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Abstract- Global optimization problems continue te be
a challenge in computational mathematics. The field is
progressing in two streams: deterministic and heuristic
approaches, In this paper, we present a hybrid method
that uses the discrete gradient method, which is a deriva-
tive free local search method, and evolutionary strate-
gies. We show that the hybridization of the two methods
is better than each of them in isolation.

1 Introduction

Optimization theory provides a comnpact set of tech-
niques 1o handle ditferent types of optimization problems.
The general optimization problem can be stated as:

(P1): Minimize f{x) )

subjectto: z € R™. G(a) <0 )

where x is the set of decision variables. f(x) is the objective
function and G () is a set of constraints. Let

f={zeclR": Ga)<0} (3)

be a compact set representing the set of teasible solutions.
Two important types of optimal solutions will be referred 10
in the rest of this paper, local and global optimal solutions.
Let us define the open ball (ie.. a neighborhood centered on
T and defined by the Euclidean distance § > Q)

Bs{Z) =z e R": |lz—i|| < 5}

Definition 1 A point ¥ € £ is said to be a local mini-
mum of the optimization problem iff 34 > 0 such that
Fay £ f{a).Va € (Bs(z) N 6).

Definition 2 A point T € 6 is said (o be a global min-
imum of the optimization problem iff f(Z) < f{x).Vr € 4.

In the general case, it is known that global optimization
problems are NP-hard [31: that is. there currently exists
no polynomial time algorithr that can solve any global
optimization problem on a Turing machine. Therefore, it is
essential 10 identify the pros and cons of each methad. in a
hope to be able to establish a framewaork of when to use or
not to use each merhod.
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(4)

During the course of this paper. we will use some
 mathematical terminologies which we will clarity here.

Definition 3 A subset 4/ of a linear space L is convex iff
2 € Mandy € A impliesthat o x 2+ (1 —a) x ye M
forany a < {0.1].

Definition 4 A funcuon f is calied convex iff its démain
T is a convex set and flao x o + (1 — a} x y} <
ax flry+(1=a)x f(y)forany r.y € Danda € [0.1].

Definition 5 Lel f be a convex function with domain D.
Let g be an interior point of 7. Define g{zq) such that
Fl2) = flzo) = {gl20).x — z0) Va € D. glxg) is called
a sub-gradient or a generalized gradient of f at zg.

Tn the previous definition. {g{xy}. x —xp) is a supporting
hyperplane at xg. . . .

Theorem 1 The set of generalized gradients-of.a convex
function f at any interior point ag of the domain D is
nonempty, bounded. closed, and convex.

Definition 6 A function f is locally Lipschitz continuous
on R" if in any open hounded subset S € TR™ 3 a constant
Fa=fun e
L > 0 such that M=yl <L, va,ye s,
The locally Lipschitz function f is differentiable aimost
everywhere and one can define for it a set of generalized
gradients or a Clarke subdifferential (see {10]). by

df(z) =co{e e R" : 3" € D(f).a® — ah — +x):
=l V(")

here B(f) denotes the set where f is differentiable. co de-
notes the convex huil of a set and ¥V f (z) stands for a gradi-
ent of the function f ata point z € IR". .
Technigues for solving global optimization problems
.can be divided without any loss of generality into the
following categories [13, 28§

Covering methods: These methods guarantee certain [evel
of accuracy. They use a global search strategy. such
as quasi-Monte Carle methods. to determimstically



generate a sequence of points that uniformily search
the space. The accuracy of these methods would
usually depends on a measure of the uniformity of
the sequence. Examples of this class of methods
include [6, 9. 22,31} : .

Statistical models of objective functions: These methods
generate some locai information (o approximate
the function landscape. The approximation can
be done through statistical information methods.
interpolation. Bayesian methods, or other mulftidi-
mensional axiomatically based methods. This is
a costly process but it can be useful for problems
where the evaluation of the objective function is a
computationally expensive task. Examples of this
class of methods include {17. 20].

Generalized descent methods: These methods use sim-
ilar search mechanisms as in local search methods
while attempling o search globally. Two streams
of methods exist under this category: trajectory and
penalty methods. Trajectory methods correct the
trajectories laken by the local search technique so
thai all local optima are discovered. For example. it
may force an ascend trajectory after a local optima is
found. Penalty methods penalize or forbid the search
from encountering the same local optima again. For
example, in the wnneling algorithm of Gomez and
Levy {12}, ance a local minitnum r with objective
value f(z) is encountered, the algorithm looks for
a minima y, where f(y) < f{x). Examples of this
class of methods include [8. 11, 12].

Clustering methods: Clustering methods siart the search
by performing Monte Carlo sampling of the search
space. The sample needs 0 be somehow propor-
tional to the expected number of local optima in
the problem: the more local optima the larger the
sample needs to be. Clustering is then carried out to
locate the local minima followed by the application
of a local search technigue within each cluster. A
major drawback of these algorithms is their poor
performance when the number of local optima
increases. Examples of this class of methods include
[7,23,27%

Random search methods: These techniques, sometimes
called stochastic search® methods. make random
decisions during their search. We can distinguish
between two classes of random search methods:

adaptive and non-adaptive. Adaptive random search
allows for the parameters or the initial distribution for
generaling solutions to change during the run, while
in non-adaptive random search, this does not occur.
Evolutionary computations and simulated annealing
falls into this class of methods.

One approach that recently has drawn attention is to
combine global and local search methods to design more ef-
ficient global optimization algorithms (see [5, 14, 15, 321.)
In these hybrid methods some meta-heuristic methods like
stmulated annealing. tabu search and etc. can be used as
a global search method. In this paper we develop a new
hybrid discrete gradient evolutionary strategy method. This
hybrid method uses the discrete gradient method. which
is a derivative free local search method. and evolutionary
strategies. We present the results of numerical experiments
which demonstrate that the hybridization of these two
methods is better than each of them in isolation.

The structure of the paper is as follows. Section 2
presents the methods 1o be used in this paper. Test problems
are presented in Section 3 followed by the numerical exper-
iments in Section 4. Conclusions are drawn in Section 5.

2 Methods

2.1 Discrete gradient method

In this section we will give a brief description of the
discrete gradient method. The fuli description of this
method can be found in [4]. The discrete gradient method
can be considered as a version of the bundle method when
subgradients are replaced by their approximations - discrete
gradients (for the bundle method see, for example, [16]).

Lel f be a locally Lipschitz continuous function defined
onR". Let

S1={geR": glf = 1},
G={ecR":e={e,.... endilejl =1 4=1.... n},

P={z(A:200) € R', z(A) > 0, A >0, A7 1z(\) — 0,
A—0), Hga)y={ie{l,..., n}: gl = al,

where o € (0.1~ 1/?] is a fixed number. Here S is the unit
sphere, G is a set of vertices of the unit cube in R” and P
is a set of univariate positive infinitesimal tunctions.

We define operators H/ R*® — IR" for i =
Lj=0..... 7 by the formula
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Hig= (G- g;-0.....0) if 5 <,
! (_q;....,g,_l.U.g;_H.,.;,_qj«O,....O) If‘]_zl.
We can see that g =0 R foralli = 1...., . Let

e(3) = (Bey. FPea.....

will consider vectors

Feq). € (0,1). Forx € R" we

gy =al{gie. 2. M B) =1 + Mg — s (N H e(3),
wherey € S1. e G, i€ l{ga). 2 € P~ A>03¢

Definition 7 (/4]) The discrete gradient of the function f at
the point v € R"™ is the vector

Tirgoes A 3) = (T

Ty

with the following coordinates:

I} = e (@)~ |12l
j=1....

DESICACHIP

= z(Me;(3))].

From the definition of the discrete-gradient we can see
that it is defined with respect to a given direction g € .5}
and in order to calculate the discrete gradient we use step
A > 0 along this direction. The n — 1 coordinates of the
discrete gradient are defined as-finite difference estimates
1o a gradient in some neighborhood of the point © + Ag.
The ith coordinate of the discrete gradient is defined so
that to approximate a sub-gradient of the function f. Thus
the discrete gradient contains some information aboul the
hehavior of the tunction f in some region around the point
I

Now we will consider the following unconstrained min-
irnization problem:

minimize f{z) subject to ¥ ¢ R"™ {5)

where the function f is assumed to be locally Lipschitz
continuous. We consider the discrete gradient method for
solving this problem. An important step in this method
is the computation of a descent direction of the objective
function f. So first, we describe an algorithm for the
computation of the descent direction of the function f.

Let z € P.A > 0,3 € {0.1], the number ¢ € (0. 1) and
a small enough number & > 0 be given.

R".ge 51.i € l(g.a)

Algorithm 1 An algorithm for the computation of the de-
scent direction. '» ’

Step 1. Choose any ¢* € 5. € G.i & I{g'.a) and
compute a discrete gradient v! = T'(z, g'.e. 2, A. ). Set
Di(z) ={r'}and k= 1.

Step 2. Calculate the vector [[u*l = min{|jw]] : w €
(e o

|| < & (6)

then stop. Otherwise go to Step 3.

Step 3. Calculate the search direction by g#*!
L | T

Step 4. If

Fla+ ag"t ) — fla) < —calje], 7

then stop. Otherwise go to Step 5.

Step 5. Calculate a discrete - gradient v
Tife.g* e 2. A 3). i € I{g"*1. a). construct the set
D) = co {Dplx) | {rF ) oset k =k + 1and go 1o
Step 2. -

S

The algorithm contains steps which deserve some
explanations. In Step | we take any direction g' € Sy and
calculate the first discrete gradient. In Step 2 we calculate
least distance between the convex hull of the discrete gradi-
ents and the origin. This problem is reduced to a quadratic
programming problem and can be effectively solved by |
Wolfe's terminating algorithm [30]. If this distance is less
than some tolerance ¢ > 0, the algorithm stops and we can
consider this point as an approximated slationary point.
Otherwise. in Step 3, a search direction is calculated. If this
direction is a descent direction, the algorithm terminates.
otherwise. in Step 5, we calculate a new discrete gradient
with respect to this direction to improve the approximation
of the set of generalized gradients. Since the discreie
gradient contains some information about the behavior
of the function f in some regions around the point z this
algorithm allows (o find descent directions in stationary
poinis which are not local minima (descent directions in
such stationary point always exist). This property makes
.the discrete gradient method attractive for design of hybrid
methods in global optimization. It is proved that Algorithm
1 is a terminating (see [4]).

Now we can describe the discrete gradient method. Let
numbers ¢y € {0.1).¢; € (0, cy] be given.

Algorithm 2 Discrete gradient method

Step 1. Choose any starting point 2% € IR" and set & = (.
Step 2. Set s = O and Ié‘ =z

Step 3. Apply Algorithm 1 for the calculation of the de-
scent direction at @ = 25,8 = dp.r = 2 A = A F =
Gp.c = ¢1. After termination of this algorithm for some
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finite m > 0 are computed an element ||t} = min{|z| :
¢ € Dm(2¥)} and a search direction gb = —[u¥|[~1e
such that either
Flk+ 2l = (28 € —anillef]] 8
or ef |l < 6. -
Step 4. 1f
el < 6 9)

then set w5+ = 2% L =k + 1 and'go o Step 2. Otherwise
go o Step 5. C :

Srep 5. Construct the following iteration 2%, = 2% +g,gF,
where o, is defined as follows

o= argmax {0 2 0: fleh+ogh)— Fluh) € —coofleb ]}

Step 6. Set s = s 4+ 1 and go to Step 3.

The main steps in this algorithm are Steps 3 and 5. In
Step 3 we calculate a descent direction using Algorithm |.
The stepsize is calculated in Step 5. For the point 2% € R”
we consider the set

M@Y= {z e R : f(x) < f2).

Theorem 2.1 Assume thai the set M (") is bounded for
starting points 20 € R". Then every accamulation point of
{*} belongs to the set X° = {w € R" 10 € af ().

2.2 Evolutionary strategies

Evolutionary strategies (ESs) [24, 23] were invented
for numerical optimization. Let ¥ be an n dimensional
solution vector (w1, 22....,2,) for problem P1 and & be
the corresponding step-length (. 0,...,0,). Let u be
the number of parents, where each parent z; is the pair
(¥4, 0%). -In the first generation, p parents are generated
at random. In each subsequent generation. A children are
generated from the p parents through recombination and
mutation as follows: let y; = (T;.5;) be the 5** child
10 be generated from the two parents = = (%, &) and
21 = {Z;.4;). The child 1s generated either by discrete
recombination or arithmetic recombination as follows: for
each variable x;; in &;, do x5 = xy; or xy; for discrete
recombination or x;; = (x4 + x4)/2 for arithmetic

recombination. The same recombination takes place for the
step—size vectors o. The child is then mutated as follows:

(10
(11)

C(.T’j = I, + Ry

where Fj, is a random vector according to a Gaussian distri-
bution with zero mean and standard deviation &).; that is the
probability, Prob{ R,,;}, of the random number R;; € Ry is

ey 2
3 2”;‘1—

1 1S
Veraw L

Two variations of ESs exist based on the replacement
mechanism. The first variation is ES{(u + A), where X chil-
dren are generated from the i parents then the parent in the
next generation are the best solutions among the 1+ A solu-
tions. The second: variation is £5(u. A), where A children
are generated from the yi parents then the parent in the next
generation are the best solutions among the A solutions.
In this second vanation, A >> . A special case of each
variation is usually used where both p and A equal eachto 1.

Prob(Ry;) = (12)

The step-size ¢ can vary during the evolutionary pro-
cess. In this case. the algorithm is called self—adaptive evo-
lutionary strategy. The well-known one-fifth success rule
is usually used, where the step-size increases if the ratio of
successful mutations (mutations which produced children
better than their parents) o all mutations is greater than 1/5.
In [26]. the lognormal self-adaptation is proposed. where
a rotation angle is used to adapt the search towards coordi-
nates which are likely to be correlated. Given 7 and 7/, the
step size o 1s perturbed as follows

gjr' = 0y; EXI)ITIA:‘IDJ)+T‘\"’_(U'1’” (i3
where, the values of 7 and 7' are suggested to be
i
T = (14)
: (V)
s 1 -
T = (15)
(2n)

The complete self-adaptive evolutionary strategy algo-
rithms are depicted below,

Algorithm 3 The self~adaptive evolutionary straregy (p -
A)

Step 0. Randomly generate u parents, where each parent
I = (fk. o'";,).

Step 1. Ser v = ( (QVF(E))AI and v’ = ( (271))_1‘

Step 2. Until X children are generated, do

—

Step 3. Select two parents zy, = (T, 0p) and 21 = (T.54)
ar random to generate child ij; = (T;.6;).
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Step 4. Discrete recombination: for each variable x;; and
step size 0g; in ;. do vy = xg and 055 = opi Jor (x5 =
g and oy = oy5) ’

Step 5. Mutation: For each xj; and step size oj; in if;

.1‘31‘ :1‘;‘,‘%'0'3'7']\"]'(0. 1) T (16)

ol = ajexp(r'N(0.1) + 7N;(0.1)

(17)

Step 0. If the number of children is less than A go 10 3,

Step 7. Select the best yi individuals among all the p + A
perents and children.

Step 8. If the halting criteria are satisfied. stop. else go to
stepl.

Algorithm 4 The self-adaprive  evolutionary  strategy
(L. A)

Step 0. Randomiv generate y parents, where eacl parent
s o= (Th. )
-1

Step 1. Set T = (\/(2 (n))) and v’ = (\/(727))_1'

Step 2. Until A children are generated, do

Step 3. Select two parents 2, = (Fy. di) and 5 = (1. 0))
at vandom 10 generate chitd §; = (7.6},

Srep 4. Discrete recombination: for each variable xj; and
step size oy injjjdof{zy = wnandaji = o Jor(ap =
xp and 05 = 04;)

Step 5. Muiation: For each x;; and step size ¢ in I

;z‘jvl-:zrj,--l‘a'j,_t\"j([).]) (18)

oh = ojiexp(r N(0.1) + 7N;(0.1))  (19)

Step 6. If the number of children is less than A, go to 3.
Step 7. Select the best p individuals among the A children.

Step 8. If the halting criteria are satisfied, stop, else go to
step 1.

2.3 Hybridization of evolutionary strategies and the dis-
crete gradient method

In this method, we use discrete gradient as a local search
operator once for {z/ + A) ES and another time for (g, A)
ES. The algorithm simply works by applying the discrete
gradient en all individuals in the population of the initial
generation. In subsequent generations. discrete gradient is
applied only for the best solutions found so far. We will call

(2 -+ A) with DG for local search Algorithmb5 and (g, A)
with DG for local search Algorithm6G. The details of the

- alzorithm for discrete gradient with {zz + A) are as follows:

Algorithm § DG(u + A).

. Siep 0. Randomiy generate yt parents, where each parent

o = (@ F).

Step 1. Apply discrere gmifieizr on each parent ”

Step 2. Set T = ( (Q\f(T)))_l and v/ = (M)_l.

Step 3. Unitil X children are generated, do

Step 4. Select two parents zp = (T 5x) and 21 = (T1.51)
at random to generate child §; = {T;, 7).

Step 5. Diserete recombination: for each variable 33; and
siep size aj; in ;. do (3 = w4 and 05 = op; ) or (25, =
z; and 05 = o) '

Step 6. Mutation: For each x;; and step size oj; in

J';-l- : T4 + O’ji’]\’vj (Ol}) ’ (57.0)

c'r;, = exp(T N(0. 1) + 7N,(0.1}) (21) -

Step 7. If the number of children is less than A, go to 4.

Step 8. Select the best 1 individuals among ali the pp + X
parents and children.

Step 9. Apply discrete gradient on the best individual among
the selected p individuals.

Step 10. .lf the halting criteria are satisfied, stop, else go to
step 2. )
Algorithm 6 DGy ).

Step 0. Randomly generate p parents, where each parent
zp = (Zh. ).

Step 1. Applv discrete gradient on each parent Ty

4 A

-1
Step 2. Set 7 = ( (‘2 (n))) and v = ( (211)) .
Step 3. Until X children are generated, do

Step 4. Select o parents 3y, = (T, G1) and 5 = (5. 87)
at random 1o generate child §; = (T;,5;).

Step 5. Discrete recombination: for each variable &;; and
step size o5 it ff;, do(xj; = Tp and 0j; = oy Jor{z; =
2y and og; = op)

Step 6. Muzation: For each xj; and step size a;; in §;
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“?'.}l =Ty + O'j,;Nj(G, ]_) (22)

oy, = oy exp(r'N(0, 1) + TN;(0. 1)) {23)

Step 7. If the number of children is less than X, go to 4.
Step 8. Select the best y individuals anong the X children.

Step 9. Apply discrete gradient on the best individual among
the selected p individuals.

Step 10. If the halting criteria are satisfied, stop, else go to
step 2.

3 Test problems

Table 1 lists the 32 test problems we used in this paper,
their corresponding number of variables. and the best
known minimum for each of them. Each problem was
run for a maximum of a million objective evaluations.and
population size of 100. Each run was repeated a 160 times
with different initial seed. The standard deviation for the
ES methods was initialized 10 3. Local search for the hybrid
methods was carried out for each solution for 50 objective
evaluations (these 50 was included in the calculations of
the maximum number of objective evaluations per run).
All variables were uniformly initialized within their boxing
constraints. All runs were carried out on a PC running
WindowsXP with 512 memory and a Pentium 4 CPU.

4 Numerical Experiments

In this section. we present the results obtained for the
32 global optimization. problems presented in the previous
section. In this paper, we will restrict out discussion to
the quality of solutions without considering the speed for
considerations of space. Table 2 presents the results for
ES({z, \) and ES(pi. A) with local search. Table 3 presents
the results for ES{ys + A} and ES{pz + A) with locaf search.
Lastly, Table 4 lists the results for discrete gradient and
identifies the best performing algorithm(s} on each problem.

It is interesting to note that the discrete gradient method
on its own was quile compelitive on some problems and
consistently reached the global optimum. More interest-
ingly, on problem Fi2, the discrete gradient method was the
wianer and solutions obtained by the other methods were
inferior for F12. It is worth noting that the hybrid methods
were better on F12 than when using the evolutionary
strategies in isolation.

Table 1: The 32 test problems used in this paper.

Function # of variables  known minimum
F1([21): problem) 2 -186.7309
F2 (§21, 15} Griewanks Function) i0 ]

F3 ([2): Ackleys) 10 Q0

F4 {[15]: or Bohachevsky) 2 0

F5 ([15): or Bohachevsky} 2 0

F6 ([}3): or Bohachevsky) 2 0

F7 ([2): Branin) 2 0.399
Fo ([2]: Easom) 2 -1
F10{[1): Goldstein and Price) 2 3

F11 (I2]: Hartman with n = 3) 3 -3.86278
F12 ([2): Hartman with » = 6) 6 -3.32237
F13 ([14): Hump) 2 0
FI5([32]: Levy No Iy 10 0
F16 ([32]: Levy No 2) 10 [y
F17 ([15): Michalewicz) 2 -1.8013
F18 ({2]: Neumaier 2) 4 0
F20([2): Rastringins) 10 0
F22 {[2): Schaffer 1} 2 0
F23 ([2]: Schaffer 2) 2 0
F24 ([2]: Shekel-5) 4 -10.15320
F25 {[2): Shekel-7; 4 -10.40204
F26 ([2]: Shekel-10) 4 ~10.53641
F27 {[2]: Shubert 1) 2 -186.7309
F28 ([32): Shubert 2 } 2 ~186.7309
F29 ([23: Step) 10 0
F30 {[15]: Zakharov) 10 0
F32[2]: £2} 10 Q
Fa3(2]: 13) 10 0
F35(2): t&) 10 0
E36 ([2}: £7) 10 i)
F37 ({[2]: 18) e -
F38([2): 113 10 0

Table 2: The performance of Alg4 and Algé on the 32 prob-
lems. The best average overall algorithms is underlined.
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Table 3: The performance of Alg3 and Ai"5 on the 32 prob-
lems. The best average overall aigorithms is underlined.
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Table 4; The performance of Alg? on the 32 problems. The
best average overall algorithms is underlined. ‘The second
column lists the best algorithms) for each problem.
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appeared to be the best as shown in Table 4, we find
that Algorithm5 is the winner, being the best 18 times
followed by Algorithm6 (16 times). Algorithm3 (11 times),
Algorithm2 (6 times), and lastly Algorithm 4 (5 times). It
is also interesting to see that on 28 out of the 32 problems,
the hybrid algerithms consistently performed better than
their non-hybrid counterparts with exceptions in four cases
(F2F3.F12, and F20).

5 Conclusions

In this paper we have introduced a new type of evolu-
lionary strategies with local search. The discrele gradient
method. a derivaiive free method, was- integrated into
the evolutionary strategies. The hybrid approach seems
to perform better than the non-hybrid approach oft the
majority of the problems being presented here. The discrete
gradient method has a major advantage over traditional
gradient-based local search techniques, in the sense that
it does not require an explicit-gradient and it can work in
certain cases. even when the true gradient does not exist.

For future work, we are planning to.provide a detailed
analysis to the performance of these methods and compare
them with other global optimization technigues as well
as hybrid techniques from the ‘evolutionary computation
literature such as the local evolutionary search enhancement
by random memorizing {29] and Iandscape approxnmauon
and local search [19, 18].
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