency. The fact that the same data path (i.e. arithmetic core) is used for

all the field operations leads to a very small chip area. Comparison with another

implementation demonstrated that our implementation features desirable properties

for resource-constrained computing environments.

We also implemented a Unified Multiplier Architecture for the extension fields

GF (p), GF (2m) and GF (3m). Considering the results we obtained from the previous

architecture, we used a different number representation, Redundant Signed Digit

representation. As a result we achieved the construction of a novel and low-power

architecture for Montgomery multiplication algorithm.

Bibliography

[AMV93] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. An Implementation of

Elliptic Curve Cryptosystems over F2155 . IEEE Journal on Selected Areas

in Communications, 11(5):804–813, June 1993.

[Avi61] A. Avizienis. Signed-digit number representations for fast parallel arith-

metic. IRE Trans. Electron. Computers, EC(10):389–400, September

1961.

[Ber68] E. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, NY,

1968.

[BF01] D. Boneh and M. Franklin. Identity-based Encryption from the Weil

Pairing. In Advances in Cryptology - CRYPTO 2001, volume 2139 of

Lecture Notes in Computer Science, pages 213–229. Springer-Verlag, 2001.

[BGK+03] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and

T. Wollinger. Efficient GF(pm) Arithmetic Architectures for Crypto-

55

BIBLIOGRAPHY 56

graphic Applications. In Topics in Cryptology - CT RSA 2003, volume

2612 of Lecture Notes in Computer Science, pages 158–175. Springer-

Verlag, 2003.

[Cra92] R. E. Crandall. Method and Apparatus for Public Key Exchange in a

Cryptographic System. U.S. Patent Number 5,159,632, October 1992.

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, 22:644–654, November 1976.

[Kal95] B. S. Kaliski Jr. The Montgomery Inverse and its Applications. IEEE

Transactions on Computers, 44(8):1064–1065, 1995.

[Kob87] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,

48(177):203–209, January 1987.

[Men93] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Acad-

emic Publishers, Boston, MA, 1993.

[Mon85] P. L. Montgomery. Modular multiplication without trial division. Mathe-

matics of Computation, 44(170):519–521, April 1985.

[Nat91] National Institute for Standards and Technology. Digital Signature Stan-

dard (DSS). Federal Register, 56:169, August 1991.

BIBLIOGRAPHY 57

[PS02] D. Page and N. P. Smart. Hardware Implementation of Finite Fields of

Characteristic Three. In B. S. Kaliski Jr., C. K. Koc, and C. Paar, edi-

tors, Cryptographic Hardware and Embedded Sytems — CHES 2002, vol-

ume 2523 of Lecture Notes in Computer Science, pages 529–539. Springer-

Verlag Berlin, 2002.

[SBM+02] R. Schroeppel, C. Beaver, R. Miller, R. Gonzales, and T. Draelos. A Low-

Power Design for an Elliptic Curve Digital Signature Chip. In B. S. Kaliski

Jr., C. K. Koc, and C. Paar, editors, Cryptographic Hardware and Em-

bedded Sytems — CHES 2002, Lecture Notes in Computer Science, pages

366–380. Springer-Verlag Berlin, 2002.

[Sha85] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In

Advances in Cryptology - CRYPTO 1985, volume 196 of Lecture Notes in

Computer Science, pages 47–53. Springer-Verlag, 1985.

[Sol99] J. A. Solinas. Generalized Mersenne Numbers. CORR-99-39, CACR Tech-

nical Report, University of Waterloo, 1999.

[SOOS95] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast Key Ex-

change with Elliptic Curve Systems. In D. Coppersmith, editor, Advances

in Cryptology — CRYPTO 95, Lecture Notes in Computer Science, No.

973, pages 43–56. Springer-Verlag, 1995.

BIBLIOGRAPHY 58

[STK00] E. Savas, A. F. Tenca, and C.K. Koc. A Scalable and Unified Multi-

plier Architecture for Finite Fields gf(p) and gf(2m). In C. K. Koc and

C. Paar, editors, Cryptographic Hardware and Embedded Sytems — CHES

2000, volume 1965 of Lecture Notes in Computer Science, pages 277–292.

Springer-Verlag, 2000.

[TK99] A. F. Tenca and C. K. Koc. A scalable architecture for Montgomery

multiplication. In C. K. Koc and C. Paar, editors, Cryptographic Hardware

and Embedded Sytems, Lecture Notes in Computer Science, No. 1717,

pages 94–108. Springer, Berlin, Germany, 1999.

[TKL86] J. J. Thomas, J. M. Keller, and G. N. Larsen. The Calculation of Mul-

tiplicative Inverses over GF (p) Efficiently where p is a Mersenne Prime.

IEEE Transactions on Computers, 5(35):478–482, 1986.

[TKM04] E. Popovici T. Kerins and W. P. Marnane. Algorithms and Architectures

for Use in FPGA Implementations of Identity Based Encryption Schemes.

In Field Programmable Logic and Applications, volume 3203 of Lecture

Notes in Computer Science, pages 74–83. Springer-Verlag, 2004.

[Wal92] C. D. Walter. Faster Modular Multiplication by Operand Scaling. In

J. Feigenbaum, editor, Advances in Cryptology — CRYPTO’91, Lecture

BIBLIOGRAPHY 59

Notes in Computer Science, No. 576, pages 313–323. Springer-Verlag,

1992.

Appendix A

Modulus Scaling

A table of special primes is given below. Each row lists all degrees up to i = 1024 for

which a prime exists in the form specified at the beginning of the row.

60

APPENDIX A. MODULUS SCALING 61

Prime 0 < i < 1024

2i + 1 1, 2, 4, 8, 16

2i + 3 1, 2, 3, 4, 6, 7, 8, 16, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784

2i + 5 1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341

3 · 2i + 1 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534

5 · 2i + 1 1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127

3 · 2i + 5 1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 19, 22, 24, 27, 29, 32, 38, 54, 57, 60, 76, 94, 132, 139, 175,

187, 208, 230, 379, 384, 632

5 · 2i + 3 1, 2, 3, 4, 5, 7, 8, 11, 12, 18, 20, 26, 28, 32, 34, 43, 44, 50, 52, 58, 65, 66, 107, 140, 197

274, 280, 380, 393, 506, 664, 738, 875, 944, 1016

2i − 1 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607

2i − 3 3, 4, 5, 6, 9, 10, 12, 14, 20, 22, 24, 29, 94, 116, 122, 150, 174, 213, 221, 233, 266, 336,

452, 545, 689, 694, 850

2i − 5 3, 4, 6, 8, 10, 12, 18, 20, 26, 32, 36, 56, 66, 118, 130, 150, 166, 206, 226, 550, 706, 810

3 · 2i − 1 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827

5 · 2i − 1 2, 4, 8, 10, 12, 14, 18, 32, 48, 54, 72, 148, 184, 248, 270, 274, 420

3 · 2i − 5 2, 3, 4, 7, 9, 10, 13, 15, 25, 31, 34, 48, 52, 64, 109, 145, 162, 204, 207, 231, 271, 348, 444, 553, 559

5 · 2i − 3 1, 2, 3, 5, 6, 8, 9, 12, 17, 20, 27, 29, 30, 36, 62, 72, 83, 117, 119, 137, 149, 152, 176, 201, 243, 470,

540, 590, 611, 887, 996

Table 2: List of special primes up to degree 1024.

In the following table a list of scaled moduli of the form 2k±1 is shown.The scaling

factor and the prime modulus is provided in the same row.

APPENDIX A. MODULUS SCALING 62

Modulus Scale Prime Modulus (hexadecimal)

283
− 1 167 C4372F855D824CA58E9

292 + 1 17 F0F0F0F0F0F0F0F0F0F0F1

297
− 1 11447 B73493DECFD9B68318EF9

2101 + 1 3 AAAAAAAAAAAAAAAAAAAAAAAAB

2104 + 1 257 FF00FF00FF00FF00FF00FF01

2107 + 1 1929 10FCAEA5E3998C02A77B49EB9

2116 + 1 1009681 109DC950DA32FC88E84D688F1

2127 + 1 3 2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB

2131
− 1 263 7C97D9108C2AD4329DB02EB8F166349

2148 + 1 17 F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F1

2167 + 1 3 2AAB

2179
− 1 514447 104E5A80A157457ABC6482776A0E7EE78C616DA91

2191 + 1 3 2AAB

2197
− 1 7487 1181B149E3E4C85E5F1FB2507D481CB8C6DD39E358BAD41

2199 + 1 3 2AAB

2233 + 1 39173361 DB47AE1104FD220D294905CAD4166DB817CE5936FBFBCAC5B411

2281
− 1 80929 19E9D9CE852ACD5A5A35C4EAA034F0BFF8EA0E7187964BD94B554C27D831862B81F

2313 + 1 3 AAAB

2356 + 1 17 F0F1

Table 3: Scaled moduli of the form 2k ± 1.

Appendix B

Inversion Algorithm for Mersenne

Primes of the Form 2
q − 1

Algorithm X

Input: a ∈ [1, p− 1], p, and q where p is prime and p = 2q − 1

Output:b ∈ [1, p− 1], where b = a−1 (mod p)

1: (b, c, u, v) := (1, 0, a, p);

2: Find e such that 2e||u

3: u := u/2e; // shift off trailing zeros

4: b := (2q−eb) (mod p); // circular left shift

5: if u = 1 return b;

63

APPENDIX B. INVERSION ALGORITHM FOR MERSENNE PRIMES OF THE FORM 2Q−164

6: (b, c, u, v) := (b + c, b, u + v, u);

7: go to Step 2

	Worcester Polytechnic Institute
	Digital WPI
	2005-05-04

	Low Power Elliptic Curve Cryptography
	Erdinc Ozturk
	Repository Citation

	C:/thesis/thesis.dvi

