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Abstract- Global optimization problems continue to he 
a challenge in computational mathematics. The field is 
progressing in two streams: deterministic and heuristic 
approaches. In this paper, we present a hybrid method 
that uses the discrete gradient method. which is a deriva- 
tive free local search method, and evolutionary strate- 
gies. We show that the hybridization of the two methods 
is better than each of them in isolation. 

1 Introduction 

Optimization theory provides a compact set of tech- 
niqucs to handle different types of optimization prohlems. 
The general optimization problem can he stated as: 

(PI): Minimize f ( n : )  ( 1 )  

subject to: T E B". G(:I:) 5 0 (2 I 

where .? is the set of decision variables. f ( : c )  is the oh,jective 
function and G(z) is a set ofconstraints. Let 

8 = {z E R" : G(T) 5 0) (3) 

hc a compact set representing the Set of feasible solutions. 
Two important types of optimal solutions will be referred to 
in the rest of this paper. local and glohal optimal solutions. 
Let us define the open ball (ie. a neighborhood centered on 
P and defined hy the Euclidean distance 6 > 0 )  

Ba(T) = {T E IR" : 112 - ,711 < 6) (4) 

Definition 1 A point .T E 0 is said tu he a local mini- 
mum of the optimization problem iff 3 4 > 0 such that 
f ( ? )  5 f ( . r j .Vx  E ( B J ( 2 )  no). 

Definition2 A point Z. € 0 is said to he a global min- 
imumofthzoptimizationprohlemiB f(2) 5 f ( .c ) .V: r  t bi. 

In the general case. it is known that global optimization 
prohlems are NP-hard [3J: that is. there currently exists 
no polynomial time algorithm that can solve any elobal 
optimization problem on a Turing machine. Therefore. i t  is 
essential to identify the pros and cons of each method. in a 
hope to he ahle to establish a framework of when to use or 
not to use each method. 

During the course of this paper. we will use some 
mathematical terminologies which we will clarify here. 

Definition 3 A subset !I! of a linear'spdce L is CiJii\'f.r 'iff 
:c E 111 and U E AI implies that a x P + (1 - n) x !J E 211 
for any a t jO.11. 

Definition 4 A function f is called c o ~ m w  iff its domain 
73 is a convex set and f ( n  x :r + (1  - c i )  x y )  <_ 
n x f ( z )  + ( 1  - t i  i x .f(y) for any T .  (1 E 27 and [I E !0. 11. 

Definition 5 Let f he a convex function with domain D. 
Let zo he an interior point of V. Define g(s0) such that 
f ( 3 . j  - f (zo)  2 (y(xo).x: - 20) Vx E D. g(zo) is called 
a subgradient or a generalized gradient o f f  at zg. 

In the previous definition. ( y ( q ~ ) .  ,r - J:O) is a supporting 
hyperplane at 10. 

Theorem 1 The set of generalized gradients.of a convex 
function f a1 any interior point z0 of the domain V is 
nonempty. hounded. closed. and convex. 

Definition 6 A function f is locally Lipschitz continuous 
on El" if in any open hounded suhset S E IR" 3 a constant 

r l - f l u i  L > 0 such that + 5 L: Vn:. y E S. 

The locally Lipschitz function f is differentiahlc almost 
everywhere and one can define for i t  a set of generalired 
gwdients or a Clarke subdifferential (&e [ IO] \ .  hy 

. ' 

. .  

i i f ( s ) = c o { ~ E I R " : 3 ( . ~ " € D ( f j . r " - z n . n ~ - + x ) :  

t :  = liin 0f ( .7 : ' ) } ,  

here D [ f )  denotes the set where f is differentiahle. co de- 
notes the convex hull of a set and Vf (3 : )  stands for B gradi- 
ent of the function f at a point x E IR". 

Techniques for solving global optimization problems 
can he divided without any loss of generality into the 
following categories (13.281: 

I-+* 

Covering methods: These methods guarantee certain level 
of accuracy. They use a~glohal search strategy. such 
as quasi-Monte Carlo methods. to deterministically 
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generate a sequence of points that uniformly search 
the space. Thr accuracy of these methods would 
usually depends on a measure of the uniformity of 
the sequence. Examples of this class of methods 
include [6,9.22.31]. 

Statistical models of objective functions: These methods 
generate some local information to approximate 
the function landscape. The approximation can 
he done through statistical information methods. 
interpolation. Bayesian methods, or other multidi- 
mensional axiomatically hased methods. This is 
a costly process hut i t  can he useful for problems 
where the evaluation of the ohjective function is a 
computationally expensive task. Examples of this 
class of methods include (11.201. 

Generalized descent methods: These methods use sim- 
ilar search mechanisms as in local 'search methods 
while attempting to search globally. Two streams 
of methods exist under this category: trajectory and 
penalty methods. Trajectory methods correct the 
trajectories taken hy the local search technique so 
that all local optima are discovered. For example. it 
may force an ascend trajectory after a local optima is 
found. Penalty methods penalize or forbid the search 
from encounterin: the same local optima again. For 
example, in the tunneling algorithm of Gomez and 
Levy [ IZ ] ,  once a local minimum x with objective 
value f (x) is encountered. the algorithm looks for 
a minima y, where f(u) < f(2). Examples of this 
class of methods include [8. 11. 121. 

Clustering methods: Clustering methods start the search 
by performing Monte Carlo sampling of the search 
space. The sample needs to he somehow propor- 
tional to the expected number of local optima in 
the problem: the more local optima the larger the 
sample needs to be. Clustering is then caried out to 
locate the local minima followed by the application 
of a local search technique within each cluster. A 
major drawback of these algorithms is their poor 
performance when the numher of local optima 
increases. Examples of this class of methods include 
17, 23,271. 

Random search methods: These techniques; sometimes 
called stochastic search' methods. make random 
decisions during their search. We can distinguish 
between two classes of random search methods: 

adaptive and non-adaptive. Adaptive random search 
allows for the parameters or the initial distribution for 
generating solutions to change during the run. while 
in non-adaptive random search, this does not occur. 
Evolutionary computations and simulated annealing 
falls into this class of methods. 

One approach that recently has drawn attention is to 
combine global and local search methods to design more ef- 
ficient global optimization algorithms (see [ S ,  14. 15. 321.) 
In these hybrid methods some meta-heuristic methods like 
simulated annealing. tahu search and etc. can be used as 
a global search method. I n  this paper we develop a new 
hyhrid discrete gradient evolutionary strategy method. This 
hyhrid method uses the discrete gradient method. which 
is a derivative free local search method. and evolutionary 
strategies. We present the results of numerical experiments 
which demonstrate that the hybridization of these two 
methods is hetter than each of them in isolation. 

The structure of the paper is as follows. Section 2 
presents the methods to he used in this paper. Test problems 
are presented in Section 3 followed hy the numerical exper- 
iments in Section 4. Conclusions are drawn in Section S .  

2 Methods 

2.1 Discrete gradient method 

In this section we will give a brief description of the 
discrete gradient method. The full description of  this 
method can he found in [41. The discrete gradient method 
can he considered as a Yersion of the hundle method when 
suhpradients are replaced hy their approximations - discrete 
gradients (for the hundle method see, for example, (161). 

Let .f he a locally Liprchitz continuous function defined 
on IR" . Let 

SI = {g E IR" : 11g11 = I}. 

P = {Z(X) : z(X) E IR': ;(A) > 0. x >.0: x-';(x) - 0. 

G = { e  t IR" : e = ( e l , .  . . . e,t)! lej( = 1. j = 1.. . . . I I } :  

A - O } .  I (y .a )  = { r  t {1  . . . . .  7 1 )  : 1g,( 2 a). 
where a E (0. T ! . - ~ / ~ ]  is a fixed number. Here SI is the unit 
sphere, G is a set of vertices of. the unit cube in IR" and P 
is a set of univariate positive infinitesimal functions. 

We define operators H: : IR" - lRn for i = 
1.. . . . T I .  j = 0. .  . . . n hy the formula 
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Algorithm 1 An algorithm for the computation of the de- 
scent direction. 

( 9 1 . .  . . .g,. 0 . .  . . . 0 )  
Step 1. Choose any 9' E St .€  E G.i t I ( g t . n )  and 

( ! / ~ . . . . . ~ ~ - I . ~ . Y , + I . . . . . ~ J ~ . ~ . . . . . ~ )  if j 2 i .  computeadiscrete gradient = p ( T . g ' . < , z : X . : j ) .  Set 

Step 2. Calculate the vector / 1wP/ /  = niin{//w/l : U' E 

( ( u l q  5 d. (6 )  
then stop. Otherwise go to Step 3. 
Sfep 3. Calculate the search direction by g"+' = 

if j < i :  
Hi.q = 

- 
,Let D l ( z ) = { ~ l } a n d k = l .  We can see that H y g  = 0 t R" for all i = 1 

./Pen). 3 E (0. I]. For 

i 
will consider vectors 

x: (g) = :c! (9. c .  z .  A: i3) = r + x.q - t(X)ffje(O): 

where E SI. e E G. i E I ( 9 . u ) .  z t I? X > 0. 3 E 
- ~ ~ W ~ - ' i I ! ~ ,  

Step 4. If 
Definition 7 (141) The discrere Rrndieiir ofrhc f?izcrim f nr 

r'(.r. 9. e. :. A: 8 )  = (ri.. . . . ri,) E E". y E Si. i t I ( g .  a). then stop. Otherwise go to Step 5 .  

die poiirt .I. E R" is rhe vector f i r  + Ay"'+') - J(1 . j  5 - cA l~ l l !~ l l :  (71 

Step 5. Calculate a discrete . gradient I:'+' = 
r ' ( , ~ . y ~ + ' . ~ . ~ . A . / ~ ) .  i E I(g"+'.a). construct the set 
Da.+l(x) =co{~i . ( .~)U{~," I '}} . se t I -=  k + l a n d g o t o  

with the fullonviizg coorrlirzatrs: 
- 

r; = [++,(LV-' [f(rj-'igj) - .f(z:(g))] . SteD 2.  

The algorithm contains steps which deserve some 
explanalions. In Step I we take any direction g' E SI and 
calculate the first discrete gradient. In Step 2 we calculate 
least distance between the convex hull  of the discrete gradi- 
ents and the origin. This problem is reduced to a quadratic 
programming problem and can bc eftkctively solved hy 

j = 1 . . _ . .  7 1 . 1  # i., 
r; = ( ~ & [ f ( : ~ : ( ~ ) )  - f(+ 

2 r;(Xgj - z ( A ) F J ( j ) j ~ .  
J = l . j +  

Wolfe's terminating algorithm [30]. If this distance is less 
than some tolerance 6 > 0. the algorithm stops and we can 
consider this point as an approximated stationary point. 
Otherwise. in Step 3, a search direction i s  calculated. If this 
direotion is a descent 
otherwise. in Step 5, we calculate a new discrete gradient 
with respect to this direction to improve the approximation 
of the set of generalized gradients. Since the discrete 
gradient contains some information about the behavior 
of the function f in some regions around the point x this 
alzorithm allows to find descent directions i n  stationarv 

From the definition of the discrae.gradient we can see 
that i t  is defined with respect tn a given direction g E .SI 
and in order to calculate the discrete gradient we use step 
X > 0 along this direction. The i i  - 1 coordinates of the 
discrete gradient are defined as-finite difference estimates 
10 a gradient in some neighborhood of the point I + Xg. 
The ith coordinate of the discrete gradient is defined so 
that to approximate a suh-gradient of the function f .  Thus 
the discrete gradient contains some information ahout the 
hehwior of the function .f in some region around the point 

the a,gorithm 

i' . points which are not local minima (descent direction? in 
such stationary p i n (  always exist). This property makes 

.the discrete gradient method attractive for design of hybrid 
methods in glohal optimization. It is proved that Algorithm 

Now we will consider the following unconstrained min- 
imization problem: 

iiiiiiiiiiize f ( z )  siihjerr to . I :  E R" ( 5 )  

where the function f is assumed to be locally Lipschitz 
continuous. We consider the discrete gradient method for 
solving this prohlem. An important step in this melhod 
is the computation of a descent direction of the objective 
function f. So first. we describe an algorithm for the Algorithm Discrete gradient method 
computation of the descent direction of the function f .  

1 is a terminating (see 141) 

Now we can describe the discrete gradient method. Let 
numhers CI t (0: 1): c? E (0: CI] he given. 

Srei? 1. Choose any stanine point zo E R" and set k = 0. 

> .  

3i..c = c1. After termination of this algorithm for some 
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finite 171 > 0 are computed an element llrill = i i i i i i {~ \ i !~ \  : 
L' E Dn,(.i:i)} and a search direction 9: = - l / ~ $ - ' t : ~  
such that either 

f(Z$.+ X k y : )  ~ f ( Z t )  5 -C lXh . l i l ' t l l  (8) 

or ~ ~ I $  5 de. 
step 1. If 

(9) 

= .I::. i = k f 1 andpo to Step 2 .  Otherwise 

k Iks I1 I J k  

then set 
go to Step S .  
StepS.  Construct the following iteration = .T; +usgJ c ~ 

where U* is defined as follows 

us = arg milx {U  2 o : f ( : r~+ogS. ) - , f ( . r~ )  5 -c2~/1r111}. 

Step 6. Set s = s + 1. and go to Step 3 

The main steps in this algorithm are Steps 3 and S .  In 
Step 3 we calculate a descent direction using Algorithm I. 
The stepsize is calculated in Step 5 .  For the point xu E R" 
we consider the set 

dr(,!u) L { x  t IR" : f(z) 5 f(.P)} 

Theorem 2.1 Assirnie rliar the set AI(.r") is houirdeed for 
.rtarrirlg pubm ,zU E R". Tlieir et'ei?' ncr.slriii/rlri7lr puirrt of 
{.T"} belorigs f u  the set ,Yo = {:c E IR" : 0 E a,f(,i:)}. 

2.2 Evolutionary strategies 

Eeoluri.oiian. smitegies (ESs) [24, ?SI were invented 
for numerical optimization. Let 5 he an 11 dimensional 
solution vector ( 2 ~ ~ .  3'2.. . . ~ z n )  for prohlem P1 and d he 
the corresponding s t e k l e g t h  io1. u ~ ,  . . . ~ u n ) .  Let p be 
the numher 0 1  parents, where each parent is the pair 
(2h..?~.). In the first. generation. p parents are generated 
at random. In each subsequent generation. A children are 
generated from the p parents through recombination and 
muration as follows: let yj = (5,. s j )  he the j t h  child 
to he generated from the two parents :k. = ( ? e . & )  and 
tl = (2 l .di ) .  The child is generated either by discrete 
recombination or arithmetic recombination 3s follows: for 
each variable I,; in ?j, do xjr = 7~~ or x l i  for discrete 
recombination or xli =. (x t i  + x i , ) /?  for arithmetic 
recomhination. The same recombination takes place for thi 
stepsize vectors U .  The child is then mutated as follows: 

where l& is a random vector according to a Gaussian distri- 
hurion with zero mean and standard deviation d h ;  that isthe 
probability. Prob(Rt,), of the random numher RA., t Rb is 

Two variations of E S s  exist based on the replacement 
mechanism. The first variation is E S ( p  + A). where X chil- 
dren are generated from the 11 parents then the parent i n  the 
next generation are the hest solutions among the p + X solu- 
tions. The secondvariation is ES(p. A) .  where X children 
are generated from the 11 parents then the parent in the next 
generation are the hest solutions among the X solutions. 
In this second variation, X >> p .  A special case of each 
variation is usually used where both p and X equal each to I .  

The s tepsire  a can vary during the evolutionary pro- 
cess. In this case. the algorithm is called self-adaptive evo- 
lutionary strategy. The well-known one-fifth success rulc 
is usually used. u,here the stepsize increases if the ratio of 
successful mutations (mutations which produced children 
hetter than their parents) to all mutations is greater than 115. 
In [26] .  the lognormal self-adaptation is proposed. where 
a mtation angle is used to adapt the search towards coordi- 
nates which are likely to he correlated. Given T and r', the 
step size aj is perturbed as follows 

(13) [i', ~ *,,e"l".~lO."+TJ;'U.'~l 
j i  J '  . 1 

where, the values of r and r' are suggested to be 

1 
(14) r =  ___ 

The complete self-adaptive evolutionary strategy a l p  
rithms are depicted helow. 

Algorithm 3 The self-odaprive evulrrrioiiun srraregy ( p  i 
X i .  

Step 0. Randonily gerierare p p a w l i s ,  where ench pareiir 
31 = (e. de). 
step 1. Serr  = (Jmlz' cJ)inT' = (m)-'. 
Step 2. Uritil X childrerr are generared. do 

Srep 3. Select two parerits :A. = (TI ~ ??e) nrid zr = (21.31) 
(rr raridorn to geiierare child i, = (?, . tJ). 



Step 4. Lkcrete t-ecoiithiimrioii: foi- each varirihle z',; arid 
step sire o,,, i i r  &. do (x:~, = I C I . ~  arid oji = 61, 1 or l l j ,  = 
:rtj nrid aj;  = 01j) 

Step 5. Murariori: fur  eodi x j ;  arid srep size U,, bi i, 

z';, = sj; + .;,n'j(o.1) 

U; ,  = uJ( exp(r'A'(0. 1) + ilVJ(O. 1)) 

(16) 

(17) 

Step 6. I f  the iiiorihe,-ofciiildreti is less rhaii X. go tu 3. 

Step 7. Select rhe hest {I iiidiridtmls rimotig rill the p + X 
puretits [itid drildreir. 

Step 8. l f r l ie  hrrlriiig critrriri (ire satisfied, srop. else g o  to 
step 1. 
Algorithm 4 The ,srlfkd(iptii,e eidiiriorrarv strategy 
f i t .  Xi. 

:k = (&a,). 

Step 1. Ser r = (,/(2m)) riud r' = (m)-'. 
Step 2 .  Until X dtildrrtt (ire gerierored. do 

Step 3. Select twn / io rem :, = (,?A. dc) a i r r l  21 = (51.4)  
(11 roirciom rn p i e r o r e  child ,Ti = (F,. Gj). 
Srep 4. Discrue recoriihiiinriori: for eiiclt i'rii-ifhlci xJ; aid 
step size U,, in  ,ijj, do ( s J r  = fk, orid o j ,  = ok, io1'(:cj, = 
xi; mid crji = ai;] 

Srep 5. Mumtioii: For- each x,, and step size oJ, iir & 

Step 0. Rrttidontlv geiiemte i f  porerirs. uher-e ericli parent 

- - 1  

:I.;; =zj; +U,<K3(O.1) (181 

0 ' .  I '  =n,,exp[r'i\'(0.1) + i N j ( O . I ) ]  (19) 

Srep 6. Ifrhe iiititther of childreii is less tlirru A. go to 3. 

Step 7. Select the best p iiidiridicnls antuiig the X cliildiuir. 

Step 8. If tlie holtitrg criteria are srifisfied. stop. else go ro 
step 1. 

2.3 Hybridization of evolutionary strategies and the dis- 
crete gradient method 

In this method, we use discrete gradient as a local search 
operator once for ( p  + A) ES and another time for ( p  A) 
ES. The algorithm simply works hy applying the discrete 
gradient on all individuals in the population of the initial 
generation. In suhsrquent generations. discrete gradient is 
applied only for the best solutions found so far. We will call 

( I ! ,  + A) with DG for local search AlgoriflimS and ( ~ 1 . :  X) 
with DG for local search Algorith7rzti. The details of the 
algorithm for discrete gradient with ( p  + A) are as follows: 

Algorithm 5 DC({i + A). 

Srep 0. Randoriil\. genemte p parenrs. where each parerit 

Step I .  Appl? discrete g r o d i e h  on ehch pnrent : 

srep2. S e r r  = ( , / ~ j j ' a t i d r ' =  (m1-1. 
Step S. Until X cltilrlreii are gnierured, do 

Step 4. Select two /invents :A. = (?k. a,) aitd :I g' (51. ; I )  

Step 5. Discrete wrcornhiiiarioir: for each vriririhle x;, atid 

srep size aj r  in ,Gj, do ( z j i  = :CA.( arid U,, = uk; I or (rj ,  = 

Step 6. Mrrratiom For eorh zjL &Id step size o,i iii cj 

Ik = (Ck.5,). 

(it raiirlom to getitmrt' child Q,, = { f j :  Z j ) .  . .  

.I:(, UildC7,i = l 7 i )  

. .  
' r'.. J '  = "ji ,+ U+;,(O: 1) (201 

U;, =~,,,exp(r'1\'(O.1) +iiY,(0.1)) (21) 

Step 7. I f r l i e  nuitihei- ofchildruri is less r h m  A. go to 4. 

Step 8. Select tlie best p iiidividuols r~ ino t rgd l  the p + X 
pai-enrs arid childreri. 

Step 9. Appl? disci-ere gradieitr on the best indir'idiml nnioiig 
the selected p iiidii,idiirrls. 

Step IO.  l f t l te ltolriiig criteria are sarisfied, srop. else go to 
step 2. 
Algorithm 6 DG(bi. A). 

Srep.0. Raiidoirilr piternre p parerits. wliere eocli poreiir 

Step I .  Apply discrere gradient otr each paretir Zk. 
:k = (E. &). 

Step 3. Until X childreri are generated, do 

Step 4. Select rwo pat-etrrr 11. = ( z k :  &) arid :I = (51. ; I )  

Step 5. Discrere rec~ombination: for  each voriahle xj j  arrd 
step size ojj iii cj, do f z J x  = xkj  arid u , ~  = ai; I or (1. 3 :  - - 
zii and oji = ol,J 

Step 6. Murarioii: For- each zJ,  atid step sire 

at random to geitemre child Qj = (T,. Cj). . .  

ir i  J, 
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z! I, z ,I, . . +oj+Vj(0: 1) (22) 

(23) u,iz = ujr  exp(r'iV(0: 1 )  + rNj(0 .1) )  

Step 7. l f the riirniber of children is less than A. go to 4. 

Step 8. Select [he best p iirdividunls mioirg the A childreir. 

Step 9. Apply discrere gradient on the besf individunl nniorig 
the selected indieidiids. 

Step IO. ljrhe halriiig criteria are sntisjed. stop. else go to 
step 2. 

3 Test problems 

Table I lists the 32 test problems we used in this paper. 
their corresponding numher of variables. and the hest 
known minimum for each of them. Each problem was 
run for a maximum of a million ohjective evaluations.and 
population size of 100. Each run was repeated a 100 times 
with different initial seed. The standard deviation for the 
ES methods was initialized to 3. Local search for the hybrid 
methods was carried out for each solution for 50 ohjeclive 
evaluations (these 50 was included in the calculations of 
the maximum numher of objective evaluations per run). 
All variables were uniformly initialized within their boxing 
constraints. All runs were carried out on a PC running 
WindowsXP with 512 memory and a Pentium 4 CPU. 

4 Numerical Experiments 

In this section. we present the results ohtained for the 
32 global optimization. problems presented in the previous 
seclion. In this paper. we will restrict out discussion to 
the quality of solutions without considering the speed for 
considerations of space. Table 2 presents the rcsults for 
ES(p:A) and ES(p. A) with local search. Table 3 presents 
the results for ES(p + A) and ES(p + A) with l w a l  search. 
Lastly, Table 4 l ists the. results for discrete gradient and 
identifies the best pertorming algorithm(sj~on each prohlem. 

It is interesting to note that the discrete gradient method 
on its own'was quite competitive on some problems and 
consistently reached the global optimum. More interest- 
ingly, on problem FIZ. the discrete gradient method was the 
winner and solutions ohtained by the other methods were 
inferior for F12. It is worth noting that the hybrid methods 
were kt ter  on FI? than when using the evolutionary 
strategies in isolation. 

Table I :  The 32 test prohlems used in this paper 

Function X of vaiahler known minimum 
F1 (1211: prohlrm?) 1 - I  86.710Y 
F2 (121, IS]:  Griewanks Function) 10 0 
F3 (121: Acklcys) to 0 
F4([15]: or BahachrvskyJ 1 0 
FS i I l S 1 :  or Bahachevsky) 2 0 
Fb(1151: or BohachevskyJ 2 0 

F9 ([21: Easoml ? -1 

F12 (121: Hariman with n = G I  6 -3.32277 
F13([14): Hump) 0 

I O  n 

F7 ([21: Branin) 1 0.399 

FIO([I]: Goldsrrinand Price) 
FI I (121: Hartman with n = 3) 3 -3.86278 

I O  0 
-1.8013 

4 0 FIX (121: Neumaier?) 
F20 1121: Rasirineinsi 10 n .~ 
F?? ((21: Schoffer 1)  
F23 (121: Schaffer 21 
F24 (121: Shekel-Si 
F25 (I21: Shekel-71 

? 0 
2 0 
4 -1O.lS320 
4 lO.Jo29-I 

F27 (121: Shuben IJ 
F28 11321: S h u b r n  2 I 
F29 (121: Slepl I O  0 
F30 (r151: Zakharovl 10 0 .. . 
F32 (121: f21 
F33 ([?I: f31 
F3S ((21: f6l 

0 
0 
0 

I O  
10 
10 

F36 ((21: t7J 10 0 
F37 1121: f81 10 
F38([2]: f l 3 l  10 0 

When .counting the numher of times an algorithm 
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. .  5 Conclusions 
Tahlc 3: The performance of-AIg.1 and AIg5 on thc 32 proh- 

I . .  

lems. The hest average overall algorithms is underlined. In  this paper we have introduced a new type of e\'olu- 
tionary strategies with local search. The discrete gradient 
method. a derivative free method.  was^ integrated .into 
the evolutionary strategies. The hybrid approach, seems 
to perform hetter than the nbn-hyhrid approach' on the 
majority of the problems heing presented here. The discTete 
gradient method has a major advantage .over traditional 
gradient-hased local search techniques, in the sense that 
it does not require an explicit-gradient and it can workin 
certain cases. even when the true gradient does not exist. 

. .. , ..,. 

Table 4: The performance of Alg2 on the 32 prohlems. The 
best average overall algorithms is underlined. The second 
column lists the best algorithm(s) for each problem. 

l i  " 1 * 1 1  .U** 
P, 

appeared to he the hest as shown,in Tahle 4, we find 
that Algorithm5 is the winner, being the hest 18 times 
followed hy Algorithm6 (16 times). Algorithm? ( I  I times), 
Algorithm? (6 times), and lastly Algorithm 4 ( 5  times). I t  
is also interesting to see that on 28 out of the 32 prohlems. 
the hybrid algorithms consistently performed better than 
their non-hybrid counterparts with exceptions i n  four cases 
(F?.F3. F12, and F20). 

For future work. we are planning to.provide a detailed 
analysis to the performance of these methods and compare 
them with other global optimization techniques as well 
as hybrid, techniques from the .evolutionary computation 
literature such as the local evolutionary search enhancement 
hy random memorizing 1291 and landscape approximation 
and local search 119, 181. . .  

I 
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