
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2004-08-25

Developing an Affordable Authoring Tool For
Intelligent Tutoring Systems
Sanket Dinesh Choksey
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Choksey, Sanket Dinesh, "Developing an Affordable Authoring Tool For Intelligent Tutoring Systems" (2004). Masters Theses (All Theses, All
Years). 978.
https://digitalcommons.wpi.edu/etd-theses/978

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/978?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

DEVELOPING AN AFFORDABLE AUTHORING TOOL FOR INTELLIGENT
TUTORING SYSTEMS

By

Sanket D. Choksey

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

By

August 2004

APPROVED:

Professor Neil T. Heffernan, Thesis Advisor

Professor Gary Pollice, Thesis Reader

Professor Michael Gennert, Head of Department

 i

Abstract
Intelligent tutoring systems (ITSs) are computer based tutoring systems that

provide individualized tutoring to the students. Building an ITS is recognized to be

expensive task in terms of cost and resources. Authoring tools provide a framework and

an environment for building the ITSs that help to reduce the resources like skills, time

and cost required to build an intelligent tutoring system.

In this thesis we have implemented the Cognitive Tutor Authoring Tools (CTAT)

and performed experiments to empirically determine the common programming errors

that authors tend to make while building an ITS and study what is hard in authoring an

ITS. The CTAT were used in a graduate class at Worcester Polytechnic Institute and also

at the 4th Summer school organized at the Carnegie Mellon University. Based on the

analysis of the experiments we suggest future work to reduce the debugging time and

thereby reduce the time required to author an ITS. We also implemented the model

tracing algorithm in JESS, evaluated its performance and compared to that of the model

tracing algorithm in TDK.

This research is funded by the Office of Naval Research (Grant # N00014-0301-0221).

Keywords: Cognitive Tutor, Authoring Tools, Intelligent Tutoring Systems, Model

Tracing, JESS production system, Debugging Tool.

 ii

Table of Contents

1 Introduction... 1

1.1 Intelligent tutoring systems .. 1

1.2 Model Tracing ... 3

1.3 Model tracing algorithm .. 3

2 Authoring tools.. 5

2.1 Related Work... 5

2.2 Cognitive Tutor Authoring Tools (CTAT) ... 7

2.3 Implementation of Model tracing algorithm in TDK 10

2.4 The need for a different production system .. 13

2.5 Model tracing algorithm using JESS .. 13

2.5.1 Pseudo code for the model tracing algorithm.. 15

2.6 Debugging tool .. 19

3 Evaluation...28

3.1 Evaluation Study #1... 28

3.1.1 Condition 1 .. 30

3.1.2 Condition 2 .. 30

3.2 Evaluation Study #2... 32

3.2.1 Subjects ... 32

3.2.2 Data collection ... 32

3.2.3 Methodology.. 32

3.2.4 Results ... 32

 iii

3.3 Evaluation Study #3... 39

3.3.1 Subjects ... 39

3.3.2 Data collection ... 39

3.3.3 Methodology.. 39

3.3.4 Results ... 40

4 Implementation ..47

5 Limitations..49

6 Conclusions and Future Work ..50

7 Appendix A...51

7.1 JESS rules for multi-column addition tutor .. 51

8 Appendix B ...57

8.1 Description of JESS functions.. 57

9 References...58

 iv

List of figures

Figure 1: Cognitive Tutor Authoring Tools ... 8

Figure 2: Cognitive Model Visualizer.. 20

Figure 3: Student Interface displaying first two student actions 21

Figure 4: Conflict tree after student input 6 ... 22

Figure 5: Initiating WHY-NOT on focus-on-next-column ... 23

Figure 6: Rule instantiations generated by WHY-NOT for focus-on-next-column 23

Figure 7: Conflict tree after the first student input "5" ... 24

Figure 8: Rule instantiations for write-sum.. 25

Figure 9: Cognitive model visualizer displaying the visual cue’s 26

Figure 10: Detailed selection, action, input view ... 26

Figure 11: Interface for setting breakpoints ... 27

Figure 12: Interface for setting max depth for searching .. 27

Figure 13: Comparison of the two methods ... 29

Figure 14: Model tracing algorithm using TDK... 30

Figure 15: Model tracing algorithm using JESS... 31

Figure 16: Cumulative time spent writing a rule vs. debugging a rule for group 1.......... 41

Figure 17: Cumulative time spent writing a rule vs. debugging a rule for group 2.......... 42

Figure 18: Time Spent between evaluations vs. Code written for group 1...................... 43

Figure 19: Time spent between evaluations vs. Code written for group 2....................... 45

 v

List of Tables

Table 1: A sample TDK rule for model tracing.. 12

Table 2: A sample JESS rule for model tracing ...14

Table 3: special-tutor-fact.. 15

Table 4: Pseudo code for model tracing algotithm ... 16

Table 5: Partial rule for problem 2... 34

Table 6: Partial output of WHY-NOT for problem 2 ... 35

Table 7: Number of rules written by each group in the 3rd and 4th Circle Summer Schools

.. 40

Table 8: Distribution of time spent while implementing an ITS..................................... 41

Table 9: Description of the activities at evaluation points .. 43

Table 10: Categorizing errors found from analysis .. 46

 1

1 Introduction

In this thesis we have implemented a set of authoring tools for intelligent tutoring

systems. This thesis makes a contribution by empirically identifying the common errors

authors make when creating cognitive models used in Intelligent Tutoring Systems. This

analysis feeds into a new type of debugging systems that will be designed in future. The

evaluation of the tools is based on the data collected during the use of the tools in a

graduate class at Worcester Polytechnic Institute and at the 4th Summer school held at

Carnegie Mellon University. This section gives an overview of the intelligent tutoring

systems (ITSs), explains why ITSs are required and also describes the model tracing

algorithm.

1.1 Intelligent tutoring systems

In a study conducted by Bloom (Bloom, 1984), comparing one-on-one tutoring

with classroom instruction, he found that, an average student taught using one-on-one

tutoring is “2 sigma” (2 standard deviations) above the average student taught using the

conventional classroom instruction methods. However individualized instruction is very

costly. Hence there is a need for an affordable and effective way to provide

individualized instruction to the students. Intelligent Tutoring Systems (ITSs) seem to be

an effective approach (Koedinger, K. R. & Anderson, J. R. 1993a). The mathematics

tutor built by Koedinger and his colleagues (Koedinger, K. R., Anderson, J. R., Hadley,

W. H., & Mark, M. A. 1997) is being used in more than 1200 schools in 31 states across

 2

USA. Intelligent tutors have been successfully built to tutor a wide variety of domains

(Cerri, Gouarderes, Paraguacu 2002).

Model Tracing Tutors

The tutor referred to above built by Koedinger and his colleague is one of the

most successful ITS (both in terms of student learning and commercial success). The key

to the success of this tutor is the cognitive model of the student called the expert model

that is able to solve the task, and thereby enabling the tutor to give hints and error

messages to the student. The model tracing tutor has the expert model that is used to

trace student responses to ensure that the student is on a recognized solution path. Model

tracing tutors have proven to be amongst the most effective class of intelligent learning

environments (Anderson, Boyle Corbett, & Lewis, 1990; Koedinger & Anderson, 1993a;

Koedinger, Anderson, Hadley, & Mark, 1997).

Creating cognitive models requires expertise in both cognitive task analysis and

Artificial Intelligence (AI) programming. Due to these challenges developing an

intelligent tutoring system is difficult and time consuming. Current estimates are that

without using the authoring tools, over 200 hours of ITS development time may be

necessary to assemble an hour of instruction. (Murray, 1999; Anderson, 1993, p. 254.;

Woolf & Cunningham, 1987). Building an ITS is very costly. For instance, the most

successful ITS built so far, is for teaching mathematics to high school students

(Koedinger, Anderson, Hadley and Mark, 1997), used in over 1200 schools across the

USA. It is built by Carnegie Learning Inc and cost $15 million to build approximately 72

hours of instruction.

 3

1.2 Model Tracing

The cognitive tutors based on the John Anderson’s ACT-R theory of cognition

(Anderson, 1993) employ a procedure called “model-tracing” (Anderson, & Pelletier,

1991) to follow a student’s action. Model tracing is a plan recognition technique that

interprets the student behavior by comparing the student actions with the expert model

and providing appropriate feedback when necessary. Specifically, model-tracing will take

a student’s input and identify which skills to give the student credit (or blame) for. The

primary goal in this process is to provide whatever guidance is needed for the student to

reach a successful conclusion to problem solving. The tutor can give hint messages to

students generated by running the expert model forward. In addition to maintaining the

student model, cognitive tutors use a process called “Knowledge Tracing” for selecting

problems intelligently depending on the system’s beliefs about what knowledge the

student has mastered (Corbett, Anderson, 1995).

1.3 Model tracing algorithm

 Model tracing algorithm requires three inputs:

1. The state of the working memory: represented by a group of working memory

elements.

2. A set of production rules. Each production rule represents a cognitive step

performed by the student.

3. The students input that we wish to trace.

Using current state of the working memory and the production rule set, the model

tracing algorithm tries to find a sequence of production rules that generates the

 4

student input. If a sequence of rules is found then the student’s input is said to be

traced. Also each production rule has associated pedagogical messages attached to it,

which are used to generate the hint and bug messages. A production rule is comprised

of a Left Hand Side (LHS) and Right Hand Side (RHS) separated by a separator

character. The general structure of the production rule for model tracing tutors is as

follows:

In this thesis, we have focused on the authoring tools to be able to build cognitive

tutors. Next chapter describes the authoring tools in general followed by the

Cognitive Tutor Authoring Tools (CTAT).

Production Rule

Rule Name

Left Hand Side (LHS)
A list of AND conditions

Separator Character

Right Hand Side (RHS)
A list of actions

Optional:
• Generated student

action info
• Messages

 5

2 Authoring tools

According to Murray (Murray, T. 1999), main goals of the authoring tools are to:

1. Reduce the time and cost required to build the intelligent tutoring systems

2. Make it possible for non-programmers (subject domain experts) to build the

tutors

3. Provide guidelines for good design principles in pedagogy

4. Provide a rapid development environment for creating and testing the tutors.

5. Helping the authors to better organize their knowledge

2.1 Related Work

Murray (Murray, T. 1999) surveyed 23 different authoring tools that have been

developed. Although research on authoring tools for ITSs is being done for over three

decades now, none of the authoring tools are commercially available. Authoring tools

related to CTAT are Demonstr8 (Murray, Ainsworth & Blessing (eds.), 2003),

Authorwaretm and Mason (Csizmadia, V. 2003). All the these systems are also authoring

tools for building ITSs. Each of them have same goal of reducing the time and resources

required to build an ITS but vary either in the type of domain, style of instruction or the

amount of intelligence in the tools.

Demonstr8 is a system that allows non cognitive scientists to build model tracing

tutors using programming by demonstration. The author starts by constructing the student

interface which is like a drawing program. The author drags and drops special tools from

the palette and creates the interface. The next step is to create any higher level working

memory elements that are needed for the tutor. Once the working memory is set up

 6

correctly, the final step is to demonstrate the productions. The author demonstrates the

skills that need to be tutored and Demonstr8 induces the underlying production rules

required to model the skill. The tools provide mechanism for the authors to fine tune the

induced productions. The authors can specify sub goals on the RHS of the rules. Murray,

Ainsworth & Blessing argue that sub goals are necessary to distinguish a particular action

in different context. In addition to specifying goals, the authors can indicate the skill that

is supported by a production rule. When the student is using the tutor, a skillometer is

displayed to the student which contains a list of skills being taught and the mastery level

of the student for each skill. Lastly the author can attach pedagogical messages to the

production rules that will be presented to the student when the student asks for a hint for

a specific production. Demonstr8 is just a prototype and has not been put to real use. Also

no study has been done to determine the effectiveness of the tools. Murray, Ainsworth &

Blessing conclude that programming by demonstration might restrict the expressiveness

of the tutor.

Macromedia Software’s Authorwaretm, a commercial authoring tool for building

Computer Aided Instruction (CAI), is used mainly for building interactive instructional

material instead of an ITS. It has great support for multimedia content and also supports

scripting. Murray argues that Authorwaretm lacks reusability and modularization. The

instruction cannot be individualized for each student and all possible student actions have

to be enumerated. It is difficult to generalize the tutors built using Authorwaretm. Also the

style of instruction is fixed and cannot be adapted for each student. The Authorwaretm

allows construction of instructional material that is visually appealing but has a shallow

underlying representation of the content and pedagogy.

 7

Mason (Csizmadia, V. 2003), is an authoring tool for ITS’s with Hierarchical Domain

models. It has a tutorial model connected to a constraint based tutoring system. The

construction process consists of defining numerous components, such as: problem

structures (consisting of problem statements and the desired answers for them), question

templates for the strategies that generate pedagogical dialogue for tutoring students, and

diagnostic rules for launching the appropriate strategies for specific student errors. All of

these components are organized in a hierarchical fashion. There is no support for

constructing a graphical student interface. Mason is a specialized authoring tool limited

to hierarchical domains.

The next section describes the Cognitive Tutor Authoring Tools (CTAT) followed by

a description of the mode tracing algorithm and pseudo code for the same.

2.2 Cognitive Tutor Authoring Tools (CTAT)

Cognitive Tutor Authoring Tools (Koedinger, K. R., Aleven, V., & Heffernan, N. T.

2003) focuses on making cognitive tutor development easy and fast. CTAT is a suite of

tools that assist the author in design, development, implementing, testing, verifying and

maintaining cognitive models. Cognitive modeling is hard and requires PhD level

competence in cognitive psychology and AI. According to Koedinger et al the challenges

involved in cognitive modeling include a) cognitive task analysis and knowledge

acquisition b) advanced AI programming c) testing debugging and d) extending and

scaling up the model. The CTAT are intended to address these challenges and make it

easier for expert modelers and also make it possible for people without cognitive

modeling experience to build cognitive models. CTAT are different than most of

 8

cognitive modeling tools as they allow easy conversion of the cognitive models to model

tracing tutors.

Figure 1: Cognitive Tutor Authoring Tools

CTAT as shown in Figure 1 consists of the following tools:

1. An Intelligent GUI Builder, which is used to create a graphical user interface for

the task. The author can use the interface to demonstrate a solution (correct and

incorrect actions) for the task. The interface is helpful in performing cognitive

task analysis.

2. A Behavior Recorder, a tool used to record the correct and incorrect actions that

the author demonstrates in the GUI.

 9

3. A Working Memory Elements (WME) editor and Production Rule editor that are

used while implementing the production rules that comprise the cognitive model.

4. A debugging tool called the Cognitive Model Visualizer used while debugging

the production rules. Cognitive model visualizer is described in detail in the next

chapter.

The intelligent GUI builder is used to build the interface using special widgets that

can communicate their identity and behavior to other tools. Every widget on the interface

has a corresponding representation in the working memory that is generated

automatically when the tutor is run. The working memory consists of, (a) the

automatically generated elements corresponding to the interface widgets, (b) other user

defined elements that are not directly related to the interface widgets but are required to

implement the cognitive model and (c) automatically generated WME that are required

for model tracing. The production rules operate on the working memory elements. The

students interact directly with the widgets on the interface and the widgets communicate

their events to the production system and other tools via selection, action and input,

which are defined in the next section.

In a think aloud study (Newell, A., Simon, H., 1972, Ericsson, A., Simon, H., 1984)

the users are asked to “think aloud” as they are working on a given task. Think aloud

protocols of the novice and expert are collected to determine the difficulty factors for a

task and also better understand how humans solve a given task. Analyzing think aloud

protocols is an empirical way of performing the cognitive task analysis. It helps in

refining the user interface and the underlying cognitive model for a task. We have added

 10

a tool in CTAT for collecting the think aloud protocols of the authors as they are

demonstrating the actions and that of students as they are solving the task.

2.3 Implementation of Model tracing algorithm in TDK

An earlier version of CTAT used Tutor development kit (TDK) as the underlying

production system for cognitive modeling. TDK uses Tertl (Anderson & Pellietier, 1991,

Pelletier, 1993), which is a production rule system that is written in LISP and is

optimized for building cognitive tutors. Pellietier (1993) choose not to use the Rete

(Forgy, C. L., 1982) pattern-matching algorithm because he said it had the following

drawback:

In order to reduce the number of comparisons that should be made during rule testing

Rete compiles a data structure for the rule base and stores the partial instantiation for the

rules. Hence the space usage can increase exponentially over time.

Other production systems do not allow explicit control over the order in which the

rules should be compared and fired. Tertl addresses these weaknesses by restricting the

expressiveness of the production rule conditions and allowing parameter passing in the

rules. Also in Tertl, in order for a working memory element to be in a production rule, it

must either have been passed in as a parameter, or referenced already earlier in the

production. (i.e., a variable must be bound to the working memory element before it can

be used). Thus the bound variable uniquely identifies the working memory element to be

tested. This reduces the number of working memory elements that need to be tested in

order to check whether the condition on the rule LHS is satisfied or not. This makes the

process of matching very fast, in TDK. Without parameter passing all the instances of

 11

that particular WME type have to be tested for a match. Hence parameter passing

increases the efficiency of the Tertl production system considerably.

In Tertl, the author can specify on the right hand side of a production rule, the name

of the rule that the current production rule chains to using the chain keyword. Chaining is

used to model a student action that involves more than one cognitive step.

In order to identify a student action on the interface, the author has to set the

selection, action and input on the right hand side of a production rule.

• Selection – defines a WME corresponding to a widget in the user interface that has

the student input,

• Action – defines the action performed by the student in the interface and

• Input – defines the values that the student entered.

Table 1 shows a sample TDK rule for model tracing:

 12

Table 1: A sample TDK rule for model tracing

;; IF
;; There is a goal to write a carry in column C
;; THEN
;; Write the carry in column C
;; And remove the goal

(defproduction write-carry addition (=problem) ; name of the rule
 =problem ; Left hand side of the rule
 isa problem
 subgoals ($sg1 =subgoal $sg2)
 =subgoal>
 isa write-carry-goal
 carry =num
 column =column
 =column>
 isa column
 position =pos
 cells (=carry $)
 =carry>
 isa cell
 value NIL ; redundant, presumably
 =problem>
 isa problem
 interface-elements ($ =table $)
 =table>
 isa table
 columns ($ =column =previous-column $)
 =previous-column>
 isa column
 position =pos-previous
 ==>
 =carry> ; Right hand side of the rule
 value =num
 =problem>
 subgoals ($sg1 $sg2)
 : nth-selection 0 =carry ; OPTIONAL Setting selection action input
 : action 'UpdateTable
 : input =num #'look-equal-p
 :priority 800 ; so that write-sum has priority
 : messages (help
 `(You need to complete the work on th e #\space
 ,=pos-previous column #\.)
 ;; TO DO: make sure this m essage is displayed
also
 ;; when you write the c arry (but not the
result)
 ;; and then ask for a h int.
 `(Write the carry from the #\space ,= pos-previous to the
 next column #\.)
 `(Write ,=num at the top of the #\spa ce ,=pos column from
 the right #\.))
)

 13

2.4 The need for a different production system

TDK is a proprietary production system developed at Carnegie Mellon University.

There is not enough documentation on TDK. This makes it difficult to learn. Also TDK is

written in LISP and hence the authors have to learn LISP as well. Also the tutors

developed using TDK are hard to deploy on the web. Hence we have ported the CTAT to

support a more common production system called JESS (Java Expert System Shell)

(Ernest Friedman-Hill. 2003) developed at the Sandia National Laboratories, which is

based on the CLIPS (Giarratano, J. & Riley, G. 1998) rule based production system,

developed at the NASA. The tutors thus developed using JESS as the production system

can be easily deployed on the web.

2.5 Model tracing algorithm using JESS

There are two kinds of production rules, buggy rules and correct rules. Buggy rules

are production rules that model common student errors and correct rules model the

correct student actions in problem solving. In order to use the model tracing algorithm, a

special working memory element (WME) called special-tutor-fact is created in the

working memory. It has three slots: selection, action and input as shown in Table 3. The

special-tutor-fact-correct and special-tutor-fact-buggy are inherited from special-tutor-

fact and they add one more slot for the hint message and buggy message respectively as

shown in Table 3. The rules that model the correct student action should reference the

special-tutor-fact-correct on the LHS of the rule and rules that model incorrect student

actions should reference the special-tutor-fact-buggy on the LHS of the rule. The JESS

rules should then set the selection, action and input slots of the referenced special-tutor-

 14

fact on the RHS of a rule if that rule models a student action on the interface. Table 2

shows a sample JESS rule for model tracing tutors:

Table 2: A sample JESS rule for model tracing

;; WRITE-CARRY
;; IF
;; There is a goal to write a carry in column C
;; THEN
;; Write the carry in column C
;; And remove the goal

(defrule write-carry
 ?problem <- (problem
 (subgoals $?sg1 ?subgoal $?sg2)
 (interface-elements $? ?table $?))
 ?subgoal <- (write-carry-goal
 (carry ?num)
 (column ?column))
 ?column <- (column
 (position ?pos)
 (cells ?carry $?))
 ?carry <- (cell
 (name ?cell-name)
 (value nil))
 ?table <- (table
 (columns $? ?column ?previous-column $?))
 ?previous-column <- (column
 (position ?pos-previous))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (modify ?carry ; right hand side
 (value ?num))
 (modify ?problem
 (subgoals ?sg1 ?sg2))
 (modify ?special-tutor-fact ; optional setting the selection,
 (selection ?cell-name) ; action and input
 (action "UpdateTable")
 (input ?num)
 (hint-message (construct-message [You need to com plete
 the work on the ?pos-previous column.]
 [Write carry from the ?pos-previous
 to the next column.]
 [Write ?num at the top of the ?pos column
 from the right.])))
 (retract ?subgoal)
)

 15

Table 3: special-tutor-fact

(deftemplate
SpecialTutorFact

(slot selection)
(slot action)
(slot input)

)

(deftemplate
SpecialTutorFact-correct

(slot selection)
(slot action)
(slot input)
(slot hint-message)

)

(deftemplate
SpecialTutorFact-buggy

(slot selection)
(slot action)
(slot input)
(slot buggy-message)

)

Initially all the buggy rules are removed from the Rete (Forgy, C. L., 1982) engine

and the model tracing algorithm tries to trace the student input with only correct rules.

The model tracing algorithm starts with the initial working memory called as the “start

state” and fires one rule at a time from the list of activated rules and compares the

selection, action, input produced by the rules with the student’s selection, action and

input. If a match is found then the student’s input is said to be “traced” and the search is

terminated or else the working memory is restored back to the previous immediate state

and the next activated rule is fired and the search continues. If the student input cannot be

traced using only correct rules then buggy rules are added to the Rete engine and the

search is repeated again. If the student input is traced the algorithm returns the list of

rules i.e. the steps required to model the student behavior else the algorithm returns an

empty list indicating that the student’s action cannot be modeled by the current

production rules in the Rete engine.

2.5.1 Pseudo code for the model tracing algorithm
The algorithm uses an iterative deepening depth first search to find a sequence of

rules that generate selection, action and input which matches the student’s selection,

action and input. Table 4 gives the pseudo code for the model tracing algorithm as

implemented in JESS.

 16

Table 4: Pseudo code for model tracing algotithm

Parameter: depthLimit – maximum depth to explore during the search
Parameter: selection – A string representing the student’s selection
Parameter: action – A string representing the student’s action
Parameter: input – A string representing the student’s input
Returns: a list of rules that are required to model the student input. This function calls
iterative deepening search.

Function modelTrace (integer depthLimit, String selection, String action, String input
) returns list of rules

root.state <- current state of the rete engine
remove all the buggy rules from the rete engine and save them in buggyRulesList
rules <- new List
traced <- iterativeDeepening (root, depthLimit, selection, action, input, rules)
if traced equals true then

return the list of rules
else

load buggy rules from buggyRulesList in the rete engine
traced <- iterativeDeepening (root, depthLimit, selection, action, input,
rules)
if traced equals true then

return the list of rules
else

return empty list
This function calls the depth limited search function until the student selection, action
and input are traced or there are no more successors to explore.

Parameter: root – The root node in the search tree to explore
Parameter: depthLimit – maximum depth to explore during the search
Parameter: selection – A string representing the student’s selection
Parameter: action – A string representing the student’s action
Parameter: input – A string representing the student’s input
Parameter: rules – At the end of the search, rules will contain a list of rule names that
are required to model the student action.
Returns: a Boolean indicating whether the student’s selection, action and input traced

Function iterativeDeepening (ActivationNode root, integer depthLimit, String
selection, String action, String input, List rules) returns boolean

initialize depth <- 1
temp <- save the current working memory elements in the rete engine
do

remove all the elements from rules
returnValue <- depthLimitedSearch (root, depth, selection, action, input,
rules)

 17

depth <- depth + 1
while returnValue is greater than 0 and depth is less than or equal to depthLimit
if returnValue equals -1 then

return false
else if returnValue equals 0 then

return true
else

return false
This function performs the depth limited search until the student selection, action and
input are traced or the maximum depth limit is reached.

Parameter: node – The current node in the search tree to explore
Parameter: depth – maximum depth to explore during this iteration search
Parameter: selection – A string representing the student’s selection
Parameter: action – A string representing the student’s action
Parameter: input – A string representing the student’s input
Parameter: rules – At the end of the search, rules will contain a list of rule names that
are required to model the student action.
Returns: an integer indicating if the search needs to be performed with the next higher
depth

Function depthLimitedSearch (ActivationNode node, integer depth, String selection,
String action, String input, List rules) returns integer

currentDepth <- node.depth
if currentDepth <= depth then

fire node.rule
add node.rule to rules
if isSAIFound (selection, action, input) then

return 0
else

get the list of current rule activations from the rete engine
if currentDepth < depth then

for each activated rule do
child.state <- current working memory elements in rete
engine
child.rule <- rule
child.depth <- currentDepth + 1
returnValue <- depthLimited (child, depth, selection,
action, input, rules)
if returnValue = 1 then

load the working memory elements from node.state
return returnValue

else
if there are no rule activations then

return -1

 18

else
retutn 1

else
return -1

Parameter: selection – a string representing student’s selection
Parameter: action – a string representing student’s action
Parameter: input – a string representing student’s input
Returns: a Boolean indicating if the current selection, action and input in the working
memory matches with the student’s selection, action and input.

Function isSAIFound (String selection, String action, String input) returns Boolean

% Comment: specialTutorFact is a special working memory element which is modified by
% the RHS of the rules to set the selection, action and input

currentSelection <- specialTutorFact.selection from working memory in rete
engine
currentAction <- specialTutorFact.action from working memory in rete engine
currentInput <- specialTutorFact.input from working memory in rete engine
If currentSelection = selection and currentAction = action and currentInput =
input then

Return true
Else

Return false
Exit

ActivationNode {
 Integer depth;
 ReteState state;
 ReteRule rule;
}

In this thesis we have reused the behavior recorder tool from the TDK version of

the tools and integrated it with the JESS production system using the model tracing

algorithm. We have implemented the Debugging tool, the WME editor and the

production rule editor for the CTAT tools. We have also evaluated the runtime

performance of the model tracing algorithm in JESS and compared it with that of the

model tracing algorithm in TDK, results of which are described later in the evaluation

section. Next section describes the debugging tool in CTAT and its importance.

 19

2.6 Debugging tool

In this thesis we do an empirical study of the kind of programming errors that are

made when building the ITSs. A majority of the time during programming is spent in the

debugging activity. A recent study conducted by NIST found that the US software

engineers spend about 70-80% of their time testing and debugging. A recent study by Ko,

and Myers, (2004) has shown “Interrogative Debugging” to reduce the debugging time

by a factor of 8. Interrogative debugging is a paradigm in which the programmer can ask

questions to reason about the observed unexpected runtime action and the absence of the

expected runtime action. Thus reducing the debugging time will reduce the overall time

required to develop an ITS.

In this thesis we have developed a tool called Cognitive Model Visualizer also called

Conflict tree, for debugging cognitive models written in JESS, which allows the author to

ask similar questions about the program’s behavior. We have identified and categorized

the errors that authors made when using the tools and also tried to verify whether the

tools helped in debugging the errors that would have been very difficult to debug

otherwise. Detailed analysis reports are given in the evaluation section. Next paragraph

describes the cognitive model visualizer that we developed for debugging cognitive

models written in JESS.

 20

Figure 2: Cognitive Model Visualizer

The cognitive model visualizer is intended to help the authors in locating errors in the

JESS production rules. The cognitive model visualizer provides a dynamic view of the

cognitive model at runtime. It displays the various paths (rule sequences) that model

tracing algorithm tried to generate the student input. The cognitive model visualizer in

Figure 2 is displaying two paths different paths of production rules that could have fired.

If the author was expecting a certain rule to fire at a certain state in the rule trace but the

rule didn’t fire then the author can go to that state and ask, why didn’t that rule fire? The

cognitive model visualizer displays instantiations for that rule using the correct state of

the working memory. By analyzing the rule instantiations the author can quickly locate

the error in the production rules.

For example: Here is a debugging episode of an author writing rules for multi column

addition tutor using CTAT. (Complete rule set for the multi-column addition tutor is

given in appendix A for reference).

The author has written and tested rules for the first two actions as shown in Figure 3.

 21

Figure 3: Student Interface displaying first two student actions

The author has written the rule for the next student action i.e. writing 6 in the

highlighted cell, which adjacent to the cell containing “5”. Next the author tests the rule

to see if it correctly models the student action. But the rule does not model the student

action as the author had expected as shown by the following figure.

 22

So at this point the conflict tree looks as shown in Figure 4:

Figure 4: Conflict tree after student input 6

By looking at the sequence of rules fired in the conflict tree, the author realizes that

the focus-on-next-column rule did not fire as expected. So the initial guess of the author

would be that the focus-on-next-column rule is erroneous. So the author initiates a WHY-

NOT for the focus-on-next-column rule, on the chain node where it was expected to fire

as shown in Figure 5.

 23

Figure 5: Initiating WHY-NOT on focus-on-next-column

Following rule instantiations shown in Figure 6 is generated by WHY-NOT

Figure 6: Rule instantiations generated by WHY-NOT for focus-on-next-column

 24

By analyzing the output generated by why-not, it is clearly evident that a cell (named

table1_C6R4, this is the bottom rightmost cell in the interface) whose value should not be

“nil” has a value “nil”. This indicates that there is some error in the rule that is modifying

the value of cell named table1_C6R4 and not in the focus-on-next-column rule as per the

initial guess.

So now the author goes back to the first step in the problem where the student enters

5 in the bottom rightmost cell (table1_C6R4) in the interface. Conflict tree looks as

shown in Figure 7.

Figure 7: Conflict tree after the first student input "5"

So now the author looks at the working memory at this point and realizes that the

value slot of cell table1_C6R4 is “nil”. So looking at the instantiation of the write-sum

rule at this point as shown in Figure 8, the author realizes that the statement for

modifying the cell value on the RHS of the write-sum rule is missing.

 25

Figure 8: Rule instantiations for write-sum

Thus the conflict tree helped in locating this error in less time which otherwise would

have taken more time.

 26

Figure 9: Cognitive model visualizer displaying the
visual cue’s

Figure 10: Detailed selection, action, input view

The cognitive model visualizer also displays visual cues next to the rule names as

shown in Figure 9 to indicate whether the selection, action and input do match. The

visual cue is in the form of three characters one each for selection, action and input. An *

indicates a match, o indicates no match and – indicates that the value is unspecified.

Hence a “***” next to a rule name in the cognitive model visualizer indicates that

selection, action and input matches whereas a “*oo” indicates that the selection matches

but the action and input do not match. Similarly “o*o” indicates that the selection does

not match, action matches and the input also does not match. To easily help locate this

kind of error, the author can right click on the rule name in the conflict tree and a table

containing the required and actual selection, action and input is displayed as shown by

Figure 10. Thus by looking at the table the author can figure out what selection, action and

 27

input is required in order for the model to trace correctly and change the production rules

accordingly.

Figure 11: Interface for setting breakpoints

Figure 12: Interface for setting
max depth for searching

The cognitive model visualizer also provides the facility to set break points on certain

rules. Figure 11 shows the interface for setting the breakpoints. If a break point is set on a

particular rule then the model tracing process stops after that rule fires. At this point the

author can inspect the working memory or view the instantiations for some other rule and

then resume the model tracing process. The break points are helpful to debug those errors

that cause a rule to chain itself and put model tracing algorithm in a seemingly infinite

loop or cause the “Out Of Memory” errors. To debug similar kind of errors the author can

also set the maximum depth that the model tracing algorithm will explore.

 28

3 Evaluation

The authoring tools are intended to make the development of ITSs faster and easier.

Hence an ideal evaluation of the tools would be a comparative study in which people are

randomly assigned to build tutors for different domains using different authoring tools

and then compare the time and effort required to build the tutors. This kind of usability

study would be premature and too costly. Hence our focus of evaluation was to

investigate the type of errors that authors make when building tutors and see if the tools

responded well in debugging those errors that are difficult to debug otherwise. We also

evaluated the runtime performance of model tracing algorithm in JESS and found it to be

roughly similar to that in TDK (Choksey, Heffernan, 2003).

3.1 Evaluation Study #1

Evaluating the runtime performance of model tracing algorithm in JESS:

We knew the run time performance of the model-tracing algorithm would depend

upon the average branching factor and depth of the goal node in the search tree.

Branching factor is the average number of rules that can be fired at any working memory

state in the search tree. The depth of a goal is the number of rules that need to be chained

together to generate the student’s input. We ran a series of experiments where we varied

the branching factor and the depth of a solution and measured the time that model tracing

took for TDK and JESS.

For each of the experiments we took an already existing rule set (for multi-column

addition) and modified it to be able to vary the branching factor and the depth at which

the goal node was reached. In order to modify the branching factor we simply duplicated

 29

rules (giving them different names), thereby causing the production system to branch on

each instance. In order to create a branching factor of 2 we duplicated each rule in the

rule set. Similarly to create an example with branching factor 4, we create 4 rules for

each rule in the set.

In order to vary the depth, we inserted a counter on the LHS of the productions so that

we could set a depth easily. Initially the counter is set to 0 and the first rule fires when the

counter value is 0 and it increases the counter by 1.The second rule fires when the

counter value is 1 and it sets the counter value to 2 and so on.

The following experiments were run on a Macintosh 867MHz PowerPC G4 machine

running OSX operating system. The JESS version of CTAT was run in the sun JRE v1.4.

Following Figure 13 is a graph comparing both implementations of the model-tracing

algorithm. The branching factor is fixed at 3 and the depth of the goal node is varied

linearly.

Comparison graph - branching factor 3

0

2

4

6

8

10

12

14

4 5 6 7 8 9

Depth of goal node

Ti
m

e
(s

ec
)

JESS TDK

JESS
TDK

Figure 13: Comparison of the two methods

 30

3.1.1 Condition 1
Figure 14 shows the runtime evaluation of the model tracing algorithm in TDK:

TDK

0

10

20

30

40

50

60

4 5 6 7 8 9

Depth of Goal Node

T
im

e
(s

ec
)

BF-1 BF-2 BF-3 BF-4 BF-5 BF-6

BF-2

BF-1

BF-3BF-4

BF-5

BF-6

Figure 14: Model tracing algorithm using TDK

The x-axis starts at depth 4, because the base rule sets required 4 productions to be

chained together. “BF” stands for branching factor. In figure 8 we see the highest point is

labeled with “BF-5” and represents when the experiment was run with a branching factor

of 5, and a depth of 6, it took 50.235 seconds (or 50235 milliseconds). If we follow the

line from that point down and to the left we see that when the depth was 5, it took about

12 seconds (12.784 seconds). The run time of the model-tracing algorithm using TDK

increases with increase in branching factor and depth of the goal node.

3.1.2 Condition 2
Figure 15 shows the run time evaluation of model tracing algorithm using JESS

 31

JESS Forward Chaining

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10

Depth of Goal Node

T
im

e
(s

ec
)

BF - 1 BF - 2 BF - 3 BF - 4 BF - 5 BF - 6

BF-1

BF-2

BF-3

BF-4

BF-5

BF-6

Figure 15: Model tracing algorithm using JESS

The run time of the model-tracing algorithm, increases exponentially as the branching

factor and depth of the goal node increases. Hence this implementation is useful in cases

where the branching factor and chain length are not large.

The model-tracing algorithm using forward chaining in JESS did well enough for

most purposes, but if you wanted something very complicated you would get a faster

response from TDK.

Conclusions

Though the JESS implementation of the Rete pattern matching is slower, it is

probably fast enough for many tutoring purposes that have small branching factors and

small amount of chaining.

 32

3.2 Evaluation Study #2

Empirical study of the kind of programming errors made when implementing

cognitive tutors.

3.2.1 Subjects
The CTAT tools were used by 12 computer science graduate and undergraduate

students in the Intelligent Tutoring Systems (cs525t) fall 2003 graduate level class

semester for 8 weeks.

3.2.2 Data collection
In order to collect data we instrumented the tools to log all actions of the author like

menu clicks when working with CTAT to build an ITS. All the actions are time stamped.

Each time the rules were evaluated the rules themselves and the result of evaluation was

logged.

3.2.3 Methodology
Unfortunately, we was able to collect very few log files from the subjects since with

every upgrade to the tools for bug fixes, the log files were replaced and also only few

students turned in their log files. We analyzed approximately 200 email messages that

were exchanged between me and the students as they were building their ITS, requesting

help on the problems that they were stuck on. There were few problems with the tools

itself, some of which were fixed during the course.

3.2.4 Results
Here are the most time consuming problems that students encountered while building

an ITS.

 33

1. Problem description

Rules do not trace the student action because the selection, action, input is

specified incorrectly on the RHS of the rule.

How to locate the problem without using CTAT

Check the student action with the production system to see if the rule traces

correctly or not. It is hard to locate the error as no exceptions will be thrown if either,

selection, action or input is specified incorrectly. One way to locate the problem

would be to inspect the working memory after the rule has fired and check for

inconsistencies. Check the selection, action and input slots of the special-tutor-fact

WME to see if they contain the correct values.

How to locate the problem using CTAT

Check the student action with the production system to verify if the rule traces

correctly or not. The cognitive model visualizer displays the all the rule paths that

were tried to trace the student action. The small labels after the rule names indicate

whether the selection, action and input matched or not as shown in Figure 9. If any of

the selection, action or input is either ‘o’ or ‘–‘ then right click on the rule in the

cognitive model visualizer to get a detailed look at the required selection, action and

input vs. the actual selection, action and input produced by the rules as shown in

Figure 10. This helps the author to quickly identify and locate the error (by looking at

the conflict tree) and also to quickly fix the error by looking at the detailed view.

2. Problem description

When the following JESS functions (a) eq, (b) = and (c) eq* are used on the LHS

of the rule and one of the parameters passed to these functions is a literal, then the

 34

rule does not fire even though the parameters passed have the equal values. The

functions given above check whether the parameters passed to it are equal or not. The

exact descriptions of these functions as taken from the JESS manual are given in

Appendix B. A sample LHS of the rule with this problem is given in Table 5.

The hard part about this problem is to locate it. The reason for the rule not firing

is that not only the values of the parameters but also their types should be equal.

Students spent considerable time trying to locate the problem.

How to locate the problem without using CTAT

Try commenting conditions on the LHS of the rule one by one until the rule fires.

At this point the cause of the problem can be attributed to one condition but still the

cause is not known. Looking at the values of the working memory elements

everything looks ok and it seems that the rule should fire. There is no easy way to get

the types of the literals on the LHS of the rules.

(defrule write-borrow
 (problem (interface-elements $? ?table $?))
 ?table <- (table (column $? ?column ?))
 ?column <- (column (cells ?cell $?))
 ?cell <- (cell (value ?borrow-num))
 (test (= ?borrow-num 0))

=>

 …RHS of the rule

)

Table 5: Partial rule for problem 2

How to locate the problem using CTAT

Currently CTAT does not help in locating this problem. The output produced by

WHY-NOT on the rule produces following output as shown in Table 6 which is not

helpful.

 35

LHS of the rule failed to match successfully.
--
Variable Value
--
borrow-num 0
(= ?borrow-num 0) FALSE

--
Literals do not match
Value Found: 0
Value Required: 0

Table 6: Partial output of WHY-NOT for problem 2

But here is a proposed feature to add to CTAT that would help in locating the

problem.

Display the type information of the variables and literals on the LHS of the rule

along with their values in the rule instantiations and mark/highlight those that do not

match. Hence analyzing the rule instantiations would help in locating and correcting

the problem quickly.

3. Problem description

The rule fires but throws a run time exception because non string values are

assigned to the selection and input slots of special-tutor-fact on the RHS of the rules.

The JESS error message is not very helpful and hence this error is hard to fix.

How to locate the problem without using CTAT

Comment actions on the RHS of the rule one by one until no exceptions are

thrown. Once the action causing the problem is found to be the one modifying the

selection, action and input slots of special-tutor-fact, check the type of the values

assigned to selection, action and input slots.

How to locate the problem using CTAT

 36

The CTAT tool displays a more detailed error message at the prompt indicating

that a non string value was assigned to the selection, action or input slot on the RHS

of the rule. But the detailed view of selection, action and input window does not help

in locating this error. Hence a good feature to add would be to display the type

information along with the values in the detailed view of selection, action and input.

4. Problem description

Working memory elements do not reflect the state of the interface. Some subjects

had difficulties understanding how the graphical user interface widgets and working

memory elements were related.

How to locate the problem without using CTAT

Inspect the working memory when the current state is the start state in the

behavior recorder and make sure that the working memory elements corresponding to

the graphical user interface widgets contain the same values. This can be done either

by using the working memory editor or through command line.

How to locate the problem using CTAT

Better documentation of CTAT explaining the relation of the interface widgets

and the working memory. Also better documentation is needed explaining the effects

of modifying the working memory.

5. Problem description

Many subjects had problem understanding the concept of reverse binding in JESS.

For example following is a part of the left hand side of a rule:

?right-column <- (column
 (cells $? ?first-addend ?second-addend ?result))
?first-addend <- (cell
 (value ?num1))

 37

In this case the students thought that binding was occurring in both statements for

variable ?first-addend. In this example reverse binding is used in the second

statement and the already bound variable ?first-addend is used to retrieve a cell fact.

How to locate the problem without using CTAT

Unknown

How to locate the problem using CTAT

Initiate a WHY-NOT on any rule that has reverse binding on the LHS. By looking

at the rule instantiation one might realize that the variable ?first-addend is bound in

the first statement and no binding occurs in the second statement. The variable ?first-

addend has same value in both the statements and that less number of instantiations

are produced for the rule. This might help in understanding the concept.

6. Problem description

Writing rules with overly general LHS. For example in the following rule:

(defrule focus-on-first-column
 (addition
 (problem ?problem))
 ?problem <- (problem
 (subgoals)
 (interface-elements $? ?table $?))
 ?table <- (table
 (columns $? $? ?right-column))
 ?right-column <- (column
 (cells $? $? ?first-addend ?second-addend ?result $?))

The consecutive $? in the patterns do not add any value to the condition on the LHS

but increase the number of partial instantiations for that rule which makes the CTAT

tools to go out of memory.

How to locate the problem without using CTAT

 38

 Unknown

How to locate the problem using CTAT

The CTAT do not help in locating this problem. However a proposed feature to

help locate this problem would be to add a pattern search procedure in the production

rule editor that would detect such patterns at the evaluation times and report back to

the user.

7. Problem description

When a student action is traced the model tracing algorithm enters an infinite loop

due to certain rule chaining to itself. Extra conditions can be added on the LHS to

prevent self chaining of the rule.

How to locate the problem without using CTAT

Looking at the sequence in which the rules are explored by the model tracing

algorithm one can identify the rule that is self chaining and causing the model tracing

algorithm to enter an infinite loop. How ever to locate the exact cause of this on the

LHS of the rule comment the conditions on the LHS of the rule one by one until the

rule stops chaining to it.

How to locate the problem using CTAT

To locate this problem using CTAT break points can be used. Set the breakpoint

on the rule firing infinitely. Hence when the rule fires for the first time, the breakpoint

will be reached and the model tracing algorithm stops. At this point, inspect the

working memory to try to figure out the exact problem.

 39

3.3 Evaluation Study #3

Empirical study of the kind of programming errors made while implementing

cognitive tutors.

The CTAT were used at the 3rd Circle Summer School held at the Carnegie

Mellon University from June 17, 2003 to June 21, 2003 (Circle, 2003) and also at the 4th

Circle Summer School (Circle, 2004) held at the Carnegie Mellon University from June

28, 2004 to July 2, 2004.

3.3.1 Subjects
Participants at the 3rd Circle Summer School were divided in to 12 groups and at the

4th Circle Summer School were divided in to 9 groups. Participants of both Summer

Schools were researchers comprising of PhD students and Professors from different

universities within and outside of USA. Each group was allowed to choose the domain of

their interest.

3.3.2 Data collection
In order to collect data we instrumented the tools so that it logged all actions of the

authors as they were working with CTAT. All the actions were time stamped. Also the

working memory state and the production rules in the system at each evaluation were

recorded and time stamped.

3.3.3 Methodology
 The log files for each group produced by CTAT were collected at the end of the

summer school. We analyzed the log files to answer following questions:

A. Were the JESS tools more productive than the TDK counter part?

B. Which activity in building an ITS is the most time consuming?

 40

C. What are the most common errors made when implementing a cognitive model?

3.3.4 Results
The CTAT used during the 3rd Summer School had TDK as the underlying

production system and the CTAT used during the 4th Summer School had JESS as the

underlying production system. The subjects used the tools for approximately same

amount of time during both Summer Schools. Table 7 below gives the number of rules

written by each group during the two Summer Schools.

Table 7: Number of rules written by each group in the 3rd and 4th Circle Summer Schools

 3rd Summer School Prod
Rules

1 Radio Intercept Officer
Training

6

2 C programming 3
3 Medicine 2
4 Complex number 11
5 Angle Bisector 6
6 Letter sequence patterns 10
7 Transportation problems 3
8 Triangle Congruence Prover 14
9 Momentum 7
10 E-Circuits 3
11 Reading 3
12 Java Programming 0

 Average 5.7

 4th Summer School Prod Rules

1 Calculus 7
2 False Logic 11
3 Fraction 4
4 German 5
5 Java 35
6 Logo 19
7 Physics 13
8 Population Genetics 22
9 Sentence Completion 6

 Average 13.6

 We did an unpaired t-test for the number of rules written using the two versions of

the tools and found the difference statically significant (p=.025). Hence we conclude that

the JESS tools were far more productive. This might be due to the fact that JESS is better

documented.

Distribution of time spent while implementing an ITS

 41

 Activity Time spent Percentage

1 Building interface 2:00:00 10.64%
2 Demonstrating problem 0:58:00 5.14%
3 Implementing cognitive model 15:49:39 84.22%

Table 8: Distribution of time spent while implementing an ITS

Table 8 shows that implementing a cognitive model is the most time consuming (84%)

activity of the three activities involved in implementing ITS.

Distribution of the time spent implementing a cognitive model

The graphs below (Figure 16 and Figure 17) give a detailed analysis of time spent

during activity 3 of Table 8.

Cumulative time spent writing a rule vs. Debugging a rule for
group1

0:00:00

0:28:48

0:57:36

1:26:24

1:55:12

2:24:00

2:52:48

1 3 5 7 9 11 13 15 17 19 21
Rule #

S
um

 o
f a

ll
th

e
tim

e
be

tw
ee

n
fir

st
 e

va
lu

at
io

n
an

d
la

st
 e

va
lu

at
io

n

Debugging rule

Writing rule

Figure 16: Cumulative time spent writing a rule vs. debugging a rule for group 1

 42

Cumulative time spent writing a rule vs. Debugging a rule for
group 2

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

1 3 5 7 9 11 13 15 17

Rule #

S
um

 o
f a

ll
th

e
tim

e
be

tw
ee

n
th

e
fir

st
 e

va
lu

at
io

n
an

d
la

st

ev
al

ua
tio

n

Debugging rule

Writing rule

Figure 17: Cumulative time spent writing a rule vs. debugging a rule for group 2

The graphs above (Figure 16 and Figure 17) show the amount of time spent writing a

rule vs. the time spent debugging a rule. The time spent till the first evaluation of the rule

is considered as the time taken to write a rule and time since the first evaluation until a

new rule is added is considered as the debugging time for that rule. It is true that during

the debugging time for a rule the author might be making changes to other rules as well

so as to make the current rule working. According to the graphs above (Figure 16 and

Figure 17) almost 70% of the total time is spent in debugging, which confirms the results

of the recent study conducted by NIST.

Following is the graph of the time spent between evaluations vs. Code written for

group 1

 43

Time spent between evaluations vs. Code written for group 1

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

-400 -200 0 200 400 600 800 1000 1200 1400 1600

Code written (Change in # of characters written between evaluation)

D
el

ta
 in

 ti
m

e
A

B

C

D

E

Writing new rulesHard to debug

Easy to
debug Copy & Paste new rules

Figure 18: Time Spent between evaluations vs. Code written for group 1

Table 9 below gives a brief summary of the activities at few evaluation points in the

graph.

Evaluation
Point

Time # of characters
added

Activity description

A 00:51:05 1386 Two new rules were added to the rule set
B 00:01:54 -295 Commenting out few conditions from the

LHS of a rule. The author was trying to
modify the rule after copy & paste.

C 00:10:54 1310 Copy and paste two new rules
D 00:25:48 393 Writing the first rule of the rule set
E 00:14:00 -236 Commenting out part of the rule so as to

isolate the error and also changing the types
of the literals in the rule to STRING by
enclosing the literals within quotes.

Table 9: Description of the activities at evaluation points

Subjects were found commenting the conditions on the LHS of a rule, one by one

until they got the rule to fire. According to Heffernan N. T., this technique of debugging

 44

the production rules is very effective and used by expert programmers in rule based

systems.

The graph in Figure 18 is divided in to four regions labeled as follows. The numbers

for defining the different regions were guessed and later on verified by the analysis of the

log files.

(a) Hard to debug – This region encompasses those points on the graph for which

authors have spent more time (> 10 minutes) between evaluations but have added

or deleted less number (< 100) of characters. As verified from the log files, these

points correspond indicate authors debugging difficult errors.

(b) Easy to debug – This region encompasses those points on the graph for which the

authors have spent less time (< 10 minutes) between evaluations and have added

or deleted less number (< 100) of characters.

(c) Writing new rules – This region encompasses those points on the graph for which

the authors have spent more time (> 10 minutes) and added more (> 100)

characters in the rules. As verified from the log files, new rules were added at

these points.

(d) Copy & Paste new rules – This region encompasses those points on the graph for

which the author spent less time (< 10 minutes) and added large number of

characters (> 100) to the production rules. As verified later. As verified from the

log files new rules were added at these points.

The focus of our analysis was the Hard to debug region. The log files were analyzed with

an attempt to find and categorize the errors that the authors were trying to debug. A

 45

similar kind of analysis was done for one more group. Figure 19 is the graph for the

second group.

Time spent between evaluations vs. Code written for group
2

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

-500 -100 300 700 1100 1500 1900 2300

Code written (Change in the # of characters written between evaluations)

D
el

ta
 in

 T
im

e

Hard to debug

Easy to
debug

Writing new rules

Copy & Paste new rules

Figure 19: Time spent between evaluations vs. Code written for group 2

Table 10 given below categorizes the more time consuming hard to debug or

common errors found from the two groups.

 46

Error category

Error description

Time
spent in

debugging
this error

Time
spent in

writing the
rule

of char
in the rule

0:20:54 0:13:07 555

00:7:55 0:07:22 673

Syntax of the
language

Error with data Type in JESS -
and how jess does the automatic

type conversion

2:28:28 0:13:16 681
Need to update the Working

memory elements corresponding
to the GUI widgets on the RHS of

the rule

0:06:43 0:08:44 407

Concept of
model-tracing

Understanding how model tracing
works. What should be the state

of the working memory before the
rule fires and what should be on
the RHS. Subject was thinking

that the students input is already
in the WM on the LHS of the rule

1:05:41 0:25:48 393

0:09:08 0:07:22 673

0:04:41 0:51:05 1386
Incorrect selection, input

0:03:07 0:13:41 822

0:03:04 0:13:41 822

Selection,
action, input

errors

Non String Input
 0:17:46 0:13:28 527

Table 10: Categorizing errors found from analysis

 47

4 Implementation
The authoring tools have been implemented in Java using the JESS rule engine.

We have reused the code developed at Carnegie Mellon University for the Behavior

recorder and the Dormin communication protocol between the user interface and the

production system. Dormin is a proprietary message passing protocol developed at CMU.

Cognitive Model Visualizer

The cognitive model visualizer is populated with rule nodes as the model tracing

algorithm is searching for student’s selection, action and input. When a WHY-NOT is

initiated on a rule a list of conditions and variables on the LHS of the rule is extracted,

using the JESS API. Then for each condition on the LHS, all the WME’s are retrieved

from the working memory. Using each WME the variables are instantiated. The variables

are then evaluated against the tests. If the test succeeds then the next condition from the

LHS is processed, else if the test fails then the variables are instantiated using the next

WME from the list. This way all possible partial instantiations for a rule are generated

and sorted according to the number of conditions matched on the LHS of a rule. Partial

instantiations with maximum number of conditions matched on the LHS are displayed

first.

Model Tracing Algorithm

Model tracing algorithm that is central to the problem solving tutors has been

implemented in Java and integrated with JESS. Detailed description of the algorithm is

given in section 2.5.1 In order to implement the pseudo-code given in section 2.5.1, the

jess.Rete.java class that implements the Rete engine was sub-classed and a method to fire

a given rule was added. This was required to back track to a previous node during model

 48

tracing if incorrect selection, action or input was produced or no more rules could be

fired at any time.

 49

5 Limitations

• The Cognitive Model Visualizer does not support all JESS functions. The WHY-

NOT output can not be generated for nested conditions.

• The set of widgets used for building the graphical user interface for the tutor is

limited to very basic widgets.

• The CTAT lacks support for including multimedia content in the tutors.

• The analysis of evaluation study 3 is based on the data for two groups.

• The CTAT still has bugs and lot of work needs to be done to make them bug free.

 50

6 Conclusions and Future Work

This thesis makes a contribution by implementing the CTAT and using them in two

user studies to find and categorize the time consuming errors made while implementing a

cognitive model. The performance of model tracing algorithm in JESS is evaluated and

found to be adequate for most purposes.

The initial version of CTAT has been implemented but much work needs to be done

to improve the debugging tool. Add the proposed features to the Cognitive Model

Visualizer to further reduce the debugging time. Better documentation is needed for the

tool’s features so that the users will be aware of the features and can use them. A study to

verify whether the new features added to the debugging tool reduces the amount of time

required to build an ITS should be done.

 51

7 Appendix A

7.1 JESS rules for multi-column addition tutor

;; FOCUS-ON-FIRST-COLUMN
;; IF
;; The goal is to do an addition problem
;; And there is no pending subgoal(we've just st arted the problem)
;; And C is the rightmost column of the table
;; THEN
;; Set a subgoal to process column C

(defrule focus-on-first-column
 ?problem <- (problem
 (subgoals)
 (interface-elements $? ?table $?))
 ?table <- (table
 (columns $? ?right-column))
 ?right-column <- (column
 (cells $? ?first-addend ?second-addend ?result))
 ?first-addend <- (cell
 (value ?num1))
 ?second-addend <- (cell
 (value ?num2))
 ?result <- (cell
 (value nil))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (bind ?current-sub-goal (assert (process-column-go al
 (column ?right-column)
 (first-addend ?num1)
 (second-addend ?num2))))
 (modify ?problem
 (subgoals ?current-sub-goal))
 (modify ?special-tutor-fact
 (hint-message (construct-message [Start with the column
 on the right. This is the ones column])))
)

;; FOCUS-ON-NEXT-COLUMN
;; IF
;; The goal is to do an addition problem
;; And there is no pending subgoal
;; And C is the rightmost column with numbers to add and no result
;; THEN
;; Set a subgoal to process column C

(defrule focus-on-next-column
 ?problem <- (problem
 (subgoals)
 (interface-elements $? ?table $?))
 ?table <- (table

 52

 (columns $? ?next-column ?previous-column $?))
 ?previous-column <- (column
 (cells $? ?previous-result))
 ?previous-result <- (cell
 (value ?val&:(neq ?val nil)))
 ?next-column <- (column
 (name ?col-name)
 (cells ?carry ?first-addend ?second-addend ?resul t)
 (position ?pos))
 ?result <- (cell
 (value nil))
 ?carry <- (cell
 (value ?num0))
 ?first-addend <- (cell
 (value ?num1))
 ?second-addend <- (cell
 (value ?num2))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
(bind ?current-sub-goal (assert (process-column-goa l
 (column ?next-column)
 (carry ?num0)
 (first-addend ?num1)
 (second-addend ?num2))))
(modify ?problem
 (subgoals ?current-sub-goal))
(modify ?special-tutor-fact
 (hint-message (construct-message [Move on to the ? pos column
 from the right.This is the ?col-name
 column.])))
)

;; ADD-ADDENDS
;; IF
;; There is a goal to process column C
;; THEN
;; Set Sum to the sum of the addends in column C
;; And set a subgoal to write Sum as the result in column C
;; And remove the goal to process column C

(defrule add-addends
 ?problem <- (problem
 (subgoals $?sg1 ?subgoals $?sg2))
 ?subgoals <- (process-column-goal
 (carry ?carry)
 (first-addend ?num1&:(neq ?num1 nil))
 (second-addend ?num2&:(neq ?num2 nil))
 (column ?column)
 (sum nil))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (bind ?sum (+ ?num1 ?num2))
 (modify ?subgoals
 (sum ?sum))
 (modify ?special-tutor-fact
 (hint-message (construct-message [You need to add the
 two digits in this column. Adding ?num1 and ?num 2

 53

 gives ?sum .])))
)

;; ADD-CARRY
;; IF
;; There is a goal to write Sum as the result in column C
;; And there is a carry into column C
;; And the carry has not been added to Sum
;; THEN
;; Change the goal to write Sum+1 as the result
;; And mark the carry as added

(defrule add-carry
 ?problem <- (problem
 (subgoals $? ?subgoal $?))
 ?subgoal <- (process-column-goal
 (sum ?sum&:(neq ?sum nil))
 (carry ?num0&:(neq ?num0 nil))
 (first-addend ?num1)
 (second-addend ?num2))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (bind ?new-sum (+ ?sum ?num0))
 (modify ?subgoal
 (sum ?new-sum)
 (carry nil))
 (modify ?special-tutor-fact
 (hint-message (construct-message [There is a carr y in to
 this column so you need to add the value carried
 in. This gives ?sum + 1 equals ?new-sum .])))
)

;; MUST-CARRY
;; IF
;; There is a goal to write Sum as the result in column C
;; And the carry into column C (if any) has been added to Sum
;; And Sum > 9
;; And Next is the column to the left of C
;; THEN
;; Change the goal to write Sum-10 as the result in C
;; Set a subgoal to write 1 as a carry in column Next

(defrule must-carry
 ?problem <- (problem
 (subgoals $? ?subgoal $?))
 ?subgoal <- (process-column-goal
 (sum ?sum&:(neq sum nil))
 (carry nil)
 (column ?column))
 (test (numberp ?sum))
 (test (> ?sum 9))
 ?column <- (column
 (name ?column-name))
 ?problem <- (problem
 (interface-elements $? ?table $?)
 (subgoals $?subgoals))

 54

 ?table <- (table
 (columns $? ?next-column ?column $?))
 ?next-column <- (column
 (position ?next-pos))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (bind ?new-sum (- ?sum 10))
 (modify ?subgoal
 (sum ?new-sum))
 (bind ?write-carry-goal (assert (write-carry-goal
 (column ?next-column)
 (carry 1))))
 (modify ?problem
 (subgoals ?write-carry-goal ?subgoals))
 (modify ?special-tutor-fact
 (hint-message (construct-message [The sum that yo u have
?sum
 is greater than 9. So you need to carry 10 of th e
 ?sum to the ?next-pos column. And you need to wr ite
 the rest of the sum at the bottom of the ?column -name
 column.])))
)

;; WRITE-SUM
;; IF
;; There is a goal to write Sum as the result in column C
;; And Sum < 10
;; And the carry into column C (if any) has been added
;; THEN
;; Write Sum as the result in column C
;; And remove the goal

(defrule write-sum
 ?problem <- (problem
 (subgoals $?sg1 ?subgoal $?sg2))
 ?subgoal <- (process-column-goal
 (sum ?sum&:(neq ?sum nil))
 (column ?column)
 (carry nil))
 (test (< ?sum 10))
 ?column <- (column
 (position ?pos)
 (cells $? ?result))
 ?result <- (cell
 (name ?cell-name))
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (modify ?result
 (value ?sum))
 (modify ?problem
 (subgoals $?sg1 $?sg2))
 (retract ?subgoal)
 (modify ?special-tutor-fact
 (selection ?cell-name)
 (action "UpdateTable")
 (input ?sum)
 (hint-message (construct-message [Write sum ?sum at the

 55

 bottom of the ?pos column.])))
)

;; WRITE-CARRY
;; IF
;; There is a goal to write a carry in column C
;; And there is no result that has been recorded in the previous
column
;; And sum has been calculated in previous colum n P
;; THEN
;; Write the carry in column C
;; And remove the goal

(defrule write-carry
 ?problem <- (problem
 (subgoals $?sg1 ?subgoal $?sg2)
 (interface-elements $? ?table $?))
 ?subgoal <- (write-carry-goal
 (carry ?num)
 (column ?column))
 ?column <- (column
 (position ?pos)
 (cells ?carry $?))
 ?carry <- (cell
 (name ?cell-name)
 (value nil))
 ?table <- (table
 (columns $? ?column ?previous-column $?))
 ?previous-column <- (column
 (position ?pos-previous)
 (cells $? ?sum))
 ?sum <- (cell
 (value ?val&:(neq ?val nil))
)
 ?special-tutor-fact <- (special-tutor-fact-correct)
=>
 (modify ?carry
 (value ?num))
 (modify ?problem
 (subgoals ?sg1 ?sg2)) ; the remaining subgoals
 (modify ?special-tutor-fact
 (selection ?cell-name)
 (action "UpdateTable")
 (input ?num)
 (hint-message (construct-message [You need to com plete
 the work on the ?pos-previous column.]
 [Write carry from the ?pos-previous
 to the next column.]
 [Write ?num at the top of the ?pos column
 from the right.])))
 (retract ?subgoal)
)

;; BUGGY-FOCUS-ON-FIRST-COLUMN
;; IF
;; The goal is to do an addition problem
;; And there is no pending subgoal (i.e., we've just started the

 56

problem)
;; And C is a column of the table but NOT the ri ghtmost column
;; THEN
;; Set a subgoal to process column C
;; Set an error message "Start with the column a ll the way to the
right, the ones column. You've started in another column.

(defrule BUGGY-focus-on-first-column
 ?problem <- (problem
 (subgoals)
 (interface-elements $? ?table $?))
 ?table <- (table
 (columns $? ?right-column $? ?))
 ?right-column <- (column
 (cells $? ?first-addend ?second-addend ?result))
 ?first-addend <- (cell
 (value ?num1))
 ?second-addend <- (cell
 (value ?num2))
 ?result <- (cell
 (name ?cell-name)
 (value nil))
 ?special-tutor-fact <- (special-tutor-fact-buggy)
=>
 (bind ?current-sub-goal (assert (process-column-go al
 (column ?right-column)
 (first-addend ?num1)
 (second-addend ?num2))))
 (modify ?problem
 (subgoals ?current-sub-goal))
 (modify ?special-tutor-fact
 (buggy-message (construct-message [Start with the column
all the way to the
 right, the ones column. You've started in
another column.])))
)

 57

8 Appendix B

8.1 Description of JESS functions

8.49. (eq <expression> <expression>+)
Arguments:

Two or more arbitrary arguments
Returns:

Boolean
Description:

Returns TRUE if the first argument is equal in type and value to all subsequent
arguments. For strings, this means identical contents. Uses the Java
Object.equals() function, so can be redefined for external types. Note that the
integer 2 and the floating-point number 2.0 are not eq, but they are eq* and =.

8.50. (eq* <expression> <expression>+)
Arguments:

Two or more arbitrary arguments
Returns:

Boolean
Description:

Returns TRUE if the first argument is equivalent to all the others. Uses numeric
equality for numeric types, unlike eq. Note that the integer 2 and the floating-
point number 2.0 are not eq, but they are eq* and =.

8.9. (= <numeric-expression> <numeric-expression>+)
Arguments:

Two or more numeric expressions
Returns:

Boolean
Description:

Returns TRUE if the value of the first argument is equal in value to all subsequent
arguments; otherwise, returns FALSE. The integer 2 and the float 2.0 are =, but not
eq.

 58

9 References

Anderson, J.R., & Pelletier, R. (1991). A development system for model-tracing tutors. In

Proceedings of the International Conference of the Learning Sciences, 1-8

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Erlbaum.

Anderson, J.R., Corbett, A.T. Koedinger, K.R. & Pelletier, R. (1995). Cognitive tutors:

Lessons learned. The Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive

modeling and intelligent tutoring. Artificial Intelligence, 42, 7-49.

Anderson, J. & Skwarecki, E. (1986). The Automated Tutoring of the Introductory

Computer Programming - Communications of the ACM, Vol. 29 No. 9. pp. 842-849.

Bloom, B. S. (1984). The 2 sigma problem: the search for methods of group instruction

as effective as one on one tutoring. Educational Researcher, 13, 4-16.

Cerri, Gouarderes, Paraguacu (2002). Proceedings of Intelligent Tutoring Systems: ITS

2002, Springer-Verlag Lecture Notes in Computer Science (LNCS 2363).

Choksey S. D., & Heffernan N. T. (2003). An Evaluation of the Run-Time Performance

of the Model-Tracing Algorithm of Two Different Production Systems: JESS and TDK.

Worcester Polytechnic Institute technical report, WPI-CS-TR-03-31.

Circle, 2003. 3rd Circle Summer School,

http://www.pitt.edu/~circle/SummerSchool/Announcement2003.html

 59

Circle, 2004. 4th Circle Summer School,

http://ctat.pact.cs.cmu.edu/help/AuthoringTools/Documentation/User%20Documentation

/summerschool04.html

Corbett, A.T. & Anderson, J.R. (1995). Knowledge tracing: Modeling the acquisition of

procedural knowledge. User modeling and user-adapted interaction, 4, 253-278.

Csizmadia, V. (2003). Constructing an Authoring Tool for Intelligent Tutoring Systems

with Hierarchical Domain Models, M.S Thesis, WPI (etd-1222103-161814)

Ericsson, A., Simon, H., (1984), Protocol Analysis: Verbal Reports as Data

Ernest Friedman-Hill. (2003). JESS in Action Java Rule-based Systems Manning

Publications Co.

Forgy, C. L., 1982, Rete: A fast Algorithm for the Many Pattern/Many Object Pattern

Matching Problem, Artificial Intelligence 19:17-37.

Giarratano, J. & Riley, G. (1998). Expert System: Principles and Programming. 3rd

Edition. Boston: PWS Publishing.

Ko, A. J. and Myers, B. A. (2004). Designing the Whyline: A Debugging Interface for

Asking Questions About Program Failures. To appear at CHI 2004 in Vienna, Austria.

Koedinger, K. R. & Anderson, J. R. (1993a). Effective use of intelligent software in high

school math classrooms. In Proceedings of the World Conference on Artificial

Intelligence in Education, 1993. Charlottesville, VA: AACE

 60

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent

tutoring goes to school in the big city. International Journal of Artificial Intelligence in

Education, 8, 30-43.

Koedinger, K. R., Aleven, V., & Heffernan, N. T. (2003), Toward a Rapid Development

Environment for Cognitive Tutors. 12th Annual Conference on Behavior Representation

in Modeling and Simulation, Simulation Interoperability Standards Organization.

Munro, A., Johnson, M.C., Q. A., Surmon, D. S., Towne, D. M, & Wogulis, J. L. (1997).

Authoring Simulation centered tutors with RIDES. International Journal of Artificial

Intelligence in Education. Vol. 8, No. 3-4, pp. 284-316

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the

art. International Journal of Artificial Intelligence in Education, 10, pp. 98-129.

Murray, Ainsworth, & Blessing (eds.) (2003). Authoring Tools for Advanced Technology

Learning Environments. Kluwer Academic Publishers. Printed in the Netherland, pp: 93-

119

Newell, A., & Simon, H., (1972). Human Problem Solving, Englewood Cliffs, NJ:

Prentice Hall.

Pelletier, Ray (1993). The TDK Production Rule System. Master Thesis, Carnegie Mellon

University.

	Worcester Polytechnic Institute
	Digital WPI
	2004-08-25

	Developing an Affordable Authoring Tool For Intelligent Tutoring Systems
	Sanket Dinesh Choksey
	Repository Citation

	Microsoft Word - report.doc

