
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2006-01-11

The Assistment Builder: A tool for rapid tutor
development
Terrence E. Turner
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Turner, Terrence E., "The Assistment Builder: A tool for rapid tutor development" (2006). Masters Theses (All Theses, All Years). 56.
https://digitalcommons.wpi.edu/etd-theses/56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/56?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

The Assistment Builder: A tool for rapid tutor development

By

Terrence E Turner

A Thesis

Submitted to the faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree Master of Science

in

Computer Science

by

Date January 2005

APPROVED:

Professor Neil Heffernan, Thesis Advisor

Professor George Heineman, Thesis Reader

Professor Michael Gennert, Head of Department

2

Table of Contents
TABLE OF CONTENTS .. 2

TABLE OF FIGURES... 3

TABLE OF TABLES... 3

ABSTRACT .. 4

INTRODUCTION.. 5

1.1. PSEUDO-TUTORS ... 6
1.2. THE ASSISTMENTS PROJECT... 7
1.3. THE COMMON TUTOR OBJECT PLATFORM .. 10

2. THE ASSISTMENT BUILDER.. 12

3. DESIGN... 13

3.1. MODEL VIEW CONTROLLER... 14
3.1.1. Velocity .. 14
3.1.2. Struts .. 15

3.2. ASSISTMENT BUILDER STRUCTURE ... 16
3.3. ASSISTMENTS.. 17
3.4. FEATURES ... 20

3.4.1. Knowledge Component Tagging .. 22
3.4.2. Metadata Tagging ... 24

4. METHODS.. 24

4.1. SOFTWARE ENGINEERING METHODS ... 25
4.1.1. Builder Redesign ... 25

4.2. PROCEDURAL METHODOLOGY... 26

5. RESULTS & ANALYSIS.. 28

6. FUTURE WORK ... 32

7. CONCLUSIONS .. 34

8. REFERENCES... 37

APPENDIX A – ASSISTMENT BUILDER USE CASES... 39

APPENDIX B – ASSISTMENT BUILDER USE CASE DIAGRAM.. 45

APPENDIX C – ASSISTMENT BUILDER UI PRELIMINARY INTERFACE DESIGN...................... 46

APPENDIX D – BUILDER CTOP CLASS DIAGRAM .. 58

3

Table of Figures
Figure 1 A running Assistment .. 8
Figure 2 Assistment Reporting interface .. 8
Figure 3 The Assistment Portal login screen.. 9
Figure 4 An overview of the CTOP design .. 11
Figure 5 The Assistment Builder interface ... 13
Figure 6 Velocity and Struts working together [17] ... 16
Figure 7 Assistment management toolbar... 20
Figure 8 Question section question text entry box.. 21
Figure 9 Question interface selection and image uploading ... 21
Figure 10 Assistment Builder answer section ... 21
Figure 11 Assistment Builder hint section.. 22
Figure 12 Knowledge Component tagging screen.. 23
Figure 13 Metadata tagging screen .. 24

Table of Tables
Table 1 Builder Logging Results ... 30

4

Abstract
Intelligent Tutoring Systems are notoriously costly to construct [1], and require PhD

level experience in cognitive science and rule based programming. The purpose of this
research was to ease the development process for building pseudo-tutors [6]. Pseudo-
tutors are ITS constructs that mimic cognitive tutors but are limited in that they only
apply to a single problem. The Assistment Builder is a tool designed to rapidly create,
test, and deploy simple pseudo-tutors. These tutors provide a simplified cognitive model
based upon a state graph designed for a specific problem. These tutors offer many of the
features of rule-based tutors, but with shorter creation time. The system simplifies the
process of tutor creation to allow users with little or no ITS experience to develop
content. The system provides a web-based interface as a means to build and store these
simple tutors we have called Assistments. This paper describes our attempt to make the
process of developing, testing, and deploying content easy for teachers. We present data
to suggest that users can develop a tutor that can be released to students in approximately
an hour.

5

Introduction

This research seeks to address the expensive development time of cognitive rule-based

tutors in Intelligent Tutoring Systems (ITS). ITS’s are educational tools that present

users with tutors, and have been shown to be effective in aiding student learning [7]. The

tutors presented track student progress and knowledge, and are able to customize

behavior based upon user actions. Many ITS’s make use of cognitive rule-based tutors,

which use a cognitive model, comprised of a series of rules, to represent the cognitive

state that a user is in. These tutors use model-tracing to extrapolate the possible actions

users can take, and offer customized feedback accordingly.

Despite the effectiveness of model-tracing rule based tutors, it has been shown that

development time can be between 100-1000 hours per hour of content created [1][7].

Creating cognitive tutors also requires high level computer science and cognitive

psychology domain knowledge, and typically PhD level experience in Artificial

intelligence rule-based programming is needed.

Professor Neil Heffernan heads the Office of Naval Research funded Assistment

Project [www.Assistment.org] that seeks to create tools to reduce the cost of developing

intelligent tutoring systems. The project focuses on two means to reduce these costs. One

is to build tools that are faster to use. The other is to make tools that are easier to use, thus

removing the need for PhD level Artificial Intelligence rule-based programmers and

cognitive scientists.

6

The goal of this thesis work was to provide a tool to allow rapid content creation by

users with little computer science or cognitive psychology background. In order to

achieve this goal our research focused on developing “pseudo-tutors” [6]. It is hoped that

these pseudo-tutors will make it easy for non-technical users like teachers to quickly

create effective tutors that can be released to students. To achieve this goal my research

involved developing a web-based application to create tutors, while also collecting data

on the amount of time it took for users to create tutors. This paper seeks to offer

evidence that the software allows users such as teachers to quickly create content that can

be released to students.

1.1. Pseudo-tutors

Pseudo-tutors represent a simplified cognitive model that is comprised of a state graph.

This graph is finite, and each node representing a possible state of the problem. User

actions are represented by arcs in the graph, with specific user actions triggering state

transitions [13]. A user’s location in the graph represents the problem’s current state, and

student actions correspond to possible transitions from that state.

Pseudo-tutors have been shown to be behaviorally equivalent to rule-based cognitive

model tutors; however the pseudo-tutors lack the ability to generalize over similar

problems [5]. A multi-column addition tutor using a full rule-based cognitive model can

be used to tutor the addition of any two numbers. A pseudo-tutor using a state graph is

tied to the two numbers that were used to create it. Despite this limitation pseudo-tutors

can be designed to predict certain behaviors and respond accordingly. Pseudo-tutors can

also combine their state graph with a branching problem structure known as scaffolding.

7

Scaffolds are sub-problems usually designed to address a specific skill needed to solve

the initial problem. Scaffolding questions in turn contain their own state graphs, and

depending upon student actions, scaffolds can branch into other scaffolds. This provides a

means for rich user interaction. The Assistment Builder was designed as a tool to create

these types of scaffolding pseudo-tutors and is the focus of my research.

1.2. The Assistments Project

The Assistment Project is research project led by Worcester Polytechnic Institute and

Carnegie Mellon University and funded by grants from the Department of Education, the

National Science Foundation, and the Office of Naval Research. The mission of the

Assistment Project is to provide cognitively-based assessment of students. This mission is

supported by three goals [12]. The first goal is to provide tutoring content to students.

The second goal is to provide useful and up-to-date reports on students to teachers. The

final goal is to provide the tools to allow teachers to create their own tutoring content.

All three of these goals are met by separate tools and applications that come together to

form the Assistment System. The Assistment Runtime is the means through which content

is presented to users [11]. Assistment Reporting provides reporting tools to teachers [3].

The Assistment Builder provides teachers with the ability to create their own content and

is the focus of this research [16]. The Assistment Web Portal ties all these parts of the

system together through a web-based interface [8]. Underlying all the applications that

comprise the Assistment Project is the Common Tutor Object Platform (CTOP) a

component framework that provides an API for creating and deploying tutors in the

8

Assistment Project [11]. Below is an image of a running Assistment as it would be seen

by a student.

Figure 1 A running Assistment

 Figure 2 contains a screenshot of the Assistment Systems reporting tools. Teachers and

Administrators can easily access information on class and individual student

performance.

Figure 2 Assistment Reporting interface

Below is a picture of the Assistment Portal login screen. The portal provides access

and navigation to all other tools and parts of the Assistment System as well as

administrative tools.

9

Figure 3 The Assistment Portal login screen

Currently the Assistment Project’s content has concentrated on the Massachusetts

Comprehensive Assessment System (MCAS). The MCAS is an educational standard

provided by the state of Massachusetts as a means to assess student knowledge in the

areas of English language arts, mathematics, science and technology/engineering, and

history and social science. The Assistment Project is focused on the 8th and 10th grade

mathematics portion of the MCAS which defines 39 skills that students must be

proficient in [9].

Most ITS systems are built to assess students’ knowledge of a set of concepts (i.e.

exams) or to assist them in acquiring a certain skill (i.e. tutorials). Students’ time is very

valuable, and a system that provides both assessments while it assists is poised to make

the best use of the time available. The Assistment system does just that.

The Assistment system provides assessment through student reports to teachers. The

reports are updated in real time, even as students are using the system. The system

provides different types of reports to teachers based on statistical analysis. Some of the

10

most important reports that we provide are the predicted MCAS score for a student,

student effort score, and the predicted student performance based on skills mapped to

previous questions.

The final goal of the Assistment Project is to provide teachers with tools to allow them

to easily create content for their own classes. The research involving the Assistment

Builder supports this final goal. My research involved creating a web based tool that

allows teachers to create content online at their own leisure, using whichever platform

they have available. The tool logged all the actions of users creating content to measure

the time it took to create content, with the goal being an improvement over the content

creation times stated in previous literature[1][7]. Later I will make claims regarding the

ease of development for the Assistment Builder and present data regarding the

performance of its users.

1.3. The Common Tutor Object Platform

At the core of the Assistment Project is the Common Tutor Object Platform (CTOP).

The CTOP is a lightweight component framework for creating and deploying all

applications in the Assistment Project [11]. All applications in the Assistment Project

make use of the CTOP, and the Assistment Builder could not exist without the

functionality provided by it.

The CTOP was designed with extensibility in mind. It consists of a core object model

and a data layer [11]. The core object model contains components considered to be

universally applicable to ITS software [11]. The Assistment Builder uses the problem

component and its subcomponents, the interface and the behavior. The interface

subcomponent is made up of high-level widgets which are interpreted by the runtime

11

application for viewing and interacting with the user [11]. The behavior subcomponent

defines the result of an action on the interface; i.e. whether a specific answer corresponds

to a transition to a new state in the state graph that represents the tutor [11].

The Assistment Builder allows a user to specify the high level widgets to be used for an

interface as well as the properties associated with that interface. It does this by using the

Interface component API to provide a form based GUI that exposes the configurable

parts of the interface in an easy to modify manner. Similarly, the Assistment Builder uses

the Behavior component API to display the state graph linking states and strategies in

form based GUI that is easy to update. Strategies currently supported include message

strategies (messages that are displayed when the user enters a specific answer or requests

help), and scaffolding questions, which are represented in a nested list structure not

dissimilar from a hierarchical tree. The Assistment Builder also updates the interface and

behavior as each one is changed. Below in figure 4 is a diagram showing the design of

the CTOP

Figure 4 An overview of the CTOP design

12

2. The Assistment Builder

The main goals of the Assistment Builder are ease of use and accessibility during

content creation. The initial prototype of the Assistment Builder was developed without

the CTOP and suffered from maintenance and stability problems. It also lacked proper

logging of users’ actions so obtaining data on content creation times was difficult. To

address these problems this research focused on pseudo-tutors and used the CTOP

component framework for ease of development and maintainability. The new

implementation of the Assistment Builder was designed to address these issues.

The web was chosen as the delivery medium to make the tool immediately available to

users. The only requirement to use the tool is registration at the Assistment website; no

software needs to be obtained or installed. The primary users are middle school and high

school teachers in the state of Massachusetts who are teaching the curriculum of the

Massachusetts Comprehensive Assessment System; thus, the Assistment Builder was

designed with an interface simple enough for users with little or no computer science and

cognitive psychology background. The Assistment Builder also includes other tools to

allow teacher themselves to create content and organize it into curriculums and assigned

to classes, all of which can be done by the teachers themselves without assistance. This

provides teachers with a total web-based solution for content management and

deployment. Below is an image of the Assistment Builder web-based user interface.

13

Figure 5 The Assistment Builder interface

3. Design

The current work is a redesign and complete rewrite of the original Assistment Builder

application. The initial Assistment Builder was a proof of concept prototype that quickly

became unable to handle the demands that were being placed on it [16]. After seeing the

14

effectiveness of even this deeply flawed version of the tool, it was decided that the entire

application would be redesigned from the ground up.

3.1. Model View Controller

The initial iteration of the builder application suffered from many design flaws that led

to difficultly extending the application and maintaining it. In order to make development

easier and faster the redesigned builder application made use of a strong Model View

Controller (MVC) design pattern. The MVC patter uses a separation of concerns to

decouple the different aspects of an application.

The view is comprised of the screens or graphical interfaces that are visible to the user,

in a web based application these are the HTML pages that are presented to the user. In

the case of the Assistment Project the model is comprised of the components that tutors

are comprised of, this model is presented to the user through the view. The controller

acts as a bridge between the view and the model translating actions on the view into

changes to the model and then updating the view accordingly.

3.1.1. Velocity

Velocity is a template engine that is based on the Java programming language. The

template language used by Velocity can reference Java objects, but separates Java code

from web pages keeping a strict MVC model. Velocity serves as a replacement for the

Java Server Pages (JSP) that were used in the prototype Assistment Builder. It allows for

a stricter compliance with MVC than JSPs. JSPs allow web pages to act directly on the

model and mix web pages with Java code. This led to buggy code in the prototype

15

Builder. Velocity provides an easy means to develop dynamic web content, while

ensuring that templates do not violate the MVC paradigm [17].

3.1.2. Struts

Struts is a Java Based framework that provides a means to implement the Model 2

MVC approach [15]. The Model 2 MVC uses a servlet to handle interaction between the

model and the view. Struts does this by using an action servlet that handles all HTTP

requests generated by the view. This servlet maps those requests to the appropriate user

defined action controller that can then update the model as needed. After the model has

been updated the action controller can forward to an updated view to reflect the changes

made to the model.

In the case of the Assistment Builder the CTOP served as the model, the Velocity

template engine served as the views that were presented to users. For the controller the

Struts framework was used. Struts mediates between the CTOP and the Velocity

templates, taking user input and updating the model and then refreshing the view

16

Figure 6 Velocity and Struts working together [17]

By separating concerns in the Builder application maintenance and updates were made

simpler. By sharing code with the CTOP any new functionality could be potentially

added to the builder by simply adding new views and controllers to translate actions onto

the expanded CTOP model. Velocity provides a stricter MVC compliance than Java

Server Pages (JSP) so it was chosen to limit the view to only displaying the data

contained in the model. In the past builder the view was implemented using JSPs that

could directly modify the model, causing many problems when debugging and updating

code.

3.2. Assistment Builder Structure

We constructed the Assistment Builder as a web application for accessibility and ease

of use purposes. The Assistment Builder can only edit a single Assistment at a time. A

content creator can build, test, and deploy an Assistment without installing any additional

17

software. It is a simple task to design and test an Assistment and release it to students.

After creating an item it takes one click to begin previewing it. After the content has

been confirmed to be correct, it takes a few steps to release it to students. If further

changes or editing are needed the Assistment can be loaded into the Assistment Builder,

modified, and saved; all changes will immediately be available in all curriculums that

contain the Assistment. By making the Assistment Builder available over the web, new

features are instantly made available to users without any software update. The central

storage of Assistments on our servers makes a library of content available to teachers

which they can easily combine with their own created content and release to their classes

organized in curriculums.

By following a strong Model 2 Model View Controller (MVC) design pattern

extending the Assistment Builder is also easy. The CTOP is designed to be extendable

with new types of tutors, widgets, and user interfaces. The Assistment Builder is only

concerned with a specific portion of the CTOP, but whenever new widgets or

functionality is added all that needs to be done is adding new controllers and views.

Sharing code between the Assistment Builder and CTOP means less code to write as well

as swift benefit from improvements to the CTOP. The decoupled nature of the

Assistment Builder also makes it easy to change or update the web forms that are

presented to users.

3.3. Assistments

The pseudo-tutors created by the Assistment Builder are a subset of the tutors possible

under the CTOP. The CTOP also supports full model-tracing tutors. These tutors and

pseudo-tutors are referred to as Assistments throughout this paper. In the context of the

18

Assistment Builder the term Assistments refers only to the pseudo-tutors that it can create

and edit. Figure 1 displays an example of a running Assistment.

An example of a basic Assistment is a top-level problem that branches into scaffolding

problems depending on the student’s actions. A problem consists of a behavior and

interface along with some metadata such as problem id and comments. The interface

contains the presentation information of a problem. Things such as what widgets,

images, and text to display to users are all stored in the interface. The interface

component is comprised of one or more interface elements. Interface elements can

contain other interface elements, and so on, making complex interface layouts possible.

Answerable elements represent a special class of interface elements. They represent those

parts of the interface that are able to be acted upon by students. It is these user actions

upon answerable elements that are captured by the Assistment Runtime and passed onto

the behavior component of a problem, to be tutored accordingly.

The behavior acts as the tutoring logic of a problem. Student actions on the interface

are captured by the Assistment Runtime and translated into high level actions that the

behavior component can interpret. These high level actions are mapped to tutoring

strategies. There are several different strategies that are able to invoke hint messages,

buggy messages, or scaffolds. These tutoring strategies are how the Assistment Runtime

responds to and tutors student actions when they are using pseudo-tutor Assistment. The

behavior component stores a problem’s state graph. As stated before arcs in the graph

represent different user actions and determine what response if any the tutor will make.

19

Correct user actions cause transitions from one state to another, incorrect user actions are

mapped to tutoring strategies and do not cause state transitions.

To simplify content creation there are only five choices of high level widgets for the

interface available to content creators: radio-buttons, pull-down menus, checkboxes, text-

fields, and algebra text fields. The Assistment Builder also allows users to add images to a

problem’s interface. For simplicity the Assistment Builder only allows a problem’s state

graph to consist of two states. The student will remain in the initial state until they

answer the problem correctly, or they are programmatically moved forward. Other

incorrect student actions will keep them in the initial state, but may be mapped to specific

tutoring strategies. These strategies include branching into scaffolding problems, or

specific textual and/or visual feedback called buggy messages that address common

student errors.

Scaffolding problems are queued immediately after the behavior consumes an interface

action that results in a transition to a strategy containing scaffolds. One or more

scaffolding problems can be mapped to a specified user action. In the Assistment Builder

an incorrect answer to the top-level problem or a request for hints on the top-level

problem will immediately queue a list of scaffolding problems specified by the content

creator. Upon answering a scaffolding problem correctly the student is presented with

the next one in the queue until it is empty. When an Assistment has no more problems in

queue it is considered to be finished.

Aside from buggy messages and scaffolds, a problem can also contain hint messages.

Hint messages provide insights into methods to solve the given problem. Combing hints,

buggy messages, and scaffolds together provides a means to create Assistments that are

20

simple but can address complex behavior. Content creators can create complex tree

structures of problems each with their own specific buggy messages, hints, and possibly

sub-scaffolds.

3.4. Features

The initial view presented to users of the Assistment Builder is a top level problem.

The view has been redesigned from the original prototype based on user input. At the

very top of the screen are several links to help manage Assistments. These are show in

figure 3. The problem is blank and users can enter answers, buggy messages, question

text and/or images as well as selecting the interface widget they wish. A content creator

can also add hints. However, hints and scaffolds are mutually exclusive in the top level

problem, and a user must select either one for the top level problem. Each section in the

problem view is collapsible to allow users to conserve screen space.

Figure 7 Assistment management toolbar

The question section is the first section that content creators will usually use. This

section allows a user to specify a problems question text using html and/or images as well

as select the interface widget they wish to use and the method of ordering answers. There

are currently three ways to order answers: random, alphabetic, or numeric. This interface

is shown in figures 4 and 5.

21

Figure 8 Question section question text entry box

Figure 9 Question interface selection and image uploading

The answer section of the problem view allows a content creator to add correct answers

and expected incorrect answers. Users can map buggy messages to a specific incorrect

answer. Users can also edit answers or toggle their correct or incorrect status. The answer

section is shown in figure 6.

Figure 10 Assistment Builder answer section

22

The hint section allows users to enter a series of hints to the applicable problem. Hints

can be reordered. This section contains an option to create a bottom out hint for the user

that just presents the student with the solution to the problem. This is shown in figure 7.

Figure 11 Assistment Builder hint section

A typical Assistment will contain scaffolds and after a user is finished creating the top

level problem they will proceed with adding scaffolds. The view for a scaffolding

problem is exactly the same as that for the top level problem, only slightly indented to

mark it as a scaffold.

3.4.1. Knowledge Component Tagging

The Assistment Builder supports others applications besides content creation. One of

these applications is the mapping of knowledge components, which are organized into

sets known as transfer models. Knowledge components are a means to map certain skills

to specific problems to specify that a problem involves knowledge of that skill. This

mapping between skills and problems allows the reporting system to track student

knowledge over time using longitudinal data analysis techniques [3]. In a paper submitted

to WWW2006, we report on the ability to track the learning of individual skills using a

23

coarse-grained model provided by that state of Massachusetts that classifies each 8th

MCAS math item in one of five categories (i.e. knowledge components in our project):

Algebra, Measurement, Geometry, Number Sense, and Data Analysis [3].

The current system has more than twenty transfer models available, each with up to

three hundred knowledge components. In order to more efficiently manage transfer

models, the Assistment Builder makes use of the preference architecture, allowing users

to specify the transfer models they will use. Once those are specified, the user is allowed

to browse the knowledge components within each transfer model and to map the ones

they select to the problem.

Figure 12 Knowledge Component tagging screen

24

3.4.2. Metadata Tagging

Another application that the Assistment Builder supports is the association of metadata

with problems. Users are allowed to associate information such as problem source (i.e.

MCAS), year, number, season, comment, description, and whether calculators are

allowed with each question. This information may be displayed to the user (i.e. whether

calculators are allowed) or it may be used solely for accounting (i.e. determining whether

all the items in for a specific year have been built).

Figure 13 Metadata tagging screen

4. Methods

The goal of the Builder was to make content creation easy and fast for our target

audience teachers. To actually show that the Builder made content creation simpler data

needed to be obtained on content creation time. This led to the need for reliable logging

of user actions. The experiences gained from the first implementation of the tool also led

to several other goals. The secondary goal of the Builder was a clear separation of

concerns and decoupled design to make maintaining and extending the Builder easier to

do.

25

4.1. Software Engineering Methods

This section covers the aspects of the design and implementation of the Assistment

Builder. The past served as a guide to the future direction of the Assistment Builder. The

shortcomings and limitations of the prototype tool led me to plan and the design the next

iteration with a component based design that promotes extensibility. The redesign effort

also took into account user input into the views that were presented through web pages.

4.1.1. Builder Redesign

For the Builder redesign effort we met with several users of the Builder prototype and

had them give input into ways to improve the layout of the user interface. Based off this

input several interface mock-ups were made. These mock-ups served as templates from

which the final Assistment Builder interface was created. Velocity templates were

designed from these mock-ups to serve as the view. Once the view was designed the

controllers were made.

After the initial views that form the user interface were created the various user actions

that could be performed were decided upon. These were placed into a use case document

that served as the basis for the controllers that would be implemented. The design of

Struts uses actions classes as controllers that translate user actions on the view to the

model, and then returns an updated view. Once the model is modified the view is

updated to reflect those changes. Users of the Assistment Builder can do several things

and these actions were used to create several Struts action classes. Users can manipulate

hints, question text and images, answers, change questions widgets, manipulate scaffolds,

26

and tag questions with knowledge components. These abilities were all translated into

Struts actions.

The current struts actions supported by the Builder are HintAction, AnswerAction,

QuestionAction, AssistmentAction, InterfaceAction, MetadataAction, and

KnowledgeComponentAction. Because different user actions are handled by separate

controllers isolating and fixing problems is much easier. If there is a problem with

modifying an item’s hints then most likely the problem lies within the HintAction

controller. Each controller was integrating with a logging module so that when an action

was performed it was passed on to the Builder logger.

The Assistment Builder logging was implemented using the Log4J framework. Log4J

provides tools to make adding logging to Java applications. Each time Struts invoked an

action class the logger automatically generated an XML log message. Log4J then stored

this log message in a database as well as writing it to a file stored on the server.

4.2. Procedural Methodology

The Assistment Builder was designed to log user actions while building Assistments.

Each log message contained the action logged (e.g. editing a hint, adding an incorrect

answer, uploading an image, etc.) the user who performed the action, the created

Assistment’s unique id, along with the users unique session id and a timestamp. Most

content creators also spend time outside of the Assistment Builder planning out content

and editing. I logged the creation and editing of various types of Assistments. Some

Assistments were simply a single MCAS problem entered into the system with no

scaffolds, hints, or bug messages. Others were more typical Assistments that contained

multiple scaffolds. Some were simply Assistments that had been built and were now

27

being modified with different numbers, otherwise known as morphs. A significant

portion of user time is spent outside of the Assistment Builder planning out content and

creating images. Thus we also performed a survey with content creators and asked them

to estimate how much time they spent building specific items in the logs. They were

asked to break down the times according to time spent on each task.

After the data were collected and added to the database they were analyzed. To

determine the time spent building each item database queries were run that compared the

first recorded timestamp of a user’s session id with the last recorded timestamp of a user

saving the created Assistment. It may be possible for a user to have the same session id

for different sessions, or for multiple users to have the same session id at different times.

To ensure that the content creation times were not accidentally mixed or determined

improperly only actions logged for the same user on the same day and session id for a

given Assistment were used.

To compile the time it took to build an Assistment only the initial session where a user

created an Assistment was considered. Time spent working on an Assistment after the

initial session in which the Assistment was created was not factored into the logged

creation time. Because of this time spent editing or modifying Assistments later was not

factored into the time calculated in creating an Assistment. Creation times under two

minutes were not considered in the data compiled. Most Assistments of that length were

usually morphs of already created content. Creation times over five hours were also not

considered, as it was assumed these represented logs of abandoned sessions that were not

properly ended. The logs only contained two examples of logged times over five hours.

28

The data collected focused on Assistments that were created and then released to

students. This greatly reduced the number of logging data that was used in determining

Assistment creation times. This also limited the possibilities of test Assistments or junk

content being factored into the results. After Assistments were created they were

organized into curriculums and then deployed to students. Log data was also acquired for

curriculum creation times in a similar manner to determine the time it took to organize

created content into curriculums.

5. Results & Analysis

Since the main goal was to provide a tool that allowed users to quickly create content

that can then be released to students, along with a secondary goal of creating software

application that was extendable and maintainable, this section will focus on these aspects

of the Assistment Builder. The data collected suggest that users can create content at a

speed faster than times recorded in previous literature. It is also shown that using the

CTOP the Assistment Builder can easily be maintained and updated with new features

and functionality.

Data was obtained for over 271 Assistments being created and edited. Some were

simply a single MCAS problem entered into the system with no scaffolds, hints, or bug

messages. Others were more typical Assistments that contained scaffolds, hints, and

buggy messages. Some were simply Assistments that had been created and were now

being modified with different numbers, these are known as morphs. Most of the users

were middle and high school teachers or WPI students. Most users had little or no

experience developing tutors in an ITS system, or with programming rule-based cognitive

tutors.

29

Many teachers were able to use the Assistment Builder as part of a university course,

and a teacher was observed in our lab creating 3 items in about two hours. In the past a

high-school mathematics teacher was able to create 15 items and morph each one,

resulting in 30 Assistments over several months. Her training consisted of approximately

four hours spread over two days in which she created 5 original Assistments under

supervision. No logging was implemented at the time, but the outcome is still

encouraging. The current Assistment Builder logs all actions at all times to both a

database and to a file as a failsafe. This ensures that all user actions are being saved to

some location at all times, avoiding this problem in the future.

Once a set of Assistments is built, they are organized into a curriculum using the

curriculum creation tool. Creating a curriculum is a simple task; in the curriculum

creation screen the user is presented with a list of all available Assistments, each of which

can be selected for inclusion in the curriculum. Once all Assistments have been selected

the curriculum is made. This log data was also used to determine the cost of organizing

Assistments after the content was created. This was important since content needs to be

placed into curriculums to be released to students so it must be considered when

considering the total time to create and deploy content.

We wanted to focus on Assistments that had been created, organized into a curriculum,

and deployed to classrooms. These Assistments are presumably of higher quality, and

they were not the majority of Assistments logged in the system. This is because many of

the curriculums and Assistments currently in use by students were created before actions

were logged. There is some initial log data for newer Assistments that eventually will be

released to students in the future, but these data were not consider as they are incomplete.

30

We obtained data for four users who created a combined total of 25 Assistments that

were then released to students. Each of these users has created several Assistments and

was familiar with the system. These users log data were compared with their estimates on

the time spent creating each item. The data is presented in table 1. The columns in the

table are identified as follows: S is the number of scaffolds in the problem, I is the time

spent creating images outside of the Assistment Builder, P is time spent planning the

Assistment outside of the Assistment Builder, B is the time spent inside the Assistment

Builder to create the item, and L is the time spent on the Assistment Builder according to

the logs. All times are measured in minutes.

It can be seen from the table that logged time in the builder usually underestimates the

time needed to build an Assistment. Most users also spend a non-trivial amount of time

outside of the Assistment Builder creating images and planning the structure of the

Assistment. Thus, Assistments that depend on images or other media take longer to build

due to time spent editing and creating the images they contain. Assistments that contain

more scaffolds also take longer to create. Our log data suggest that it takes 20.68 minutes

on average to build an Assistment. This leads to about 5.17 minutes spent per scaffold.

Table 1 Builder Logging Results

User Assistment S I P B L
C 1 5 3 10 30 60
A 2 3 3 0 45 18
A 3 5 3 0 25 19
C 4 3 3 0 30 33
A 5 4 3 0 35 37
A 6 3 3 60 10 17
A 7 3 3 0 45 14
A 8 4 3 0 30 36
A 9 3 3 60 10 7
A 10 3 3 0 25 17
A 11 4 3 60 10 16
A 12 3 3 60 10 8

31

B 13 3 40 5 15 17
B 14 3 40 20 10 7
B 15 3 0 7 5 27
B 16 3 50 15 15 13
B 17 3 30 10 10 11
B 18 6 150 40 30 25
B 19 4 60 15 10 14
B 20 5 40 15 10 6
B 21 4 60 20 15 10
D 22 11 0 5 50 40
D 23 1 0 10 10 15
D 24 3 0 10 40 30
D 25 8 0 10 30 20

A single Assistment is approximately two minutes of content; this suggests a 10:1 ratio

of creation time to content, a 10 fold improvement from the previous literature.

However, users reported an average time of about 60 minutes to build an Assistment.

This time includes estimated times spent outside of the actual builder application

planning and editing images. This leads to an estimated ratio of 30:1 which is still an

improvement in content creation times. Past literature documented content creation times

of 100-1000 hours of work per hour of content [1][7]. These times were documented for

cognitive rule based tutors. Although the Builder can only be used to create pseudo-

tutors these have been shown to be equivalent to cognitive tutors. These results offer an

improvement of 30:1 for content creation times with tutors that have been shown to be

effective [1][7].

The Assistment Builder also made use of the CTOP in its design along with the MVC

pattern to make it easy to maintain and extend. During the course of develop several

changes were made to the CTOP. One was a change in the way Assistments were stored

and retrieved. No changes were needed in the Builder for the modified CTOP to work

properly. In another case new experimental interface widgets were created within the

CTOP. All that needed to be done to get these extensions to be available to users of the

32

builder was to create new views with Velocity templates and Struts actions to be

implemented. No changes were required to be made to the CTOP. Locating and fixing

errors in the Builder code was also made simpler. Since each Struts action was only

concerned with a specific part of the CTOP it was usually the case that an error involving

editing answers was located in the AnswerAction class and so forth. This greatly

reduced the time that was spent debugging and testing code.

6. Future Work

The current Assistment Builder has been able to be used to create content, but there are

still many new features and improvements that are being planned upon. As the

Assistment Project as a whole progresses and the CTOP is extended some of these

changes will presumably have to be implemented in to Builder. There are also many

improvements that can be made based on user input and new advancements in

technology. In this chapter we will discuss the next steps that will need to happen for the

Assistment Builder to meet the new demands and improve its capabilities.

One of the immediate extensions of the Assistment Builder would be to enable a tool

that allows content creators to quickly create morphs of items. This would require a step

by step process in which a user could take a created Assistment and create a skeleton

Assistment that contains the basic structure without any numerical information. This

skeleton can then be used as the basis for morphed Assistments. The content creator

would no longer need to manipulate scaffolds and their change text to morph the

numerical data. Instead they would only enter the numbers they want the morph to

contain through a simple morphing wizard. Later any other changes could be made to the

morph through the conventional Assistment Builder interface.

33

Later improvements would allow for some form of constraint system to ensure that the

newly entered morph numbers actually make sense in the context of the Assistment. This

would mean that an Assistment prompting a student to “enter _ of 1 _” could be translated

to any other fractions and the answer and bug messages would be generated for the

content creator automatically. This would greatly increase the amount of content that

could be created with presumably little time added.

While the Assistment Builder was being implemented there were already several

extensions made to the CTOP model. One is the creation of a new interface widget, the

ValueRange widget. This interface widget allows a content creator to specify an answer

as existing between a range of numbers. This means that if a user specifies a range of 20

to 50 and a user enters 34 the tutor will respond accordingly. This gives content creators

the ability to build tutors with more flexibility with what answers are considered right and

wrong and what tutoring strategy if any will be used. Another widget that is currently

supported in the CTOP has yet to be implemented in the Assistment Builder is the

FillInTheBlank widget. The FillInTheBlank widget provides an interface to allow

students to enter combinations of multiple answers. Because of the complexity of the

FillInTheBlank interface conventional input methods will not be able to be used. This

means that entirely new views and controllers will have to be developed. These new

views and controllers will most likely need to be placed into a wizard that is specific to

the FillInTheBlank widget.

The current analysis of log data requires a person to examine database logs by hand by

using complex SQL queries. The focus of the initial development was to provide a tool

to build tutors logging utilities that made it simpler to analyze data, because of this no

34

development was done to provide reporting tools that allow data about content creation

times and actions to be accessed easily. The reports would break down builder usage by

user, as well as display time spent building items. Graphical representations could be

used to make the data more easily interpretable, as well as provide information that may

otherwise not be obvious. These types of reports could make it easier to see which

specific Struts actions content creators spend the most time performing, and adjustments

and improvements could be made accordingly. Because it is advantageous to show that

the tool consistently allows users to make content in times faster than previously

determined this reporting would be beneficial in gaining and displaying future evidence.

There have been several technological advances to dynamic web site design that

provide the ability to create much richer user interfaces. By introducing technologies like

AJAX into the user interface of the Assistment Builder. These advances improve

usability and allow the tool to offer new features to users such as drag and drop for

organizing questions and scaffolds along with the ability to submit only the part of the

view the user is currently working on which will greatly improve the interface’s

responsiveness.

7. Conclusions

The goal of the Assistment Builder was to provide a system that easily allowed users to

create and edit content. The users that were focused on where people with little or no

experience developing tutors in ITS systems, and who had no programming knowledge.

The data collected so far suggest that the tool does allow content to be created in a

relatively short amount of time by such users. This initial data looks very promising.

When more content is created and deployed for MCAS problems for newer 8th grade

35

MCAS math exams as well as 10th grade exams there will be a better measure of how

long it takes to create content. However, it is unlikely given these preliminary results that

the creation time will ever be close to the times estimated for other ITS systems using

rule-based tutors with cognitive models.

In order to do obtain these improved times over previous literature limits were placed

on the type of content that could be created with a focus on pseudo-tutors and a web

driven interface. The Assistment Builder has been in use for over a year and utilized by

many users, including teachers, have been able to create over a thousand Assistments.

These pseudo-tutors are now deployed on the web. Without the Assistment Builder much

of this content would not exist. Other data that has been logged and analyzed has shown

these tutors to aid learning and to offer tutoring that is equivalent to that of full cognitive

model tutors. The current logged content creation ratio of 30 hours of work to 1 hour of

content is still an improvement from other’s results of 100–1000 hours of work to 1 hour

of content.

Secondly the Assistment Builder was redesigned to make it easier to maintain, and to

utilize the CTOP to make development easier. The initial results suggest this is true, as

new additions to the CTOP have already been incorporated into the Builder. The current

state of the Assistment Builder will make it possible for future developers to easily extend

and maintain the base code. In many cases new additions will only require developers to

write new code in the form of struts actions with little or no changes made to existing

code. The decoupled nature of the MVC design makes it simple to integrate new changes

quickly. In the future the system can be deployed with new views and additions to the

CTOP in a manner that was not possible in with the Builder prototype.

36

Overall the initial success of the Assistment Builder has been very promising. Each day

more content is being created organized and released to students. Much of this content is

being created by users who would otherwise not be able to develop tutors for in an ITS.

37

8. References

1. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
2. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors:

Lessons learned. The Journal of the Learning Sciences, 4 (2), 167-207.
3. Feng, M., Heffernan, N.T, Koedinger, K.R., Addressing the Testing Challenge with a Web-

Based E-Assessment System that Tutors as it Assesses, Submitted to WWW2006, Edinburgh,
Scotland (2006).

4. Jackson, G.T., Person, N.K., and Graesser, A.C. (2004) Adaptive Tutorial Dialogue in
AutoTutor. Proceedings of the workshop on Dialog-based Intelligent Tutoring Systems at the
7th International conference on Intelligent Tutoring Systems. Universidade Federal de
Alagoas, Brazil, 9-13.

5. Jarvis, M., Nuzzo-Jones, G. & Heffernan. N. T. (2004) Applying Machine Learning
Techniques to Rule Generation in Intelligent Tutoring Systems. Proceedings of 7th Annual
Intelligent Tutoring Systems Conference, Maceio, Brazil. Pages 541-553

6. Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. & Hockenberry, M. (2004)
Opening the Door to Non-Programmers: Authoring Intelligent Tutor Behavior by
Demonstration. Proceedings of 7th Annual Intelligent Tutoring Systems Conference, Maceio,
Brazil. Page 162-173

7. Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring
goes to school in the big city. International Journal of Artificial Intelligence in Education, 8,
30-43.

8. Macasek M.A., Heffernan, N.T., Towards Enabling Collaboration in Intelligent Tutoring
Systems, Submitted to ICLS2006, Indiana, USA (2006).

9. Massachusetts Comprehensive Assessment System. (2005). http://www.doe.mass.edu/mcas/
10. Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art.

International Journal of Artificial Intelligence in Education, 10, pp. 98-129.
11. Nuzzo-Jones, G., Walonoski, J.A., Heffernan, N.T., Livak, T. (2005). The eXtensible Tutor

Architecture: A New Foundation for ITS. In C.K. Looi, G. McCalla, B. Bredeweg, & J.
Breuker (Eds.) Proceedings of the 12th Artificial Intelligence In Education, 902-904.
Amsterdam: ISO Press.

12. Nuzzo-Jones., G. Macasek M.A., Walonoski, J., Rasmussen K. P., Heffernan, N.T., Common
Tutor Object Platform, an e-Learning Software Development Strategy, Submitted to
WWW2006, Edinburgh, Scotland (2006).

13. Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Aniszczyk, C., Choksey, S., Livak,
T., Mercado, E., Turner, T.E., Upalekar. R, Walonoski, J.A., Macasek. M.A., Rasmussen,
K.P. (2005) The Assistment Project: Blending Assessment and Assisting. Submitted to the
12th Annual Conference on Artificial Intelligence in Education 2005, Amsterdam.

14. Rose, C. P. Gaydos, , A., Hall, B. S., Roque, A., K. VanLehn, (2003), Overcoming the
Knowledge Engineering Bottleneck for Understanding Student Language Input , Proceedings
of AI in Education.

15. Struts Framework. (2005). http://struts.apache.org/
16. Turner, T.E., Macasek, M.A., Nuzzo-Jones, G., Heffernan, N.T., Koedinger, K. (2005).

 The Assistment Builder: A Rapid Development Tool for ITS. In C.K. Looi, G. McCalla,
 B. Bredeweg, & J. Breuker (Eds.) Proceedings of the 12th Artificial Intelligence In
 Education, 555-562. Amsterdam: ISO Press.

17. Velocity Template Engine. (2005). http://jakarta.apache.org/velocity/

38

39

Appendix A – Assistment Builder Use Cases

Builder Use Cases

Builder scope: The builder is designed to remain an application that acts on a single

problem. This includes activities related to what the question consists of and any

metadata associated with that problem. Meta Data can be read as keywords, initial

Transfer Model markup, and other similar content.

Builder communication: problem_id is passed to the builder and is the only thing ever t

passed to the builder. If this is a valid id the builder loads the problem; if it is not valid

(i.e. NULL) then it loads a blank problem. Create new Assistment generates a new item in

the database, and the builder then receives the problem_id.

List of use cases with level of features in scope for first release

Create New Assistment

Preview Assistment

Edit Assistment

Morph Assistment

Test Assistment

Create new Assistment

Preconditions: The user has clicked on the “Create new item” button in the list of

items page.

Postconditions: The user has created a new item.

40

Flow of events:

1. System displays metadata tagging screen.

2. User enters Assistment name, source, number, grade, and status.

3. <<Include Edit Assistment>>

4. User indicates he/she is done.

Alternate flows:

4a. If any required fields are blank.

1. The system displays a warning saying that all fields must be completed.

2. The user is taken back to the item tagging screen.

Preview Assistment

Preconditions: The user is viewing the “Edit Assistment” screen or the item list.

Postconditions: The user is previewing an Assistment.

Flow of events:

1. User chooses to preview an item.

2. The system displays a preview of the item, as a student would see it.

Edit Assistment

Preconditions: The user has chosen to edit a particular item from the list of items

page or in the Preview screen or user has just created a new Assistment.

Postconditions: The user has saved item.

Flow of events:

41

1. User specifies question, answers/options, correct or incorrect answers, and selects

response type in any order, sort order.

a. Answer options

 i. Correct/Incorrect

 ii. Answer Text

 iii. System Response Text

1. System Response text can be either Reward message or

Bug message.

2. Text can be deleted and edited

b. Response type options include:

 i. Check All That Apply – check boxes

 ii. Multiple Choice – radio buttons

 iii. Popup Menu – Drop Down

 iv. Enter Text – Text Field

 v. Enter Algebra Text – Algebra Text Field

c. Sort Order include

 i. Random Order

 ii. Sort Alpha

 iii. Sort Numeric

2. User uploads image (if any).

a. System checks image size and format

 i. Must be under ___Mb

 ii. .gif, .jpg, .png accepted.

42

3. User creates scaffold

a. Repeat steps 1-3 for scaffold.

b. User enters hints (and images for hints if any) for the scaffold question

 i. Hints text can be edited or deleted

 ii. Hints can reordered

4. User saves item.

Alternate flows:

6a. Item doesn’t have any scaffold questions.

1. Go to step 8

9a. User cancels edit.

5. System offers confirmation box “Do Not Save Edit” or “Back to Edit Item”.

6. If user selects “Cancel Edit”, item is not saved and system goes back to item

listing.

Morph Assistment

Preconditions: The item has been saved. The user was viewing Edit screen.

Postconditions: The user has created a new morph of the item.

Flow of events:

1. The user chooses to morph item.

2. <<Include create new item>>

Test Assistment

Preconditions: The item has been created and saved.

Postconditions: The item has been tested.

Flow of events:

43

1. <<Include Preview Assistment>>

2. Reset item to preview again from same screen

3. Step backward through the item.

4. Update status of item, with notes AND/OR choose to edit that item.

Map knowledge components to Assistment

Definition by examples

Preconditions: The user chooses to Map KCs in the Edit screen.

Postconditions: The user has saved a mapping of knowledge components.

Flow of events:

1. The user selects a transfer model.

2. The user browser for and selects a knowledge component.

3. The user indicates KC to be mapped.

4. The system indicates that KC is to be mapped and adds the skill to the list of skills

mapped to that question.

5. The user chooses to save mapping.

Alternate flows:

3a. The user doesn't know where the KC is located in the hierarchy.

1. The user enters a string in the KC finder.

2. The system returns a list of matching KCs with their path in the hierarchy.

3. The user selects a KC.

3b. The user chooses to view an example of the KC.

1. The system displays an example of the KC.

44

2. Redo step 3.

6a. The user clicks on Cancel

1. The system displays a confirmation dialog box, “Do No Save Mapping” vs. “Back

to Mapping”.

2. If the user selects confirms the cancellation, then the system takes the user back to

the Edit item screen.

5a. If more than one skill is mapped to the question.

1. Repeat steps 2 through 4 for each skill.

5a. If there are scaffolding questions.

1. Repeat steps 2 through 4 for each scaffolding question.

45

Appendix B – Assistment Builder Use Case diagram

46

Appendix C – Assistment Builder UI preliminary

interface design

47

48

49

50

51

52

53

54

55

56

57

58

Appendix D – Builder CTOP Class Diagram

59

	Worcester Polytechnic Institute
	Digital WPI
	2006-01-11

	The Assistment Builder: A tool for rapid tutor development
	Terrence E. Turner
	Repository Citation

	Microsoft Word - thesis_terrence.doc

