
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2003-05-05

Consistently Updating XML Documents Using
Incremental checks With XQueries
Bintou Kane
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Kane, Bintou, "Consistently Updating XML Documents Using Incremental checks With XQueries" (2003). Masters Theses (All Theses, All
Years). 754.
https://digitalcommons.wpi.edu/etd-theses/754

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000190?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/754?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Consistently Updating XML Documents using Incremental
Constraint Check with XQueries

A Thesis

by

Bintou Kane

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2003

APPROVED:

Professor Elke Rundensteiner, Major Thesis Advisor

Professor Kathi Fisler, Thesis Reader

Professor Micha Hofri, Head of Department

Abstract

When updating a valid XML Data or Schema, an efficient yet light-weight mechanism is

needed to determine if the update would invalidate the document. Towards this goal, we

have developed a framework called SAXE. First, we analyzed the constraints expressed

in XML schema specifications to establish constraint rules that must be observed when a

schema or an XML data conforming to a given XML Schema is altered. We then classify

the rules based on their relevancy for a given update case. That is, we show the minimal

set of rules that must be checked to guarantee the safety for each update primitive. Next,

we illustrate that this set of incremental constraint checks can be specified using generic

XQuery expressions composed of three type of components. Safe updates for the XML

data have the following components: (1) XML schema meta-queries to retrieve any con-

straint knowledge potentially relevant to the given update from the schema or XML data

being altered, (2) retrieval of specific characteristics from the to-be-modified XML, and

(3) an analysis of information collected about the XML schema and the affected XML

document to determine validity of the update. For the safe schema alteration, the compo-

nents are: (1) XML schema meta-queries to retrieve relevant information from the schema

(2) analysis and usage of retrieved information to update the schema, and (3) propagation

of the changes to the XML data when necessary. As a proof of concept, we have es-

tablished a library of these generic XQuery constraint checks for the type-related XML

constraints. The key idea of SAXE is to rewrite each XQuery update into a safe XML

Query by extending it with appropriate constraint check subqueries. This enhanced XML

update query can then safely be executed using any existing XQuery engine that supports

updates - thus turning any update engine automatically into an incremental constraint-

check engine. In order to verify the feasibility of our approach, we have implemented a

prototype system SAXE that generates safe XQuery updates. Our experimental evalua-

tion assesses the overhead of rewriting as well as the performance of our loosely-coupled

incremental constraint check approach compares with the more traditional first-change-

document and then revalidate-it approach.

2

Acknowledgements

I would like to express my gratitude to my adviser, Prof. Elke Rundensteiner for her ex-

cellent guidance through the process of completing this thesis. Without her suggestions,

ideas, feedback and support this thesis would not have been achieved.

I also thank my thesis reader Prof. Kathi Fisler for her valuable feedback and my col-

leagues at the DSRG Lab.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Our Approach . 3

1.3 Thesis Outline . 4

2 Related Work 6

2.1 XML Evolution . 6

2.2 XML and Database Systems . 7

2.3 Incremental Validation and Constraint Checks for XML 9

3 The XML Update Language 11

3.1 XML Query Language . 11

3.2 Update Language . 12

4 Modeling XML Schema, XML Data And Their Interrelationship 15

4.1 A Verbose Schema . 15

4.2 XML Schema Modeling . 15

4.3 XML Data Modeling . 19

4.4 Mapping between XML Schema and XML Data 21

ii

5 Consistency Under XML Data And XML Schema Updates 24

5.1 Consistency for XML Data Evolution 24

5.1.1 Rules of Consistency between Data and Schema 25

5.1.2 Application of Constraint Rules for the XML Data Update 26

5.2 Consistency for XML Schema Evolution 29

5.2.1 Constraint Rules for XML Schema 30

5.2.2 Application of Constraint Rules for Schema Update 36

5.2.3 Semantic Restriction for Safe Schema Update Generations 41

6 SAXE Framework 42

6.1 Generation of Safe Update Queries . 42

6.2 Framework . 44

6.3 Components of Constraint Checking Framework 45

6.4 Discussion of SAXE System Implementation 49

7 SAXE Experiments 51

7.1 Experimental Setup . 51

7.2 Experimental Results . 55

7.2.1 Safe Updates Queries Generation Time 55

7.2.2 Analysis of Replace a Component Name (Type Change) 57

7.2.3 Comparing Updates Generating Only Schema Changes 59

7.2.4 Efficiency Time Insertion for minOccurs, maxOccurs and ref Con-

straints . 61

8 Conclusion And Future Work 67

8.1 Conclusion . 67

8.2 Future Work . 68

iii

A Safe Queries For XML Data Updates 73

B Safe Queries For Schema Updates 78

iv

List of Figures

1.1 Tightly-Coupled Approach . 3

1.2 Loosely-Coupled Approach . 3

1.3 An Incremental Yet Loosely-Coupled Update Processing Framework Sup-

porting XML Updates with Schema Constraint Validation 3

3.1 Sample XML Schema: juicers.xsd . 12

3.2 Sample XML Document: juicers.xml . 12

3.3 Sample XQuery . 13

3.4 Syntax of Update-XQuery . 13

3.5 BNF of subOp . 14

4.1 Sample XML Schema: juicers.xsd . 16

4.2 Sample XML Document: juicers.xml . 16

5.1 Constraint Checking Function schemaChkDelEle 28

5.2 Constraint Checking Function delElePassed 28

5.3 Sample Update-XQuery . 29

5.4 Sample Safe Update-XQuery . 29

5.5 Sample XQuery For Rename Component Name 38

5.6 Template For the generated Queries . 39

5.7 Safe XQuery Generated For Schema Updates 40

v

5.8 Function For Schema Updates replaceRefSche 40

5.9 Safe Query Generated For Data Updates 41

5.10 Sample of Query to delete a referred element from the Schema 41

6.1 Sample Update-XQuery . 43

6.2 Sample Safe Update-XQuery . 43

6.3 An Incremental Yet Loosely-Coupled Update Processing Framework Sup-

porting XML Updates with Schema Constraint Validation 44

6.4 Constraint Checking Function schemaChkDelEle 47

6.5 Constraint Checking FunctiondelElePassed 47

7.1 Sample XML Schema:juicers.xsd . 52

7.2 Sample XML Document: juicers.xml . 53

7.3 Time for Query Generation . 56

7.4 Execution Time For Rename a Component Node 58

7.5 Execution Time for Rename an Instance Name in an XML Data 59

7.6 Comparing Schema and Data Time Execution for Replace Name 60

7.7 Insert Query Update Samples Affecting the Schema Alone 61

7.8 Safe Query Execution time for target constraints on The Schema 62

7.9 Safe Query Execution time for target constraints on The XML Data . . . 64

7.10 SAXE Versus Validator . 65

vi

List of Tables

5.1 Constraint Checks Classified By Data Update Types 27

5.2 Constraint Checks Classified By Schema Update Types 37

vii

Chapter 1

Introduction

1.1 Motivation

Today XML is the facto standard data exchange format for information on the Web.

Nearly all-major database system providers have extended their existing database tech-

nologies to manage XML data. Each of these vendors assumes change is a fundamental

aspect of persistent information and data-centric systems. Information over a period of

time often needs to be modified to reflect perhaps a change in the real world, a change in

the user’s requirements, mistakes in the initial design or to allow for incremental mainte-

nance.

However, change support for XML in current XML data management systems is only

in its infancy. Practically all change support is tightly tied to the underlying storage

system of the XML data. For example, both IBM DB2 XML Extender [IBM00b] and

Oracle 9i [Ora02], which support decomposition of XML data into relational [IBM00b] or

object-relational storage [Ora02], still require users to be aware of not only the underlying

storage system but also the particular mapping chosen between the XML model and the

storage model and updates must be done using SQL-like language. Little has been done

1

to provide mechanisms for maintaining the structural consistency of the XML documents

with all associated XML schemata during an update. Structural consistency is a desired

property in database systems which requires that the data must always conform to its

schema. An update is considered to be safe only if it will not result in any data violating

the associated schema. Though it is not required that XML documents must always have

associated schema due to their “self-describing” nature, many application domains tend

to use some schema specification in either DTD [W3C98] or XML Schema [W3C01a]

format to enforce the structure of the XML documents. An update to an XML document

should thus only be allowed when the update is safe, i.e., the updated data would continue

to conform to the given XML schemata.

To achieve this, techniques have been proposed for translating constraints in XML

to constraints in other data models, say the relational model [KKRSR00] or the object

model [BGH00]. Following the traditional database approach depicted in Figure 1.1, first

the XML Schema would be analyzed to construct a schema in the underlying storage

system, and second the XML documents could be loaded into the repository, only after

that would updates on the document be permitted. Thereafter XML constraint checking

would be achieved by the constraint enforcement mechanism supported in the underlying

data store. However we prefer native XML update support to avoid the overhead of a

load into a database management system (DBMS), and the dependency of XML updates

on some specific alternate data representation.

Alternatively as depicted in Figure 1.2, a native XML approach to ensuring the safety

of data updates is to first execute the updates on the XML document directly, then run

a validating parser 1 on the updated XML document, and lastly decide whether to roll

back to the original XML document based on the validation result. Such an approach is

likely inefficient since it involves redundant checking of the complete XML document.
1XML document parsers such as [IBM00a] support validating the XML document against the given

DTD or XML Schema.

2

It is preferable to have an incremental checking mechanism where only the modified

XML fragments rather than the complete XML document are checked. Also it would be

preferable not to have to load it into some data repository first.

Data

Update

Engine

XML Data

Schema

Builder

Data

Loader

XML

Schema
Update

XQuery

Schema

Figure 1.1: Tightly-Coupled Approach

Yes

XML Doc
Update Engine

Or

Editor

Updated-

XML Doc
Validator

No

XML

Schema
Update

XQuery

Figure 1.2: Loosely-Coupled Ap-
proach

1.2 Our Approach

It is preferable to provide constraint checking as a lightweight middleware service rather

than being tightly coupled to an XML data management system. This way the service

could be general and portable across different XML applications. The key concept we

propose to exploit is the capacity of the XQuery query language to not only query XML

data but also XML Schema. This allows us to rewrite XML update statements by ex-

tending them with appropriate XML constraint check sub-queries. This enhanced XML

update query can then safely be executed using any existing XQuery engine that supports

updates - thus turning any update engine automatically into an incremental constraint-

check engine. Figure 1.3 depicts the main flow of our constraint checking approach.

Safe XQuery

Rewriter
Update-

XQuery

Safe

Update-

XQuery

XML

Schema
XML

Data

Update Engine
Updated

XML

Figure 1.3: An Incremental Yet Loosely-Coupled Update Processing Framework Sup-
porting XML Updates with Schema Constraint Validation

3

In summary, we make the following contributions in this work:

1. We analyze XML schema specifications and develop general constraint rules to

perform safe update operations for the XML Schema and the XML Data.

2. We propose a general constraint checking framework that provides native, incre-

mental and lightweight XML Schema and XML Data update support by query

rewriting.

3. We have implemented a prototype system to verify the feasibility of this proposed

approach.

4. We have conducted an experimental study that compares the performance of the

proposed approach against that of current state-of-the-art solutions.

1.3 Thesis Outline

The rest of this thesis is structured as follows:

1. Related Work: Gives an overview of literature and tools related to this domain of

study.

2. XML Update language: Gives a concept of XQuery and the update language used

for SAXE.

3. Modeling XML Schema, XML Data and their Interrelationship: Models XML

Schema, XML Data and their mapping.

4. Consistency Under XML Data and XML Schema Updates: Shows How the system

integrity is maintained when changes originate either from the Schema or XML

Data.

4

5. SAXE Framework: Gives the overview of the SAXE System architecture and its

implementation.

6. SAXE Experiments: Gives a precise evaluation of the system.

7. Conclusion: Gives a detailed summary and possible future work on this domain.

8. Appendix A: Describes the template libraries for safe data updates when changes

originate from the XML data.

9. Appendix B: Describes the safe update queries generated when change originate

from the XML schema.

5

Chapter 2

Related Work

2.1 XML Evolution

With XML becoming more mainstream, and much more XML data becoming available

around, new technologies has been developed to better process and manipulate XML.

Management of XML documents is becoming an increasingly important task [TIHW01a].

We see a proliferation of databases that store, query and update XML documents.

Both the data and the structure of XML documents (schema) tend to change over time

for a multitude of reasons. Changes are fundamental aspect of persistent information and

data centric systems. Over time information tends to change, and modification should

be made to reflect the necessary evolutions. Beyond frequent data updates which are

widespread, we find that schema changes are also fairly common in modern applications

for the following reasons. Schema mapping techniques [HH00] which aim at mapping

between heterogeneous sources are semi-automatic and depend a lot on domain knowl-

edge. As a result, a good mapping is thus hard to find and may evolve over time. Sources

also have been found to be fairly volatile to the extent that some of them may be temporar-

ily or even permanently unavailable [ITY99]. Another important point is that a schema

6

change could occur for numerous reasons during the software life-cycle, including design

errors, schema redesign during the early stages of database deployment, the addition of

new functionalities and even new developments in the application domain.

2.2 XML and Database Systems

Even though the topic of updating XML data is still at its infancy, there have been signifi-

cant developments on this topic over the last few years. Today the community sees XML

not only as a way to serialize and communicate the already existing data structures, but

most importantly also as a way to think about modeling application data.

One of the first database systems that supported updates is the eXcelon XML repository

[eXc98]. Its support is basic and expresses simple deletion and insertion using an exten-

sion of the XPath language [W3C99]. In the spirit of making XML fully evolve into a

universal data repository, more and more suitable data query and update languages are

being developed. Some of the tools such as (XSLT) [W3C01d] have focused on vari-

ous language formats as a mechanism for manipulating XML data. Extensible Stylesheet

Language Transformations (XSLT) [W3C01d] is a language designed for transforming

individual XML documents. Contrary to SAXE, XSLT does not require any schema at-

tached to the XML data. The user can specify arbitrary data transformation rules. Lexus

(XML Update Language) [Inf00] is another declarative language proposed by an open

source group, Infozone, to update stored documents. However Lexus uses primitives,

which only work on the document level without taking the schema into account.

There are few native XML editor tools capable of validating XML schema and data up-

dates, one of these editors is XMLspy [XML]. Contrary to editors like XMLspy [XML],

SAXE allows a set of related safe updates to be done automatically in one batch using an

XQuery expression. Also SAXE is a one step process where updates are only performed

7

once they are deemed safe so that all the attempts for invalid updates will be prevented and

the safe ones will be performed. With the XMLSpy editor any invalid update will force a

roll back for all intended updates. The XEM project [SKC
�

00] from WPI deals with the

problem of XML evolution and updating. XEM proposes a set of update primitives, each

of which is associated with semantics ensuring the safety of the operation. The main lim-

itations of XEM are: (1) the data update primitives in XEM can only be performed on one

single element selected by an XPath expression at a time; (2) XEM is a tightly-coupled

approach, namely, it is implemented as an engine on top of PSE (a lightweight object

database), by first mapping the DTD to a fixed object schema and then loading the data

into the schema as object instances. Such more traditional database paradigm requires

schema evolution support from the underlying DBMS engine, in the XEM case, the PSE

system. While XEM provides such schema evolution support for PSE database evolution,

this now would either require a specialized constraint enforcement to be hard-coded into

the PSE system. Clearly, such an approach is a high-overhead strategy, requiring signif-

icant support from the underlying DBMS system or major software development on the

XML evolution system.

In traditional database management systems such as relational databases (RDBMS)

the problem of storing and querying XML data has been widely studied. [MAG
�

97] did

investigate the mapping of semi-structured data into relational databases, while [CACS94]

looks at SGML (the predecessor of XML) storage in an object-oriented database man-

agement system (OODBMS). [TIHW01a] is one of the first to address the problem of

updating hierarchical XML data stored across multiple relational tables. Oracle’s XML

SQL Utility (XSU) [Ora02] and IBM’s DB2 XML Extender [IBM00b] are commercial

relational database products extended with XML support. The two mainly provide two

choices for managing XML data. The choices are either to store XML data as a blob or

8

to decompose XML data to relational instances. So problems may arise in case of any

update to the external data. For the first choice the data needs to be reloaded and for the

second choice one has to make changes at the schema level of the relational database.

Hence the change propagation from an external XML document to its internal relational

storage or schematic structure is not supported in either of the two commercial database

systems. Although changes are allowed on the XML data in these systems, it’s done typi-

cally via some limited interface and the schema is considered fixed and given in advance.

This restriction is imposed because schema evolution in traditional DBMS systems tends

to be very expensive and disruptive to execute.

2.3 Incremental Validation and Constraint Checks for XML

XML schema design did adopt the form of constraints prevalent in the database literature,

however changed the semantics of keys, foreign keys, and unique constraints. [AFL02]

demonstrate the costly effect of this slight change on the feasibility of consistency check-

ing. Its shows that even without foreign keys and with very simple DTD features, check-

ing consistency of XML-schema specification is intractable. SAXE instead focuses on

a subset of core constraint quantifiers and types checking when the consistency check is

feasible. Regarding incremental validation of the XML schema, [PV03] models DTDs

as extended context free grammars and the schema as
�
abstracted specialized DTDs

�

allowing to decouple types from element tags. From that, it exhibits an algorithm with

significant improvement over the brute-force re-validation from scratch algorithm when

updates consist of element tag renamings, insertions and deletions. To our knowledge

there is no available implementation for this approach even though the theory part has

been proven. SAXE [KSR02] and [PV03] have different primary goals, SAXE main pur-

9

pose is to provide a way of updating while keeping the consistency between an XML

schema and its associated XML data, while [PV03] focus on how to discover a best algo-

rithm when altering an element on the DTD or schema.

10

Chapter 3

The XML Update Language

3.1 XML Query Language

Though it is not required that XML documents must always have an associated schemata

due to their ”self-describing” nature, many application domains tend to use some schema

specification in either DTD [W3C98] or XML Schema [W3C01a] format to enforce the

structure of the XML documents. Whenever XML schemata are associated with the XML

data, then structural consistency should also be taken care of during update processing.

Suppose the user specifies to remove the cost of the juicer with name “Champion

Juicer” (the first juicer in juicers.xml). This operation will render the Champion juicer to

no longer have a cost subelement. Such an updated XML document is inconsistent with

the schema juicers.xsd since a juicer element is required to have at least one cost subele-

ment, indicated as � xsd: element ref = cost minOccurs = 1 maxOc-

curs � unbounded/ � in juicer.xsd. This update would however have been allowed

for the second juicer (i.e., Omega Juicer). Some mechanisms must be developed to pre-

vent such violation of structural consistency.

11

1<xsd: schema xmlns: xsd = http://www.w3.org/2001/XMLSchema>
2 <xsd: element name = “juicers”>
3 <xsd: complexType>
4 <xsd: sequence>
5 <xsd: element ref = “juicer” minOccurs = “0” maxOccurs = “unbounded”/>
6 </xsd: sequence>
7 </xsd: element>
8 <xsd: element name = “juicer”>
9 <xsd: complexType>
10 <xsd: sequence>
11 <xsd: element ref = “name”/>
12 <xsd: element ref = “image” maxOccurs = “unbounded” />
13 <xsd: element ref = “cost” minOccurs = “1” maxOccurs = “unbounded” />
14 </xsd: sequence>
15 <xsd: attribute ref = “quality” use = “optional”/>
16 </xsd: complexType>
17 </xsd: element>
18 <xsd:element name="name“ type="xsd:string"/>
19 <xsd:element name="cost" type="xsd:string"/>
20 <xsd:element name=“image“ type="xsd:string"/>
21 <xsd:attribute name=“quality" type="xsd:string"/>
22</xsd: schema>

Figure 3.1: Sample XML Schema: juicers.xsd

<juicers>

<juicer>

<name> Champion Juicer </name>



<cost> 239.00 </cost>

</juicer>

<juicer>

<name> Omega Juicer </name>



<cost> 234.00 </cost>

<cost> 359.50 </cost>

</juicer>

</juicers>

Figure 3.2: Sample XML Doc-
ument: juicers.xml

3.2 Update Language

XQuery [W3C01c] is an XML query language proposed by World Wide Web Consortium

for querying XML documents. An XQuery statement is composed of several expressions.

An important expression in XQuery is the FLWR expression constructed from FOR, LET,

WHERE and RETURN clauses.

1. FOR and LET clauses: They serve to bind values or expressions to one or more

variables. In particular, FOR is used whenever the binding iterates over a list of

nodes returned by the expression, while LET simply binds the variable to the value

of the expression with no iteration.

2. WHERE clause (optional): It filters the bindings generated by FOR and LET clauses

by any specified predicates.

3. RETURN clause: It constructs an output XML document.

Figure 3.3 gives an example Xquery over the XML document in Figure 3.2. The vari-

able $p iterates over each element node satisfying the expressiondocument
� �
juicers.xml

�

12

1 FOR $p in document(“juicers.xml”)/juicer,
2 $child in $p/cost[1]
3 RETURN $child

Figure 3.3: Sample XQuery

�	�
juicer (line 1). For each identified binding of $
 , $ �������� is bound to the first cost

child node of ��
 (line 2). These cost elements ����������� then are returned (line 3).

[TIHW01b] extends XQuery’s original FLWR expressions to accommodate the up-

date operations by introducing UPDATE..., clauses i.e., FLWU expressions. We will refer

to this language extension of XQuery as the Update-XQuery language. The BNF syntax

is shown in Figure 3.4 while the BNF for the UPDATE clause (subOp in Figure 3.4) in

particular is shown in Figure 3.5.

FOR $ �����������! #" in XPath-expr, ...

LET $binding := XPath-expr, ...

WHERE predicate1, ...

UPDATE $binding $ subOp $, subOp % * %
Figure 3.4: Syntax of Update-XQuery

The semantics of FOR, LET and WHERE clauses are exactly the same as those in a

FLWR, while the UPDATE clause specifies a sequence of update operations to be applied

on the target nodes identified by FLW.

13

DELETE $child &
RENAME $child TO name &
INSERT (new attr(name, value) &

content 'BEFORE & AFTER $child ()&
$copyTarget 'BEFORE & AFTER $child () &

REPLACE $child WITH (new attr(name, value) &
content &
$copyTarget)

FOR $binding IN XPath-expr, ...

WHERE predicate1, ...

UPDATE $binding $ subOp $, subOp % * %
Figure 3.5: BNF of subOp

14

Chapter 4

Modeling XML Schema, XML Data

And Their Interrelationship

4.1 A Verbose Schema

In our current work, we assume the schema is first-class citizen. In this sense, an update

to an XML data document is only allowed when the update is safe, i.e., the updated data

would still conform to the given XML schemata. Without loss of generality we choose to

work with a verbose type of XML schema, sometimes referred to as
�
salami slice design

schema
�

[Cor02]. A verbose schema has a design approach that disassembles instance

documents into their individual components.

4.2 XML Schema Modeling

In the schema we first define each component as a separate element declaration, and then

assemble them together. Note how the schema in Figure 4.1 declares each component

individually (name, image, cost and quality) respectively at lines 18, 19, 20 and 21 and

15

1<xsd: schema xmlns: xsd = http://www.w3.org/2001/XMLSchema>
2 <xsd: element name = “juicers”>
3 <xsd: complexType>
4 <xsd: sequence>
5 <xsd: element ref = “juicer” minOccurs = “0” maxOccurs = “unbounded”/>
6 </xsd: sequence>
7 </xsd: element>
8 <xsd: element name = “juicer”>
9 <xsd: complexType>
10 <xsd: sequence>
11 <xsd: element ref = “name”/>
12 <xsd: element ref = “image” maxOccurs = “unbounded” />
13 <xsd: element ref = “cost” minOccurs = “1” maxOccurs = “unbounded” />
14 </xsd: sequence>
15 <xsd: attribute ref = “quality” use = “optional”/>
16 </xsd: complexType>
17 </xsd: element>
18 <xsd:element name="name“ type="xsd:string"/>
19 <xsd:element name="cost" type="xsd:string"/>
20 <xsd:element name=“image“ type="xsd:string"/>
21 <xsd:attribute name=“quality" type="xsd:string"/>
22</xsd: schema>

Figure 4.1: Sample XML Schema: juicers.xsd

<juicers>

<juicer>

<name> Champion Juicer </name>



<cost> 239.00 </cost>

</juicer>

<juicer>

<name> Omega Juicer </name>



<cost> 234.00 </cost>

<cost> 359.50 </cost>

</juicer>

</juicers>

Figure 4.2: Sample XML Document: juicers.xml

16

then assembles them together in the creation of the component juicer at line 8. One of

the advantages of the verbose schema is its layout structure, the layout enable us to know

where to retrieve the needed constraint information in specific places of the XML schema.

All components have a global scope and are direct children of the schema root. A verbose

schema can be extended to other available schema design styles and vice versa. For

example, Figures 4.1 and 4.2 show a verbose XML schema juicers.xsd and its XML data

juicers.xml conforming to the schema. They are used as running samples in this thesis.

The XML schema is composed of a root and a set of components, where a component

can be of type attribute or element for example in Figure 4.1 at line 8 we have a global

component element and at line 21 we have a global component attribute. Each element

component can in turn contain attribute declarations or subelement declarations referring

to other previously defined components. A component without subelement declarations

will be considered as an empty component. Elements of XML data are instances of

components from XML schemas.

Structure of an element component: [Cor02] gives a clear description of a global or

local component in the verbose type schema. In this thesis the set of all global ele-

ment components in an XML schema will be referred as *,+ . Each �.-/*,+ will be

denoted by 'e type, e name, refEle Defs, refAttr Defs (where e type

is the type of the component � , e name is the name of � , refEle Defs is the set of

referenced elements, and refAttr Defs is the set of referenced attributes inside the

global element. For instance the juicer component defined at line 8 in the schema given

at Figure 4.1 has for refEle Defs the set of elements defined at lines 11, 12, and

13. The refAttr Defs of the same component juicer is composed of one element

defined at line 15. When refEle Defs and refAttr Defs are empty as in lines

18, 19, and 20 in Figure 4.1, we are dealing with a global empty component. Any

element 01- refEle Defs is denoted by ' refE type, refE name, minOc-

17

curs, maxOccurs (where refE type is the type of the referred element compo-

nent, refE name is the name of the referred element component, minOccurs and

maxOccurs are quantifiers used in the XML schema to specify respectively the mini-

mum and maximum number of occurrences of the referred component may appear in an

instance of the referring component. Note that in a schema when neither minOccurs

nor maxOccurs are specified for a referred component, their default value is considered

to be equal to 1.

The refEle Defs of the juicer component in Figure 4.1 is made up with the ele-

ment declarations on lines 11, 12 and 13: refEle Defs = $2� xsd:element ref

= name �43#� xsd:element ref = image minOccurs = unbounded/ �53
� xsd:element ref = cost minOccurs = 1 maxOccurs = unbounded/ �6% .

The last tuple � xsd:element ref = cost minOccurs = 1 maxOccurs

= unbounded/ � refers to the component cost defined at line 19 in juicers.xsd schema.

cost is an empty global component, it’s type can be found at line 19 defined as a string.

XML uses name name tags are type identification for non-empty global component.

Definition 1: A one-to-one function E is used to express the relationship between each

referred element in a global component , with identified by ' e type, e name,

refEle Defs, refAttr Defs (. The function is E, given E : refEle Defs

7!8 *,+ , where refEle Defs is the set of referred elements in the given global com-

ponent element and *,+ is the set of all global elements in the schema. We have 9.0:-
refEle Defs ;<*=->*,+ such that E(0) = * with 0 .refE name = * .e name. And 0 is

assigned refE type which is equivalent to the type of * (e type).

refAttr Defs is the set of referred attributes in a global component element of the

schema. An attribute node ?��@- refAttr Defs can be denoted by 'refA type,

refA name, refA use (where refA type is the type of the referred attribute, refA name

18

is the name of the referred attribute, and refA use indicates whether the attribute is

required, optional or even prohibited. If a default or fixed value is specified in the at-

tribute declaration then the value refA use must be optional. For example, in Figure

4.1 the only element of refAttr Defs in the component juicer is at line 15. It has

for refA name and refA type respectively quality and string which are the name and

type of the referred attribute. Its refA use value is optional.

Structure of an attribute component:

The set of all global attribute components of a schema is referred as ?#+ . The structure

of a global attribute component is defined by ' a type, a name (where a name and

a type are respectively the name and type of the referenced attribute. In juicers.xsd in

Figure 4.1 we have only one global attribute component defined at line 21 as a name �
quality and a type � string .

Definition 2: A one-to-one function A is used to express the relationship between each

referred attribute in a global component , with A�B' e type, e name, refEle

Defs, refAttr Defs (. The function A, given by A : refAttr Defs 7!8 aC where

refAttr Defs is the set of referred attributes in a given global component and ?#+
the set of all attribute definitions in the schema. 9C?���0D- refAttr Defs ;E?=-F?G+ such

that ?���0 .refA name = ? .a name. And ?���0 is assigned an identifier refA type, which

is the type identified in ? (a type).

4.3 XML Data Modeling

An XML document is defined by its name referred to as xmldoc and a set H of ordered

labeled nodes, where each element node is an instance of one component in its associated

XML schema. Every element node has a direct parent. The root is the direct child of the

19

Schema document.

Structure of an element node. Any element node �I-/H is identified by 'type,
name, subEles, attrs, value (where type is the type of the element node,

name is the node tag name, subEles is a set composed of the direct children nodes of

� , attrs is a set containing the attributes of the element node, and value the value of

the element. An element node with an empty subEles is called an empty element or

a leaf. A non-leaf element node doesn’t have an value; thus it could be identified as

[type, name, subEles, attrs, J]. An element node leaf will obviously have

no children so it can be represented as [type, name, J ,attrs, value]. Most of

the time the type of a leaf is a built-in data type such as integer or string.

In particular, subEles can be expressed as the union of sets of sub-elements, each sub-

element grouping element nodes of the same type.

subEles �
KML�NO
KPL�Q�R,S �UT=��* R KWV

Each subset RXS �UTE�Y* R K is characterized by two identifiers: The type and tag name of the

elements it is holding. The identifiers will be referred respectively as: Z\[]
^* RXS �UTE�Y* R K and

Z\?_ R,S �UT=��* R K .

For an illustrative example, let’s take the juicers.xml in Figure 4.2. The element node

juicer[2] has type juicer, its name is also juicer, and its set subEles is composed of

its direct children is: $�� name> Omega Juicer </name � ,

� image � image
�
omega.gif � /image � ,

� cost � 234.00 � �
cost � ,

� cost>359.50</cost �`% .
subEles is made of three different subsets, each subset is composed of elements of same

name tag. The identifiers Z\?� RXS �UT=��* R K and Z\[]
^* RXS ��TE��* R K of each subset respectively are

20

$ cost, string % , $ image, string % and $ name, string % . Note that if we were dealing with a

complexType component the identifier Z\[]
^* RXS �UTE�Y* R K and Z\?_ RXS �UT=��* R K will be the same

due to the fact that XML uses in some cases tag names as type identification. So in this

case subEles is composed of three subsets enumerated from 0 to 2.

RXS ��TE��* R Q � $�� name � Omega Juicer � � name �a%

RXS ��TE��* R "b�c$�� image > image
�
omega.gif � � image �D%

RXS ��TE��* R,d = $�� cost � 234.00</cost � , <cost � 359.50</cost �e%

Definition 3: Let � be denoted by 'type, name, subEles, attrs, value (,
and

R ?�fA*g`[]
^*Eh subEles 8
KPL�NO
KPL�Q�RXS �UTE�Y* R K

e a one to one function, where subEles the set of direct children of � , and an RXS �UT=��* R K
groups element of (subEles) having the same type. sameType(b) = R,S �UT=��* R K iff � .name
= Z\?_ RXS �UT=��* RXi and � .type = Z\[]
^* RXS ��TE��* R,i
Example: We have:

sameType (� cost � 234.00 � � cost �) = RXS �UT=��* R,d
because � cost � 234.00 � � cost �j- R,S �UT=��* R,d

An attribute ?E- attrs identified by a name, type and value [attr type, attr name,

attr value], where attr type, attr name and attr value are the type, name

and value of the attribute respectively.

4.4 Mapping between XML Schema and XML Data

We now present relations that exist between an XML document and its given XML

schema. A set of constraints is described in the schema and the XML document should

21

conform to these constraints. In an XML document each element or attribute is uniquely

typed, that is each element node is an instance of a unique component node from its asso-

ciated schema. A mapping function will be used to express the bi-directional relationship

between an XML document and its schema. The function is typeof, denoted by typeof:

H 7!8 *,+ , where H is the set all element nodes of the XML data and *,+ is the set of

global element components on the XML schema. The typeof function ensures that if �k-
Hl;:�e-.*,+ such that typeof(�) = � .e type

Element Translation Function: Let � be a non - empty element node of H and � be a

global element component of *,+ such that typeof(�)= � .e type. A translation element

function typeofEle maps the set of direct children of � with the same name tag to the cor-

responding element declaration in � . This means each RXS �UT=��* R K of subEles is mapped

to the corresponding element in refEle Defs.

typeofEle: subEles 7m8 refEle Defs, for 0n- refEle Defs and typeofEle(RXS �UT=��* R K)
= 0po<qr9s�t- R,S �UT=��* R K we have: � .name = 0 .refE name and � .type = 0 .refE type.

Illustrative Example: Let � be the juicer[2] element node of juicers.xml in Figure 4.2,

RXS ��TE��* R Q = $�� name> Omega Juicer </name �u% ;

RXS ��TE��* R " = $�� image > image &omega.gif </image �6% ;

RXS ��TE��* R,d = $�� cost> 234.00</cost � 3.� cost � 359.50 � � cost �6% .
The component � xsd:element ref � "cost" minOccurs � "1" maxOccurs

="unbounded"/ � defines cost in juicer[2].

typeofEle (RXS �UTE�Y* RXd) = � xsd:element ref="cost" minOccurs="1"

maxOccurs="unbounded"/ �
where 0 .refE name is cost and 0 .refE type is string.

Attribute Translation Function: Let �v-wH be an element and �5-v*,+ be an element

component of a schema such that typeof(�) = � .a type. An attribute translation function

typeofAttr maps each attribute of � to the corresponding attribute declaration (element of

22

refAttr Defs) of the component node � . Let ? be an element of ?�ZWZ\0 and ad an element

of refAttr Defs, we have typeofAttr: ?_ZWZ\0 R 7�8 refAttr Defs. With typeofAttr

(?) �x?��yo<q a.attr name = ad.a name and a.attr type = ad.refA type.

23

Chapter 5

Consistency Under XML Data And

XML Schema Updates

5.1 Consistency for XML Data Evolution

An XML document is well formed if it meets all specifications of the World Wide Web

standard [W3C01b]. A well-formed XML document can in addition be valid if it has

an associated schema and if it agree to all constraints expressed in the schema. We now

introduce the notion of validity by presenting rules that should hold for an XML data doc-

ument to be valid with respect to its schema. Each rule is a necessary condition to assure

the validity of the XML document. We make the assumption that the XML document and

its schema are well-formed before any update is attempted. The set of all element nodes

of the XML data document will be referred to as H and the set of all component nodes of

the schema will be referred as z .

24

5.1.1 Rules of Consistency between Data and Schema

Rule 1: Quantifier Constraint Rule

Let � be a component element node from the schema R and � be its instance element in

the XML data document node. This rule guarantees the minimum and maximum num-

ber of times the referred component in � is allowed to appear as a direct child on the

instance � . We already know 9{0=- refEle Defs if �`- RXS �UT=��* R and typeofEle(�) = r

and �a- RXS �UT=��* R K then the translation element function typeofEle in Section 4.1 gives us

Z\[]
^*,|�}!T=��* (RXS �UT=��* R K) � r V So two conditions should hold:

(1.) & RXS �UT=��* R K &�~ r.minOccurs.

(2.) & RXS �UT=��* R K &�� r.maxOccurs.

For example at line 12 in Figure 4.1 the referenced component image has for maxOc-

curs the value unbounded. minOccurs is not specified, thus its default value is 1.

Consequently each instance node juicer in the XML document juicer.xml in Figure 4.2

must have at least one image element node as direct child.

Rule 2: Attribute Constraint Rule

If a component element � has an attribute declaration with its refA use set to required,

then any instance � of � in the XML data document must have this attribute. If refA use

is set to be optional then the instance node may or may not have the attribute defined.

92?���- refAttr Defs one of the following should hold:

1. if ?�� .refA use =
�
required

�
then ;�?�- attrs of n such that typeofAttr(?) = ?��

where typeofAttr is the translation attribute function already defined in Section 4.4. This

is equivalent to: ?�� .a named = ? .attr name and ? .attr value = ?�� .refA type.

2. if ?�� .refA use = "optional" then we have either
�

a
�

or
�

b
�

case below
�

a
� 92?�- attrs, typeofAttr (?) �� ad |�0

(�) ;�?1- attrs such that ?�� .refA name = ? .attr name and ? .attr value =

?�� .refA type.

25

Rule 3: Element Node Validity Rule

This rule groups all necessary conditions that an element node in the XML data document

must meet in order to be called valid.

9<��-.Hl;:�e- S such that the following conditions must hold:

1. � .type = � .e type

2. � .name = � .e name

3. 9j�k- RXS �UTE�Y* R ;�0@- refEle Defs such that typeofEle
�
subEles K) � r with �k-

RXS ��TE��* R K we have: a) & RXS �UT=��* R K &�~ r.minOccurs and b) & subEles K &�� r.maxOccurs.

4. 9s?=- attrs ;u?��5- refAttr Defs such that ? .attr name = ?�� .refA name and

?�� .refA use �� ”prohibited”

5. 9A?{- attrs if typeofAttr(?) = ?�����q ? .attr type = ?#� .refA type. This con-

dition makes sure that the attribute of the element node is of the correct type.

Rule 4: Attribute Node Validity Rule

The rule gives the necessary conditions for an attribute node to be a valid attribute of � .

1. 9k?�- attrs ;F?���- refAttr Defs such that ? .attr type = ?�� .refA type,

? .attr name �y?�� .refA name where ?�� .refA use � ”required” or ?�� .refA use

� ”optional”.

2. 9=?5- attrs, 9 x - attrs 7 $]?�%�� .attr name �� a.refA name. This rule prevents

to duplicate name tag attributes.

5.1.2 Application of Constraint Rules for the XML Data Update

Changing an XML document is only allowed if it doesn’t violate any of the rules stated

above. Our assumption is the XML document and its schema are valid before any update

is attempted. Table 5.1 summarizes the rules that may be violated when performing an

update. The table classifies the rules that must be checked whenever an update of a certain

26

occur. 1

Update Operation Rules to check Descriptions

delElePassed ��� KM��� Rule1 condition1 Remove child from list target element node

delAtrPassed ��� KM��� Rule2 Delete an attribute node

insElePassed ��� KM��� [before � after � child �] Rule 3 Insert an element node

insAtrPassed �X�Y� ���M�M� (� , �) Rule4 Insert an attribute for an element

renameElt �Y� KM��� to Rule3 and Rule1 Rename the tag name of an element node

renameAtr ��� KM��� to Rule2 condition1 and Rule4 Rename the tag of an attribute node

replaceE ��� K���� with c Rule 1 and Rule 3 Replace an element node

replaceEV ��� KM��� with Rule 1 and Rule 3 Replace the value of a leaf element node

replaceA ��� KM��� with new attr(� , �) Rule 2 and Rule 4 Replace an attribute node

replaceAV �Y� KM��� with Rule 2 and Rule 4 Replace the value of an attribute node

Table 5.1: Constraint Checks Classified By Data Update Types

Example With delElePassed:

We will show how the update operations maintain the system integrity by using the rules

above for a delete element operation. delElePassed deletes an element node from

the XML data document. Validation: Let * the target element node to be deleted and

'type, name, subEles, attrs (its direct parent node. After the delete we want

to make sure that the node
 is still valid. We assume every node is valid before an update

is tried. The only rule that can affect the validity of the element
 , which is an instance

of some component � in the XML schema, is Rule 1 condition 1. By * being a child of

then *a- subEles, where subEles is composed of union of several sets RXS �UT=��* R K (see

1More information about the safe data update queries can be found in Appendix A.

27

Section 4.3), where the set RXS �UTE�Y* R K groups the direct children of
 having the same type

element node. Using Definition 3 of section 4.1, ; RXS �UTE�Y* R K such that *5- R,S �UT=��* R K , the

translation function Z\[]
^*,|�}�T=��* gives Z\[�
�*,|�}�TE��* (RXS �UT=��* R K) = 0 , where 0 is an element

referred to in � . From Condition 1 of Rule 1 the XML data document is valid with respect

to the schema after the deletion only if 0 .minOccurs ��& RXS �UT=��* R K & 7 1.

We illustrate how the constraint checking is done for the delete element node in our

running XML data document example using XQuery. The schemaChkDelEle in Fig-

ure 6.4 queries the schema for the information related to the constraints that may be

violated when deleting an element. Deleting an element * of element type Z can only vi-

olate the constraint of a required minimum occurrence of the elements of type Z as direct

child * ’s parent. schemaChkDelEle retrieves the minimum occurrence of elements

$childEleName in the parent type parentEleName. In particular, line 2 queries the XML

schema file, specified by the file name $xsdName, to find the element definition $pDef for

type $parentEleName. The element definition of parentEleName’s subelement referring

to type childEleName is stored in $childRef in line 3. Line 4 then retrieves the minimum

occurrence of element type childEleName in parentEleName.

Function schemaChkDelEle($xsdName, $parentEleName,
$childEleName)
1
2 For $pDef In document($xsdName)/xsd:element[@name =
$parentEleName],
3 $cRef In $pDef//xsd:element[@ref = $childEleName]
4 Let $cRefMinOccurs:= $cRef/minOccurs
5 Return $childRefMinOccurs
6 ¡
Figure 5.1: Constraint Checking Function
schemaChkDelEle

Function delElePassed($childBinding, $childBindingPath,
$childMinOccurs)

Return Boolean
1
2 LET $childInstCount := count($childBindingPath),
3 Return
4 If ($childMinOccurs ¢ = $childInstCount - 1
5 Then TRUE
6 Else FALSE
7 ¡

Figure 5.2: Constraint Checking Function
delElePassed

Figure 6.2 shows the rewritten Update-XQuery from the Update-XQuery in Figure

6.1. There is one update operation in the query, i.e., DELETE $c in line 4. We can

28

see that lines 3, 5 and 62 in Figure 6.2 have been inserted into this update operation so

that this update is only executed when delElePassed(...) (line 5) returns true.

delElePassed(...) is a constraint check function which determines the validity

of the update DELETE $c. The subquery schemaChkDelEle(...) in line 3 is a

function that provides information that is needed by delElePassed(...) to make

the determination.

1 FOR $p in document(“juicers.xml”)/juicer,
2 $c in $p/cost[1]
3 UPDATE $p
4 DELETE $c
5 ¡

Figure 5.3: Sample Update-XQuery

1 FOR $p in document(“juicers.xml”)/juicer,
2 $c in $p/cost[1]
3 LET $constraint =
schemaChkDelEle(“juicers.xsd”,“juicer”,“cost”)

4 UPDATE $p
5 WHERE delElePassed($c,$p/cost,$constraint)
6 UPDATE $p
7 DELETE $c
8 ¡
9 ¡

Figure 5.4: Sample Safe Update-XQuery

5.2 Consistency for XML Schema Evolution

XML schema supports a variety of atomic types (e.g., string, integer, float, double, byte),

complex type constructs (e.g., sequence and choice) and inheritance mechanisms (e.g.,

extension and restriction). The description of XML schema did not adopt all the con-

straints prevalent in the database literature. While consistency checking of an XML-

Schema specification is intractable in certain cases [AFL02], checks for the SAXE sys-

tem focus on constraint checks concerning type checking, component validity checking,

attribute and element validity, and particle validity such as the quantifier minOccurs

and maxOccurs values. The reasoning about constraint validation in SAXE is based on

incremental constraint checks, and an update is allowed on the schema only if it leaves

both the XML schema and the XML data both valid and conforming to each other. A
2line 6 is added only to meet the syntax requirement.

29

well formed XML schema meets all the specifications of the World Wide Web consor-

tium [W3C01a] specification and all associated XML data should conform to constraints

on the schema. As for data consistency we introduce rules that will guarantee the notion

of validity for the evolving XML schema. Each rule is a necessary condition of validity

of the XML schema. We also make the assumption that the schema is valid before any

attempt of on altering the schema is made.

5.2.1 Constraint Rules for XML Schema

We present in this section rules that guarantee an XML schema is valid after modification.

The rules are based on the specifications of the World Wide Web standard [W3C01b].

The structure of the schema used is verbose [Cor02], meaning that in such schema style

the direct or immediate children of the schema root are referred to as global elements

and local when they are nested in another component. In Figure 4.1 the root is element

<xsd:schema>.

Rule 5: Syntax Rule

This rule guarantees that element and datatypes used to construct schemas originated

from the namespace. SAXE update operations can manipulate safely any element be-

longing to the targeted namespace. The annotations used to construct SAXE schemas

are: schema, element, attribute, complexType, and sequence, this can be

confirmed by looking at any element on the schema juicers.xsd in Figure 4.1 where the

namespace variables used are: $ xsd:schema, xsd:element, xsd:attribute,

xsd:complexType, and xsd:sequence % . Each of the elements of the schema has

a prefix "xsd:" which is associated with the namespace through the declaration. Below

is the list of namespace variables that can be manipulate by SAXE:

1. xsd:element

30

2. xsd:attribute

3. xsd:complexType

4. xsd:sequence

Rule 6: Position Rule

This rule guarantees that any component node, be it a global node or a local node, is in a

proper position within the schema. A schema satisfies the Position Rule if the following

conditions hold:

1. Let 0 be referred element in a component of the schema with namespace xsd:element,

having ref and a value refE name as attribute, then ;��`-�*,+ (the set of global

components of the schema) such that 0�-x� .refEle Defs. � is a non-empty

global element node.

This condition ensures that a referred element node with namespace xsd:element

is in a proper position with respect to the schema. A referred node should be posi-

tioned as a local element of the schema, e.g., if we look at the juicers.xsd schema

in Figure 4.1 the referred elements at lines 11, 12, 13 are local elements hav-

ing as immediate parent <sequence
�
>, which in turn has for immediate parent

<complexType
�
>.

2. Let 0 be an element of the schema, having ref and value refA name as attribute

then ;{�u-1*,+ such that 0C-1� .refAttr Defs. � is a non-empty global element

node.

This condition ensures that a referred node with namespace xsd:attribute is a

local element of the schema, it has as immediate parent the element <complexType
�
>.

31

In Figure 4.1 the non-global component juicer refers in line 15 to quality, the re-

ferred element inn line 15 has as immediate parent <complexType
�
>.

3. Let � be an element of the schema with an attribute name and a value e name,

� be an immediate child of the root <schema
�
>. This condition guarantees the

position of a global element in a verbose style schema which SAXE uses. For

example, lines 2, 8, 18, 19, 20 and 21 are immediate children of the root <schema
�
> in juicers.xsd Figure 4.1. They have all an attribute name identifying them.

4. An element <xsd:complextype
�
> of the schema is a local component and,

has for immediate parent a component name definition and for immediate child the

node <sequence
�
>.

For instance all the elements of the schema in Figure 4.1 defined with xsd:complex-

Type have for immediate children <sequence
�
>. For example lines 3 and 9 have

respectively lines 4 and 10 (both corresponding to <sequence
�
>) as immediate

child. The immediate parent of lines 3 and 9 are respectively lines 2 and 8; both

elements having an attribute value name.

5. An element <xsd:sequence
�
> is a local element of the schema and has as im-

mediate parent the element <xsd:complexType
�
>.

6. An element with namespace <xsd:element> and having ref as attribute has

for immediate parent the element <xsd:sequence>. In Figure 4.1 we have

the elements at lines 11, 12, 13 which all have as immediate parent the element

<sequence
�
> at line 10.

7. An element with namespace <xsd:attribute> and having ref as an attribute

has for immediate parent <xsd:complexType>. Line 15 in Figure 4.1 has as

32

immediate parent <xsd:complexType> at line 9.

Rule 7: Referred Element Rule

This rule guarantees the correctness of a referred element on the schema. 950e- refEle Defs

defined by ' refE type, refE name, minOccurs, maxOccurs (then the fol-

lowing condition should hold:

1. refE name �� empty string.

This guarantees the value of ref attribute for the element 0 not being null. In Figure

4.1 we see that each referred element has ref and its value assigned.

2. ;s*D-�*,+ � 0 .refE name = * .e name.

For instance in Figure 4.1 any referred node is an existing defined global element

node of the schema. For example lines 11, 12, 13 are all defined in line 18, 19 and

20 respectively.

3. The minOccurs and maxOccurs attribute and their value are not required, when

declared their value has to be set to a positive integer.

Rule 8: Referred Attribute Rule

This rule guarantees the well-formeness of a referred attribute node in the schema.

9<?#0u- refAttr Defs defined by ' refA type, refA name, refA use (

if ?�0 is referred locally in a component element node then it is valid if the following con-

ditions hold:

1. refA name �� empty string. with refA name being the value of ref.

For instance in Figure 4.1 at line 15 the ref value is not null.

33

2. ;�?_Zp-k?#+ (the set attribute component of the schema) such that ?#0 .refE name

= ?_Z .a name

For instance in Figure 4.1 the referred quality component has been already de-

fined by the global component node in line 21.

3. use with its assigned value refA use are not required, but when declared the

value should not be null. The possible values of use we can manipulate accord-

ingly in SAXE: are optional, required and prohibited.

Rule 9: Element Component Validity Rule

This rule guarantees the validity of a global element.

Let �u-1*,+ , where �£�¤'e type, e name, refEle Defs, refAttr Defs (.
Then � is well-formed and valid if the following conditions are satisfied:

1. 9<�e-.*,+ , ¥¦�A-.*,+ such that � .e name = � .e name.

This guarantees that no duplication of global component names occurs.

2. xsd:element is the namespace used for declaring � . For instance in Figure 4.1

xsd:element is used for the declaration of juicer and cost at lines 8 and 18

respectively.

3. If � is of complex type, then name is the only attribute for the element node decla-

ration. For example line 8 of juicers.xsd schema in Figure 4.1 the component has

for name juicer.

4. If � is not declared as complex type, then refEle Defs �¨§ , refAttr Defs �
§ , and the name with value e name �� empty string.

The second possible attribute that can be assigned to � is type with value e type. For

instance lines 18, 19 and 20 in Figure 4.1 the juicers.xsd schema.

34

5. If refEle Defs ��¨§ then we have the requirement below:

(a) An element <xsd:complexType/> is an immediate child of an element

defined with the namespace <xsd:element
�
> having one attribute which

is name, e.g., line 9 of juicers.xsd schema in Figure 4.1.

(b) An element <xsd:sequence/>must be an immediate child of � xsd:comp
lexType

� � . For example line 10 of juicers.xsd schema in Figure 4.1.

(c) Elements belonging to the set refEle Defs must have as immediate parent

� xsd:sequence � � . For example the referred element on the juicer

component in lines 11, 12 and 13 in Figure 4.1 have as immediate parent

<xsd:sequence
�
> at line 10.

6. If refAttr Defs ��x§ then we have:

(a) The element <xsd:complexType
�
> is immediate child of the element

name declaration, e.g., line 9 of juicers.xsd schema in Figure 4.1.

(b) 9E0n- refAttr Defs, 0 has as immediate parent <xsd:complexType/>,

e.g., the referred element in the juicer component at line 15 in Figure 4.1

has for immediate parent <xsd:complexType/> at line 10.

Rule 10: Attribute Component Validity Rule

This rule guarantees the validity of the element attribute declaration �`-A?#+ .

Let � be identified with ' a type, a name (, � is well formed and valid if the following

conditions hold:

1. 9@�{-©?#+ , �;¦�©-©?#+ such � .a name = � .a name. This guarantees that global

component names are not duplicates.

2. The namespace used for the component attribute declaration is xsd:attribute.

For example in Figure 4.1 its quanlity component at line 21.

35

5.2.2 Application of Constraint Rules for Schema Update

Changing an XML schema is only allowed if it leaves the schema and XML data valid

and conforming to each other.

As we did when we were dealing with changes that originated from the XML data, the

purpose here also is to generate a safe update query from an XQuery statement written

with the intent of altering the schema. Contrary to data updates where only the XML

data is altered during the process, updating the XML schema may result in altering both

the XML schema and the XML data. The safe XQuery or XQueries generated should

leave the XML documents in a consistent state. Depending on the type of updates, the

safe queries embed the rules that should hold, and ensure an update will not violate the

validity of the schema nor the XML data. Table 5.2 summarizes the rules that should hold

whenever an update’s intent is to alter the schema.

Application With rep Glo EleName:

The purpose of this example is to show how the system integrity is kept during the schema

modification. rep Glo EleName is a query that is written with an intent of replacing

the name of a global component element with namespace xsd:element. An example

will be to replace the name of the component smalljuicer at line 19 by another name

such as newname in Figure 7.1 located in Section 7.1. This update case is equivalent of

changing the type of a non-empty component from the schema. Validation: Let *u-¦*,+
be the target element node, with e name oldname, and we want to replace e name value

with newname. The aim is that after alteration, the modified component * and the schema

must be valid. We assume that the schema is valid before any update is tried. The changes

here affect * , precisely * .e name, so any component of the schema that depends on * need

to be adjusted. Also the instances of * in the XML data need to be updated. Let *:�
'e type, e name, refEle Defs, refAttr Defs (. Before the update we have

36

Query Update Rules To Check Comments
del Glo Ele Rule 7 (2) ; Rule 3 (3) Query deletes global component with xsd:element as namespace

del Glo Atr Rule 8 (2) ; Rule 4 (1) Query deletes global component with xsd:attribute as namespace

del Ref Ele Rule 6 (6) ; Rule 3 (3) Query deletes referred component with xsd:element as namespace

del Ref Atr Rule 6 (7) ; Rule 4 (1) Query deletes referred component with xsd:attribute as namespace

del min Rule 7 (3) ; Rule 1 (1) Query deletes minOccurs

del max Rule 7 (3) ; Rule 2 (2) Query deletes maxOccurs

del use Rule 8 (3) ; Rule 4 (1) Query deletes use

ins eltName Rule 5 (1) ; Rule 6 (3) Query inserts an element with name attribute as ¢ xsd:element name =”value” ª
ins attrName Rule 10 (2) Rule 5 (2); Rule 6 (3) Query inserts an element with name attribute as ¢ xsd:attribute name =”value” ª
ins compType Rule 5 (3) , Rule 6 (4) Query inserts ¢ xsd:complexTye ª
ins seq Rule 5 (4) , Rule 9 (5 b) Query inserts ¢ xsd:sequence ª
ins type Rule 9 (4) Query inserts type for ¢ xsd:element name =”aname” type=”atype” ª
ins ref Ele Rule 7 (1,2) ; Rule 3 Query inserts referred component ¢ xsd:element ref =”aname” «!ª
ins ref Atr Rule 8 (1), 2; Rule 4 Query inserts referred component ¢ xsd:attribute ref=”aname” «!ª
ins Min Rule 7 (3) ; Rule 1 (1) Query inserts minOccurs

ins Max Rule 7 (3) ; Rule 1 (2) Query inserts maxOccurs

ins use Rule 8 (3) ; Rule 4 (1) Query inserts use

rep ref Ele Rule 7 ; Rule 3 (1,2,3) Query replaces referred component

rep ref Atr Rule 8 ; Rule 4 Query replaces referred component

rep Glo EleName Rule 6(3),Rule 9(1),Rule 7(2);Rule 3(3) Query replaces the name of a global component namespace xsd:element 3

rep Glo AtrName Rule 10 (1)Rule 9 (6 b); Rule 4 Query replaces the name of a global component namespace xsd:attribute

Table 5.2: Constraint Checks Classified By Schema Update Types
37

* .e name � oldname, after the update we want * .e name � newname.

Changing * .e name will not violate the Syntax Rule because changes for this evo-

lution case do not affect the namespace of the component. Before starting the update

process one should determine that the node targeted for this name change is in fact a

global component in the schema. This is done by checking condition 3 of the Position

Rule. With * being a global component element of the schema, updating the name of

* will not have an impact on referred attributes of the schema. So there is no need for

checking Referred Attribute Rule conditions. After alteration * should be a valid com-

ponent ' e type, e name, refEle Defs, refAttr Defs (. Here we are mod-

ifying * .e name, condition 1 of Element Component Validity Rule guarantees the non

duplication of the global component in the schema so this should be considered during

this update process. Another important fact to verify is condition 2 of the Referred Ele-

ment Rule, the condition guarantees component referring to the altered node are still valid.

To check the validity of the instances of the target node * in the XML data, condition 3 of

Element Node Validity Rule should be checked.

We illustrate how the rule checks are done using XQuery; our running example in

Figure 5.5 is a query written with the intent of renaming the component smalljuicer at

line 19 in Figure 7.1. For such a query two safe queries will be generated (see Figure 5.6

for the templates of the generated queries). One query is used to update the XML schema

safely and the second one is used for the XML data update.

1 For $p in document(“juicers.xsd”)/xsd h element[@name=smalljuicer]
2 Let $childatr := $p/@name
3 Update $p $
4 replace $childatr with

�
newName ¬ ¬

5 %

Figure 5.5: Sample XQuery For Rename Component Name

The original query is rewritten by inserting the necessary checks in order of allowing a

38

For $p in document(”juicers.xsd”)/xsd h element[@name=smalljuicer]

Let $childatr := $p/@name
Insert Schema Checks

Update $p $
If Conditions Satisfied Update

replace $childatr with
�
newName ¬ ¬

%
Query For Data Updates

Figure 5.6: Template For the generated Queries

safe update on the schema. And a new query is generated for the data updates. In the table

5.2, for rep Glo EleName one needs to check the Rule 6(3), Rule 9(1), Rule 7(2) and

Rule 3(3). We already went over them on the validation part above. They are translated

into XQuery in Figure 5.7. Checks for Rule 6(3) which is Position Rule Condition 3 are

in line 3. The statement tries to find if the the root of the XML schema is a direct par-

ent smalljuicer component to be renamed. The retrieved information is stored in $pval.

$pval helps identify if the name to be renamed is a global component node. If it is not the

case the update will not be allowed. This can be found at line 7 of the same figure. Line

5 queries information that guarantees Rule 9(1) is equivalent to condition 1 of the Ele-

ment Component Validity Rule. In case there is already in the schema a global component

name with newname it is stored in $child. And if $child is empty then line 7 of Figure 5.2

shows the update will not proceed because we don’t want duplicate global components in

the schema. At line 9 in the same figure the XQuery function replaceRefSche makes sure

that the Rule 7 (2) condition 2 of Referred Element Rule holds. It will update any element

of the schema referring to smalljuicer to now refer to newName. For more information

concerning replaceRefSche see Figure 5.8. An XQuery is also generated for the XML

39

data. The following paragraph talks about it in details.

1 For $p in document(“juicers.xsd”)/xsd h element[@name=smalljuicer]
2 Let $childatr := $p/@name
3 Let $pval := $p/parent hh^® � @xmlns:xsd,
4 $cntpval := count($pval),
5 $child := $p/parent::*/xsd:element[@name=newName”],
6 $childexist := count($child),
7 Where $cntpval = ”1” and $childexist =”0”
8 update $p $
9 Where replaceRefSche(”juicers.xsd”, ”smalljuicer”)
10 update $p $
11 replace $childatr with

�
newName ¬ ¬

12 %
13 %

Figure 5.7: Safe XQuery Generated For Schema Updates

The XQuery statement in Figure 5.9 updates the XML data. Line 1 stores all the

instances of type smalljuicer in $child. The instances are then updated to newName at

line 4.

Function replaceRefSche(“juicers.xsd” , “smalljuicer”, ”newName”)
1 $
2 For $pref in document($schemadoc)//xsd:element[@ref=$childBindRefName],
3 $rRef in $pref/@ref
4 update $pref $
5 replace $rRef with newName
6 %
7 %

Figure 5.8: Function For Schema Updates replaceRefSche

40

1 For $child in document(“juicers.xml”)//smalljuicer
2 let
�h¯� child/parent::*
3 Update $p $
4 rename $child to ”newName”
5 %
6 %

Figure 5.9: Safe Query Generated For Data Updates

5.2.3 Semantic Restriction for Safe Schema Update Generations

In the spirit of propagating schema changes to the XML data, the SAXE framework im-

poses semantic restrictions for certain schema update XQuery statements. Restriction

applies to queries that manipulate the constraints minOccurs, maxOccurs and ref . Such

queries require the XPath-expr of �U���������m G" in Figure 3.4 to specify the name of the com-

plexType component where the modification will happen, example the binding $psch in

Figure 5.10 has the component name juicer specified in its path. Mainly we need the

name of the component here in order to update the instances of juicer in the XML data.

1 For $psch in document(”juicers.xsd”)/xsd h element[@name=”juicer”]
2 /xsd:complexType/xsd:sequence,
3 $ch in $psch/xsd:element[@ref=”cost”]
4 update $psch $
5 delete $ch
6 %

Figure 5.10: Sample of Query to delete a referred element from the Schema

41

Chapter 6

SAXE Framework

6.1 Generation of Safe Update Queries

Our Overall Approach For Safe Query Rewriting. In order to allow only consistent up-

dates to be processed on XML data or XML schema, we aim to develop a loosely-coupled

update strategy that supports incremental schema constraint checking by accessing only

minimal parts of the XML documents needed to perform the checks. The key idea is to

first generate a safe Update-XQuery statement from a given input Update-XQuery state-

ment. The generated safe Update-XQuery statement, still will be conform to the standard

Update-XQuery BNF and thus can be safely executed on any xQuery update engine. In

this way we succeed in separating the concern of constraint check verification from the

development of the XML query and update engine.

For the safe query generation, when changes originate from the XML data we have

to first analyze all update operations supported by the Update-XQuery language in order

to design appropriate constraint checking subqueries. When changes originate from the

XML schema, then besides analyzing Update-XQuery operations one should also con-

sider the type of changes allowed on an XML schema in order to design appropriate

42

constraint check subqueries. The constraint check subqueries take the input parameters

from the update operation and determine whether the update operation is valid or not. For

the safe query, we exploit the capability of the XQuery query language to not only be able

to query XML data but also XML Schema. This allows us to rewrite Update-XQuery

statements by extending them with appropriate XML constraint check sub-queries for

each update operation. The execution of an update operation is conditional on passing the

constraint checking.

Illustrating Example. This example illustrates how the constraint checks are inserted

into an original query with the intent to update the XML data. Figure 6.2 shows the

rewritten Update-XQuery from the Update-XQuery in Figure 6.1. There is one update

operation in Figure 6.1, i.e., DELETE $c in line 4. We can see that lines 3, 5 and 6 in

Figure 6.2 have been inserted into this update operation so that this update is only exe-

cuted when delElePassed(...) (line 5) returns true. delElePassed(...) is a

constraint check function which determines the validity of the update DELETE $c. The

subquery schemaChkDelEle(...) in line 3 is a function that provides information

that is needed by delElePassed(...) to make the determination. We will further

discuss the details of these two functions in Section 3.

1 FOR $p in document(“juicers.xml”)/juicer,
2 $c in $p/cost[1]
3 UPDATE $p
4 DELETE $c
5 ¡

Figure 6.1: Sample Update-XQuery

1 FOR $p in document(“juicers.xml”)/juicer,
2 $c in $p/cost[1]
3 LET $constraint =
schemaChkDelEle(“juicers.xsd”,“juicer”,“cost”)

4 UPDATE $p
5 WHERE delElePassed($c,$p/cost,$constraint)
6 UPDATE $p
7 DELETE $c
8 ¡
9 ¡

Figure 6.2: Sample Safe Update-XQuery

43

Safe

Update-XQuery

Analyzer

Update-XQuery

Rewriter

Constraint Checking

Template Library

Update-XQuery

Parser

Template functions

Update-XQuery

Writer

Input Textual

Update-XQuery
Parse Tree

Enhanced

Parse Tree

Parse Tree for

Safe

Update-XQuery

Output Textual

Update-XQuery

On Fly

Query

Query statements

Figure 6.3: An Incremental Yet Loosely-Coupled Update Processing Framework Sup-
porting XML Updates with Schema Constraint Validation

6.2 Framework

Figure 6.3 is the final design of SAXE [KSR02] framework, it generates safe Update-

XQuery statement given an input Update-XQuery. The safe Update-XQuery generator

SAXE is composed of the components described below:

1. Update-XQuery Parser. The parser takes an Update-XQuery statement and con-

structs a parse tree representation [ASU86] from it.

2. Update-XQuery Analyzer. Given a parse tree, the analyzer identifies more detailed

information about types of update operations in the parse tree and derives an en-

hanced parse tree.

3. Constraint Checking Template Library. We generalize the constraint checking pro-

cedures by defining named parameterized XQuery functions called constraint check

templates. Each constraint checking template is in charge of checking constraints

for a certain type of update operation.

4. Constraint Checking Fragments. Each schema update type is associated with a set

of constraints checks translated into XQuery statements, parameterized and stored.

44

In case the update does not require a data update then one will have only one set of

query statements, these statements are inserted into the original XQuery transform-

ing it into a safe XQuery intended for the schema updates. When the update case

requires data changes, a second set of query statements will be generated on the fly

(right away), for a safe XML data update.

5. Update-XQuery Rewriter. The rewriter handles the actual generation of a safe

Update-XQuery. Based on the parse tree generated by the Update-XQuery parser,

it determines how to rewrite the original Update-XQuery statement by plugging in

the appropriate constraint checking functions from the template library and corre-

spondingly modifying the enhanced parse tree.

6. Update-XQuery Writer. The writer constructs a textual format of the modified

Update-XQuery statement from the enhanced parse tree, which now is in a stan-

dard Update-XQuery format. This can be executed be any update query system.

6.3 Components of Constraint Checking Framework

We now describe the main components of the framework shown in Figure 6.3. We do not

describe the Update-XQuery Writer since it is straightforward.

1. Update-XQuery Parser

Given an Update-XQuery statement, the Update-XQuery parser constructs a parse

tree which is composed of objects of classes that were designed to store the parsed

query. For example, a class Update is defined to store update clauses. Subclasses of

class Update are defined for four types of update operations, i.e., Delete, Rename,

Insert and Replace, respectively.

2. Safe Update-XQuery Analyzer

45

Given an internal representation of an Update-XQuery, the analyzer will determine

a more specific sub-type of an update operation if any. For example, the analyzer

would examine the content of an object of the class Delete to classify the update

as either deleting an element or deleting an attribute. The detailed information of

update types would then be embedded into the original parse tree. We call the new

parse tree an enhanced parse tree.

3. Constraint Checking Template Library

The template library functions are used for safe query generation when changes

originate from the XML data. The library stores templates that account for every

type of update possible using our Update-XQuery language (See BNF in Figure

3.4). A constraint check is composed of three steps which are:

(a) Query the XML schema to identify any constraints that may be violated by

the specified update.

(b) Query the XML document to gather information pertaining to the target ele-

ments or attributes.

(c) Compare the information retrieved from the two previous steps and thus iden-

tify whether the constraints would be violated by the update.

We illustrate how this constraint check is done for the delete of an element operation

in order to change an XML data. The constraint check functions schemaChkDelEle

and delElePassed shown in Figures 6.4 and 6.5 jointly achieve the three steps

mentioned above.

The Constraint Checking Function schemaChkDelEle queries the schema (i.e.,

step 1) for the information related to the constraints that may be violated when

deleting an element. Deleting an element * of element type Z can only violate the

46

Function schemaChkDelEle($xsdName, $parentEleName, $childEleName)

1 $
2 For $pDef In document($xsdName)/xsd:element[@name = $parentEleName],
3 $cRef In $pDef//xsd:element[@ref = $childEleName]
4 Let $cRefMinOccurs:= $cRef/minOccurs
5 Return $childRefMinOccurs
6 %

Figure 6.4: Constraint Checking Function schemaChkDelEle

Function delElePassed($childBinding, $childBindingPath, $childMinOccurs)
Return Boolean

1 $
2 LET $childInstCount := count($childBindingPath),
3 Return
4 If ($childMinOccurs � = $childInstCount - 1
5 Then TRUE
6 Else FALSE
7 %

Figure 6.5: Constraint Checking FunctiondelElePassed

constraint of a required minimum occurrence of the elements of type Z in the content

model of * ’s parent. schemaChkDelEle is to retrieve the minimum occurrence

of elements of type $childEleName in the parent type parentEleName. In particu-

lar, line 2 queries the XML schema file, specified by the file name $xsdName, to

find the element definition $pDef for type $parentEleName. The element defini-

tion of $parentEleName’s subelement referring to type childEleName is stored in

$childRef in line 3. Line 4 then retrieves the minimum occurrence of element type

childEleName in parentEleName.

Constraint Checking Function delElePassed checks whether the data update is

safe based on the schema constraint information collected by schemaChkDelEle.

47

delElePassed is composed of two parts:

(a) Query over data (i.e., step 2). Line 2 queries over the XML document to

find the actual count of instances of type childEleName that are subelements

of the target object. These instances can be retrieved by the XPath expression

$childBinding. The function count on the retrieved instances returns the count

of these instances. Thus there would be only childInstCount - 1 instances of

type childEleName if the update is allowed to occur.

(b) Integration of query result over schema and data (i.e., step 3). Line 4

compares the information from the XML schema and data. It compares the

minimum occurrence requirement (i.e., childRefMin) and the actual occur-

rence if the update were indeed to proceed. In this example, this would be

childInstCount - 1. If actual occurrence after the update had occurred were

larger than the minimum occurrence requirement, this check is passed and the

update operation is regarded as valid.

4. Constraint Checking Fragments.

The On Fly Queries (Safe Queries generated for the XML schema and XML data

updates when changes originate from the XML schema) accounts for all constraint

checks translated into XQuery statements for each possible update targeted during

within SAXE, on XML schemas. A safe update on the schema is obtained by:

(a) Query XML schema to identify pertaining information that may be violated

when the update is applied.

(b) Update schema accordingly if operation allowed.

(c) Update XML data documents to reflect changes of the schema pertaining to

targeted elements and attributes.

48

5. Safe Update-XQuery Rewriter

The Safe XQuery Rewriter traverses the enhanced parse tree. For each update op-

eration, based on the update type, the Rewriter determines which template function

should be used for checking the constraints of the update. Since each template is

parameterized, the Rewriter would also instantiate the parameters. Values for these

parameters can be identified through the analysis of different parts of the parsed

XQuery. This can be seen in Figure 6.2. The delElePassed template function

takes in five parameters to execute its query. For this particular example, $c (the

element instance to be deleted), $p/cost, “juicer.xsd” (the file name of the XML

Schema), “juicer” (the type name of the parent element of the to-be-deleted ele-

ment) and “cost” (the type name of the to-be-deleted element) are the five instanti-

ated parameters respectively.

Once all parameters have been assigned values, the Rewriter needs to insert the

instantiated template function into the original query. The Rewriter modifies the

parse tree by inserting the constraint checking function for example via a where

clause prior to the associated update clause (as shown by the example in Figure

6.2). After all modifications have been done to the original update XQuery, the safe

XQuery generation is complete. Finally, a resulting safe update XQuery statement

is produced.

6.4 Discussion of SAXE System Implementation

SAXE system is based on Kweelt [SD02], a query engine for the Quilt XML query lan-

guage [CRF02], a precursor of the XQuery standard, developed by the University of Penn-

49

sylvania. Kweelt is composed of two parts, i.e., the language parser and language evalua-

tor. The parser takes a textual Quilt statement and constructs a parse tree if the syntax of

the statement is correct. The evaluator then executes the query against the data. First, we

have extended the Java Compiler Compiler file (JavaCC) which is a Java parser generator

in Kweelt so that the Update clauses are accepted by the language parser. Second, we

have extended the evaluator so that an Update-XQuery statement can be executed. The

Kweelt System was also extended to support the generation of safe Xqueries. The safe

XQuery support was designed to be independent from the update executor in order to

allow the update executor to handle both safe and non safe update XQueries.

50

Chapter 7

SAXE Experiments

7.1 Experimental Setup

Introduction

Experiments were conducted to evaluate SAXE system. The purpose of this section is to

report on these experiments on the SAXE system, study their results and come out with

a solid understanding of SAXE performance. It is important also to identify cases where

the safe update operations efficiency will outperform native XML update tools available

for updating XML documents. Each experiment was run ten times, and the result used

is the average over ten runs. In general the main measures under consideration are the

time spend in (ms) to achieve an action and the number of items modified in the XML

schema or XML data documents. The size of the XML files may vary, depending the

experiment being performed. In order to make the results coherent and easier to fol-

low we decided to carry XML schema juicers.xsd in Figure 7.1 and the XML data

juicers.xml in Figure 7.2 as files to modify accordingly for our tests purposes. The

schema file juicers.xsd has root the element � schema � on the top of the file. It

contains also three components that can be instantiated: juicers, juicer and smalljuicer,

51

1<xsd: schema xmlns: xsd = http://www.w3.org/2001/XMLSchema>
2 <xsd: element name = “juicers”>
3 <xsd: complexType>
4 <xsd: sequence>
5 <xsd: element ref = “juicer” minOccurs = “0” maxOccus = “unbounded”/>
6 </xsd: sequence>
7 </xsd: element>
8 <xsd: element name = “juicer”>
9 <xsd: complexType>
10 <xsd: sequence>
11 <xsd: element ref = “name”/>
12 <xsd: element ref = “image”/>
13 <xsd: element ref = “cost” minOccurs = “0” maxOccurs = “unbounded” />
14 <xsd:element ref="smalljuicer" minOccurs="0" maxOccurs="unbounded"/>
15 </xsd: sequence>
16 <xsd: attribute ref = “percentage” use = “optional”/>
17 </xsd: complexType>
18 </xsd: element>
19 <xsd:element name="smalljuicer">
20 <xsd:complexType>
21 <xsd:sequence>
22 <xsd:element ref="name"/>
23 </xsd:sequence>
24 </xsd:complexType>
25 </xsd:element>
26 <xsd:element name="name" type="xsd:string"/>
27 <xsd:element name="cost" type="xsd:string"/>
28 <xsd:element name="sale" type="xsd:string"/>
29 <xsd:element name="image"/>
30 <xsd:attribute name="percentage" type="xsd:string"/>
31</xsd: schema

Figure 7.1: Sample XML Schema:juicers.xsd

it has component definitions which are the following nodes: name, image, cost, sale and

percentage. The original data file juicers.xml has one instance of component com-

posed of five sub-nodes. The schema and XML data documents are altered accordingly

by adding more elements nodes, components nodes, instance nodes, etc.

Execution Platform

All experiments were performed on the same machine in order to allow proper com-

parisons. The platform execution is Microsoft Window XP. The processor is an ADM

Duron 700 MHz. The total of memory on the machine is 128 Megabytes. An attempt to

minimize the influence of other process times on the result, all applications were closed

52

<juicers >

<juicer>

<name>OJ Home Juicer</name>



<cost>41.95</cost>

<sale>30.10</sale>

<smalljuicer>

<name>tropicana</name>

</smalljuicer>

</juicer>

</juicers>

Figure 7.2: Sample XML Document: juicers.xml

during the experiments, with the exception of the DOS command window used to run the

experiments.

Statistics Data Sets Used

While testing the safe update queries the following elements and constraints can be ma-

nipulated in the XML schema documents:

° The number of elements and/or attribute definitions in the XML schema documents

° The number of components from the schema that can have an instance
�
instantiable

�

in the XML document files

° The number of referred nodes in a component

° The total number of elements of the schema

53

° The number of � xsd:complexType � constant elements used in the XML docu-

ments

° The number of � xsd:sequence � constant name elements used in the XML schema

° The constraint type which is an attribute of the element or attribute definition

° The constraint minOccurs which is an attribute of a referred node element

° The constraint maxOccurs which is an attribute of a referred node element

° The constraint ref which is an attribute of a referred node

° The smallest XML schema file used while running the experiments is the original

source juicers.xsd in Figure 7.1. The file is made of 3 components
�
instantiable

�
,

meaning they can have instances on a XML data document, those components are

juicers, juicer
�
which refers to five element node

�
and smallerjuicer. The file holds

also component definitions which are: name, image, cost, sale and percentage. The

original schema file has root � schema � on the top is the root and the number total

of nodes is 22.

° The number of element in a largest XML schema has 42 ”instantiables” component

nodes, component definitions. The files is made off a total of 374 nodes

For the XML data documents the following changes can be done:

° Altering an element node such as delete, add, and modify

° Altering an attribute of an element node

° Altering the number of element nodes of the XML document

54

° The smallest XML data files used during the experiment is the juicers.xml in

Figure 7.2 which has a total of 7 element nodes. The XML data file is composed of

2 instances nodes which are juicer and smalljuicer where smalljuicer is a child of

juicer.

° The number of elements in a largest XML files is composed of 20,000 instances,

with a total of 60,000 elements.

7.2 Experimental Results

All the experiments below were executed on a schema file obtained by altering the original

juicers.xsd in Figure 7.1 and the original juicers.xml in Figure 7.2. Alteration

was done done by adding, deleting and modifying elements and attributes of the XML

documents. The time factor is important in evaluating the performance, so in most exper-

iments the time variation is plotted as a function of the items of the schema or XML data

when a change is using SAXE system.

7.2.1 Safe Updates Queries Generation Time

One of the SAXE system goals was to be a middleware portable in any database system.

In that sense the Query Rewriter part is set to be independent of any other influences other

that the text query input being transformed. This test shows that XML document (such

as the size or the number of elements to modify) does not affect the query generation

time. So the purpose of this test is to have an approximate idea of how long it would take

to generated the safe query for the sample of queries used in our example. The results

obtained from the evaluation have two types of metrics collected, namely the time spent

parsing the original query and the time spend generating the safe queries. The timer for

the generation of the safe query starts when the parser is invoked, and stops when the safe

55

0

50

100

150

200

250

1000 6000 11000 16000
Number of elements in the Schema File

T
im

e
(m

se
c)

Ins_type (1
query output)
Ins_comtype (1
query output)
Ins_Ref (2
queries output)
Ins_Max(2
queries output)

Figure 7.3: Time for Query Generation

queries has been written to the output files. Tests were performed to study the variation

times for the safe update query generations when the size of the XML schema documents

involved are increased by 5000 new elements after each test. Four different types of

queries were used to study the safe queries generation time here. They are Ins type,

ins compType, ins Max, and ins Ref 1. Each query was run ten times and the

results averaged to have the time it takes to generate a query. Safe Queries were generated

based on the analysis of the original query statement rewritten to alter the XML schema.

As expected the chart lines of the graph in Figure 7.3 are almost a straight line, which

shows the XML documents do not influence the query generation time. The sample of

queries used can be divided into two different groups, queries that give one safe query
1The four example of queries can be found in Appendix B.

56

as result (ins type and ins compType) and queries that give two queries as safe

update queries (ins Ref and ins Max). We note a little more time is spent generating

a safe query from ins type than generating a safe query from ins compType even

though the two queries have almost the same size. This time difference is mainly due

to the difference of checks that need to be added to each query in order to make it safe.

ins type requires more checks to be added to the original query to produce a new safe

query. The queries for which two queries are generated as a result the time to construct

with the safe queries is almost the same. This is due to the fact both query samples

ins Ref and ins Max have almost the same size and it takes the same process to come

out with necessary safe checks for rewriting the safe queries. Also for the sample queries

used here, we notice a time difference between the time it takes to generate one query as

safe query or two queries as safe update.

7.2.2 Analysis of Replace a Component Name (Type Change)

The purpose of this test is to study the time efficiency for the safe update when replac-

ing the name of a component. During the test we used variable sizes of XML schemas

and XML data files. Eight different tests were run on the schema shown in Figure 7.1

and four different tests were run on the XML data in Figure 7.2. The result is plotted

in Figure 7.5. In both experiments the number of modified elements during each test in-

creases proportionally with the size increase of the files. The results represent the average

over ten runs. Considering the fact that XML uses tag names sometimes as type identi-

fication, replacing a component name in the schema is the same as a type change in this

case. A component type changed in the schema should lead to changes in the XML data

document. If a query is written with the intent of replacing the name of a complexType

component node then two queries will be generated called safe rep name xsd and

safe rep name xml. We measure the time it takes to update the schema file by exe-

57

0

500

1000

1500

2000

2 11 21 31 41 50

Number of modified components
Ti

m
e

in
 (m

s)

Figure 7.4: Execution Time For Rename a Component Node

cuting safe rep name xsd. The result is presented in Figure 7.4. The time to update

the XML data document was measured by executing safe rep name xml on the XML

data. The result is plotted in Figure 7.5.

In Figure 7.4 the execution time is graphed as a function of the number of component

altered during the operation. At each test the number of altered nodes was increased.

We end up with a linear complexity time when the number of modified components vary.

Note that updating multiple of element nodes at the same time update will be more bene-

ficial than a small number of updates. The line in Figure 7.4 shows that one update takes

1151 msec whereas 10 updates take 1162 msec and 20 updates take 1302 msec. We found

again the same trend when safe rep name xml is executed on a XML data (the num-

ber of modified elements is increased during each test on x-axis). We see this same linear

time complexity for the data updates in Figure 7.5.

Figure 7.6 compares the execution time of the query safe rep name xml to the ex-

ecution of the query safe rep name xsd. The results were obtained by running the

58

0

1000

2000

3000

4000

1 90 180 366

Number of modified Instances

T
im

e
(m

s
)

Figure 7.5: Execution Time for Rename an Instance Name in an XML Data

queries on the XML documents where the number of altered components in the schema

is the same as the number of altered elements in the XML data. That is, the file size

growth is kept proportional during each test. Here the time for updating the schema is

more expensive than the time it takes to update the XML data. This is due to the dif-

ference of method retrievals between the two update queries. The retrieval time between

the variants are reduced when we have multiple matches accessed once [FG02] on the

query safe rep name xml we were able to drop most of the information structure of

the path and also access the elements to alter all at once, This way the execution time

of safe rep name xml is cheaper. We can conclude also that changing the type of a

component for the sample of queries used in SAXE is linear when the number of modified

elements is being increased.

7.2.3 Comparing Updates Generating Only Schema Changes

Now let’s examine some pure schema updates, those do not involve any data updates. The

safe queries chosen for this test are: safe ins name, safe ins type, safe ins

compType and safe ins sequence. safe ins name is a safe query used for in-

serting name as its value in a component definition of the schema. As result we will have
±
xsd:element name ² "givenValue" ³ . safe ins type alters the element to

±
xsd:element name ² "givenValue" type ² "givenType" ³ by insert-

ing the attribute type. The queries ins compType and ins sequence insert re-

59

2
11

21
31

41
502 11

21

31

41

50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100
Components or Instances Modified

Ti
m

e
(m

s)
Time XML Data update -
Instance nodes modified

Time Schema update -
Components modified

Figure 7.6: Comparing Schema and Data Time Execution for Replace Name

spectively ± xsd:complexType ³ and ±
xsd:sequence ³ into the schema safely.

They are used in the process of making a complexType component. In this experiment

rather than changing the number of modified elements on the schema and the size of the

schema, we change the type of safe query executed on the schema. The results repre-

sented are the averages over ten runs. The charts in Figure 7.7 investigate respectively

the time to generate and run safe ins name, safe ins type, ins compType and

ins sequence. From the graph in Figure 7.7 we can conclude the execution time of

inserting an attribute node is slightly less expensive than inserting an element into the

SAXE system. Also we found that all the safe insertion operations take almost the same

time even though the items and the position of the insertion are not the same.

60

0

200

400

600

800

1000

1200

In
s_

nam
e

In
s_

ty
pe

In
s_

co
m

pTy
pe

In
s_

S
eq

Insert Updates Types

T
im

e
(m

s
)

Safe Query Exectution Time Safe Query Generation Time

Figure 7.7: Insert Query Update Samples Affecting the Schema Alone

7.2.4 Efficiency Time Insertion for minOccurs, maxOccurs and ref

Constraints

These experiments focus on the cost of updating some special target constraints. The con-

straints are minOccurs, maxOccurs and ref. The study below will analyze the safe queries

generated when the minOccurs, maxOccurs and their values are modeled as XML at-

tributes. For a referred node in a given component as in Figure 7.1 the component juicer at

line 8 refers to an element cost at line 13. Here referring to a given component is the same

as inserting ref attribute into a node of the schema. Such action generates two queries as

result of safe updates; the two queries are called as ins ref xsd and ins ref xml.

The queries for minOccurs insertion are ins min xsd and ins min xml. The first is

executed on the schema, while the second will modify the XML data. The queries for

maxOccurs are ins ref xsd and ins ref xml modifying the schema and the xml

data respectively. The experiments below were run with a variety of sizes of XML docu-

ment files. Each test was run ten times to get an accurate measure. We will analyze first

the time spend executing the safe queries in the schema and second the execution for the

updates on the XML data document.

61

0

500

1000

1500

20 90 170 250

Number of elements in the Schema

Ti
m

e
in

 (m
s)

ins_ref Execution time inSchema
Ins_Max execution time in Schema
Ins_Min Execution time inSchema

Figure 7.8: Safe Query Execution time for target constraints on The Schema

Safe Query Execution Time For The targeted Constraints on the Schema

This experiment is to study the execution of three different query schema changes. The

result presented is the average of ten runs. The cost is graphed as a in function of the

number of elements in the schema. The size of the schema is increased after each test.

Figure 7.8 shows that it is a bit cheaper to execute ins ref xsd than ins Min xsd

and ins Max xsd. This difference is mainly due to the fact that the safe query state-

ment in the two latest cases carries more structural information in their path. In order to

allow a ref and its value to be inserted, one necessary condition is to give the component

name where the insertion will happen. For the insertion of minOccurs and maxOccurs

we have two necessary conditions: the component name where the insertion will happen

should be given and the name of the referred element into which the quantifiers will be

inserted should be also specified in the query. We note that queries with more structural

information in their path take slightly longer to execute.

62

The average growth rate for the execution time of those queries when the schema file is

increased by one element is less than 0.26 msec. However with this approach one cannot

do a bunch of updates at once in different global components, meaning the insertion of

minOccurs and maxOccurs is possible only in one component at a time. This restriction

on minOccurs and maxOccurs is set up in order to propagate the updates to the XML data

document. Note this restriction does not hold for ref where a large quantity of updates

can be done once.

Safe Query Execution Time for minOccurs, maxOccurs and ref on the Data.

Restriction was set to allow only one component update at the time when modifying

minOccurs and maxOccurs, this restriction will allow the propagation of the updates to

XML data. One schema update may result in a quantity of update on the XML data. This

test study how efficient ins ref xml, ins Min xml and ins Max xml are when ex-

ecuted on a XML data. We choose to use a variable sized XML data file with the number

of elements of the XML data document for the first test being equal to 60. This number

is multiplied by 10 after each test. Also the number of elements to alter is increased by

setting the number of altered element on a test equal to 10 power t where t is the test

number. The chart in Figure 7.9 plots the time as a function of the number of modified

elements on the XML data. As expected all the three plotted lines are almost the same.

The purpose of ins ref xml is to insert a default child, the duty of ins min xml is to

set up default children when necessary and ins max xmlwould be to delete the element

when necessary.

The important thing to note about this test is that we have a big gain when altering a mass

of element nodes. Altering 100 elements takes around 1460 msec and 6500 msec for al-

tering 1000 elements of the data.

63

10
0

2000

4000

6000

8000

10 100 1000

Number of intances modified

T
im

e
(m

s
)

Ins_RefExecutiontime inXMLdata

Ins_MaxExecutiontime inXMLData

Ins_MinExecutiontime inXMLData

Figure 7.9: Safe Query Execution time for target constraints on The XML Data

SAXE Safe Updates Versus Third Party Validator

Now that we have studied in general the efficiency of SAXE safe updates, the next inter-

esting step will be to compare SAXE with one of-the-shelf available tools. We used XSV

a Java based XML-Schema validator [Tom02] as a comparison tool. Even though the end

result of SAXE and XSV is to know if an XML document is valid or not, the problems

they address are different. SAXE favors incremental constraint checking instead of re-

validation from scratch. It also addresses the validation problem that would occur with

manual updates. The purpose of this experiment is to compare the time it takes to safely

update an XML document using SAXE or XSV. Using SAXE to achieve an update the

typer should write a four line xQuery statement, one should query and execute.

As result a pair of safe queries safe rep name xsd and safe rep name xml will

be generated. safe rep name xsdwill be executed to update the schema and safe rep

name xml will be used to update the XML data. Using XSV to achieve a component

type change implies manual updates, which in some case is almost impossible for instance

when the number of elements to be modified of the schema is very large. This would be

done by going through the complete document and altering all the elements affected by

64

0

500

1000

1500

2000

2500

3000

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Number of Elements on the XML Documents

Ti
m

e
in

 (m
se

c)

Third Validator SAXE Data Update SAXE Schema Update

Figure 7.10: SAXE Versus Validator

the component changed and then running the XML files through the validator. The other

choice is to run the safe query from the XML document directly and let the validator com-

plain about the updates being invalid. Neither of the later two methods seems convenient.

In Figure 7.10 the plotted time for the XSV validator is the time it takes for veri-

fying the validity of a modified XML file. Also Figure 7.10 plots the time it takes to

validate an XML data or XML Schema file using SAXE. The time is set as a function

of the number of elements in the XML document. The results in both graphs represent

the averages of ten runs. The plot depicted in Figure 7.10 shows that the execution time

using the validator is less than the time it takes to execute safe rep name xsd and

safe rep name xml. But this does not mean that the safe update is less efficient. As

we said above, the argument is that SAXE is a one step process where updates are only

performed once the updates are deemed safe. So on one hand all the attempts for invalid

updates will be prevented, and on the other hand this could allow a set for safe updates all

at once to be committed. This is not the case of the validator where one non safe update

will require to roll back and redo of all the updates. In our experiment the number of el-

ement nodes modified while updating the XML schema or XML data using SAXE is ten

65

percent of the total number of elements on the XML document. We conclude that SAXE

combined with the available editor such as XMLSpy [XML] would be a powerful and

efficient update tool for XML documents. SAXE works in XML documents presented in

a verbose form schema but it allows automatic and multiple safe updates once. We could

use XMLSpy [XML] transform a schema in a verbose form and then take advantage of

SAXE updates tools.

66

Chapter 8

Conclusion And Future Work

8.1 Conclusion

In this thesis, we have proposed a lightweight approach to ensure the structural consis-

tency of XML schema and XML data after updates. More precisely, I proposed to rewrite

an Update-XQuery statement into a safe Update-XQuery statement by embedding con-

straint check subqueries into the former query. This approach is lightweight in the sense

that it can be implemented as a middleware independent of any underlying system for

XML data management. The key parts accomplished for this thesis are summarized be-

low:

1. Proposed a query rewriting approach that converts an Update-XQuery into a safe

query.

2. Analyzed schema specifications, and developed rules that ensure the correctness of

each update originating from the XML data or the schema.

3. Produced XQuery template libraries to support safe updates when alterations orig-

inate from XML Data Updates.

67

4. Produced XQuery statements on the fly to support safe updates when alterations

originated from the XML Schema.

5. Implemented the safe query generation when changes originate from the XML

schema.

6. Performed experimental studies for the SAXE System.

8.2 Future Work

Currently, our safety checking semantics is at the atomic level, i.e., each atomic update

on a single XML element is allowed if this update leads to a valid XML document. As

next step, we would explore the concept of transactional update, i.e., a batch of updates

are only allowed to be executed if the overall effect of executing them leads to a valid

document. An other field of interest will be to investigate a best incremental validation

algorithm over updates using XQuery on XML documents. The efficient algorithms could

be used in scenarios when update queries involve more complex manipulation of entire

subtrees for instance when deleting, inserting or renaming a large quantity of elements or

components safely in order to boost SAXE system performance. Also extending SAXE

updates to other tractable constraint checks not considered during this study such as keys

will be an valuable domain study also.

68

Bibliography

[AFL02] M. Arenas, W. Fan, and L. Leonid. What’s hard about XML schema con-

straints. In R. Cicchetti et al. (Eds.): DEXA 2002, LNCS 2453, pages pp

269–278, 2002.

[ASU86] V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and

Tools . Addison-Wesley, 1986.

[BGH00] L. Bird, A. Goodchild, and T. A. Halpin. Object role modelling and xml-

schema. In International Conference on Conceptual Modeling / the Entity

Relationship Approach, pages 309–322, 2000.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured

Documents to Novel Query Facilities. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Minneapolis, pages 313–

324, June 1994.

[Cor02] MITRE Corporation. xfront.com (XML technologies), 2002.

[CRF02] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt, 2002.

[eXc98] eXcelon Corporation. Updating XML data. eXcelon 1.1 User Guide, Chapter

7, 1998.

69

[FG02] Norbert Fuhr and Norbert Gvert. Index compression vs. retrieval time of

inverted files for xml documents. In CIKM, 2002.

[IBM00a] IBM. XML Parser for Java. http://www.alphaworks.ibm.com/tech/xml4j,

2000.

[IBM00b] IBM Software: Database and Data Management. DB2 XML Extender.

http://www-4.ibm.com, 2000.

[Inf00] Infozone Group. Infozone Working Draft for Lexus. http://www.infozone-

group.org/lexusDocs/html/wd-lexus.html, 2000.

[KKRSR00] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-

ray - towards integrating XML and relational database systems. In Inter-

national Conference on Conceptual Modeling / the Entity Relationship Ap-

proach, pages 339–353, 2000.

[KSR02] Bintou Kane, Hong Su, and Elke A. Rundensteiner. Consistently updating

XML documents using incremental constraint query checks. In Web Informa-

tion and Data Management (WIDM’02), pages 1–8, Nov. 2002.

[MAG
�

97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A

Database Management System for Semistructured Data. In SIGMOD Record

26(3), pages 54–66, September 1997.

[Ora02] Oracle. Oracle9i application developer’s guilde - XML re-

lease 1 (9.0.1): Database support for XML. http://download-

east.oracle.com/otndoc/oracle9i/901 doc/appdev.901/a88894/adx05xml.htm,

2002.

70

[PV03] Y. Papakomstantinou and V. Vianu. Incremental validation of XML docu-

ments. In In ICDT, 2003.

[SD02] A. Sahuguet and L. Dupont. Querying XML in the new millennium, 2002.

[SKC
�

00] H. Su, D. Kramer, K. Claypool, L. Chen, and E. A. Rundensteiner. XEM:

Managing the Evolution of XML Documents. In International Workshop on

Research Issues in Data Engineering (RIDE-DM’2001), pages 103 – 110,

2000.

[TIHW01a] I. Tatarinov, Z. Ives, A.Y. Halevy, and D. S. Weld. Updating XML SIGMOD.

In SIGMOD, pages 413 – 424, 2001.

[TIHW01b] I. Tatarinov, Z. Ives, A.Y. Halevy, and D. S. Weld. Updating XML SIGMOD.

In SIGMOD, pages 413 – 424, 2001.

[Tom02] Henry Tompson. XSV: schema validator, 2002.

[W3C98] W3C. Guide to the W3C XML Specification (”XMLspec”) DTD, Version 2.1.

http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm, 1998.

[W3C99] W3C. XML Path Language (XPath) Version 1.0.

http://www.w3.org/TR/xpath, 1999.

[W3C01a] W3C. XML Schema . http://www.w3.org/XML/Schema, 2001.

[W3C01b] W3C. XML Specificaftions. http://www.w3.org/XML, 2001.

[W3C01c] W3C. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/, 2001.

[W3C01d] W3C XSL Working Group. XSL Transformations (XSLT).

http://www.w3.org/TR/xslt/, 2001.

71

[XML] XMLSpy. Spy document editor. Available at .

http://www.xmlspy.com/productsdoc.html.

72

Appendix A

Safe Queries For XML Data Updates

Appendix A gives parameterized XQuery functions called constraint checking templates.

Each constraint checking template is in charge of checking constraints for a certain type

of update operation for the XML data updates.

Function translateUse($usestatus) $
return

if count($usestatus) = 0

then optional

else $usestatus

%
Function translateUse: Interpret the use value

Function translateOccurs($contains) $
return

if count($contains) = 0

then 1

else $contains

73

%
Function translateOccurs: Interpret minOccurs maxOccurs value

Function insertEpassed($childbindN, $docxsd, $pname, $cname) $
For $psch In document($docxsd)/xsd:element[@name =$pname],

$xref In $psch//xsd:element[@ref=$cname]

let $maxoccurs := $xref/@maxOccurs,

$counted := count($childbindN),

$val := translateOccurs($maxoccurs),

$check := count($xref)

return

if ($val V �£� V $counted + 1

or $val = ”unbounded” or $check = 1)

Then TRUE

else FALSE

%
Constraint Checking Function: Insert an element

Function insertApassed($docxsd,$pname, $aname) $
For $psch In document($docxsd)/xsd:element[@name = $pname],

$schattr In $psch//xsd:attribute[@ref= $aname]

let $use := $schattr/@use,

$useR := translateUse($use),

$exist := count($schattr)

return

if ($useR !=”prohibited” and $exist = 1)

74

Then TRUE

else FALSE

%
Constraint Checking Function: Insert an attribute

Function deletedApassed($childAtr,$docxsd,$pname,$cname) $
For $psch In document($docxsd)/xsd:element[@name = $pname],

$schattr In $psch//xsd:attribute[@ref=$cname]

let $use := $schattr/@use,

$useR := translateUse($schattr/@use),

$exist := count($schattr)

return

if ($useR = ”optional” and exists($childAtr)=TRUE)

Then TRUE

else FALSE

%
Constraint Checking Function: Delete an attribute node

Function renameDelApassed($childAtr, $docxsd, $pname, $cname, $nname) $
For $psch In document($docxsd)/xsd:element[@name = $pname],

$schattr In $psch//xsd:attribute[@ref=$cname]

let $use := $schattr/@use,

$useR := translateUse($schattr/@use)

return

if $useR = ”optional” and exists
�
$childAtr)=TRUE and $cname != $nname

Then TRUE

75

else FALSE

%
Function renameinsApassed($atrbind, $docxsd,$pname, $nname) $
For $psch In document($docxsd)/xsd:element[@name = $pname],

$schattr In $psch//xsd:attribute[@ref= $nname]

let $use:= $schattr/@use,

$useR := translateUse($use), $exist := count($schattr)

return

If ($useR !=”prohibited” and $exist = 1)

Then TRUE

else FALSE

%
Constraint Checking Functions: Rename an attribute

Function renamedelEpassed($child, $childbindN,$docxsd,

$pname,$cname,$nname) $
For $psch In document($docxsd)/xsd:element[@name =

$pname],

$xref In $psch//xsd:element[@ref=$cname]

let $minoccurs := $xref/@minOccurs,

$val := translateOccurs($xref/@minOccurs),

$countex := count($childbindN)

return

If ($val V �£� V $countex -1 and

count($child) = 1 and ($cname != $nname))

Then TRUE

76

Else FALSE %
Function renameinsEpassed($childbindI, $docxsd, $pname, $nname) $
For $psch In document($docxsd)/xsd:element[@name =$pname],

$xref In $psch//xsd:element[@ref = $nname]

let $counted := count($childbindI),

$maxoccurs := $xref/@maxOccurs,

$val := translateOccurs($maxoccurs),

$check := count($xref)

return

If (($val V �£� V $counted + 1 or $val = ”unbounded”) and $check = 1)

Then TRUE

else FALSE

%
Constraint Checking Functions: Rename a tag name

77

Appendix B

Safe Queries For Schema Updates

Appendix B gives sample of update queries intended for the XML Schema evolution and

their generated safe updates.

Query intent to delete a global element:

Sample of Query

For $psch In document(”juicers.xsd”),

$child in $psch/xsd:element[@name =”cost”]

update $psch $
delete $child

%

Delete a global element: del Glo Ele

Safe Query generated for del Glo Ele

1. Function delRefComOnSchema($schemadoc, $childBindingRefName)

$

78

For $pref In document($schemadoc)//xsd:sequence,

$child in $pref/xsd:element[@ref =$childBindingRefName]

update $pref $
delete $child

%
%

FOR $psch IN document(”juicers.xsd”),

$child IN $psch/xsd:element[/@name = ”cost”]

let $fun := delRefComOnSchema(”juicers.xsd”,”cost”)

update $psch $
update $psch $

delete $child

%
%

Safe Query Generate For Schema From del Glo Ele

2. For $child in document(”juicers.xml”)//cost,

$p in $child/parent::*

update $p $
delete $child

%
Safe Query Generate For Data From del Glo Ele

Query intent to delete a referred component

79

Sample of Query

For $psch in document(”juicers.xsd”)/xsd:element[@name=”juicer”] /xsd:complexType/xsd:sequence,

$ch in $psch/xsd:element[@ref=”cost”]

update $psch $
delete $ch

%
Sample delete referred element: del Ref Ele

Safe Queries Generated for del Ref Ele

For $psch IN document(”juicers.xsd”)/xsd:element[/@name = ”juicer”]

/xsd:complexType/xsd:sequence,

$ch IN $psch/xsd:element[/@ref = ”cost”]

update $psch $
update $psch $

delete $ch

%
%

Safe Query Generated For Schema

For $p in document(”juicers.xml”)//juicer,

$child in $p/cost

update $p $ delete

$child %
Safe Query Generated For Data

80

Query intent to insert a direct element:

Sample Query

For $psch IN document(”juicers.xsd”)

update $psch $
insert � xsd h element

� �
%

Sample insert � element
� � : ins Dir Ele

Safe Generated Query

1. Function do contVal check ($result) $
return

if ($result=
���

)

then TRUE

else FALSE

%

Function do Contag check($contentName) $
return

if ($contentName =”xsd:element”

or $contentName =”xsd:attribute”)

Then TRUE

else FALSE

81

%
For $psch IN document(”juicers.xsd”)

update $psch $
WHERE do Contag check(”xsd:element”)and do contVal check(

���
)

update $psch $
insert � xsd:element

� �
%

%
Safe Query Generated For Schema From ins Dir Ele

Query intent to insert a ”name” and it’s value on � element
� � :

Sample Query

For $p in document(”juicers.xsd”)//xsd:element

update $p $
insert new attribute(”name”, ”maryam juice”)

%
Sample inserts ”name”: ins eltName

Safe Generated Query

1. For $p IN document(”juicers.xsd”)//xsd:element

let $pval := $p/parent::*/@xmlns:xsd

let $cnt := count($p/@name),

$cntpval := count($pval)

update $p $

82

WHERE $cntpval =”1” and $cnt =”0”

update $p $
INSERT new attribute (”name”, ”maryam juice”)

%
%

Safe Query Generated For Schema From ins eltName

Query intent to insert � complexType �

Sample of Query

For $psch in document(”juicers.xsd”)/xsd:element[@name=”juicer”]

update $psch $
insert � xsd:complexType �©� � xsd:complexType �

%
insert � complexType

� � query: ins compType

Safe Query generated

1. For $psch in document(”juicers.xsd”)/xsd:element[/@name = ”juicer”],

$ptype in $psch[not(@type)],

$pname in $ptype[@name]

let $cre :=count($pname//xsd:element),

$cra := count($pname//xsd:attribute)

update $psch $
WHERE 0 V �£� V $cre and 0 V �£� V $cra

update $psch $

83

INSERT � xsd:complexType
� �

%
%

Safe Query For Schema From ins compType

Query intent to insert a local element:

Sample Query

For $psch in document(”juicers.xsd”)/xsd:element[@name=”juicer”]/

xsd:complexType/xsd:sequence

update $psch $
insert � xsd:element �¨� � xsd:element �

%
Sample insert � element

� � as local element: ins Loc Ele

Safe Generated Query

1. For $psch IN document(”juicers.xsd”)/xsd:element[/@name = ”juicer”]/

xsd:complexType/xsd:sequence

update $psch /

update $psch /

INSERT � xsd:element
� �

%
%

84

Safe Query Generated For Schema From ins Loc Ele

Query intent to insert ”ref”

Sample Query

For $p in document(”juicers.xsd”)/xsd:element[@name=”juicer”]/

xsd:complexType/xsd:sequence//xsd:element[5]

update $p $
insert new attribute(”ref”, ”retailer”) %

Sample insert ”ref” in a local element: ins Ref

Safe Generated Query

1. For $p in document(”juicers.xsd”)/xsd:element[/@name = ”juicer”]/

xsd:complexType/xsd:sequence//xsd:element[position() = 5]

let $repval := $p/@ref

let $pval := $p/parent::*/@xmlns:xsd,

$cntpval := count($pval)

let $refexist := $p/parent::*/xsd:element[@ref=”retailer”],

$cntref := count($refexist)

For $com in document(”juicers.xsd”)/xsd:element[@name=”retailer”]

let $cntcom := count($com)

update $p $
Where 0 V �a� V count($repval/text()) and 0 V �£� V $cntpval and

$cntcom V �£� V 1 and 0 V �£� V $cntref

85

update $p $
INSERT new attribute (”ref”, ”retailer”)

%
%

Safe Query Generated For Schema From ins Ref

2. For $p in document(”juicers.xml”)//juicer

let $child := $p/retailer,

$cnt := count($child)

update $p $
where 0 V �£� V $cnt

update $p $
insert � retailer �4� � retailer �

%
%

Safe Query Generate For Data From ins Ref

Query intent to insert ”type”

Sample of Query

For $p in document(”juicers.xsd”)//xsd:element

update $p $
insert new attribute(”type”, ”xsd:integer”)

%
insert ”minOccurs” query sample: ins type

86

Safe Queries generated

1. For $p IN document(”juicers.xsd”)//xsd:element

let $pval := $p/parent::*/@xmlns:xsd,

$cntdesc := count ($p/descendant::*)

let $cnt := count($p/@name),

$cntpval := count($pval)

update $p $
WHERE $cntpval =”1” and $cnt =”1” and $cntdesc =”0”

update $p $
INSERT new attribute (”type”, ”xsd:integer”)

%
%

Safe Query For Schema From ins type

Query intent to insert ”minOccurs”

Sample of Query

For $p in document(”juicers.xsd”)/xsd:element[@name= ”juicer”]/

xsd:complexType/xsd:sequence/xsd:element[@ref=”cost”]

update $p $
insert new attribute(”minOccurs”, ”2”)

%
insert ”minOccurs” query sample: ins Min

87

Safe Queries generated

1. Function check maxmin($mvar, $val) $
return

if ($mvar =”maxOccurs”and ($val V �£� V¯´ or $val =”unbounded”))

then TRUE

else if ($mvar =”minOccurs”and $val V �£� V�´)
then ”TRUE”

elseTRUE

%
For $p in document(”juicers.xsd”)/xsd:element[/@name = ”juicer”]/xsd:complexType/

xsd:sequence/xsd:element[/@ref = ”cost”]

let $pval := $p/parent::*/@xmlns:xsd,

$cntpval := count($pval)

let $mimformat := check maxmin(”minOccurs”,”2”)

update $p $
WHERE 0 V �£� V $cntpval and $mimformat =”TRUE”

update $p $
INSERT new attribute (”minOccurs”, ”2”)

%
%

Safe Query For Schema From ins Min

2. For $p in document(”juicers.xml”)//juicer

let $child := $p/cost,

88

$cnt := count($child)

let $cnt2 := 2 - count($child)/* Number of time to run the query */

let $nodeA := $p/cost[1]

update $p $
where $cnt2 V �a� V 1

update $p $
insert � cost �x� � cost � after $nodeA

%
%

Safe Query For Data From ins Min

Query intent to insert ”maxOccurs”

Sample of Query

For $p in document(”juicers.xsd”)/xsd:element[@name= ”juicer”]/

xsd:complexType/xsd:sequence/xsd:element[@ref=”cost”]

update $p $
insert new attribute(”maxOccurs”, ”3”)

%

insert ”maxOccurs” query sample: ins Max

Safe Queries generated

89

1. Function check maxmin($mvar, $val) $
return

if ($mvar =”maxOccurs”and ($val V �£� V¯´ or $val =”unbounded”))

then TRUE

else if ($mvar =”minOccurs”and $val V �£� V 0)

then TRUE

else

TRUE

%
For $p in document(”juicers.xsd”)/xsd:element[/@name = ”juicer”]/

xsd:complexType/xsd:sequence/xsd:element[/@ref = ”cost”]

let $pval := $p/parent::*/@xmlns:xsd,

$cntpval := count($pval)

let $mimformat := check maxmin(”maxOccurs”,”3”)

update $p $
WHERE 0 V �£� V $cntpval and $mimformat =TRUE

update $p $
INSERT new attribute (”maxOccurs”, ”3”)

%
%

Safe Query For Schema From ins Max

2. For $p in document(”juicers.xml”)//juicer

let $child := $p/cost,

90

$cnt := count($child)

let $cnt2 := count($child) - 3 /* Number of time to run the query */

let $nodeA := $p/cost[1]

update $p $
where $cnt2 V �a� V 1

update $p $
delete $nodeA

%
%

Safe Query For Data From ins Max

Query intent to insert ”use”

Sample of Query

For $p in document(”juicers.xsd”)/xsd:element[@name= ”juicer”]//

xsd:attribute[@ref=”percentage”]

update $p $
insert new attribute(”use”, ”required”)

%
insert ”use” query sample: ins Use

Safe Queries generated

1. Function check use($mvar, $val) $

91

return

if ($mvar =”use” and ($val= ”optional”

or $val =”required” or $val = ”prohibited”))

then TRUE

else TRUE

%
For $p in document(”juicers.xsd”)/xsd:element[/@name = ”juicer”]//

xsd:attribute[/@ref = ”percentage”]

let $pval := $p/parent::*/@xmlns:xsd,

$cntpval := count($pval)

let $format := check use(”use”,”required”)

update $p $
WHERE 0 V �£� V $cntpval and $format =TRUE

update $p $
INSERT new attribute (”use”, ”required”)

%
%
Safe Query For Schema From ins Use

2. For $p in document(”juicers.xml”)//juicer

let $child := $p/@xsi:percentage,

$cnt := count($child)

update $p $
where 0 V �£� V $cnt

update $p $
insert new attribute(”xsi:percentage”, ”defaultvalue”)

92

%
%

Safe Query For Data From ins Use

Query intent to insert ”use”

Sample of Query

For $p in document(”juicers.xsd”)/xsd:element[@name=”smalljuicer”]

let $childatr := $p/@name

update $p $
replace $childatr with ”newName”

%
replace name of component query sample: rep Glo EleName

Safe Queries generated

1. Function replaceRefOnSchema($schemadoc, $childBindingRefName) $
For $pref In document($schemadoc)//xsd:element[@ref=$childBindingRefName],

$rRef in $pref/@ref

update $pref $
replace $rRef with ”newName”

%
%
For $p IN document(”juicers.xsd”)/xsd:element[/@name = ”smalljuicer”]

Let $childatr := $p/@name

93

Let $pval := $p/parent::*/@xmlns:xsd,

$cntpval := count($pval)

Let $child := $p/parent::*/xsd:element[@name=”newName”],

$childexist := count($child)

Let $sref := $p/parent::*//xsd:element[@ref= ”smalljuicer”]

Let $sr := $sref/@ref

Where $cntpval = ”1” and $childexist =”0”

update $p $
Where replaceRefOnSchema(”juicers.xsd”,”smalljuicer”)

update $p $
REPLACE $childatr WITH ”newName”

%
%

Safe Query For Schema From rep Glo EleName

2. For $child in document(”juicers.xml”)//smalljuicer

let $p := $child/parent::*

update $p $
rename $child to ”newName”

%
Safe Query For Data From rep Glo EleName

94

	Worcester Polytechnic Institute
	Digital WPI
	2003-05-05

	Consistently Updating XML Documents Using Incremental checks With XQueries
	Bintou Kane
	Repository Citation

	tmp.1530275769.pdf.Uij5r

