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Abstract 

Using Time of Arrival (TOA) as ranging metric is the most popular technique for 

accurate indoor positioning. Accuracy of measuring the distance using TOA is sensitive 

to the bandwidth of the system and the multipath condition between the wireless terminal 

and the access point.  

In a telecommunication-specific application, the channel is divided into Line of 

Sight (LOS) and Obstructed Line of Sight (OLOS) based on the existence of physical 

obstruction between the transmitter and receiver. In indoor geolocation application, with 

extensive multipath conditions, the emphasis is placed on the behavior of the first path 

and the channel conditions are classified as Dominant Direct Path (DDP), Nondominant 

Direct Path (NDDP) and Undetected Direct Path (UDP). In general, as the bandwidth 

increases the distance measurement error decreases. However, for the so called UDP 

conditions the system exhibits substantially high distance measurement errors that can 

not be eliminated with the increase in the bandwidth of the system.  

Based on existing measurements performed in CWINS, WPI a measurement 

database that contains adequate number of measurement samples of all the different 

classification is created. Comparative analysis of TOA estimation in different multipath 

conditions is carried out using the measurement database. The performance of super-

resolution and traditional TOA estimation algorithms are then compared in LOS, OLOS 

DDP, NDDP and UDP conditions. Finally, the analysis of the effect of system bandwidth 

on the behavior of the TOA of the first path is presented. 
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CHAPTER 1 Introduction 

1.1 Background and Motivation 

In recent years, a growing interest in location-finding systems have emerged for 

various geolocation applications. Two existing location finding systems, namely Global 

Positioning System (GPS) and wireless enhanced 911 (E-911), have been used to provide 

relatively accurate positioning for the outdoor environment [1]. These technologies, 

although accurate, could not provide the same accuracy when applied to indoor 

positioning. The different physical requirements of the indoor environment necessitate 

alternative systems to provide accurate positioning. Therefore, the design and 

development of indoor positioning systems requires in-depth modeling of the indoor 

wireless channel.  

The importance of indoor geolocation can be apparent in different applications 

ranging from commercial to military [3]. Commercially, indoor geolocation could 

provide accurate and efficient positioning services for residential homes, where tracking 

children, the elderly or individuals with special needs, such as navigating the blind, could 

be of great importance. Locating specific items in stores and warehouses and locating in-

demand equipment in hospitals are other examples of such services.  In public safety 

applications indoor geolocation systems are needed to track inmates in prisons and 

navigate policeman and fire fighters through buildings and houses. On the military front, 

soldiers in urban warfare will use these applications to navigate inside buildings. 
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As a result of the potential for such application and services, the design and 

development of indoor positioning systems requires in-depth modeling of the indoor 

wireless channel. Radio propagation channel models are developed to provide a means to 

analyze the performance of a wireless receiver. Although many wideband radio models 

for telecommunication application exist in literature, their relevance to geolocation 

systems is distant [2]. In telecommunication application, the sought after parameters are 

the distance-power relationship and the multipath delay spread of the channel [3]. 

However, in geolocation application, the parameters of interest are the relative power and 

the time of arrival (TOA) of the direct line of sight (DLOS) path. Therefore, the accuracy 

of TOA measurement and modeling of the DLOS path is a measure of the performance of 

geolocation systems. However due to severe multipath conditions and the complexity of 

the radio propagation, the DLOS path cannot always be accurately detected [2, 4]. 

Improving the DLOS detection and TOA estimation requires enhancing the time domain 

resolution of the channel response in order to resolve the paths and enhance the accuracy 

of estimation.  

Spectral estimation methods, namely super-resolution algorithms have been 

recently used by a number of researchers for time domain analysis of different 

applications. Specifically, they have been employed in frequency domain to estimate 

multipath time dispersion parameters such as mean excess delay and Root Mean Square 

(RMS) delay spread [5]. In addition, [6] used super-resolution algorithms to model indoor 

radio propagation channels with parametric harmonic signal models. Recently, however, 

super-resolution algorithms have been applied to accurate TOA estimation for indoor 

geolocation with diversity combining schemes [7]. The multiple signal classification 
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(MUSIC) algorithm was used as a super-resolution technique and it was shown to 

successfully improve the TOA estimation.  

In indoor positioning, the behavior of TOA estimation in different environments 

is another important factor in determining the performance of geolocation systems. 

Besides the telecommunication-specific physical classification of line of sight (LOS) 

versus obstructed line of sight (OLOS), [2] have shown that there exists further 

classification that depends on the channel profile and the characteristics of the DLOS 

path. In the geolocation-specific classification, the first category is dominant direct path 

(DDP) where the DLOS path is detected and it is the strongest. The second category, 

nondominant direct path (NDDP) is when the DLOS path is detected but it is not the 

strongest. The last category is undetected direct path (UDP) where the DLOS is 

undetected.  

In this thesis, a comprehensive measurement database has been created for these 

classifications with emphasis on finding more UDP cases. The performance and behavior 

of the DLOS distance error, which is directly related to TOA estimation error, is analyzed 

in all these different scenarios. In addition, the performance of different TOA estimation 

algorithms, namely, inverse Fourier transform (IFT), Direct Sequence Spread Spectrum 

(DSSS) and super-resolution Eigenvector (EV) algorithm is compared for different 

environments and bandwidths. The further classification of channel profiles and the 

performance analysis provide a deeper insight into wireless channel modeling for indoor 

geolocation.  
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1.2 Contribution of the Thesis 

The contribution of the thesis can be summarized as follows. First, a method was 

devised for partitioning geolocation-based measurement database. Second, the existing 

measurement database was complemented for indoor positioning with additional 

measurements to develop a partitioned database of DDP, NDDP and UDP with adequate 

number of samples in each environment. Third, the statistical performance of TOA in 

different partitions or environments and different system bandwidths was evaluated using 

the comprehensive measurement database tailored to indoor geolocation. Finally, the 

effectiveness of super-resolution and traditional TOA estimation algorithms on the 

performance of indoor positioning system in different multipath environment was 

evaluated. 

  

1.3 Outline of the Thesis 

The rest of the thesis is outlined as follows. Chapter 2 provides an overview of 

indoor geolocation systems. The system architecture and geolocation specific matrices 

are explained. In addition a classification methodology is introduced for TOA-based 

indoor channel measurements. The importance of UDP condition on the behavior of the 

indoor channel is further examined. Chapter 3 outlines the procedure for the 

measurement campaign that was conducted along with detailed procedure for collecting 

the measurement samples. Also a UDP-specific measurement approach is described that 

shows the generation of more measurements with this condition. The creation of the 

measurement database is then described in further details. Chapter 4 introduces the 

different TOA estimation algorithms used in thesis. More specifically the IFT, DSSS and 
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the super-resolution EV/FBCM algorithms will be discussed. Chapter 5 provides the 

performance comparison in different indoor multipath environments. This includes 

comparing the performance of TOA estimation in different classification and indoor 

conditions and the analysis of different TOA estimation algorithms in those different 

environments. In addition the effect of the system bandwidth on the TOA estimation is 

also described. Finally Chapter 6 concludes the research results and discuss possibilities 

for future work. 
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CHAPTER 2 Background in Indoor Geolocation 

 Finding the accurate location of a user in an indoor environment has been recently 

both appealing and challenging to researchers. There is an emerging application for 

indoor geolocation that range from civilian to military. In certain applications the users 

can have an RF tag that can be worn and while walking through a building they can be 

located with accuracy. This could be implemented in schools where the young kids could 

be tagged so that the teacher knows exactly where they are at all times. In addition this 

technology can be used in hospitals to locate patients or in-demand equipment and 

medications. The harsh site-specific multipath environment introduces difficulties in 

accurately tracking the position of objects or people. The growing interest and demand 

for such applications dictates examining position more carefully. The indoor channel, as 

mentioned earlier, poses a serious challenge to system designers due to the harsh 

multipath environment. The behavior of the channel changes from building to the 

building and even within a single floor, the channel can change with added objects and 

people moving in the vicinity. As a result considerable work is needed for modeling the 

indoor channel for geolocation applications.  

 Section 2.1 will provide a brief overview of the different elements that make up a 

typical indoor geolocation system. In addition the different design approaches will be 

described with complementary examples. Section 2.2 will introduce the different indoor 

geolocation matrices that deal with different aspects of the physical layer. More 

specifically the TOA-geolocation based metric will be described in more detail since it is 

the focus of this thesis. Section 2.3 describes how the different indoor channel profiles 
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are partitioned and classified. Section 2.4 highlights the UDP problem and provides a 

more detailed description. 

 

2.1 Elements of Indoor Geolocation  

A typical functional block diagram of a wireless geolocation system is shown in 

Fig. 2.1. It is composed of three different blocks. The first is location sensing where the 

desired location metrics such as Angle of Arrival (AOA), Received Signal Strength 

(RSS) or TOA are extracted from the indoor propagation channel.  

 

 

Figure 2.1: A functional block diagram of wireless geolocation systems. 

 

Second, with a certain accuracy, these parameters are fed into the positioning algorithm 

block where it produces the (x, y, z) location co-ordinates. The algorithm receives the 
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measured metrics from the indoor channel with a certain error and tries to improve the 

positioning accuracy. As a result when the metric collection procedure lacks accuracy 

then the positioning algorithm will have to be more complex. For each metric a different 

technical foundation exists. This thesis focuses on TOA-based indoor geolocation. 

However it is worth mentioning the other metrics in order to have an overview of the 

different available positioning techniques. Finally the display system presents the 

location co-ordinates for the user. The system can provide the co-ordinates numerically 

or it can provide them in graphical user interfaces on a certain site-specific map. For 

example, the user can walk around with a PDA and can view his own location within a 

floor, or a worker tries to identify the location of a product in a warehouse, then he walks 

around with his display unit until he finds his desired object.  

In general, there are two approaches for wireless indoor geolocation 

implementation. The first approach is to develop a signaling system and a network 

infrastructure of location sensors focused primarily on geolocation application [4]. The 

second is to use an existing wireless network infrastructure to locate a mobile terminal 

(MT) such as Wireless LAN (WLAN). The advantage of the first approach is that the 

system details are tailored towards the positioning application. The focus is on detecting 

the first path and all the system architecture building blocks are designed accordingly. In 

addition the overall design is under the control of the system designer. As a result the 

system could be implemented as small wearable tags or stickers and the complexity and 

density of the locating infrastructure can be customized according to the degree of 

accuracy needed. The second approach has the advantage that it avoids expensive and 

time-consuming infrastructure deployment. On the other hand, more intelligent 
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algorithms are needed in such systems to compensate for the low accuracy of the 

measured metrics. 

In terms of system implementation when considering the first approach, the 

advantage is that the geolocation system is designed from the ground up. One way to 

approach it is the implementation of super-resolution algorithm for higher time-domain 

resolution. The system captures snapshots in the frequency domain and then through use 

of spectral estimation it is possible to obtain an accurate representation of the time-

domain. In this thesis, this method is analyzed even further for different measurements 

conducted for indoor geolocation. Another emerging approach that has better accuracy 

and potential is Ultra wideband (UWB) technology. The large bandwidth provides high 

time-domain resolution which in return provides better ranging accuracy.  

For the second approach, the use of the network infrastructure in indoor 

geolocation is also feasible but more complex algorithms are needed in order to 

compensate for overall design. One current example is Ekahau positioning software. 

Unlike the other positioning technologies, Ekahau does not apply propagation methods 

that suffer from multipath, scattering and attenuation effects. Instead Ekahau collects 

radio network sample points from different site location. Each sample point contains 

received signal intensity (RSSI) and the related map coordinates, stored in an area-

specific positioning model for accurate tracking. Ekahau provides average positioning 

accuracy up to 1 meter. The software works with industry-standard Wi-Fi (IEEE 

802.11b) networks [13]. When it comes to system deployment, a positioning model is 

created first. Then the positioning model is calibrated where RSSI samples are collected 

from the different points on the map. Then the tracking or positioning can start once the 
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system is calibrated. In other words, this positioning algorithms works with the WLAN 

infrastructure and no information about the access point locations is required. Such 

technology depends on complex positioning algorithms and does not concentrate on the 

physical layer. In fact, it uses RSS as a metric instead of trying to extract the TOA or 

AOA which is more challenging task at the physical layer. Needless to say, when 

following the RSS method and bypassing the propagation issues the complexities lie in 

the software itself.  

 

2.2 Indoor Positioning Matrices 

As mentioned earlier there are different metrics that can be used in indoor 

positioning. Although this thesis focuses on TOA-based indoor geolocation it is worth 

mentioning the other techniques. In AOA-based indoor geolocation direction-based 

triangulation is used, where two or more reference points (RP) are used to determine the 

position of the mobile terminal (MT). The AOA is usually measured with directional 

antennas or antenna arrays. This metric is not preferable in indoor environment because 

of the harsh multipath which introduces inaccuracies into the detection of the AOA in 

both LOS and OLOS conditions. 

In RSS-based indoor geolocation, the received signal power can be easily 

measured at the receiver. The RSS is related to the distance between the transmitter and 

the receiver mathematically in the form of path loss models [3]. The path loss models 

portray the signal power attenuation as the signal travels through the indoor environment. 

If the path loss model is known in advance then the distance between the transmitter and 

receiver can be calculated by measuring the received signal strength and comparing to the 
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known path loss model. A wide variety of path loss models have been developed for 

different environments, each with different values of model parameters or different 

parameters and mathematical function forms [3]. The path loss model in indoor 

environment is highly site-specific. For example, the value of power-distance gradient, 

which is a parameter of path loss models, varies in a wide range between 15-20 

dB/decade and a value as high as 70 dB/decade [3]. As a result of the complex indoor 

radio propagation channel, in practice the RSS-based indoor geolocation technique can be 

accomplished by estimating the path loss model of a specific indoor environment during 

system installation. In addition, there has to be a frequent re-estimation of the path loss 

model of the indoor radio propagation channel in order to establish accurate positioning 

values. An example of an RSS-based geolocation system is Ekahau software which was 

described earlier.  

In TOA-based geolocation systems the important parameters are the TOA of the 

direct line of sight (DLOS) path since it is directly proportional to the physical distance 

between transmitting and receiving antennas. An example of the indoor multipath and the 

geolocation specific parameters is shown in Fig. 2.2. However since the system is not 

ideal – it has finite bandwidth, finite dynamic range, and introduces noise – the DLOS 

path can never be extracted perfectly from a measurement. The most reasonable 

approximation is the first detected path in the profile above a give noise floor. The other 

paths are also important since they can affect the TOA and amplitude of the first path 

[10]. The relative strength of the strongest path to the weakest path provides the dynamic 

range of the system and it is also important. The remaining paths are not very important 
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in geolocation. Instead they are more important for telecommunication in terms of 

multipath delay spread.  

 

 

Figure 2.2: Multipath profile and important geolocation parameters. 

 

 Calculating the TOA from the channel profile requires several steps. To further 

clarify the procedure Fig. 2.3 shows a measured channel profile in the time-domain. For 

each measured profile calculating the TOA with exact accuracy is not possible due to 

multipath effects and finite bandwidths. However with a given expected TOA, there is an 

estimated TOA and thus a corresponding estimation error. This estimation error is 

directly related to the distance error through the speed of wave propagation, time and 

distance relationship.  
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Figure 2.3: Normalized sample time-domain channel profile and TOA-based 

geolocation parameter calculations. 

 

The objective of the estimation algorithms is to minimize this estimation error. In 

some cases this is achievable and in some others it is very difficult. A combination of 

system bandwidth and estimation algorithms can in fact reduce the error to acceptable 

levels, while at other cases this might not be achievable. 

 

2.3 Partitioning of Indoor Geolocation Database  

Wideband radio modeling for indoor geolocation application requires an in-depth 

characterization of the multipath behavior. Since the DLOS path is the most important 

parameter in indoor geolocation, the behavior of the channel profile or specifically the 

Expected TOA 

Estimated TOA

Estimation Error 
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TOA of the first path depends on the physical location of the receiver with regards to the 

transmitter. Thus it is pertinent to examine different measurement classifications to better 

analyze and characterize the behavior of TOA error. The performance of TOA estimation 

varies substantially in different environments. Two classification categories to be 

discussed next are based on the channel profile of the measurement data. Particularly, the 

first category is better suited for telecommunication modeling, since the behavior of root 

mean square (RMS) delay spread and distance-power relationship varies significantly 

between LOS and OLOS scenarios. The second classification is better suited for indoor 

geolocation modeling since it focuses on the behavior of the first path. In other words the 

measurement profile is categorized according to the power and availability of the DLOS 

path. The channel profiles were obtained by applying the IFT on the frequency domain 

measurement followed by a Hanning window.  

 

2.3.1 Line of Sight and Obstructed Line of Sight 

In wideband indoor radio propagation studies for telecommunication applications 

often channel profiles measured in different locations of a building are divided into line 

of sight and obstructed line of sight because the behavior of the channel in these two 

classes has substantially different impacts on the performance of a telecommunication 

system. When the transmitter and receiver have no physical obstructions between them 

the measurement is classified as LOS. When an obstruction exists, such as a wall, the 

profile is classified as OLOS. For instance in telecommunication applications the 

important channel characteristics are power distance relationship and multipath delay 

spread. The power distance relationship behaves differently in LOS as compared with 
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OLOS. The OLOS environment introduces larger power attenuation with distance. A 

similar situation holds for the multipath delay spread where OLOS introduce substantial 

number of multipath components when compared to LOS. This in turn reflects data rate 

limitations in indoor communications. However, this type of classification for the study 

of TOA indoor geolocation modeling has its limitations. 

When considering this type of channel classifications for indoor geolocation 

different parameters are of concern namely, the TOA of the DLOS path and the relative 

power. As a result the desired channel classification should emphasize the behavior of the 

first path as opposed to the entire channel profile as desired in telecommunication 

applications. Grouping the channel profiles in LOS and OLOS for indoor geolocation 

does not provide a good insight into the behavior of the first path. For the former case, 

the DLOS path is the strongest and thus the TOA can be measured with great accuracy. 

In the latter, however, the DLOS path is obstructed by one to several walls depending on 

the location of the receiver. The accuracy of TOA in this case, suffers due to the 

unavailability of a strong DLOS path. In fact for some cases, the first path is undetectable 

causing the major error in the estimation of TOA. This classification lacks the ability to 

provide statistical analysis for the behavior of the first path. With OLOS the first path 

behavior ranges from the strongest to being undetected. When performing statistical 

analysis, OLOS does not provide an insight into the behavior of the DLOS path because 

it combines several multipath conditions together. A more insightful channel 

characterization is described in the next section where the emphasis is placed on 

classifying the different scenarios for the DLOS path. 
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2.3.2 DDP, NDDP and UDP 

A more logical approach to categorizing the different channel profiles for indoor 

geolocation would be to consider the behavior of the DLOS path in each case.  

 

 

Figure 2.4: DDP measured channel profile obtained at 200 MHz bandwidth. 

Vertical dashed line is expected TOA and horizontal dashed line is the threshold. 

 

Regardless of physical obstructions, the measurement is classified according to the 

availability and the strength of the DLOS path. The factors that affect categorizing the 

different profiles are receiver sensitivity and system dynamic range. These two 

constraints establish a threshold for use in characterization of the indoor multipath 

profiles. The receiver sensitivity is the noise level of the system where any path under 

that level cannot be a detected path. The dynamic range is defined as the ratio of the 

power of the strongest path to the power of the weakest detectable path in a measured 
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profile. For this categorization, a threshold was used in order to distinguish between a 

DDP, NDDP and a UDP. This threshold was selected based on the larger value of the 

measurement system noise floor (receiver sensitivity) and the side-lobes of the filtering 

window used (dynamic range). This ensured that the first peak of the channel profile is 

classified correctly. From these multipath conditions, DDP is the easiest to detect from 

the profile, as can be seen from Fig. 2.4 because it has a distinct strong first path. This 

category has an advantage where traditional GPS receivers can lock onto the DLOS path 

and detect its TOA accurately.  

 

 

Figure 2.5: NDDP measured channel profile obtained at 200 MHz bandwidth. 

Vertical dashed line is expected TOA and horizontal dashed line is the threshold. 

 

When the first path gets weaker but still above the threshold, the profile fits in the 

NDDP category which is shown in Fig. 2.5. For this case, a significant loss of accuracy in 
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TOA estimation can be reduced when a more complex RAKE receiver is used in order to 

resolve the multipath and intelligently detect the TOA of the DLOS path.  

 

 

Figure 2.6: Measured UDP channel profile at 200 MHz. Vertical dashed line is 

expected TOA and horizontal dashed line is the threshold. 

 

A profile is a UDP, when the first path is below the threshold indicating loss of the DLOS 

path as evident from Fig. 2.6. In this unfavorable situation neither the GPS nor the RAKE 

receiver can accurately detect the TOA and this, specifically, causes the most significant 

error in indoor positioning applications. If practical considerations regarding the dynamic 

range of the system are neglected then there are essentially two categories: DDP and 

NDDP. However, in reality, the implemented receiver will have limitation such as 
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sensitivity and dynamic range and this will create situations where the DLOS path cannot 

be detected. 

Overall UDP is expected to show substantial degradation in TOA estimation for 

geolocation application when compared with the other scenarios. As a result it is 

important to understand how and why UDP situations arise in indoor environments. The 

next sections attempt to shed some light on this rather important case where a 

measurement campaign was set up to better analyze and understand this situations.  

 

2.4 The Importance of UDP Condition on the Behavior of the Channel 

The accuracy of TOA estimation in indoor geolocation application is the most 

important issue in distance estimation. The harsh indoor multipath conditions introduce a 

random dimension to the problem. The behavior of the first path changes in different 

locations depending on the indoor physical structure of the building and the channel 

characteristics. With these different channel classes described in the introduction, a major 

error contributor, UDP is the most significant obstacle to the accuracy of indoor 

geolocation systems. 

A sample measured channel profile which describes the characteristics of the 

UDP case is shown in Fig. 2.6. It is clear that the non-DLOS paths have significant power 

when compared to the first path. This relative power drop is beyond the dynamic range of 

the measurement system. In most cases, UDP is caused by the existence of a metallic 

obstruction in the direct path. In other instances, there might be a number of walls that 

attenuate the first path considerably compared to the other paths. In both cases, the paths 
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arriving from other directions are much stronger. As a result when analyzing the 

performance of an indoor geolocation system it is important to have an in-depth 

evaluation on why and where this UDP occurs so that it can shed more light on how to 

avoid it.  

However, in situations where UDP is unavoidable, the next step is to find ways to 

resolve it or reduce its effect on TOA estimation. One way is to use estimation algorithms 

to try to resolve the multipath and perhaps reduce the error in UDP conditions. A second 

approach might consider the bandwidth of the system. In many cases, when the 

bandwidth of the system increases, the time-domain resolution and thus the accuracy of 

TOA estimation increase. So could increasing the bandwidth actually solve this grave 

problem? Both the use of estimation algorithms and the system bandwidth will be 

discussed later and its effect on TOA estimation error will be analyzed. 

In order to analyze the effect of TOA estimation errors in UDP conditions it is 

necessary to have an experimental basis to draw useful conclusions. As will be described 

in the next chapter, a measurement database was created for use in analysis. The special 

case of UDP did not receive a lot of attention in the past and the previous measurements 

were classified according to LOS and OLOS. As a result a measurement campaign was 

created to collect more UDP measurements for statistical analysis. Before that, however, 

a description of the measurement system and the database used in the analysis will 

provide both a clarification and justification for the measurement approach. 

 

 



 21

CHAPTER 3 Measurement Campaign and Database Partitioning 

 

In the previous chapters, it was illustrated that the undesirable UDP condition 

introduces substantial ranging errors and can be a limiting factor in deployed geolocation 

systems. Analyzing the performance of indoor geolocation systems in this critical 

multipath condition requires an experimental basis on which to draw useful conclusions. 

Experimental measurements provide further insight and understanding into the causes of 

such a phenomenon and an evaluation of how severe the problem can be. By observing 

the statistical data that can be extracted from the measurements one could find out how 

much ranging error does UDP actually introduce compared to other multipath conditions 

such as DDP and NDDP. In addition, when comparing different TOA estimation 

algorithm it will be very helpful to have an experimental set of measurement data to 

analyze their performance in different multipath conditions. Furthermore these 

measurements could shed some light on how to avoid or mitigate this unfavorable 

condition. Previously, there were some indoor channel measurements reported in 

literature that were conducted by the Center for Wireless Information Networks 

(CWINS) laboratory at Worcester Polytechnic Institute (WPI) [9, 10]. These 

measurement campaigns, however, did not focus on the UDP problem and as a result 

lacked sufficient number of measurement points. They were mainly LOS and OLOS 

measurement scenarios in different buildings. The OLOS measurements had some UDP 

measurement points but they were not adequate. As a result, the lack of sufficient 
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measurements geared towards the UDP condition provided an incentive to start a 

measurement campaign and to create a database for statistical analysis. 

The measurement campaign which will be discussed in details in this chapter is an 

effort to find locations where the probability of UDP occurrence is the greatest in order to 

collect more data samples. The measurement campaign is composed of two experimental 

setups. The first one, Setup 1, is a deterministic approach in terms of finding UDP 

conditions. The transmitter and receiver antennas were placed in locations that were 

expected in advance to introduce major attenuation to the first path and thus exhibit UDP 

symptoms. The second experiment, Setup 2, is more of a random approach where OLOS 

measurements were collected without a previous knowledge of the whereabouts of those 

conditions. This experimental campaign helped in the creation of a database that provided 

foundations for statistical analysis. The database is composed of this measurement 

campaign along with the other previous CWINS measurements. In this chapter, first the 

measurement system is described and then the procedure for finding and measuring UDP 

is explained. Finally the procedure for creating the database is outlined. 

Section 3.1 provides a detailed description of the measurement system used to 

collect the data samples. Section 3.2 outlines the different steps taken to search for more 

UDP measurement samples used later for statistical analysis. Section 3.3 presents the 

measurement database and how it was put together. 
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3.1 Measurement System 

One of the most popular techniques to experimentally calculate the TOA is 

through the use of a frequency domain measurement system which is described in [8]. 

The main component of the measurement system used is an HP-8753B network analyzer. 

Figure 3.1 shows the measurement system and its components. 

  

 

Figure 3.1: Frequency domain measurement system 

 

The measurement system is composed of the network analyzer, a power amplifier, 

an attenuator and a pre-amplifier. The network analyzer is controlled by a laptop through 

a Hewlett Packard’s version of a general-purpose instrumentation bus (GPIB) where a 

program is used to select the desired parameters of the measurement scenario. The laptop 
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initializes the network analyzer preceding each measurement where the start and stop 

sweeping frequencies are selected along with the number of desired samples and collects 

the data at the completion of each measurement. The transmitted signal passes through a 

30 dB amplifier before going to the channel. The receiver component attenuates and pre-

amplifies the incoming signal before passing it to the network analyzer. In this campaign, 

the network analyzer was used to sweep the frequency domain channel from 900 to 1100 

MHz with 400 samples. The magnitude and phase of the measured frequency response 

were stored for each measurement and later used for further processing. Both the 

antennas used in the measurement system are 1 GHz monopole quarter wave adjusted on 

square plates. 

 

 

Figure 3.2: 1 GHz monopole quarter wave antennas 
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Figure 3.2 shows a picture of the monopole quarter wave antennas. The dimension of the 

monopole corresponds to λ/4, where λ is the wavelength of the signal. The side of the 

ground plane corresponds to λ/2. The frequency domain measurements were conducted 

by fixing the transmit antenna and moving the receiver around the desired locations. 

After data collection, the measured frequency domain channel profiles were further 

processed and the time-domain channel profile was obtained by use of inverse Fourier 

transform (IFT). Since the noise floor of the measurement system is -100 dBm, and the 

Hanning window has side lobes of -31 dB below the maximum peak of the profile, a 

threshold is selected according to the larger value of the two. As mentioned earlier, this 

threshold is used to characterize the channel profile according to the power of the DLOS 

path. 

 

 

    (a)                (b) 

Figure 3.3: (a) Sample frequency domain measurement (b) corresponding time-

domain profile. 
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Figure 3.3 shows a sample frequency domain measurement and its corresponding 

time-domain profile. Notice the frequency selective fading in the frequency domain. Also 

the time-domain profile illustrates the multipath components arriving at different delays 

with the first path not the strongest which in this case it is an NDDP condition. In this 

figure, the time domain profile is obtained by application of the IFT followed by a 

Hanning window. In the next chapters different estimation algorithms will be introduced 

and it will be shown how they provide different resolution capabilities and thus different 

TOA estimation. 

 

3.2 The Search for UDP 

A simple yet insightful method to better understand UDP is to analyze the 

locations that maximize attenuation on the DLOS path in indoor environments. This 

provides a methodology to understand how and when UDP occurs. The measurement 

campaign is built on two measurement setups that deal with the occurrence of UDP 

differently. In Setup 1, a deterministic approach is followed where the selected receiver 

measurement points were expected to exhibit UDP characteristics because of the physical 

geometry and the actual obstruction in the DLOS path. In Setup 2 a more random 

approach is followed as several measurement points were taken but their nature was not 

expected in advance. In other words in the former approach, a prior examination of the 

floor plan showed that if the transmitter and receiver were placed in such locations, there 

is a high probability that the location exhibits a UDP condition. On the other hand, in the 

latter case it was not known beforehand what it would exactly produce. 
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The measurements were conducted in the Atwater Kent (AK) building, the 

Electrical and Computer Engineering (ECE) Department at WPI. The AK building was 

built in 1906 and had two major remodelings and additions in 1934 and 1981. Therefore, 

in some areas within the building there is more than one exterior-type wall. The exterior 

walls of this building are heavy brick, the interior walls are made of aluminum stud and 

sheet rock, the floors are made with metallic beams, the doors and windows are metallic, 

and many other metallic objects are spread over different laboratory areas. The excessive 

number of metallic objects and heavy and multiple external walls makes this building a 

very harsh environment for radio propagation. As a result this makes it a suitable building 

for indoor geolocation measurements since the DLOS path will be attenuated harshly in 

most cases. The measurement campaign was conducted on the third floor of AK building. 

The first step of the campaign procedure focused on the selection of the measurement 

points’ locations. After careful examination of the 3rd floor plan, the location of the 

transmitter and receiver were selected to investigate the effect of walls and metallic 

objects on the DLOS path. As a result two different experimental setups were devised to 

provide different attenuation effects on the first path. Each setup involved placing the 

transmitter in a fixed location and moving the receiver around it through the corridors. As 

will be described later in more details, in the first setup the transmitter was located in AK 

320, the CWINS laboratory, with the receiver points located around it in the corridors. In 

the second setup the transmitter was located in the corridor to the right of the CWINS 

laboratory while the receiver was moved through the corridors. Once the locations were 

determined, the measurement points were marked on the 3rd floor and the measurement 

campaign started. The measurements involved moving the receiver along the designated 
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points, measuring and recording the channel and proceeding to the next point. The saved 

measurement files were then used for further processing and analysis. 

Setup 1 took advantage of a metallic chamber, better known as Faraday Chamber, 

residing in the CWINS lab. The transmitter was placed inside the lab and the receiver was 

moved around it through the corridors. Figure 3.4 shows the 3rd floor plan of AK building 

along with the location of the transmitter and receiver points for Setup 1. The metallic 

chamber designated by a gray box is situated in the corner of the lab. The receiver points 

shown in the figure were taken 1 meter apart. This helped to provide gradual snapshots 

into the channel profile as the receiver moves from one point to the next.  

 

Figure 3.4: Measurement Setup 1 in AK building ECE department at WPI. 

 

In other words, prior to conducting the measurements it was desirable to see what 

happens to the DLOS path as the receiver moves in a straight line from one point to the 

other. What would the first measurement point be? Would the measured channel profiles 
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change from DDP to NDDP gradually and eventually end up as UDP as the power of the 

first path weakens? Or would UDP conditions appear randomly between NDDP points? 

The answer to these questions would provide an insight into how the first path behaves 

and the nature of UDP occurrence. In radio propagation it is well known that metallic 

objects reflect most of the propagating wave and weaken the transmitted part. As a result 

it would be interesting to see whether the metallic chamber would produce UDP 

conditions or not. 

The expectations for this part of the measurement campaign were as follows. The 

occurrence of UDP would be localized to the region shadowed by the metallic chamber 

as shown in Figure 3.4. It was, therefore, expected to exhibit UDP characteristics with 

high probability since the DLOS path suffers severe attenuation while the other paths 

arrive with relatively stronger power. In addition it was expected that the other 

measurement points not covered by the UDP region would most likely exhibit NDDP 

characteristics since they do not have a metallic chamber in their DLOS path. 

After conducting the measurements and analyzing their channel characteristics, 

the outcome is interesting. In Figure 3.4 the light dots represent NDDP measurements 

points while the dark ones represent UDP. As expected the region shadowed by the 

chamber exhibited UDP characteristics. The DLOS path for those points was expected to 

experience severe attenuation. Indeed after analyzing the measurement data it was 

possible to see that the bounded region had a high probability of UDP occurrence. There 

are two points, however, in this region that appeared as NDDP. A possible explanation 

for this could be that since these two points are located exactly around the corner of the 

corridor, the diffracted path is very close to the direct path and this might have appeared 
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to be a stronger first path than expected. As for the other points in this region, it is clear 

that the chamber is the major factor in attenuating the first path. Another interesting 

observation is that in addition to the region affected by the chamber, there are four UDP 

points that occurred, namely points 8, 10, 15 and 16, in the corridor around the CWINS 

lab. This is a clear indication that this unfavorable condition occurs in different locations 

because of metallic objects or other obstructions that are not accounted for. In addition 

there was one DDP point, namely point 1, which is closest to the transmitter. Although 

the wall is an obstruction and this measurement point would be classified as OLOS, but 

the strong first path classifies it as DDP. The other NDDP points close to it have a strong 

first path, but they have other paths that are slightly stronger. The distance between the 

transmitter and receiver is directly related to the TOA and obtaining the distance from the 

TOA is simply the relationship with the speed of light. The estimated distance is obtained 

from the estimated TOA. As mentioned earlier, the frequency domain is converted to 

time-domain by application of the IFT. The results presented in this chapter all use the 

IFT with peak detection as the estimation algorithm. Later on, more complex TOA 

estimation algorithms will be introduced and their time-domain resolution and thus 

accuracy will vary. The distance error of UDP is substantially larger than NDDP or DDP. 

The distance error for UDP ranges from 3.7 to 10.8 meters. On the other hand, NDDP has 

a much lower error range, namely from 0.123 to 8.8 meters. Another interesting 

observation is that from this particular measurement setup 60% of the points are UDP 

condition and the majority of those were the outcome of the metallic chamber. Thus the 

prior expectations were valid with some interesting observations regarding the 

appearance of UDP in other locations. 



 31

 

 

Figure 3.5: Setup 2 of the measurement campaign at 3rd floor of AK, the ECE 

department at WPI. 

 

Setup 2 was conducted on the third floor of AK, and it focused on an ad hoc 

approach in measurements. The transmitter was fixed in the center of the corridor to the 

right of the CWINS lab as shown in Figure 3.5 and the receiver was moved in several 

points along the lower and parallel corridors. All the receiver points were 1 meter apart, 

except for the measurement points 37-56 they were 50 cm apart. On the contrary to the 

earlier experimental setup, the outcome of this approach was not known in advance and 

in addition fewer UDP points were expected and more of NDDP. However after analysis 

a substantial amount of UDP points, around 32% of the measurements which corresponds 

to 18 UDP points, were measured at different locations. Although this number is less than 

the previous setup, nonetheless, some interesting observations are introduced. It is 
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interesting to note how these unfavorable scenarios are not localized only to a certain 

region or corner of the floor plan, but rather they exist in “spots” strengthening the notion 

that the DLOS path can be lost in locations where system designers might have not 

predicted because of additional obstacles apart from the walls. In some cases UDP occurs 

between NDDP points and in others it occurs subsequently one after the other. For the 

former case this is mainly because of shadow fading caused by obstacles, in addition to 

walls, that suddenly attenuate the first path significantly. However for the latter case, the 

walls are the main contribution to the loss of the first path. The contribution of the walls 

can be supported by the results of measurement points 45-56 which are further 

highlighted in Fig. 3.5. The loss of DLOS path is a clear indication that the walls are the 

major factor attenuating its power since they are subsequently followed by each other. On 

the other hand UDP occurs in other locations where the walls are not the primary factor. 

For example, points 3-6 in Fig. 3.5 are UDP. There are two walls in the DLOS path of 

those points. However the number of walls for the other points such as 14, 15 or even 16 

are greater but still they have a strong first path. For instance,  points 22-35 are all NDDP 

and there are 3 to 4 walls in the DLOS path. In addition the distance is larger indicating 

further attenuation compared to points 3-6. The loss of the first path for points 3-6 is a 

clear indication of shadow fading caused by a metallic object such as a cabinet or shelf 

that might be located somewhere in room AK 318. Similar reasoning holds for UDP 

points 18 and 36 where the points before them and after them exhibit NDDP 

characteristics. 

 The estimated distance error as a result of this measurement campaign ranges 

from less than 1 meter to more than 10 meters in some cases. Figure 3.6 shows the scatter 



 33

plot of the distance error for setup 1 with the respective distance of the measurement 

campaign at 20 MHz system bandwidth.  

 

 

Figure 3.6: Scatter plot of the distance error for Setup 1 at 20 MHz bandwidth. 

 

When the system bandwidth is further increased to 200 MHz the distance error 

decreases because of higher time-domain resolution. However still some of the 

measurement points, especially the UDP ones will continue to exhibit higher distance 

error. Figure 3.7 shows the scatter plot of the distance error for the same setup at 200 

MHz bandwidth. 
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Figure 3.7: Scatter plot of the distance error for Setup 1 at 200 MHz bandwidth. 

 

First, comparing Fig. 3.7 to Fig. 3.6 it is clear that the distance error drops 

significantly at the higher bandwidth. In fact the error drops well below 10 meters as 

compared to 40 m. Second, even at this higher bandwidth there are many measurement 

points exhibiting errors higher than 2 meters which is not acceptable for indoor 

geolocation. The majority of the error is contributed by UDP conditions. The outcome of 

Setup 2 is also worth observing in terms of distance error behavior. Figures 3.8 and 3.9 

show the scatter plots of the distance error for Setup 2 at 20 and 200 MHz respectively. 

Again what is noticeable here is both the effect of increase in system bandwidth and the 

error values attributed to NDDP and UDP conditions. 
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Figure 3.8: Scatter plot of the distance error for Setup 2 at 20 MHz bandwidth. 

 

 

Figure 3.9: Scatter plot of the distance error for Setup 2 at 200 MHz bandwidth. 
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The distance error decreases at 200 MHz, however there are some error values 

close to 10 meters in this case which highlights a serious concern for indoor geolocation. 

One would expect at such a high bandwidth, that the estimation errors might decrease to a 

reasonable level. However, UDP condition shows that it contributes substantial errors 

even at higher bandwidths. This phenomenon will be investigated further for the entire 

measurement database in Chapter 5 along with the effect of different TOA estimation 

algorithms. Another insightful method to get a better feel for the estimation errors in the 

different measured areas is the Complementary Cumulative Distribution Function 

(CCDF). The CCDF for Setup 1 and 2 is computed for different system bandwidths, 

namely 20, 100 and 200 MHz as illustrated in Fig. 3.10 and 3.11.  

 

 

Figure 3.10: CCDF for measurement Setup 1 at 20, 100 and 200 MHz. 
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Figure 3.11: CCDF for measurement Setup 2 at 20, 100 and 200 MHz. 

 

3.3 Measurement Database 

A measurement database was created by combining previous measurements 

produced by the CWINS lab and the recent measurement campaign conducted on the 

third floor of AK building. The previous measurements include the LOS measurements 

taken on the second and third floor of AK building reported in [9], and mainly OLOS 

measurements reported in [10]. 

The LOS measurements were conducted in AK building in rooms 320, 311, 219 

and the undergraduate lounge on the first floor. A short description of the measurement 

site would provide an understanding of the indoor environment. AK 320 is the CWINS 
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lab and it is much like a typical office environment. It includes office desks, file cabinets 

and metallic window frames and doors. In addition to the fluorescent lights, many utility 

pipes and metallic support beams hang from the ceiling. AK 311 is a small conference 

room that includes blackboards, a desk and several chairs. The space is surrounded by 

brick walls and metallic window frames and the floor is covered by carpet. AK 219 is 

located on the second floor of AK and it is surrounded by brick walls and metallic 

windows. The floor is covered by carpet and the room contains several rows of desks and 

chairs. The undergraduate lounge is located on the first floor of AK and in addition to the 

brick walls and the metallic support beams hanging from the ceiling, it contains tables 

and couches spread across it. The remaining LOS measurements were conducted in 

Norton Company and they produced 10 points. Norton Company is a manufacturer of 

welding equipment and abrasives for grinding machines. The building selected for 

measurement is Plant 7 that is a large building with dimensions in the order of a few 

hundred meters. This building is connected to a five-floor brick building and to another 

manufacturing floor through a long corridor. The remainder of Plant 7 is surrounded 

mainly by open areas and small buildings. Inside the building there are huge ovens, 

grinding machines, transformers, cranes and other heavy machinery. The building 

includes a set of partitioned offices with brick external walls, metallic windows and doors 

attached to the main huge open manufacturing area with steel sheet walls of a height 

around seven meters and small metallic windows near the ceiling. These sites provided 

most of the LOS measurement points. This LOS measurement campaign contained a total 

of 61 points, 54 of which are DDP and only 7 are NDDP. This shows that most of LOS 
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measurements where no obstructions, such as a wall, are present then the DLOS path is 

almost always the strongest. 

The OLOS measurements were conducted in different sites which included 

Norton Company, Fuller Laboratory in WPI and WPI Guest House. For all locations, 

different measurement scenarios were carried out to examine the effects of external and 

internal walls of the buildings on the channel characteristics. These are indoor to indoor, 

outdoor to indoor and outdoor to floor. For indoor to indoor both the transmitter and 

receiver were inside the buildings. For outdoor to indoor the transmitter was placed 

outside while the receiver was inside the building along different measurement points. 

For the outdoor to floor, the transmitter was placed outside the building and the receiver 

was moved into higher floors. Fuller Laboratory is a modern building that houses the 

Computer Science department at WPI and has been selected as the site for measurements 

applicable to office areas. The dimensions of this building are on the order of a few tens 

of meters. The external walls of the laboratory are made of brick with some aluminum 

siding on the sides, metallic window frames and doors. The internal walls are made of 

sheetrock and in some offices soft partitions divide the room into cubicles. The WPI 

Guest house is a big residential house with wooden exterior walls and sheetrock interior 

walls. The house is very old and some portions of the external walls are made of stone. 

The house is located in a fairly open area with a few buildings of similar features located 

nearby. Inside rooms have dimensions in the order of few meters. This OLOS 

measurement campaign produced 90 points, 10 LOS and 80 OLOS. These 90 points 

contained 33 DDP, 41 NDDP and only 16 UDP. Thus the lack of UDP justified the need 

for the UDP measurement campaign. The recent UDP campaign produced 105 
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measurement points. 49 of those measurement locations are UDP. Another 55 are NDDP 

and only one measurement point is DDP. Table 3.1 shows the measurement database and 

the classification breakup.  

 

Table 3.1: Measurement Database  

Measurement Campaign LOS OLOS DDP NDDP UDP
E. Zand 2003 61 0 54 7 0 

J. Beneat et al. 1999 10 80 33 41 16 
UDP campaign 0 105 1 55 49 

Total (256 points) 71 185 88 103 65 
 

Including the earlier reported CWINS measurements, a total of 256 measurements 

of which 71 are LOS and 185 are OLOS. Most of LOS cases are DDP and most of OLOS 

cases are NDDP and UDP. Overall the database contains a total of 65 UDP measurement 

points along with 103 NDDP and 88 DDP points used for statistical analysis. The 

measurement database is used in analyzing the performance of different estimation 

algorithms in those different multipath conditions. 

Finally it is important to have a general sense of how DDP, NDDP and UDP 

compare to each other in terms of distance error. From the 256 measurement points, 

scatter plots of each condition compare the distance error behavior at 200 MHz. Figure 

3.12 shows the scatter plot of DDP distance error at 200 MHz. Most of the measurement 

errors occur near zero and all of the distance estimation errors are well below 2 meters.  
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Figure 3.12: Scatter plot of DDP distance error at 200 MHz. 

 

This is very typical of DDP again because of the strong first path and with a high 

resolution the errors are well contained in this low region. For NDDP, however, error 

values are much larger than DDP. Figure 3.13 shows the scatter plot of the distance 

estimation errors. 
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Figure 3.13: Scatter plot of NDDP distance error at 200 MHz. 

 

In this case, NDDP there is a greater fraction of the errors occur between 0 and 4 

meters and few errors are more than 6 meters. The presence of the first path here allows 

its detection but in some instance since the paths arrive in clusters and the peak of the 

cluster gets detected instead adding to the distance estimation error. In other cases the 

peak of the cluster is very close to the arrival of the first path and this is illustrated with 

errors close to zero. Again with 200 MHz bandwidth one would expect that most of the 

multipath is resolved and that the first path can be detected accurately but this is not the 

case here. Figure 3.14 shows the distance estimation scatter plot for UDP. Most of the 

estimation errors here are between 2 and 10 meters as compared with NDDP where most 

of the errors occurred below 4 meters. From the description of UDP earlier, it seems 

natural that with the loss of the DLOS path the error values tend to be substantial. Even at 
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a bandwidth of 200 MHz these errors cannot simply be ignored for indoor geolocation. 

Notice also that there are few estimation errors close to zero and no errors below zero 

which shows how the non-existence of a first path causes a shift in the error spread across 

higher distances. The emphasis of this thesis highlights the UDP problem and evaluates 

the degree of degradation experienced when falling in such an unfavorable condition. 

Later in Chapter 5 different estimation algorithms will be applied to the measurement 

data in order to compare the effect they have on the TOA estimation errors. 

 

 

Figure 3.14: Scatter plot of UDP distance error at 200 MHz. 
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CHAPTER 4 TOA Estimation Algorithms for Indoor Geolocation 

 

The accuracy of TOA estimation is the most important parameter in indoor 

geolocation. As a result it is essential to examine the factors that affect the accuracy and 

try to figure out ways to improve it. The harsh indoor multipath is already a limiting 

factor in deployed geolocation systems. As described in the previous chapter, UDP is a 

very critical condition that substantially degrades the accuracy of the system. One of the 

ways to mitigate the problem is to consider behavior of the DLOS path as the bandwidth 

of the system is changed. It is well known that increasing system bandwidth enhances the 

time-domain resolution and as a result improve the accuracy of TOA estimation. In 

situation where the system bandwidth is fixed it is important to find other alternatives to 

improve the accuracy. One of the practical alternatives is to use post-processing 

techniques on the frequency domain measurement data. These techniques are the TOA 

estimation algorithms. In signal processing different algorithms provide different levels 

of accuracy and in addition, the complexity of implementation is varied as a result. 

Detecting the DLOS path requires obtaining the time-domain channel profile form the 

frequency domain measurement data. The following TOA estimation algorithms provide 

different time domain resolutions that are directly related to accuracy of TOA estimation. 

These algorithms are used in analyzing the behavior of the first path in different 

multipath conditions with special attention to UDP. 

Section 4.1 introduces the inverse Fourier Transform (IFT) estimation technique 

and its basic building blocks. Section 4.2 describes the Direct Sequence Spread Spectrum 
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(DSSS) algorithm. Finally in section 4.3 the theoretical background of the super-

resolution algorithm is introduced. 

 

4.1 IFT 

A simple and conventional TOA estimation algorithm, IFT provides a time 

domain representation of the channel profile from the frequency domain measurement 

data. When the time domain response over part of the time period is desired, the chirp-z 

transform (CZT) is preferred, providing flexibility in the choice of time domain 

parameters with the cost of longer computational time as compared with the IFT. Figure 

4.1 shows the block diagram of the IFT algorithm.  

 

Figure 4.1: Block diagram of IFT estimation algorithm. 

 

As mentioned earlier, prior to application of the CZT, a Hanning window is used 

to avoid leakage and false peaks by reducing the side-lobes of the time domain response 

with the cost of reduced resolution. The peak detection algorithm then selects the closest 

peak to the actual TOA. In this thesis, the term IFT will generally mean application of the 

CZT unless otherwise stated. 
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4.2 DSSS 

Another estimation algorithm uses the cross-correlation techniques with DSSS 

signals. In order to simulate DSSS signal-based cross-correlation technique, the 

frequency response of a raised-cosine pulse with roll-off factor 0.25 is first applied to the 

frequency domain response as a combined response of band-limitation pulse-shaping 

filters of the transmitter and receiver. Then, the resultant frequency response is converted 

to time domain using the IFT for TOA estimation [7]. Figure 4.2 shows the block 

diagram of the DSSS estimation algorithm. As mentioned earlier, a peak detection 

algorithm is used to estimate the TOA of the DLOS path. 

 

Figure 4.2: Block diagram of DSSS TOA estimation algorithm 

 

4.3 Super-resolution EV/FBCM  

The need for higher resolution in the time-domain entails the use of more 

complicated estimation algorithms. In this thesis, a variant of MUltiple Signal 

Classification (MUSIC) algorithm is used as a super-resolution technique in TOA 

estimation for indoor geolocation. The indoor radio channel suffers from severe multipath 

and the equivalent lowpass impulse response is given by 
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where pL is the number of multipath components, kj
k k e θα α= and kτ are the complex 

attenuation and propagation delay of the kth path, respectively. For example, 0τ in the 

above equation is the DLOS path, or the TOA, that needs to be detected for indoor 

geolocation. The Fourier transform of (4.1) is the frequency domain channel response 

which is given by 
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The phase of the complex attenuation kθ  is assumed random with a uniform PDF U(0, 

2π). Usually these parameters are frequency dependent.  However for the frequency 

bands used in this thesis, the parameters are assumed frequency independent. A harmonic 

signal model can be created by exchanging the role of time and frequency variables in 

(4.2) which yields,  
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This model is well known in spectral estimation field [12]. Therefore, any spectral 

estimation techniques that are suitable for the harmonic model can be applied to the 

frequency response of multipath indoor radio channel to perform time-domain analysis. 

In this thesis, a variant of MUSIC algorithm is used as a spectral estimation technique to 

convert the frequency domain data into the time domain profile needed for determining 

the DLOS path and TOA. 
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The discrete measurement data are obtained by sampling the channel frequency 

response ( )H f  at L  equally spaced frequencies. Considering additive white noise in the 

measurement, the sampled discrete frequency domain channel response is given by 

 0
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where 0,1,..., 1l L= −  and ( )w l denotes additive white measurement noise with zero mean 

and variance 2
wσ . The signal model in vector form is 

 = + = +x H w Va w   (4.5) 

where 

 x = [x(0)   x(1)   …    x(L-1)]T  

H = [H(f0)   H(f1)   …    H(fL-1)]T 

w = [w(0)   w(1)   …   w(L-1)]T 

V = [v(τ0)   v(τ1)   …   v(τLp-1)]T 

v(τk) =  [1   e-j2π∆fτk   …   e-j2π(L-1)∆fτk]T 

a = [α0'  α1'   …   αLp-1']T 

02 kj f
k ke

π τα α −′ =  

 MUSIC super-resolution algorithm is based on eigen-decomposition of the 

autocorrelation matrix of the signal model in (4.5).  The autocorrelation matrix is given 

by 

 2{ }H H
xx wE σ= = +R xx VAV I  (4.6) 
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where { }HE=A aa  and superscript H is the Hermitian, conjugate transpose, of a matrix. 

Since the propagation delays kτ  in (4.1) can be theoretically assumed all different, the 

matrix V has full column rank which means that the column vectors of V are linearly 

independent. The p pL L×  covariance matrix A is non-singular assuming that kα  is 

constant and the phase is uniform random variable in [0, 2π]. As a result, from the theory 

of linear algebra, by assuming that L>Lp, the rank of the matrix VAVH is Lp. This means 

that the L-Lp smallest eigenvalues of Rxx are all equal to 2
wσ . The eigenvectors 

corresponding to L-Lp smallest eigenvalues of Rxx are called noise eigenvectors while the 

eigenvectors corresponding to Lp largest eigenvalues are called signal eigenvectors. 

Therefore, the L-dimensional subspace that contains the signal vector x is split into two 

orthogonal subspaces, known as signal subspace and noise subspace, by the signal 

eigenvectors and noise eigenvectors, respectively [7]. The projection matrix of the noise 

subspace is then given by 

 1( )H H H
w w w w w w w

−= =P Q Q Q Q Q Q , (4.7) 

where Qw = [qLp   qLp+1   …   qL-1] and qk, 1pL k L≤ ≤ − , are noise eigenvectors. Since 

the vector v(τk), 0 1pk L≤ ≤ − , must lie in the signal subspace, we have 

( ) 0.w kτ =P v  (4.8) 

Thus the multipath delays τk, 0 1pk L≤ ≤ − , can be determined by finding the delay 

values at which the following MUSIC pseudospectrum achieves maximum value, 
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In the above analysis, the true or theoretical correlation matrix Rxx was considered. In 

practical implementation, the correlation matrix must be estimated from the measurement 

data samples. Figure 4.3 illustrates a block diagram of the MUSIC super-resolution TOA 

estimation algorithm.  

 

Figure 4.3: Block diagram of MUSIC super-resolution TOA estimation algorithm 

 

The autocorrelation matrix is estimated from the measurement data followed by an eigen-

decomposition where the Lp parameters are estimated. Then the pseudospectrum is 

computed from the Lp parameters, the eigenvectors and the eigenvalues. Once the 

pseudospectrum is obtained a peak detection algorithm selects the first path and thus the 

estimate of the TOA. In practical implementations the autocorrelation matrix must be 

estimated from a limited set of data. As a result with P snapshots of measurement data, 

estimating the correlation matrix can be obtained from 
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 However, if only one snapshot of length N is available, then the data sequence is divided 

into M consecutive segments of length L and then the correlation matrix is estimated as 
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where M = N – L + 1 and x(k) = [x(k)   …   x(k + L – 1)]T. 

For super-resolution TOA estimation techniques, the measurement data vector x 

is obtained by sampling the channel frequency response uniformly over a certain 

frequency band. By selecting the frequency domain sampling interval ∆f to satisfy the 

condition max1/ 2f τ∆ ≥ , where maxτ is the maximum delay of the measured multipath, it is 

possible to avoid aliasing in the time domain which is similar to the time domain Nyquist 

sampling theorem [7].  

One assumption that is not valid in actual measurement data is that it is assumed 

to be stationary. When the data is stationary, the correlation matrix is both Hermitian and 

Toeplitz (equal elements along all diagonals). However, the estimate of the correlation 

matrix ˆ
xxR  based on actual measurement data of small finite length N is not Toeplitz. 

The estimate of the correlation matrix can be improved using the following forward-

backward correlation matrix (FBCM),  

 ( ) *1ˆ ˆ ˆ( )
2

FB
xx xx xx= +R R JR J  (4.12) 

where the superscript * denotes conjugate, superscript FB stands for forward-backward 

estimation, and J is the L L× exchange matrix whose components are zero except for 

ones on the anti-diagonal. This technique is widely used in spectral estimation with the 
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name modified covariance method and in linear least-square signal estimation with the 

name forward-backward linear prediction (FBLP) [12]. 

Implicitly, in the MUSIC method, the noise eigenvalues are all equal, i.e., 

2
k wλ σ=  for 1pL k L≤ ≤ − , which means that the noise is white. In practice, when the 

correlation matrix is estimated from the limited measurement data samples, then the noise 

eigenvalues are not equal. To deal with this issue a slight variation on the MUSIC 

algorithm is introduced which is known as the eigenvector (EV) method [7]. The 

pseudospectrum is defined as 
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where , 1,k pL k Lλ ≤ ≤ − are the noise eigenvalues. Effectively the pseudospectrum of 

each eigenvector is normalized by its corresponding eigenvalue. The EV method is 

identical to the original MUSIC if all the noise eigenvalues are equal. The performance of 

the EV method is less sensitive to inaccurate estimate of the parameter Lp, which is 

highly desirable in practical implementation [12]. In this thesis, the EV method with 

FBCM was used to estimate the TOA of the DLOS path. EV/FBCM refers to the type of 

MUSIC algorithm applied throughout the thesis unless otherwise stated. 
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CHAPTER 5 Performance Analysis in Different Indoor Multipath 

Conditions 

 

In TOA based indoor geolocation systems, the most important parameter is the 

accuracy of distance estimation. There are several factors that affect the accuracy of 

estimation which include the multipath condition, the TOA estimation algorithm used and 

the bandwidth of the system. In the multipath condition, the behavior of the DLOS path is 

important. It ranges from a strong path to an undetected first path; therefore, the 

accuracies vary accordingly. In addition the power of the strongest path and the power of 

the paths close to the DLOS path also affect the accuracy. It was clearly shown in 

Chapter 3 that one of the difficult challenges that face geolocation system designers is the 

phenomenon of UDP. In these areas the error is significant and it is important to know 

how much error it actually introduces. The other multipath conditions such as DDP and 

NDDP also warrant considerable attention especially at lower bandwidths. It is necessary 

to analyze how the TOA accuracy varies for those different conditions. The bandwidth of 

the system is also an important factor in the accuracy of TOA. In general, as the 

bandwidth increases the distance measurement error decreases. However, for the so 

called UDP conditions the system exhibits substantially high distance measurement errors 

that can not be eliminated with the increase in the bandwidth of the system. At the same 

time it is interesting to see how much resolution and TOA estimation improvement an 

increase in bandwidth provides for the different multipath conditions. Once a certain 

limitation has been established with the bandwidth of the system and the inherint 



 54

multipath condition, TOA estimation algorithms can further improve the accuracy. 

Chapter 4 introduced different TOA estimation algorithms. They range from the basic 

IFT to the more complex super-resolution. The use of these algorithms in enhancing the 

time-domain resolution is different. The cost of improved resolution in time-domain is a 

longer computational time. The performance analysis of these algorithms and the 

behavior of the DLOS path in different multipath conditions provide an insight into the 

different factors affecting the TOA estimation. The algorithms’ capabilities and 

limitations in improving the accuracy help in establishing quantitative boundaries on the 

accuracy of estimation errors.  

In this chapter, the TOA estimation algorithms along with the comprehensive 

measurement database are used for statistical analysis. The main focus here is the 

accuracy of distance estimation which is directly related to TOA of the DLOS path. In 

Section 5.1, the performance of distance error in LOS with OLOS is compared. Then the 

geolocation specific multipath conditions such as DDP, NDDP and UDP are also 

compared in the same section. Section 5.2 examines the performance of the estimation 

algorithms in these different multipath conditions. Specifically, traditional estimation 

algorithms such as IFT and DSSS are compared with super-resolution algorithm 

(EV/FBCM) in different indoor environments. In addition, the effect of system 

bandwidth on the TOA estimation errors is described in Section 5.3.  

 

5.1 TOA Estimation Errors in Different Multipath Conditions 

As mentioned earlier the behavior of TOA estimation varies significantly in 

different multipath conditions. Two categories will be discussed in this section where the 
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method of classification is different. The behavior of TOA estimation in a physical 

obstruction based classification, namely LOS and OLOS will be analyzed. After that, a 

geolocation based classification which focuses on the DLOS path behavior will be 

analyzed. All the analysis is based on the measurement database mentioned in Chapter 3. 

For the LOS and OLOS, the database is divided according to the existence of a physical 

obstruction between the transmitter and receiver. For the geolocation classification, the 

database is divided according to the strength of the DLOS path, regardless of the 

obstruction. In other words, a measurement profile where an obstruction exists in the 

DLOS path might be classified as DDP if the first path is the strongest.  

   

5.1.1 LOS vs OLOS 

Comparing the two different environments, the performance of an indoor 

geolocation system varies substantially. The absence of any significant obstructions in the 

DLOS path provides LOS scenarios with an advantage in terms of mean of ranging error. 

The significant difference between them is apparent. The obstruction of the first path in 

OLOS causes substantial error when compared to LOS case. Figure 5.1 shows the mean 

and standard deviation (STD) of ranging error in different system bandwidths for both 

LOS and OLOS cases.  
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Figure 5.1: Mean and STD of ranging errors for LOS and OLOS environments. The 

vertical lines denote the STD around each mean value. 

 

Notice the substantial error inherent in OLOS case as opposed to LOS. One 

observation here is that the ranging error decreases with increasing system bandwidth. 

Again higher system bandwidth provides higher time-domain resolution and thus better 

TOA estimation. Notice how the LOS ranging errors approach zero with increasing 

system bandwidth. On the other hand for OLOS this is simply not the case. This occurs 

because as the bandwidth increases, the multipath effect is removed and the ability to 

resolve the different paths improves. However for OLOS cases, even with an improved 

ability to resolve the multipath the strength of the DLOS path introduces major 

limitations in accuracy of estimation. For instance, at 20 MHz OLOS suffers a mean error 

of 10.7 m while LOS has an error of 2.9 m. As the bandwidth increases, LOS error 
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approaches zero and in the case of 160 MHz it is 0.2 m while OLOS still exhibits a 

significant 4.1 m error. 

 

 

Figure 5.2: Complementary CDF of ranging errors in LOS and OLOS environment 

at 20 MHz bandwidth. 

 

A more insightful way to compare the behavior of TOA estimation errors in those 

conditions is to examine the CCDF. Figure 5.2 shows the CCDF of ranging errors for 

LOS and OLOS at 20 MHz bandwidth. Notice how OLOS exhibits substantial ranging 

errors compared to LOS. The power of the DLOS path is the distinguishing factor in the 

performance. Figure 5.3 shows the CCDF of ranging errors for both cases at 160 MHz. In 

this case the TOA estimation is further improved. 
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Figure 5.3: Complementary CDF of ranging errors in LOS and OLOS environment 

at 160 MHz bandwidth. 

 

The ranging error is reduced significantly for the LOS case. Similarly, for the 

OLOS the accuracy of estimation improves even further, but still there is a significant 

gap between the two scenarios. In general, OLOS is a combination of NDDP and UDP 

where the DLOS path is not the strongest and in some cases it is not detected. This 

introduces substantial error values that cannot be mitigated by increasing the system 

bandwidth. In fact later in the chapter the performance of TOA estimation will be 

analyzed for the unfavorable UDP case and it will be shown how the bandwidth ceases to 

have an effect on the estimation error after a certain value. 
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5.1.2 DDP, NDDP & UDP 

In the previous section it was evident that OLOS introduces substantial TOA 

estimation errors. Although this might provide an indication about the behavior of the 

TOA estimation errors, the analysis does not provide sufficient insight into the statistics 

of the DLOS path. A geolocation based classification is therefore more accurate in 

depicting what happens to the ranging errors according to the condition inherent on the 

first path. In this type of categorization there are three cases, namely DDP, NDDP and 

UDP. The measurement database was divided according to the strength and availability 

of the DLOS path. With the loss of DLOS path, UDP causes major problems for accurate 

TOA estimation. As a result, the mean and STD of the distance error are expected to be 

significant when compared to other cases such as DDP or NDDP. Figure 5.4 shows the 

mean and STD of the ranging error for UDP compared to DDP and NDDP using IFT 

algorithm. It is clear that the mean of ranging error for UDP is substantially larger than 

the two other cases. In fact at 20 MHz, UDP has a mean error that is 5 times that of DDP 

and 1.5 times that of NDDP. 
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Figure 5.4: Mean and STD of ranging errors for DDP, NDDP and UDP multipath 

conditions. The vertical lines denote the STD around each mean value. 

 

As the bandwidth increases UDP continues to exhibit significant error values. For 

example at 160 MHz the mean of distance error for UDP is almost 7 meters while DDP is 

a mere 0.29 meters. The STD for DDP drops drastically with increasing bandwidth when 

compared to the other two conditions. Similarly, with increasing bandwidths the STD 

also decreases for NDDP and UDP. Figure 5.5 shows the CCDF of ranging errors for the 

different multipath conditions which provide additional insightful comparison. 
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Figure 5.5: CCDF of ranging errors for DDP, NDDP and UDP multipath conditions 

at 20 MHz bandwidth.  

 

In order to understand the reason for the different ranging errors introduced by the 

multipath conditions it is important to think in terms of the multipath and the strength of 

the DLOS path. For example for DDP, the first path is always the strongest and the 

multipath is almost completely resolved at higher bandwidths. For NDDP, however the 

case is different. The first path is never the strongest and the multipath introduces the 

majority of error in the estimation. The paths arrive in clusters and the higher bandwidth 

splits those clusters into corresponding paths, but still the weakness of the DLOS path 

causes additional errors. For UDP the main issue here is the unavailability of the first 

path. It is rather intuitive that without the first path the error is the greatest among the 

other multipath conditions. Nevertheless, with increases in system bandwidth the 
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multipath is further resolved, however the first path is still unavailable and as a result this 

introduces the most substantial ranging error. Figure 5.6 shows the CCDF of ranging 

errors at a higher bandwidth. 

 

 

Figure 5.6: CCDF of ranging errors for DDP, NDDP and UDP multipath conditions 

at 160 MHz bandwidth.  

 

Comparing the two CCDF at different bandwidths shows the improvement in 

ranging accuracy from 20 to 160 MHz. However still at the higher bandwidth UDP 

exhibits the highest ranging errors among the multipath conditions. It is important to note 

that the accuracy of TOA estimation is substantially degraded when a receiver moves 

from a DDP position to an NDDP or UDP. As will be discussed later, better TOA 
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estimation algorithms reduce average distance error but have limitations for UDP. The 

loss of the DLOS path creates a situation where a large distance error is unavoidable even 

with an increase in the bandwidth of the system.  

 

5.2 Analysis of different TOA estimation algorithms 

In practical implementation both the system bandwidth and the multipath 

condition at a certain instant will be fixed. Accordingly a certain estimation error will 

impose limitations on the capability of the geolocation system. The question here is 

whether with a given set of constraints such as the bandwidth of the system and the 

multipath environment it would be possible to further reduce the error and enhance the 

accuracy of estimation. Introducing more complex TOA estimation algorithms might 

alleviate the substantial ranging errors inherent in the harsh indoor environment. 

However other concerns arise. How will the estimation algorithms behave in the different 

multipath conditions? Exactly how much improvement in accuracy of estimation will 

they provide? Do they provide same improvements in lower system bandwidth as 

opposed to higher system bandwidths? All these questions are valid when comparing 

different estimation algorithms for indoor geolocation.  

In this section the performance of the TOA estimation algorithms, namely IFT, 

DSSS and EV/FBCM which were described in Chapter 4 will be analyzed for different 

bandwidths, multipath conditions and scenarios. First following the structure of the 

pervious section, a comparison is carried out between LOS and OLOS conditions. Then 

the algorithms are put to the test in the geolocation specific multipath conditions. The 

statistical analysis should provide a quantitative insight into the capabilities of the 
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algorithms to improve TOA estimation errors in regards to the multipath condition and 

the bandwidth of the system. 

 

5.2.1 LOS vs. OLOS 

The performance of the three TOA estimation algorithms IFT, DSSS and 

EV/FBCM, is compared for two different scenarios and several bandwidths. In LOS 

environment, the performance of the algorithms in terms of mean of ranging error is very 

close to each other. Figure 5.7 illustrates mean and standard deviation values in LOS for 

the three algorithms in different bandwidths.  

 

 

Figure 5.7: Mean and STD of ranging errors in LOS using different TOA estimation 

algorithms.  
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At lower bandwidths, EV/FBCM performs slightly better than IFT but almost the 

same as DSSS. At higher bandwidths, the distance error approaches zero and there is no 

significant advantage for either algorithms. The STD also decreases significantly with 

increasing bandwidth. As a result, it is apparent that in LOS conditions with strong DLOS 

path and higher system bandwidths the use of more complex estimation algorithms does 

not provide an advantage.  

 

 

Figure 5.8: CCDF of ranging errors for LOS using different TOA estimation 

algorithms at 20 MHz bandwidth.  
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At 20 MHz bandwidth, Fig. 5.8 shows compares the CCDF of the three TOA 

estimation algorithms in LOS scenario where it shows how EV/FBCM provides slight 

advantage compared to the other two algorithms. The super-resolution technique provides 

a better time-domain resolution and thus detects the DLOS path more accurately 

especially at lower bandwidths. Although the LOS scenario exhibits relatively low error 

values, the EV/FBCM has the ability to further reduce the error to accurately detect the 

first path. Figure 5.9 shows the CCDF of ranging errors at 160 MHz bandwidth. In 

general as was observed in the previous section, at higher bandwidths, LOS ranging 

errors tend to approach zero.  

 

 

Figure 5.9: CCDF of ranging errors for LOS using different TOA estimation 

algorithms at 160 MHz bandwidth. 
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As a result the significance of the TOA estimation algorithms is even further 

diminished. In other words, for this scenario and at high system bandwidths, the 

performance of the estimation algorithms is close to each other and they do not provide 

significant enhancement in the time-domain resolution because it is rather sufficient. A 

couple of observations are warrant for discussion. First the algorithms closely fit each 

other in terms of TOA estimation. Second, in practical implementation for LOS situations 

with a large system bandwidth it is sufficient to accurately detect the first path. 

Introducing complex estimation algorithms only introduce longer computational time and 

are not necessary, in fact they can become counterproductive. 

In OLOS scenario, the first path suffers attenuation from walls and other 

obstructions. As a result the DLOS path is rarely the strongest and that introduces 

problems for detection. In addition the multipath condition is more severe adding further 

inaccuracies into the behavior of the ranging error. This is shown in Fig. 5.10 where the 

distance error for all the algorithms is worst than the LOS case. The EV/FBCM algorithm 

significantly improves the TOA estimation and, in addition, it outperforms the other 

conventional algorithms as evident from the figure.  
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Figure 5.10: Mean and STD of ranging errors in OLOS using different TOA 

estimation algorithms. The vertical lines correspond to plus and minus one STD 

about the mean.  

 

As a result, in obstructed conditions more complex TOA estimation algorithms 

provide means to reducing the error and are necessary for indoor geolocation. At 20 MHz 

the mean of ranging error for IFT is 10.71 m while it is 6.28 m and 4.96 m for DSSS and 

EV/FBCM respectively. At 160 MHz the ranging error drops significantly and 

EV/FBCM has the superior performance with error value around 1.9 m while IFT and 

DSSS are trailing with 4.0 m and 2.71 m respectively.  
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Figure 5.11: CCDF of ranging errors for OLOS using different TOA estimation 

algorithms at 20 MHz bandwidth.  

 

For OLOS, EV/FBCM exhibits the best performance and it is indeed necessary in 

TOA estimation since it provides twofold decrease in the error when compared to the 

traditional IFT algorithm. Figure 5.11 shows the CCDF of the three algorithms for OLOS 

at 20 MHz bandwidth. IFT exhibits the worst performance. DSSS provides better 

estimation accuracy since it has a higher time-domain resolution. However at this 

bandwidth, EV/FBCM outperforms the other algorithms. Figure 5.12 shows the CCDF of 

the three algorithms at a higher bandwidth. 
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Figure 5.12: CCDF of ranging errors for OLOS using different TOA estimation 

algorithms at 160 MHz bandwidth.  

 

As the overall estimation error decreases, EV/FBCM provides better accuracy 

even at higher bandwidths. As a result, super-resolution algorithms are necessary in 

OLOS environments since they provide substantial improvement of estimation accuracy. 

On the other hand, use of those algorithms does not provide significant improvement to 

the TOA estimation in LOS environment, especially at high system bandwidths. 

 

5.2.2 DDP, NDDP & UDP 

With the second main classification, similarly, the effectiveness of the algorithms 

is different in each condition. Figure 5.13 shows the mean and STD performance of the 
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algorithms in DDP. This is very similar to the LOS case because most of the LOS are 

DDP, but some of the OLOS are DDP.  

 

 

Figure 5.13: Mean and STD of ranging errors in DDP using different TOA 

estimation algorithms. The vertical lines correspond to plus and minus one STD 

about the mean.  

 

In order to better understand the behavior of the algorithms in DDP it is helpful to 

examine a measured channel profile. Figure 5.14 shows a DDP channel profile at 40 

MHz illustrating the performance of the three algorithms. The vertical dash-dot line is the 

expected TOA. Notice that the DLOS is detected successfully for the three algorithms. 

EV/FBCM views the time domain channel profile with a higher resolution and thus it 
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provides better accuracy in detection. However the improvement provided is vital at 

lower bandwidths but negligible at higher bandwidths.  

 

 

Figure 5.14: Measured DDP profile obtained with three estimation algorithms at 40 

MHz bandwidth. 

 

Similarly the CCDF provides another insight into the performance of the 

algorithms in this specific multipath condition. Two examples will be illustrated next. 

The first one is Fig. 5.15 which provides the CCDF of ranging error at 20 MHz while Fig. 

5.16 shows the CCDF at 160 MHz of bandwidth. This condition is very close to LOS in 

that at lower bandwidths the super-resolution algorithm provides slight advantage, while 

at higher bandwidths it fails to provide any concrete improvement. 
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Figure 5.15: CCDF of ranging errors for DDP using different TOA estimation 

algorithms at 20 MHz bandwidth.  
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Figure 5.16: CCDF of ranging errors for DDP using different TOA estimation 

algorithms at 160 MHz bandwidth.  

 

In NDDP, Fig. 5.17 shows that EV/FBCM algorithm performs significantly better 

than the other two algorithms. The main reason is that it has the ability to view the 

channel profile with higher resolution. In this category the first path usually combines 

with the subsequent paths and forms a cluster. The conventional algorithms detect the 

peak of the cluster as the DLOS path and hence the TOA. This erroneous detection 

causes serious problems for TOA estimation. The higher resolution of the EV/FBCM 

algorithm “splits” the cluster and provides other paths not detected conventionally. In 

some cases, the algorithm detects the DLOS path; in other the second or even the third is 

detected. Regardless of the path detected, Fig. 5.17 shows that on average EV/FBCM 

exhibits lower mean of ranging error when compared to the other algorithms. 
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Figure 5.17: Mean and STD of ranging errors in NDDP using different TOA 

estimation algorithms. The vertical lines correspond to plus and minus one STD 

about the mean.  

 

The performance of EV/FBCM in this condition can be justified by examining 

Fig. 5.18, which shows a typical NDDP profile. The vertical dash-dot line is the expected 

TOA and it is clear how both the IFT and the DSSS are unable to detect the correct path. 

However EV/FBCM resolves the cluster and reduces the TOA error by detecting a closer 

path and in this case it actually detects the first path. Overall it is true to say that in 

NDDP conditions EV/FBCM provides the best performance in terms of mean of ranging 

errors. 
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Figure 5.18: Measured DDP profile obtained with three estimation algorithms at 40 

MHz bandwidth. 

 

In addition, the CCDF of the estimation algorithms for NDDP condition shows 

how the EV/FBCM indeed has the ability to resolve multipath and reduce the estimation 

error. The super-resolution algorithm has the ability to combat multipath effect; however 

the strength of the first path becomes an additional factor into the error values. In some 

cases, the first path is detectable but very weak which causes additional errors that cannot 

be remedied by the algorithms or the bandwidth of the system. Figure 5.19 shows the 

CCDF for the algorithms in NDDP at 20 MHz.  
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Figure 5.19: CCDF of ranging errors for NDDP using different TOA estimation 

algorithms at 20 MHz bandwidth. 

 

In most cases however, for NDDP the performance enhancement provided by 

EV/FBCM is necessary for indoor geolocation applications. Figure 5.20 provides CCDF 

at 160 MHz. Notice how EV/FBCM improves detection while IFT trails with the worst 

performance. DSSS has a higher resolution than IFT but cannot compare with 

EV/FBCM. The trade-off here is a higher computational time for EV/FBCM compared to 

the other algorithms. It is possible to conclude that EV/FBCM has the best performance 

in NDDP conditions even at higher system bandwidths. 
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Figure 5.20: CCDF of ranging errors for NDDP using different TOA estimation 

algorithms at 160 MHz bandwidth. 

 

In UDP scenarios, EV/FBCM provides an advantage compared to the other 

algorithms. Although the DLOS path does not exist, nevertheless, EV/FBCM is expected 

to perform better than the other algorithms. Figure 5.21 shows the mean and STD of 

ranging error for UDP conditions. On average, the EV/FBCM outperforms the other 

algorithms and exhibits lower error even at higher bandwidths.  
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Figure 5.21: Mean and STD of ranging errors in UDP using different TOA 

estimation algorithms. The vertical lines correspond to plus and minus one STD 

about the mean.  

 

By examining a UDP measurement sample, it is possible to see how the three 

algorithms compare. Figure 5.22 shows a measured UDP profile with the absence of the 

first path. It is clear that EV/FBCM detects a closer path and improves the TOA 

estimation when compared to IFT and DSSS.  
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Figure 5.22: Measured UDP profile obtained with three estimation algorithms at 40 

MHz bandwidth. 

 

The weakness of the DLOS path makes it difficult to resolve the multipath and 

detect it. As a result, the UDP condition introduces unavoidable errors and regardless of 

the bandwidth or the estimation algorithm used, the positioning system will exhibit 

substantially large errors. This degraded performance requires that in the deployment of 

an indoor geolocation system care must be taken to avoid coverage areas with UDP 

conditions. This will further reduce the error and enhance the accuracy of TOA detection 

and estimation. This is further justified by the CCDF curves in Fig. 5.23 and Fig. 5.24 

which show the behavior of the algorithms at two different system bandwidths.  
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Figure 5.23: CCDF of ranging errors for UDP using different TOA estimation 

algorithms at 20 MHz bandwidth. 

 

Figure 5.24: CCDF of ranging errors for UDP using different TOA estimation 

algorithms at 160 MHz bandwidth. 
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5.3 System Bandwidth 

Finally after assessing the performance of the different estimation algorithms and 

their effect on the multipath conditions, it is important to analyze the effect of system 

bandwidth on UDP. A general fact that has been noticed in the analysis section is that 

when the bandwidth of the system increases, the estimation error reduces due to enhanced 

time-domain resolution. It is thus important to see if in fact increasing system bandwidth 

would help in mitigating the UDP problem. For the other conditions, system bandwidth 

significantly enhances the estimation of the DLOS path. Figure 5.25 shows a plot of 

absolute distance error for the three multipath conditions with varying system 

bandwidths.  

 

 

Figure 5.25: Effect of system bandwidth on absolute distance error for the three 

multipath profiles DDP, NDDP and UDP. 
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Notice how the DDP drops to exhibits error values below 2 m and then drops 

significantly after 30 MHz. For NDDP the error drops from 18 meters to around 1.5 

meters at 50 MHz. By the time it reaches 200 MHz the error rolls off to zero. At higher 

bandwidths the effect of the multipath is reduced significantly and that is the reason why 

both DDP and NDDP eventually exhibit error values close to zero. Since they have a 

detected first path the distance estimation is not hindered by other problems at higher 

bandwidths. Unfortunately such encouraging results cannot be concluded about UDP. 

The increases in bandwidths have limited effects. In fact after 100 MHz, the error stays 

around the same value of 8.5 meters which is a very significant cost in indoor 

geolocation. As a result it is possible to see that this adverse condition introduce serious 

problems in detecting the first path. In this case, after certain increases in the bandwidth 

of the system, the multipath effect is reduced significantly but the unavailability of DLOS 

path still causes a problem. In other words, the distance error stops responding to further 

increases in bandwidth. Finally it is evident that the use of super-resolution algorithms 

provides slight enhancement in the error levels. Likewise, the bandwidth of the system 

has limitations in improving the TOA estimation error especially for the UDP case. 
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CHAPTER 6 Conclusions and Future Work 

6.1 Conclusions 

In this thesis, the performance of TOA estimation algorithms in different 

multipath conditions was analyzed based on the measurement database described in 

Chapter 3. The measurement database includes measurements conducted with a focus on 

the important UDP condition. After analyzing the data and examining the different 

statistical results it is noteworthy to mention the following conclusions.  

First, the measurement campaign targeted on the UDP condition produced 

significant UDP measurements which are very useful for statistical analysis and 

performance comparison with different multipath conditions. It was illustrated that the 

estimation error in such unfavorable condition is significant and provides a serious 

challenge to indoor geolocation system designers. In addition the geolocation-specific 

classification of DDP, NDDP and UDP provides a better insight into analyzing the 

behavior of the first path which is more important in geolocation application. Second, 

UDP conditions introduce unavoidable TOA estimation errors even with increasing the 

bandwidth of the system and applying super-resolution algorithm. When comparing the 

different indoor multipath conditions, DDP provides the best error performance because 

of the strength of the DLOS path. For NDDP, however, performance varies substantially 

between low and high bandwidths where the latter provide means of reducing the effect 

of multipath. In all indoor measurement conditions, increasing the bandwidth of the 

system provides an increase in the estimation accuracy and thus enhancement in distance 

estimation. This has a limitation for UDP since it stops responding to bandwidth changes 
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after a certain limit. Finally, the super-resolution EV/FBCM algorithm provides no 

significant advantage in DDP. It has the best performance in NDDP conditions and it 

enhances distance estimation in UDP. It is also more significant for lower system 

bandwidths since it provides a much needed higher-time domain resolution. 

 

6.2 Future Work 

Since this research area is fairly new, there are many different and important ways 

to contribute to indoor geolocation science and technology. There is a need for 

comprehensive measurements and modeling for indoor geolocation specific applications. 

As such the emerging UWB technology promises a solution for combating the indoor 

multipath condition. As a result the implementation of UWB measurement system and 

indoor channel modeling for positioning is an important area for further research. In 

addition, analyzing the effect of bandwidth on the distance error could be accomplished 

by examining bandwidths in excess of 6 GHz. The following can also be conducted as a 

continuation of the research work, namely, comparing the performance of super-

resolution algorithms to the UWB system for indoor geolocation. 
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Appendix A Additional CCDF plots in different bandwidths 

 

Figure A.1: CCDF Algorithm performance analysis for DDP at 40 MHz bandwidth. 

 

Figure A.2: CCDF Algorithm performance analysis for DDP at 80 MHz bandwidth. 
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Figure A.3: CCDF Algorithm performance analysis for DDP at 120 MHz 

bandwidth. 

 

Figure A.4: CCDF Algorithm performance analysis for NDDP at 40 MHz 

bandwidth. 
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Figure A.5: CCDF Algorithm performance analysis for NDDP at 80 MHz 

bandwidth. 

 

Figure A.6: CCDF Algorithm performance analysis for NDDP at 120 MHz 

bandwidth. 
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Figure A.7: CCDF Algorithm performance analysis for UDP at 40 MHz bandwidth. 

 

Figure A.8: CCDF Algorithm performance analysis for UDP at 80 MHz bandwidth. 
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Figure A.9: CCDF Algorithm performance analysis for NDDP at 120 MHz 

bandwidth. 
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APPENDIX B Measuring and Processing Indoor Radio Channel 

 

B.1 Introduction  

 

 The purpose of this appendix is to understand and analyze the measurement 

system in the frequency domain.  The indoor wireless environment is characterized with 

multi-path effects in addition to attenuation.  In order to model such environments it is 

important to understand the basics of channel measurements.  In this appendix, a basic 

measurement system is described and procedures for data collection and result generation 

are outlined.   

Calibration issues in channel measurements are also very important in obtaining 

reliable accurate results and this is also discussed here.  There are also descriptions of the 

functionalities of the network analyzer and an explanation of the MATLATB code used 

to generate the time domain data. Finally some sample measurements that were 

conducted at both 1 GHz and 2.4 GHz are also provided. 

 
 

B.2 Background 

  

 In analyzing wireless channels it is important to have a very good understanding 

of some relevant parameters.  In this case the parameters that were discussed and 

analyzed were Time of Arrival (TOA), Path Loss and RMS delay spread.  These 
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parameters can either be extracted from the data or calculated using a theoretical formula 

to obtain the desired parameter.  

 

 In the case of a simple experiment, the transmitter and receiver were positioned in 

Line of Sight (LOS) and the TOA is basically the time of arrival for the first path at the 

receiver.  This can be extracted easily from either MATLAB code or the Network 

Analyzer.  However care must be taken since the delay of the cable affects the 

measurements and therefore must be taken into account 

 In wireless channels the relationship between received power and distance has 

been shown in average to decrease.  The relationship is given by the following 

expressions: 

 

0 1010 log ( )pL L d= + α   (B.1) 
2

0 1010 log
4t rL G G
π

 λ = −      
  (B.2) 

 
 

d = distance from transmitter to receiver 

α  = power gradient 

Gt = Gr =1 are the transmitter and receiver gains, respectively.  Most cases they are 

equal.  

λ= c/f, where c = 3 x 108 m/s, f = 1 GHz or 2.4 GHz  

Power gradient changes with different indoor environment.  For instance open 

factory indoor environment have a different power gradient than indoor offices.  In the 
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case when power gradient is around 2 then (B.1) shows that there is a 20 dB/decade of 

power loss.  In other words the power of the transmitted signal decreases 20 dB with 10 

meters of distance. Another important parameter used in channel measurements and 

modeling is the Root Mean Square (RMS) delay spread.  With multi-path environment, 

the transmitted signal is reflected and refracted off of objects and at the receiver there is 

time spreading of the signal.  This is also a good numerical measure of time dispersion. It 

is a better parameter when compared to excess delay spread which is the overall span of 

delays.  RMS delay spread is the second central moment of Channel Impulse Response 

(CIR).  

RMS delay spread is given by the following formula: 
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κτ is the delay time of the kth tap and κα is the kth   magnitude of a tap.  A tap is the 

individual path in the time domain.  So if the time domain has three peaks then the first 

path has magnitude 1α and delay 1τ ; and the second has magnitude 2α  and delay 2τ . As a 

result the above formula provides the RMS delay spread of the CIR. 

 

B.3 Description of the System 

The overall experimental setup is composed of: 

• transmitter and receiver antennas (1 GHz & 2.4 GHz) 
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• HP-8753B Network Analyzer with frequency range of 0.3-6000 MHz 

• HP-85047A S-Parameter Test Set 

• PCMCIA card & GPIB Bus 

• Laptop computer 

The transmitter and the receiver are connected to the S-Parameter Test Set port 1 and port 

2 respectively which connect to the HP Network Analyzer as shown in Fig. 3.1. The 

experiment is performed by initiating a program on the laptop that asks for the required 

parameters such as bandwidth, start and stop time in nanoseconds and the number of 

samples to collect.  The resulting data are composed of magnitude and phase response 

that gets generated in the network analyzer and collected by the laptop computer through 

a GPIB bus.  The generated data (files) are then used for further processing using 

MATLAB. The antennas available are for 1GHz and 2.4GHz measurements.  There are 

two different antennas for each frequency.  These are monopole quarter-wave antenna 

with rectangular ground plane.  The antennas attach to wooden poles that can be moved 

around for measuring at different locations. The HP Network Analyzer has many features 

and functions that could be exploited in order to process, analyze and measure data for 

different purposes.  The main functions discussed here will have direct relevance to the 

experiment and any further needed functions could be easily figured out by examining 

the analyzer’s manual.  

Functions of the network analyzer include: 

 

• Active Channels 
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o Switch between channels by using the Hard Key (HK) CH1/CH2 

• Auto scaling 

o Enables displaying the waveform with a best scale. 

• Press on the SCALE RF HK and then select from the Soft Key (SK) menu Auto-

scale 

• Measuring parameters 

o Use MEAS HK to select type of measurements required 

o Use S21 for output/input measurement 

• To select the format of the measurement press FORMAT HK and then select one 

of the SK options such as log Mag, Phase, delay, etc. 

• Input  

o In the STIMILUS menu of the analyzer select START HK to choose the 

starting frequency/time and then use the STOP HK to select the 

corresponding stop frequency/time 

o From the MENU HK you can specify the required power level through the 

power SK 

There are additional functionalities from the analyzer and they can easily be found in the 

user’s manual. 

 

To interface and run the program: 
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a. Make sure the laptop is connected to the analyzer through GPIB bus and 

PCMCIA card. 

b. The program (Hp_meas.exe) on the laptop initiates the measurements on the 

analyzer 

c. Before running the program make sure the analyzer has the following configured: 

d. Make sure that the address is set to 17 in order to allow for synchronization 

between the program and the analyzer. In order to do this: 

1. In the Instrument state press the LOCAL HK  

2. From the SK options select Set Addresses 

3. Select Address 8753 SK 

4. Set it to 17 

 

e. Once configured you can now initiate the measurements by running the following 

program which is on the desktop of the laptop (Hp_meas.exe) 

f. The program will ask for number of samples, start and stop frequencies (f1 & f2) 

and start and stop time (t1 & t2).  

g. The number of samples tells the program how many points you want to collect in 

the frequency domain.  For now set the number to 400 and after going through the 

experiment you can easily change it to cater for your requirements 
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h. The range of frequency depends on your requirement and setup of the experiment.  

In the case you are measuring frequency response of 2.4 GHz system then the 

typical f1 = 2.1 GHz & f2 = 2.7 GHz and that would give a bandwidth of 600 MHz 

centered around 2.4 GHz. 

i. The time duration usually starts with 0 ns and ends with 1000 ns, and that will 

affect the resolution for the purpose of the analyzer. 

j. After deciding on the parameters then run the program by “double clicking” on 

the file. 

k. The program will initiate the sample collection and will generate the following 

files: 

1. Magnitude  

2. Phase 

 

l. Save these files for further MATLAB processing 

 

B.4 Data Collection Procedure 

In order to run the program the number of samples in the frequency domain, the 

bandwidth and the start and stop times are needed.  The number of samples dictates to the 

analyzer the frequency sample spacing.  This results in the following relationship: the 

higher the number of samples the smaller the sample spacing.  This in turn has the effect 

on the duration of the response in the time domain.  In other words, the duration of the 

CIR is inversely proportional to the frequency spacing.  Since we are sampling in the 
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frequency domain then the time domain CIR will be periodic.  Care must be taken in 

MATLAB in order to display the desired instance of the CIR. The frequency bandwidth 

that is used dictates to the analyzer the start and stop frequencies.  They indeed have to be 

within the bandwidth of the antennas used.  The start and stop times are used for the 

purpose of displaying the time domain plot on the analyzer. The frequency domain of the 

system is obtained by transmitting a pulse in time domain or rather a linear stepped-

sweep signal in the frequency domain.  The signal generated has a power of 0 dBm and 

therefore, there were no amplifiers or attenuators used.  Obviously, in order to cover 

more distance it would be required to have an amplifier integrated into the system.  The 

analyzer produces a -15 to 20 dBm swept RF signal in the range of either 900 MHz-1.1 

GHz or 2.1 GHz-2.7 GHz depending on the desired range. 

The following is the procedure for collecting the data: 

 

1. After completing the analyzer setup make sure that the antennas are fixed into 

place. 

2. Connect the transmitting antenna to Port 1 on the HP-85047A S-Parameter Test 

Set 

3. Connect the receiving antenna to Port 2 

4. Move the receiving antenna to the desired location 

5. Initiate the Hp_meas.exe program located on the laptop 

6. After the program initializes, it will ask for the required parameters in order to 

compute the frequency response 
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a. Enter the number of samples 

b. Starting frequency 

c. Stopping frequency 

d. The start and stop time 

e. Enter the name of the file 

 

7. Once the measurement is completed by the analyzer then the files will be saved 

on the desktop of the laptop 

8. The analyzer will also display the channel impulse response in the time domain 

on the screen. 

9. Now you have just measured the frequency and phase response of the system and 

you have obtained the required files for further processing and analysis 

 
 

B.5 Data Processing Procedure 
 

After producing the files generated by the program then it is possible to start 

processing the data in order to extract and examine different parameters. The first step is 

to obtain the Channel Impulse Response (CIR) from the frequency and phase responses.  

The MATLAB code “msystem.m” contains procedure for calculating and plotting the 

CIR, obtaining the first path and Time of Arrival (TOA) and in addition calculating the 

RMS delay spread and the Path loss as well. The code uses inverse ChirpZ in order to 

convert the frequency domain data into time domain.  The ChirpZ is a special z-transform 

procedure that computes the transform around a spiral contour.  It makes possible 
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zooming into any portion of the IFFT and computes it in a certain interval with the 

desired number of points.  It is similar to IFFT subroutine using zero padding technique.  

If you need any more information regarding ChirpZ the MATLAB help describes the 

function and its input and output parameters. 

The MATLAB code has different parts and they are as follows: 

 

1. Loading the data 

a. Load the files into MATLAB by using the infile command of file.mag and 

file.phs.  Where file is the name of the generated phase and frequency 

response obtained from the measurements 

b. Convert the obtained data to linear magnitude format for further 

processing 

2. Performing Hanning Windowing on magnitude and phase measurements 

a. Generate a Hanning sequence of the length of your linear magnitude 

sequence. 

b. Pass your linear magnitude values into the Hanning window 

3. Computing the CIR using the Chirpz 

a. Initialize the Chirp Z parameters 

b. Compute the Chirp Z 

4. Peak detection algorithm 

a. In order to establish the paths from noise  
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b. This depends on the level of threshold selected and must be changed for 

different situations 

5. Plotting: 

a. Magnitude Response 

b. Phase Response 

c. CIR using Chirpz 

d. CIR with detected peaks 

i. This is the same as the CIR in c but with stem plots of the desired 

paths 

ii. In this case the stem plots depend on the peak detection algorithm 

which identifies the different paths from noise 

6. Obtaining the parameters 

a. RMS delay spread can be calculated using the formula mentioned earlier.  

Basically, the formula gets the time delay of each path and its respective 

amplitude and then generates the delay spread. 

b. Average, Maximum and minimum frequency magnitude 

c. TOA of first path 

d. Magnitude of first path 

e. Total Power 
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f. Summation of all power components or paths results in the total power of the 

channel. 

g. Path Loss by using (1) & (2). Path loss is calculated by obtaining the received 

power and using the formulas.   

 
B.6 Calibration Issues 

 

Probably you noticed from the measured and computed results that there is 

something wrong.  TOA at 1 meter is 162 ns? The calculated path loss doesn’t compare 

to the theoretical? What is the problem? Like most engineering or rather scientific 

experiments there is always the issue of calibration. The received and processed data by 

MATLAB are probably right but the problem is calibration. In the case of this system 

there are some areas where calibration is required.  For instance, did you think about the 

delay that the coax cable might cause? After all, the transmitting and receiving antennas 

are actually connected to the analyzer through coax cables.  Have you considered the 

effect of the cable on the frequency response of your wireless channel? As it turns out, 

the cable has some considerable effect in altering the true response or rather 

characteristics of the measurements.  The antennas might add some error into the results.  

Indeed they add some delay and/or loss to the signal.  However in this procedure only 

calibrations which deal with the cable delay and loss will be dealt with.  The following is 

a short procedure for identifying and removing cable effects from measurements. 

The frequency response of the cable at 2.4 GHz is shown in Fig B.1.  You can 

easily see that with such attenuation the cable calibration becomes indeed very important.  

In fact the cable at 2.4 GHz introduces -20 dB attenuation to the system.  One way to 
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measure the effect of the cable on the power/path loss is to slightly alter the measurement 

system.  In other words, a back-to-back connection is performed.  This way the 

transmitted signal will go through the cable only.  The same MATLAB code could be 

used with slight modification to compute and plot the frequency response of the system. 

If you intend to calibrate the path loss only then it is possible to calculate the magnitude 

of the peak after it passes through the cable and then this would be the cable attenuation.  

You can then simply remove it when applying the path loss formula. On the other hand, if 

you would like to remove the effect of the cable completely then you can perform some 

sort of channel equalization.  In other words, you can multiply the magnitude response 

with the inverse of the cable magnitude response. 

 
 

 
 

Figure B.1: Cable Magnitude frequency response 
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As mentioned earlier the cable also introduces a delay.  Using the same “back-to-

back” setup, measure the channel response but this time the signal goes through the cable 

only.  Generate the CIR for the cable delay in MATLAB.  A sample of CIR at 2.4 GHz is 

shown in Fig B.2.  This clearly shows that the transmitted pulse in the time domain 

suffers delay.  In this case it is around 158 ns.  You can then easily add a line in 

MATLAB that just subtracts that delay away from the time scale so that the generated 

CIR and peaks are actually true and accurate. 

 

 
 

Figure B.2: Time Domain CIR 

 
B.7 Sample Measurements 

 

The procedure for channel measurement is usually the same for different 

frequency bands but sometimes some changes need to take into effect.  The following is 

an example of channel measurements done at both 1 GHz and 2.4 GHz.  The procedure 
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for collecting the data was shown earlier.  The required parameters are also calculated 

according to the provided formulas.   

 

Table B.1: Calibration Parameters 

 
 
 
 
 
 
 
 
 
 
 

 
 

As can be seen from Table B.1, the calibrated TOA at 1 meter is around 4.45 ns with a 

path loss of -33.63.  The actual TOA should be around 3 ns, but because of additional 

delay from the antennas you can see that the result is off by 1.45 ns. 

Again the following tables are just a sample of the results to give the reader a feel for 

such results and how calibration affects them. 

 

Table B.2: 1 GHz at 10 meters 

Pts Range 
(MHz) τrms (ns) 

MATLAB 

TOA (ns) 
MATLAB 

TOA (ns) 
Calibrated 

Ploss (dB) 
MATLAB 

Ploss (dB) 
Calibrated 

400 800-
1200 

19.73 194.31 35.61 -56.33 -43.91 

400 900-
1100 

27.81 194.31 36.61 -56.05 -44.98 

1600 900-
1100 

26.42 194.26 36.56 -55.62 -44.55 

 

 

Pts Range 
(MHz) 

τrms (ns) 
MATLAB 

TOA (ns) 
MATLAB 

TOA (ns) 
Calibrated 

Ploss (dB) 
MATLAB 

Ploss (dB) 
Calibrated 

400 800-
1200 

5.32 162.76 4.06 -44.86 -32.86 

400 900-
1100 

6.39 162.76 4.98 -44.67 -33.6 

1600 900-
1100 

6.56 162.76 4.45 -44.70 -33.63 
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Table B.3: 2.4 GHz at 1 meter 

 
Pts Range 

(MHz) τrms (ns) 
MATLAB 

TOA (ns) 
MATLAB 

TOA (ns) 
Calibrated 

Ploss (dB) 
MATLAB 

Ploss (dB) 
Calibrated 

400 2100-
2700 

6.66 162.76 4.06 -60.13 -39.78 

800 2100-
2700 

6.25 162.13 3.43 -58.79 -38.44 

400 2200-
2600 

7.31 161.10 3.60 -58.94 -39.52 

 
 
 

Table B.4: 2.4 GHz at 10 meters 

Pts Range 
(MHz) τrms (ns) 

MATLAB 

TOA (ns) 
MATLAB 

TOA (ns) 
Calibrated 

Ploss (dB) 
MATLAB 

Ploss (dB) 
Calibrated 

400 2100-
2700 

12.18 192.65 33.95 -73.65 -53.3 

800 2100-
2700 

11.43 192.06 33.37 -72.72 -52.37 

400 2200-
2600 

15.75 192.65 34.95 -71.99 -52.75 

 

In addition the following plots will show another sample of magnitude and CIR in 

the time domain.   
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Figure B.3: Magnitude and Impulse Response of 1 GHz at 1 m 

 
 

 

Figure B.4: Magnitude and Impulse Response of 1 GHz at 10 m 

 
 

 

Figure B.5: Magnitude and Impulse Response of 2.4 GHz at 1 m 

 

Figure B.6: Magnitude and Impulse Response of 2.4 GHz at 10 m 
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B.8: Summary 
 

 The measurement system introduced in this report is a basic setup without 

attenuators or amplifiers.  There are certain important parameters to both channel 

modeling and indoor geo-location applications.  TOA, RMS delay spread and path loss 

were described earlier and their measurement and calculation technique was also 

described. The overall system setup is composed of a network analyzer, transmitting and 

receiving antennas, laptop, GPIB bus and HP-85047A S-Parameter Test Set.  Interfacing 

with the laptop through the GPIB bus was explained along with some basic 

functionalities of the network analyzer. 

 The MATLAB code used to generate the plots and calculate was also explained 

briefly and again the code could be used and modified to suit different measurement 

needs.  Data collection, calculation and generation procedures were discussed from the 

point of view of the required parameters.  Calibration issues were also discussed and it 

was described how to go about and account for such issues as cable path loss and delay.  

Finally some sample results were shown in the tables and plots. 
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