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Abstract 
 
 

Modeling of patch antennas and resonators on arbitrary dielectric substrates using surface 

RWG and volume edge based basis functions and the Method of Moments (MoM) is 

implemented in Matlab and C/C++. The performance of the solver is studied for different 

mesh configurations. The results obtained are tested by comparison with analytical 

solutions (Mie theory) and Ansoft HFSS v9 simulator. The latter uses a large number of 

finite elements (up to 200,000) and adaptive mesh refinement, thus providing the reliable 

data for comparison.  

 

The error in the resonant frequency is estimated for canonical resonator structures at 

different values of the relative dielectric constant rε , which ranges from 1 to 200. The 

reported results show a near perfect agreement in the estimation of resonant frequency for 

all the metal-dielectric resonators. 

 

Behavior of the antenna input impedance is tested, close to the first resonant frequency for 

the patch antenna. The error in the resonant frequency is estimated for different structures 

at different values of the relative dielectric constant rε  , which ranges from 1 to 10. A larger 

error is observed in the calculation of the resonant frequency of the patch antenna. 

Moreover, this error increases with increase in the dielectric constant of the substrate. 

Further scope for improvement lies in the investigation of this effect. 
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1. Introduction 
 

The MoM solution for patch antennas can be obtained using the method of the volume�

integral equation [1]. The method of the volume integral equation has a number of 

advantages including applicability to arbitrary inhomogeneous dielectric materials [2] as 

well as a potentially better accuracy at resonances (compared to the surface integral 

formulation [3]). At the same time, it suffers from a rapid growth of computational 

complexity with an increase in the size of the grid. Therefore, possible reduction of the 

number of basis functions (unknowns) and simplification of the basis functions themselves 

may improve the performance of the method������

�

The simplest choice for the volume integral equation is the pulse basis functions [4]. 

However, they tend to be unstable when relative permittivity becomes higher [1]. The face-

based tetrahedral basis functions proposed by Schaubert, Wilton, and Glisson [2] are more 

robust and are increasingly used today [3, 5].    

 

A convenient choice is to select the electric flux density D
�

 as the unknown for the volume 

integral equation [2]. Then, the continuity of the normal component of D
�

 must be enforced 

on the faces within the same basis function. This is in contrast to the finite element method 

with the edge-based vector basis functions, where the continuity of the tangential E
�

-field is 

required on the faces [6-8].   

 

The face-based vector functions for the volume integral equation [2] are built from two 

tetrahedra sharing the same face; with a linear D
�

 variation essentially in the direction of 
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the face normal. These basis functions exactly replicate any constant D
�

-flux, but not its 

linear variation. The number of unknowns is equal to the number of the faces of the 

tetrahedral mesh. Note that, for a non-trivial tetrahedral mesh, the number of faces is larger 

than the number of the edges. This is a disadvantage compared to the edge-based functions, 

where the number of independent unknowns for the system matrix may be even smaller 

than the number of the edges [9, 10].  It is therefore inviting to employ edge based basis 

functions that still acquire the condition of the continuous normal D
�

- component according 

to [2], but include all tetrahedra sharing the same edge – similar to the edge-based 

divergence-free basis functions [7].  

 

This thesis aims at simulation of combined metal-dielectric structures using the Method 

of Moments based on surface Rao-Wilton-Glisson (RWG) and volume edge based basis 

functions. The next section gives a general overview of the practical implementation of 

the MoM solver. 

 

1.1 Solver overview 

The entire solver is split up into three directories: 

 

a. 1_mesh 

The objectives of this directory are to specify the geometry of the structure and mesh 

generation. Below the functional layout of the mesh generator is represented. The GUI 

interface and some blocks in this directory were programmed by Mr. Andrew Marut, a 

student in the ECE department at WPI.  The directory consists of two files pmesh.m and 
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vmesh.m. On execution, the file pmesh.m prompts the user to specify the two 

dimensional geometry of the structure as shown in Fig. 1.2.1. 

�

Fig 1.1.1 Specifying the 2D geometry of the structure. 

 

Once the geometry is specified the file generates a two dimensional triangular mesh by 

using the Matlab built-in mesh generator ‘delaunay’. The 2D geometry is saved in 

pmesh.mat in terms of the t and P matrices which correspond to the vertices of the 

triangles and their x and y coordinates respectively for a given structure.  

P (2, p) – array of Cartesian node coordinates x and y; the number of nodes is p. 

t (4, N) – array of  node  numbers for each triangle; number of triangles is N. The fourth 

row in the triangle array is the domain number. 

 



 4 

The P and t matrices are the input to the file vmesh.m. On execution, the file vmesh.m 

prompts the user to determine the thickness of the structure and the dielectric constant of 

the material as shown in Fig. 1.1.2. 

�

Fig 1.1.2 Specifying the 3 dimensional geometry of the structure 

 

With this data, the file generates a three dimensional tetrahedral mesh by using the Matlab 

mesh generator ‘delaunay3’. The 3D geometry is saved in vmesh.mat in the form of T 

and P matrices which correspond to the vertices of the tetrahedra and their x, y and z 

coordinates respectively for the given structure. The t matrix for the triangles is also saved. 

In addition to the mesh geometry the unique edges for the triangles and the tetrahedra are 

also saved. These are then used to define the basis functions. All the functions in this 

directory are .m files so that the GUI of Matlab can be used. On successful execution of 

vmesh.m a new window is generated which provides the option to view the surface, 

volume or the feed mesh as shown in Fig. 1.1.3. 
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�

Fig 1.1.3 GUI for viewing the meshes 

 

b. 2_basis 

The objective of this directory is to define the surface RWG and volume edge based basis 

functions for the metal surface and dielectric volume respectively. The directory consists 

of two functions rwgm for the surface RWG basis functions and rwgd for the volume 

edge based basis functions. The function rwgm returns a structure geom which defines all 

the parameters of the metal triangles including potential integrals. The potential integrals 

are calculated using the function analytma and analytmb. The function analytma 

returns the analytically calculated potential integrals for the metal triangle with itself. The 

function analytmb returns the numerically calculated potential integrals for the metal 

triangle with other metal triangles. The numerical integration is obtained by using the 

Gaussian integration points. The function rwgd returns a structure GEOM which defines all 
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the parameters of the dielectric tetrahedra including potential integrals. The potential 

integrals for dielectric structure are calculated numerically by using the Gaussian 

integration points for both the face and the tetrahedra. This is implemented in the function 

analytd for the volume integrals and analtys for the surface integrals.  All the 

functions in this directory are C files compiled as dynamically linked libraries (.dll) for 

optimizing the speed and the memory usage. Both the structures geom and GEOM are saved 

in rwg.mat which is then used to solve the MoM equations. 

 

c. 3_mom 

The objective of this directory is to solve the liner system of MoM equations. This includes 

the calculation of the impedance matrix and the voltage vector to finally obtain the 

unknown currents or the fields in the structure. The calculation of the impedance matrix is 

split up into three parts. The function zmm calculates the metal–to-metal impedance matrix; 

the function zdd calculates the dielectric-to-dielectric impedance matrix while the function 

zmd calculates the effect of the metal-dielectric interaction. For the scattering problem the 

voltage vectors in the metal and dielectric are calculated using the functions voltagem 

and voltaged respectively. For the radiation problem the feed voltages are determined 

by using the function infield. The system of equations is solved by using the function 

slv.  The function slv uses LAPACK function zsysv (zsysv_ for LINUX) for 

solving equations of the form [Z] [I] = [V] where Z is a complex symmetric matrix. Once 

the unknown currents are obtained the output parameters such as input impedance, return 

loss, near fields and radiation patterns can be plotted. All the functions in the directory are 

C files compiled as .dll for memory and speed optimization.  
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Detailed information regarding these functions is given below in table 1.1.1. The derivation 

for calculation of the impedance matrix, voltage vectors and fields is explained in detail in 

sections 2 and 3. 

 

Table 1.1.1 Description of the functions used in the MoM solver�

File name Function call Description 
rwgm.cpp [geom]    =  

rwgm (P, t, 
IndexF, Edgesm, 
Tp, Tm, Vp, Vm) 

The function rwgm returns a structure geom which 
defines all the parameters of the metal triangles 
including potential integrals. The input parameters to 
the function are IndexF which defines the number 
of integration points and the t and P matrices which 
correspond to the vertices of the triangles and their x, 
y and z coordinates respectively for a given structure. 
The other inputs are Edgesm which correspond to 
the unique edges in the metal structure, Tp and Tm 
which correspond to the plus and minus triangles and 
Vp and Vm which correspond to the plus and minus 
vertices of the metal structure respectively. The last 
four parameters are calculated in the 1_mesh 
directory and saved in vmesh.mat. 
The self integrals are calculated using the function 
analytma and analytmb. The function 
analytma returns the analytically calculated 
potential integrals for the metal face with itself. The 
function analytmb returns the numerically 
calculated potential integrals for the metal face with 
other metal face. The numerical integration is 
obtained by considering the Gaussian integration 
points. 
 

rwgd.cpp [GEOM]   = rwgd 
(P, T, Faces, 
IndexF, IndexT, 
const, geom, 
Edges, AT) 

The function rwgd returns a structure GEOM which 
defines all the parameters of the dielectric tetrahedra 
including potential integrals. The self integrals for 
dielectric are calculated numerically by using the 
Gaussian integration points for both the face and the 
tetrahedra. This is implemented in the function 
analytd for the volume integrals and analtys for 
the surface integrals.  
The inputs to the function are two structures geom 
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and const. The structure geom is obtained from rwgm 
and is used only for combined metal-dielectric 
structures. The structure const defines the 
electromagnetic constants such as c,,εµ (speed of 
light) etc. In addition to these, the other input 
parameters include IndexF which defines the 
number of integration points for the faces, IndexT 
which defines the number of integration points for the 
volume tetrahedra, the coordinates of the faces and 
the T and P matrices which correspond to the vertices 
of the triangles and their x, y and z coordinates 
respectively for a given structure. The last two 
parameters are Edges which correspond to the 
unique edges of the tetrahedra and AT which 
corresponds to the associated faces i.e. the face shared 
by the two tetrahedra. The last two parameters are 
calculated in the 1_mesh directory and saved in 
vmesh.mat. 
 

zmm.cpp z =   zmm (geom, 
const, frequency ) 

The function zmm returns matrix ZMM (geom. 
Edgestotal by geom. Edgestotal) which 
correspond to the impedance matrix for pure metal. 
The inputs to the function are two structures geom 
and const and the frequency of operation. The 
structure geom is obtained form rwgm. 
 

zdd.cpp ZDD    = zdd 
(GEOM, const, 
omega_re, 
omega_im) 

The function zdd returns matrix ZDD (GEOM. 
Edgestotal by GEOM. Edgestotal) which 
correspond to the impedance matrix for pure 
dielectric structure. The inputs to the function are two 
structures GEOM and const and the real and 
imaginary components of the frequency of operation. 
The structure GEOM is obtained from rwgd. 
 

infield.cpp [EfieldM EfieldD 
Index] = infield 
(geom, GEOM, 
const, omega_re, 
omega_im) 

The function infield returns matrix EfieldM(3, 
geom. IndexF,geom.Trianglestotal), 
EfieldD (3, GEOM. IndexT, 
GEOM.Tetrahedratotal) and 
Index(4,1).EfieldM and EfieldD correspond to 
the electric fields generated in the feed due to the 
applied voltage (magnetic ring).The vector Index 
provides the index of the feed edges. The inputs to the 
function are three structures geom, GEOM and const 
in addition to the real and imaginary frequencies.  
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voltagem.cpp VM    = voltagem 
(geom, EfieldM) 

The function voltagem returns a voltage vector 
‘VM’ (geom.Edgestotal, 1) which corresponds 
to the induced voltage in the metal structure generated 
due to the applied voltage at the feed (magnetic ring). 
The inputs to the function are structure geom and 
EfieldM. EfieldM corresponds to the field 
generated in the metal structure due to the applied 
voltage and is obtained from infield. 
 

voltaged.cpp VD   = voltaged 
(GEOM, 
EfieldD) 

The function voltaged returns a voltage vector VD 
(GEOM.Edgestotal,1) which corresponds to the 
induced voltage in the dielectric structure generated 
due to the applied voltage at the feed (magnetic ring). 
The inputs to the function are structure GEOM and 
EfieldD. EfieldD corresponds to the field 
generated in the dielectric structure due to the applied 
voltage and is obtained from infield. 
 

slv.cpp [I  D] = slv 
(ZMM, ZDD, 
ZMD, VM, VD, 
omega_re, 
omega_im) 

The function slv returns the current vector I (1, 
geom.Edgestotal) and D (1, GEOM.EdgesTotal) in 
the metal and dielectric respectively. The inputs to the 
function are the three impedance matrices  
ZMM(geom.Edgestotal,geom.Edgestotal) 
ZDD(GEOM.Edgestotal,GEOM.Edgestotal) 
ZMD(geom.Edgestotal,GEOM.Edgestotal) 
obtained from the functions zmm, zdd and zmd 
respectively. In addition, there are the two voltage 
vectors VM (1, geom.Edgestotal) and VD (1, 
GEOM.Edgestotal) obtained from the functions 
voltagem and voltaged and the real and 
imaginary part of the frequency at which the 
computations are to be carried out. The function slv 
uses LAPACK function zsysv (zsysv_ for 
LINUX) for solving equations of the form  
[Z][I] = [V] where Z is a complex symmetric matrix. 
 

fieldm.cpp [Poynting, E, H]  
= fieldm (const, 
geom, I, f_re, 
Point, option) 

The function fieldm computes the scattered electric 
field, E (3, Points where the field is calculated), 
magnetic field H (3, Points where the field is 
calculated) and the Poynting vector Poynting (3, 
Points where the field is calculated) for a metal 
structure. The inputs to the function are two structures 
geom and const. In addition to these, the other 
input parameters include the current vector, I, which 
is obtained using slv, frequency of operation, 
observation point where the field is to be measured 
and an addition parameter called option. If 
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option is set to zero then the scattered filed is 
calculated while when the option is set to one the total 
field is calculated. 
 

fieldd.cpp [Poynting, E, H] 
= fieldd (const, 
GEOM, D, 
frequency, Points, 
option) 

The function fieldd computes the scattered electric 
field, E (3, Points where the field is calculated), 
magnetic field, H (3, Points where the field is 
calculated) and the Poynting vector, Poynting (3, 
Points where the field is calculated) for a dielectric 
structure. The inputs to the function are two structures 
GEOM and const. In addition to these, the other 
input parameters include the current vector, D, in the 
dielectric which is obtained using slv, frequency of 
operation, the observation points where the field is to 
be measured and  an addition parameter called 
option. If option is set to zero then the scattered 
field is calculated while when the option is set to one 
the total field is calculated. 

�

 

The solver is tested for different structures, e.g. homogenous and inhomogeneous 

dielectric structures (section 5.1); resonators (section 5.2) and patch antennas (section 

5.3). The solver is also tested by comparison with an analytical solution for dielectric 

scattering problem (Mie theory) in Appendix A.  

The performance of the solver (radiation/scattering) is studied for different mesh 

configurations and different dielectric constants of the substrate. A typical structure has 

around 700 surface RWG basis functions and around 2,500 volume edge based basis 

functions. The time required for calculation of a single frequency step for the above 

structure is about 2 minutes on a P IV 3GHz processor. At present the solver can handle 

around 8,500 unknowns (metal + dielectric). 
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1.2 Review of common basis functions 
 
 
Before going into the derivation and implementation of the MoM equations for the surface 

RWG and the edge based basis functions, we summarize the commonly used basis 

functions to simulate antennas. The basis functions chosen should have the ability to 

accurately represent and resemble the anticipated unknown field distribution, while 

minimizing the computational effort required when employing it. 

 

a) Pulse basis function 

It is defined as [11] 

 

�
�
� ≤≤

= −

elsewhere

xxx
xf nn

n 0
1

)( 1  (1.2.1) 

 

A sketch is given in Fig 1.2.1. 

 

 

Fig 1.2.1 Pulse basis function. 
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b) Rooftop basis functions 

Piecewise linear functions defined on rectangular sub-domain are referred as rooftop basis 

functions or RT [12]. In the simplest one dimensional case one has 

 

�
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�

�
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 (1.2.2) 

 

A sketch is given in Fig 1.2.2. 

 

 

 

Fig 1.2.2 Rooftop basis function. 

 

They are commonly used in the numerical solution of surface integral equations. The 

rooftop basis functions are well suited to modeling geometries that conform to Cartesian 

coordinates. These functions are much smoother than the pulse basis functions. There is 

also a 2D extension of the rooftop basis functions. In this case the basis functions are 
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defined on two neighboring sub domains and the unknown is associated with the common 

edge between these sub domains. 

 

c) Sinusoidal basis functions 

Wire antennas can be solved using a moment’s solution where the method of subsectional 

basis is applied with both the expansion and testing functions being sinusoidal 

distributions. It is defined as [11] 
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A sketch is given in Fig 1.2.3. 

 

 

Fig 1.2.3 Sinusoidal basis function. 
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c) Rao-Wilton –Glisson (RWG) basis functions 

RWG basis functions are capable of modeling flat faced approximations of arbitrary 

geometries. These are also edge functions. For any two triangular patches, +
nt  and −

nt , 

having areas +
nA  and −

nA , respectively, and sharing the common edge nl , the nth basis 

function is defined as [13] 

 

�
�
�

��
�

�

=
−−

−

++
+

n
S

n
n

n

n
S

n
n

n

n

tinr
A
l

tinr
A
l

rf
��

��

�

;
2

;
2)(

ρ

ρ
            (1.2.4) 

 

where ++ −= n
S

n rr
���ρ  is the vector drawn from the free vertex of triangle +

nt  to the 

observation point; rrn
S

n

��� −= −−ρ  is the vector drawn from the observation point to the free 

vertex of triangle −
nt . The basis function is zero outside two adjacent triangles +

nt  and −
nt . A 

sketch of these basis functions is given in Fig 1.2.4. 

 

Fig 1.2.4 Surface RWG basis function. 
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e) Face-based basis functions 

Volume RWG basis functions introduced in [2] are very similar to the surface RWG basis 

functions. Instead of two adjacent triangular patches sharing the common edge, one needs 

to consider two adjacent tetrahedra sharing the common face. For any two tetrahedra, +
nT  

and −
nT , having volumes +

nV  and −
nV , respectively, and sharing the common face na , the 

nth basis function becomes 

 

�
�
�

��
�

�

=
−−

−

++
+

n
V

n
n

n

n
V

n
n

n

n

Tinr
V
a

Tinr
V
a

rf
��

��

�

;
3

;
3)(

ρ

ρ
 (1.2.5) 

    

where ++ −= n
V

n rr
���ρ  is the vector drawn from free vertex of tetrahedron +

nT  to the 

observation point; rrn
V

n

��� −= −−ρ  is the vector drawn from the observation point to the free 

vertex of tetrahedron −
nT . The basis function is zero outside two adjacent tetrahedra +

nT  

and −
nT . A sketch of the basis function is given in Fig 1.2.5. 

 

Fig 1.2.5 Volume RWG basis function. 
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e) Edge-based basis functions 

The edge-based basis function f
�

 introduced in [14] is shown in Fig.1.2.6. The basis function 

is defined by a vector of the edge p
�

 (or CD), which is opposite to the base edge l
�

. The vector 

variation is essentially perpendicular to the base edge l
�

 (or AB). Within a tetrahedron, the 

basis function is a constant field given by pcf
��

=  where c is a normalization coefficient. 

 

Fig 1.2.6 Edge based basis functions 
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1.3 RWG basis functions 

In this section we discuss the surface RWG basis functions used for modeling a metal 

surface. 

 

a. Definition  

A metal surface is divided into triangular patches as shown in Fig.1.3.1.  

 

Fig 1.3.1 Surface RWG basis function 

 

For any two triangular patches, +
nt  and −

nt , having areas +
nA  and −

nA , respectively, and 

sharing the common edge nl , the nth basis function is defined as 
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where ++ −= n
S

n rr
���ρ  is the vector drawn from free vertex of triangle +

nt  to the observation 

point; rrn
S

n

��� −= −−ρ  is the vector drawn from the observation point to the free vertex of 

triangle −
nt . The basis function is zero outside two adjacent triangles +

nt  and −
nt . 

 

 

1.4 Volume edge based basis functions  

In this section we discuss the edge based basis functions used for modeling the dielectric 

volume. 

 

a. Definition  

The edge-based basis function f
�

 introduced in [14] is shown in Fig. 1.4.1 a. It is similar to the 

first Whitney form [7]. However, the vector variation is essentially perpendicular to the base 

edge l
�

 (or AB). The basis function is defined by a vector of the edge p
�

 (or CD), which is 

opposite to the base edge l
�

. Within a tetrahedron, the basis function is a constant field given by 

pcf
��

=  where c is a normalization coefficient. 

The basis function may include a different number of tetrahedra that share the same base 

edge l
�

.  Three representative cases are depicted in Fig. 1.4.1. In the first case (Fig. 1.4.1a); both 

grayed faces of a tetrahedron are on the mesh boundary. The basis function includes only one 

tetrahedron. In the second case (Fig. 1.4.1b); two faces of two adjacent tetrahedra are on the 

mesh boundary. The basis function includes two tetrahedra and has one inner face. In the last 

case (Fig. 1.4.1c); all faces of all tetrahedra sharing the base edge are the inner faces of the 

mesh.  The basis function only has the inner faces.    
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The component of the basis function f
�

 normal to face ABC in Fig. 1.4.1a is given by 

 

 

ABCCABCABC SSclhScnpcnpcf //2 ==⋅=⋅= ⊥⊥
����

                     (1.4.1) 

 

where ⊥p
�

 is the projection of p
�

 onto a plane perpendicular to the base edge; Ch  is the height 

of triangle ABC perpendicular to the base edge; and S  is the area of the projection of triangle 

ACD or triangle BCD onto a plane perpendicular to the base edge. The normalization 

coefficient is chosen in the form )/(1 Slc = . This guarantees that (i) the normal component of 

the basis function is continuous through the inner faces; and (ii) the total flux of the normal 

component through any face is equal to one.     

 

ABCS
f

1=⊥         (1.4.2) 

 

b. Size of the function set  

A naive guess is to assume that the number of basis functions is equal to the number of edges 

LN  of the tetrahedral mesh. This approach leads to the ill-conditioned Gram expansion matrix. 

In order to estimate the number of independent basis functions, let us first consider a mesh with 

one tetrahedron. Formally, there are six basis functions corresponding to six basis edges. Only 

three of them are linearly independent in 3ℜ  and should therefore be retained. The number of 

basis function is 

 

TF NNN −=            (1.4.3) 
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where FN  is the number of faces (four) and TN  is the number of tetrahedra (one) in the mesh. 

 

 

 
Fig 1.4.1. Three possible combinations of edge based basis functions. a) Two faces on the 
mesh boundary and no inner face; b) two faces on the mesh boundary and one (or more) inner 
face; c) only inner faces and no boundary faces. 
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Next, consider a mesh with two tetrahedra. The component of the electric flux perpendicular to 

the common face is the same in both tetrahedra and is supported by one basis function. The 

remaining component of the flux (parallel to the face) is different in both tetrahedra, and is 

supported by two basis functions in each tetrahedron. The number of independent basis 

functions (five) is again given by equation (1.4.3) with 2,7 == TF NN . 

In order to justify equation (1.4.3) in a general case the following can be mentioned. For any 

tetrahedral mesh, only one basis function is needed per face to support the normal flux 

component through the given face. This leads to the first term on the right-hand side of 

equation (1.4.3). On the other hand, any tetrahedron has four faces but needs only three linearly 

independent basis functions. Therefore, one basis function per tetrahedron must be subtracted. 

This leads to the second term on the right-hand side of equation (1.4.3).  Equation (1.4.3) was 

validated directly for uniform rectangular meshes.  For non uniform meshes the relation 

is TF NNN −< . Hence equation (1.4.3) provides a conservative estimate of the number of 

basis functions. The general expression for the number of basis functions is 

 

TF NNN −≤         (1.4.4) 

 

To remove the dependent basis functions for a given tetrahedral mesh, the Gram or 

“covariance” matrix of a set of the basis functions on the size LL NN ×  is set in the form 
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Matrix G is solved by using the LU factorization with partial pivoting using LAPACK'S 

DGETRF [15]. The matrix G is filled as a sparse matrix and LU operates on a sparse matrix. 

The diagonal elements are checked to determine the independent basis functions. The 

independent columns of matrix G correspond to independent basis functions. 

 Since the number of edges in a large tetrahedral mesh is smaller than the number of faces by 

typically 30-40%, the matrix G is smaller than the impedance matrix for the face-based basis 

functions. It is also real and symmetric. Therefore, the elimination of the null set requires 

approximately 25% CPU time compared to the factorization of the complex impedance matrix 

for the face-based basis functions. The critical point is that the elimination of the null set 

should be done only once. When a frequency sweep is applied, the corresponding CPU time 

becomes insignificant compared to the total CPU time necessary for the solution of MoM 

equations for every frequency.   
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2. Derivation of MoM equations 

In this section, the MoM equations are derived for pure metallic, pure dielectric and 

combined metal-dielectric structure based on the surface RWG and volume edge-based 

basis functions. The derivations in this section form the core of the solver. 

 

2.1 MoM equation for a pure metallic structure 

 

a. Scattering problem 

The total electric field (antenna or scattering problem) is a combination of the incident field 

(labeled by superscript i) and the scattered field (labeled by superscript s), i.e. 

 

si EEE
���

+=  (2.1.1)   

 

The incident electric field is either the incoming signal (scattering problem) or the 

excitation electric field in the antenna feed (radiation problem). The scattered field has a 

straightforward interpretation for the scattering problem. For the antenna radiation, the 

“scattered” field is just the field radiated by the antenna feed.   

 

The scattered electric field sE
�

 is due to surface currents and free charges on the metal 

surface S (the so-called mixed-potential formulation) [13] 

 

  SrrrAjE SS
s on );()(

�����
Φ∇−−= ω  (2.1.2) 
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Index S denotes the surface related quantities.    

The magnetic vector potential )(rAS

��
 describes current radiation whereas the electric 

potential )(rS

�Φ describes charge radiation. In the near field, the Φ -contribution is 

somewhat more critical than the A
�

-contribution. On the metal surface S, 0tan =E
�

, thus 

giving the electric field integral equations (EFIE),   

 

( ) SrjE SS
i on ;tantan

��
Φ∇+Α= ω  (2.1.3)   

 

b. Test functions 

Assume that some test functions, )(rf S
m

��
 m = 1… NM, cover the entire surface S and do not 

have a component normal to the surface.  Multiplication of (2.1.3) by S
mf
�

 and integration 

over S gives NM equations 

 

( )��� Φ⋅∇−⋅=⋅
S

S
S

m
S

S
S

m
S

iS
m dsfdsAfjdsEf

�����
ω  (2.1.4)   

 

since, according to the Stoke’s theorem, 

 

( )dsfdsf
S

S
mS

S

S
mS �� ⋅∇Φ−=⋅Φ∇

��
 (2.1.5)    

 

if S
mf
�

 doesn’t have a component perpendicular to the surface boundary or edge (if any). 
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c. Basis functions 

The surface current density, SJ
�

 is expanded into basis functions (which usually coincide 

with the test functions) in the form  

 

�
=

=
MN

n

S
nnS fIJ

1

��
 (2.1.6)   

 

The magnetic vector potential has the form [1] 

 

� ′=Α
S

SS sgdJr
���

π
µ
4

)( 0  (2.1.7)   

 

where 0µ  is the permeability in vacuum and ',/)exp( rrRRjkRg
�� −=−=  is the free-

space Green’s function (time dependency tjωexp( ) is assumed everywhere). In the 

expression for the Green’s function  r
�
� is the observation point and� 'r

�
� is the integration 

point which belongs to the surface. 

After substitution of expansion (2.1.6), the above equation becomes 

 

� �
= 

�
�

�
�
�

′′=
MN

n
n

S

S
nS IsgdrfrA

1

0 )(
4

)(
����

π
µ

 (2.1.8)   

 

Similarly, the electric potential has the form [1] 
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S
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 (2.1.9)   

 

It follows from equation (2.1.9) that sσ  can be expressed in terms of the current density. 

Hence the electric vector potential finally reduces to 
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d. Moment equations 

The moment equations are obtained if we substitute expansions (2.1.8) and (2.1.10) into the 

integral equation (2.1.4). In terms of symbolic notations, 
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mn NmIZ
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where 

 

M
S
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m

M
m NmdsEf ,...1; =⋅= �

��
υ  (2.1.12)   

 

are the “voltage” or excitation components for every test/basis function. The integral 

expressions are the components of the impedance matrix MMẐ of the size (NM x NM). 
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Note that the impedance matrix is symmetric for any set of basis functions (test functions 

should be the same) when the corresponding surface integrals are calculated precisely. The 

components of the impedance matrix are the double surface integrals of the Green’s 

function and they mostly reflect the geometry of the problem. In the matrix form, (2.1.11) 

becomes 

 

υ�
�

=IZ MMˆ  (2.1.14)   

 

e. RWG basis functions  

Below, we recall the following properties of the RWG basis functions [13]. For any two 

triangular patches, +
nt  and −

nt , having areas +
nA  and −

nA , and sharing the common edge nl , 

the n-th basis function becomes 
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and  
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where ++ −= nn rr
���ρ  is the vector drawn from the free vertex of triangle +

nt  to the 

observation point; rrnn

��� −= −−ρ  is the vector drawn from the observation point to the free 

vertex of triangle −
nt . The basis function is zero outside two adjacent triangles +

nt  and −
nt . 

 

Substitution of equations (2.1.15), (2.1.16) into equation (2.1.13) gives the components of 

the impedance matrix in terms of surface RWG basis functions in the form 
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and 
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          (2.1.18) 

 

f. Integral calculation 

About 90% of the computations required for evaluation of the MoM impedance matrix for 

RWG basis functions is involved in the calculation of the surface integrals presented in 
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equations (2.1.17), (2.1.18). Consider a structure where all triangular patches are 

enumerated by Pp ,...,1= . Then, every integral in equation (2.1.17) is build upon the term 

 

( ) 3,2,1,,...,1,)( ==′′−′⋅= � � jiPqpdssdrrgA
p qt t

ji
ij

pqS

�����
ρρ                         (2.1.19) 

 

Here,  ii rr
��� −=ρ  for any vertex i of patch p whereas jj rr

���
−= ''ρ  for any vertex j of patch 

q. Similarly, every integral in equation (2.1.18) is build upon the term 

   

Pqpdssdrrg
p qt t

pqS ,...,1,)( =′′−=Φ � �
��

                                    (2.1.20) 

 

The integrals (2.1.19) and (2.1.20) can be found using a vectorized routine, which employs 

Gaussian integration of variable order (up to 7th) for both the surface integrals [16, 17]. 

Calculation is performed over all triangular patches, not over RWG basis functions. The 

corresponding formulas are given in Appendix B. Prior to the use of the Gaussian 

integration formulas; a singularity extraction must be done for atleast the self integrals. The 

singular potential integrals of the type � ′−
pt rr

��
1

  are calculated analytically. 

 

g. Self-integrals 

The self-integrals ( qp =  in equations (2.1.19), (2.1.20)) are found precisely, using a 

number of analytical base integrals presented in [18]. Before doing that, the Taylor 

expansion is made for the Green’s function 
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)(/1/)exp( RjkRRjkRg Ο+−≈−=             (2.1.21) 

 

Therefore, equation (2.1.20) yields 
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            (2.1.22) 

 

where pA  is the area of the triangle pt . Similarly equation (2.1.19) yields 
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            (2.1.23) 

 

Introduction of the simplex or barycentric coordinates 21 ,λλ  for the triangle pt gives 

[13,18] 
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Substitution of equation (2.1.25) into the first term on the right-hand side of equation 

(2.1.23) results in seven integrals. Each of those is reduced to one of the four independent 

base integrals given in [18]. The remaining values are obtained using cyclic transformation. 

Integral (2.1.22) only needs the first base integral [5]. The second term on the right-hand 

side of equation (2.1.23) is calculated in the straightforward manner. Further details are 

given in Appendix B. 
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2.2 MoM equations for a pure dielectric structure 

 
In this section, the MoM equations for a pure dielectric object (a scatterer) are derived from 

the EFIE [1], utilizing the volume edge-based basis functions [14]. 

 

a. Scattering problem 

The total electric field (antenna or scattering problem) in a dielectric volume is a 

combination of the incident field (labeled by superscript i) and the scattered field (labeled 

by superscript s), i.e. 

 

si EEE
���

+=   (2.2.1) 

 

Let V  denote the volume of a lossy, inhomogeneous, dielectric body with (complex) 

dielectric constant ωσεε )()()( rjrr
���� −= , where ε  and σ  are the medium electric 

permittivity and conductivity when r
�

is inV . The total electric field in that case can be 

expressed in terms of the electric flux density, )(rD
��

, as 

 

)(ˆ)( rrDE
����

ε=  

 

The incident field is the incoming signal for the scattering problem. The scattered electric 

field sE
�

 is found using the volume equivalence principle [1]. Namely, the dielectric 

material is removed and replaced by equivalent volume polarization currents. The scattered 

field is due to the volume polarization currents in dielectric volume V  (bounded by 

surface Ω )  
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VrrrAjE s in );()(
�����

Φ∇−−= ω                           (2.2.2) 

 

The magnetic vector potential )(rA
��

 describes radiation of volume polarization currents, 

whereas the electric potential )(r
�Φ describes radiation of the associated bound charges. 

Thus, from the expressions for E
�

 and sE
�

, we can write the EFIE as 
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  (2.2.3) 

 

b. Test functions 

Assume that some volume test functions, )()( rfrK m

���
 m = 1… ND, cover the entire 

dielectric volume V  where )(rK
�

 is an arbitrary factor. Each function )(rfm

��
 is assumed 

to be piecewise continuous, divergence free, and has a continuous normal component 

everywhere within a smaller definition volume nV , including its boundary. Multiplication 

of equation (2.2.3) by )()( rfrK m

���
 and integration over volume V  gives ND equations 
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Transforming the last volume integral by using Stokes theorem for every individual 

tetrahedron pT  we obtain 
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where pΩ  is the boundary surface for tetrahedra pT ��However the volume basis functions 

are divergenceless i.e.  0)( =⋅∇ rfm

��
��Hence 
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  (2.2.5) 

 

where  n̂  is the unit outer normal to the surface pΩ  and )(rf m
�

⊥  is the outer normal 

component of the basis function )(rfm

��
 on surface pΩ  . 

Substituting the equation (2.2.5) in (2.2.4) gives the expression of the form 
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where P is the total number of tetrahedra contained by the basis functions. 

 

c. Differential contrast 

We need to transform the surface integral in (2.2.6) by considering each face of the 

tetrahedron separately. To achieve this we consider three representative cases depicted in 

Fig. 2.2.1. In the first case (Fig. 2.2.1a); S1 is the common face between the dielectric 

tetrahedron ABCD and the fictitious tetrahedron in vacuum. In the second case two 

tetrahedra ABCD and ABCE share a common face S2 while S3 is the common face between 

tetrahedron ABCE and a fictitious tetrahedron in vacuum as shown in Fig 2.2.1c. We 

compute the surface integral in equation (2.2.6) by considering each of the above faces 
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separately. The dielectric contrast 
)(ˆ

)(ˆ
)(

r
r

rK o
�

�

ε
εε −

=  is a constant within every tetrahedron. 

The surface normal is directed from plus (or left) to minus (right) tetrahedron. 

 

The face normal is aligned according to the right-hand rule for the base edge. Its direction 

follows the direction of the vector field. The differential contrast is obtained combining the 

contrast data for the left and right tetrahedron. If one of them does not exist (vacuum-

dielectric boundary), then either +K  or −K  becomes zero. For a homogeneous dielectric 

this guarantees that (i) every basis function with only inner faces doesn’t create any surface 

charge; and (ii) every basis function with two boundary faces possesses the net surface 

charge zero.    

 

Using the above theory we reduce the surface integral of (2.2.6) for each common face for 

the two tetrahedra ABCD and ABCE as shown in Fig 2.1.1. 
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Fig. 2.2.1 Three representative cases to transform the surface integral by considering each 
face of the tetrahedron separately. a) S1 is the common face between the dielectric 
tetrahedron ABCD and the fictitious tetrahedron in vacuum; b) S2 is the common face 
between the dielectric tetrahedron ABCD and ABCE; c) S3 is the common face between 
the dielectric tetrahedron ABCE and the fictitious tetrahedron in vacuum. 
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Face S1: 
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Face S2: 
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Face S3: 
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Summing up the above integrals we get for a tetrahedra pair the surface integral as 
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Hence from equations (2.2.7)-(2.2.10)  
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where −+ −= KKK q
ˆ is the differential contrast on face q. 
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Hence equation (2.2.6) finally reduces to 
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d. Field and charge expansion 

The total electric flux, )(rD
��

, is expanded in the form       
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n
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where )(rf n

��
�is a set of volumetric basis functions. 

Once equation (2.2.13) is given, the density of the surface bound charges is established 

following the continuity equation, in terms of the surface δ-functions [1]. The equivalent 

result can be obtained using Gauss theorem or the boundary condition on the dielectric 

interface. Consider two arbitrary tetrahedra (plus and minus) that share a common face 

(which includes the base edge) but have different dielectric constants ±ε̂ . The surface 

charge density, Ωσ , from Gauss law, 

 

⊥⊥−+Ω =−≡ DKDKK ˆ)(σ             (2.2.14) 

 

where ⊥D  is the normal component of the total electric displacement on the boundary; 

−+ KK ,  are the corresponding dielectric contrasts.   
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For every basis function )(rfn

��
, and for every face, which supports the normal component 

of this basis function, the associated surface charge is enforced to follow equation (2.2.14). 

The normal component of )(rfn

��
 is available from equation (1.4.1). The total surface 

charge density in the dielectric is obtained as a combination of the contributions of all basis 

functions 
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where −+ −= KKK q
ˆ is the differential contrast on face q, )(rf nq

�
⊥  is the normal component  

of the basis function )(rf n

��
 on face q.  The inner summation in equation (2.2.15) is done 

over all Q faces, which support the normal component of the n-th basis function.  

Along with (2.2.15), the volume polarization current density [1] in the dielectric volume, 

except for any of its boundaries, is given by 
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The inner summation in equation (2.2.16) is done over all P tetrahedra, which are contained 

by the n-th basis function. Every tetrahedron may possess its own dielectric contrast pK .  
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e. MoM equations 

According to the volume equivalence principle [1], the piecewise inhomogeneous dielectric 

material is removed and replaced by equivalent volume polarization currents in V and by 

the associated surface bound charges on Ω . The volume EFIE is written in the mixed-

potential form [13], i.e. in form of equation (2.2.3) 

  

Ω∈∈Φ∇++=  , );()( rVrrrAjEE i �������
ω             (2.2.17) 

 

where ε̂/DE
��

=  is the net electric field and iE
�

 is the incident field.  The magnetic vector 

potential )(rA
��

 describes radiation of volume polarization currents given by equation 

(2.2.16), whereas the electric potential )(r
�Φ describes radiation of the associated bound 

charges given by equation (2.2.15). One has 
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where rrRRjkRrrg ′−=−=′ ����
,/)exp(),(  is the free-space Green’s function.  

Substituting the values of the surface charge density and volume polarization currents form 

equations (2.2.15) and (2.2.16) in equation (2.2.18) yields 
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After substitution of (2.2.13), (2.2.19), and (2.2.20), equation (2.2.12) gives the MoM 

equations in the form 
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are the “voltage” or excitation components for every test/basis functions. 

The impedance matrix Ẑ  is given by 
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The symmetric impedance matrix is thus written as a combination of individual volume 

and surface integrals. Since both the basis/test functions and their normal components are 

constant for a given tetrahedron/face, equation (2.2.22) may be notably simplified.  
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Note that the first term on the right-hand side of equation (2.2.23) is only different from 

zero when the p -th tetrahedron of basis function m coincides with the p′ -th tetrahedron of 

basis function n.  

 

f. Integral calculation 
 
About 90% of the computations required for evaluation of the MoM impedance matrix for 

edge-based basis functions is involved in the calculation of the volume/volume and 

surface/surface integrals presented in equation (2.2.23). Consider a structure where all 

tetrahedral volumes are enumerated by Pp ,...,1= . Then, integral in equation (2.2.23) is 

built upon the term 
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Also, integral in equation (2.2.23) is built upon the term 
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The integrals (2.2.24)-(2.2.25) are found using a separate routine, which employs Gaussian 

integration of variable order [16, 17]. The singular portions of the surface to surface self 

integrals are found analytically, using the closed-form computation given in [18]. The 

singularity extraction is also done for volume self-integrals. The singular portions of the 

volume-to-volume self integrals are first integrated analytically using Gauss theorem [19]. 

The remaining integrals are non-singular and are evaluated numerically, using typically 

seven- point Gaussian quadrature for faces and the eight-point barycentric quadrature for 

volumes. Also, the Gaussian formulas for tetrahedra are used [20, 21, 22].Such an approach 

gives a reasonable compromise between accuracy and speed. The corresponding formulas 

are given in Appendix B.  
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2.3 MoM equations for combined metal-dielectric structure 

 

In this section, the MoM equations for a combined metal-dielectric object (a scatterer) are 

accurately derived for the electric field integral equation (EFIE) [1], utilizing surface RWG 

basis functions [13] and the edge-based basis functions [14] following the approach as 

given in [4].  

 

a. Scattering problem 

The total electric field (scattering problem) is a combination of the incident field (labeled 

by superscript i) and the scattered field (labeled by superscript s), i.e. 

 

si EEE
���

+=          (2.3.1) 

 

Let V  (bounded by surface Ω ) denote the volume of a lossy, inhomogeneous, dielectric 

body with (complex) dielectric constant ωσεε )()()( rjrr
���� −= , where ε  and σ  are the 

medium permittivity and conductivity when r
�

is inV .  Let a metal surface S be attached to 

this dielectric object. 

The incident field is the incoming signal for the scattering problem. The scattered electric 

field sE
�

 in this case will have two components. One is due to volume polarization currents 

in the dielectric volume V  and associated bound charges on the boundaries of an 

inhomogeneous dielectric region, and the other component is due to surface conduction 

currents and free charges on the metal surface S. Using the expressions for the scattered 

field in terms of the electric and magnetic potentials A
�

and Φ , one has 
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 VrrrAjrrAjE SS
s in );()()()(
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where index S refers to metal surface. The magnetic vector potential )(rA
��

 and electric 

potential )(r
�Φ  carry their usual meanings corresponding to metal and dielectric. Since  

 

ED
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ε̂=      in the dielectric volume V              (2.3.4) 

 

0tan =E
�

     on the metal surface S             (2.3.5) 

 

using the expressions for E
�

 and sE
�

, we can write the EFIE as (see section 2.1 and 2.2) 
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[ ] SrrrAjrrAjE SS
i on ;)()()()( tantan
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Φ∇++Φ∇++= ωω               (2.3.7)  

 

b. Test functions 

Assume that some test functions, )()( rfrK m

���
, m = 1… ND, cover the entire dielectric 

volume V . Multiplication of equation (2.3.6) by )()( rfrK m

���
 and integration over volume 

V  gives ND equations 
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Simplifying the last volume integral by applying Stokes theorem for every individual 

tetrahedron in the manner similar to the simplification of the last volume integral in DDZ  

given in equation (2.2.5)  yields 
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However the volume basis functions are divergenceless. Hence 
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where  n̂  is the unit outer normal to the surface Ω  and )(rf mq
�

⊥  is the outer normal 

component of the basis function )(rfm

��
 on face q.  Substituting the values from equations 

(2.2.5) and (2.3.9) in equation (2.3.8) gives 
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 The process of converting the contrast, )(rK
�

, to the differential contrast, K̂ , is exactly the 

same as explained in section 2.2c. The term on the right-hand side of equation (2.3.10), 

labeled DDZ , is exactly the right-hand side of equation (2.2.12) from section 2.2 for pure 

dielectric.  The term, labeled DMZ , describes the contribution of radiation from the metal 

surface to the dielectric volume.  

Now assume that the surface test functions, )(rf S
m

��
, m = 1… NM, cover the entire metal 

surface S and do not have a component normal to the surface. Multiplication of equation 

(2.3.7) by )(rf S
m

��
 and integration over surface S gives NM equations 
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since according to Stoke’s theorem, 
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The term on the right-hand side of equation (2.2.11), labeled MMZ , is exactly the right-

hand side of equation (2.1.14) from section 2.1 for pure metal.  The term, labeled MDZ , 

describes the contribution of radiation from the dielectric volume to the metal surface. 
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c. Basis functions 

The material in this section is essentially the combination of sections 2.1 and 2.2 where the 

MoM equations are obtained for the pure metal and pure dielectric structure. Given DN  

independent edge-based basis functions, the total electric flux )(rD
��

 in the dielectric and 

the associated bound surface charge density Sσ , from Gauss law, are expanded in the form 

(see section 2.2)  
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where ⊥D  is the normal component of the total electric flux on the boundary; 

−+ −= KKK q
ˆ  is the differential contrast on face q between tetrahedra “+” and “-”; and 

±±± −= εεε ˆ/)ˆ( 0K  is the dielectric contrast, which is a constant within every tetrahedron. 

The associated surface normal is directed from plus (or left) to minus (right) tetrahedron. 

The surface normal is aligned according to the right-hand rule for the base edge. The 

differential contrast is obtained combining the contrast data for the left and right 

tetrahedron. If one of them does not exist (vacuum-dielectric boundary), then either +K  or 

−K  becomes zero. For a homogeneous dielectric this guarantees that every basis function 

with two boundary faces possesses the net surface charge zero.    

The volume polarization current density in the dielectric volume, except for any of its 

boundaries, is given by 
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The magnetic vector potential )(rA
��

 describes radiation of volume polarization currents 

given by equation (2.3.14), whereas the electric potential )(r
�Φ describes radiation of the 

associated bound charges given by equation (2.3.13). One has 
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where rrRRjkRrrg ′−=−=′ ����
,/)exp(),(  is the free-space Green’s function. 

Substituting the values of )(rJV

��
 and )(r

�
Ωσ  from equations (2.3.13) and (2.3.14) in 

(2.3.15) results in 
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Given MN  independent rooftop basis functions [13], the metal surface current density 

)(rJ
��

 is expanded in the form (see section 2.1) 
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where )(rf S
n

��
 are the RWG rooftop basis functions [13]. 

The magnetic vector potential [1] after substitution of expansion (2.3.18) becomes 
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Similarly, the electric potential takes the form,  
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d. Moment equations 

The moment equations are obtained if we substitute expansions (2.3.16), (2.3.17) and 

(2.3.19), (2.3.20), into equations (2.3.10), (2.3.11). In terms of symbolic notations, 
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From equations (2.3.24) and (2.3.25) we see that 
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where the superscript T denotes the transpose matrix. 
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2.4 Total impedance matrix 

The total impedance matrix is obtained by combining the metal impedance matrix MMẐ , the 

dielectric impedance matrix DDẐ  and the mutual impedance matrices DMẐ and MDẐ . 
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The impedance matrix Z can be converted into a symmetric matrix form by using trivial 

transformations. One way of achieving it is 

 

�
�

�
	



�
=

DDDM

MDMM

ZZj

ZZj
Z ˆˆ

ˆˆ
ˆ

ω
ω

 (2.4.2) 

Once the Z matrix is obtained we solve the system of equation in the form 

IZV ˆ=
�

 (2.4.3) 

The system of equations is solved using the LAPACK’s zsysv driver routine [15] which 

computes the solution to a complex system of linear equations BXA
�

=ˆ , where Â  is an N-

by-N symmetric matrix and X and B are column vectors of length N. The diagonal pivoting 

method is used to factor A. The factored form of Â  is then used to solve the system of 

equations BXA
�

=ˆ . zsysv only uses the upper or the lower triangular matrix, hence DMZ  

need not be calculated. 
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3. Scattering problem and fields 

In this section, the voltage vectors and the scattered fields (electric and magnetic) are 

derived for metallic and dielectric structures.  

 
 
3.1 Voltage vector  
 

The voltage vector in equation (2.4.3) is a combination of the metal voltage vector and the 

dielectric voltage vector, i.e. 
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where the metal vector is given by 
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and the dielectric voltage vector is given by 
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The voltage expressions M
mυ  and D

nυ  are already derived in sections 2.1 and 2.2. Hence, we 

will not repeat the derivation but present the final results. 

From equation (2.1.12) in section 2.1 we have 
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Similarly from equation (2.2.21) in section 2.2 we have 
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3.2 Calculation of scattered fields due to metal structure 

 

In this section, we calculate the scattered electric and magnetic fields due to the metal 

currents and the charges. 

 

a. Electric field 

The scattered electric field sE
�

 is due to surface currents and free charges on the metal 

surface S. Hence, from (2.1.12) 
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We mention that the gradient of )(r
�Φ  is just the gradient of the Green’s function 

( rrRRjkRrrg ′−=−=′ ����
,/)exp(),( ) as the other terms are constant. Thus, one has 
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The gradient of the Green’s function is obtained as 
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Substituting the above expression in equation (3.2.3) we obtain 
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This is the final result for the scattered electric field due to metal radiation. 

 

b. Magnetic field 

The scattered magnetic field is expressed as 
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Substituting the value of )(rAS

��
 from equation (2.1.19) yields 
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Applying the standard vector identity uAAuAu ∇×−×∇=×∇
���

 to reduce the right hand 

side of the above expression yields 
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The last term ),( rrgr ′∇ ��
 in the above equation is already calculated in equation (3.2.4). 

Substituting from (3.2.4) in (3.2.8) and finally in (3.2.7) leads to 
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This is the expression for the scattered magnetic field due to metal radiation. 
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3.3 Calculation of scattered fields due to dielectric structure 

 

In this section we calculate the scattered electric and magnetic fields due to volume 

polarization currents and charges. 

 

a. Electric field 

The scattered electric field is due to volume polarization currents in the dielectric volume 

V  (and associated charges on its boundary Ω ) as given by equation (2.2.2) 
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Substituting the values of )(rA
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 and )(r
�Φ  from equations (2.2.19) and (2.2.20) in (3.3.1) 
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Taking into account the fact that the gradient of )(r
�Φ  is just the gradient of the Green’s 

function ( rrRRjkRg ′−=−= ��
,/)exp( ) as the other terms are constant. Therefore (3.3.2) 

reduces to 

� � �

� � �

= = Ω
′⊥′

= =
′′


�
�

�
�
�

Ω′′∇′−


�
�

�
�
�

′′′=

N

n
n

Q

q
rqnq

N

n
n

P

p V
pnp

s

DdrrgrfK

DvdrrgrfKE

1 10

1 1

0
2

),()(ˆ
4

1

),()(
4

���

�����

πε

π
µω

  (3.3.3) 



 58 

The gradient of the Green’s function is obtained from equation (3.2.4). Substituting the 

corresponding expression from equation (3.2.4) in equation (3.3.3) we obtain 
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This is the final result for the scattered electric field created by a dielectric structure. 

 

b. Magnetic field 

The scattered magnetic field is expressed as 
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Substituting the value of )(rA
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 from equation (2.2.19) yields 
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Applying the standard vector identity uAAuAu ∇×−×∇=×∇
���

 to reduce the right hand 

side of the above expression, one has 
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The last term ),( rrgr ′∇ ��
 is already calculated in (3.3.4). Substituting from (3.3.4) into 

(3.3.8) and finally in (3.3.7) gives 
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This is the expression for the scattered magnetic field in the dielectric. 

 
3.4 Poynting vector 

  

In the far field,  E
�

 and H
�

 are perpendicular to each other and the direction of propagation. 

Thus, a right handed coordinate system is formed by E
�

 and H
�

 field vectors and by the 

direction of propagation. Hence, we obtain the relation 
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where η  is the intrinsic impedance of free space and is given by the expression 

Ω≈= 377
0

0

ε
µη . 

The electric field is measured in V/m while the magnitude of the H field is measured in 

A/m. The cross product of E
�

 and *H
�

 (complex conjugate) is a real quantity. This product 



 60 

divided by 2, is the time- averaging Poynting vector. The Poynting vector at a point gives 

the average power density of the radiated field, per unit area 
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and has the units of 2m
W . 
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4. Radiation problem and fields 
 

In this section we review various feed models used for the radiation problem and calculate 

the voltage vectors for the feed models. 

 

4.1 Feed Models 

 

a. Delta gap 

The delta gap source modeling is the simplest and most widely used excitation model [11, 

20, 21]. However it is the least accurate, especially for the purpose of estimating the feed 

impedance. It is most accurate for smaller gap width [11]. In this model it is assumed that 

the excitation voltage at the feed terminals is a constant value (1 V) and zero elsewhere. 

Therefore the incident electric field is also constant over the feed gap and zero elsewhere, 

hence the name delta gap. 

 

Fig 4.1.1 Delta gap source configuration. 



 62 

Drawbacks of delta gap [23] 

In a delta gap model placing a one in the generalized voltage matrix satisfies the 1V 

discontinuity in the scalar potential, but fails to satisfy the boundary condition on the 

impressed electric field, Ei.  This failure stems form the fact that since Ei is tested only with 

the testing function, the surface area of the dipole which the tested field illuminates 

changes for each N. In other words a new boundary value problem is solved for each N. As 

a result the solution for the coefficients may not converge. Another major drawback of the 

delta function generator is that it predicts infinite “gap” capacitance. To circumvent this 

problem an extended delta gap source model is introduced. 

 

b. Extended delta gap 

The extended delta-gap model [23] assumes that the impressed electric field is distributed 

not only over the artificial gap of infinitesimally small width but also along the rest of the 

conductor in the vicinity of the gap. The length of this area is proportional to the physical 

diameter (width) of the conductor so that a convergence can be obtained for the MoM 

solution. Also, the field distribution along the conductor is assumed to be of the Gaussian 

type. The extended delta gap source model is illustrated in fig 4.1.2. In this case the 

unknown current is expanded in terms of series of subdomain basis functions. 
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where  
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w

i
i a

T
J

π2
=  (4.1.2) 

 

The ci are the unknown coefficients and N is the total number of basis functions, T is the 

triangle function and aw is the dipole radius. 

 

 

Fig 4.1.2 Modified Delta gap model. 

 

Eg is a unit strength electric field of two variables impressed over an artificially constructed 

gap of length � which may be written symbolically as  
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The superscript P is used to indicate that the z variation of this field is just a unit impulse 

which spans the delta gap. The gap length � is treated as an unknown constant to be 

determined by requiring the tested gap field to be such that� = 1, P
gj EJ  where Jj is the 

testing basis function. Formation of the inner product results in the following equations. 
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Upon solution we have � = aw. The expanded delta source model is then implemented by 

replacing 
w

P
g

a
E

  by the Gaussian function 
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where �0 is equal to aw /2. The reason for this replacement is that the Gaussian function 

yields a solution which converges more rapidly than
w

P
g

a
E

. 

Since � is a fixed length and the Gaussian function is smooth, a stable solution can be 

achieved since the electric field boundary condition will be satisfied for all N. This model is 

also appealing as this delta gap model will never have infinite capacitance. This is because 

as 0,0 →→ waδ  and hence there would be no feed. 
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c. Magnetic frill 

The magnetic frill [24] model starts with the same uniform E-field distribution within the 

gap as shown in Fig 4.1.3. According to the surface equivalence principle [1] the radiation 

effect of this distribution is equivalent to the radiation of the coaxial rings of the surface 

magnetic current as shown in Fig 4.1.3. 

In the generator representation sketched in Fig.4.1.3 the magnetic frill is thus the source of 

the impressed electric field, iE
�

. This field can be computed in terms of the electric vector 

 

 

Fig 4.1.3 Magnetic frill model. 

 

potential, eA
�

 , as 
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  (4.1.6) 

 

where  



 66 

�=
S

mse dsrgJA )(
4

 
���

π
ε

  (4.1.7) 

 

S is the surface of the finite cylinder of length d, r
�

  is the distance between the element ds 

and the field point, msJ
�
���������	
���������������������  and )(rg

�
 is the Green’s function 

given by rrRRjkRrg ′−=−= ���
,/)exp()( . Combining equations (4.1.6) and (4.1.7), 

introducing the “curl” operator under the integral and noting that it operates only on )(rg
�

 

(as msJ
�

 is constant over the surface) we get 
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The gradient of the Green’s function is obtained from equation (3.2.4). Substituting the 

value form (3.2.4) in equation (4.1.8) we get 
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4.2 Radiation pattern 

The power of the radiated field per unit area as given by equation (3.5.3) is also the 

radiation density of the radiated signal. In the far-field region, the radiation density has only 

one radial component denoted by W. The radiation intensity is defined as the radiation 

density multiplied by a factor r2. Now, the radiation intensity is introduced as 
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WrU 2=  (4.2.1) 

 

The radiation intensity has the units of watts per solid angle and is theoretically 

independent of the radius of the sphere surrounding the antenna if the sphere radius is large 

enough compared to the antenna size and wavelength. The total radiated power radP  is 

obtained as the integral of the radiation density on the sphere surface. If a triangular mesh is 

used for the sphere, the total radiated power is obtained as the sum of the products of the 

radiation density in the middle of the mesh triangle and the triangle area. The summation is 

done over all the triangles of the sphere mesh. The antenna directivity is the normalized 

radiation intensity calculated in dB  

 

0
10log10

U
U

D =  (4.2.2) 

 

The normalization factor 0U  is the total radiated power per unit solid angle 

 

π40
radP

U =  (4.2.3) 

 

Antenna radiation pattern is the directivity plot in terms of the polar coordinates. 
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5. Simulations results 
 

The theory described in sections 2, 3 and 4 was implemented in the Matlab and C/C++ 

codes, compiled under Matlab environment as mex files [25]. The use of mixed C/Matlab 

codes helped in speeding up the algorithm and memory optimization. The solver was then 

tested for both homogenous and inhomogeneous pure dielectric (scattering) and combined 

metal-dielectric structures (radiation and scattering). This section provides a summary of 

the test results obtained in each case. 

 

5.1 Test of simulations for a pure dielectric structure (scattering) 

In this section, scattering of homogenous and inhomogeneous pure dielectric structures is 

tested for different mesh configurations. The simulation algorithm follows the model 

developed in section 2.2. The corresponding source codes are given in Appendix C.  

 

a. Homogeneous dielectric plate  

The first example is a homogeneous dielectric plate of the size 4cm×4cm×0.4cm (Fig. 

5.1.1a), with 10=rε . The frequency of the y-polarized plane wave incident in the negative z-

direction is either 750 MHz (plate size is 3/dielλ≈ ) or 1,500 MHz (plate size is 3/2 dielλ≈ ).  

A uniform tetrahedral mesh has one layer into the depth but has variable discretization in the 

xy-plane. The scattered electric field in the dielectric has the dominant y-component and is 

evaluated on a line cm 0 cm, 2cm 2- cm, 1.0 =<<−= zyx , which is slightly off the y-axis. 

The offset is introduced in order to avoid field calculations exactly along tetrahedral faces.  
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Fig. 5.1.1b shows the scattered field as a function of the distance along the y-axis for the 

mesh with 864 tetrahedra at 750 MHz – face-based basis functions. Similar results for the 

edge-based functions are given in Fig. 5.1.1c. The Ansoft solution uses about 64,000 

tetrahedra and is shown by a dashed curve.  

The relative error Ε  between MoM and FEM solutions         

   

dyEdyEE ANSOFT
y
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y
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y ��
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2
02.0

02.0

2
/              (5.1.1) 

 

is shown in Fig. 5.1.2 a, b for both sets of basis functions. Total 14 uniform meshes were 

considered, ranging from 54 tetrahedra (3x3 plate) to 1,536 tetrahedra (16x16 plate).  

Fig. 5.1.2a and 5.1.2b correspond to 750 MHz and 1,500 MHz, respectively. The error for the 

edge-based functions is shown by a bold curve (crosses); the error for the face-based 

functions is shown by a thin curve (circles). The edge-based functions possess nearly the 

same or a smaller error for the given mesh compared to the face-based functions. The number 

of unknowns is however, considerably smaller. The number of unknowns for all meshes used 

in this example is shown in Fig. 5.1.2c.  Bold line indicates edge-based functions; thin line is 

related to the face-based functions. The ratio of unknowns is equal to 0.61 for the rough 3x3 

mesh and then decreases to 0.58 for the finest 16x16 mesh. 

 



 70 

 

Fig. 5.1.1. a)  Square dielectric plate meshed into 864 tetrahedra; b) dominant component of the 
scattered field s

yE  within the dielectric plate on the y-axis compared to Ansoft HFSS solution 

(dashed curve) at 750 MHz – face-based functions; c) the same result for the edge-based 
functions.       
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Fig. 5.1.2. a)  2L error of the edge-based set (bold curve) and of the face-based set (thin curve) 
as a function of the total number of tetrahedra in the mesh for 14 different plate meshes at 750 
MHz; b) the same data for 1,500 MHz; c) total number of unknowns for two sets of basis 
functions: thick line – edge-based functions; thin line – face-based functions.      
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b. Inhomogeneous dielectric cylinder 

The second example is an inhomogeneous finite cylinder of radius 2 cm and the height of 4 

cm. The cylinder has 4 horizontal layers, each with different dielectric constant (Fig. 5.1.3 a, 

b). The height of every layer is 1 cm. The dielectric constant varies from 10 for the top 

section to 2.5 for the bottom section, in steps of 2.5. The frequency of the z-polarized plane 

wave incident in the positive x-direction is 750 MHz. A tetrahedral mesh has variable 

discretization accuracy along the z-axis; the discretization accuracy of the cylinder cap also 

changes from a rough mesh in Fig. 5.1.3a to a finer mesh in Fig. 5.1.3b. The scattered field in 

the dielectric has the dominant z-component, which is compared to the Ansoft HFSS 

solution. The field is evaluated on the cylinder axis cm 2cm 2- cm, 0cm, 0 <<== zyx .  

Fig. 5.1.3c, d show the scattered electric field as a function of the distance along the axis for 

two cylinders depicted in Fig. 5.1.3a, b with 480 and 2,664 tetrahedra (1,064 and 5,698 faces, 

respectively). The corresponding Ansoft HFSS solution is shown by a dashed curve. The 

MoM solution with the edge-based functions (solid line) is always stair like. 

The error E between MoM and FEM solutions is calculated following equation (5.1.1). Fig. 

5.1.4 shows the error E for both sets of the MoM basis functions. The bold line corresponds to 

the edge-based functions; thin line indicates the error of the face-based functions. The error 

reduces in both cases. However, the error for the edge-based elements is smaller and reaches 

4% when the number of tetrahedra is about 2000.  The number of unknowns for four different 

meshes used in this example is shown in Fig. 5.2.3.  Bold line indicates edge-based functions; 

dashed line is related to face-based functions. The ratio of unknowns is 0.55 for the cylinder 

shown in Fig. 5.2.2a and 0.53 for the cylinder shown in Fig. 5.2.2b.  
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Fig. 5.1.3 a, b) Inhomogeneous cylinder with four layers meshed into 480 and 2,664 
tetrahedra, respectively; c) dominant component of the scattered field s

zE  on the 

cylinder axis (solid curve) compared to Ansoft HFSS solution (dashed curve) for a 
cylinder with 480 tetrahedra; d) the same result for the cylinder with 2,664 tetrahedra.   
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Fig. 5.1.4  Solid curves – 2L error of the edge-based set (bold curve) and of the face-based set 
(thin curve) as a function of the total number of tetrahedra in the mesh for 4 different cylinder 
meshes at 750 MHz. Dotted lines – total number of unknowns for two sets of basis functions: 
thick dotted line – edge-based functions; thin dotted line– face-based functions.   
 

c. Conclusion 

Two given examples demonstrate a better performance of the edge-based basis functions. 

First, the edge-based basis functions have nearly the same or a faster convergence rate for 

equal tetrahedral meshes. Second, for the same tetrahedral mesh, the number of unknowns 

for the edge-based functions is considerably smaller. The ratio of unknowns (edge-based vs. 

face-based) ranges from 0.6 for rough plate meshes to approximately 0.5 for large volume 

meshes.  
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5.2 Test of simulations for a combined metal-dielectric structure  

In this section, simulation of a combined metal-dielectric structure (a scatterer) is tested for 

different dielectric constants and different mesh configurations. The simulation algorithm 

follows the model developed in sections 2.1, 2.2 and 2.3. The corresponding source codes 

are given in Appendix C. 

 

a. Dielectric plate with a ground plane 

The structure under study is a homogeneous metal-backed dielectric plate on the size 

4x4x0.4 cm centered at origin. The relative dielectric constant is 10. A typical structure is 

shown in Fig.5.2.1. 

 

 

 

Fig.5.2.1 Metal - dielectric structure (Grid Size: 3x5). 
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The frequency of the y-polarized plane wave incident in the negative z-direction is either 

750 MHz (the plate size is 3/dielλ≈ ) or 1,500 MHz (the plate size is 3/2 dielλ≈ ). The 

scattered electric field in the dielectric has the dominant y-component, but the z-component 

also becomes significant, due to free charges on the metal surface. The field is evaluated in 

the middle of the plate, on the plate axis at cm 0 2, 2- 0, =<<= zyx .  After the MoM 

equations are solved, the electric field within the dielectric (the “near” field) is found for 

either set of basis functions. This near field is most sensitive to the numerical errors of the 

solver. The resulting near field is compared to the similar data obtained using Ansoft HFSS 

v9.0. The Ansoft solutions are computed using the PML layer and with fine tetrahedral 

meshes, with typically more than 60,000 tetrahedra. 

Fig. 5.2.2 shows the magnitude of the y-component of the scattered field, s
yE , as a function 

of the distance along the y-axis for three one-layer grids with the same number of 

tetrahedra (750 MHz). The left column is for the edge-based basis functions; the right 

column corresponds to the face-based functions. The Ansoft HFSS solution is given by a 

smooth thick curve. 
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Fig. 5.2.2. Co-polar component of the scattered field s

yE  within the dielectric plate along 

the y-axis compared to Ansoft solution (thick curve) at 750 MHz. Three groups of results 
are related to three different meshes. The left column corresponds to the edge-based 
functions; the right column corresponds to the face-based functions.    
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The same results for the component s
zE  are presented in Fig. 5.2.3. 

 

 

Fig. 5.2.3. Vertical component of the scattered field s
zE  within the dielectric plate along 

the y-axis compared to Ansoft solution (thick curve) at 750 MHz. Three groups of results 
are related to three different meshes. The right column corresponds to the edge-based 
functions; the left column corresponds to the face-based functions.     
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In the above case, poor convergence is observed. The reason for that is the inability of both 

sets of basis functions to describe a significant variation of the field in the z-direction, using 

the one-layer grid. For a two-layer grid, the edge basis functions demonstrate a better 

performance as Fig. 5.2.4 shows.  

 

 

Fig. 5.2.4. Vertical component of the scattered field s
zE  within the dielectric plate along 

the y-axis compared to Ansoft solution (thick curve) at 750 MHz (edge-based basis 
functions for a 11x21x2 mesh).   
 

The 2L  error Ε  of the MoM solution for s
yE  is given by (5.1.1) and is shown in Fig. 5.2.5 

a, b (thick line – edge-based functions; thin line – face-based functions).  It is seen from 

Fig. 5.2.5 a, b that the edge-based basis functions possess nearly the same or an even 
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smaller error for the given mesh, compared to the face-based functions. The total number 

of unknowns is however, considerably smaller. 

 

Fig. 5.2.5. a) 2L  error of the edge-based set (bold line) and of the face-based set (thin line) 
as a function of the total number of tetrahedra in the mesh at 750 MHz; b) the same data for 
1,500 MHz;  c) ratio of the number of unknowns (metal plus dielectric) for the face-based 
set and for the edge-based set: face-based vs. edge-based. 
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Fig. 5.2.5c indicates the ratio of the number of unknowns (metal plus dielectric) of the face-

based model and of the edge-based model. This ratio varies at around 1.53 and increases 

with increasing the grid size. Note that the number of metal unknowns remains the same. 

Similar results are obtained for s
zE .   

These results indicate that the edge-based basis functions may be easily extended to model 

a metal-dielectric structure, in conjunction with the RWG basis functions for the metal 

sheet. They require a smaller number of unknowns compared to the face-based functions 

and give nearly the same or a better accuracy.   

 

 

b. Resonator 

We study three examples: the isolated parallel-plate metal/dielectric resonator with the 

relative dielectric constant 10=rε  and thickness-to-size ratio 1:20 (Fig. 5.2.6a), the same 

resonator but with thickness-to-size ratio 1:10 (Fig. 5.2.6b), and the isolated 2:2:1 

dielectric resonator (Fig. 5.2.6c) with the relative dielectric constant 200=rε . For the 

parallel-plate metal-dielectric resonator, only the lowest zTM 110  mode is studied. 

Similarly, only the lowest zTE δ11  resonant mode is considered for the dielectric resonator. 

The eigenmode solution for the impedance matrix is obtained by the search for the local 

minimum of a cost function F of two variables – the reciprocal condition number of the 

impedance matrix 

 

))((rcond),( fjfZffF ′+=′         (5.2.1) 
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using the LAPACK condition estimator. Here, f  is the real part of frequency and 0>′f  

is the imaginary part. The search procedure does not use a gradient method and implies 

direct evaluation of the cost function on the plane of complex frequency. The resonant 

frequency and the quality factor of the resonator are then obtained as  

 

minminmin 2/, ffQff res ′==         (5.2.2) 

 

Since the direct search procedure is safe but very time-consuming even for moderate 

meshes, its accuracy is limited by ± 0.1% for the real part of the resonant frequency 

f and by ± 0.2% for the imaginary part f ′ . 

The test is made by comparison with the Ansoft HFSS v 9.0 eigenmode solver. The 

Ansoft solutions are obtained with a cubical PML enclosure whose size is optimized 

close to the first resonant frequency. Fine finite-element meshes are employed.  The 

MoM meshes include a maximum of 1944 tetrahedra (2250 edge-based basis functions). 

The number of metal basis functions is considerably (up to two times) smaller. The 

parameter a in Fig. 5.2.6 is chosen to be 1.498 mm.     
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Fig. 5.2.6. Three computed resonator geometries:  a) – metal-dielectric resonator with 
thickness-to-width ratio 1:20; b) – the same as a) but thickness-to-width ratio is 1:10; c) – 
dielectric rectangular resonator with a ratio of 2:2:1.    
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The first (metal/dielectric) resonator was studied with non-regular one-layer meshes 

(finer toward metal edges). The corresponding HFSS solution has a 27.5a×27.5a×14.5a 

PML enclosure, the final %3.0=∆f , and the final mesh uses 148,834 tetrahedra. It yields 

an eigen frequency of 3.2474 GHz and a Q-factor of 497. Fig. 5.2.7a shows the error 

percentage of the MoM solutions for 4 different tetrahedral/triangular MoM meshes (108, 

264, 450, and 1158 tetrahedra). The dashed line corresponds to the error in the resonant 

frequency; the solid line gives the error of the Q-factor. While the error in the resonant 

frequency is always below 1%, the error of the Q-factor monotonously decreases and 

approaches 1% when the number of dielectric basis functions exceeds 1600.  All MoM 

meshes have one layer of tetrahedra. 

The second resonator was also studied with non-regular grids (finer toward metal edges). 

The corresponding HFSS solution has a 24.4a×24.4a×16.1a PML enclosure, the final 

%2.0=∆f , and the final mesh involves 102,582 tetrahedra. It yields an eigen frequency of 

3.2970 GHz and a Q-factor of 226. Fig. 5.2.7b shows the error percentage of the MoM 

solutions for 4 different tetrahedral/triangular MoM meshes (108, 264, 450, and 1392 

tetrahedra). The dashed line again corresponds to the error in the resonant frequency and 

the solid line gives the error of the Q-factor. Here again, the error in the resonant frequency  

is always below 1% and the error of the Q-factor monotonously decreases and approaches 

1% when DN  exceeds 1600.  
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Fig. 5.2.7. Error percentage of the MoM solution as a function of the number of the 
dielectric basis functions DN . Crosses denote the data for the individual meshes. a) – 
Parallel-plate resonator with thickness-to-width ratio 1:20; b) – parallel-plate resonator with 
thickness-to-width ratio 1:10; c) – dielectric rectangular resonator with 200=rε .   Dashed 
line – error in the resonant frequency; solid line – error in the Q-factor. 
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The third (dielectric) resonator was studied with regular grids. The corresponding HFSS 

solution has a 54.2a×54.2a×37.3a PML enclosure, the final %8.0=∆f , and the final 

mesh uses 48,735 tetrahedra. We were unable to obtain a more accurate solution due to 

software crashes. It yields an eigen frequency equal to 1.3804 GHz and a Q-factor of 411. 

Fig. 5.2.7c shows the error percentage of the MoM solutions for 6 different 

tetrahedral/triangular MoM meshes based on regular cube grids of 3×3×1, 4×4×1, 4×4×2, 

5×5×3, 7×7×3, and 9×9×4. The grids have 54, 96, 192, 450, 880, and 1944 tetrahedra. 

The error in the resonant frequency monotonously decreases and approaches 1% when 

the number of the basis functions becomes higher than 2000.  The error of the Q-factor is 

not monotonous and is considerably higher than in the case of a thin metal/dielectric 

resonator. The bulk dielectric resonator required more significant computational efforts. 

In order to prove the uniqueness of the eigenmode solution and the absence of artificial 

mode splitting we plot in Fig. 5.2.8 the inverse of the cost function for two plate meshes 

that gave the smallest Q-factor error in Fig. 5.2.7a and Fig. 5.2.7b, respectively. The 

extremum of the cost function is well developed and unique. More accurate eigenmode 

solutions were obtained by refining the search domain.    

In order to prove the local field distribution within the resonator, we found the scattered 

field within each resonator when it is illuminated by a y-polarized plane wave incident in 

the negative z-direction, with amplitude of 1 V/m. The wave frequency is exactly the 

resonant frequency of the lowest eigenmode. The field evaluation line is shown in Fig. 

5.2.8 a, b. 
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Fig. 5.2.8. a), b) Two parallel-plate resonator meshes based on the smallest eigenmode 
error in Fig. 5.2.7 a) and b), respectively; c), d) the related plots of the inverse of the cost 
function F over the plane of complex frequency.  

   

As an example, the dominant z-component and the y-component of the scattered field are 

plotted in Fig. 5.2.9 for the 10:1 plate resonator along the y-axis over the length of 15a, 

which is 1.5 times the size of the resonator. The corresponding MoM mesh was shown in 

Fig. 5.2.8b. The MoM solution is given by the solid curve. The corresponding HFSS 

scattering solution obtained with 85,949 tetrahedra demonstrates good convergence and 

yields a final %03.0=∆E . This is shown by the dashed line. A good agreement is 

observed for the dominant z-component of the scattered field (Fig. 5.2.8a). However, the 
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HFSS solution for the co-polar scattered field indicates some oscillations close to the 

plate border (Fig. 5.2.8b). Within the resonator, both solutions are identical. 

 

Fig. 5.2.8 a), b) Near scattered field of the y-polarized plane wave with amplitude 1 
V/m at the resonant frequency of the 1:10 parallel-plate resonator. The field is given 
on the resonator axis. a)  Magnitude of the dominant z-component of the electric 
field; b) magnitude of the co-polar component of the electric field. The MoM solution 
is shown by a solid line; the Ansoft HFSS solution is given by a dashed line. The 
plate size is indicated by a dotted line. 
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c. Conclusion 

The method of volume integral equation coupled with the MoM zeroth-order edge-based 

basis functions gives a reliable solution for three basic isolated resonators with quality 

factors up to 500 and when the number of volume bases is reasonably small. Typically, 

1000-2000 volume basis functions are necessary in order to obtain the quality factor with 

the accuracy on the order of 1-4%. The accuracy of the resonant frequency is 

considerably better. 

 Most interesting is the result for the thin (1:20) dielectric plate backed by two metal 

sheets. The simulation yields an accurate solution for the fundamental resonant mode 

(less than 1% error in the resonant frequency and a similar error in the quality factor) 

when the one–layer volume mesh is used. This observation supports the possible use of 

the edge-based functions for the MoM modeling of a patch antenna.   
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5.3 Test of simulations for a patch antenna 

In this section, a metal patch antenna on a dielectric substrate is tested for different mesh 

configurations and different dielectric constants of the substrate. The simulations are based 

on the derivation given in sections 2.1, 2.2 and 2.3.  

 

a. Thin patch antenna configuration 

The structure under study is a thin patch antenna consisting of a single patch on a 

dielectric substrate with a finite ground plane. The dimensions of the patch are 30 mm x 

40 mm on a 50 mm x 60 mm ground plane; with the thickness of the substrate 1.5 mm. 

Dielectric constant of the substrate was 2.55. A typical structure with 994 surface RWG 

elements and 2260 volume edge based basis functions is shown in Fig 5.3.1. 

 

 

Fig. 5.3.1 Thin patch antenna structure with 994 surface RWG and 2260 volume 
edge-based basis functions. 
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The voltage gap feed model was used for the bottom edges of the feed to obtain all the 

results in this section. The variation of real and imaginary part of the impedance and the 

return loss are calculated over a suitable frequency range and plotted in Fig. 5.3.2a and 

Fig 5.3.2b respectively. The results were compared with the corresponding Ansoft HFSS 

v9 solution having about 102,000 tetrahedra. 

The return loss is found based on the reflection coefficient, Γ , in the antenna feed verses 

the 50 Ω , termination namely 

  

Ω+
Ω−=Γ

50
50

Z
Z

          (5.3.1) 

 

where Z is the complex input impedance. The return loss is the magnitude of the 

reflection coefficient in dB , i.e. 

 

Γ= 10log20RL          (5.3.2) 

 

The return loss (RL) is the most important parameter with respect to the load matching. It 

characterizes the antenna’s ability to radiate the power instead of reflecting it back to the 

generator. The antenna’s bandwidth is often defined as the band over which the return 

loss is sufficiently small (-10 dB  and lower) [11]. 

Comparison results for the basic mesh configuration from Fig.5.3.1 can be seen in 

Fig.5.3.2. 
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Fig. 5.3.2 Test result for the patch antenna in Fig 5.3.1 having rε = 2.55. 

 a) Impedance plot, b) return loss. 
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Tests were also performed for higher mesh discretization. Fig.5.3.2 shows one refined 

structure. It has two layers of tetrahedra and some rendering along the patch border. The 

structure has 1714 surface RWG elements and 6968 volume edge based basis functions. 

Fig.5.3.3 shows the result for this higher mesh refinement. Better agreement with HFSS 

was found for this refined structure in terms of both the amplitude and the resonant 

frequency. The error is observed to be 1.22 percent as compared to 2.0 percent as observed 

in Fig 5.3.1.  

 

 

 
 
Fig.5.3.3 Refined patch antenna structure with 1714 surface RWG and 6968 volume edge-
based basis functions.  
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Fig. 5.3.4 Test result for structure in Fig.5.3.3 having rε = 2.55 a) Impedance plot, b) 
return loss. 

 



 95 

Table 5.3.1 provides the complete convergence history for this patch antenna structure. A 

steady improvement of the performance is observed when mesh is refined. The maximum 

possible mesh size was limited by the current solver performance. 

 

Table 5.3.1 Convergence results for thin patch antenna structure having rε = 2.55. 

Surface RWG 
basis functions 

Volume edge basis 
functions 

Calculated resonant 
frequency 

Percentage error (vs. 
Ansoft HFSS) 

498 1040 3.0284 GHz 2.41 
510 1974 3.0221 GHz 2.20 
994 2260 3.0162 GHz 2.00 
1322 2622 3.0160 GHz 1.99 
1006 3616 3.0033 GHz 1.56 
1824 5844 2.9988 GHz 1.41 
1848 6304 2.9971 GHz 1.35 
1714 6968 2.9931 GHz 1.22 

 

 

Next, we consider the convergence of the MoM solver as compared to the Ansoft HFSS 

solution at approximately the same number of tetrahedra. For the plot in Fig. 5.3.5 the 

Ansoft solution with 102,000 tetrahedra is considered as the exact solution and the 

convergence of Ansoft HFSS solution and the MoM solution is tested for the comparable 

number of tetrahedra. The convergence of the MoM solver (thin line) is observed to be 

better for smaller number of tetrahedra than the HFSS solution (thick line). However the 

HFSS solution converges nicely as the number of tetrahedra increase.  
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Fig. 5.3.5 Convergence of Ansoft HFSS solution (thick line) and MoM solution (thin 
line) for the comparable number of tetrahedra.  

 

 

b. Thick patch antenna configuration 

The structure under study is a patch antenna consisting of a single patch on a dielectric 

substrate with a finite ground plane. The dimensions of the patch are 2 x 4 cm on a 4 x 8 

cm ground plane; with the thickness of the substrate 0.5 cm. A typical uniform mesh 

having a base grid size 8 by 16 (in x, y directions respectively,) is shown in Fig.5.3.6. 

This structure has 474 surface RWG elements and 1100 volume edge based elements.  
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Fig. 5.3.6 Patch antenna structure with 474 surface RWG and 1100 volume edge basis 
functions.  

 

The variation of real and imaginary part of the impedance over a suitable frequency range 

is calculated and plotted for different mesh configurations. The results are then compared 

with those obtained by using Ansoft HFSS v9. Different dielectric constants (2, 3, 5, and 

10) for the substrate were considered. An impedance plot for rε = 10 is shown in 

Fig.5.3.7 for the mesh of Fig.5.3.6. 
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Fig. 5.3.6 Impedance plot for structure in Fig.5.3.5 having rε = 10. 

 

Tests were also performed for higher mesh discretization and for different values of the 

dielectric constants of the substrate. Multiple layers of volume basis functions were 

introduced below the patch structure. Fig.5.3.7 shows the refined structure which has four 

layers of volume basis functions under the patch structure. A non uniform meshing is used 

in this case with patch border rendering. This structure has 1219 surface RWG elements 

and 5891 volume edge based elements.  



 99 

 

Fig. 5.3.7 Refined patch antenna structure with 1219 surface RWG elements and 5891 
volume edge based elements.  

 

 

Fig.5.3.8 shows the impedance plot for rε  = 10 for the structure shown in Fig 5.3.7. Better 

agreement with ANSFOT is observed for this refined structure in terms of both the 

amplitude and the resonant frequency. The error in this case reduces to 2.16 percent as 

compared to 6.20 in the previous case.  
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Fig. 5.3.8 Impedance plot for structure in Fig.5.3.7 having rε = 10. 

 

Table 5.3.2 provides the complete convergence history for this structure. A steady 

improvement of the performance is observed with higher mesh refinement. 

 

Table 5.3.2 Test results for the thick patch antenna. 

rε  
Percent Error 

RWG elements: 486 

Edge elements: 1940 

Percent Error 

RWG elements: 498 

Edge elements: 2878 

Percent Error 

RWG elements:1219 

Edge elements: 5891 
2 2.39 0.93 0.11 

3 3.18 1.64 0.71 

5 4.49 2.76 1.74 

10 4.46 2.71 2.16 
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6. Analysis and Conclusion 
 
Test results obtained in section 5 are discussed in this section. Possible methods to improve 

these results are proposed. 

 

a. Non-resonant case 

From the test results in Fig 5.1.2 for the homogenous dielectric plate and Fig 5.1.4 for the 

inhomogeneous dielectric cylinder it can be seen that, for the moderate size of the grid 

(around 500 edge elements), the error in the calculation of the near field is about 6 percent 

as compared to Ansoft HFSS. However a steady improvement in the performance is 

observed as we refine the mesh, with the lowest error of less than 0.5 percent achieved in 

case of the inhomogeneous cylinder with 2664 edge elements. The results of section 5.1 

may be considered excellent. However, one needs to keep in mind that they are calculated 

at non-resonant frequencies. 

The test results in section 5.2 with the metal- dielectric plate exhibit a similar behavior 

when mesh quality improves. A nearly perfect agreement for the vertical component of the 

scattered electric field is observed with the two layers of edge basis functions as shown in 

Fig. 5.2.4.  

 

b. Resonant cases 

The eigenmode solution for the solver is tested in section 5.2b for three different 

resonators. Good results were obtained in all the three cases (error less that 1% in the 

resonant frequency and a similar error in the quality factor) for a structure with around 

2000 edge elements.  
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Keeping in mind these promising observations, we now take a look at the results for the 

patch antenna (radiation problem) in section 5.3. From Table 5.3.1, for a thin patch antenna 

configuration, it can be seen that for a structure with 1000 volume edge elements the error 

in the resonant frequency is 2.5%. With higher mesh discretization this error reduces to 

1.22% (7000 volume edge elements) but a good agreement with Ansoft HFSS solution is 

not observed at this relatively large number of basis functions. Similarly, from Table 5.3.2, 

for a thicker patch antenna configuration, there is an improvement using higher mesh 

discretization but the error in the calculation of resonant frequency increases with increase 

in the dielectric constant of the substrate.  

Thus, the following problem appears. While giving good results for some resonant/ non-

resonant structures for a relatively small number of basis functions, the solver loses its 

performance for a typical patch antenna structure. The reason for such a behavior is not 

quite clear yet. Most probably it is connected to the non-adequate discretization of the edge 

singularity for the associated cavity resonator. 
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Appendix A. Preliminary comparison of the MoM solution with the Mie series for the 

dielectric sphere 

 

1. Problem statement 

In order to test the accuracy of the solutions obtained by using the edge-based basis 

functions, it is desired to apply the method to a problem for which an analytical solution is 

available. Unfortunately, very few three-dimensional dielectric scattering problems can be 

solved analytically.  The homogenous dielectric sphere and the layered, inhomogeneous 

sphere are the two cases where the scattered fields can be analytically determined [1]. 

 

Since the dielectric sphere with, possibly, axial inhomogeneity is an example where the 

scattered field can be analytically determined, this example is chosen below. The internal 

electric field distribution within the sphere is determined. The scattering cross section and 

the scattering radiation pattern of a dielectric sphere can be then calculated analytically 

from the Mie series expansion for the internal fields if necessary [ 2,3]. 

 

The present example is a homogeneous sphere of radius R=2 cm. An x-polarized plane 

wave is incident on it along the positive z-direction. The scattered electric field in the 

dielectric has the dominant x-component and is evaluated on a line x = 0 cm, y = 0 cm and 

at RzR 25.125.1 <<− . The results of the MoM solver are compared with Ansoft HFSS 

solution having from 78,000 to 88,000 tetrahedra and with the Mie series expansion.  
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The present Mie series solution calculates the scattered or total field inside the sphere only, 

while the Ansoft and MoM solutions calculate the fields outside the sphere as well. The 

Mie solution is based on the vector potential approach of Stratton [2] and was programmed 

by Mr. Rostislav Lemdiasov a research assistant and PhD student in the ECE department at 

WPI. Note that an alternative formulation of the Mie series exists [3]. 

 

2. MoM simulation parameters  

Three different cases corresponding to three different values of the dielectric constant of the 

sphere are considered. Also, three different mesh configurations are considered having 302, 

2348 and 4322 tetrahedra (Fig. A1.a) respectivley. The variation of the scattered field is 

obtained at or near the lowest resonant frequency of the sphere. The resonant frequency is 

computed from the characteristic equation of the 111TE  mode, for the source free system 

[4]. Table A1 below gives the simulation data for the different test cases.  

 

Table. A1. Simulation data for the homogenous sphere. 

Dielectric constant ak0  

 

2 

1.6 2.0 

resf≈  

2.4 

 

10 

0.8 1.0 

resf≈  

1.2 

 

50 

0.4 0.5 

resf≈  

0.6 
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Fig. A1. a) – Tetrahedral meshes with a)  302 tetrahedra; b)  2348 tetrahedra; c)  4322 
tetrahedra. 
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3. Scattered field 

The scattered electric field in the MoM method is obtained by using the electric and 

magnetic potentials in the form (see section 3.2) 
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where  nD  are the already obtained MoM solution for the total electric flux density in the 

dielectric – see section 3.2. Equation (A1) is valid everywhere in space, not only within the 

sphere. Unfortunately, it may have a large error when the observation point is close to the 

dielectric boundary, due to integration singularity (gradient of the free-space Green’s 

function).  

 

Alternatively, within the sphere, one can also find the total electric flux by  

 

n

N

n
n fDD
��

�
=

=
1

 (A2) 

 

and next find the scattered field by subtracting the incident signal. Equation (A2) uses the 

MoM solution directly. Since the basis functions nf
�

 are piecewise constants, it leads to a 

“staircase” solution.  Below, we will present the results corresponding to both approaches 

(A1) and (A2).  
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4. Results for a low value of the dielectric constant 

Fig. A.2 gives the dominant component of the scattered field s
xE   (found according to 

(A1)) within the dielectric sphere calculated along the z-axis compared to the Ansoft HFSS 

solution (dashed curve) and the Mie solution (thick curve) at ak0 = 1.6 and 2=rε . Three 

groups of results are related to three different MoM meshes a) 302 tetrahedra; b) 2348 

tetrahedra; c) 4322 tetrahedra. Similar results for the same 2=rε  are shown in Fig A.3 for 

ak0  = 2 and in Fig. A.4 for ak0  = 2.4. 
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Fig. A.2 Dominant component of the scattered field s

xE  within the dielectric sphere along 

the z-axis compared to Ansoft solution (dashed curve) and the Mie solution (thick curve) at 
ak0 = 1.6 and 2=rε  (by using equation (A1)). Three groups of results are related to three 

different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra. The Ansoft 
HFSS solution has 79321 tetrahedra.  
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Fig. A.3 Dominant component of the scattered field s
xE  within the dielectric sphere along 

the z-axis compared to Ansoft solution (dashed curve) and the Mie solution (thick curve) at 
ak0 = 2.0 and 2=rε  (by using equation (A1)). Three groups of results are related to three 

different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra. The Ansoft 
HFSS solution has 82961 tetrahedra.  
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Fig. A.4 Dominant component of the scattered field s

xE  within the dielectric sphere along 

the z-axis compared to Ansoft solution (dashed curve) and the Mie solution (thick curve) at 
ak0 = 2.4 and 2=rε  (by using equation (A1)). Three groups of results are related to three 

different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra. The Ansoft 
HFSS solution has 86421 tetrahedra.  
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One can see the MoM results agree fairly well with the analytical solutions except two 

small “ears” that correspond to the points in the vicinity of the sphere boundary. It is 

believed that the ears are due to a numerical integration effect and must disappear once a 

more accurate formula for the potential integrals (with singularity extraction and analytical 

calculation of the self-integral) is used for the gradient of the free-space Green’s function. 

This work is currently underway. 

 

To support this observation we present below in Figs. A.5-A.7 the same results, but 

obtained according to equation (A2).  Figs. A.5-A.7 display a uniform convergence along 

the sphere diameter despite the non-continuous character of the solution.  
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Fig. A.5 Dominant component of the scattered field s
xE  within the dielectric sphere along 

the z-axis compared to Ansoft solution (dashed curve) and the Mie solution (thick curve) at 
ak0 = 1.6 and 2=rε  (by using the direct approach equation (A2)). Three groups of results 

are related to three different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 
tetrahedra. The Ansoft HFSS solution has 79321 tetrahedra.  
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Fig. A.6 Dominant component of the scattered field s
xE  within the dielectric sphere along 

the z-axis compared to Ansoft solution (dashed curve) and the Mie solution (thick curve) at 
ak0 = 2.0 and 2=rε  (by using the direct approach equation (A2)). Three groups of results 

are related to three different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 
tetrahedra. The Ansoft HFSS solution has 82961 tetrahedra.  
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Fig. A.7 Dominant component of the scattered field s
xE  within the dielectric sphere along 

the z-axis compared to Ansoft solution (dashed curve) and the Mie solution (thick curve) at 
ak0 = 2.4 and 2=rε  (by using the direct approach equation (A2)). Three groups of results 

are related to three different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 
tetrahedra. The Ansoft HFSS solution has 86421 tetrahedra.  
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5. Results for a higher value of the dielectric constant 

 

Similar results were also obtained for a homogenous sphere with higher dielectric 

constants. Fig. A.8 gives the dominant component of the scattered field s
xE   (found 

according to (A1)) within the dielectric sphere with 10=rε  and ak0 = 0.8.  Three groups 

of results are related to three different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 

tetrahedra. The results obtained in this case are compared to the Mie solution only. Similar 

results for the same 10=rε  are shown in Fig. A.9 for ak0  = 1.0 and in Fig.A.10 for ak0  = 

1.2. 

 
Fig. A.11 gives the dominant component of the scattered field s

xE   (found according to 

(A1)) within the dielectric sphere with 50=rε  and ak0 = 0.4.  Three groups of results are 

related to three different meshes a) 302 tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra. 

The results obtained in this case are compared to the Mie solution only. Similar results for 

the same 50=rε  are shown in Fig A.12 for ak0  = 1.0 and in Fig. A.13 for ak0  = 1.2. 

In all the above cases results similar to that observed at lower dielectric constants are 

obtained. 

 

6. Conclusion 

The method of volume integral equation coupled with the MoM zeroth-order edge-based 

basis functions gives a reliable solution for the scattered field distribution inside the 
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spheres having different dielectric constants (upto 50). A good convergence is obtained 

when mesh quality improves. The electric field is calculated by using two approaches:  

 (i) from the equation of the scattered field (equation A1), (ii) directly using the MoM 

solution for the electric flux density (equation A2). The MoM results agree fairly well 

with the analytical solutions in both the cases. However, for the first approach, we 

observe two small “ears” that correspond to the points in the vicinity of the sphere 

boundary. It is believed that the ears are due to a numerical integration effect and must 

disappear once a more accurate formula for the potential integrals (with singularity 

extraction and analytical calculation of the self-integrals) is used. 
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Fig. A.8 Dominant component of the scattered field s

xE  within the dielectric sphere along 

the z-axis compared to the Mie solution (thick curve) at ak0 = 0.8 and 10=rε (by using 
equation (A1)). Three groups of results are related to three different meshes a) 302 
tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra.  
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Fig. A.9 Dominant component of the scattered field s

xE  within the dielectric sphere along 

the z-axis compared to the Mie solution (thick curve) at ak0 = 1.0 and 10=rε (by using 
equation (A1)).  Three groups of results are related to three different meshes a) 302 
tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra.  
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Fig. A.10 Dominant component of the scattered field s

xE  within the dielectric sphere 

along the z-axis compared to the Mie solution (thick curve) at ak0 = 1.2 and 10=rε  (by 
using equation (A1)). Three groups of results are related to three different meshes a) 302 
tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra.  
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Fig. A.11 Dominant component of the scattered field s

xE  within the dielectric sphere 

along the z-axis compared to the Mie solution (thick curve) at ak0 = 0.4 and 50=rε (by 
using equation (A1)). Three groups of results are related to three different meshes a) 302 
tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra.  
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Fig. A.12  Dominant component of the scattered field s
xE  within the dielectric sphere 

along the z-axis compared to the Mie solution (thick curve) at ak0 = 0.5 and 50=rε  (by 
using equation (A1)). Three groups of results are related to three different meshes a) 302 
tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra.  
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Fig. A.13 Dominant component of the scattered field s
xE  within the dielectric sphere 

along the z-axis compared to the Mie solution (thick curve) at ak0 = 0.6 and 50=rε  (by 
using equation (A1)). Three groups of results are related to three different meshes a) 302 
tetrahedra; b) 2348 tetrahedra; c) 4322 tetrahedra.  
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Appendix B. Gaussian Formulae for integral calculation 

 

a. Gaussian formulas for triangular patches [16, 17] 

Degree of Precision=1 Number of Points=1 

 

Points 
Triangular 

Coordinates 
Weights 

a 1/3, 1/3, 1/3 1 

 

 

Degree of Precision=2 Number of Points=3 

 

Points 
Triangular 

Coordinates 
Weights 

a 1/2, 1/2, 0 1/3 

b 0, 1/2, 1/2 1/3 

c 1/2, 0, 1/2 1/3 

 

Degree of Precision=3 Number of Points=4 

 

Points 
Triangular 

Coordinates 
Weights 

a 1/3, 1/3, 1/3 -27/48 
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b 0.6, 0.2, 0.2 25/48 

c 0.2, 0.6, 0.2 25/48 

d 0.2, 0.2, 0.6 25/48 

 

Degree of Precision=4 Number of Points=7 

 

Points 
Triangular 

Coordinates 
Weights 

a 1/3, 1/3, 1/3 0.2250000000 

b �1, �1, �1 0.1323941527 

c �1, �1, �1 0.1323941527 

d �1, �1, �1  0.1323941527 

e �2, �2, �2 0.1259391805 

f �2, �2, �2 0.1259391805 

g �2, �2, �2  0.1259391805 

 

With  

�1=0.0597158717  

�1=0.4701420641 

�2=0.7974269853  

�2=0.1012865073 
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Degree of Precision=7 Number of Points=13 

 

Points 
Triangular 

Coordinates 
Weights 

a 1/3, 1/3, 1/3 -0.149570044467670 

b �1, �1, �1 0.175615257433204 

c �1, �1, �1 0.175615257433204 

d �1, �1, �1  0.175615257433204 

e �2, �2, �2 0.053347235608839 

f �2, �2, �2 0.053347235608839 

g �2, �2, �2  0.053347235608839 

h �3, �3, �3 0.077113760890257 

i �3, �3, �3 0.077113760890257 

j �3, �3, �3  0.077113760890257 

k �3, �3, �3  0.077113760890257 

l �3, �3, �3  0.077113760890257 

m �3, �3, �3  0.077113760890257 

 

with  

�1=0.479308067841923 

�1=0.260345966079038 

�2=0.869739794195568 

�2=0.065130102902216 
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�3=0.638444188569809 

�3=0.312865496004875 

�3=0.04869031542531
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b. Analytical formulas for self-integrals over tringlugar patches [18]  

 

The integrals given below [5] are necessary to compute expressions (22) and (23) with the 

help of equations (24) and (25). Here, 
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 (B1) 

 

and A is the area of the triangular patch. The remaining integrals are obtained using cyclic 

transformation. 
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c. Gaussian formulas for tetrahedral elements [16, 17] 
 
Degree of Precision=1 Number of Points=1 
 

Points Tetrahedral 
Coordinates Weights 

A 1/4, 1/4, 1/4, 1/4 1 
 
 
Degree of Precision=2 Number of Points=4 
 

Points Tetrahedral 
Coordinates Weights 

a α, β, β, β 1/4 
b β, α, β, β 1/4 
c β, β, α, β  1/4 
d β, β, β, α  1/4 

With 
α = 0.58541020, β = 0.13819660 
 
Degree of Precision=3 Number of Points=5 
 

Points Tetrahedral 
Coordinates Weights 

A 1/4, 1/4, 1/4, 1/4 -4/5 
B α, β, β, β 9/20 
C β, α, β, β 9/20 
D β, β, α, β  9/20 
E β, β, β, α  9/20 

 
With  

α = 1/2, β = 1/6 
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Degree of Precision=4 Number of Points=11 
 

Points Tetrahedral 
Coordinates Weights 

a 1/4, 1/4, 1/4, 1/4 -0.131555555555555550e-1 
b α1, β1, β1, β1 0.762222222222222222e-2 
c β1, α1, β1, β1 0.762222222222222222e-2 
d β1, β1, α1, β1  0.762222222222222222e-2 
e β1, β1, β1, α1  0.762222222222222222e-2 
f α2, α2, β2, β2 0.248888888888888888e-1 
g β2, α2, α2, β2 0.248888888888888888e-1 
h β2, β2, α2, α2  0.248888888888888888e-1 
i α2, β2, β2, α2, 0.248888888888888888e-1 
j β2, α2, β2, α2, 0.248888888888888888e-1 
k α2, β2, α2, β2 0.248888888888888888e-1 

 
With  

α1 = 0.714285714285714285 
β1 = 0.785714285714285714 
α2 = 0.399403576166799219 
β2 = 0.100596423833200785 

 
 
 

d. Matlab scripts for Gaussian formulae 

 

In this subsection we reproduce two Matlab scripts, which provide with the Gaussian 

formulae for the triangles (tri.m) and tetrahedra (tet.m). These scripts also give the 

formulae for the corresponding barycentric subdivision (of arbitrary order for triangles). 
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Appendix C. Flow chart and selected Matlab/C++/C codes 

 

The MoM algorithm developed by the author has the format shown in Fig C.1. 

 

 

Define geometry of the antenna 

and generate mesh 

 

 

Define basis functions and 

compute their parameters 

 

 

Fill the impedance matrix and 

solve the MoM equations 

 

 

Postprocessing, i.e. calculating 

the near- and far-fields, 

impedance behavior, etc. 

 

Fig. C.1 Flow chart for the MoM algorithm 

Each block corresponds to a specific group of codes. Below, the critical codes for the third 

and fourth block are presented for completeness. 
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* ============================================================= 
* zdd.cpp  
* 
* This is a MEX-file for MATLAB. 
* AntennaLab/ECE/WPI 2003  
* Authors: S. Kulkarni  
* ============================================================= 
% zdd  
% Computes the impedance matrix for pure dielectric structures. 
 
% Syntax: 
%    ZDD    = zdd(GEOM,const,omega_re,omega_im) 
%  
% Description 
% The function zdd returns matrix ZDD (GEOM.Edgestotal by GEOM.Edgestotal) 
% which correspond to the impedance matrix for pure dielectric. The  
% inputs to the function are two structures GEOM and const and  
% the real and imaginary components of the frequency of operation.  
% The structure GEOM defines all the parameters of the dielectric 
% triangles including self integrals which is obtained from rwgd  
% while the structure const defines the electromagnetic constants  
% such as mu, epsilon, speed of light etc.*/ 
 
#include "mex.h" 
 
#ifdef __ICC 
 
#include <mathimf.h> // Intel math library 
 
#else 
 
#include <math.h> 
 
#endif 
 
#ifndef M_PI 
 
#define M_PI 3.1415926535898 
 
#endif 
 
 
void ints(double *PointsFA,int IndexF,double *WF,double kr,double 
ki,double *Int_r,double *Int_i); 
 
void int01(double *PointsFA, int IndexT,double *WD,double *PointsFB,  
       int IndexF, double *WF ,double kr,double ki,double *Int_r,double 
*Int_i); 
 
/* mexFunction is the gateway routine for the MEX-file. */  
 
void 
 
mexFunction( int nlhs, mxArray *plhs[],  int nrhs, const mxArray *prhs[]) 
{ 
// Inputs 
const mxArray *GEOM, *const_struct; 
double omega_re,omega_im, ratio; 
 
// Check input arguments 
 
if (nrhs != 5) 
    mexErrMsgTxt("this function requires 5 inputs: GEOM,const,omega_re, 
omega_im, ratio"); 
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// Get the input data 
GEOM         = prhs[0]; 
const_struct = prhs[1]; 
omega_re    = mxGetScalar(prhs[2]); 
omega_im    = mxGetScalar(prhs[3]); 
ratio       = mxGetScalar(prhs[4]); 
 
// Get values from structure GEOM 
 
int TetrahedraTotal= (int)mxGetScalar(mxGetField(GEOM, 0, " 
TetrahedraTotal ")); 
int FacesTotal= (int)mxGetScalar(mxGetField(GEOM, 0, "FacesTotal")); 
int EdgesTotal = (int)mxGetScalar(mxGetField(GEOM, 0, "EdgesTotal")); 
int IndexF             = (int)mxGetScalar(mxGetField(GEOM, 0, "IndexF")); 
int IndexT             = (int)mxGetScalar(mxGetField(GEOM, 0, "IndexT")); 
double *WD             = mxGetPr(mxGetField(GEOM, 0, "WD")); 
double *WF             = mxGetPr(mxGetField(GEOM, 0, "WF")); 
double *DiffContrast   = mxGetPr(mxGetField(GEOM, 0, "DiffContrast")); 
double *PointsF        = mxGetPr(mxGetField(GEOM, 0, "PointsF")); 
double *FF0            = mxGetPr(mxGetField(GEOM, 0, "FF0")); 
double *EdgesFNI       = mxGetPr(mxGetField(GEOM, 0, "EdgesFNI")); 
double *EdgesFN        = mxGetPr(mxGetField(GEOM, 0, "EdgesFN")); 
double *EdgesTNI       = mxGetPr(mxGetField(GEOM, 0, "EdgesTNI")); 
double *BasisTC        = mxGetPr(mxGetField(GEOM, 0, "BasisTC")); 
double *VolumeT        = mxGetPr(mxGetField(GEOM, 0, "VolumeT")); 
double *Contrast       = mxGetPr(mxGetField(GEOM, 0, "Contrast")); 
double *PointsT        = mxGetPr(mxGetField(GEOM, 0, "PointsT")); 
double *TT0            = mxGetPr(mxGetField(GEOM, 0, "TT0")); 
double *EdgesTN        = mxGetPr(mxGetField(GEOM, 0, "EdgesTN")); 
double *SizeT          = mxGetPr(mxGetField(GEOM, 0, "SizeT")); 
double *SizeF          = mxGetPr(mxGetField(GEOM, 0, "SizeF")); 
double *CenterT         = mxGetPr(mxGetField(GEOM, 0, "CenterT")); 
double *CenterF         = mxGetPr(mxGetField(GEOM, 0, "CenterF")); 
 
// Get values from structure const 
 
double *epsilon        = mxGetPr(mxGetField(const_struct, 0, "epsilon")); 
double *mu             = mxGetPr(mxGetField(const_struct, 0, "mu")); 
double *c              = mxGetPr(mxGetField(const_struct, 0, "c")); 
double *epsilon_r    = mxGetPr(mxGetField(const_struct, 0, "epsilon_r")); 
double *Epsilon_r  = mxGetPr(mxGetField(const_struct, 0, "Epsilon_r")); 
 
 
// Setup constants 
 
double kr      = omega_re/mxGetScalar(mxGetField(const_struct, 0, "c"));
double ki      = omega_im/mxGetScalar(mxGetField(const_struct, 0, "c"));
 
double ConstFi=1/(4*M_PI*mxGetScalar(mxGetField(const_struct, 0, 
"epsilon"))); 
 
double ConstA_r=-(omega_re*omega_re-omega_im* omega_im) * mxGetScalar 
(mxGetField(const_struct, 0, "mu"))/(4*M_PI); 
 
double ConstA_i = -(2*omega_im* omega_re) *mxGetScalar (mxGetField ( 
const_struct, 0, "mu"))/(4*M_PI); 
 
 
// Outputs 
 
double *ZDD;  
plhs[0] = mxCreateDoubleMatrix(2*EdgesTotal*EdgesTotal, 1, mxREAL); 
ZDD = (double *)mxGetPr(plhs[0]); 
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// Common variables 
 
int c1, c2,c3,c4,m,n;// temp counters 
int counter1, counter2;// temp integer variables 
double d1,d2, arg1,arg2;    
int FacesNontrivial,FullIndex; 
double Int_r[1], Int_i[1],Intre,Intim, Ratio; 
double one = 1.0; 
 
 
// Dynamic Variables 
 
int *Index       =   new int[FacesTotal]; 
double *PointsFA =   new double[3*IndexF]; 
double *PointsFB =   new double[3*IndexF]; 
double *PointsTA =   new double[3*IndexT]; 
double *PointsTB =   new double[3*IndexT]; 
 
 
//Preallocate memory 
 
double*ZDDF_re=(double*)mxMalloc(sizeof(double) * EdgesTotal*EdgesTotal); 
double*ZDDF_im=(double*)mxMalloc(sizeof(double) * EdgesTotal*EdgesTotal); 
double*ZDDD = (double *)mxMalloc(sizeof(double) * EdgesTotal*EdgesTotal); 
double*ZDDT_re=(double*)mxMalloc(sizeof(double) * EdgesTotal*EdgesTotal); 
double*ZDDT_im=(double*)mxMalloc(sizeof(double) * EdgesTotal*EdgesTotal); 
 
 
// zero all the memory locations. 
 
for(c1=0;c1<(EdgesTotal*EdgesTotal);c1++){ 
    ZDDF_re[c1]= 0; 
    ZDDF_im[c1]= 0; 
    ZDDD   [c1]= 0; 
    ZDDT_re[c1]= 0; 
    ZDDT_im[c1]= 0; 
} 
 
 
FacesNontrivial =0; 
 
for(c1=0; c1<FacesTotal;c1++){ 
 
 
d1=fabs((DiffContrast[0+3*c1]*DiffContrast[0+3*c1])+ (DiffContrast[1+ 
3*c1]*DiffContrast[1+ 3*c1])+ (DiffContrast[2 + 3*c1]*DiffContrast[2 + 
3*c1])); 
 
    if(d1> 1e-8){ 
 
        Index[FacesNontrivial] = c1; 
 
        FacesNontrivial = FacesNontrivial +1; 
    } 
} 
 
 
 
 
//-----------------------------------------------------------------------
-- 
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// This loop calculates the self terms. Face with itself. 
 
 
for(c1=0;c1<FacesNontrivial;c1++){ 
 
    FullIndex = Index[c1]; 
 
    for(c2=0;c2<(3*IndexF);c2++){ 
 
        PointsFA[c2]= PointsF[c2 + c1*IndexF*3]; 
 
    } 
 
    *Int_r=0; 
 
    *Int_i=0; 
 
    ints(PointsFA,IndexF,WF,kr,ki,Int_r,Int_i); 
 
    Intre = FF0[FullIndex]+(*Int_r); 
 
    Intim = (*Int_i); 
 
    for(c3=0;c3<(EdgesFNI[FullIndex]);c3++){ 
 
        for(c4=0;c4<(EdgesFNI[FullIndex]);c4++){ 
 
            m =(int)(EdgesFN[c3+3*FullIndex]-1); //base edge  
            n = (int) (EdgesFN[c4 + 3*FullIndex]-1); //base edge  
             

            
 ZDDF_re[m + n*EdgesTotal] = ZDDF_re[m+ n*EdgesTotal] +                
(ConstFi * DiffContrast[c3 + 3*FullIndex]* DiffContrast[c4 + 
3*FullIndex]*Intre); 

 
            
 ZDDF_im[m + n*EdgesTotal] = ZDDF_im[m+ n*EdgesTotal] +                 
(ConstFi * DiffContrast[c3 + 3*FullIndex]* DiffContrast[c4 + 
3*FullIndex]*Intim); 

        } 
    } 
} 
 
 
// This loop calculates the cross terms. Face to face. 
 
for(c1=0;c1<FacesNontrivial;c1++){ 
 
    counter1 = Index[c1]; 
 
    for(c2=0;c2<c1;c2++){ 
 
        counter2 = Index[c2]; 
 
        *Int_r=0; 
 
        *Int_i=0; 
 
        d1= CenterF[0+c1*3]-CenterF[0+c2*3]; 
 
        Ratio= d1*d1; 
 
        d1= CenterF[1+c1*3]-CenterF[1+c2*3]; 
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        Ratio+= d1*d1; 
 
        d1= CenterF[2+c1*3]-CenterF[2+c2*3]; 
 
        Ratio+= d1*d1; 
 
        Ratio/= SizeF[c1]*SizeF[c2]; 
 
 
        if (Ratio < ratio) 
        { 
 
            for(c3=0;c3<(3*IndexF);c3++){ 
 
                PointsFA[c3]= PointsF[c3 + counter1*IndexF*3]; 
 
                PointsFB[c3]= PointsF[c3 + counter2*IndexF*3]; 
            } 
 

            
int01(PointsFA,IndexF,WF,PointsFB,IndexF,WF,kr,ki,Int_r,Int_) 

        } 
 
        else 
        { 
            for(c3=0;c3<3;c3++){ 
 
                PointsFA[c3]= CenterF[c3+c1*3]; 
 
                PointsFB[c3]= CenterF[c3+c2*3]; 
            } 
 
            int01(PointsFA,1,&one,PointsFB,1,&one,kr,ki,Int_r,Int_i); 
        } 
 
        for(c3=0;c3<(EdgesFNI[counter1]);c3++){ 
 
            for(c4=0;c4<(EdgesFNI[counter2]);c4++){ 
 
d1=ConstFi*DiffContrast[c3+3*counter1]*DiffContrast[c4+3*counter2]* *Int_r); 
 
d2=ConstFi*DiffContrast[c3+3*counter1]*DiffContrast[c4+3*counter2]* *Int_i); 
 
                m = (int) (EdgesFN[c3 + 3*counter1]-1); //base edge  
 
                n = (int) (EdgesFN[c4 + 3*counter2]-1); //base edge  
 
                ZDDF_re[m + n*EdgesTotal] = ZDDF_re[m+ n*EdgesTotal] + d1; 
 
                ZDDF_im[m + n*EdgesTotal] = ZDDF_im[m+ n*EdgesTotal] + d2; 
 
                ZDDF_re[n + m*EdgesTotal] = ZDDF_re[n+ m*EdgesTotal] + d1; 
 
                ZDDF_im[n + m*EdgesTotal] = ZDDF_im[n+ m*EdgesTotal] + d2; 
 
 
            } 
        } 
    } 
} 
//  Loop over tetrahedra - symmetric - multiplied by the same epsilon 
 
// This loop calculates D/epsilon term 
 



 143 

for(c1=0;c1<TetrahedraTotal;c1++){ 
 
    for(c2=0;c2<(EdgesTNI[c1]);c2++){ 
 
        for(c3=0;c3<(EdgesTNI[c1]);c3++){ 
 
            d1 = BasisTC[0 +c2*3 + c1*6*3] * BasisTC[0 + c3*3 + c1*6*3] +  
 
                 BasisTC[1 +c2*3 + c1*6*3] * BasisTC[1 + c3*3 + c1*6*3] +  
                 BasisTC[2 + c2*3 + c1*6*3] * BasisTC[2 + c3*3 + c1*6*3]; 
 
            d2 = d1* VolumeT[c1]; 
 
            m = (int) (EdgesTN[c2 + 6*c1]-1); //base edge (global number) 
 
            n = (int) (EdgesTN[c3 + 6*c1]-1); //base edge (global number) 
 
            ZDDD[m + n*EdgesTotal] = ZDDD[m+ n*EdgesTotal] + ((d2 * 
Contrast[c1])/Epsilon_r[c1]); 
        } 
    } 
} 
 
double realpart,imagpart; 
 
// This loop calculates the self terms. Tetrahedra with itself. 
 
 
for(c1=0;c1<TetrahedraTotal;c1++){ 
 
    for(c2=0;c2<(3*IndexT);c2++){ 
 
        PointsTA[c2]= PointsT[c2 + c1*IndexT*3]; 
    } 
 
    *Int_r=0; 
 
    *Int_i=0; 
 
    ints(PointsTA,IndexT,WD,kr,ki,Int_r,Int_i); 
 
    Intre = (*Int_r)* VolumeT[c1]* VolumeT[c1]; 
 
    Intim = (*Int_i)* VolumeT[c1]* VolumeT[c1]; 
 
    for(c2=0;c2<(EdgesTNI[c1]);c2++){ 
 
        for(c3=0;c3<(EdgesTNI[c1]);c3++){ 
 
            d1 = BasisTC[0 + c2*3 + c1*6*3] * BasisTC[0+c3*3 + c1*6*3] +  
 
                 BasisTC[1 + c2*3 + c1*6*3] * BasisTC[1+c3*3 + c1*6*3] +  
 
                 BasisTC[2 + c2*3 + c1*6*3] * BasisTC[2 + c3*3 + c1*6*3]; 
 
            arg1 = TT0[c2 + 6*c3 + 6*6*c1] + (d1 * Intre); 
 
            arg2 = d1 * Intim; 
 
            m = (int) (EdgesTN[c2 + 6*c1]-1); //base edge (global number) 
 
            n = (int) (EdgesTN[c3 + 6*c1]-1); //base edge (global number) 
 
            realpart = ConstA_r*arg1 - ConstA_i * arg2; 
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            imagpart = ConstA_r*arg2 + ConstA_i * arg1; 
 
            ZDDT_re[m + n*EdgesTotal] = ZDDT_re[m+ n*EdgesTotal] +  
 
                (Contrast[c1]* Contrast[c1]*realpart); 
 
            ZDDT_im[m + n*EdgesTotal] = ZDDT_im[m+ n*EdgesTotal] +  
 
                (Contrast[c1]* Contrast[c1]*imagpart); 
        } 
    } 
} 
// This loop calculates the cross terms. Tetrahedra to Tetrahedra. 
 
 
for(c1=0;c1<TetrahedraTotal;c1++){ 
 
    for(c2=0;c2<c1;c2++){ 
 
 
        *Int_r=0; 
 
        *Int_i=0; 
 
        d1= CenterT[0+c1*3]-CenterT[0+c2*3]; 
 
        Ratio= d1*d1; 
 
        d1= CenterT[1+c1*3]-CenterT[1+c2*3]; 
 
        Ratio+= d1*d1; 
 
        d1= CenterT[2+c1*3]-CenterT[2+c2*3]; 
 
        Ratio+= d1*d1; 
 
        Ratio /= SizeT[c1]*SizeT[c2]; 
 
        if (Ratio < ratio) // it seems that 225 (sqrt(225)=15) is ok 
        { 
 
            for(c3=0;c3<(3*IndexT);c3++){ 
 
                PointsTA[c3]= PointsT[c3 + c1*IndexT*3]; 
 
                PointsTB[c3]= PointsT[c3 + c2*IndexT*3]; 
            } 
 

   int01(PointsTA,IndexT,WD,PointsTB,IndexT,WD,kr,ki,Int_r,Int_i); 
        } 
 
        else 
        { 
            for(c3=0;c3<3;c3++){ 
 
                PointsTA[c3]= CenterT[c3+c1*3]; 
 
                PointsTB[c3]= CenterT[c3+c2*3]; 
            } 
 
            int01(PointsTA,1,&one,PointsTB,1,&one,kr,ki,Int_r,Int_i); 
        } 
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        Intre=(*Int_r)*VolumeT[c1]*VolumeT[c2]*Contrast[c1]*Contrast[c2]; 
 
        Intim=(*Int_i)*VolumeT[c1]*VolumeT[c2]*Contrast[c1]*Contrast[c2]; 
 
        for(c3=0;c3<(EdgesTNI[c1]);c3++){ 
 
            for(c4=0;c4<(EdgesTNI[c2]);c4++){ 
 
                d1 = BasisTC[0+c3*3+c1*6*3]*BasisTC[0 +c4*3 + c2*6*3] +  
 
                     BasisTC[1+c3*3+c1*6*3]*BasisTC[1 +c4*3+c2*6*3] +  
 
                     BasisTC[2+c3*3+c1*6*3]*BasisTC[2 + c4*3 + c2*6*3]; 
 
                realpart = (ConstA_r*Intre - ConstA_i*Intim)*d1; 
 
                imagpart = (ConstA_r*Intim + ConstA_i*Intre)*d1; 
 
                m = (int)(EdgesTN[c3+6*c1]-1);//base edge (global number) 
 
                n =(int) (EdgesTN[c4+6*c2]-1);//base edge (global number) 
 
                ZDDT_re[m+n*EdgesTotal]=ZDDT_re[m+n*EdgesTotal]+ ealpart; 
 
                ZDDT_im[m+n*EdgesTotal]=ZDDT_im[m+n*EdgesTotal]+ magpart; 
 
                ZDDT_re[n+m*EdgesTotal]=ZDDT_re[n+m*EdgesTotal]+ ealpart; 
 
                ZDDT_im[n+m*EdgesTotal]=ZDDT_im[n+m*EdgesTotal]+ magpart; 
 
            } 
        } 
    } 
} 
 
for(c1=0;c1<(EdgesTotal*EdgesTotal);c1++){ 
 
    ZDD[2*c1] = ZDDF_re[c1] + ZDDD[c1] + ZDDT_re[c1]; 
 
    ZDD[2*c1 + 1]   = ZDDF_im[c1] + ZDDT_im[c1]; 
} 
 
mxFree(ZDDF_re); 
 
mxFree(ZDDF_im); 
 
mxFree(ZDDD); 
 
mxFree(ZDDT_re); 
 
mxFree(ZDDT_im); 
 
delete Index; 
 
delete PointsFA; 
 
delete PointsFB; 
 
delete PointsTA; 
 
delete PointsTB; 
 
 
}// close main 
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* ============================================================= 
* slv.cpp  
* 
* This is a MEX-file for MATLAB. 
* AntennaLab/ECE/WPI 2003  
* Authors: S. Kulkarni 
* ============================================================= 
 
/*========================================================= 
/* Mex interface to LAPACK functions zsysv  
*=======================================================*/ 
/* 
% slv 
% Computes the current vector. 
 
% Syntax: 
%  [I D] = slv(ZMM,ZDD,ZMD,VM,VD,omega_re, omega_im); 
 
% Description 
% The function slv returns the current vector I (1 by geom.EdgesTotal) 
% and D (1 by GEOM.EdgesTotal) in the metal and dielectric respectivley. 
% The inputs to the function are the three impedance matrices  
% ZMM(geom.EdgesTotal by geom.EdgesTotal)  
% ZDD (GEOM.EdgesTotal by GEOM.EdgesTotal) and  
% ZMD (geom.EdgesTotal by GEOM.EdgesTotal) obtained from zmm, zdd  
% and zmd respectivley. In addition there are the two volatage vectors  
% VM (1 by geom.EdgesTotal) and VD (1 by GEOM.EdgesTotal) obtained from 
% voltagem and voltaged and the real and imaginary part of the frequency. 
% The function uses LAPACK function zsysv (zsysv_ for LINUX) for solving 
% equations of the form [Z][ I] = [V] where Z is a complex symmetric    
matrix. 
%  
% See also: 
% LAPACK and BLAS functions in MATLAB Help. 
*/ 
 
#include "mex.h" 
 
#include <math.h> 
 
void mexFunction(int nlhs,mxArray*plhs[],int nrhs,const mxArray *prhs[]) 
{ 
 
char *uplo = "U", msg[101]; 
int   c1,c2,nrhsB, ldA, ldB, lwork, info, *ipiv; 
int arg1, arg2; 
int nmetal,ndielectric, dim; 
double *ZMM,*ZDD,*ZMD,*VM_re,*VM_im,*VD_re,*VD_im, omega_re, omega_im; 
double *I_re, *I_im,*D_re,*D_im; 
double *A,*B, *work, *work1; 
double epsilon = 8.854187e-12; 
 
if ((nlhs > 2) || (nrhs != 7)) { 
 mexErrMsgTxt("Expect 7 input arguments and returns 2 output arguments"); 
} 
 
// Input Parameters 
 
ZMM= mxGetPr(prhs[0]); 
ZDD= mxGetPr(prhs[1]); 
ZMD= mxGetPr(prhs[2]); 
VM_re= mxGetPr(prhs[3]); 
VM_im= mxGetPi(prhs[3]); 
VD_re= mxGetPr(prhs[4]); 



 147 

VD_im= mxGetPi(prhs[4]); 
omega_re= mxGetScalar(prhs[5]); 
omega_im= mxGetScalar(prhs[6]); 
nmetal= (int)sqrt((double)mxGetM(prhs[0])/2.0); 
ndielectric= (int)sqrt((double)mxGetM(prhs[1])/2.0); 
dim = nmetal + ndielectric;// dimension of the Z matrix 
 
 
// Output Parameter 
 
plhs[0] = mxCreateDoubleMatrix(nmetal,1,mxCOMPLEX); 
I_re= mxGetPr(plhs[0]); 
I_im= mxGetPi(plhs[0]); 
plhs[1] = mxCreateDoubleMatrix(ndielectric,1,mxCOMPLEX); 
D_re= mxGetPr(plhs[1]); 
D_im= mxGetPi(plhs[1]); 
 
 
//Preallocate memory. 
 
A = (double *)mxMalloc(sizeof(double) * 2*dim*dim); 
B = (double *)mxMalloc(sizeof(double) * 2*dim); 
 
 
// Filling the Z matrix Z = [ZMM ZMD; ZDM ZDD]; 
// However we only care about the upper Triangular matrix and  
//hence ZDM is ignored.Filling ZMM and ZDM. 
 
for(c1=0;c1<nmetal;c1++) 
{ 
    for(c2=0;c2<(2*nmetal);c2++) 
    { 
        A[c2 + c1*2*dim]= ZMM[c2 + c1*2*nmetal]; 
    } 
    for(c2=0;c2<(2*ndielectric);c2++){ 
        A[c2+ 2*nmetal + c1*2*dim]= 0; 
    } 
} 
 
 
// Filling ZMD and ZDD 
for(c1=0;c1<ndielectric;c1++) 
{ 
    for(c2=0;c2<(2*nmetal);c2++) 
    { 
        A[c2 + c1*2*dim+ 2*dim*nmetal] = ZMD[c2 + c1*2*nmetal]; 
    } 
    for(c2=0;c2<ndielectric;c2++) 
    { 

A[2*c2+2*nmetal+c1*2*dim+2*dim*nmetal]=(-ZDD[2*c2+2*c1* ndielectric 
]* omega_im) - (ZDD[2*c2 +1 + 2*c1*ndielectric]* omega_re); 
 
A[2*c2+1+2*nmetal+c1*2*dim+2*dim*nmetal]=(ZDD[2*c2+2*c1* 
ndielectric]*omega_re)-(ZDD[2*c2+1 +2*c1*ndielectric]* omega_im); 

 
    } 
} 
 
// Filling the V vector V = [VM ; VD]; 
 
for(c1=0;c1<nmetal;c1++){ 
    B[2*c1]= VM_re[c1]; 
    B[2*c1+ 1]= VM_im[c1]; 
} 
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for(c1=0;c1<ndielectric;c1++){ 
 
    B[2*c1+ 2*nmetal]= (-VD_re[c1]*omega_im)-(VD_im[c1]*omega_re); 
 
    B[2*c1+ 1 + 2*nmetal]= (VD_re[c1]*omega_re) -(VD_im[c1]*omega_im); 
 
}  
ldA    = dim;  
ipiv   = (int *)mxCalloc(dim,sizeof(int)); 
ldB    = dim; 
nrhsB  =  1; 
lwork  = -1; 
info   =  0; 
work   = (double *)mxCalloc(2,sizeof(double)); 
 
zsysv(uplo, &dim, &nrhsB, A, &ldA, ipiv, B, &ldB, work, &lwork, &info); 
 
lwork = (int)(work[0]); 
work1 = (double *)mxCalloc(2*lwork,sizeof(double)); 
 
zsysv(uplo, &dim, &nrhsB, A, &ldA, ipiv, B, &ldB, work1, &lwork, &info); 
 
 
for (c1 = 0 ; c1 < nmetal ; c1++) { 
    I_re[c1] = B[2*c1]; 
    I_im[c1] = B[2*c1+1];   
} 
 
for (c1 = 0 ; c1 < ndielectric ; c1++) { 
 
    D_re[c1] = B[2*c1 + 2*nmetal]; 
    D_im[c1] = B[2*c1+1 + 2*nmetal]; 
 
} 
 
mxFree(work); 
mxFree(work1); 
mxFree(ipiv); 
mxFree(A); 
mxFree(B); 
 
} 
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/* 
* ============================================================= 
* fieldd.cpp  
* 
* This is a MEX-file for MATLAB. 
* AntennaLab/ECE/WPI 2003  
* Authors: S. Kulkarni  
* ============================================================= 
*/ 
% fieldd 
%  Computes radiated/scattered electric and magnetic field and the 
%   Poynting vector for radiated/scattered field in a dilectric structure. 
 
% Syntax: 
% [Poynting,E,H]=fieldd(const,GEOM,DF,frequency,Points,option) 
 
%  
% Description: 
% The function field returns vectors calculated in the dilectric volume 
% E (3 by Points where the field is calculated)      
% Radiated/scattered electric field (complex vector at a point, V/m) 
% H (3 by Points where the field is calculated) 
% Radiated/scattered magnetic field (complex vector at a point, A/m)             
% Poynting  (3 by Points where the field is calculated) 
% Poynting vector (W/m^2) for radiated/scattered field 
% The inputs to the function are two structures GEOM. and const .The 
structureGEOM. defines all the parameters of the metal triangles 
including self integrals which is obtained from rwgd while the structure 
const defines the electromagnetic constants such as mu, epsilon, speed of 
light etc. In addition to these, the other input parameters include the 
current in the dielectric DF which is obtained using slv,frequency of 
operation, observation point where the field is to be measured and an 
addition parameter called option. If option =0 then the scattered filed 
is calculated while when the option=1 the total field is calculated. 
 
============================================================= 
*/ 
 
 
 
#include "mex.h" 
#ifdef __ICC 
#include <mathimf.h>// Intel math library 
#else 
#include <math.h> 
#endif 
#ifndef M_PI 
#define M_PI 3.1415926535898 
#endif 
 
 
/* mexFunction is the gateway routine for the MEX-file. */  
 
void mexFunction(int nlhs,mxArray *plhs[],int nrhs,const mxArray*prhs[] ) 
 
{ 
// Inputs 
 
const mxArray *const_struct; 
const mxArray *GEOM; 
const mxArray *input; 
double *DF_r, *DF_i; 
double frequency; 
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double *Points; 
bool option; 
 
if (nrhs != 7) 
 
mexErrMsgTxt("this function requires 7 inputs: const, GEOM, input, D, 
frequency, Points , option");  
 
// Outputs 
 
double *P_r; 
double *E_r, *E_i; 
double *H_r, *H_i; 
 
// Get the input data 
const_struct= prhs[0]; 
GEOM= prhs[1]; 
input= prhs[2]; 
DF_r= mxGetPr(prhs[3]); 
DF_i= mxGetPi(prhs[3]); 
frequency= mxGetScalar(prhs[4]); 
Points= mxGetPr(prhs[5]); 
int sizeP  = (mxGetDimensions(prhs[5]))[1]; 
option= (int)mxGetScalar(prhs[6]) != 0; 
 
 
// Get values from structure GEOM 
 
int FacesTotal = (int)mxGetScalar(mxGetField(GEOM, 0, "FacesTotal")); 
int TetrahedraTotal= (int)mxGetScalar(mxGetField(GEOM, 0, "TetrahedraTotal")); 
int IndexF= (int)mxGetScalar(mxGetField(GEOM, 0, "IndexF")); 
int IndexT  (int)mxGetScalar(mxGetField(GEOM, 0, "IndexT")); 
double *PointsT= mxGetPr(mxGetField(GEOM, 0, "PointsT")); 
double *WD= mxGetPr(mxGetField(GEOM, 0, "WD")); 
double *EdgesTNI= mxGetPr(mxGetField(GEOM, 0, "EdgesTNI")); 
double *BasisTC= mxGetPr(mxGetField(GEOM, 0, "BasisTC")); 
double *EdgesTN= mxGetPr(mxGetField(GEOM, 0, "EdgesTN")); 
double *VolumeT= mxGetPr(mxGetField(GEOM, 0, "VolumeT")); 
double *Contrast= mxGetPr(mxGetField(GEOM, 0, "Contrast")); 
double *PointsF= mxGetPr(mxGetField(GEOM, 0, "PointsF")); 
double *WF= mxGetPr(mxGetField(GEOM, 0, "WF")); 
double *EdgesFNI= mxGetPr(mxGetField(GEOM, 0, "EdgesFNI")); 
double *EdgesFN= mxGetPr(mxGetField(GEOM, 0, "EdgesFN")); 
double *DiffContrast= mxGetPr(mxGetField(GEOM, 0, "DiffContrast")); 
double *CenterT= mxGetPr(mxGetField(GEOM, 0, "CenterT")); 
double *CenterF= mxGetPr(mxGetField(GEOM, 0, "CenterF")); 
double *SizeT= mxGetPr(mxGetField(GEOM, 0, "SizeT")); 
double *SizeF= mxGetPr(mxGetField(GEOM, 0, "SizeF")); 
 
 
// Get values from structure const 
 
double c_  = mxGetScalar(mxGetField(const_struct, 0, "c")); 
double epsilon  = mxGetScalar(mxGetField(const_struct, 0, "epsilon")); 
double mu   = mxGetScalar(mxGetField(const_struct, 0, "mu")); 
double eta = mxGetScalar(mxGetField(const_struct, 0, "eta")); 
 
 
// Setup the output data 
plhs[0] = mxCreateDoubleMatrix(3, sizeP, mxREAL); 
plhs[1] = mxCreateDoubleMatrix(3, sizeP, mxCOMPLEX); 
plhs[2] = mxCreateDoubleMatrix(3, sizeP, mxCOMPLEX); 
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P_r = mxGetPr(plhs[0]); 
E_r = mxGetPr(plhs[1]); 
E_i = mxGetPi(plhs[1]); 
H_r = mxGetPr(plhs[2]); 
H_i = mxGetPi(plhs[2]); 
 
 
// common variables 
 
int m, n; 
int c1, c2, c3, c4; 
double d1,d2,d3,d4, d5,d6,d7, e1, e2, e3, G_r, G_i; 
double dummy_re, dummy_im; 
double INT_rho_re[3], INT_rho_im[3],INT_Grho_re[3], INT_Grho_im[3]; 
double G_grad_r[3], G_grad_i[3], int_Grho_re[3], int_Grho_im[3], 
int_grad_re[3] , int_grad_im[3]; 
 
 
double omega       = 2 * M_PI * frequency; 
double k           = omega / c_; 
double ConstantA   = mu/(4.0 * M_PI); 
double ConstantAE  = ConstantA*omega*omega; 
double ConstantAH  =(ConstantA*omega)/mu;  
double ConstantF   = -1.0/( epsilon *4.0 *M_PI);// REAL EPSILON 
double real[3]; 
 
 
 
// main loop 
double eps = 1.0e-64; 
 
for (c1 = 0 ; c1 < sizeP ; c1++) { 
 
     for (c2 = 0 ; c2 < 3 ; c2++) { 
 
           E_r[c2+ c1*3] = 0; 
           E_i[c2+ c1*3] = 0; 
           H_r[c2+ c1*3] = 0; 
           H_i[c2+ c1*3] = 0; 
           P_r[c2+ c1*3] = 0; 
 
     } 
 
      for (c2 = 0 ; c2 < TetrahedraTotal ; c2++) { 
 
        dummy_re = 0; 
 
        dummy_im = 0; 
 
        for(c4=0;c4<3;c4++){ 
 
        int_Grho_re[c4]= 0; 
        int_Grho_im[c4]= 0; 
 
    } 
 
    for(c3=0; c3< IndexT; c3++){ 
 
        d1 = Points[0+ c1*3] - PointsT[3*c3+ 3*IndexT*c2 +0]; 
        d2 = Points[1+ c1*3] - PointsT[3*c3+ 3*IndexT*c2 +1]; 
        d3 = Points[2+ c1*3] - PointsT[3*c3+ 3*IndexT*c2 +2]; 
        d4 = d1 * d1 + d2 * d2 + d3 * d3; 
 
        e1 = d4 / (d4 + eps); 
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        d4 = d4 +eps; 
        d5 = sqrt(d4);   
 
        // Green's function multiplied by weights 
 
        d6 = (e1 * WD[c3]) / d5; 
        d7 = k * d5; 
        G_r = (+d6 * cos(d7)); 
        G_i = (-d6 * sin(d7)); 
        dummy_re += G_r; 
        dummy_im += G_i; 
 
        // Green's function gradient 
 
        e1 = - G_r / d4 + k * G_i / d5;//to real part 
        e2 = - k * G_r / d5  - G_i / d4;//to imaginary part 
        G_grad_r[0] = d1 * e1;   
        G_grad_i[0] = d1 * e2; 
        G_grad_r[1] = d2 * e1;   
        G_grad_i[1] = d2 * e2; 
        G_grad_r[2] = d3 * e1;   
        G_grad_i[2] = d3 * e2; 
 
        for(c4=0;c4<3;c4++){ 
 
            int_Grho_re[c4]= int_Grho_re[c4] + G_grad_r[c4]; 
            int_Grho_im[c4]= int_Grho_im[c4] + G_grad_i[c4]; 
 
        } 
 
    } 
 
    m = (int)EdgesTNI[c2]; 
 
    for(c3=0 ; c3< m ; c3++){ 
 
 

INT_Grho_re[0]=-(BasisTC[2+3*c3+c2*3*6]*int_Grho_re[1])+ 
(BasisTC[1+ 3*c3 + c2*3*6]*int_Grho_re[2]); 

 
      INT_Grho_re[1]=(BasisTC[2+3*c3+c2*3*6]*int_Grho_re[0])- 
       (BasisTC[0+ 3*c3 + c2*3*6]*int_Grho_re[2]); 
 

INT_Grho_re[2]=-(BasisTC[1+3*c3+c2*3*6]*int_Grho_re[0])+ 
(BasisTC[0+ 3*c3 + c2*3*6]*int_Grho_re[1]); 

 
INT_Grho_im[0]=-(BasisTC[2+3*c3+c2*3*6]*int_Grho_im[1])+ 
(BasisTC[1+ 3*c3 + c2*3*6]*int_Grho_im[2]); 

 
INT_Grho_im[1]=+(BasisTC[2+3*c3+c2*3*6]*int_Grho_im[0])- 
(BasisTC[0+ 3*c3 + c2*3*6]*int_Grho_im[2]); 

 
INT_Grho_im[2]=-(BasisTC[1+3*c3+c2*3*6]*int_Grho_im[0])+ 
(BasisTC[0+ 3*c3 + c2*3*6]*int_Grho_im[1]); 

 
        for (c4=0 ; c4< 3 ;c4++){ 
 
            INT_rho_re[c4]= dummy_re * BasisTC[c4 + 3*c3 + c2*6*3]; 
            INT_rho_im[c4]= dummy_im * BasisTC[c4 + 3*c3 + c2*6*3]; 
 
        } 
 
        n = (int) EdgesTN[c3 + 6*c2]-1; 
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        for (c4=0 ; c4< 3 ;c4++){ 
 
            E_r[c4 + c1*3] = E_r[c4+ c1*3] + ((DF_r[n]* INT_rho_re[c4]   

- DF_i[n]* INT_rho_im[c4]) * VolumeT[c2]* Contrast[c2]* 
ConstantAE); 

 
            E_i[c4 + c1*3] = E_i[c4 + c1*3] + ((DF_r[n]* INT_rho_im[c4]    

+ DF_i[n]* INT_rho_re[c4]) * VolumeT[c2]* Contrast[c2]* 
ConstantAE); 

 
            H_i[c4 + c1*3] = H_i[c4 + c1*3] + (-(DF_r[n]* INT_Grho_re[c4]  

-DF_i[n]* INT_Grho_im[c4])* VolumeT[c2]* Contrast[c2]* 
ConstantAH); 

 
            H_r[c4 + c1*3] = H_r[c4 + c1*3] + ((DF_r[n]* INT_Grho_im[c4]  

+DF_i[n]* INT_Grho_re[c4])* VolumeT[c2]* Contrast[c2]* 
ConstantAH); 

 
        } 
 
    } 
 
} 
 
for (c2=0 ; c2<FacesTotal ; c2++){ 
 
    for(c4=0;c4<3;c4++){ 
 
        int_grad_re[c4]= 0; 
        int_grad_im[c4]= 0; 
 
    } 
 
    for(c3=0 ; c3< IndexF ; c3++){ 
 
        d1 = Points[0+ c1*3] - PointsF[3*c3+ 3*IndexF*c2 +0]; 
        d2 = Points[1+ c1*3] - PointsF[3*c3+ 3*IndexF*c2 +1]; 
        d3 = Points[2+ c1*3] - PointsF[3*c3+ 3*IndexF*c2 +2]; 
        d4 = d1 * d1 + d2 * d2 + d3 * d3; 
        e1 = d4 / (d4 + eps); 
        d4 = d4 +eps; 
        d5 = sqrt(d4);   
 
        // Green's function multiplied by weights 
 
        d6 = (e1 * WF[c3]) / d5; 
        d7 = k * d5; 
        G_r = (+d6 * cos(d7)); 
        G_i = (-d6 * sin(d7)); 
 
        // Green's function gradient 
 
        e1 = - G_r / d4 + k * G_i / d5; //to real part 
        e2 = - k * G_r / d5  - G_i / d4;//to imaginary part 
 
        G_grad_r[0] = d1 * e1;   
        G_grad_i[0] = d1 * e2; 
        G_grad_r[1] = d2 * e1;   
        G_grad_i[1] = d2 * e2; 
        G_grad_r[2] = d3 * e1;   
        G_grad_i[2] = d3 * e2; 
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        for(c4=0;c4<3;c4++){ 
 
            int_grad_re[c4] = int_grad_re[c4] + G_grad_r[c4]; 
            int_grad_im[c4] = int_grad_im[c4] + G_grad_i[c4]; 
 
        } 
    } 
 
 
    m = (int)EdgesFNI[c2]; 
 
    for(c3=0 ; c3< m ; c3++){ 
 
        n = (int) EdgesFN[c3 + 3*c2]-1; 
 
        for (c4=0 ; c4< 3 ;c4++){ 
 
            E_r[c4+ c1*3] = E_r[c4 + c1*3] + ((DF_r[n]* int_grad_re[c4]   

- DF_i[n]* int_grad_im[c4]) * DiffContrast[c3 + 3*c2]* 
ConstantF); 

 
            E_i[c4+ c1*3] = E_i[c4 + c1*3] + ((DF_r[n]* int_grad_im[c4]   

 + DF_i[n]* int_grad_re[c4]) * DiffContrast[c3 + 3*c2]* 
ConstantF); 

 
        } 
 
    } 
 
} 
 
// Find the Poynting vector. 
 
real[0] = (E_r[1+ c1*3]*H_r[2+ c1*3] + E_i[1+ c1*3]*H_i[2+ c1*3])  
    - (E_r[2+ c1*3]*H_r[1+ c1*3] + E_i[2+ c1*3]*H_i[1+ c1*3]); 
 
real[1] = -(E_r[0+ c1*3]*H_r[2+ c1*3] + E_i[0+ c1*3]*H_i[2+ c1*3])  
    + (E_r[2+ c1*3]*H_r[0+ c1*3] + E_i[2+ c1*3]*H_i[0+ c1*3]); 
 
real[2] = (E_r[0+ c1*3]*H_r[1+ c1*3] + E_i[0+ c1*3]*H_i[1+ c1*3])  
    - (E_r[1+ c1*3]*H_r[0+ c1*3] + E_i[1+ c1*3]*H_i[0+ c1*3]); 
 
for(c2=0;c2<3;c2++){ 
 
    P_r[c2+ 3*c1] = 0.5* real[c2]; 
 
} 
 
} 
 
 
// find the total field (scattered plus incident) 
 
double dot; 
 
int i1, i2; 
 
double EI_r[3], EI_i[3]; 
 
if(option == 1) { 
 
double *dir        = mxGetPr(mxGetField(input, 0, "dir")); 
double *pol        = mxGetPr(mxGetField(input, 0, "pol")); 
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for (c1 = 0 ; c1 < sizeP ; c1++) { 
 
    dot = 0; 
    for (c2 = 0 ; c2 < 3 ; c2++) { 
        dot += dir[c2] * Points[c2 + c1*3]; 
 
    } 
 
 
    d2 = k * dot; 
    d3 = +cos(d2); 
    d4 = -sin(d2); 
 
    for (c2 = 0 ; c2 < 3 ; c2++) { 
 
        d1 = pol[c2] * d3; 
        d2 = pol[c2] * d4; 
        E_r[c2 + c1*3] += d1; 
        E_i[c2 + c1*3] += d2; 
        EI_r[c2] = d1; 
        EI_i[c2] = d2; 
    } 
 
 
    for (c2 = 0 ; c2 < 3 ; c2++) { 
 
        i1 = (c2+1)%3; 
        i2 = (c2+2)%3; 
        H_r[c2 + c1*3] += (dir[i1] * EI_r[i2] -dir[i2] * EI_r[i1]) / eta; 
        H_i[c2 + c1*3] += (dir[i1] *EI_i[i2] - dir[i2] * EI_i[i1]) / eta; 
 
    } 
 
    for (c2 = 0 ; c2 < 3 ; c2++) { 
 
        i1 = (c2+1)%3 + c1*3; 
 
        i2 = (c2+2)%3 + c1*3; 
 
        P_r[c2 + c1*3] = 0.5 *(E_r[i1] * H_r[i2] + E_i[i1] * H_i[i2]) 
            -(E_r[i2] * H_r[i1] + E_i[i2] * H_i[i1]));// + because of conjugate 
 
    } 
 
} 
 
} 
 
} 
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