
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2011-05-27

A Dynamic Parameter Identification Method for
Migrating Control Strategies Between
Heterogeneous Wheeled Mobile Robots
Jeffrey W. Laut
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Laut, Jeffrey W., "A Dynamic Parameter Identification Method for Migrating Control Strategies Between Heterogeneous Wheeled Mobile
Robots" (2011). Masters Theses (All Theses, All Years). 848.
https://digitalcommons.wpi.edu/etd-theses/848

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/848?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F848&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

A Dynamic Parameter Identification Method for Migrating
Control Strategies Between Heterogeneous Wheeled Mobile

Robots

by

Jeffrey Laut

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Mechanical Engineering

by

May 2011

APPROVED:

Professor Michael A. Demetriou, Thesis Advisor

Professor Stephen S. Nestinger, Thesis Advisor

Professor Gregory S. Fischer, Graduate Committee Member

Professor Nikolaos A. Gatsonis, Graduate Committee Representative

Abstract

Recent works on the control of wheeled mobile robots have shifted from the use

of the kinematic model to the use of the dynamic model. Since theoretical results

typically treat the inputs to the dynamic model as torques, few experimental re-

sults have been provided, as torque is typically not the input to most commercially

available robots. Few papers have implemented controllers based on the dynamic

model, and those that have did not address the issue of identifying the parameters

of the dynamic model.

This work focuses on a method for identifying the parameters of the dynamic model

of a wheeled mobile robot. The method is shown to be both effective and easy to

implement, and requires no prior knowledge of what the parameters may be. Exper-

imental results on two mobile robots of different scale demonstrate its effectiveness.

The estimates of the parameters created by the proposed method are then used in

an adaptive controller to verify their accuracy. For future work, this method should

be completed autonomously in a two-part manner, onboard the mobile robot. First,

the robot should perform the method proposed here to generate an initial parameter

estimate, and then use adaptive control to update the estimates.

Acknowledgements

I would like to show my gratitude to my advisors, Prof. Demetriou and Prof.

Nestinger, who have both given me excellent guidance and support.

Thanks to the Mechanical Engineering department for the supporting my education

through a teaching assistantship. Working with Professors Furlong, Gatsonis, and

Sullivan was a rewarding experience.

I am grateful to Prof. Fischer, who provided me with much appreciated feedback

regarding the content and structure of my thesis.

Thanks to Yue Wang for the insightful conversations, and thanks to the rest of the

friends I have made at WPI, including Jeff Court, Shalin Ye, Yao Wang, Mahdi

Agheli, and Brendan Chenelle.

A special thanks to my parents. If it wasn’t for them, I probably wouldn’t have

even gone to college!

i

Contents

1 Introduction 1

2 Modeling Differential-Drive Wheeled Mobile Robots 4

2.1 Kinematics of Wheeled Mobile Robots. 4

2.2 Parameterized Dynamic Model . 8

3 Control Based on the Dynamic Model 15

3.1 Odometry . 16

3.2 Inverse Dynamic Control . 17

3.3 Adaptation of Dynamic Parameters 21

4 Parameter Estimation 23

4.1 Proposed method . 23

4.2 Simulation Results . 29

4.3 Experimental Setup . 41

4.4 Experimental Results . 44

4.4.1 Khepera III . 46

4.4.2 Pioneer 3-DX . 59

5 Conclusions and Future Work 69

5.1 Conclusions . 69

ii

5.2 Future Work . 70

A Generating a Trajectory 71

A.1 Figure Eight . 71

A.2 Figure Eight with Dither . 73

A.3 Alterative Parameterized Dynamic Model 76

B Installing and Using the Khepera III Toolbox 80

B.1 Installing the toolbox . 80

B.2 Writing a program . 81

iii

List of Figures

2.1 Coordinates for a disk on plane [9] 5

2.2 Coordinates for unicycle on plane [9] 5

2.3 Differential-drive mobile robot . 6

2.4 Terms of dynamic model of differential-drive mobile robot 8

4.1 Legend for parameter evolution plots 30

4.2 Perfect initial estimates . 30

4.3 Effect of control gain on parameter convergence 31

4.4 Angular velocity and θ̂6 . 32

4.5 Parameter evolution for figure-eight trajectory 33

4.6 Parameter evolution for figure-eight trajectory with dither 34

4.7 Evolution of θ̂5 . 35

4.8 Parameter evolution . 36

4.9 Parameter evolution . 37

4.10 Regression . 39

4.11 Khepera III and Pioneer 3-DX mobile robots 42

4.12 Khepera III trajectory and error, with adaptation, poor initial esti-

mates . 47

4.13 Velocity data . 48

4.14 Acceleration data . 49

iv

4.15 Plots of linear regression . 50

4.16 Khepera III trajectory and error, no adaptation 51

4.17 Khepera III trajectory and error, with adaptation 52

4.18 Comparison of figures 4.16 and 4.17 53

4.19 Khepera III trajectory and error with heavy payload, no adaptation 54

4.20 Khepera III trajectory and error with heavy payload, with adapta-

tion. 55

4.21 Khepera III trajectory and error with light payload, no adaptation. . 56

4.22 Khepera III trajectory and error with light payload, with adaptation. 57

4.23 Comparison of Figures 4.21 and 4.22 58

4.24 Pioneer 3-DX trajectory and error, poor initial estimates, with adap-

tation. 60

4.25 Velocity data . 61

4.26 Acceleration data . 62

4.27 Plots of linear regression. 63

4.28 Pioneer 3-DX trajectory and error, adapting all parameters except θ̂4

and θ̂6 . 65

4.29 Pioneer 3-DX trajectory and error, heavy payload, no adaptation . . 66

4.30 Pioneer 3-DX trajectory and error, heavy payload, with adaptation . 68

v

List of Tables

2.1 List of terms of dynamic model . 9

4.1 Parameter final and initial values . 33

4.2 Parameter final and initial values . 34

4.3 Khepera III steady state velocity values 45

4.4 Pioneer 3-DX steady state velocity values 45

vi

Chapter 1

Introduction

Wheeled mobile robots are becoming more popular for performing tasks that are

too dangerous or tedious for humans, and with the increase in available technology,

it is becoming more cost-effective to replace a worker with a mobile robot. Typical

environments for wheeled mobile robots include warehouses, factories, military ap-

plications, and planetary exploration. In situations where the robot must maneuver

with precision, a feedback controller for robot motion is necessary.

Regarding the control of wheeled mobile robots, early papers typically focused on

using only the kinematics. It was shown through simulations in [1] that for high

speed and high load situations, the dynamics of the robot should be considered for

better performance in trajectory tracking. Most of the research regarding control

based on the dynamic model has shown only simulation results.

For instance, [2] was the first paper to consider control using the dynamic model

with unknown dynamics, and provided torques as inputs to the model, and showed

simulation results. [3] provided a controller based on the dynamic model that took

inputs from a kinematic controller, and altered them to compensate for the dynam-

1

ics of a robot. In [4], a combined kinematic and dynamic control law was presented.

Their model also assumed torques as input, and provided only simulation results. [5]

created a simplified dynamic model, and analyzed the influence of the uncertainties.

They too treated the inputs as torques, and provided only simulation results.

Most of the controllers based on the dynamic model considered torques as the in-

puts, however most commercially available robots do not take torques as inputs. In

an effort to design a more practical controller, [6] developed a controller that used

voltages as inputs to the dynamic model, but only provided simulation results. [7]

created a controller that gave current as input to the dynamic model, and provided

experimental results on a custom robot for adaptive steering and adaptive cruise

control. More recently [8] provided a dynamic model based on the parameterization

from [5], which provided reference velocities as inputs. This is the most practical

situation, as most commercially available robots take reference velocities as inputs.

A field of research that seems to have remained mostly untouched, likely due to only

the recent use of the dynamic model in control of mobile robots in experiments, is

the identification of the parameters of wheeled mobile robots. This work addresses

the problem of creating an initial estimate for the parameters of a wheeled mobile

robot, and provides experimental results showing both its need and effectiveness.

This thesis is organized as follows; In Chapter 2, first the kinematics of a differential

drive mobile robot are reviewed. The dynamic model of a mobile robot which takes

velocities as inputs, and includes actuator dynamics is then derived, followed by an

overview of odometry as a feedback mechanism. Controlling the robot using the

dynamic model is discussed in Chapter 3, assuming that the constants the represent

2

physical parameters of the robot are perfectly known. To overcome this assumption,

an adaptive controller which updates the estimates of the unknown parameters of

the robot is shown. To implement the adaptive controller on physical robots, a

reasonable initial estimate of the parameters must first be generated. The main

contribution is located in Chapter 4, which covers how to create an appropriate

initial estimate. Simulation results are provided, and experimental results for two

different robots are shown at the end of the chapter.

In the future, we would like to have a two-part scheme that first executes the pro-

posed method to generate initial parameter estimates, and then uses adaptive control

to further tune the parameters. This scheme should be completed entirely on-board

the robot. Furthermore, we would like the scheme to be easily transferable between

heterogeneous mobile robots.

3

Chapter 2

Modeling Differential-Drive

Wheeled Mobile Robots

2.1 Kinematics of Wheeled Mobile Robots.

The pose a mobile robot is defined by three coordinates represented by the vector

ξ,

ξ =













x

y

φ













(2.1)

The set of reachable poses defined by C encompasses the plane that the robot is

maneuvering about. The motion of ξ, however, is subject to a nonholonomic con-

straint. This constraint means that the kinematic model of the robot is not capable

of producing instantaneous motion in any direction. To illustrate this, we observe

the kinematic constraint of a unicycle model on a plane. Since the unicycle cannot

move in the direction perpendicular to the plane containing the wheel, its motion is

constrained by ẋ sinφ = ẏ cosφ. Although this constraint restricts the robot from

4

Figure 2.1: Coordinates for a disk on plane [9]

instantaneously moving in any direction, it does not restrict the robot from reaching

any pose on the plane it is moving about [9]. The kinematic model of the unicy-

Figure 2.2: Coordinates for unicycle on plane [9]

cle robot relates the forward and angular velocities (v, ω) to Cartesian velocities

(ẋ, ẏ, φ̇). The x component of the forward velocity can be expressed as ẋ = v cosφ,

the y component can be expressed as ẏ = v sin φ. The kinematic model can then be

represented as












ẋ

ẏ

φ̇













=













cosφ 0

sinφ 0

0 1



















v

ω






(2.2)

5

or

ξ̇ = S(ξ)v (2.3)

where v =

[

v ω

]⊤

and S(ξ) is the transformation matrix that relates v and ξ̇.

A differential-drive robot has the same kinematic constraint and kinematic model

as the unicycle model. The only additional work needed is to relate the forward

and angular velocities of the unicycle with the individual wheel velocities for the

differential drive robot.

v =
r(ωr + ωl)

2
, ω =

r(ωr − ωl)

d
(2.4)

where ωr and ωl are the right and left wheel rotational velocities, r is the radius of

r

d

v

ω

Figure 2.3: Differential-drive mobile robot

the wheels, and d is the distance between the wheels (Figure 2.3).

From the two equations above, the individual wheel velocities can be found as a

6

function of v and ω,

ωr =
2v + dω

2r
, ωl =

2v − dω

2r
(2.5)

Typically, throughout an analysis of a control scheme for a differential drive robot,

the unicycle model is used. In this case, the inputs to the kinematic model are still v

and ω, and the wheel velocities are only calculated when the controller is physically

implemented.

This section provided information on transforming between a robot’s forward and

angular velocities to Cartesian velocities. As stated previously, early works focused

on controlling a mobile robot using only the kinematic model. This assumes that

any velocity v or ω given to the robot is instantaneously achieved, and does not

account for dynamic effects of the robot. To accurately model the motion of a

wheeled mobile robot, the dynamics should be accounted for [1], as a mobile robot

in practice cannot achieve instantaneous acceleration. The inputs to the dynamic

model generate the forward and angular velocities of the mobile robot, which can

then be used with the kinematic model to provide Cartesian velocities. The next

section derives a parameterized dynamic model, where the parameters are physical

constants of the model, and vary from robot to robot.

7

2.2 Parameterized Dynamic Model

A parameterized dynamic model of a differential-drive mobile robot, including actu-

ator dynamics, was presented in [5]. This model treated the inputs to the motors as

torques. In [8], the same parameterized model was used, with the alteration of using

reference velocities as the motor inputs. Their model considered a proportional-

derivative controller on the forward and angular velocity inputs. Another common

configuration is to have proportional-derivative control on the individual wheel ve-

locities. In this section, the parameterized dynamic model for a mobile robot with

proportional-derivative control on the individual wheel velocities is derived. The

parameterized dynamic model for a mobile robot with a proportional-derivative

controller on the forward and angular velocities is shown in Appendix A.3.

Figure 2.4: Terms of dynamic model of differential-drive mobile robot

8

G location of center of mass
B location of wheel baseline center
E location of external force
C location of castor wheel
h point being tracked
v forward velocity
v̄ lateral velocity
ω angular velocity
ϕ heading
d distance between driving wheels
b distance from center of gravity to axle
a distance from axle to point being tracked
e distance from axle to external force
c distance from axle to castor wheel
Frrx′ longitudinal tire forces of right wheel
Frry′ lateral tire forces of right wheel
Frlx′ longitudinal tire forces of left wheel
Frly′ lateral tire forces of left wheel
Fcx′ longitudinal force exerted on C by castor
Fcy′ lateral force exerted on C by castor
Fex′ longitudinal force exerted on E
Fey′ lateral force exerted on E
τe moment exerted on E

Table 2.1: List of terms of dynamic model

9

First, we find the robot force and moment equations about local coordinate frame:

ΣFx′ = m(v̇ − v̄ω) = Frlx′ + Frrx′ + Fex′ + Fcx′

ΣFy′ = m(˙̄v − vω) = Frly′ + Frry′ + Fey′ + Fcy′ (2.6)

ΣMz′ = Izω̇ =
d

2
(Frrx′ − Frlx′)− b(Frly′ + Frry′) · · ·

+(e− b)Fey′ + (c− b)Fcy′ + τe,

where m is the mass of the robot and Iz is the robot moment of inertia about the

local z′ axis.

The kinematics of the point being tracked, h, are;

ẋ = v cosψ − v̄ sinψ − (a− b)ω sinψ (2.7)

ẏ = v sinψ − v̄ cosψ + (a− b)ω cosψ,

with

v =
1

2
[r(ωr + ωl) + (vsr + vsl)]

ω =
1

d
[r(ωr − ωl) + (vsr − vsl)] (2.8)

v̄ =
b

d
[r(ωr − ωl) + (vsr + vsl)] + v̄s,

where v is the forward velocity, ω is the angular velocity, v̄ is the lateral velocity, vr

and vl are the left and right linear velocities of each wheel, and any velocity with

an s superscript is a velocity due to wheel slippage.

10

The dynamic model of the drive motors are obtained by neglecting the voltage on

the inductance as:

τr = ka(vr − kbωr)/Ra τl = ka(vl − kbωl)/Ra, (2.9)

where vr and vl are the input voltages applied to the right and left motors, kb is the

motor voltage constant multiplied by the gear ratio, Ra is the electrical resistance

constant, τr and τl are the right and left motor torques multiplied by the gear ratio,

and ka is the torque constant multiplied by the gear ratio.

The dynamics of the combined wheels and motors are:

Ieω̇r +Beωr = τr − Frrx′Rt (2.10)

Ieω̇l +Beωl = τl − Frlx′Rt,

where Ie is the moment of inertia and Be is the viscous friction coefficient of the

motor, gearbox, and wheel combination, and Rt is the radius of the tire.

The voltage applied to each motor is given by the output of the onboard motor

controller. This is a proportional-derivative controller, and the dynamics of the

motor input voltage are:

vl = kP (ωlref − ωl) + kDω̇l (2.11)

vr = kP (ωrref − ωr) + kDω̇r,

where ωlref and ωrref are the commanded left and right wheel velocities, and ωl and

11

ωr are the actual wheel velocities. The derivatives of the commanded velocities were

neglected since the robot cannot be given a reference acceleration.

The above equations are now manipulated in order to arrive at the parameterized

dynamic model of the robot.

From the second and third equations of (2.6) we can solve for the angular accelera-

tion,

ω̇ =
d

2Iz
(Frrx′ − Frlx′) +

e

Iz
Fey′ +

c

Iz
Fcy′ +

1

Iz
τe −

mb

Iz
(˙̄v + vω). (2.12)

Combining equations (2.9) and (2.10),

Frrx′ =
ka

RaRt

(vr − kbωr)−
Ie
Rt

ω̇r −
Be

Rt

ωr (2.13)

Frlx′ =
ka

RaRt

(vl − kbωl)−
Ie
Rt

ω̇l −
Be

Rt

ωl,

and from equation (2.9),

ωr + ωl =
2

r
v −

1

r
(vsr + vsl) (2.14)

ωr − ωl =
d

r
ω −

1

r
(vsr − vsl).

The above equation along with (2.11) gives,

12

vr + vl = kP (ωrref + ωlref)− kD(ω̇r + ω̇l)−
2kP
r
v +

kP
r
(vsr + vsl) (2.15)

vr − vl = kP (ωrref − ωlref)− kD(ω̇r − ω̇l)−
kPd

r
ω +

kP
r
(vsr − vsl).

From equation (2.8),

ωr + ωl =
2v − (vsr + vsl)

r
(2.16)

ωr − ωl =
ωd− (vsr − vsl)

r
.

Combining the lateral forces acting on each wheel (equation (2.13)) and the angular

acceleration (equation (2.12)), and using the second equations of (2.14) and (2.15)

as well as the above equation, and using the following parameterization,

θ1 =
RaRtm+ 2kakD + 2IeRa

2kakP

θ2 =
kakDd

2 + IeRad
2 + 2RaRtr(mb

2 + Iz)

kakPd2

θ3 =
RaRtrm

2kakP

θ4 =
ka(kP + kb) + 2RaBe

2kakP

θ5 =
2RaRtrmb

kakPd2

θ6 =
RaRt(kP + kb) +RaBe

kakP

gives,

θ2ω̇ = ωref − θ6ω +
1

d
θ6(v

s
r − vsl) +

kakD +RaIe
kakPd

(v̇sr − v̇sl) +

2RaRtr

kakpd2
(eFey′ + cFcy′ + τe)− θ5 ˙̄v

s − θ5vω. (2.17)

13

Similarly, using the lateral forces, the sum of forces about the x′ axis, and the first

equations of (2.14) and (2.15) with (2.16),

θ1v̇ = vref − θ4v +
1

2
θ4(v

s
r + vsl) +

kakD +RaIe
2kakP

(v̇sr + v̇sl) +

RaRtr

2kakP
(Fex′ + Fcx′) + θ3ω

2 +
RaRtrm

2kakP
ωv̄s. (2.18)

The combination of equations (2.16) and (2.7), along with the above two equations

gives the dynamic model,

























ẋ

ẏ

ψ̇

v̇

ω̇

























=

























v cosψ − aω sinψ

v sinψ + aω cosψ

ω

θ3
θ1
ω2 − θ4

θ1
v

−θ5
θ2
vω − θ6

θ2
ω

























+

























0 0

0 0

0 0

1
θ1

0

0 1
θ2































vref

ωref






+

























δx

δy

0

δ̄v

δ̄ω

























(2.19)

where
[

δx δy 0 δ̄v δ̄ω

]⊤

is the vector of uncertainty associated with the slip velocities and external forces.

The above model is for a robot that has proportional-derivative control on the for-

ward and angular velocities of the robot. Another common method for regulating

the velocity of the robot is to have proportional-derivative control on the individ-

ual wheel velocities. This yields the same parameterized model but with different

parameters, and is shown in Appendix A.3

14

Chapter 3

Control Based on the Dynamic

Model

If it is desired to have the mobile robot track a trajectory, then a method for creating

inputs for the robot to achieve this is necessary. To do this, a control algorithm

is used. The control algorithm uses information about the robot’s position and

velocity and compares it to the desired position and velocity based on the defined

trajectory. Using this information, along with the dynamic model of the robot,

the algorithm creates inputs for the robot which should drive the robot to track

the desired trajectory. Since the position and velocity of the robot are needed as

feedback for the controller, odometry, which relates individual wheel rotation to

robot position and orientation is used.

This chapter first discusses localization using odometry in Section 3.1. Control

using inverse dynamics is discussed in Section 3.2. To improve the performance of

the controller, an adaptive controller is derived in Section 3.3.

15

3.1 Odometry

To utilize a closed-loop controller for controlling the motion of the robot, the robot

must be made aware of its current position. In continuous time, the robot can be

localized with the forward and angular velocities as

x(t) =

∫ t

0

v(τ) cos (φ(τ)) dτ + x0 (3.1)

y(t) =

∫ t

0

v(τ) sin (φ(τ)) dτ + y0

φ(t) =

∫ t

0

ω(τ) dτ + φ0

where x0, y0, and φ0 represent the robot’s pose at time t = 0 [10].

Since physical robots are discrete time devices with incremental encoder data, the

current pose has to be estimated. Based on encoder data, the forward and angular

displacements (∆s and ∆φ) are

∆s =
r(∆φr +∆φl)

2
, ∆φ =

r(∆φr −∆φl)

d
(3.2)

where ∆φr and ∆φl are the changes in angular position of the right and left wheels.

Using the incremental changes in forward and angular displacements, the new posi-

tion and orientation of the robot can be estimated as

ξk =













xk

yk

φk













=













xk−1

yk−1

φk−1













+













cos φ̄k 0

sin φ̄k 0

0 1



















∆s

∆φ






, (3.3)

16

where ξk is the new position estimate at time t, ξk−1 is the previous estimate at

t − kT (where T is the sampling period), and the angle is obtained by a second

order Runge-Kutta approximation as φ̄k = φk−1 +∆φ/2 [11]

3.2 Inverse Dynamic Control

The dynamic model of the mobile robot can be split into 2 parts - the kinematics

and the dynamics [12]. If we look at the bottom half of the dynamic model and

neglect the disturbance terms,







v̇

ω̇






=













θ3
θ1
ω2 − θ4

θ1
v

−θ5
θ2
vω − θ6

θ2
ω













+













1
θ1

1
θ2



















vref

ωref






. (3.4)

The above system relates the inputs of the robot (vref and ωref) to the outputs (v̇

and ω̇). Assuming all of the parameters of the dynamic model are known, the inputs

can be solved for in terms of the velocities and accelerations. This is known as an

Inverse Dynamic Controller, as the dynamics of the robot are used to solve for the

required input velocities to produce desired accelerations.

Solving for vref and ωref ,







vref

ωref






=







v̇ 0 −ω2 v 0 0

0 ω̇ 0 0 vω ω






×

































θ1

θ2

θ3

θ4

θ5

θ6

































(3.5)

17

or







vref

ωref






=







θ1 0

0 θ2













v̇

ω̇






+







0 0 −ω2 v 0 0

0 0 0 0 uω ω






×

































θ1

θ2

θ3

θ4

θ5

θ6

































, (3.6)

which has the form

vref = Dv̇ + η (3.7)

with

vref =







vref

ωref






, v =







v

ω







η =







0 0 −ω2 v 0 0

0 0 0 0 vω ω






×

































θ1

θ2

θ3

θ4

θ5

θ6

































, D =







θ1 0

0 θ2







If the parameters are perfectly known, equation (3.7) can be used to calculate the

required input vref to generate the desired output v. Since we would also like to

compensate for any positional errors in order to track a desired trajectory, we then

18

consider a control law of the form [12]







vref

ωref






=







θ1 0

0 θ2













σ1

σ2






+







0 0 −ω2 v 0 0

0 0 0 0 vω ω






×

































θ1

θ2

θ3

θ4

θ5

θ6

































(3.8)

or

vref = Dσ + η, (3.9)

where

σ1 = v̇kref + kvṽ (3.10)

σ2 = ω̇k
ref + kωω̃ (3.11)

with kv and kω positive constants, and ṽ = vkref − v and ω̃ = ωk
ref − ω, where vkref

and ωk
ref are the forward and angular velocities generated by a kinematic controller

which tracks the point h.

If we define G as

G =







σ1 0 −ω2 v 0 0

0 σ2 0 0 vω ω






, (3.12)

then equation (3.9) can be written as

vref = Gθ (3.13)

19

This inverse dynamic controller assumes that the vector of parameters θ is perfectly

known, which is rarely the case. To remedy this situation, an adaptive controller

can be used. The adaptive controller is given an initial estimate of the parameters,

and then updates each parameter based on the error between what was produced

and what was expected.

20

3.3 Adaptation of Dynamic Parameters

If the parameters are not perfectly known, then their estimates, represented by the

vector θ̂, should be used in place of θ. Then the proposed controller has the form

vref = Gθ̂

= Gθ +Gθ̃

= Dσ + η +Gθ̃ (3.14)

where θ̃ = θ̂ − θ

If we set equation (3.7) equal to equation (3.14) then we have

Dv̇ + η = Dσ + η +Gθ̃ (3.15)

Cancelling the η term on both sides and rearranging,

D(σ − v̇) = −Gθ̃ (3.16)

Since σ = v̇k

ref
+Kṽ, then σ − v̇ = ˙̃v +Kṽ with ṽ = vk

ref
− v and K =







kv 0

0 kω






,

then equation (3.16) becomes

D(˙̃v +Kṽ) = −Gθ̃ (3.17)

The error equation can now be written as ˙̃v,

˙̃v = −D−1Gθ̃ −Kṽ (3.18)

21

A Lyapunov function is then chosen as

V =
1

2
ṽ⊤Dṽ +

1

2
θ̃
⊤

γ−1θ̃, (3.19)

where γ is a positive-definite 6 × 6 matrix, and D is positive definite due to the

physical properties of the robot. Differentiating V with respect to time, and noticing

that
˙̃
θ =

˙̂
θ since θ is a constant,

V̇ = −ṽ⊤DKṽ − ṽ⊤Gθ̃ + θ̃
⊤

γ−1 ˙̂θ. (3.20)

Thus, if the parameter-update law is chosen to be [12]

˙̂
θ = γG⊤ṽ, (3.21)

then

V̇ = −ṽ⊤DKṽ, (3.22)

and V̇ ≤ 0, which means that ṽ, θ̃ ∈ L∞. Equation (3.22) can be integrated to

obtain

V (T) +

∫ T

0

ṽ⊤DKṽ dt ≤ V0, (3.23)

then

V (T) + λmin(DK)

∫ T

0

ṽ⊤ṽ dt ≤ V0, (3.24)

which implies that ṽ ∈ L2. Using the fact that θ̃, ṽ ∈ L∞ we then have from

equation (3.18) that ˙̃v ∈ L∞. Since ṽ ∈ L2 ∩ L∞ with ˙̃v ∈ L∞, then an application

of Barbalat’s Lemma gives ṽ → 0 as t→ ∞.

22

Chapter 4

Parameter Estimation

4.1 Proposed method

Although in simulation any initial parameter estimate is sufficient for convergence

to the true value, in practice, the initial estimate must be close to the true value.

Thus, before the adaptive controller can be implemented, an acceptable estimate

of the parameters must be produced. Of the methods that were developed, all are

effective in simulation, but only one is effective in practice. These methods are

outlined below.

Parameter projection

The parameter projection method utilizes prior knowledge of physical constants of

the robot in question to develop bounds on the parameter estimates. To create the

bounds, the terms that make up each parameter should be considered. For instance,

for θ̂5, if it is known that the mass m of the robot is somewhere between 8 and 9kg,

then this knowledge can be used to develop a range for θ̂5. However, all of the

terms that comprise each parameter must be estimated in order to create such a

23

range. If a term is known with complete certainty (for example, we may know the

proportional and derivative gains of the low-level controller), then these values can

be treated as constants when creating the parameter ranges. Once the bounds are

acquired, the initial estimate can be obtained by taking the average of the upper

and lower bound. The values of the bounds are then used in the parameter update

law to restrict a parameter from leaving the bounds. For example, if it is known

that θ3 is negative, but the value of θ̂3 is zero and
˙̂
θ3 is positive (such that θ̂3 will

become positive), then the parameter update law for that term is disabled. In the

simulation environment, where the parameters of the dynamic model of the robot are

perfectly known, it is easy to produce these bounds. In practice, however, it is not so

straightforward. The designer of the controller may not have access to the knowledge

of some of the physical constants. For instance, the proportional-derivative gains of

the motor controllers may be something not published by the manufacturer. The

properties of the motors themselves, i.e. rotor inertia, the voltage constant, and the

torque constant may not be available from the motor manufacturer (or worse, the

motor manufacturer may be unknown). This is the main drawback of the parameter

projection method - we must have a reasonable estimate of all of the terms in each

parameter. If the initial estimate is not close to the true value, the estimate may

not converge. Alternatively, the bounds produced may not enclose the true value.

Linear regression

The main drawback of the parameter projection method is that we need to have

reasonable estimates for each term of each parameter. Ideally, we would like a

method for generating initial parameter estimates that requires no a priori knowledge

of the terms comprising the parameters. Such a method would be convenient in that

it would be easily transferable between robots of different dynamics, and relieves

24

any concerns of finding estimates for each term of the parameters. If we consider

the parameterized dynamic equation of the robot,







vref

ωref






=







v̇ 0 −ω2 v 0 0

0 ω̇ 0 0 vω ω






×

































θ1

θ2

θ3

θ4

θ5

θ6

































, (4.1)

the parameters can be obtained using the knowledge of vref , ωref , and the regressor

matrix. In a noise-free situation, the parameters can be solved for exactly. In

reality, a linear regression can be used to produce the best estimate based on the

inputs provided and the outputs measured. On most commercially available robots,

the accelerations v̇ and ω̇ are not available for measurement, and therefore must

be estimated using the velocity data. Once the accelerations are estimated, the

regressor matrix can be constructed, and a linear regression can be applied. In both

simulation and experimental results, this has yielded acceptable values for the initial

parameter estimates. The proposed method is as follows;

1. Excite the robot’s vref and ωref inputs with sufficiently rich signals.

2. Record the robot’s v and ω outputs.

3. After all of the data is collected, filter the recorded velocities.

4. Differentiate the filtered velocities to produce estimates of v̇ and ω̇.

5. Construct the regressor matrix from the filtered and estimated values.

6. Perform a linear regression to obtain the estimates of the parameters.

25

7. Using the estimates obtained from the linear regression, the inverse dynamic

controller can now be used, along with the adaptive controller to update the

parameter estimates if needed.

To perform the linear regression, equation (4.1) is broken into two equations;

vref =

[

v̇ −ω2 v

]













θ1

θ3

θ4













, ωref =

[

ω̇ vω ω

]













θ2

θ5

θ6













(4.2)

For the case of the forward velocity, if data is then recorded with n observations,

we have


















vref1

vref2
...

vrefn



















=



















v̇1 −ω2
1 v1

v̇2 −ω2
2 v2

...
...

...

v̇n −ω2
n vn































θ̂1

θ̂3

θ̂4













(4.3)

which can be written as

Y = Xb (4.4)

whereY is the predictor vector of length n containing the inputs vref , X is the n by 3

regressor matrix, and b is the vector of the three parameter estimates. If the matrix

X is of rank 3, then we can solve for the parameter vector b by left-multiplying

both sides by the pseudoinverse of X [13]. Then, we have

b = (X⊤X)−1X⊤Y (4.5)

26

or













θ̂1

θ̂3

θ̂4













=















































v̇1 v̇2 . . . v̇n

−ω2
1 −ω2

2 . . . −ω2
n

v1 v2 . . . vn































v̇1 −ω2
1 v1

v̇2 −ω2
2 v2

...
...

...

v̇n −ω2
n vn





















































−1

(4.6)

×













v̇1 v̇2 . . . v̇n

−ω2
1 −ω2

2 . . . −ω2
n

v1 v2 . . . vn































vref1

vref2
...

vrefn



















Similarly, for ωref ,













θ̂2

θ̂5

θ̂6













=















































ω̇1 ω̇2 . . . ω̇n

v1ω1 v2ω2 . . . vnωn

ω1 ω2 . . . ωn































ω̇1 v1ω1 ω1

ω̇2 v1ω2 ω2

...
...

...

ω̇n v1ωn ωn





















































−1

(4.7)

×













ω̇1 ω̇2 . . . ω̇n

v1ω1 v2ω2 . . . vnωn

ω1 ω2 . . . ωn































ωref1

ωref2

...

ωrefn



















This method is appealing in that it requires no knowledge of the terms that comprise

the parameters. It can therefore easily be applied to any robot that shares the same

parameterization, even if the parameters themselves have a different structure. For

instance, any differential drive robot will have the parameterization used here. How-

ever, a differential drive robot that has a low-level proportional-derivate controller

27

on forward and angular velocities will have parameters of a different form than one

that has proportional-derivate control on individual wheel velocities. Regardless of

this difference, since both robots share the same form of the parameterized model,

this method will work for both robots. This method can also be completely au-

tomated such that all the programmer needs to do is load the control algorithm

onto the robot. The robot can then perform the above steps on-board to obtain the

parameter estimates autonomously.

In a variation on the above approach, two of the parameters can first easily be ob-

tained. Observing equation (4.1), if the robot has only constant forward velocity

and a constant input vref , then we have a simple case where vref = θ̂4v. Similarly

for purely constant angular velocity, ωref = θ̂6ω. Intuitively, these values should be

close to unity, as we expect the robot’s low-level controller to achieve and maintain

the reference inputs. The robot can therefore be subjected to a constant forward

velocity, and after a steady-state velocity is reached, dividing vref by v will yield an

estimate for θ̂4. Doing the same for the angular velocity thereby produces two out

of the six unknown parameters.

28

4.2 Simulation Results

Computer simulations were performed using Matlab. The dynamic model of the

robot and the parameter update law were modeled as an 11 state system of first

order differential equations, where the first 5 states were the robot dynamics, and

the last 6 states were the parameter estimates of the robot. The kinematic control

law used to generate the vkref and ωk
ref inputs to the dynamic model is taken from

[11] as

vkref = vd cos ϕ̃+ k1(x̃ cosϕ+ ỹ sinϕ) (4.8)

ωk
ref = ωd + k2vd

sin ϕ̃

ϕ̃
(ỹ cosϕ− x̃ sinϕ) + k3ϕ̃

where

x̃ = xd − x

ỹ = yd − y

ϕ̃ = ϕd − ϕ

Using this kinematic control law, the point h being tracked in figure 2.4 is on the

axle, and therefore h = 0. The purpose of the kinematic control law above is

to generate reference velocities to keep the robot on a desired trajectory. The

trajectory is defined by xd(t), yd(t), and ϕd(t). The trajectory can be composed of

any continuously differentiable functions defining xd(t) and yd(t). ϕd(t) is defined by

the angle formed by the velocity resulting from xd(t) and yd(t). In all simulations

presented here, the robot is following a figure-eight style trajectory as defined in

Appendix A.

29

Simulations were performed to analyze the performance of the adaptive controller

in different scenarios. First, a simulation was run using perfect parameter estimates

and perfect initial conditions for position, but the robot having an initial velocity

of zero, which is not the initial desired velocity. Although the parameter estimates

begin at their true values, the values changed because of the error in initial velocity.

θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ̂6

Figure 4.1: Legend for parameter evolution plots

distance error (θ̂i = θ)

time [s]

er
ro
r
[m

]

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3
×10−3

(a) Distance error

Evolution of adaptive terms (θ̂i = θi)

t [s]

θ̂

0 1000 2000 3000 4000 5000 6000 7000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Parameter evolution

Figure 4.2: Perfect initial estimates

Figure 4.2(a) shows the error between the actual position and desired position along

the trajectory versus time for 50 iterations of the figure-eight trajectory. As time

increases the error decreases. In Figure 4.2(b), it can be observed that even though

the initial parameter estimates are perfect, they do not remain constant due to the

imperfect initial condition on velocity.

30

Effect of control gains on parameter convergence

In simulation, any positive control gain is suitable. Given a proper excitation, a

large control gain will drive the parameter estimate to the true value faster than

a smaller gain. This is demonstrated in Figure 4.3. Looking at Figure 4.3, we

Evolution of θ̂6 for different gains

t [s]

θ̂ 6

θ6
γ6 = 1
γ6 = 10
γ6 = 100

0 200 400 600 800 1000 1200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 4.3: Effect of control gain on parameter convergence

can see that that θ̂6 updates periodically. This is due to the input provided to the

robot. Observing that
˙̂
θ6 = γ6ω(ω

k
ref − ω) shows that θ̂6 will not change under

two conditions; If the angular velocity of the robot, ω is zero, or if the commanded

angular velocity ωk
ref matches ω.

Figure 4.4 shows that θ̂6 changes the least when ω is close to zero. It also shows

that as time progresses, for a given angular velocity the change in θ̂6 decreases,

suggesting that the controller is becoming more accurate in producing an angular

velocity ω close to ωk
ref .

31

ω and Evolution of θ̂6

t [s]

θ̂ 6
−

0.
8,
ω

ω̂
θ6

0 200 400 600 800 1000 1200

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4.4: Angular velocity and θ̂6

Effect of input signal on parameter convergence

From the results in Figure 4.4, it is obvious that the input to the system has a

strong impact on the convergence of parameters. Here, the robot is again following

the figure-eight trajectory. For a given set of initial estimates, the parameters may

converge to different values in the case of different input signals. Below are examples

of two simulations with identical initial parameters and perfect initial conditions for

the position and velocity of the robot.

For the case of a simple figure-eight style trajectory, all terms except θ̂1 and θ̂5

approach their true values.

32

Evolution of adaptive terms

t [s]

θ̂

0 200 400 600 800 1000 1200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.5: Parameter evolution for figure-eight trajectory

θ̂ initial final true
1 0.4000 1.0291 0.2604
2 0.1000 0.3711 0.2509
3 0.7000 0.2847 -0.0004
4 0.3000 0.9539 0.9965
5 0.1000 0.1198 0.0026
6 0.6000 1.0779 1.0768

Table 4.1: Parameter final and initial values

33

Evolution of adaptive terms

t [s]

θ̂

0 200 400 600 800 1000 1200
-0.5

0

0.5

1

1.5

2

2.5

3

Figure 4.6: Parameter evolution for figure-eight trajectory with dither

For the case of a figure-eight style trajectory with a dither signal, all terms except

θ̂2 approach their true values.

θ̂ initial final true
1 0.4000 1.0939 0.2604
2 0.1000 2.7351 0.2509
3 0.7000 0.0595 -0.0004
4 0.3000 0.9216 0.9965
5 0.1000 0.2005 0.0026
6 0.6000 1.0739 1.0768

Table 4.2: Parameter final and initial values

34

Effect of other parameters on parameter convergence

The convergence of a particular parameter can depend on the values of other pa-

rameters. This is demonstrated in the two simulations below.

Evolution of adaptive terms

t [s]

θ̂

0 200 400 600 800 1000 1200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.7: Evolution of θ̂5

In Figure 4.7, all parameter estimates are perfect, except for θ̂5 (represented by the

solid black line). The only nonzero adaptive gain is γ5 = 10, such that only θ̂5 is

being updated. From the figure, we can see that θ̂5 is slowly approaching its true

value. Figure 4.8(a) shows the evolution of θ̂5 for non-perfect parameter estimates,

with only θ̂5 being updated. In this case, θ̂5 moves away from its true value.

Considering that
˙̂
θ5 = γ5(ω

k
ref − ω), we know that

˙̂
θ5 depends on ω. If we look at

the dynamic model of the robot, it can be seen that the angular velocity ω of the

robot contains the parameters θ2, θ5, and θ6. Thus if the estimates for θ2 and θ6

are inaccurate, and we try to adapt θ̂5, the value for θ̂5 may converge to some other

value to compensate for the error in angular velocity being produced due to the

inaccuracies in
˙̂
θ2 and

˙̂
θ6

35

Evolution of adaptive terms

t [s]

θ̂

0 200 400 600 800 1000 1200
-0.5

0

0.5

1

1.5

2

2.5

(a) updating θ̂5 only

Evolution of adaptive terms

t [s]

θ̂

0 200 400 600 800 1000 1200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) updating θ̂2, θ̂5, and θ̂6

Figure 4.8: Parameter evolution

Under the same initial conditions and input signals, if all terms relating to angular

velocity are adapted (θ̂2, θ̂5, and θ̂6), then the parameters approach their true values,

as shown in Figure 4.8(b).

36

Parameter projection

Since the parameters of the dynamic model represent combinations of physical con-

stants of the robot, most of which are known or can be estimated with some upper

and lower bound, bounds on the parameter estimates can be made. Using these

upper and lower bounds, the adaptive law can be modified to constrain each param-

eter estimate to remain within the predefined bounds [14].

If the following parameter update considered,

˙̂
θi =























0 if θ̂i ≥ θ̂imax
and γig

⊤

i
ṽ > 0

γig
⊤

i
ṽ if θ̂imin

< θ̂i < θ̂imax

0 if θ̂i ≤ θ̂imin
and γig

⊤

i
ṽ < 0

(4.9)

then the adaptive law is only active when each parameter is within its bounds.

Evolution of adaptive terms

t [s]

θ̂

0 20 40 60 80 100 120
-0.5

0

0.5

1

1.5

2

2.5

3

(a) updating θ̂5 only

Evolution of adaptive terms

t [s]

θ̂

0 20 40 60 80 100 120
-0.5

0

0.5

1

1.5

2

(b) updating θ̂2, θ̂5, and θ̂6

Figure 4.9: Parameter evolution

37

The simulation results for the linear regression method proposed in section 4.1 are

shown in Figure 4.10. For the first case (Figures 4.10(a) and 4.10(b)), the system is

given an input signal of vref = 1 and ωref = 1. For the second case, the system was

given inputs of

vref = 0.2 sin (t) + 0.1 sin (1.5t) + 0.1 sin (3t) + 0.1 sin (0.1t) . . .

+ 0.08 sin (0.013t) + 0.1 sin (5t)

ωref = (5π/3) sin (2t) + 0.1 sin (0.1t) + 0.1 sin (0.09t)

38

Linear regression

v̇ω̇

v r
e
f
−
θ̂ 4
v

-1
0

1
2

3
4

-2

0

2

4

-0.5

-0.5

0

0

0.5

0.5

1

(a) vref regression

v̇ω̇

ω
r
e
f
−
θ̂ 6
ω

-1
0

1
2

3
4

-2

0

2

4

-0.5

-0.5

0

0

0.5

0.5

1

(b) ωref regression

v̇ω̇

v r
e
f
−
θ̂ 4
v

-1
-0.5

0
0.5

1

-10

-5

0

5

10
-0.2

-0.1

0

0.1

0.2

0.3

(c) vref regression

v̇ω̇

ω
r
e
f
−
θ̂ 6
ω

-1
-0.5

0
0.5

1

-10

-5

0

5

10

-4

-4

-2

-2

0

2

4

(d) ωref regression

Figure 4.10: Regression

39

It was previously shown that the inputs provided to the dynamic model had a strong

impact on parameter convergence. In figure 4.10, this is shown for the case of linear

regression. It is clear that for the case where a more complex input signal is provided

(figures 4.10(c) and 4.10(d)), it is easier to define the surface that is created by the

datapoints. For this reason, when collecting data for a linear regression, a signal

that provides sufficient excitation should be chosen. In general, the signal should

contain at least half as many distinct frequencies as there are unknown parameters

[14].

40

4.3 Experimental Setup

The proposed controller is tested on a Pioneer 3-DX and a Khepera III (figure 4.11).

The Pioneer 3-DX is a larger differential drive mobile robot, having a mass of 9 kilo-

grams. It has a maximum forward velocity of 1.4 meters per second, and a track

width of 34 centimeters. The Khepera III is a much smaller robot, with a mass of

742 grams. It has a maximum forward velocity of 500 millimeters per second, and a

track width of 89 millimeters. Because of the difference in size between these robots,

one can expect different dynamics between the two. Both robots take a forward and

angular reference velocity as inputs. It is worth noting that the Pioneer achieves the

reference velocities via proportional-derivative control on the forward and angular

velocities of the robot, whereas the Khepera III uses proportional-derivative control

on individual wheel velocities.

The Pioneer 3-DX has an onboard computer with a 1.8 GHz processor, 512 megabytes

of RAM and uses Debian Linux as an operating system. The Khepera III utilizes

a Gumstix Verdex computer-on-module operating at 600 MHz, with 128 megabytes

of RAM, and running OpenEmbedded Angstrom Linux as the operating system.

Since these two robots are made by different manufacturers, they do not use the

same libraries to interface the software with the hardware. For instance, the com-

mand to specify a forward velocity on the Pioneer 3-DX is not the same command

used on the Khepera III. A piece of software that addresses this issue is Player [15].

Player is a “cross-platform robot device interface” which provides a uniform inter-

face from robot to robot (provided that the robot is supported). Player is essentially

an additional layer of software on top of the basic libraries used to interface with

the robot. It is a very useful piece of software if the code being written is planned

to be used on multiple different platforms. Player also has the capability of being

41

executed remotely. For instance, the program can be run on a base station, while

commanding motors and reading sensors by wireless internet. In the experiments

performed here, the program is run on the physical robot to eliminate any time de-

lays that may be associated with wireless communication. There is a disadvantage

of using player, namely the added computation time required. On the Pioneer 3-DX,

this is not much of an issue since it has a relatively fast processor. On the Khepera

III however, the sample time of the algorithm being implemented using Player is

about 0.8 second (compared to 0.3 second on the Pioneer 3-DX). For this reason,

using Player on the Khepera III is not a viable option. Instead, the Khepera III

toolbox is used. The Khepera III toolbox provides libraries, modules, and scripts for

interfacing with the Khepera III. Using the Khepera III toolbox decreased the sam-

ple time substantially to about 0.02 second. This does take away the convenience

of being able to run the same code on both robots, as was the case with Player.

Since the main advantage of using Player is now not applicable, there is no reason

to suffer the additional computational time in using it on the Pioneer. The pioneer

is therefore programmed in its native API, Aria. Information on programming in

Aria can be found in [16].

Figure 4.11: Khepera III and Pioneer 3-DX mobile robots

42

In the experiments performed in the subsequent sections, all localization is based

off of each robot’s onboard odometry. During each iteration of the program, the

time elapsed from the start of the program is calculated. Based on the trajectory

programmed, the robot calculates a desired position, orientation, and velocity. This

data is recorded in a file desired. Each iteration, the robot also polls the encoders,

and calculates an estimate of its current position, which is stored in actual. From

the files desired and actual, plots of the desired and actual trajectories can be gen-

erated. Considering that the files store the x position in the first column, the y

position in the second column, and the orientation φ in the third column, a plot

of the trajectories can be generated in Matlab by executing the following commands;

load actual;

load desired;

plot(desired(:,1),desired(:,2),’-b’);

hold on

plot(actual(:,1),actual(:,2),’-r’);

The distance error is calculated by the following equation;

error =
√

(xd − x)2 + (yd − y)2

The distance error is the main performance metric in the experiments performed,

and is what is trying to be minimized.

43

4.4 Experimental Results

To demonstrate the necessity of generating reasonable initial parameter estimates

and the effectiveness of the proposed method for doing so, various experiments were

performed. The experiments were performed on two different robots, a Khepera III

and a Pioneer 3-DX. Both of these robots are similar in that they are differentially

driven, but differ in size. The difference in scale of the robots should add confidence

that the proposed method is effective regardless of the actual parameters being

estimated, and requires no modification to perform on different systems. To show

the effect of varying the dynamics of the robot, each robot is subject to a payload.

The adaptive control law will adjust the parameter estimates to compensate for the

change in dynamics introduced by the payload.

As discussed in Section 4.1, the values of θ̂4 and θ̂6 are expected to be close to 1. It

will be shown that both for the Khepera III and Pioneer 3-DX, the initial estimates

for these two parameters are indeed close to 1. If we observe the terms that comprise

each parameter (see Section 2.2), it should be noticed that the only parameters that

would be effected by an additional payload are θ1, θ2, θ3, and θ5, since these are the

only parameters that contain mass, inertia, and the location of the center of gravity.

Therefore, θ̂4 and θ̂6 can be held as constant during adaptation.

To further verify this assumption, each robot was subjected to various forward and

angular velocities, both with and without a payload. Comparing the steady-state

value with the reference value shows that the assumption is indeed valid.

44

(a) without payload

vref vsteadystate

0.1 0.1000
0.2 0.1999
0.3 0.3001

ωref ωsteadystate

2.0 1.9987
4.0 4.0004
6.0 5.9990

(b) with payload

vref vsteadystate

0.1 0.0999
0.2 0.1999
0.3 0.2935

ωref ωsteadystate

2.0 1.9987
4.0 3.9987
6.0 5.9207

Table 4.3: Khepera III steady state velocity values

(a) without payload

vref vsteadystate

0.1 0.0985
0.3 0.2927
0.5 0.4784

ωref ωsteadystate

0.5 0.4771
1.0 0.9821
1.5 1.4597

(b) with payload

vref vsteadystate

0.1 0.0985
0.3 0.2917
0.5 0.4721

ωref ωsteadystate

0.5 0.4840
1.0 0.9847
1.5 1.4756

Table 4.4: Pioneer 3-DX steady state velocity values

45

4.4.1 Khepera III

In simulation, it was shown that the initial parameter error does not need to be

small for the parameter estimates to converge. In reality, this is not the case. To

illustrate this, the adaptive controller was implemented on the Khepera III with all

initial parameter estimates chosen as 1. The robot is commanded to follow a figure-

eight style trajectory. At t = 30 seconds, the parameter adaptation begins. At this

time, it can be seen in figure 4.12(b) that the distance error begins to increase with

time, indicating a degradation in performance. Figure 4.12(c) shows the parameter

estimates. Although the true values are not known, it is clear that some of the

parameters are diverging quickly.

46

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) Distance Error

Evolution of adaptive terms

t [s]

θ̂

0 20 40 60 80 100
-50

0

50

100

150

200

250

300

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 20 40 60 80 100
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) Heading Error

Figure 4.12: Khepera III trajectory and error, with adaptation, poor initial estimates

47

From the results shown in figure 4.12, it is obvious that a more intelligent estimate

of the initial parameters is needed. Using the method outlined in section 4.1, a more

reasonable initial estimate is generated.

First, the robot is given inputs of

vref = 0.1 + 0.05 sin (2t) + 0.05 sin (t) + 0.05 sin (t/3) + 0.05 sin (t/11)

ωref = 1.5 + 0.5 sin (3t/2) + 0.5 sin (t) + 0.25 sin (t/2) + 0.25 sin (t/5)

The forward and angular velocities were recorded by the robot as it moved. After 2

minutes, the robot was stopped and the data was collected. The velocity data was

filtered (figure 4.13)and differentiated to obtain the accelerations (figure 4.14).

t[s]

v

v
v filtered

t[s]

ω

ω
ω filtered

0 20 40 60 80 100 120

0 20 40 60 80 100 120

-1

0

1

2

3

-0.1

0

0.1

0.2

0.3

Figure 4.13: Velocity data

48

t[s]

v̇
v̇ from unfiltered data
v̇ from filtered data

t[s]

ω̇

ω̇ from unfiltered data
ω̇ from filtered data

0 20 40 60 80 100 120

0 20 40 60 80 100 120

-10

-5

0

5

10

-0.5

0

0.5

Figure 4.14: Acceleration data

Although the velocity data of figure 4.13 doesn’t appear to be too noisy, it is obvious

that the acceleration data acquired by differentiating the noisy signal is useless.

Here, the data was filtered once forward, and again in reverse to eliminate any

added delay. The type of filter used was a Butterworth filter with a cutoff frequency

of 0.5 Hz. Using the filtered signals, a linear regression can be performed to obtain

estimates of the parameters.

49

(a) vref regression (b) ωref regression

Figure 4.15: Plots of linear regression

Performing the linear regression as described in equations (4.6) and (4.7) on the

filtered signals, θ̂ is found to be

θ̂1 = 0.0228

θ̂2 = 0.0568

θ̂3 = −0.0001

θ̂4 = 1.0030

θ̂5 = 0.0732

θ̂6 = 0.9981

As discussed in Section 4.1 (pg. 27), θ̂4 and θ̂6 were expected to be close to 1. Since

our values for these parameters obtained from the linear regression are close to 1,

this is a good indicator that the parameter estimates may be accurate.

50

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) Error

Figure 4.16: Khepera III trajectory and error, no adaptation

Using the parameter estimates from the previous page, the controller is again im-

plemented on the Khepera III to follow a figure-eight style trajectory. In this case,

there is no parameter adaptation so the accuracy of the initial estimates generated

by the proposed method can be better evaluated.

In Figure 4.16, we can see a drastic increase in performance in comparison with the

case of all parameters initially chosen as 1 (pg 47).

51

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) Distance Error

Evolution of adaptive terms

t [s]

θ̂

0 50 100 150
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 50 100 150
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(d) Heading Error

Figure 4.17: Khepera III trajectory and error, with adaptation

52

Although in Figure 4.16, the performance of the controller is acceptable with using

the initial parameter estimates, and no parameter adaptation, there is still room for

improvement. Figure 4.17 shows the same scenario, but with adaptation beginning

at t = 3 seconds. A slight decrease in distance error can be noticed, along with

a small change in the parameter estimates. A comparison of the errors in the two

scenarios is shown in Figure 4.18.
ts

distance error

time [s]

er
ro
r
[m

]

not adapting
adapting

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(a) Distance Error

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

not adapting
adapting

0 10 20 30 40 50 60
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(b) Heading Error

Figure 4.18: Comparison of figures 4.16 and 4.17

53

Desired trajectory vs. actual

x [m]

y
[m

] reference
actual

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Error

Figure 4.19: Khepera III trajectory and error with heavy payload, no adaptation

To demonstrate the effectiveness of the adaptive controller even when a payload is

added to thereby alter the parameters of the dynamic model, a heavy payload is

added to the Khepera III. First, the controller is used without adaptation (Figure

4.19). Obviously, the controller is demonstrating poor performance when a payload

is added and the parameter estimates have no been changed. The adaptive controller

was then used (Figure 4.20), and performance improved greatly. Although there is

still room for improvement in the trajectory tracking, the experiment was stopped

because the Khepera III is not suited to carry such a heavy payload.

54

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Distance Error

Evolution of adaptive terms

t [s]

θ̂

0 10 20 30 40 50 60
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 10 20 30 40 50 60
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(d) Heading Error

Figure 4.20: Khepera III trajectory and error with heavy payload, with adaptation.

55

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) Error

Figure 4.21: Khepera III trajectory and error with light payload, no adaptation.

The Khepera III then had a lighter payload attached, and the initial parameter

estimates were again generated using the proposed method to demonstrate that it is

effective under different loading conditions using the same input signals and method

performed initially (page 48). First, the robot with the light payload was controlled

using the initial estimates without adaptation, as shown in Figure 4.21. Here, the

controller is performing well, again showing that the initial parameter estimate gen-

erated by the proposed method is accurate.

The experiment was then executed again using adaptation, and an increase in per-

formance is noticed (Figure 4.22).

56

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Distance Error

Evolution of adaptive terms

t [s]

θ̂

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 50 100 150 200 250
-0.1

-0.05

0

0.05

0.1

0.15

(d) Heading Error

Figure 4.22: Khepera III trajectory and error with light payload, with adaptation.

57

distance error

time [s]

er
ro
r
[m

]

not adapting
adapting

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Trajectory

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

not adapting
adapting

0 10 20 30 40 50 60 70
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Distance Error

Figure 4.23: Comparison of Figures 4.21 and 4.22

58

4.4.2 Pioneer 3-DX

As with the Khepera III, we first demonstrate the with poor initial estimates for

the parameters, the parameters may not converge. In Figure 4.24, all parameter

estimates are initially one. Again, this shows that a more intelligent initial estimate

is needed.

59

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Error

Evolution of adaptive terms

t [s]

θ̂

0 20 40 60 80 100 120 140 160
-5

0

5

10

15

20

25

30

35

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 20 40 60 80 100 120 140 160
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(d) Heading Error

Figure 4.24: Pioneer 3-DX trajectory and error, poor initial estimates, with adap-
tation.

60

First, the robot is given inputs of

vref = 0.4 + 0.1 sin (2t) + 0.1 sin (t) + 0.1 sin (t/3) + 0.1 sin (t/11)

ωref = 0.75 + 0.25 sin (3t/2) + 0.25 sin (t) + 0.25 sin (t/2) + 0.25 sin (t/5)

The forward and angular velocities were recorded by the robot as it moved. After

about 2 and a half minutes, the robot was stopped and the data was collected. The

velocity data was filtered (figure 4.25)and differentiated to obtain the accelerations

(figure 4.26).

t[s]

v

v
v filtered

t[s]

ω

ω
ω filtered

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

Figure 4.25: Velocity data

61

t[s]

v̇
v̇ from unfiltered data
v̇ from filtered data

t[s]

ω̇

ω̇ from unfiltered data
ω̇ from filtered data

0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

-2

-1

0

1

2

-0.5

0

0.5

Figure 4.26: Acceleration data

Again, the velocity data of figure 4.25 doesn’t appear to be too noisy, but the

acceleration data derived from the raw velocities is not good. This demonstrates

the importance of filtering any signal before differentiating it. The data was filtered

the same way as the case for the Khepera, once forward, and again in reverse to

eliminate any added delay using a Butterworth filter with a cutoff frequency of

0.5 Hz. Using the filtered signals, a linear regression can be performed to obtain

estimates of the parameters.

62

(a) vref regression (b) ωref regression

Figure 4.27: Plots of linear regression.

Performing the linear regression as described in equations (4.6) and (4.7) on the

filtered signals, θ̂ is found to be

θ̂1 = 0.2183

θ̂2 = 0.1918

θ̂3 = −0.0050

θ̂4 = 0.9993

θ̂5 = −0.0279

θ̂6 = 1.0142.

Once again, the values obtained for θ̂4 and θ̂6 are close to one.

63

In Figure 4.28, the Pioneer 3-DX is using the parameter estimates generated by the

proposed method, and at t = 30 seconds, adaptation begins. Only a small decrease

in the distance error can be noticed, suggesting that initial parameter estimates are

decent. Viewing Figure 4.28(c), the parameters quickly converge to new values not

far from the initial estimates.

64

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Error

Evolution of adaptive terms

t [s]

θ̂

0 50 100 150 200 250
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 50 100 150 200 250
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(d) Heading Error

Figure 4.28: Pioneer 3-DX trajectory and error, adapting all parameters except θ̂4
and θ̂6

65

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Error

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 10 20 30 40 50 60
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c) Heading Error

Figure 4.29: Pioneer 3-DX trajectory and error, heavy payload, no adaptation .

66

The Pioneer 3-DX was then subjected to a heavy payload. The results of tracking

a figure-eight trajectory using the inverse dynamic controller with the estimates for

the robot with no payload without adaptation are shown in Figure 4.29.

The same scenario was performed again using adaptation, shown in Figure 4.30.

Again, there is a slight improvement in performance after updating is enabled at

t = 30 seconds, and the parameters quickly converge to new values. It should also

be noted that a payload has less of an effect on the larger robot than the smaller

one, where the Khepera III was not even able to track a trajectory when a large

payload was placed on it.

67

Desired trajectory vs. actual

x [m]

y
[m

]

reference
actual

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Trajectory

distance error

time [s]

er
ro
r
[m

]

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Error

Evolution of adaptive terms

t [s]

θ̂

0 50 100 150
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Parameter Evolution

heading error

time [s]

h
ea
d
in
g
er
ro
r
(r
ad

)

0 50 100 150
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(d) Heading Error

Figure 4.30: Pioneer 3-DX trajectory and error, heavy payload, with adaptation .

68

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, a review of the kinematics and dynamics of a differential drive wheeled

mobile robot was given. An adaptive controller for the parameters of the dynamic

model was also studied. In the physical implementation of the adaptive controller

based on the dynamic model, it was noticed that the accuracy of the initial estimate

of the parameters is important for the convergence of the parameter estimates, as

well as the performance of the inverse dynamic controller. A method for generating

an initial parameter estimate was proposed. The estimate was created by giving

the robot forward and angular reference velocities, collecting the actual velocities,

and performing a linear regression on the data. This method allowed for use on

different robotic platforms, and provided acceptable initial estimates. Experimen-

tal results, performed on two differentially-driven mobile robots, showed that the

proposed method is effective in generating initial estimates. The method proposed

here is attractive in that it requires absolutely no knowledge of what the parameters

might be, and can easily be implemented on platforms of whose parameters are very

69

different, without any adjustment.

5.2 Future Work

In this work, a robot was given input signals, and data was collected. The initial

parameters were then generated on a separate computer. For future work, the ini-

tial parameter estimation should be completely autonomously by the robot. The

controller applied in the experimental results section did not use any form of satu-

ration control, so extra care was taken when generating trajectories so the robot’s

actuators would not saturate. An improvement to the current controller would be

to incorporate saturation control. The excitation signals used when collecting data

for the linear regression were chosen empirically, but it is suspected that there ex-

ist excitation signals that would allow for the identification of the parameters in a

minimum amount of time. Performing the linear regression with projection, using

information as to what the range of parameter estimates may be, could possibly

yield more accurate initial estimates.

70

Appendix A

Generating a Trajectory

A.1 Figure Eight

−Ax 0 Ax

−Ay

0

Ay

A figure-eight style trajectory is convenient because it contains an equal number of

left and right hand turns, and the trajectory can be run indefinitely while occupying

a finite space. To define a figure-eight trajectory, the desired x position should be a

sinusoid of frequency 2f , and the desired y position should be a sinusoid of frequency

f .

71

xd = Ax sin (2ft) (A.1)

yd = Ay sin (ft)

where Ax and Ay are the amplitudes in the x and y directions.

In order to feed the trajectory into a controller, the heading angle, forward velocity,

and angular velocity must also be defined. If a dither signal is to be added, the

angular acceleration is needed. The desired forward velocity of the robot is found

by taking the derivative of the desired x and y positions and taking the square root

of the sum of their squares:

ẋd = 2fAx cos (2ft) (A.2)

ẏd = fAy cos (ft) (A.3)

thus

vd =
√

ẋ2d + ẏ2d (A.4)

and the desired heading angle is defined by:

φd = atan2(ẏd, ẋd) (A.5)

where atan2 is the 360-degree variation of arctan .

72

Similarly, the desired accelerations and jerks are:

ẍd = −4f 2Ax sin (2ft) (A.6)

ÿd = −f 2Ay sin (ft) (A.7)

(A.8)

...
x d = −8f 3Ax cos (2ft) (A.9)

...
y d = −f 3Ay cos (ft) (A.10)

The desired angular velocity and acceleration are defined as follows:

ωd =
ÿdẋd − ẍdẏd
ẋ2d + ẏ2d

(A.11)

αd =
(
...
y dẋd −

...
x dẏd)(ẋ

2
d + ẏ2d)− (ÿdẋd − ẍdẏd)(2ẋdẍd + 2ẏdÿd)

(ẋ2d + ẏ2d)
2

(A.12)

A.2 Figure Eight with Dither

The dither signal is added to the robot’s local x coordinate, and can be defined as:

d = g sin (ht) cos (kt)elt (A.13)

In order to add the dither signal to a trajectory, the first and second derivatives

73

must be known, and are:

ḋ = g[h cos (ht) cos (kt)− k sin (ht) sin (kt) + l sin (ht) cos (kt)]elt (A.14)

d̈ = g[(l2 − h2 − k2) sin (ht) cos (kt)− 2hk cos (ht) sin (kt) + (A.15)

2hl cos (ht) cos (kt)− 2kl sin (ht) sin (kt)]elt (A.16)

The desired position with dither can then be defined as:

xddither = xd + d cos (
π

2
− φd) (A.17)

= xd + d sinφd (A.18)

(A.19)

yddither = yd + d sin (
π

2
− φd) (A.20)

= yd + d cosφd (A.21)

The remainder of the necessary parameters are found as they were previously:

ẋddither = ẋd + ḋ sin φd + dωd cosφd (A.22)

ẏddither = ẏd + ḋ cos φd − dωd sinφd (A.23)

vddither =
√

ẋ2ddither + ẏ2ddither (A.24)

φddither = atan2(ẏddither , ẋddither) (A.25)

74

ẍddither = ẍd + d̈ sinφd + 2ḋωd cosφd − dω2
d sin φd (A.26)

ÿddither = ÿd + d̈ cosφd − 2ḋωd sinφd − dω2
d cosφd (A.27)

ωddither =
ÿddither ẋddither − ẍddither ẏddither

ẋ2ddither + ẏ2ddither
(A.28)

−Ax 0 Ax

−Ay

0

Ay

75

A.3 Alterative Parameterized Dynamic Model

Referring to pages 8 and 9 for the list of terms of the dynamic model, and the rest

of the derivation in section 2.2, the parameterized dynamic model for a differential

drive wheeled mobile robot with proportional-derivative gains on the forward and

angular velocties is obtained with some changes.

First, equation (2.11) is changed to







vv

vω






=







KPT (vref − vme)−KDT v̇me

KPR(ωref − ωme)−KDRω̇me






(A.29)

with

vme =
1

2
[r(ωr + ωl)] ωme =

1

d
[r(ωr − ωl)] (A.30)

vv =
vl + vr

2
vω =

vr − vl
2

(A.31)

where vme and ωme are the measured forward and angular velocities, and vref and

ωref are the commanded forward and angular velocities. The derivatives of the com-

manded velocities were neglected.

Now, the parameterized dynamic model is solved similar to section 2.2

From the second and third equations of (2.6) we can solve for the angular accelera-

tion,

ω̇ =
d

2Iz
(Frrx′ − Frlx′) +

e

Iz
Fey′ +

c

Iz
Fcy′ +

1

Iz
τe −

mb

Iz
(˙̄v + vω) (A.32)

76

Combining equations (2.9) and (2.10),

Frrx′ =
ka

RaRt

(vr − kbωr)−
Ie
Rt

ω̇r −
Be

Rt

ωr (A.33)

Frlx′ =
ka

RaRt

(vl − kbωl)−
Ie
Rt

ω̇l −
Be

Rt

ωl

And from equation (2.9),

ωr + ωl =
2

r
v −

1

r
(vsr + vsl) (A.34)

ωr − ωl =
d

r
ω −

1

r
(vsr − vsl)

The above equation along with (A.29) gives,

vr + vl = 2kPT

(

vref − v +
1

2
(vsr + vsl)

)

− 2kDT

(

v̇ −
1

2
(vsr + vsl)

)

(A.35)

vr − vl = 2kPR

(

ωref − ω +
1

d
(vsr − vsl)

)

− 2kDR

(

ω̇ −
1

d
(vsr − vsl)

)

The lateral velocity is found from the second and third equations of (2.8) as,

v̄ = bω + v̄s (A.36)

Combining the lateral forces acting on each wheel (equation (2.13)) and the angular

acceleration (equation (A.32)), and using the second equations of (A.34) and (A.35)

77

as well as the above equation for lateral velocity,

θ2ω̇ = ωref − θ6ω +
1

d
θ6(v

s
r − vsl) +

(

kDR

dkPR

+
RaIe

2kPRkar

)

(v̇sr − v̇sl) +

RaRt

dkPRka
(eFey′ + cFcy′ + τe)− θ5 ˙̄v

s − θ5vω (A.37)

Similarly, using the lateral forces, the sum of forces about the x′ axis, and the first

equations of (A.34) and (A.35) with (A.36),

θ1v̇ = vref − θ4v +
1

2
θ4(v

s
r + vsl) +

(

kDT

2kPT

+
RaIe

2kPTkar

)

(v̇sr + v̇sl) +

RaRt

2kPTka
(Fex′ + Fcx′) + θ3ω

2 +
RaRtm

2kPTka
ωv̄s (A.38)

The combination of equations (A.36) and (2.7), along with the above two equations

gives the dynamic model,

























ẋ

ẏ

ψ̇

v̇

ω̇

























=

























v cosψ − aω sinψ

v sinψ + aω cosψ

ω

θ3
θ1
ω2 − θ4

θ1
v

−θ5
θ2
vω − θ6

θ2
ω

























+

























0 0

0 0

0 0

1
θ1

0

0 1
θ2































vref

ωref






+

























δx

δy

0

δ̄v

δ̄ω

























(A.39)

78

with

θ1 =

(

Ra

ka

)

/(2rkPT)

θ2 =

(

Ra

ka
(Ied

2 + 2Rtr(Iz +mb2)) + 2rdkDR

)

/(2rdkPR)

θ3 =
Ra

ka
mbRt/(2kPT)

θ4 =
Ra

ka

(

kakb
Ra

+Be

)

/(rkPT) + 1

θ5 =
Ra

ka
mbRt/(dkPR)

θ6 =
Ra

ka

(

kakb
Ra

+Be

)

d/(2rkPR) + 1

79

Appendix B

Installing and Using the Khepera

III Toolbox

B.1 Installing the toolbox

The Khepera III toolbox requires nothing to be done onboard the Khepera.

First, download the latest revision of the toolbox;

svn checkout https://khepera3toolbox.svn.sourceforge.net/svnroot/khepera3toolbox

The Khepera III toolbox is now installed in the directory in which svn was run.

The following environment variables need to be added to ~/.bashrc.

First, type

vi ~/.bashrc

Then, at the bottom of the file, add

export K3 ROOT=/path/to/your/khepera3toolbox

80

export PATH=$PATH:$K3 ROOT/Scripts

A new terminal window will need to be opened for bash to recognize the new environ-

ment variables (alternatively, the user can just type bash in the current terminal).

B.2 Writing a program

First, the cross-compiler for the ARM architecture must be installed. This is

availeble from K-team’s website by downloading the Korebot toolchain. Once

the toolchain is downloaded, the path to the ARM compiler must be added to

~/.bashrc. In ~/.bashrc, add

export PATH=$PATH:/path/to/your/arm/toolchain/bin

Now, to make a new program, in the Programs directory of the Khepera III toolbox,

type

k3-create-program program name

where program name is the name of the program you wish to create. Doing this cre-

ates a template file in C with all of the necessary header files, as well as a makefile

within a directory named after the program just created. Entering the directory of

the program and typing make builds the program.

The program can be placed on the Khepera by typing

k3put +ip address program name

Where ip address is the IP address of the Khepera III robot being used.

81

Bibliography

[1] F. D. Boyden and S. A. Velinsky, “Dynamic modeling of wheeled mobile robots
for high load applications,” in IEEE International conference on Robotics and

Automation, August 2002.

[2] T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a non-
holonomic mobile robot,” in IEEE Transactions on Robotics and Automation,
October 2000.

[3] M. S. Kim, J. H. Shin, and J. J. Lee, “Design of a robust adaptive controller for
a mobile robot,” in Internation Conference on Intelligent Robots and Systems,
2000.

[4] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Backstep-
ping kinematics into dynamics,” Journal of Robotic Systems, vol. 14, pp. 149–
163, 1997.

[5] Y. Zhang, D. Hong, J. H. Chung, and S. Velinsky, “Dynamic model based
robust tracking control of a differentially steered wheeled mobile robot,” in
Proceedings of the American Control Conference, June 1998.

[6] J. S. Choi and B. K. Kim, “Near minimum-time direct voltage control algo-
rithms for wheeled mobile robots with current and voltage constraints,” in
Robotica, 2001.

[7] R. Rajagopalan and N. Barakat, “Velocity control of wheeled mobile robots
using computed torque control and its performance for a differentially driven
robot,” Journal of Robotic Systems, vol. 14, pp. 325–340, 1997.

[8] C. D. L. Cruz and R. Carelli, “Dynamic model based formation control and
obstacle avoidance of multi-robot systems,” Robotica, vol. 26, pp. 345–356,
2008.

[9] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics; Modelling, Plan-

ning and Control. London, England: Springer-Verlag, 2009.

[10] G. Dudek and M. Jenkin, Handbook of Robotics, ch. 20, Inertial Sensors, GPS,
and Odometry. Springer-Verlag, 2008.

82

[11] G. Oriolo, A. D. Luca, and M. Vendittelli, “Wmr control via dynamic feedback
linearization: design, implementation, and experimental validation,” in IEEE

Transactions on Control Systems Technology, November 2002.

[12] F. N. Martins, W. C. Celeste, and R. Carelli, “An adaptive dynamic controller
for autonomous mobile robot trajectory tracking,” Control Engineering Prac-

tice, vol. 16, pp. 1354–1363, 2008.

[13] N. R. Draper and H. Smith, Applied regression analysis. New York, New York:
John Wiley & Sons, 1998.

[14] P. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, 1995.

[15] “Player/stage.” http://playerstage.sourceforge.net/, May 2011.

[16] A. Whitbrook, Programming mobile robots with Aria and Player. London,
England: Springer-Verlag, 2010.

[17] F. Reyes and R. Kelly, “On parameter identification of robot manipulators,”
in Proceedings of the 1997 IEEE international conference on robotics and au-

tomation, April 1997.

[18] G. Campion, G. Bastin, and B. D’andrea-Novel, “Structural properties and
classification of kinematic and dynamic models of wheeled mobile robots,” in
IEEE Transactions on Robotics and Automation, February 1996.

[19] “Khepera iii toolbox.” http://en.wikibooks.org/wiki/Khepera_III_

Toolbox, May 2011.

[20] H. M. Deitel, How to Program C. Upper Saddle River, New Jersey: Prentice
Hall, 2001.

[21] W. Khalil, Modeling, Identification, and Control of Robots. Butterworth-
Heinemann, 2004.

83

	Worcester Polytechnic Institute
	Digital WPI
	2011-05-27

	A Dynamic Parameter Identification Method for Migrating Control Strategies Between Heterogeneous Wheeled Mobile Robots
	Jeffrey W. Laut
	Repository Citation

	thesis.dvi

