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Abstract 
 

Zinc is the second most abundant transition metal in biological systems. This cation is required 

for the catalytic activity of hundreds of enzymes which mediate protein synthesis, DNA replication and 

cell division.  Despite the central importance of zinc in cellular homeostasis, the mechanism of zinc 

uptake, compartmentalization and efflux is unknown.  Recently, a family of proteins, called ZIP, has been 

shown to control zinc uptake. Mutations in one of the genes coding for these proteins (ZIP4) can lead to 

potentially life-threatening diseases like Acrodermatitis Enteropathica and high levels of ZIP4 have been 

detected in patients suffering from pancreatic cancer. Therefore our goal is to investigate the 

mechanism of ZIP4 transport and regulation.  

It was previously shown that the intracellular loop between transmembrane III and IV (M3M4) 

of ZIP4 is ubiquitinated in the presence of high intracellular zinc which lead to protein degradation. Our 

initial hypothesis was that the large intracellular domain of ZIP4 (M3M4) is a sensor which detects the 

intracellular concentration of zinc and regulates the surface expression of ZIP4.  In order to test this 

hypothesis we expressed and purified the M3M4 domain to examine the ability of M3M4 to bind zinc.  

Our results have demonstrated that M3M4 binds zinc with a 2:1 zinc:protein stoichiometry with 

nanomolar affinity. We have also shown that upon binding of zinc, M3M4 undergoes a large 

conformational change.  
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1. Introduction 

Zinc is the second most abundant transition metal found in biological systems1. Zinc plays a 

crucial role in many biological pathways. It is involved in growth and development, immune function, 

lipid metabolism, and neurological development1,2,3,4. ZIP proteins are a family of zinc transporters that 

are responsible for the influx of zinc uptake and cytosolic zinc release. Dependent on the functional role 

of ZIP transporters, some ZIP proteins are ubiquitously expressed and others are tissues-specific. ZIP 

transporters play a crucial role in maintaining zinc homeostasis. For example, mutations in the ZIP4 

transporter result in the genetic disorder acrodermatitis enteropathica (AE). This disease is characterized 

by the cell’s inability to uptake zinc5,6. AE can lead to death if left untreated, though a zinc supplement 

can reverse this disorder5,6. ZIP4 also play a role in pancreatic cancer as it was recently shown that ZIP4 

was overexpressed in patients with pancreatic cancer7. In mice, mZIP4 is essential for embryonic 

development stages. Mutations in the mZIP4 gene can lead to a more severe consequence.  Complete 

loss of mZIP4 functions in mice could lead to embryonic lethality5.  

Although many zinc transporters that influx and efflux zinc have been identified, the exact 

mechanism of zinc is transport is still unclear. Therefore, the study of how zinc is transported in and out 

of the cells is of great importance. The overall goal of this project is to investigate the mechanism in 

which ZIP4 is regulated. The intracellular loop between transmembrane 3 and transmembrane 4 

(M3M4) has been shown to be the site for ubiquitination in response to elevated intracellular zinc level8. 

In addition, there is a lysine residue (K463) that is highly conserved among ZIP family protein. Lysine has 

been known as the site for ubiquination9. Our initial hypothesis is that the M3M4 domain binds zinc 

which induces a conformational change to expose the lysine residue for ubiquitination. In order to test 

this hypothesis we expressed and purified the M3M4 domain and examined the ability of M3M4 to bind 

zinc.  

1.1 The importance of zinc 
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Zinc is an essential element that is involved in many biochemical processes. Zinc is most 

concentrated in the prostate and part of the eyes but is also found in the brain, muscle, bones, kidney, 

and liver1. Zinc is required for the catalytic activity of more than 300 enzymes. For example, the zinc 

finger, found in hundreds of proteins, is a sequence specific motif that chelates at least one zinc ion and 

has been found in proteins involved in many aspects of gene regulation in eukaryotes10.  Zinc also plays 

an important role in protein synthesis, immune function, wound healing, DNA synthesis, RNA 

transcription, and cell division2. Over one billion people in developing countries are suffering from zinc 

deficiency. The symptoms for zinc deficiency include severe anemia, growth retardation, hypogonadism, 

skin abnormalities, geophadia and mental lethargy11. The first reported study of the importance of zinc 

in humans was in 1961 when Prasad describe symptoms of men in Iran suffering from zinc deficiency 11.  

The most common factor that leads to zinc deficiency is dietary uptake but hereditary defects 

can also lead to zinc deficiency.  Acrodermatitis enteropathica (AE) is the most well-known hereditary 

disease caused by zinc deficiency in humans. AE can lead to death if left untreated12.  AE is caused by 

mutations in a gene that encodes for the ZIP4 protein13,14,15. ZIP4 influxes zinc into the cells in 

enterocytes and pancreatic cells which are the main site for zinc absorption16,5,17. Mutations in ZIP4 lead 

to the malfunction of the protein. This results in a reduced level of total zinc concentration in cells 7, 13, 14.  

Zinc also has an adverse effect in many aspects of innate and adaptive immunity. Zinc deficiency 

can lead to thymic atrophy, alteration in thymic hormones, lymphopenia, and compromising of cellular 

and antibody-mediated responses1, 3, 4. In adaptive immunity, zinc deficiency can cause the decline of T-

cell function. Zinc is required as a cofactor for proper function of thymulin, a hormone that is essential 

for the proliferation and proper function of T-cells, and in zinc deficient mice, the number of active 

thymulin is decreased which decreases the number of circulating T-cells1. In innate immunity, zinc 

deficiency reduces natural killer (NK) cell lytic activity whereas zinc supplementation improves NK cells 

function1. 
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In the brain, zinc is found at many glutamatergic nerve terminals and is crucial for brain 

function.  It was recently shown that presynaptic release of zinc causes amyloid formation in Alzheimer 

disease (AD) mouse model18. Studies have shown that AD mouse with ZnT3 (a zinc exporter) knockout 

enhances the formation of soluble amyloid-β18.    

1.2 Zinc regulations 

Zinc can be toxic if the concentration is too high. Numerous studies have shown that one of the 

key factors that induced neuronal cell deaths is the rise of cellular free zinc that is release from 

permeation of synaptic zinc or release of zinc from intracellular vesicles in neurons17. Therefore proper 

regulation machinery for zinc is required to keep zinc at physiological level.  The primary site for the 

mechanisms of zinc homeostasis is in the gastrointestinal tracts19, 20. This is where zinc is absorbed and 

excreted. Tissue and cellular redistribution also play a role in maintaining zinc at physiological level 20. 

Zinc homeostasis is coordinated through regulation of specific proteins involved in the uptake, efflux, 

and intracellular compartmentalization. The exact mechanisms of how zinc is regulated and coordinated 

are unknown. However, zinc homeostasis appears to be coordinated through metallothioneins, 

transmembrane transporters, and cation diffusion facilitators (Figure 1)19, 21, 22. 

 Metallothioneins (MTs) are intracellular, low molecular metal-binding proteins that are rich in 

cysteine21. They have a high affinity for metals; predominantly zinc, copper, or cadmium21. Mammalian 

MTs are single-chain polypeptides that have highly conserved cysteine residues and each MT molecule 

can incorporate up to 7 divalent cations and 12 monovalent copper atoms19, 21. Expression of MTs is 

ubiquitous but most MTs are concentrated in the liver, kidney, and pancreas. The primary role of MTs 

has not yet been identified but studies have shown that they might play a role in regulation of 

absorbance and secretion of zinc in the intestines19. In zinc-depleted animals, MTs enhances its zinc 

binding capability indicating a possible role in keeping a basal level of intracellular zinc when zinc is 



10 
 

depleted 21, 23. MTs act both as a zinc reservoir protein in zinc-replete conditions and zinc buffering 

protein in zinc-deplete conditions24.   

The cellular zinc concentration is also regulated by transporter. There are two major families of 

zinc transporter, the ZnT and ZIP family. The ZnT [solute-linked carrier 39 (SLC30)] family is known to 

efflux zinc across the membrane into vesicles or out of the cells16, 19, 23. The ZIP (Zrt- and Irt-like proteins) 

family is known to mediate zinc influx across the 

membrane into the cytoplasm 23, 25. Both 

members of these families are expressed 

ubiquitously. More will be discussed on zinc 

transporters in the following sections. Recently, 

there is some evidence to support the existence 

of a Na+/Zn2+ exchanger in neurons. The Na+/Zn2+ 

exchanger works with a stoichiometry of 3 Na+ to 

1 Zn2+. This promotes a Zn2+ efflux against a 500-

fold cellular gradient17.  

1.3  Zinc transporters 

Zinc transporters are required for zinc transport. The first identified mammalian zinc transporter 

was ZnT1 in 1995 by Findley and Palmiter26.  The human transporters are designated as SLC30A (ZnT) 

and SLC39A for (ZIP) and the rodent transporters are designated as slc30a and slc39a respectively.  A 

total of twenty-five zinc transporters have been discovered within the last decade, nine of which belong 

to the ZnT family and the other fourteen belong to the ZIP family17, 19, 26. Table 1 gives a summary of the 

properties of most of ZnT and ZIP transporters.  

ZnT family sequences are homologous among human. They vary in sizes; most ZnT transporters 

have six transmembrane domains with the N-terminus and C-terminus in the cytoplasm16,19. 
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Transmembrane domain I, II, and V are amphiphatic and are highly conserved among the family. In 

between transmembrane IV and V, there is a histidine-rich loop that is also conserved among ZnT16, 23. 

ZnT transporters are widespread to different regions of the body and each play a crucial role in zinc 

transport. For example, ZnT-1 has been shown to reduce the toxicity of Zn+2 in rat neurons18. ZnT-1 

expression is dependent on the Zn+2 concentrations through the transcription factor MTF-117, 27. The 

mechanism of how ZnT-1 is able to maintain a low Zn+2 concentration in the cells is unknown.  

The ZIP family is further divided into four subfamilies according to sequence homology. Most ZIP 

transporters have eight transmembrane domains with both N-terminal and C-terminal in the 

extracellular side or extravesicular16. The most conserved region in the ZIP family is between 

transmembrane domain IV and V16. ZIP transporters increase cytoplasmic [Zn+2] by promoting 

extracellular zinc uptake and vesicular zinc release.  The expression of ZIP transporters are tissue 

specific. However, the mechanism in which ZIP protein transports zinc across the membrane is still 

unclear. It has recently been shown that ZIP expression and activity is dependent on zinc availability8, 28, 

29.  ZIP4 transporter whose mutations caused acrodermatitis enteropathica belongs to the LZT subfamily 

of ZIP family30. 
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 Expression Pattern Distribution Functions and Regulations References 

ZnT-1 
SLC30A1 

Ubiquitous Cellular plasma 
membrane 

Cellular zinc exporter, overexpression increases 
efflux of Zn and lower the zinc intracellular steady 
state. 
Regulated by dietary zinc and tissue specificity 

16,26 

ZnT-2 
SLC30A2 

Small intestine, kidney, 
placenta, pancreas, testis, 
vesicles, and mammary 
gland 

Vesicles, lysosomes Overexpression reduces zinc and reduces cell 
toxicity at high level of zinc. 
May function as zinc storage or down regulation 
absorption.  

31,16, 17 

ZnT-3 
SLC30A3 

Hippocampus, cerebral 
cortex, ependyma of mouse 
spinal cord 

Synaptic vesicle 
membranes 

Knockout results in synaptic Zn+2 deficiencies.  16, 17, 32 

ZnT-4 
SLC30A4 

Mammary gland, brain, 
kidney, human PMC42 cells,  

Intracellular 
vesicles, and trans 
golgi 

934 C->T mutation results in lethal milk syndrome 
in mice.  
Exact functions is still unknown 

16, 17, 33 

ZnT-5 
SLC30A5 

Endocrine pancreas, ovary, 
prostate, and testis 

Apical membrane 
Complex with ZnT-5 

Mediate zinc uptake   
Response to zinc could be mediated by MTF1 

16, 17, 34 

ZnT-6 
SLC30A6 

Liver, brain, and small 
intestine 

Not uniform 
Complex with ZnT-6 

May involve in pathogenesis of Alzheimer’s 
Disease 

17, 25, 35 

ZnT-7 
SLC30A7 

Small  intestine, liver, retina, 
spleen, kidney, and lung 

Golgi Import zinc into vesicles 
Might be regulated by zinc level 

16, 17, 36 

ZnT-8 
SLC30A8 

Pancreas β-cell Insulin secretory 
vesicles 

Overexpression increase glucose-induced 
 
insulin secretion 

17, 37, 38 

ZIP1  
SLC39A1 

Small intestine, pancreas, 
prostate,  visceral yolk, 
THP1 cells 

Plasma membrane, 
intracellular 
vesicles 

Participate in zinc uptake 
Use zinc complexes as substrates 
 

16, 39,25,  
24 
23, 38 
17, 22 
19, 24 
 

ZIP2 
SLC39A2 

liver, spleen, small intestine Plasma membrane Involve in zinc homeostasis, facilitate zinc uptake  
Regulates by HCO3

- 

16, 40 

ZIP3 
SLC39A3 

Bone marrow, mammary 
gland, pancreas, prostate, 
and spleen 

Intracellular 
vesicles 

Mediate  zinc reuptake and cellular retention in 
mammary gland, 

16, 41,25 
24, 40 
23 
 
19, 26 

ZIP4 
SLC39A4 

Jujenum and duodenum Apical membrane Mediate  zinc influx 
Regulates by zinc concentration 
Mutations caused acromatitis enteropathica 

5, 16, 42 

ZIP5 
SLC39A5 

Intestine, pancreas, visceral 
yolk sac  

Basalateral 
membranes when 
zinc is not limited 

During zinc deficiency, ZIP5 remove zinc from the 
blood 
Response to  zinc availability  

16, 42, 43 

ZIP6 
SLC39A6 

Breast, prostate, placenta, 
kidney, pituitary gland, and 
corpus callosum 

Plasma membrane 
lamellipodiae 

 
Expression is stimulated by estrogen 
Associate with breast cancer 

16, 44 

ZIP7 
SLC39A7 

Ubiquitous ER, Golgi  Transport zinc into the cytosol 
Response to zinc availability  

45 

 

 

  

Table 1: Properties of Zinc Transporters 
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1.4 ZIP4 Transporters 

 ZIP4 plays in an important role in maintaining physiological zinc level by influxing zinc into cells 

in the intestine. The ZIP4 (SLC39A4) gene has been mapped to chromosome region 8q24.315. The gene 

(GenBank RefSeq: AK025537) covers about 4.5 kb and is comprised of 12 exons and 11 introns. There 

are two different ZIP4 isoforms; they differ only in their amino and carboxyl termini. The most abundant 

isoform (NM_30849) is 2,192 base pairs long and encodes a 68 kb 647-amino acids protein46. The other 

isoform is the result of alternative splicing which encodes a 626-amino acid protein46. The main 

difference between isoform 1 and isoform 2 is that isoform 1 contains a signal peptide at the N-terminal.  

The ZIP4 gene belongs to a subfamily of ZIP family called LZT family (LIV-1 subfamily of ZIP zinc 

transporter) which is made up of most of the mammalian ZIP protein (ZIP4-8, ZIP10, ZIP 12-14), all of 

which transport zinc ions19, 47. ZIP4 is highly expressed in the kidney, small intestines, stomach, colon, 

jejunum, and duodenum which are the main sites for zinc uptake and reabsorption15, 42, 46. ZIP4 consists 

of eight transmembrane domains with both N-terminal and C-terminal domain in the extracellular side 

of the cell (figure 2). The extracellular N-terminal domain of ZIP4 makes up about 50% of the entire 

sequence. Regions in transmembrane IV and V are the most conserved among transporters in the same 

family13. Transmembrane V contains the highly conserved motif HEXPHEXGD which is similar to the 

catalytic zinc-binding site of metalloproteases suggesting that ZIP4 might have another function45, 47. 

ZIP4 intercellular loop between transmembrane domain III and IV has a histidine-rich motif (436-

CGHSSHSHGGHSH-448) that is very similar to the zinc binding site in metalloproteases and other zinc 

binding proteins2, 8.  

AE is a rare autosomal recessive disorder that was recently been mapped to chromosomal 

region 8q24.3 which encodes for the ZIP4 transporter 13, 15. AE is a result of zinc malabsorption and 

severe zinc deficiency 15. Mutations in ZIP4 prevent zinc from being influxed into enterocytes, which is 

the main site for zinc absorption. AE is characterized by skin lesions, alopecia, failure to thrive, and 
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diarrhea15, 46. The symptoms can appear as early as weaning and symptoms can persist and spontaneous 

remission might occur at young age. AE can be fatal if left untreated; fortunately, AE symptoms can be 

reverse by supplementary zinc13, 15.  

ZIP4 have recently been shown to play an important role in pancreatic cancer. Studies have 

shown that ZIP4 is over expressed in pancreatic cancer cells7. The overexpression of ZIP4 increases the 

proliferation of pancreatic cancer cells and promotes pancreatic tumor growth in mice7. The knock-

down of ZIP4 gene by RNAi decreased the level of pancreatic cancer growth and enhanced the survival 

rate of mice with pancreatic cancer xenografts48.  

 

 Figure 2: ZIP4 transporters 
ZIP4 transporter consists of 8 transmembrane domains and an extracellular N-terminus domain 
that make up 50% of the entire transporter. Both the N-terminus and C-terminus are 
extracellular. ZIP4 have a long loop between transmembrane domain III and IV, this loop 
contains a histidine-rich motif that is found in other transporters. Some mutations on the 
extracellular N-terminus affecting ZIP4 functions are shown.  
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Andrews and co-workers49 mutated the Zip4 gene in mice and showed that homozygous 

offspring embryos die in 10 days. The heterozygous offspring at 10 days of pregnancy shows a range of 

abnormalities. When compared to the wild-type embryos, the heterozygous offspring vary in size and 

morphology, some were smaller and some showed severe growth retardation. Some of the embryos 

even show irregular craniofacial development. These post-implantation death and embryo damages 

suggest that Zip4 expression is restricted to the visceral endoderm cells and visceral yolk sac. 

Unfortunately, the damages that are caused by Zip4 mutation cannot be reversed by supplementing 

excess zinc to the mother 5, 49. 

 The mechanism in which ZIP4 is regulated is still unclear. Studies in mice showed that ZIP4 

transcription level was not regulated by zinc 42 but the expression level of ZIP4 was zinc-dependent. 

Recently, some data have emerged to show how ZIP4 is regulated. ZIP4 surface expression is zinc 

dependent. When the cell is lacking zinc, ZIP4 accumulates at the apical membrane waiting to uptake 

zinc into the cells. When there is a high level of zinc, ZIP4 undergoes endocytosis and is circulating in the 

cytoplasm until it is needed28.  

Another mechanism involves the large extracellular N-terminal domain. The N-terminals domain 

of ZIP4 makes up half the size of the transporter. The N-terminal domain contains a high number of 

cysteines and histidines which suggest that zinc binds here. During prolonged zinc deficiency, a 37 kDa 

protein was detected using western blot as the majority form of ZIP4 instead of a full length 68 kDa 

protein. Data have shown that during prolonged zinc deficiency, the extracellular N-terminal domain 

was truncated and accumulated as a peripheral membrane protein; the other half is recycled back to the 

apical membrane6. After truncation, the N-terminus domain is loosely associated with the peripheral 

membrane whereas the processed ZIP4 peptide remained as an integral membrane protein. The 

processed ZIP4 protein still retained its zinc uptake function when zinc is at normal level. The cleavage is 
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site specific. AE mutation site G340D in ZIP4 significantly diminished the processing of this ZIP4 protein 

followed by C319Y and Q313H mutations6. 

When there is a very high level of zinc (10-20 µM) ZIP4 is subjected to degradation. The 

histidine-rich motif in the loop between transmembrane III and IV (M3M4) plays a crucial role in the 

degradation of ZIP4. In a zinc-depleted environment, ZIP4 is ubiquitinated at the M3M4 region and 

subsequently degraded by the lysosomal and proteosomal pathway. It was suggested that a highly 

conserved lysine (K463) is the site for ubiquitination and the histidine-rich motif (438-HSSHSHGGHSH-448) 

is required for this process to occur8, 28. We hypothesize that this M3M4 domain, in the presence of 

excess zinc, binds zinc and induced a conformational change which expose the conserved lysine for 

ubiquitination. 
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2. Materials and Methods 

2.1 Plasmid construction 

Our initial aim was to express three domains of ZIP4. The first domain is the extracellular N-

terminal with signal sequence (WS) starting at nucleotide 101 to 1081 (protein residues 1 to 327).The 

second region is the extracellular N-terminal domain without signal sequence (NS) starting at nucleotide 

178 to 1081 (protein residues 23 to 327).The third region is the cytoplasmic topological domain between 

transmembrane three and transmembrane four (M3M4), nucleotides 1360 to 1594 (protein residues 

423 to 499).  The SLC39A4 gene plasmid was obtained from Invitrogen and the primers were designed 

according to the SLC39A4 sequence in GenBank (Accession # AK025537). The first plasmid used for 

protein expression in E. coli was pTYB2 (NEB) that has a chitin binding domain tag at the C-terminus. The 

plasmid was under the control of a T7 promoter and has a built-in ampicillin resistance gene.  Primers 

were design for this plasmid with a NheI cut site at the 5’-end and EcoRI cut site at the 3’- end (Table 2). 

The second plasmid was pPR-IBA1 (IBA) with a strep-tag II (WSHPQFEK) at the C-terminus.  PPR-IBA1 

(IBA) is a strong bacteriophage T7 promoter-based expression vector that contains the ampicillin 

resistance gene.  Primers were designed to carry two unique cut sites 5’-KpnI and 3’-NcoI.   

 

ZnForWS pTYB2 5’- AGTCCTGCTAGC CTG GTC TCG CTG GAG CTG GGG- 3’ 

ZnForNS pTYB2 5’ - AGTCCTGCTAGC CCG CCT GCT GGT CTG CTG AGC -3’ 

ZnRev pTYB2 5’ GTCACGGAATTCCATGTGACTGGCTGAGCTGGTCCTG -3 

M3M4For pTYB2 5’ – AGCATGGACCGCGGCTGCCCAGGGACCCGGAGGAC-3’ 

M3M4Rev pTYB2 5’- AGATAAGGCCATGGATAGGGCAGTAGCCTCAACTCAG -3’ 

M3M4 Forward pPR-IBA1 5’AGCATGGAGGTACCCTGCCCAGGG ACCCGGAGGAC-3’ 

M3M4 reverse pPR-IBA1 5’-AGATAAGG CCATGGCCATAGGGCAGTAGCCTCAACTCAG-3’ 

NS Forward pPR-IBA1 5’ - ACGGTCGGA GGTACC TCCCCGCCTGCTGGTCTGCTG  -3’ 

NS Reverse pPR-IBA1 5’ -ACGGTCGGA CCATGGATACCTCTCTGACTGGCTGAGC -3’    

WS Forward pPR-IBA1 5’- ACGGTCGGAGGTACCGCGTCCCTGGTCTCGCTGGAGC-3’ 

WS Reverse pPR-IBA1 5’ -ACGGTCGGA CCATGGATACCTCTCTGACTGGCTGAGC -3’    
 

Table 2: PCR Primers 
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Table 1: Ligation reaction  

The genes for M3M4, NS, and WS were amplified by PCR with the primers in Table 2. PCR was 

performed using Pfu DNA polymerase (Stratagene) and the conditions were as follows: 

Segment Number of cycles Temperature Duration 

1 1 94-98°C 1 minute 

2 25-30 94-98°C 
(Tm-5 °C) = 50 °C 
72 °C 

30 seconds 
30 seconds 
2 minutes 

3 1 72 °C 10 minutes 

 

The PCR products were purified using Macherey-Nagel NucleoSpin Extract II kit and verified by 1% 

agarose gel electrophoresis.  

The restriction enzymes NheI (NEB) and EcoRI (NEB) were used to digest the 5’ and 3’ ends of 

the PCR product and the pTYB2 vector. KpnI (NEB) was used to digest the 5’ end and NcoI (NEB) was 

used to digest the 3’ ends of the PCR product and pPR-IBA1 vector. The digestion reactions were 

incubated for two hours in a 37°C water bath.  After digestion and purification, the digested PCR 

products were inserted into the plasmids with DNA according to table 1.  

 

 

 

The ligation samples were incubated at room temperature for 5 minutes and placed on ice to stop the 

reaction. The ligated reactions were transformed into 50 µl of XL-10 Ultra competent cells (Agilent 

Technology); all transformation procedures were performed according to manufacturer’s 

recommendation.  The transformed cells were plated on LB plates (1% (w/v) tryptone, 0.5% (w/v) yeast 

extract, 1% sodium chloride, and 1.5% (w/v) agar) with 100 ng/µl ampicillin and incubated at 37°C 

5x ligation buffer 2 µl 

Vector (100 ng/µl) 1 µl 

DNA inserts (100 ng/µl) 3 µl 

T4 DNA ligase (Invitrogen)  1 µl 

ddH2O 3 µl 

Total volume 10 µl 
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Figure 3: Schematic of pPR-M3 

vector. M3M4 gene is inserted in 

the MCS of pPR-IBA1 (IBA) with 

Strep-tag fused at the C-terminus 

of the gene.  

overnight. Single colonies from plates were picked from the 

plates and inoculated in 5 ml LB media (1% (w/v) tryptone, 

0.5% (w/v) yeast extract, and 1% (w/v) sodium chloride and 

100 ng/ µl ampicillin) cultures. The cultures grew overnight 

(12-16 hours) on a shaker at 37°C. The cultures were harvested 

and the plasmids were purified using the Machery-Nagel 

Nucleospin Plasmid miniprep kit. The purified plasmids were 

sent out to MGH DNA Sequencing Core for sequencing. 

Successfully ligated plasmids were designated as pTNS, pTWS, 

and pTM3 for genes inserted into pTYB2 plasmids and pRNS, 

pRWS, and pRM3 for genes inserted into pPR-IBA1 plasmid.  

2.2 Expression of proteins with chitin binding protein  

 All three ligated vectors in pTYB2 (pTNS, PTWS, and pTM3) were transformed into the E. coli 

strain BL21 (star) DE3 pLysS 1240 (Invitrogen) for expression. Colonies were picked to inoculate a 5 ml 

start-up LB media  culture containing 100 ng/µl ampicillin, 50 ng/µl spectinomycin, and 34 ng/µl 

chloramphenicol and grew overnight at 37:C. The start-up cultures (1 mL) were used to inoculate a 50 

mL LB media culture containing all three antibiotics. The cultures were allowed to grow to OD 0.6-0.8. 

The cultures were induced with 0.1 mM, 0.2 mM, 1 mM or 2 mM IPTG for 4 hours, 8 hours, or overnight.  

 The cells were harvested by centrifugation at 5000 g at 4°C for 15 minutes. The supernatants 

were discarded and the pellets were resuspended in 2 mL of lysis buffer (50 mM Tris-Cl, pH 8.0, 1 mM 

EDTA, 100 mM NaCl, 1 mM Pefabloc SC) and ultra-sonication (Fisher Scientific Sonic Dismembrator 

Model 100) was applied at power level 3.5 for 3 burst of 30 seconds with 30 seconds of rest on ice in 
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between each burst. Samples were kept on ice at all times during sonication. The samples were spun 

down at 15000 g at 4°C for 15 minutes. Protein samples were loaded on SDS-PAGE.  

2.3 Detection of chitin binding protein by western blotting 

 The proteins were run on SDS-PAGE and transferred to a nitrocellulose membrane via the wet 

method transfer. Briefly, the transfer was run at 100 V for 1 hour in transfer buffer (see below) with 20% 

methanol. The membrane was blotted overnight with Tris buffer saline (TBS) with 1% blotto.  The 

membrane was washed 3 x 10 minutes with TBS-0.5% Tween 20. The membrane was incubated with 

chitin binding protein polyclonal primary antibody (IBA) (1:5000 dilutions) for 1 hour. The membrane 

was washed with TBS-Tween-20 for 3 x 5 minutes and incubated with 10 µl of phosphatase secondary 

antibody. The membrane was developed with 10 ml of phosphatase substrate (NBT/BCIP solutions) 

(KPL).  

2.4  Expression of proteins with strep-tag 

 The pPR-M3 plasmid and pPR-NS were transformed into the E. coli strain BL21 (star) DE3 pLysS 

1240 (Invitrogen) for protein expression. The cells were grown in 1 liter of autoinduction media 50 on a 

shaker at 37°C overnight. The media contains 100 ng/µl ampicillin, 50 ng/µl spectinomycin, and 34 ng/µl 

chloramphenicol.  The cells were harvested by centrifugation at 5000 g at 4°C for 15 minutes. The 

pellets were resuspended in buffer W (10 mM Tris-Cl, pH 8.0, 150 mM NaCl, and 1 mM EDTA). The cells 

were lysed by ultra-sonication on ice at power level 7.5 for 7x 30 seconds with 30 seconds of rest on ice 

in between each burst. Cell debris and proteins were separated by centrifuging at 15000 g at 4°C for 15 

minutes. The supernatant was saved and cell debris was discarded. Protein samples were run on SDS-

PAGE. 

2.5 SDS-Polyacrylamide gel electrophoresis  
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 Protein samples (20 µl) were combined with 4 µl of 6x sample buffer (100 mM Tris, pH 6.8, 2% 

SDS, 5% ß- mercaptoethanol, 15% glycerol, and 0.012% (w/v) bromophenol blue) and incubated at 90°C 

for 5 minutes to denature the proteins. The samples were loaded on the wells of a 12% SDS-

polyacrylamide gel. The gel was run at 35 mA until the loading dye reached the bottom of the gel 

(approximately 2-3 hours).  

 To stain the gel, the stacking gel was removed and discarded; the separate gel was transferred 

into a gel box and 50 ml of Coomassie staining solution (0.025% Coomassie blue G-250, 10% acetic acid, 

90% ddH2O). The gel was stained at room temperature on a shaker for 1 hour. The staining solution was 

poured off and 50 ml of destaining solution (7% glacial acetic acid, 5% methanol in ddH2O) was added. 

The gel was left to destain until bands were visible.  

2.6 Checking for insoluble protein aggregations 

 Proteins were expressed in small (50 mL) cultures (see section 2.4 for details) and the cells were 

harvested by centrifugation at 1000 g for 15 minutes at 4°C. The supernatant were discarded and the 

pellets were weighed. The cells were resuspended in approximately 3 mL of lysis buffer (50 mM Tris-Cl, 

pH 8.0, 1 mM EDTA, 100 mM NaCl, 1 mM Pefabloc SC) to every wet gram of cells. Lysozyme (300 µg/mL) 

was added the suspension and stirred for 30 minutes at 4°C. After 30 minutes of incubation, 1% (v/v) 

Triton X-100 was added and ultrasound sonication was applied for three burst of 30 seconds at power 

level 3 with 30 seconds of rest on ice in between each burst. The suspensions were placed at room 

temperature. DNAse I (10 µl) and 10 mM MgCl2 were added and the suspensions were stirred at room 

temperature for 15 minutes. The suspensions were centrifuged at 15000 g for 15 minutes; the 

supernatant were separated from the pellets. The pellets were resuspended in equal volume of lysis 

buffer as the supernatant. Aliquots of 10 µl of the supernatant and resuspended pellet were loaded on 

SDS-PAGE and further analyzed by western blotting.  
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2.7 Optimizing protein expression for protein NS  

 Several different conditions were used to optimize the expression level of NS protein due to its 

high level of expression in the aggregate form. Freshly transformed BL 21 colonies were used to 

inoculate a small 5 ml starter culture, grown overnight at 37°C. The starter culture (1 ml) was used to 

inoculate a 50 ml culture and allowed it to grow to OD of 0.6 to 0.8. All cultures were grown in LB media. 

The conditions to grow and induce these cultures were as followed: 

Cultures Growth Temp 
(°C) 

Induction 
Temp (°C) 

[IPTP] (mM) Induction Time 
(hrs) 

[ZnCl2] 

Control 37 37 --- Overnight --- 

B 37 37 0.1 Overnight --- 

C 37 37 1 Overnight --- 

D 37 37 2 Overnight --- 

E 37 28 1 Overnight --- 

F 28 28 1 Overnight --- 

G 28 37 1 Overnight --- 

 

The Strep-tag manufacturer (IBA) also recommended growing the starter culture at lower 

temperature which can also help protein to solubilize. Here, fresh transformed BL 21 colonies were used 

to inoculate 5 mL starter cultures and grew in a shaker at 25°C overnight. The starter cultures (1 ml) 

were used to start up a 50 ml culture. The conditions for the cultures were as followed: 

Cultures Growth Temp 
(°C) 

Induction 
Temp (°C) 

[IPTP] (mM) Induction Time 
(hrs) 

[ZnCl2] (µM) 

Control 37 37 --- Overnight --- 

A2 37 37 1  4  --- 

A3 37 25 1 7 --- 

A4 37 37 1 4 50  

A5 37 25 1 7 50 

 

The cells were harvested and lyses according to the protocol for inclusion bodies in section 2.6. NS 

proteins, both soluble and nonsoluble fractions, were analyzed by western blotting.  
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2.8 Analysis of the expressed strep-tag fused proteins by western blot  

The proteins on the SDS-PAGE were transferred to a PVDF membrane using the wet method in 

25 mM Tris, 20 mM Glycine, and 20% (v/v) methanol for 1 hour at 100V, constant voltage. The 

membrane was  blotted with 20 ml of 3% (v/v) BSA, 0.5% Tween-20 in PBS buffer (4 mM KH2PO4, 16 

mMNa2HPO4, 16 mM NaCl) overnight at 4°C. The membrane was washed with 3 x 5 minutes with 40 ml 

of PBS-Tween (PBS buffer with 0.1% Tween-20).  After the last wash, the membrane was incubated in 10 

ml of PBS-Tween with 10 µl of biotin blocking buffer (IBA) for 10 minutes to block off the biotin carboxyl 

carrier protein of E. coli.  The membrane was washed twice with PBS Tween for 1 minute each. The 

membrane was incubated for 1 hour in 10 ml of PBS Tween with a 1:8000 dilution of Strep-tactin 

conjugated alkaline phosphatase antibody (IBA). The membrane was washed 3 x 1 minute with PBS 

Tween-20 and 2 x 1 minute with PBS. The membrane was developed by BCIP/NBT Phosphatase 

substrate (1-component) solutions (KPL) until bands were visible. The membrane was washed with 

water and let sit at room temperature to dry.  

2.9 Affinity Purification for M3M4 protein  

Fresh colonies were picked and inoculated in 5 mL LB media cultures to grow overnight at 37°C 

in a shaker incubator. The overnight cultures were used to inoculate 2 liters of autoinduction media. The 

antibiotics used were 100 ng/µl ampicillin, 34 ng/µl chloramphenicol, and 50 ng/µl spectinomycin. The 

culture was grown overnight at 37°C in a shaker. The cells were harvested by centrifugation at 5000 g 

for 15 minutes at 4°C. The supernatant was discarded and the cell pellet was resuspended in 20 mL of 

washing buffer (100 mM Tris-Cl pH 8.0, 150 mM NaCl, and 1 mM EDTA). The cells were burst by ultra-

sonication with 10 burst of 30 seconds on ice at power level 7.5 with 30 seconds rest on ice in between. 

The cell debris was separated from the supernatant by centrifugation at 15000 g for 15 minutes at 4°C. 

The cell debris was discarded and supernatant were used to run on the affinity column.  
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The affinity column was packed with 2 ml of Strep-Tactin resin (IBA) to purify 50 ml of reaction 

mixtures.   The column was equilibrated with 25 ml washing buffer (100 mM Tris-Cl pH 8.0, 150 mM 

NaCl, and 1mM EDTA). The resin in the column was then removed and incubated with the proteins in a 

50 ml conical tube for 2 hours at 4°C on a shaker. The column was repacked with the bound protein-

resin and was washed with 25 ml of washing buffer. The target proteins were eluted in 1 ml fractions 

with 15 ml of elution buffer (100 mM Tris-Cl pH 8.0, 150 mM NaCl, 1 mM EDTA, and 2.5 mM 

desthiobiotin) and 10 µl of the sample fractions were loaded on SDS-PAGE to check for purity.  

The concentration of protein was checked via Bradford’s assay 51. The protein was then further 

purified through a chelex-100 column to remove any trace of divalent cation metals in the solution. The 

proteins were concentrated using Amicon Ultra-4 centricon (Millipore), centrifuged at 4000 rpm in a 

tabletop centrifuge, and the same method was used to switch buffer. In this case, the protein we were 

trying to purify has a molecular weight of 11 kDa so the selected centricon pour size was 3000 NMWL. In 

order to properly switch buffer and remove any trace of EDTA from solution, the protein must be 

washed at least 3 times with the replacing buffer.  

2.10 N-terminal sequencing 

 Protein samples were sent to Iowa State Protein Facility for N-terminal sequencing. M3M4 

protein (2 µM) was run on SDS-PAGE and transferred to PVDF membrane. The gel was allowed to 

polymerize overnight prior to usage. The membrane was stained with Coomassie blue staining solution 

for one hour. The membrane was destained using 25% acetic acid/ 50%methanol/ ddH2O. The bands 

corresponding to M3M4 were excised and placed in an Eppendorf tube.  

2.11 Atomic Absorbance Spectroscopy 
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The samples contained 1 µM M3M4 protein and 5 µM zinc (II) chloride in tris buffer (20 mM 

Tris-Cl, 150 mM NaCl pH 7.4). The final sample volume was 5 mL. Samples for AAS were prepared by 

incubating M3M4 protein with 5x excess zinc (II) chloride for 15 minutes at room temperature. The 

excess zinc was removed by washing the samples  three times with 10 times excess protein buffer (20 

mM Tris, 150 mM NaCl pH 7.4) using a centricon (Millipore). The other method used for removing excess 

zinc was to pass the samples through a Sephadex G-25 column, 250 µl protein samples for every 1 ml of 

Sephadex resins. The Sephadex beads were equilibrated in water for at least one night prior to usage. 

Nitric acid (metal trace) (1 mL) was added to the samples and incubated at 70°C for one hour and let sit 

overnight at room temperature. Prior to running the sample, 250 µl of hydrogen peroxide was added 

and the volume was raised to 5 ml with Tris buffer.  Perkin Elmer Flame Atomic Absorbance 

Spectrophotometry was used for zinc scanning.  A zinc standard curve ranging from 0 – 1000 ppb was 

constructed using the commercially available zinc standard solution (Fluka Analytical, 1000 mg/L).   

2.12 Native gel electrophoresis  

 The conformational changes of M3M4 protein in the presence and absence of zinc (II) was 

examined by native gel electrophoresis. M3M4 protein (2 µM) was incubated with 5x excess zinc (II) 

chloride for 15 minutes at room temperature. Loading buffer was added to the protein sample and 10 µl 

of the sample was loaded on a 10% polyacrylamide gel (no SDS). A pure M3M4 protein with the same 

concentration (here instead of zinc (II) chloride solution, tris buffer was added) was loaded on the gel. A 

non-denaturing marker (Sigma #MWND500) which was composed of five different proteins (α-

Lactalbumin from bovine milk, Carbonic Anhydrase from bovine erythrocytes, Albumin from chicken egg 

white, Albumin from bovine serum, and Urease from Jack bean) was also loaded on a separate lane. The 

gel was run at 25 mA, constant amperes, until the loading dye reached the bottom of the gel. The gel 
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was stained by Coomassie blue G-250 solutions (0.025% (w/v) Coomassie blue G-250 in 10% acetic acid, 

ddH2O).  

2.13 Interaction of Zinc Binding by Fluorescence Spectroscopy  

The interaction of zinc binding was examined by fluorescence spectroscopy using either the 

Perkin Elmer LS-55 spectrofluorometer or Perkin Elmer VICTOR 1420 multilabel counter. For the LS-55, 

the experiment was carried out by stepwise addition of zinc (II) chloride to 2 µM of protein, after the 

addition of zinc; the sample was left to incubate for 5 minutes before each measurement. The emission 

spectra were recorded with excitation at 280 nm and emission range from 300 to 800 nm with 1 nm 

steps at 25°C.  

In addition, the fluorophore Fluozin-1 was used to detect free zinc (II). Perkin Elmer VICTOR 

1420 multilabel counter was used for this experiment. First, a standard curve was established for the 

fluorescence of Fluozin-1 with increasing concentration of zinc (II). This was done on a 96-well plate, zinc 

(II) concentrations range from 0-300 µM were added to 1 µM of Fluozin-1, and buffer (20 mM Tris-Cl, pH 

7.4, 150 mM NaCl) was used to bring up solution to 100 µl total. Conditions for the spectrofluorometer 

were as followed:  

Protocol name Fluozin 

Label technology Prompt fluorometry 

CW-lamp filter name F485 

CW-lamp filter slot A5 

Second meas. CW-lamp filter name F485 

Second meas. CW-lamp filter slot A5 

Emission filter name F535 

Emission filter slot A5 

Second meas. emission filter name F535 

Second meas. emission filter slot A5 

Measurement time 0.1 second 

Emission aperture Normal 

CW-lamp energy 15000 

Second measurement CW-lamp energy 30961 
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For protein binding reading, 1 µM M3M4 protein was added to 1 µM Fluozin-1 and zinc (II) was 

added with concentrations ranged from 0 – 3 µM. Protein buffer (20 mM Tris-Cl, pH 7.4, 150 mM NaCl) 

was used to bring solution up to 100 µl.  

 The Kd of Fluozin-1 to zinc was determined by best fitting the standard curve with the simple 

ligand binding one site saturation program in SigmaPlot using the following equation: 

  
             

           
 

Where f is defined as fluorescence intensity of Fluozin-1 binding to zinc ions, Bmax is the number of 

binding site (Bmax=1), and [Zn]free is the concentration of free zinc. The Kd was determined to be 11.98 µM 

and this was the value used for calculations of [Zn2+]free and  [Protein-Zn2+] complex. 

2.14 Secondary structure circular dichroism (CD)  

All samples were prepared in trizma buffer (10 mM Trizma pH 7.8, 30 mM NaCl). All samples and 

buffer were passed through a Chelex-100 column. Phosphate buffer is the best buffer to use for CD but 

as phosphate precipitates with Zn2+ we could not use it. The CD analysis was carried out with M3M4 

protein concentration ranges from 5 µM to 50 µM. For zinc binding analysis, 5x excess zinc were added 

to 30 µM protein and incubated for 15 minutes prior to scanning. All the scans were run on Jasco J715 

spectropolarimeter equipped with a Peltier thermostated sample holder for thermal melts. All scans 

were done in triplicates. The data were analyzed by using K2d analysis algorithm 

(http://geneura.ugr.es/k2d/k2d.html). The CD scanning parameters were as followed:  

Sensitivity standard 100 mdeg 

Start 270 nm 

End 190 nm 

Data pitch 0.5 nm 

Scanning mode Continuous 

Scanning speed 20 nm/min 

Response 8 seconds 
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Band width 2.0 nm 

Accumulation 3 

Temperature 4°C 

Cell 1 mm for 200 µl 

 

 Melting curves for M3M4 protein bound to zinc and unbound to zinc were also performed. The 

M3M4 protein concentration was 10 µM in trizma buffer (20 mM Trizma, pH 7.8, 150 mM NaCl). 

Proteins were saturated with excess zinc (II) chloride, allowed for samples to sit at room temperature for 

15 minutes prior to running the scan. The samples were loaded in a 1 cm quartz cell containing a 

magnetic stirrer. The start and final temperature were 4°C and 90°C, respectively, and the scan rate was 

40°C/hour. The thermo unfolding of M3M4 protein was monitored at 222 nm with temperature 

increments of 0.5 °C. All samples were run with reverse temperature to check for protein reversibility. 

All samples were run in triplicate.  

 The data from CD signal were reported in millidegree and was converted to θ (mdeg cm2/dmole) 

by using the following equation:  

   
                            

                                                                 
 

 

2.15 Test expression of M3M4 in minimal media 

 To make 500 ml of minimal media, the following chemicals were added to dH2O: 6.5g KH2PO4, 5 

g K2HPO4, 4.5 g Na2HPO4 (anhydrous), 1.2 g K2SO4, 0.6 g 15NH4Cl (for test expression, use NH4Cl). This 

medium was sterilized by autoclaving. The following nutrients were added to the 500 mL M9 minimal 

medium: 10 ml of 20 % (w/v) glucose, 2.5 ml of 5 mg/mL Thiamine, 1 mL of 1 M MgSO4, 250 µl of 0.1 M 

CaCl2, and 2.5 ml trace metals (50 µM FeCl2, 20 µM CaCl2, 10 µM each of MnCl2, ZnSO4, and 2 µM each of 

CoCl2, CuCl2, NiCl2). 
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 To grow E. coli in minimal media, the pRM3 vector was transformed into E. coli strain BL21 (star) 

DE3 pLysS 1240 (Invitrogen) and plated in LB/Agar plates with 100 ng/µl ampicillin, 34 ng/µl 

chloramphenicol, and 50 ng/µl spectinomycin. Colonies were picked and inoculated in 5 mL of start-up 

LB media cultures containing all three antibiotics. The start-up cultures were grew overnight at 37°C in a 

shaker. The start-up culture (1 mL) was used to inoculate a 100 mL minimal media containing all three 

antibiotics. The bacteria minimal media cultures were allowed to grow to log phase (0.6-0.8 OD) and 

induced with 0.1 or 0.2 mM IPTG overnight. The cultures were grown at 37°C on a shaker. Samples were 

harvest, lysed, and analyzed via western blotting. All protocols for western blotting are the same as 

describe above for strep-tag.  

3 Results 

The focus of our study is study the structure and function of specific domains in ZIP4 that are 

known to play a role in regulating ZIP4. The intracellular loop between transmembrane 3 and 

transmembrane 4 (M3M4) of ZIP4 has previously been shown to be the target site of ubiquitination in 

the presence of high intracellular zinc8. The ubiquitination of this domain leads to the degradation of the 

entire transporter via the lysosomal and proteosomal pathway8. Our goals were to see if Zn2+ binds to 

this domain and to understand the structural changes of M3M4 in the presence and absence of zinc. We 

hypothesized that in the presence of high intracellular zinc, free zinc cations will bind to M3M4 and 

induce a conformational change. A lysine residue found in this domain (K463) is highly conserved among 

the ZIP family47. Therefore we hypothesize that this residue, lysine463, is the site of ubiquitination and 

when zinc binds to M3M4, the conformational change exposed the lysine residue and hence 

ubiquitination occurs.  

3.1 Expression of NS, WS, and M3M4 using pTYB2 vector 
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 The DNA sequence of the three targeted domains (N-terminus with signal peptide (WS), N-

terminus without signal peptide (NS), intracellular loop between transmembrane 3 and 4 (M3M4)) of 

ZIP4 were successfully cloned and inserted into the pTYB2 vector (data not shown). The vector has a 

chitin binding domain fused at the C-terminus along with a long intein region. The vector is under the 

control of the T7 promoter and has a built-in ampicillin resistance gene.  The vectors were expressed 

using the E. coli strain BL21 (star) DE3 pLysS 1240 (Invitrogen). Our results showed that all three proteins 

(WS, NS, and M3M4) were unable to be expressed using this vector. The chitin binding protein antibody 

(Anti-CBD) (NEB) was nonspecific. The antibody binds to nonspecific proteins that do not match up with 

our target protein. We eventually determined that even in E. coli cells that do not carry the plasmid; 

anti-CBD binds to nonspecific protein. We switched to the monoclonal anti-CBD (NEB) but that showed 

no detections of proteins.  

3.2 Expression of NS with Strep-tag  

 The N-terminal domain without signal peptide (NS) was cloned into the pPR-IBA1 plasmid. This 

vector was designated as pRNS. The vector was transformed into the E. coli strain BL21 (star) DE3 pLysS 

1240 (Invitrogen) for protein expression. The NS protein was expressed in different conditions to 

optimize the expression level. Our results showed that NS was successfully expressed in our E. coli strain 

(Figure 4a) but most of the NS protein was found in inclusion bodies. In order to improve soluble protein 

expression, we changed the concentration of IPTG and the induction temperature; we also tried using 

autoinduction media and growing the E. coli strain in trace amount of Zn2+ to help facilitate proper 

folding of the protein. We found that the best conditions was at 37°C, 0.1 mM IPTG, in the presence of 

50 µM ZnCl2 gave the best protein expression of 50 % soluble protein and 50% in inclusion bodies. 

Affinity chromatography using strep-tactin resins was unsuccessful. The NS fused with strep-tag (II) did 

not bind to the resin and as a result the protein was eluted in the flow through fractions.  
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3.3 Expression of M3M4 

Primers were designed 

to target specifically the in 

frame sequence that encodes 

the intracellular loop between 

transmembrane 3 and 

transmembrane 4. This domain 

is composed of 75 amino acids 

(residues 423-499) which 

includes a significant histidine-

rich region (Figure 2). The PCR portion of the ZIP4 M3M4 gene was successfully inserted into pPR-IBA1 

vector (IBA) and was expressed in BL21 E. coli cells. This vector encodes a 101-residue protein of which 

the N-terminal includes  15 residues containing the start codon methionine and residues from the vector 

upstream of the cut site (See Appendix A). The C-terminus of the protein contain the linker amino acids 

and the strep-tag. M3M4 was grown and expressed using autoinduction media overnight at 37°C50. This 

induction method produced the highest amount of M3M4 in comparison to induction with any IPTG 

concentration. M3M4 protein was soluble and did not agreggate. Sample lysates were loaded on SDS-

PAGE and electrotransferred to a PVDF membrane. The M3M4 protein was detected using a Strep-tactin 

antibody (IBA). A band around 12 kDa was detected on the western blot and this corresponds to the 

molecular weight of M3M4 (11.1 kDa) (Figure 4A).  

To further verify the expression of M3M4, preparations of protein were sent out to Iowa State 

Protein Facility for protein N-terminal sequencing. The results from protein N-terminal sequencing 

showed that the first five residues on the N-terminus of M3M4 (GDRGP) matched the first five residues 

of the target protein.  

Figure 4: Protein expression
M3M4 was expressed in BL21 E. coli cells and detected by Strep-

tactinAb (IBA).M3M4 was purified by affinity chromatography (Strep-
tactin resins). (A) Western result of protein expression, M3M4 is

detected at around 12kDa. (B) Purification schematic of M3M4

M3M4
M3M4

NS

A B
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Gravity flow, affinity chromatography was performed to purify the expressed M3M4 protein. 

The column was packed with 2 mL of strep-tactin resins (IBA) and cell lysates were passed through the 

column. Here, we found that the optimal amount of resin is 2 mL resins for every 2.5 mg of protein. In 

general, 2 liters  of BL21 E. coli culture will produce anywhere between 2 – 3 mg M3M4 protein. The 

M3M4 protein, which has a strep-tag at the C-terminus, binds to the resin and the column was washed 

with buffer W. The M3M4 protein was eluted by buffer containing 2.5 mM desthiobiotin which 

competitively binds to the resin. Figure 4B shows the schematic of M3M4 purification. M3M4 was 

further purified by the same method if not pure after the first round. The addition of two column 

volumes of 0.2 M ammonium sulfate after the washing step can help decrease nonspecific binding.  

3.4 Zinc binding to M3M4  

ZIP4 transports zinc into 

the cells5, 17, 46. When the cells 

have excessive zinc, it is 

important to stop the influx of 

zinc. ZIP4 is degraded when zinc 

level is high8. We hypothesize 

that the intracellular loop M3M4 

acts as a zinc sensor so that 

when zinc level is high, the M3M4 loop will bind zinc and this action will signal for ubiquitination and 

subsequent protein degradation. 

B 

Figure 5: Zn:Protein stoichiometry 
The binding stoichiometry of Zn

2+
 to protein was determined by 

atomic absorbance. (A) Standard zinc absorbance curve. (B) Zn: 
M3M4 stoichiometry was determined to be 1.8 ± 0.2. 

 

A 
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In order to 

understand the Zn2+ 

binding characteristics, 

we determined the Zn2+ 

to M3M4 binding 

stoichiometry. Atomic 

absorbance 

spectrophotometry 

(AAS) is a powerful tool 

used to determine metal concentration52, 53. Here, we apply this technique to determine the zinc 

concentration bound to protein. A known concentration of purified M3M4 protein was incubated with 

5x excess Zn2+ for 15 minutes and the excess zinc was removed using the Amicon centrifugal filter device 

(Millipore) or passing the entire sample through a Sephadex G-25 column. The samples were treated 

with 1 mL of HNO3 and heated to 95°C  then subjected to a Flame-AAnalyst 700 (Perkin-Elmer) and 

monitored at 213.9 nm. The standard curves were constructed using a zinc standard solution prepared 

from stock ZnCl2.  Our result from AAS indicates that the average Zn2+ concentration per 1 µM M3M4 

protein is 119.3 ± 14.56 ppb corresponding to a 1.8 ± 0.2 Zn2+: 1 M3M4 stoichiometry (Figure 5A, B). This 

indicates that there are two zinc binding sites on M3M4.  

To further investigate the Zn2+/M3M4 complex, the binding affinity of M3M4 for Zn2+ was 

determined by titrating the purified M3M4 protein with Zn2+ in the presence of Fluozin-1 (Molecular 

Probe; Invitrogen). Fluozin-1 forms a 1:1 indicator/zinc complex with a known Kd and the concentration 

of unbound zinc can be monitored by fluorescence spectrophotometry. This allows the calculation of 

free Zn2+ and Zn2+-protein complex. The Zn2+-protein complex was plotted against the free Zn2+ 

concentration and fitted to equation in Figure 6 using SigmaPlot. Here, we defined f as the molar ratio of 

Figure 6: Binding affinity of Zn
2+

 to M3M4 
The binding affinity of Zn

2+
 to M3M4 was determined by titration M3M4 with 

Zn
2+ 

in the presence of Fluozin-1. The data were fitted with the equation on the 
right and plot was allowed to flow for best fit curve. Values are the means of 3 ± 
STD.  
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zinc bound to M3M4, Kd is the binding affinity of zinc to M3M4, n as the number of binding sites, and x 

as level of free zinc.  The equation was set to fit for best fit curve and the resulting values for number of 

binding site is 1.7 ± 0.1 which is consistent with our zinc binding stoichiometry. From our fluorescence  

experiments the binding affinity of Zn2+ to M3M4 was determined to be 280  ± 50 nm. The nature of the 

fitted graph, because it is exponential and not sigmoidal, indicates that the two binding sites M3M4 are 

independent of each other54.  

3.5 Changes in M3M4 conformational state   

Native gel electrophoresis separates protein according to 

both the protein mass and charge. By eliminating the denaturing 

factors, the protein can retain its folded conformation.  Here, we 

applied this technique to study the conformational changes of 

M3M4 in the presence and absence of Zn2+.  M3M4 in its native 

conformation appears to exist in multiple conformational species. 

The gel shows that M3M4 in the absence of Zn2+ appears as two 

separate bands with similar molecular weight (Figure 7, lane 2). 

When M3M4 was saturated with Zn2+, the band shifted upward. 

There was only one distinct band that appeared when Zn2+ was 

bound to M3M4 (Figure 7, lane 3). In the presence of Zn2+, Zn2+ 

bound to M3M4 induced a conformational change. M3M4 exists only in one conformation state in the 

presence of Zn2+.  

3.6 M3M4 secondary structure in the absence and presence of zinc  

Figure 7: Native conformational 
state  
Native gel electrophoresis was 
performed on M3M4. Lane 1 is the 
native gel marker, lane 2 is M3M4 
in the absence of zinc, lane 3 is 
M3M4 saturated with zinc.  



35 
 

We have shown that two zinc ions bind to the M3M4 domain. The conformation state of M3M4 

also changes in the presence of Zn2+. In order to have a better understanding of M3M4 conformational 

state in the presence and absence of zinc,  we examined the secondary structure of M3M4 using circular 

dichroism. Circular dichroism (CD) is an effective tool that applies circular polarized light to determine 

the secondary structure of protein55, 56. When a protein is folded they often have highly asymmetric 

secondary structural elements like α-helices and β-sheets which can be quantitated by CD. The α-helix 

gives off the most characteristic spectrum which have two negative bands near 222 and 208 nm 

whereas β-sheets have a negative band at 217 and 180 nm55.  The secondary structure of M3M4 was 

measured in the absence  of Zn2+ or saturated with Zn2+ by far-UV CD. M3M4 became more α-helical in 

the presence of Zn2+ as evident in the increase of negativity near 222 and 208 nm (Figure 8A) with 

respect to M3M4 spectra alone.  In addition, the data were analyzed by K2d algorithm and it suggests 

that there wass a 20% increase in α-helices and 23% decrease in β-sheets  when Zn2+ was bound to 

M3M4 (Figure 8B).  

 

 

Figure 8: Secondary structure by CD
The secondary structure of M3M4 was scanned in the presence or absence of Zn 2+. (A) The difference in M3M4 
secondary structure in the presence (blue) or absence (red) of Zn 2+. The spectra were normalized to the concentration 
of protein. (B) Percentage of helices, sheets, and random coils depicted by K2d algorithmic. Values are the means of 3 

scans. 

B

A

Figure 8: Secondary structure by CD 
The secondary structure of M3M4 was scanned in the presence or absence of Zn

2+
. (A) The 

difference in M3M4 secondary structure in the presence (blue) or absence (red) of Zn
2+

.  The 
spectra were normalized to the concentration of protein. (B) Percentage of helices, sheets, and 
random coils depicted by K2d algorithmic. Values are the means of 3 scans of 3 protein prep.   
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3.7 Thermo unfolding of M3M4 

The thermo unfolding of 

M3M4 was monitored by far UV CD 

spectroscopy at 222 nm which is 

proportional to the α-helical protein 

content. The starting temperature was 

4°C and the final temperature was 

90°C. Scans were taken every 0.5°C 

with a wait time of 80 seconds. The 

thermal scan obtained at 222 nm of 

M3M4 is shown in figure 9A and 9B in 

the absence and presence of zinc, 

respectively. The melting curve for 

M3M4 showed no significant 

transitional changes as the 

temperature increased. The changes of 

M3M4 protein could not be measure 

at 222 nm. This is consistent with the CD scans which showed that the M3M4 is composed of only 9 

percents α-helices. Therefore detecting the transition temperature of M3M4 at 222 nm was not 

feasible.   In the presence of Zn2+, the thermo unfolding of bound M3M4 had a significant transition 

temperature, where the M3M4 protein unfolds (Tm) at ~57°C. Unfortunately, at the end of the run, 

M3M4 in the presence or absence of Zn2+ aggregated and precipitated out of solution. Therefore thermo 

refolding of M3M4 was not possible. It was unclear whether the aggregations occurred during or after 

the unfolding.  

A 

B 

Figure 9: Thermo unfolding of M3M4 
CD signal was followed at 222 nm for both scans. (A) Thermo 
unfolding of M3M4 protein in the absence of Zn. (B) Thermo 
unfolding of M3M4 protein in the presence of Zn

2+
. 
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3.8 Expression of M3M4 in minimal media  

 Our target was to label M3M4 with 15N and 13C for 

future NMR experiments. In order to radioactively label the 

M3M4 protein, M3M4 was expressed in minimal media. 

Minimal media contain the minimum amount of nutrients 

necessary to grow E. coli57. Here, we were testing for the 

expressions of M3M4 in unlabeled minimal media with 

different induction conditions. E. coli was grow in minimal 

media to log phase (OD 0.6-0.8) and induced overnight with 

either 0.1 or 0.2 mM IPTG. Our result showed that M3M4 

was successfully expressed in minimal media. There was 

more M3M4 expressed in the induced cultures than the negative control (no IPTG) and there was no 

difference in the level of protein expression between 0.1 and 0.2 mM IPTG (Figure 10).  

4 Discussion 

ZIP4 mediates zinc uptake in enterocytes and plays an important role in zinc homeostasis1, 5, 20. 

Mutations that caused ZIP4 to malfunction result in zinc deficiency phenotypes such as AE and ZIP4 has 

been shown to be overexpressed in patients with pancreatic cancer7, 30, 48. In normally functioning cells, 

the surface expression of ZIP4 is inversely proportional to the level of intracellular zinc. When cells are in 

a zinc depleted condition, ZIP4 is recruited to the plasma membrane. In contrast, when cells are in a zinc 

repleted condition, ZIP4 undergoes endocytosis and circulate in the cytoplasm5, 6, 13. Furthermore, when 

there is a high level of intracellular zinc, a residue within the intracellular loop between transmembrane 

3 and transmembrane 4 undergoes ubiquitination resulting in the degradation of the entire ZIP4 

transporter8. This indicates that ZIP4 play a key role in zinc homeostasis by sensing dietary zinc level.  
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Most of the previous work on ZIP4 has focused on studying the ZIP4 mRNA and protein 

expression level in vivo.  Here, we are interested in investigating the biophysical and biochemical 

processes of the intracellular loop between transmembrane 3 and 4 (M3M4). We hypothesized that this 

domain regulates the surface expression of ZIP4 by acting as a sensor for intracellular Zn2+. Our results 

indicate that M3M4 binds to zinc with nanomolar affinity with a 2:1 zinc to M3M4 stoichiometry. 

Furthermore there is a large conformational change when zinc is bound. Our results indicates that the 

binding of Zn2+ to M3M4 is a potential mechanism in which the M3M4 domain acts as a zinc sensor and 

signal for ubiquitination. This is the first time in which this M3M4 region of ZIP4 is shown to bind zinc 

and to initiate a conformational change. 

4.1 Zinc binding capability of M3M4 

The M3M4 loop contains a histidine-rich region in the sequence of 436-CGHSSHSHGGHSH-448 

which is highly similar to the sequence HEXXHXXGXXH or HXnH and has been shown to bind zinc in other 

zinc binding proteins such as metalloproteases and hydrolases8, 47.  Recent data have shown that the 

deletion of this histidine-rich motif abolished ubiquitination8. Hence we hypothesize that this histidine-

rich motif is the binding site for zinc. Furthermore, individual site-directed mutagenesis of each histidine 

does not impact ubiquitination but mutations that convert all of the histidines to alanines eliminate 

ubiquitination8.  Our AAS data shows that zinc bind to M3M4 with a stoichiometry of two zinc cations for 

every M3M4. This could explain the reason why point mutation of a single histidine within this 

consensus sequence does not impact ubiquitination. The mutation of individual histidines might impact 

the affinity of one zinc binding site but if the second site is still functional, M3M4 still can be 

ubiquitinated.   

We are still unclear as to why the second Zn2+ ion binds to M3M4. One possible explanation is 

that the first binding site binds zinc to indicate that there is a sufficient amount of intracellular zinc and 
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the binding of the second zinc ion indicates that there are more than enough intracellular zinc and that 

ZIP4 is no longer required. But in order for this to be true, there must be two different binding affinities. 

The binding affinity for the first site needs be higher so that it can detect normal intracellular zinc which 

is in the upper picomolar to lower nanomolar58.  The second site should have a lower binding affinity to 

detect the rise in intracellular zinc (high nanomolar to micromolar). Our result indicates that the two 

binding sites are independent of each other. The experiments were measured in the micromolar zinc 

concentration consequently we might have already saturated the first binding site.  

The affinity of the M3M4 domain of ZIP4 for zinc is an important parameter in understanding 

how M3M4 regulates the ZIP4 transporter. A major goal of this project was to determine the affinity of 

M3M4 for Zn2+. This was achieved by titrating zinc in the presence of a metallochromic indicator. Using 

fluorescence spectroscopy, we determined the binding affinity (Kd) of M3M4 to zinc is 280 ± 50 nM 

which corresponds to an association constant of 3.6 x106M-1. This has a low affinity compared to other 

protein/zinc binding complexes, which have affinities in the picomolar range58.  This can be explained by 

M3M4 acting as a sensor to detect an increase in cytosolic Zn2+ level. The binding affinity of M3M4 for 

Zn2+ is in the upper limit of free Zn2+ so that it does not compete with other intracellular proteins which 

require Zn2+ for proper function.  

We acknowledge that this is an in vitro experiment and that only the 75 residues of the entire 

protein are expressed hence there are multiple factors that could lead to a deviation in the affinity when 

compared to the full length protein. First, the expression of only M3M4 means that there are no N- and 

C-terminus constraints of the transmembrane in the full length protein so the binding affinity will be 

different. There could also be other proteins such as chaperones that facilitate the binding of Zn2+ to 

M3M4. But here, we are only interested in whether or not this specific region binds to Zn2+ and what 

happens to the structure of this protein when it binds Zn2+.  Considering that the upper limit of cytosolic 
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zinc is nanomolar, our Kd (280 ± 50 nm) of the M3M4 domain appears to be a physiological relevant 

value.  

4.2 The conformational change of M3M4  

 ZIP4 is regulated in response to intracellular zinc level5, 8, 43, 59. An analysis of the changes in ZIP4 

M3M4 protein structure can help in understanding how ZIP4 response to the level of zinc. Here, by 

circular dichroism we showed that M3M4 binds to Zn2+ resulting in a conformational change.  We 

showed that in the presence of Zn2+, M3M4 become more helical. In fact, K2d analysis depicted a 20 

percent increase in helical content compared to M3M4 without Zn2+. It has been shown previously in 

proteins with zinc finger domain, such as transcription factor IIIA, that upon addition of Zn2+ zinc finger 

domain changed from a less well-defined structure to a more well-defined structure60.  

There is a lysine residue (K463) on the M3M4 domain that is conserved in throughout the ZIP 

family8, 47. Therefore we hypothesize that this residue could be the site for ubiquitination. When Zn2+ 

binds to the M3M4 domain, the conformational change exposes this lysine residue which signals for 

ubiquitination.  

4.3 Future implications 

This is the first study to show that the M3M4 domain binds zinc and that the binding of zinc 

leads to a conformational change. This is a significant insight into the role in which Zn2+ plays in 

regulating the surface expression of ZIP transporters. One common feature among the ZIP family is the 

long intracellular loop between transmembrane 3 and 4. The length and residues in this domain are not 

well conserved but most have the histidine-rich motif with the sequence (HX)n  where n= 3-6 and a 

conserved lysine residue47. Therefore, we propose that this intracellular loop of ZIP family acts as a zinc 
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sensor where the difference in length and the different residues in the histidine-rich motif could give 

rise to difference in affinity among this family of protein.  

In the presence of high intracellular zinc concentration, this loop binds to zinc to induce a 

conformational change exposing the lysine residue for ubiquitination. By degrading ZIP4, the cells can 

regulate the amount of additional zinc entering the cells. This could be a mechanism in which the cells 

take to protect itself from zinc toxicity. In pancreatic cancer cells, the upregulation of ZIP4 leads to 

increase in cell proliferation and tumor progression7, 48. The detail mechanisms of how ZIP4 regulates 

cancer cell growth are still unclear. Recent data showed that the overexpression of ZIP4 caused CREB to 

be phosphorylated and increased the transcription and secretion of IL-6 which activates STAT3 to lead to 

cyclin D1 expression increase resulting in the increase of cancer cell growth61.   

Further studies are needed to be performed on this domain in order to have a better 

understanding of the role of this domain. It would be nice to whether M3M4 coordinates other metals. 

There are studies that shown that ZIP4 is responsive to high level of cadmium (II)8. In the presence of 

high cadmium concentrations, ZIP4 is also degraded8. Though, the degradation of ZIP4 requires a much 

higher concentration of cadmium than zinc8.  By comparing the binding affinity of zinc to other metals, 

we can have a better understanding of the specificity and selectivity of ZIP4 to zinc and other metals.  It 

would also be interesting to look at the binding affinity of M3M4 to Zn2+ at different pH. It has been 

shown that histidine binds to Zn2+ more efficiently at a higher pH since the side chain of histidine is 

deprotonated more rapidly62.   
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Appendix A – pRM3 plasmid map 
 

T7 RNA promoter site                        

                    XbaI   

       1 D  L  D  P  A  K  L  I  R  L  T  I  G  R  P  Q  R  F  P  S  R  N  N 

 F  V   

       1 GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGGCCACAACGGTTTCCCTCTAGAAATAA

TTTTGTT 

    3070 CTAGAGCTAGGGCGCTTTAATTATGCTGAGTGATATCCCTCCGGTGTTGCCAAAGGGAGATCTTTATT

AAAACAA 

 

      76                                                            KpnI   

 

      26 *  L  *  E  G  D  I  Q  M  G  D  R  G  P  E  F  E  L  G  T  R  G  S 

 L  P   

      76 TAACTTTAAGAAGGAGATATACAAATGGGAGACCGCGGTCCCGAATTCGAGCTCGGTACCCGGGGATC

CCTGCCC 

    2995 ATTGAAATTCTTCCTCTATATGTTTACCCTCTGGCGCCAGGGCTTAAGCTCGAGCCATGGGCCCCTAG

GGACGGG 

     151        MspI   

     151        HpaII            ApaI   

      51 R  D  P  E  D  L  E  D  G  P  C  G  H  S  S  H  S  H  G  G  H  S  H 

 G  V   

     151 AGGGACCCGGAGGACCTGGAGGACGGGCCCTGCGGCCACAGCAGCCATAGCCACGGGGGCCACAGCCA

CGGTGTG 

    2920 TCCCTGGGCCTCCTGGACCTCCTGCCCGGGACGCCGGTGTCGTCGGTATCGGTGCCCCCGGTGTCGGT

GCCACAC 

 

      76 S  L  Q  L  A  P  S  E  L  R  Q  P  K  P  P  H  E  G  S  R  A  D  L 

 V  A   

     226 TCCCTGCAGCTGGCACCCAGCGAGCTCCGGCAGCCCAAGCCCCCCCACGAGGGCTCCCGCGCAGACCT

GGTGGCG 

    2845 AGGGACGTCGACCGTGGGTCGCTCGAGGCCGTCGGGTTCGGGGGGGTGCTCCCGAGGGCGCGTCTGGA

CCACCGC         NcoI   

     101 E  E  S  P  E  L  L  N  P  E  P  R  R  L  S  P  E  L  R  L  L  P  Y 

 G  H   

     301 GAGGAGAGCCCGGAGCTGCTGAACCCTGAGCCCAGGAGACTGAGCCCAGAGTTGAGGCTACTGCCCTA

TGGCCAT 

    2770 CTCCTCTCGGGCCTCGACGACTTGGGACTCGGGTCCTCTGACTCGGGTCTCAACTCCGATGACGGGAT

ACCGGTA 

          376             Strep-tag         TaqI          

     126 G  L  S  A  W  S  H  P  Q  F  E  K  *  *  A  *  S  G  C  *  Q  S  P 

 K  G   

     376 GGTCTCAGCGCTTGGAGCCACCCGCAGTTCGAAAAATAATAAGCTTGATCCGGCTGCTAACAAAGCCC

GAAAGGA 

    2695 CCAGAGTCGCGAACCTCGGTGGGCGTCAAGCTTTTTATTATTCGAACTAGGCCGACGATTGTTTCGGG

CTTTCCT 
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