
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2009-02-17

Interactive Training System for Medical Ultrasound
Christian John Banker
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Banker, Christian John, "Interactive Training System for Medical Ultrasound" (2009). Masters Theses (All Theses, All Years). 164.
https://digitalcommons.wpi.edu/etd-theses/164

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/164?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

INTERACTIVE TRAINING SYSTEM FOR MEDICAL ULTRASOUND

by

Christian J. Banker

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Master of Science
in

Electrical and Computer Engineering
by

January 2009

APPROVED:

Dr. Peder C. Pedersen, Major Advisor

Dr. Edward A. Clancy

Dr. Thomas L. Szabo

Abstract

Ultrasound is an effective imaging modality because it is safe, unobtrusive and portable. However, it

is also very operator-dependent and significant skill is required to capture quality images and properly

detect abnormalities. Training is an important part of ultrasound, but the limited availability of

training courses presents a significant hindrance to the use of ultrasound being used in additional

settings.

The goal of this work was to design and implement an interactive training system to help

train and evaluate sonographers. The Interactive Training System for Medical Ultrasound is an

inexpensive, software-based training system in which the trainee scans a lifelike manikin with a

sham transducer containing a 6 degree of freedom tracking sensor. The observed ultrasound image is

generated from a pre-stored 3D image volume and is controlled interactively by the sham transducer’s

position and orientation. Based on the selected 3D volume, the manikin may represent normal

anatomy, exhibit a specific trauma or present a given physical condition.

The training system provides a realistic scanning experience by providing an interactive real-time

display with adjustable image parameters such as scan depth, gain, and time gain compensation.

A representative hardware interface has been developed including a lifelike manikin and convincing

sham transducers, along with a touch screen user interface. Methods of capturing 3D ultrasound

image volumes and stitching together multiple volumes have been evaluated. System performance

was analyzed and an initial clinical evaluation was performed.

This thesis presents a complete prototype training system with advanced simulation and learn-

ing assessment features. The ultrasound training system can provide cost-effective and convenient

training of physicians and sonographers. This system is an innovative approach to training and is a

powerful tool for training sonographers in recognizing a wide variety of medical conditions.

i

Acknowledgements

I would like to acknowledge Dr. Peder C. Pedersen for his guidance, input, and

financial support. His support and guidance truly played a major role in my success.

I would like to thank the Telemedicine and Advanced Technology Research Center

(TATRC), for providing the grant under which this research was performed.

Jason Bryan of the Ohio Supercomputer Center was a tremendous help, providing

his gear library, along with support and assistance.

For providing the Stradwin and Stradx software, along with support, I would like

to acknowledge Dr. Richard Prager, Dr. Andrew Gee, Dr. Graham Treece and the

rest of the Medical Imaging Group at the University of Cambridge in England.

The transducer shells used to construct the sham transducer were provided free

of charge by Sound Technology, Inc.

Patrick Morrison and Tom Angelotti of the WPI ECE shop were a valuable re-

source for finding and ordering parts and machining the calibration fixture.

I would also like to thank Dr. David Polan and Dr. Dana Resop of the University

of Massachusetts Memorial Medical Center for their advice and evaluation of the

system and Dr. Joyoni Dey for providing her 3D registration code and assistance

with using it.

ii

Contents

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Other Ultrasound Simulation and Training Systems 1
1.2 Interactive Training System for Medical Ultrasound 3
1.3 Motivation . 4
1.4 Thesis Outline . 4

2 Interactive Generation of Scan Planes 6
2.1 Introduction . 6
2.2 Software Selection . 7

2.2.1 Complete Packages . 10
2.2.2 Toolkits and Libraries . 11

2.3 Volume Rendering . 14
2.3.1 Three-D Graphics Background 14
2.3.2 Basic 3D Volume Display . 20
2.3.3 Arbitrary Reslice Capabilities 23

2.4 Interactive Control . 24
2.4.1 Control Using SpaceNavigator 6 DoF Input Device 25
2.4.2 Control Using Ascension Technology Corporation Flock of Birds

6 DoF Tracking System . 29
2.4.3 Control Using Ascension Technology Corporation trakSTAR 6

DoF Tracking System . 35
2.4.4 trakSTAR Noise Reduction . 42

2.5 Conclusions . 48

3 Interactive Scanning Features and User Interfaces 49
3.1 Introduction . 49
3.2 Hardware User Interface . 50

iii

3.2.1 Manikin with Embedded Tracking Transmitter 50
3.2.2 Sham Transducers . 55
3.2.3 Touch Screen Interface . 56

3.3 Graphical User Interface Design . 60
3.3.1 GUI Implementation . 60
3.3.2 GLUI Details . 61
3.3.3 GUI Design . 63

3.4 Interactive Simulation Features . 67
3.4.1 Probe Geometry Selection . 68
3.4.2 Scan Depth Setting . 73
3.4.3 Overall Gain Control . 73
3.4.4 Time Gain Compensation (TGC) 77
3.4.5 Scan Type Presets . 82
3.4.6 Navigational Display . 87
3.4.7 Freeze Display Functionality 89

3.5 Conclusions . 90

4 Simulation Data Generation 91
4.1 Introduction . 91
4.2 Requirements For Generating 3D Image Volumes 91
4.3 Registration of Multiple Sweeps . 93

4.3.1 Similarity Measures . 96
4.3.2 Image Registration Toolkit . 100
4.3.3 AIR 5.2.5 (Automated Image Registration) 100
4.3.4 University of Cambridge’s Stradx 101
4.3.5 University of Cambridge’s Stradwin 103
4.3.6 Free-Form Deformation Registration Code by Dr. Joyoni Dey 105

4.4 Stradwin Capture Details . 106
4.5 Stradwin Calibration . 107

4.5.1 Improved Calibration Using a Mechanical Fixture 109
4.6 Registration of Data Volumes to Manikin 113
4.7 Image Data Header File . 114
4.8 Conclusions . 116

5 Learning Outcomes Assessment 117
5.1 Introduction . 117
5.2 Region of Interest Selection . 118

5.2.1 Inclusion of Features in Data Set 118
5.2.2 User Selection . 120
5.2.3 Automatic Evaluation . 122

5.3 Scan Path Recording and Display . 124
5.3.1 Data Recording . 124

iv

5.3.2 Manikin Surface Model Generation 126
5.3.3 MATLAB Engine . 126
5.3.4 Scan Path Overlay . 128
5.3.5 Uses for Assessment of Learning Outcomes 131

5.4 Still Image Capture . 133
5.4.1 Implementation of Still Image Capture 133

5.5 Conclusions . 134

6 Results and Discussion 136
6.1 Ultrasound Training System . 136
6.2 Data Acquisition . 138
6.3 Learning Outcomes Assessment . 141
6.4 Clinical Evaluation . 142

7 Conclusions 144
7.1 Future Work . 145

Appendices 148

A Software Design Considerations 149

B Ascension Technologies Corporation Flock of Birds Datasheet 151

C Ascension Technologies Corporation trakSTAR Datasheet 153

D Discussion of Precision and Accuracy 155

E Comparison of AC and DC Magnetic Tracking Systems 158

F Stradwin Capture Process 160
F.1 Initial Hardware and Software Setup 160
F.2 Stradwin Data Acquisition . 163

G Stradwin Calibration Procedure 165

H Scan Path Visualization Scripts 172
H.1 Manikin Surface Generation Script 172

H.1.1 Manikin Surface Generation Script MATLAB Code 172
H.2 Scan Path Overlay Script . 174

H.2.1 Scan Path Overlay Script MATLAB Code 174

v

I gen volume - Volume Generation Tool 179
I.1 Input, Output and Options . 179

I.1.1 .raw with no header . 180
I.1.2 ITK . 180
I.1.3 Analyze . 180
I.1.4 Stradx . 181

J makesx - Stradx Header Generation Tool 182
J.1 Input, Output and Options . 182

K ts noisex - trakSTAR Measurement Rate Determination Utility 184
K.1 Inputs, Outputs, and Options . 184

L ts capture - trakSTAR Data Capture Utility 186
L.1 Inputs, Outputs, and Options . 186

M Calibration Fixture Manufacturing Procedure 187
M.1 Materials . 187
M.2 Tools . 188
M.3 Manufacturing Process . 188

M.3.1 Cutting and Milling Wheels 188
M.3.2 Cutting and Machining Brass Bar 189
M.3.3 Cutting and Machining the Clamp Plates 190
M.3.4 Cutting 1/16” Grooves for the Brass Bar 190
M.3.5 Affixing wheels to brass bar 191
M.3.6 Drilling Holes in Clamp Plates 191
M.3.7 Assembly . 192

N Demonstration Guide 193
N.1 Introduction . 193
N.2 Hardware Setup . 193
N.3 Software Setup . 195
N.4 Performing the Demonstration . 196

N.4.1 Common Operating Tasks . 197
N.5 Troubleshooting . 199

N.5.1 Further Assistance . 201
N.6 Appendix: Initial One-Time Setup Instructions 202
N.7 Appendix: Subversion (SVN) Repository Instructions 202

N.7.1 SVN Update . 203
N.7.2 Viewing SVN Logs . 204

Bibliography 205

vi

List of Figures

2.1 Training System Block Diagram . 7
2.2 Block Diagram of Basic Training System Functional Requirements . . 8
2.3 OpenGL Rendering Pipeline [41] . 15
2.4 Comparison of OpenGL and Windows Coordinate Systems 19
2.5 Screen Capture of 3D Rendering . 21
2.6 Comparison of Volume Rendering With and Without Tessellation Fix 22
2.7 Relation Between Sham Transducer and Generated 2D Slice 24
2.8 Screen Capture of 2D Reslicing . 25
2.9 Generalized Interactive Control Block Diagram 25
2.10 3DConnexion SpaceNavigator Input Device [1] 26
2.11 Block Diagram of SpaceNavigator Communication and Control 27
2.12 Diagram of ‘TrackballManipulator’ Operation 28
2.13 Ascension Technology Corporation Flock of Birds System [16] 30
2.14 Ascension Technology Corporation Flock of Birds System Functional

Block Diagram [6] . 31
2.15 Ascension Technology Corporation Flock of Birds Signal Diagram [6] 32
2.16 Block Diagram of Flock of Birds Communication and Control 33
2.17 Ascension Technology Corporation trakSTAR System 37
2.18 Block Diagram of trakSTAR Communication and Control 38
2.19 Block Diagram of trakSTAR Read Function 39
2.20 trakSTAR Transmitter and Receiver with Their Coordinate Axes Aligned 40
2.21 trakSTAR Transmitter and Receiver as Used With Manikin and Sham

Transducer . 41
2.22 Strut For Mounting trakSTAR Transmitter Close to Scanning Surface 43
2.23 trakSTAR Noise Plot Showing the Quality Parameter as a Function of

Measurement Rate . 44
2.24 Comparison of Position Noise for trakSTAR Between Air-core and

Ferrite-core Transmitters . 46
2.25 Comparison of Orientation Noise for trakSTAR Between Air-core and

Ferrite-core Transmitters . 47

vii

3.1 Photo of Entire Hardware Interface 50
3.2 Laerdal “Choking Charlie” Manikin [19] 51
3.3 Cavity Cut into the Back Side of the Manikin to Accommodate Track-

ing Transmitter . 52
3.4 Manikin Mounting Board with Rods and Transmitter Strut 53
3.5 Back of Manikin Showing Mounting Rods 54
3.6 Empty Transducer Shells for Sham Transducers 55
3.7 Sham Transducers . 56
3.8 Inside of Linear Sham Transducer . 57
3.9 Inside of Convex Sham Transducer 57
3.10 Planar PT1705MU Touchscreen Monitor 60
3.11 GLUI Software Flowchart . 62
3.12 Simulation System GUI . 64
3.13 Terason’s GUI . 65
3.14 GUI Block Diagram . 66
3.15 Diagram of Interactive Simulation Features 68
3.16 Graphical User Interface Screen Capture 69
3.17 Convex Array Transducer Shape . 71
3.18 Linear Array Transducer Shape . 72
3.19 Terason Convex and Linear Probes at Various Depths 74
3.20 Simulation System Convex and Linear Probes at Various Depths . . . 75
3.21 Block Diagram of Overall Gain Adjustment 76
3.22 Comparison of Gain Adjustment between Terason and the Simulation

System . 78
3.23 Comparison of TGC for Linear and Convex Probe Geometries 80
3.24 Block Diagram of TGC Generation For a Single Step 80
3.25 TGC Software Flowchart . 83
3.26 Time Gain Compensation Example Screen Captures 84
3.27 Scan Type Presets Block Diagram . 85
3.28 Scan Type Presets Software Flowchart 86
3.29 Screen Captures of Different Scan Presets 88
3.30 Navigational Display . 89

4.1 Example of multiple sweeps within a larger image volume 92
4.2 Block Diagram of Data Acquisition Process 94
4.3 Flowchart of a Typical Registration Algorithm Using a Similarity Mea-

sure and Gradient Descent . 95
4.4 Stradx Alignment: Views of sweep alignment at the dividing plane . . 104
4.5 Block Diagram of Stradwin Capture Process 107
4.6 Diagram of Coordinate Systems Aligned by Stradwin Calibration [32] 108
4.7 Cambridge Phantom [13] . 110
4.8 WPI Calibration Fixture Images . 111

viii

4.9 CAD Drawing of WPI Calibration Fixture 112

5.1 Region of Interest Selection Block Diagram 119
5.2 Feature Object Specification and Correctly Selected Region of Interest 119
5.3 Region of Interest Selection Using an Oval 121
5.4 Scan Path Recording and Display Block Diagram 125
5.5 Manikin Surface Model . 127
5.6 Manikin Surface Plot with Scan Path Overlay 129
5.7 Scan Path Overlay with GUI . 130
5.8 Scan Path Playback Software Flowchart 132

6.1 Screen Capture of Ultrasound Training System Software Environment 137
6.2 Comparison of Individual Scans and Stitched Volume 139

B.1 Ascension Technologies Corporation Flock of Birds Datasheet [4] . . . 152

C.1 Ascension Technologies Corporation trakSTAR Datasheet [4] 154

D.1 Accuracy vs. Precision, Target Example [25] 156
D.2 Accuracy vs. Precision, Graph Example [50] 157

E.1 Ascension Technologies Corporation AC vs. DC Tracking System Com-
parison [7] . 159

F.1 Block Diagram of Stradwin Acquisition Hardware Interfaces 161

G.1 Stradwin Display With Properly Configured Video and Position Sensor 167
G.2 Capture of a Line for Calibration in Stradwin 169
G.3 Stradwin Calibration Motion Sequence [28] Depicting Necessary Trans-

lations and Rotations for Calibration Process 170

ix

List of Tables

3.1 Touch Screen Technology Comparison [15] 58
3.2 Planar Touch Screen Specifications [27] 59
3.3 Example of TGC Linear Interpolation 79
3.4 Parameter Values for Implemented Scan Type Presets 87

4.1 Header File Parameters . 115

1

Chapter 1

Introduction

Ultrasound is a useful medical imaging modality because it is portable, minimally

invasive and relatively inexpensive. It does not use ionizing radiation like Computed

Tomography (CT) and is therefore regarded as safe imaging modality. However, the

quality of ultrasound images is very operator dependent, requiring significant skill and

experience to perform scans and identify conditions. Thus, extensive training and cer-

tification is required for sonographers. This has generally proven to be a significant

bottleneck and has prevented ultrasound from becoming more widely used in addi-

tional settings. To simplify the training process and help train more sonographers,

computer-based training systems have been developed.

1.1 Other Ultrasound Simulation and Training Sys-

tems

Other ultrasound simulation systems have previously been developed or are under

development, but none have yet come into widespread use. A system developed at the

University of Leeds [53] is focused on needle guidance and uses simulated ultrasound

data generated from CT scans. Data are generated by manually segmenting 3D

2

CT data and applying selected ultrasound textures to these regions. Processing to

emulate ultrasound-specific artifacts is then applied to the image to produce speckle,

shadowing and radial blurring. A study was performed to evaluate whether a group

of 10 novice subjects were able to improve their needle insertion performance between

two temporally separated training sessions. It was shown that every novice tested

was able to show statistically significant improvement in at least 6 of the 10 studied

performance metrics [21].

VOLUS [47] focuses on 3D surface mapping of the heart. It uses data captured

from human patients, but no attempt is made to combine multiple 3D volumes. As

of yet, no clinical trials have been published.

The UltraSim system [2] has a full-size mock ultrasound imaging system and uses

mechanically-controlled acquisition of ultrasound data. Work has been performed

on registering multiple 3D data files through a 2D registration approach. UltraSim

focuses on obstetrics, gynecology and internal medicine [22].

SONOSim3D [12] is designed to train for a variety of parts of the anatomy. This

system uses the computer mouse to move the current slice and does not provide

any hands-on interactive control. The data volumes are captured as 3D scans of

human subjects using mechanically-controlled acquisition that rotates the transducer

in place; only single volumes are used and no stitching of data is performed.

SonoTrainer [22] is focused on obstetrics, gynecology, and internal medicine and

uses 3D ultrasound data. It uses a manikin and sham transducer; however, the

tracking system is only three-dimensional and only one abdominal quadrant can be

scanned at a time [46]. The makers of SonoTrainer surveyed a group of physicians,

asking them subjective questions about the training experience and data quality;

80% of those surveyed judged the image quality as the highest rating of “good” and

90% rated the training effect as being “good” [22]. Training effectiveness was also

evaluated by testing sonographers’ ability to detect abnormalities on the simulator

and in real patients using an ultrasound system. The results of this test showed that

3

the system was effective because sonographers performed almost the same on the

simulation system as they did scanning a patient.

1.2 Interactive Training System for Medical Ultra-

sound

The Interactive Training System for Medical Ultrasound is an interactive, PC-

based ultrasound simulation tool. The system dynamically displays views of stored

data, based on user-controlled input from a 6 degree of freedom (DoF) position sensor.

As the user moves a sham transducer across the surface of a manikin, the computer

display is updated in real time to show a corresponding ultrasound B-mode image.

This sham transducer contains only a position and orientation sensor and no actual

transducer elements. By loading different data sets, trainees can become skilled at

identifying various pathologies or traumas, without having to train on human sub-

jects. Because this system is software-based, rather than using different phantoms

for each disorder, an inexpensive generic manikin can be used for any pathology.

This system has the benefits of being simple, inexpensive, and flexible, and has the

potential to be a very useful training tool.

The primary components of the system design are the training system, the acqui-

sition of composite 3D data volumes, and learning assessment features to assist with

the learning process. The training system consists of software that generates scan

planes based on the position and orientation input from a 6 DoF tracking system.

Interactive scanning features have been developed to provide a realistic scanning en-

vironment, permitting users to select different probe geometries and adjust a variety

of image parameters, such as gain, time gain compensation, and scan depth. These

features have been designed to emulate their equivalents in a true ultrasound system

to provide nearly all of the functionality a sonographer would expect. All of these

features are accessible through a graphical user interface that provides simple, easy to

4

use controls. Additionally, a realistic hardware interface has been designed, including

an anatomically correct manikin and convincing sham transducers to provide a truly

realistic scanning experience. Methods of acquiring simulation data and stitching

together multiple 3D data volumes were developed and evaluated to provide a means

of generating simulation data. Learning outcomes assessment tools help trainees im-

prove their skills and provide a means of assessment. These tools include the ability

to capture still images, and to record scan paths and play them back on a surface

model of the manikin. The system can also evaluate a trainee’s ability to identify

anatomical features and pathologies by requiring him or her to select the features

using the touch screen and then determining if the features were properly selected.

1.3 Motivation

Part of the ongoing research being conducted in the Ultrasound Research Lab-

oratory at Worcester Polytechnic Institute is the development of rugged, portable

ultrasound systems for first responders and battlefield medicine. These systems open

up doors to expanded use of ultrasound by permitting it to be used in situations where

it previously could not. With this increased use, however, comes a need to efficiently

train more sonographers. The goal of this training system is to streamline the train-

ing process and provide effective, low-cost training opportunities. By reducing the

need for real ultrasound hardware and human subjects, training can be accomplished

more quickly and at a lower cost. Additionally, training does not necessarily need to

take place in a clinical environment, providing greater flexibility.

1.4 Thesis Outline

Chapter 2 discusses the interactive generation of scan planes including software

selection, volume rendering and interactive control. A number of software programs

5

and toolkits were evaluated to choose an appropriate framework for development

of this system. Basic volume rendering was achieved and then the capability of

generating 2D scan planes was implemented. Interactive control was developed first

using an inexpensive 6 DoF input device and then with more effective magnetic

tracking systems.

Chapter 3 expands upon the basic scan plane display described in Chapter 2 with

additional interactive features, as well as graphical and hardware user interfaces.

A number of interactive features, such as gain control, scan depth and time gain

compensation are described, along with the details of their implementation. The

graphical user interface that controls these features is also presented in detail. The

hardware interface is discussed, including selection of components and the design of

realistic sham transducers.

Chapter 4 details the data acquisition process, including 3D image volume capture

and stitching together of 3D volumes. Methods of capturing data and performing

calibration are evaluated and discussed. Ways of stitching together multiple 3D data

volumes to form a composite 3D volume are also examined.

In Chapter 5, additional learning assessment tools that have been implemented

are discussed. These features help ensure that trainees learn from the program by

providing helpful tools and assessment of learning outcomes.

Chapter 6 presents the results of this project as well as data from a clinical eval-

uation.

Chapter 7 provides conclusions on the overall system and its effectiveness. Op-

portunities for future work are also presented and discussed.

6

Chapter 2

Interactive Generation of Scan

Planes

2.1 Introduction

The purpose of this training system is to provide an interactive environment in

which the user can perform simulated ultrasound scans in a realistic manner. Figure

2.1 shows a simplified block diagram of the training system. The user scans a lifelike

torso and head manikin containing an embedded Ascension Technology Corporation

trakSTAR [4] transmitter using a sham transducer containing the 6 DoF tracking

sensor. Based on the sensor’s position and orientation, a 2D slice is generated from a

3D image volume in real time and displayed on the computer screen. A touch screen

is provided for additional interactive features. Based on the selected 3D volume, the

manikin may represent normal anatomy, exhibit a specific trauma or present a given

physical condition.

This chapter discusses the design of the basic training system and specifically

details the process of interactively generating 2D scan planes from a 3D image volume.

The first step in implementing interactive scan plane generation was to select the base

software that would be used as a development starting point, whether it be a complete

7

Figure 2.1: Training System Block Diagram

software package or open source libraries. The next challenge was implementing basic

rendering of 3D data volumes and creating a display that closely mimics a 2D scan

plane. The final step was creating a truly interactive environment by integrating a

6 DoF input system. The following sections thoroughly document this development

process and present the design challenges that were faced.

2.2 Software Selection

The first step in designing the image generating software for the training sys-

tem was the selection of a means of developing it. This could be in the form of a

complete software package, a development toolkit or the option to develop a custom

software program. Clearly a more complete solution would speed development, but it

is also important that the design not be restricted by the limitations of the selected

development tools.

In its completed state, the software system must fulfill the following requirements:

• Load 3D volumes

8

• Create 2D scan images in real time

• Accept input from a 6 DoF position sensor

• Use this input to determine the position and orientation of the 2D slice

• Permit a touch screen interface to be added

Figure 2.2 shows a block diagram of the basic functional requirements for the

training system and how they are related. The 6 DoF input is used to determine the

transformations for the 2D reslice. These transformations are applied to the 3D data

volume to generate a 2D scan image, which is displayed on the touch screen.

Figure 2.2: Block Diagram of Basic Training System Functional Requirements

The image generation software must be developed to be easy to use and to closely

emulate the user experience of a real ultrasound scanner. It must also be capable of

running at a frame rate high enough for smooth motion and should lend itself well to

the addition of training and evaluation tools.

Starting with some of the desired system capabilities can speed development and

potentially provide advanced features. Although the selected starting point does

not necessarily need to fulfill all of the goals of the system, it must be possible to

implement them through further development.

9

There are 3 basic types of development platforms that could be used for this

system:

• Custom-designed software

• Open source library or toolkit

• Complete software package

Designing the completely custom software is a difficult and time-consuming ven-

ture, but would result in an entirely customized system. If possible, it is easier to

begin with some type of framework to avoid spending time on basic functions.

A good compromise between a completely custom design and an off-the-shelf soft-

ware solution is to design custom software using an open source library or toolkit.

There are a number of libraries available that focus on 3D rendering and medical

imaging. Using one of these toolkits could provide some of the basic functions for the

system and would limit required development to the design of new features.

A complete software package is a great solution if it performs most or all of the

required functions, but it must permit modifications to be made to fit the needs of

this project. Closed source software tends to be highly developed and well supported,

but generally comes at a cost. Use of any closed source software would require that

either the source code or a set of development tools be available to add features to

the software for the needs of this project. This is generally not the best option for

a research project because of cost and intellectual property concerns. Open source

software is publicly available and source code is openly provided. An open source

system that implements useful features could provide a strong starting point with

few limitations.

A number of different options were studied and evaluated, which are described in

sections 2.2.1 and 2.2.2. The most relevant features are the capability to render 3D

volumes and provide the capability to perform arbitrary generation of 2D slices from

a 3D volume.

10

2.2.1 Complete Packages

A number of complete software packages were evaluated to determine if any were

a suitable solution. The following sections describe some of the programs that were

taken under consideration and put through more in-depth evaluations.

Mayo Clinic’s Analyze

The Mayo Clinic’s Analyze software [3] is a powerful, full-featured medical imaging

package designed primarily for MRI, PET, and CT use. It is capable of performing

advanced visualization, registration and segmentation functions.

A full-featured demonstration version of this software was evaluated and the

oblique slicing tool was very effective for viewing arbitrary slices of volumes. It is

fast and simple and has the ability to accept a matrix specifying the orientation for

the slice. However, it does not have any built-in capability for mapping the rotation

to any input other than clicking buttons on the screen.

Although the oblique slicing tool works well, only a small portion of the program’s

capabilities would be put to use in this application. The numerous, powerful features

make Analyze a rather expensive piece of software, which costs nearly $5000 for a

single node-locked license, and an additional $3000 for the developer’s add-on that

would be necessary to build upon the software. With an unlimited budget, this could

be a good option, but realistically, it is not worth the price to use only a small part

of the feature set.

VolSuite

VolSuite [8] is an open source volume viewing and editing application developed

by Jason Bryan of the Ohio Supercomputer Center. It is designed as a framework for

development that includes an application for volume viewing and analysis with the

capability to add custom modules for additional features. It is no longer under active

11

development, but the developer is still willing to provide support to some degree.

VolSuite is a very useful application for working with 3D medical imaging data.

It provides features for viewing, analyzing and modifying 3D volumes. VolSuite is

capable of working with a variety of different data formats and can import raw data

and convert between all of the different formats.

VolSuite includes a powerful tool for arbitrary reslicing. It allows the user to click

and drag the volume to change the slice orientation and has a number of options for

changing how the slice is displayed.

When contacted about using VolSuite for this application, the author was very

helpful and agreed that it could be modified to serve the needs of this project. How-

ever, he recommended using a newer library that he is currently developing, called

gear, which is similar to the underlying structure of VolSuite, but uses a more efficient

volume rendering framework. This library is discussed further in Section 2.2.2.

2.2.2 Toolkits and Libraries

The following sections describe some of the toolkits and libraries that were evalu-

ated. These generally do not include complete executables and are primarily geared

toward developers. Some of these libraries include extensive examples, but none have

full-featured applications.

Visualization Toolkit (VTK)

The Visualization Toolkit (VTK) [18] is an open source toolkit for 3D graphics and

image processing. It provides many features for designing graphical programs. VTK

is widely used in the medical imaging community for various projects and is often

integrated with the Insight Toolkit (ITK), which provides image processing functions

without a graphical interface.

VTK is a powerful and well-documented toolkit, but does not directly imple-

12

ment any type of 2D reslicing capabilities. It would certainly be possible to develop

these functions, but would take quite a bit of extra work. VTK would provide a

solid foundation for graphical rendering, but would require additional development

to implement some of the other features.

Medical Imaging Interaction Toolkit (MITK)

The Medical Imaging Interaction Toolkit (MITK) [23] is an open source project

that combines VTK and the Insight Toolkit (ITK), along with some other features

geared toward medical imaging. This would be a beneficial extension of VTK, because

it combines the visualization facilities of VTK with the image processing algorithms

that ITK provides, plus some extra features specific to medical imaging.

While MITK adds additional useful features beyond those of VTK, it still does

not have built-in capabilities for dynamic reslicing. As is the case for VTK, much

additional development work would be required.

gear

gear is an open source C++ library developed by Jason Bryan of the Ohio Su-

percomputer Center. This library is designed for visualization of medical images and

performs functions similar to those implemented in VolSuite. This was recommended

over VolSuite because it uses a recent, more efficient rendering framework [9]. In

contrast to VolSuite, gear is only a library and does not include a full-featured appli-

cation. It is in an advanced state, but still under active development. Although gear

is currently not documented especially well, the author was willing to be of assistance

and responded quickly through email. Pre-compiled versions of most of the depen-

dencies were provided, along with access to the development subversion repository,

where updates and bug fixes are frequently posted.

gear is an extension of OpenGL [26] graphical rendering. OpenGL [26] is a com-

monly used and well-supported open source graphics library that is used for a mul-

13

titude of computer graphics and 3D rendering applications. Further OpenGL back-

ground is provided in Section 2.3.1. The gear library adds in classes and functions

that are aimed toward the rendering and manipulation of 3D image volumes. It is

very similar to using OpenGL, but makes development for volume visualization much

simpler and provides added functionality.

Included with the source code for gear are a helpful set of example applica-

tions. These are all very simple examples, each exhibiting only a couple of the fea-

tures of gear, but they are quite useful. Most notably, there is an example called

‘glv VolumeRender test5’ that implements basic volume rendering capabilities. This

example uses gear’s ‘glv’ volume rendering library along with the OpenGL graphics

libraries to render a 3D volume and allow the orientation to be changed by dragging it

with the mouse. Using this example as a starting point, it would not be very difficult

to develop a program to perform the desired volume rendering capabilities.

Although there are not any examples of performing 2D reslicing, this is a feature

of VolSuite and Jason was confident that it would not be too difficult to implement

using gear.

The following is a summary of the important features of gear :

• Framework for performing rendering of 3D image volumes

• Designed for medical image data

• Well-supported by the author

• Uses updated, efficient rendering techniques

• Provides useful examples

Because gear helps perform some of the desired functions, uses current rendering

techniques and is well supported, it was chosen for the development of the software

for this project. gear provided a strong starting point for development by simplifying

14

basic volume rendering. By designing the system from this set of libraries, there is

minimal reliance on “black box” code that is not understood well, as most of the

system is custom developed. Additionally, features are not compromises made to

work with existing code; everything has been designed with the goals of this project

in mind. The sections that follow provide details of the development of this system.

2.3 Volume Rendering

The most basic required function for this system is the ability to render, or display,

a 3D volume. It must be able to read in ultrasound data stored as a volume and

correctly draw the volume on the screen.

Based on the evaluation of different software options described in Section 2.2,

the gear library was selected as a starting point for development. Starting with this

library, basic functions were implemented and additional features were added. The

following sections describe the implementation of these features.

2.3.1 Three-D Graphics Background

The gear library is based on OpenGL [26], which is a popular open source graphics

library. OpenGL is used for a variety of graphics applications including scientific

modeling and game development. While there are other graphics libraries available,

the scope of the section will be constrained to 3D graphics background as it applies

to OpenGL.

Before discussing the details of 3D graphics, it is necessary to introduce some

terminology specific to 3D graphics applications. A series of vertices can be used

to specify points, lines and polygons, known as primitives. Primitives are typically

combined to form 3D objects, known as models. The process of generating an image

on the computer screen from a model is known as rendering. This rendered image is

drawn on the screen as a series of pixels.

15

Figure 2.3 shows a block diagram depiction of the typical OpenGL rendering

pipeline. The following descriptions, presented at a very basic level, are based on

information from the OpenGL Programming Guide [41]. Geometric data (vertices,

lines, and objects) are handled separately from pixel data (images and bitmaps).

Data of both types are stored in display lists for future use. Geometric data are put

through evaluators which break everything down into vertices. These vertices are

then acted on with per-vertex operations, such as applying transformation matrices,

and are formed into geometric primitives. Depth-based clipping and perspective are

also applied at this point. Pixel data are processed separately and either stored to

texture memory or passed to the rasterization step. Rasterization is performed on

both geometric and pixel data, and is a process by which the data are converted to

screen pixels and loaded into the frame buffer for display on the screen.

Figure 2.3: OpenGL Rendering Pipeline [41]

16

The main function within most OpenGL applications is the display callback. This

callback function is run every time the display needs to be updated. Therefore,

anything that is drawn to the screen is usually executed from this function. It is here

that models are typically modified and updated. Transformations are also generally

applied in this function.

OpenGL is based heavily on matrices and uses these matrices to specify transfor-

mations and constraints on the vertices to be rendered. The two primary matrices

are the modelview matrix and the projection matrix. The modelview matrix holds

any viewing and modeling transformations that have been specified and is used to

modify vertices [41]. When transformations are applied, they are multiplied onto the

modelview matrix, which is in turn applied to all objects on the screen. OpenGL

has a matrix stack, which is used to store multiple versions of the modelview matrix,

of which only the top matrix is used. This is useful when it is necessary to prevent

a matrix from being applied or modified. glPushMatrix() can be used to push the

current modelview matrix onto the stack and glPopMatrix() removes a matrix from

the stack. To avoid applying the current modelview matrix to a given object, it

can be surrounded with glPushMatrix() and glPopMatrix(), which will prevent the

transformation from being applied to that specific object. Similarly, transformations

specified within those two commands will operate on a new matrix and not affect the

matrix that was pushed down on the stack. The projection matrix defines a viewable

volume, which determines the range of objects that will be displayed [41].

Transformations are applied as matrices that are multiplied onto the modelview

matrix and applied to the graphical objects. These transformations can be used to

translate, rotate, or scale objects. Transformations are always applied before an object

is drawn, so that they are on the modelview matrix when it is applied to the object

at the time of rendering. Different versions of the transformation commands exist

for working with a variety of data types including integer, float, and double, and are

specified by the last letter in the function name. For example glTranslated(Tx,Ty,Tz)

17

and glTranslatef(Tx,Ty,Tz) are respectively double and float versions of the same

function.

glTranslated(Tx,Ty,Tz) generates a translation with double-precision parameters,

which has the matrix form shown in 2.1:

[
New Modelview Matrix

]
=

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

×
[
Current Modelview Matrix

]
(2.1)

glScaled(Sx,Sy,Sz) produces a scaling transformation, which has the matrix form

shown in 2.2:

[
New Modelview Matrix

]
=

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

×
[
Current Modelview Matrix

]

(2.2)

The formulation of rotation matrices, produced using glRotated(angle,x,y,z) is

significantly more complex, as it is generalized to perform rotation of angle a about

any arbitrary axis specified by x, y, and z. However, in the majority of cases, rotations

are only performed about one of the Cartesian axes at a time. Any arbitrary rotation

can be comprised of individual rotations in each of three orthogonal x, y, and z axes.

The matrix forms of these transformations take the simple forms shown below:

(2.3) shows rotation about the x axis (1,0,0):

18

[
New Modelview Matrix

]
=

1 0 0 0

0 cos(a) − sin(a) 0

0 sin(a) cos(a) 0

0 0 0 1

×
[
Current Modelview Matrix

]

(2.3)

(2.4) shows rotation about the y axis (0,1,0):

[
New Modelview Matrix

]
=

cos(a) 0 sin(a) 0

0 1 0 0

− sin(a) 0 cos(a) 0

0 0 0 1

×
[
Current Modelview Matrix

]

(2.4)

(2.5) shows rotation about the z axis (0,0,1):

[
New Modelview Matrix

]
=

cos(a) − sin(a) 0 0

sin(a) cos(a) 0 0

0 0 1 0

0 0 0 1

×
[
Current Modelview Matrix

]

(2.5)

OpenGL uses a “right-hand” coordinate system, which is different from the typi-

cal coordinate system used for the 2D display on computers. The terms “right-hand”

and “left-hand” refer to the left- and right-hand rules that can be used to define

a coordinate system’s orthogonal axes. Figure 2.4 compares the two different coor-

dinate systems. Figure 2.4(a) shows a right-hand coordinate system like that used

in OpenGL. Figure 2.4(b) shows a Windows screen capture with added coordinate

axes. It can be seen that the y-axis is inverted between the two different coordinate

19

systems, which in turn also means that the z-axis is inverted. In practical terms,

this means that the coordinates of the window and mouse differ from those used for

OpenGL rendering, which must be taken into consideration.

(a) OpenGL “Right-hand” Coordinate
System

(b) Windows “Left-hand” Coordinate System

Figure 2.4: Comparison of OpenGL and Windows Coordinate Systems

OpenGL is designed solely as a rendering language and purposely does not imple-

ment any functions for working with windows or reading events from input devices,

so as to be independent of any operating system or window manager [41]. There-

fore, OpenGL is frequently used with the OpenGL Utility Toolkit, better known as

GLUT. GLUT handles platform-dependent operations such as window management,

display, and input devices. GLUT is used by setting up some basic parameters and

then registering a series of callbacks. These callbacks are references to functions,

which will be called when a certain event occurs. For example, when the mouse is

clicked, the mouse callback function is called. Similarly there are callbacks for the

keyboard, mouse motion, timers, and many other basic functions. After setting up

all the callbacks, the main function enters an infinite loop, where the program waits

20

for callbacks and executes any graphical rendering that it has been programmed to

perform.

2.3.2 Basic 3D Volume Display

At the start of software development, some initial design considerations were taken

into account. These included selection of a development environment, linking method

and source control. These software design considerations are discussed in Appendix

A.

The first step to creating this system was to implement basic 3D volume dis-

play functionality with the ability to change the orientation of the volume. This was

created by modifying a volume rendering example to work for the purposes of this

application. A few example projects were provided with the gear source code, includ-

ing ‘glv VolumeRender test5’, which is a volume rendering example made to work

specifically with stored 3D image volumes. This example sets up the basic OpenGL

graphics interface, including using GLUT to create windows and initiate mouse and

keyboard callbacks.

Minimal modification was required to make this example work for the needs of this

application at a basic level. Ultrasound data sets were loaded and could be properly

displayed and reoriented. Figure 2.5 shows a screen capture of the system performing

basic rendering of a 3D ultrasound volume.

The image material in Figure 2.5 was made available to us courtesy of Dr. Aaron

Fenster of the Robarts Institute in Canada without any identifying attributes 1. This

image material is presented later in this chapter in Figures 2.7 and 2.8. This image

volume is a scan of a prostate gland, which was scaled for use with the training

system. While the size and position of the image data are unrealistic, this provided

1The Use of Human Subjects at The University of Western Ontario - Ethics Approval Notice
#12682E, “Comparison of 3D transrectal ultrasound (TRUS) to conventional 2D TRUS in the
measurement of prostate volume”. The Principle Investigator for this approval was Dr. C. Romagnoli
(Radiologist).

21

some initial data for testing of the training system.

Figure 2.5: Screen Capture of 3D Rendering

One issue that arose was that the rendering speed was far too slow, updating at

a rate of less than once per second when run on a desktop PC with a 2.0 GHz dual-

core Xeon processor, 4GB of memory and a NVIDIA Quadro FX 550 graphics card.

This performance is clearly unacceptable for a system that should provide smooth,

immediate updates.

The author of gear was consulted and he recognized the problem and recom-

mended a change to the code to improve the frame rate [9]. The problem arises from

the fact that, by default, gear tessellates the volume into a enough texture bricks to

exactly represent the volume, which ends up being a very large number of bricks. The

number of bricks that are generated is a function of the size of the volume in voxels

and how it is shaped. For large volumes or those with dimensions that are far from

cubic, the large number of bricks formed can cause rendering to run slowly. This

slowdown occurs as a result of the fact that the renderer must perform a clipping

22

operation for each texture brick boundary. Most of the ultrasound volumes that will

be used with this system are both large and non-cubic, which can be problematic.

To fix this issue, it was suggested that the following line of code be added to set

the maximum number of bricks formed by the texture shader to 4:

shader->setTesselateFunc(TextureBrickSet::tesselateFewestBricks, (void*)4);

This simple change involved telling gear to render at most four texture bricks,

which saves on processing with no discernible difference in quality. Figure 2.6 shows

a comparison of the rendered volume with and without this fix applied. It can be

seen that there is little or no visible difference.

(a) Training System Software Rendering With
Tessellation Fix

(b) Training System Software Rendering
Without Fix

Figure 2.6: Comparison of Volume Rendering With and Without Tessellation Fix

The only drawback to this fix that the author warned about is that slightly more

memory is required for the smaller number of larger texture bricks. In the two ex-

amples shown in Figure 2.6, the version without the fix requires 192 MB of RAM,

while the version with the fix requires 214 MB, a difference of less than 11.5%. This

amount of memory is well within the amount of memory typically found in current

computer systems.

This modification made an immense difference in performance, increasing the

frame rate to a range of approximately 25-35 frames per second (FPS) on the same

23

system. The immense improvement in frame rate far outweighs the small increase in

memory usage. This frame rate is similar to that of a typical TV signal, broadcast

at a rate of 30 FPS, which is generally enough for low frequency movement based

on physical user inputs to appear smooth on the computer monitor. These frame

rate limitations are only constrained by processing power, so a faster processor and

graphics card could certainly achieve higher frame rates if desired.

2.3.3 Arbitrary Reslice Capabilities

The software must be capable of generating a 2D slice from the 3D image volume

in real time. To accomplish this, the depth display range is set to a very thin range,

so that a 2D slice with negligible thickness is displayed. The specific range that is

used is -1.0 to -0.95, which are unitless values represented in OpenGL coordinates.

This range is located at the center of the volume and is thin enough to look like a

single slice without looking transparent. Additionally, an orthographic view is used,

rather than a perspective view. In orthographic mode, no perspective transformations

are applied, which prevents the image from looking stretched or deformed at oblique

views.

The arbitrary reslice is generated in reference to the position and orientation of

the sham transducer. Through the use of a 6 DoF tracking system, position and

orientation values reflecting the current location and pose of the sham transducer are

generated. Figure 2.7 shows the relationship between the position and orientation of

the sham transducer, the transformed volume and the 2D scan image.

By translating and rotating the volume being displayed, the user’s view is changed

appropriately. Moving the volume instead of the slice being displayed keeps the view

constant, which emulates what would be seen on an ultrasound scanner. Since the

entire volume is being moved rather than the view, the movements must be the

opposite of the input, as shown in Figure 2.7. For example, an input translation to

the right should result in the volume being shifted to the left to correctly emulate an

24

Figure 2.7: Relation Between Sham Transducer and Generated 2D Slice

ultrasound system. Figure 2.8 shows a screen capture of the system performing 2D

reslicing.

2.4 Interactive Control

Interactive control is the key feature of this system, as it provides changes to the

displayed image in accordance with the transducer movement. For initial testing,

a 3DConnexion SpaceNavigator 6 DoF input device was used. This provided an

immediate means of using the system with 6 DoF input, without the need to purchase

an expensive magnetic tracking system. Further along in the design, an Ascension

Technology Corporation Flock of Birds system [16] was purchased and integrated into

the system and later an Ascension Technology Corporation trakSTAR [4] was used

for its smaller size.

Regardless of the input device, the general method of interactive control remains

the same. This general control method is shown in Figure 2.9. Coordinates are con-

tinuously read for all six axes of the input device or tracking system. This position

and orientation information is scaled appropriately and converted to produce a trans-

formation matrix that can be applied to the volume being rendered. Through this

25

Figure 2.8: Screen Capture of 2D Reslicing

process, the movement of the input device controls the orientation of the scan image.

Figure 2.9: Generalized Interactive Control Block Diagram

2.4.1 Control Using SpaceNavigator 6 DoF Input Device

3DConnexion’s SpaceNavigator [1] is an innovative new input device that provides

a full six degrees of freedom. It is in the form of a “hockey puck” shaped device, as

shown in Figure 2.10, with a cap that can be translated and rotated in all 6 DoF. The

device connects to the computer through a USB port and includes two programmable

buttons on its sides. At only $60, it is very economical and has become widely used

26

for CAD and 3D drawing applications. A support community exists for this device

on the 3DConnexion website, and a software development kit is provided for those

who wish to design their own drivers for currently unsupported applications.

Figure 2.10: 3DConnexion SpaceNavigator Input Device [1]

One difficulty with using the SpaceNavigator is that it requires application-specific

drivers to be able to work with any program. Although a software development kit is

provided, it is still a significant task to design custom drivers for it. A custom driver

would be the preferable way of implementing this device, but it was only used for

initial testing, so less time consuming options were more desirable.

To avoid the need for an application-specific driver, a user-submitted driver avail-

able on the development discussion boards was used to generate a joystick input

stream from the SpaceNavigator. This driver, called RBC9-SpaceNav, permits the

SpaceNavigator to act as a standard mouse, joystick, or keyboard and provides op-

tions to program how each of the axes and buttons are interpreted [34]. Implementing

a joystick input in the simulation software is significantly easier than designing a cus-

27

tom driver.

Figure 2.11 shows a block diagram of how the SpaceNavigator is used to interac-

tively control the generation of 2D slices. In the RBC9-SpaceNav driver settings, the

device is configured to act as a joystick with the 6 axes of the device configured as

the 6 joystick axes. The buttons are configured as joystick buttons 1 and 2.

Figure 2.11: Block Diagram of SpaceNavigator Communication and Control

The joystick read capability is implemented using a polling method. An OpenGL

timer is set to call a joystick read function once every 50 ms. This function, called

joyGetPosEx, is an extended joystick read function within the Windows device library.

It returns the values for all six joystick axes, along with the button states.

The gear library links input devices to the displayed volume using an object called

a ‘TrackballManipulator’. This object takes input motions from a device such as a

mouse or joystick and uses them to determine a transformation matrix to apply to

the volume being displayed. This method is primarily designed for use with a mouse

where there are only two axes, and different pairs of axes are selected by clicking a

different mouse button while dragging. However, multiple trackball manipulators can

be used and linked to separate pairs of axes.

Figure 2.12 shows a diagram of how trackball manipulators are used to translate

6 DoF inputs to OpenGL transformations. By using three different manipulators

simultaneously, all six axes can be represented. A trackball object is set up for each

of the x, y, and z axes, each of which handle the axis’ translation and the rotation

28

Figure 2.12: Diagram of ‘TrackballManipulator’ Operation

about that axis. The trackball manipulator class has a member function that can

generate a matrix from the most recently received data. In the main display function,

the transformation matrices generated by the ‘TrackballManipulator’ are applied to

the volume to appropriately follow the movement of the sensor.

To avoid causing the volume to suddenly move when the program is first started,

a flag is used to indicate whether or not it is the first run of the joystick function.

On the first run, the initial position is read and used as a reference, which is called

‘grab’ for the trackball object. There is also a ‘release’ action for the trackball that

performs the opposite function of ‘grab’. On subsequent calls, the current position is

updated and the volume is moved accordingly.

The two buttons on the SpaceNavigator were implemented to improve navigation.

Initially, different views could only be achieved while the SpaceNavigator was held

in place. To improve upon this, the left button is used to ‘lock’ the position at a

given view, setting that view as the new center point. The right button is used as

29

a reset button to reset back to the default view. This use of the buttons permits

easier navigation of a volume. For example, a user can rotate to a side view, ‘lock’

the view, and then easily scan through the volume sideways, without having to hold

the rotation.

While the SpaceNavigator was adequate for initial testing, as an input device it

can only provide relative movement and does not have the ability to track absolute

position and orientation. Although the SpaceNavigator is not the final input device,

it was an important tool for design and testing and provides the option to navigate

ultrasound volumes without the need for a tracking system.

2.4.2 Control Using Ascension Technology Corporation Flock

of Birds 6 DoF Tracking System

The software must be able to correctly display slices of the 3D volume based on

the position of the sham transducer, which requires absolute position and orientation

information in reference to a fixed point. To do this, it is necessary to use a 6 DoF

tracking system rather than an input device.

To provide this absolute position information, an Ascension Technology Corpora-

tion Flock of Birds system [16] was used. The Flock of Birds is a DC magnetic 6 DoF

position and rotation tracking system. Figure 2.13 shows the Flock of Birds system.

This system uses a pulsed DC magnetic field signal, which is more immune to

the effects of nearby metal than systems based on AC magnetic signals. Further

comparison of AC and DC magnetic tracking systems is presented in Appendix E.

Figure 2.14 shows a functional block diagram of the Flock of Birds system. It has

a magnetic transmitter that remains in a fixed location and emits pulsed magnetic

signals from three orthogonal transmitter coils [6]. A small, 25.4 x 25.4 x 20.3 mm

receiver detects these signals using three receiving coils. Some signal processing is

performed on the sensor signals and then the system’s embedded computer processes

30

Figure 2.13: Ascension Technology Corporation Flock of Birds System [16]

the signals to determine the position and orientation of the sensor in relation to the

transmitter, which is output to the computer as a serial stream.

Figure 2.15 shows a signal diagram for a typical measurement cycle performed

by the Flock of Birds. At the start of the measurement cycle, the sensors take a

reading of Earth’s ambient magnetic field so that it may be subtracted out of the

measured signals received from the transmitter [6]. During each measurement cycle,

the transmitter pulses each of its three coils, one at a time. For each of these pulses,

the signals at the three receiver coils are read by the control unit. The signals are

not sampled immediately during each time segment to allow time for magnetic flux

in nearby metals to settle [6]. The received signals are processed by the control unit,

which uses a microprocessor to perform the position and orientation calculations. The

output of the system is a stream of serial data containing the position and orientation

coordinates. Further details on the specifications of the Flock of Birds can be found

in the datasheet in Appendix B.

31

Figure 2.14: Ascension Technology Corporation Flock of Birds System Functional
Block Diagram [6]

32

Figure 2.15: Ascension Technology Corporation Flock of Birds Signal Diagram [6]

33

Using the typical mid-range transmitter, the Flock of Birds is designed to operate

in a ± 0.9 m range with static translational and rotational RMS accuracies of 1.8

mm and 0.5◦ within this range, respectively [16]. Precision for the Flock of Birds

is specified as 0.5 mm and 0.1◦ at a distance of 0.3 m between the transmitter and

tracking sensor [16]. Discussion of precision versus accuracy is presented in Appendix

D.

Figure 2.16 shows a block diagram describing how the Flock of Birds is used to

control the reslicing.

Figure 2.16: Block Diagram of Flock of Birds Communication and Control

The Flock of Birds was implemented by setting up two-way serial communication

between the computer and the tracking system. To match the Flock of Birds’ default

communication configuration, the serial port is opened at 115,200 baud using 8 bit

data words, no parity and 1 stop bit.

The Flock of Birds uses a simple query-and-response style of communication.

ASCII characters are sent to the tracking system and values are immediately sent

back. Values are read using the ‘position/angles’ mode, which consists of three trans-

lations and three rotation values, each expressed as two bytes. The rotation values

are expressed in Euler angles. These messages can be requested by transmitting

an ASCII ‘B’. In response, the Flock of Birds sends back the 12 data bytes. After

transmitting the request, the software waits to receive the 12 byte response from the

tracking system, which is stored into a buffer for processing.

34

As shown in Figure 2.16, these are unscaled integer values which require some

additional processing. To convert the received data into usable information, the two

bytes for each value must be combined to form 16-bit integers and then scaled to

floating point values representing inches and degrees. After the conversion process,

the values are ready to be used to transform the volume. Equations (2.6) to (2.11)

show how the two data bytes are combined into usable values for positions and angles,

respectively. The array data is the 12-byte array of values obtained from the Flock of

Birds. The position and orientation values are provided as an 8-bit high byte and a

7-bit low byte. The first bit of the low byte is 1 for the first value and 0 for each byte

thereafter. Therefore, the first byte must be masked to remove the one. The bytes

are appropriately shifted and then added together to obtain a full-scale value with a

range of -32768 to 32767.

x = (data[1] ∗ 128 + data[0]− 128) ∗ 4 (2.6)

y = (data[3] ∗ 128 + data[2]) ∗ 4 (2.7)

z = (data[5] ∗ 128 + data[4]) ∗ 4 (2.8)

rz = (data[7] ∗ 128 + data[6]) ∗ 4 (2.9)

ry = (data[9] ∗ 128 + data[8]) ∗ 4 (2.10)

rx = (data[11] ∗ 128 + data[10]) ∗ 4 (2.11)

To obtain proper values for the graphical transformations, these full-scale values

must be converted into usable formats. A floating point value is obtained by convert-

ing the value to floating point and then dividing by 32768 to create a scaling factor

in the ±1.0 range. For position, this number is multiplied by 36 to get a result in

inches and for angles it is multiplied by 180 for a result in degrees.

Transformations are performed using gear ’s ‘TrackballManipulator’ in a similar

manner to the SpaceNavigator implementation, described in Section 2.4.1. The track-

35

ball object is configured in the same manner and its axes are linked to the values

provided by the Flock of Birds.

It is necessary to calibrate the location of the sham transducer at startup and

when changing probes. To do this, the probe is held vertical, centered on the belly

button of the manikin. The position can be calibrated either by clicking the ‘Re-

center Probe’ button on the GUI or by pressing the space bar while no other buttons

are highlighted. This triggers a function that resets the zero location for the position

system to the point at which the probe is being held.

The command that is used for this is called boresight and is activated by sending

an ASCII ‘u’ to the Flock of Birds. This command tells the system to consider the

current position to be position (0,0,0) and from then until the end of the training

session or the next reset, this is used as the reference point.

2.4.3 Control Using Ascension Technology Corporation trak-

STAR 6 DoF Tracking System

The Flock of Birds provides effective, accurate 6 DoF tracking, but the sensor is

too large to be adequately concealed in a standard transducer shell and the transmit-

ter is also rather large and heavy. To remedy these concerns, an Ascension Technology

Corporation trakSTAR [4] system was purchased. This system is a recent design from

Ascension that improves upon their previous MiniBIRD system.

The trakSTAR system provides similar functionality to that of the Flock of Birds,

but permits the use of small 8 mm sensors and the compact short-range transmit-

ter, while still providing an adequate tracking range of ±46 cm. Figure 2.17 shows

the components of the trakSTAR system along with a comparison of the different

transmitters. The short-range transmitter measures 6.3 x 4.6 x 5.2 cm. The 8 mm

sensor is the largest of the three shown in Figure 2.17(b) and measures only 8 x 8

x 20 mm. The smaller size of the transmitter and sensors permit them to be easily

36

embedded into a manikin and sham transducers, to remove awareness of the tracking

system. Full specifications for the trakSTAR system can be seen in Appendix C,

which contains the complete datasheet.

The trakSTAR provides slightly better accuracy than the Flock of Birds with

static translational and rotation RMS accuracies of 1.4 mm and 0.5◦ within the 46

cm tracking range [4]. The precision of the trakSTAR system is the same as the Flock

of Birds at 0.5 mm and 0.1◦ [4]. Discussion of precision versus accuracy is presented

in Appendix D. The trakSTAR works on the same principle of operation as the Flock

of Birds, which was described in Section 2.4.2.

In addition to permitting the use of smaller components, the trakSTAR uses im-

proved connectors, allows up to four sensors to be tracked simultaneously and provides

an updated USB interface. Although it is backwards compatible with the Flock of

Birds when connected through the serial port, using the USB connection permits the

use of the Ascension Technology Corporation 3D Guidance API (Application Pro-

gramming Interface). This API includes functions to control the tracking system and

read data from it in a simple and effective manner. The API provides modular, high-

level access to the functions of the device and greatly simplifies the code. This avoids

the need to manually process values, as floating point data can be read directly.

Switching to the trakSTAR was relatively straightforward because communication

is quite similar to the Flock of Birds, as shown in Figure 2.18. Initially, functionality

was verified by using the serial interface and the original Flock of Birds code. After

basic testing, the software was modified to utilize the USB interface and the Ascension

API. For each Flock of Birds function, an equivalent function was written that takes

advantage of the API. These new functions were created as a separate module, which

makes switching back to a Flock of Birds as simple as swapping one file.

Initially, the trakSTAR was implemented using the same ‘TrackballManipulator’

approach as the SpaceNavigator and Flock of Birds ; however, as development pro-

gressed, this interface started to become a hindrance. Without direct access to the

37

(a) trakSTAR Control Unit

(b) trakSTAR Sensors

(c) Ascension Transmitter Comparison: Mid-range (left) and Short-range (right)

Figure 2.17: Ascension Technology Corporation trakSTAR System

38

Figure 2.18: Block Diagram of trakSTAR Communication and Control

position and orientation values and complete control over the transformations, it was

difficult to implement features efficiently. As none of the ‘grab’ and ‘release’ functions

are needed for the tracking systems as they were for the SpaceNavigator, the track-

ball method is unnecessary and simply extra overhead. To rectify this, an improved

method of data transfer was designed.

Figure 2.19 depicts the improved read and transformation process used for the

trakSTAR. Instead of passing values to the ‘TrackballManipulator’ to generate a trans-

formation matrix, the values are taken directly into a read function and stored into

an array for use by the transformation function. The trakSTAR read function reads

the position and orientation values from the trakSTAR as double-precision floating

point values using the Ascension API.

The transformation function is called every time the displayed scan image is up-

dated to apply the appropriate transformation. This function takes the array of

values stored by the read function and performs the necessary transformation with

the functions glTranslated and glRotated, which perform translations and rotation,

respectively. For reusability, the transformation function also takes an array of unit-

less scaling factors corresponding to each of the translations and rotations. These

scaling factors are multiplied by the output values of the trakSTAR. The primary

purpose of these scaling factors is to invert axes, so they are generally set to 1.0 or

39

-1.0, but could be set to any value if there were a need to scale the inputs. These

scaling factors are used for the navigational display discussed in Section 3.4.6, which

uses the same transformation function as the main volume, but with all of the axes

inverted to properly follow the movement of the transducer.

Figure 2.19: Block Diagram of trakSTAR Read Function

Like the Flock of Birds, the trakSTAR system also needs to be calibrated to the

surface of the manikin. The action taken by the user is exactly the same, but the

underlying process is slightly different. This stems from the fact that Ascension

Technology Corporation did not incorporate the boresight command, described in

Section 2.4.2, into their API. Therefore, this action must be performed within the

code. A set of three variables are used to keep track of the x, y, and z coordinates

of the center point, which are subsequently subtracted from each set of new position

values.

The trakSTAR transmitter and receiver have the same coordinate system when

they have their axes aligned, as shown in Figure 2.20. Such an alignment would

produce angles of (0◦, 0◦, 0◦).

Because the receivers are aligned vertically in the sham transducers, as shown in

Figure 2.21, it is necessary to realign the angles. Therefore, a sham transducer held

perpendicularly will always have rotations of (0◦, -90◦, 0◦). On initialization, this

alignment is set using the ‘angle align’ command.

40

Figure 2.20: trakSTAR Transmitter and Receiver with Their Coordinate Axes Aligned

41

Figure 2.21: trakSTAR Transmitter and Receiver as Used With Manikin and Sham
Transducer

42

2.4.4 trakSTAR Noise Reduction

The trakSTAR system is a very compact system with small, lightweight trans-

mitters and receivers. However, the size reduction comes at the cost of its accurate

tracking range. Even though the device is being operated within the rated range of

18”, the precision was initially much lower than the Flock of Birds system, because

the Flock of Birds was being operated within a relatively smaller region in the cen-

ter its operation range. In the training system this noise manifests itself as random

Gaussian movement and jitter of the image while the sham transducer is held still.

To remediate this, some tests were designed to track down the sources of noise and

reduce or eliminate them.

Mounting Transmitter Closer to Scanning Surface

The tracking system has the least noise when the transmitter and receiver are in

close proximity. Therefore, it is beneficial to position the transmitter as close to the

surface of the manikin as possible. This was done by mounting the transmitter on a

rigid strut within the manikin, placing it very close to the scanning surface. This strut

configuration is shown in Figure 2.22 and described in further detail in Section 3.2.1.

This showed a significant improvement over the transmitter being mounted directly

to a board beneath the manikin, but was still unable to match the performance of

the Flock of Birds system.

Selection of Measurement Rate

The DC magnetic tracking used by Ascension Technology Corporation’s magnetic

tracking systems works by sending a DC pulse and then waiting for a period of time

before reading the sensor’s coils. This permits time for any magnetic flux to settle

in nearby metallic objects, which is the reason DC magnetic tracking is relatively

immune to nearby metal. The measurement rate is an adjustable system parameter,

43

Figure 2.22: Strut For Mounting trakSTAR Transmitter Close to Scanning Surface

specified in Hz, that determines how long this wait time is.

Selection of an appropriate measurement rate can significantly improve system

precision, by avoiding environmental interference. To facilitate selection of an appro-

priate measurement rate, a C++ program called ts noisex was written to determine

an optimal measurement rate. This program is described in further detail in Ap-

pendix K. The noise measurements are based on the trakSTAR’s ‘quality’ parameter.

The ‘quality’ parameter is a measure of the degree to which the position and orien-

tation values are in error and is indicative of the amount of noise. This parameter

has a range of 0 to 32768, with the optimal value being 0. By comparing the noise

at different measurement rates, it is possible to select an optimal rate.

Figure 2.23 shows a plot generated using data from this utility. It can be seen

that there are two ranges where the ‘quality’ parameter is especially high, and then

smaller variations of noise throughout the range. The high ‘quality’ value at low

44

measurement rates is due to the system’s built-in high-pass filters, which remove

noise near the 50-60 Hz AC wall power frequencies. The spike around 120 Hz is due

to the second harmonic of the 60 Hz AC power used in the United States. Based on

the captured data, the measurement rate is set at 115.25 Hz, which was determined

to be an optimal rate for this system in its current environment. This measurement

rate is defined as a parameter called ‘MEAS RATE’ in the software and is set by

issuing a command to the trakSTAR system.

Figure 2.23: trakSTAR Noise Plot Showing the Quality Parameter as a Function of
Measurement Rate

The measurement rate is sensitive to the presence of metal in the operating envi-

ronment and should be adjusted accordingly. The described tests were performed in

an environment relatively free of nearby metallic structures. For optimal performance,

45

noise measurements should be performed to determine an appropriate measurement

rate each time the system is moved to a new environment.

Switching to Ferrite-Core Transmitter

An additional noise-reducing improvement to the trakSTAR system is the ferrite-

core version short-range transmitter. Compared with the original air-core short-range

transmitter, the ferrite-core transmitter is the same size and adds slightly more weight

in exchange for improved precision. This was an ideal solution for this application,

where weight is of little concern. Ascension Technology Corporation exchanged the

transmitters free of charge.

A comparison was performed between the two transmitters under equivalent con-

ditions to determine how beneficial the ferrite-core version was. To capture data for

analysis of noise, a C++ program called ts capture was written. This program, de-

scribed in Appendix L, records a series of data points from the trakSTAR system.

Tests run using this utility provided quantitative data as to how much of an improve-

ment this transmitter made. These data sets were captured for the two different

transmitters using the same transmitter and sensor locations. Figure 2.24 and 2.25

show the noise comparisons for positions and orientations, respectively.

The ferrite-core transmitter in combination with selecting an optimized measure-

ment rate and mounting the transmitter near the scanning surface was finally enough

to decrease the noise to an acceptable level. With these improvements, performance

of the trakSTAR system is now on par with the Flock of Birds and provides excel-

lent performance in a small package. In its final configuration, the trakSTAR system

has variances of less 0.002 mm and 0.002◦ for all axes in position and orientation,

respectively.

46

Figure 2.24: Comparison of Position Noise for trakSTAR Between Air-core and
Ferrite-core Transmitters

47

Figure 2.25: Comparison of Orientation Noise for trakSTAR Between Air-core and
Ferrite-core Transmitters

48

2.5 Conclusions

A system for interactive generation of scan planes has been developed, which gen-

erates 2D scan planes based on input from the user. The toolkit gear was selected

as a software starting point and used for development of the basic graphical display

system. 3D image volumes can be loaded and rendered, and clipping is applied to

generate a thin ‘slice’ of the data. Orientation of the scan plane can be interactively

controlled using a 6 DoF input device or tracking system, such as the 3DConnex-

ion SpaceNavigator, the Ascension Technology Corporation Flock of Birds, or the

Ascension Technology Corporation trakSTAR.

This portion of the system provides the basic required functionality and a strong

basis for additional design. Because custom software has been developed using a

library, complete flexibility is afforded for future development. In the following chap-

ters, further extensions upon this basic design will be discussed.

49

Chapter 3

Interactive Scanning Features and

User Interfaces

3.1 Introduction

The basic scan plane display and interactive control described in Chapter 2 cre-

ate an interactive display system, but do not implement many of the other features

typically used by sonographers. There is no graphical user interface and no hardware

interface for scanning. In this chapter the implementation of additional scanning fea-

tures and user interfaces are discussed. The hardware user interface is the physical

hardware, including the manikin and sham transducers, which provide a physically

realistic training experience. The graphical user interface section describes the design

of the graphical interface to the program, including menus and buttons, which con-

trol various parameters and interface with features. The interactive scanning features

include useful controls such as probe geometry selection, scan depth setting and gain

control.

50

3.2 Hardware User Interface

It is important that the system’s physical hardware interface create a sense of

realism. The hardware interface consists of the manikin with embedded tracking

transmitter and the sham transducers, along with a touch screen monitor. Figure

3.1 shows a photo of the entire hardware interface as it would be used in a training

session. This hardware should provide a realistic interface to adequately simulate

scanning a patient. The following sections describe the individual components of the

hardware interface.

Figure 3.1: Photo of Entire Hardware Interface

3.2.1 Manikin with Embedded Tracking Transmitter

The manikin provides a realistic scanning surface, closely resembling a human

body and also serves to conceal the tracking transmitter from view. The criterion for

selecting a manikin were that it must have a realistic feel and anatomically correct

features, be compressible, and preferably not be excessively expensive. Of these

requirements, compressibility is especially important for ultrasound training because

51

probe pressure is determined by the user.

A number of CPR, trauma and choking training dummies were considered includ-

ing offerings from Laerdal and Darley. It was determined that the manikins most

likely to have realistic compressibility would be Heimlich Maneuver training dum-

mies, as they are clearly designed to be compressed. One such model is “Choking

Charlie” from Laerdal [19]. This is a lifelike torso manikin that was cast from a hu-

man subject, with a compressible abdominal region for Heimlich Maneuver training

and simulation. It is designed to expel a bolus from its airway when the Heimlich

Maneuver is properly performed. This appeared to be an ideal option and Laerdal

was willing to send a representative over with one for a hands-on evaluation. This

evaluation proved that the manikin would adequately suit the needs of this system

and one was purchased. Figure 3.2 shows the “Choking Charlie” manikin.

Figure 3.2: Laerdal “Choking Charlie” Manikin [19]

52

The manikin is mounted over the trakSTAR transmitter so as to completely con-

ceal it. A cavity is cut into the manikin to accommodate the tracking transmit-

ter. Conveniently, the manikin had a solid insert glued into its back as part of the

breathing apparatus, which when removed, provided a perfect space for the tracking

transmitter. The removed section and resulting cavity are shown in Figure 3.3.

Figure 3.3: Cavity Cut into the Back Side of the Manikin to Accommodate Tracking
Transmitter

The transmitter is mounted to a composite board for stability. A rigid strut is

used to elevate the transmitter, placing it closer to the scanning surface for improved

accuracy as described in Section 2.4.4. Installed in the board are four smooth rods for

mounting the manikin. The board with strut and rods is shown in Figure 3.4. The

manikin has four metal rods of slightly larger diameter installed into it, which fit over

the rods on the board. Figure 3.5 shows the back of the manikin with the installed

mounting rods. This mounting system allows the manikin to easily be removed and

repositioned in a repeatable manner, while still ensuring that it is held firmly in place

53

during use.

Figure 3.4: Manikin Mounting Board with Rods and Transmitter Strut

The transmitter strut is specially designed to avoid introducing any significant

interference that would hinder the accuracy of the trakSTAR system. The strut itself

is cut from a piece of clear acrylic and the mounting brackets are made of nylon. The

nuts and bolts that hold everything together are 300 series stainless steel, which causes

little to no interference with the trakSTAR system. The mounting rods attached to

both the board and the phantom are also made from 300 series stainless steel and the

mounting board is made from a non-metallic composite material. In tests, no added

interference is seen when using the transmitter mounted on the strut, and in fact,

the performance is greatly improved by the transmitter positioning as presented in

Section 2.4.4.

54

Figure 3.5: Back of Manikin Showing Mounting Rods

55

3.2.2 Sham Transducers

The sham transducers are made to mimic real transducers, but instead of ultra-

sound piezoelectric elements the sham transducers contain 6 DoF position sensors.

The sham transducers must adequately conceal the tracking sensors and have a real-

istic look and feel.

Empty transducer shells were provided by Sound Technology [42], a manufacturer

of ultrasound transducers. They provided both linear and convex array versions,

which are shown in Figure 3.6. Two separate sensors were purchased for the trakSTAR

system to construct both linear and convex array versions of the sham transducer.

Figure 3.6: Empty Transducer Shells for Sham Transducers

Figure 3.7 shows both sham transducers in their finished state. The transducer

shells were filled with plumber’s putty to hold the sensors in place and to add weight,

as shown in Figures 3.8 and 3.9. Silicone alligator clip covers were used as strain

reliefs for the cables. The contact surface was cut from a sheet of silicone rubber and

held in place by plumber’s putty. To attain an authentic feel, the weights and balance

were compared to real transducers and adjusted appropriately. The end result is a

pair of transducers that very closely resemble the look and feel of real ultrasound

56

transducers.

Figure 3.7: Sham Transducers

3.2.3 Touch Screen Interface

To provide a higher level of interactivity and permit additional training features,

a touch screen was added to the system. The primary task for integrating a touch

screen was selection of an appropriate model.

There are three primary touch screen technologies: resistive, capacitive and surface

acoustic wave (SAW). Resistive technology uses two resistive metallic layers to detect

where a touch occurs. The voltage drop that is generated by the resistance of the two

layers can be used to calculate the position of the touch [15]. Capacitive touch screens

transfer a small amount of charge to the user’s finger, which is measured by sensors at

the corners of the display to extract position [15]. SAW uses ultrasound waves that

propagate across the glass surface of the screen. Transmit and receive transducer

57

Figure 3.8: Inside of Linear Sham Transducer

Figure 3.9: Inside of Convex Sham Transducer

58

pairs are used for both axes of the monitor and modifications to the received wave

can be used to determine where a touch occurs [15]. These technologies vary primarily

in their light transmission and how a touch can be triggered, which are the reasons

a certain technology is typically selected for a given application. Table 3.1 shows a

tabular comparison of these technologies.

Table 3.1: Touch Screen Technology Comparison [15]
Parameter Resistive Capacitive Surface Acoustic Wave

Light Transmission ∼75% ∼90% ∼90%
Contact Object Anything Only skin or conductive materials Anything

For this design, maximum light transmission is desirable because of the need to

see small details within the data. Furthermore, ultrasound images can often be fairly

dark, so the best possible light transmission is desirable. Because this system will

be used in a clinical environment, it is likely that it will be used by trainees wearing

gloves, thus there should be no requirement for direct skin contact. Based on the

requirements and the information shown in Table 3.1, SAW is the clear choice for

touch screen technology, as it provides high light transmission and does not require

direct skin contact.

A 17” SAW touch screen by Planar Systems, Inc. was selected, which is shown in

Figure 3.10. Planar [27] is a well-established company that has been in the display

business since 1983. They have a strong market share and are known for producing

quality touch screens. The mid-size 17” model wave selected as a compromise between

screen size and cost, and represents a typical display size used for ultrasound systems.

Table 3.2 shows the manufacturer’s specifications for the selected monitor.

The touch screen acts as a monitor and a USB mouse, providing both input and

output for the system. Since the screen replaces the monitor and mouse, no additional

implementation effort is necessary to use the training system with the touch screen.

59

Table 3.2: Planar Touch Screen Specifications [27]
Product Name PT1705MU
Planar Part Number 997-4409-00
Viewable Size 17 inch diagonal
Touchscreen Type SAW (Surface Acoustic Wave)
Touchscreen Interface USB
Transmissivity 88% (Min)
Contrast Ratio (Typical) 700:1
Viewing Angle (Typical) 160◦H,V (specified at CR¿10:1)
Response Time (Typical) 6 ms (2 ms rise, 4 ms fall)
Brightness (w/touchscreen) 270 cd/m2

Brightness (w/o touchscreen) 300 cd/m2

Display Resolution 1280 x 1024
Tilt Range -5◦to 90◦

Pixel Pitch 0.264 mm
Refresh Rate 56 to 75 Hz
Dimensions (W x H x D) 15.8” x 14.6” x 8.9” (400.0 mm x 370.7 mm x 225.0 mm)
Dimensions without Stand 15.8” x 13.3” x 2.7” (400.0 mm x 337.8 mm x 68.6 mm)
Display Weight With Stand: 17.2 lbs (7.8 kg) (net)
Video Inputs Analog
Audio Output 2 speakers, 1W/ch
Compatibility Windows Vista, XP, 2000, 98
External Connections D-sub 15-pin, DC power connector, Type B socket USB, Stereo jack
Power Supply Internal AC power supply,12V DC power connector
Power Requirements 100-240 VAC
Power Consumption 50W
VESA Compatible/Location Built-in 75mm and 100mm VESA, back
Service and Support 3-Year Customer First Warranty
Options / Features Anti-glare coating, Multi-language support, On screen display
Product Approvals UL/c-UL , FCC-Class B, TUV-T mark , CE, CB, RoHS

60

Figure 3.10: Planar PT1705MU Touchscreen Monitor

3.3 Graphical User Interface Design

Having an effective user interface is an important part of any software application

and this is no exception. In addition to basic usability features, the system must also

emulate a user interface typical of ultrasound scanners to provide a realistic training

experience. The display should look somewhat similar to that of the popular models

of ultrasound scanners and should have similar features. This section describes the

design of the graphical user interface (GUI) for the training system.

3.3.1 GUI Implementation

A common method of developing a GUI is to first develop the GUI and then add

the desired functions into it, but with OpenGL applications there is another option:

to implement the GUI within the OpenGL application. Because OpenGL performs

graphical rendering, it is logical that it should be possible to design a GUI with this

61

environment. This is certainly possible and has been implemented in a number of

open source libraries.

One such library is called GLUI [33], which works with the OpenGL Utility Toolkit

(GLUT) and is designed to be simple yet powerful. It integrates easily into existing

OpenGL applications and provides a number of options for clickable controls. Because

it is simply drawing more OpenGL objects to the screen, a GUI can be integrated

into a pre-existing application with minimal modification. Since the GUI is drawn

using OpenGL, it is also inherently platform-independent, which is not always true

for GUIs.

3.3.2 GLUI Details

GLUI uses live variables, which are global variables that are modified by the

controls. Each control has live variables associated with it, which are instantaneously

modified whenever the control is changed by the user. GLUI also provides update

functions which can be used to set the controls based on changes to the live variables

by the software. These update functions can be used to ensure that the controls are

always synchronized with the live variables.

For most of the controls, GLUI also offers the option to use a callback function.

This is a function that is instantly called when the control is modified. For example,

a callback function can be triggered when a button is clicked. The callback function

can be used to change values in the program or to perform a specific function.

Figure 3.11 shows a flowchart of the operation of GLUI. When any value-based

or numerical control in the GUI is changed, the associated live variable is changed to

the current value of the control. Next, if the control has a callback function speci-

fied, this function is called. The callback checks the callback identifier to determine

which control issues the callback, and then the appropriate actions for the control are

performed. After this process has completed, normal program operation is resumed.

GLUI includes a number of different object types for creating controls on the

62

Figure 3.11: GLUI Software Flowchart

63

screen. These include dropdown menus, sliders, checkboxes, and buttons. GLUI also

provides for creating groups of objects surrounded by a box and roll-out groups, which

can be compressed to a single item when they are not needed. Many of the object

types have adjustable parameters that allow adjustment of how the control is drawn

or how it acts. For example, the size of buttons can be modified to make them larger

or smaller.

3.3.3 GUI Design

The GUI for the simulation program has been modeled after the GUI of the

Terason software [45]. Since Terason is a full-featured PC-based ultrasound system

that requires no external hardware control interface, it is an ideal interface to emulate.

All of the user interface features are implemented in software and accessible through

the GUI.

Figure 3.12 shows the GUI for the simulation system. Additionally, Terason’s

GUI is in Figure 3.13 for reference. The buttons and controls are designed to be large

enough that they can be used with the touch screen display.

Figure 3.14 shows a block diagram of all of the features that are controlled by the

GUI. The GUI includes a sidebar with options for selection of transducer type, preset

exam settings, and probe depth. Transducer type allows the user to select between

the available probes, which will automatically begin using a different physical sham

transducer. Preset exam settings automatically set the gain, TGC, and depth to pre-

set values, as described in Section 3.4.5. Probe depth allows the user to select between

a number of different scan depths using a dropdown menu. The overall system gain

is controlled by a single slider. The time gain compensation can be adjusted using a

series of sliders to control the gain based on the depth of features.

The options control set contains a few options that are not as commonly used.

The ‘Navigational Display’ checkbox controls whether or not the navigational display

is drawn. The ‘Record Data’ option controls the data recording, permitting the user

64

Figure 3.12: Simulation System GUI

65

Figure 3.13: Terason’s GUI

to start and stop recording at any time. ‘Display Features’ determines whether the

regions of interest included in the data set are drawn on the screen or kept hidden. In

most cases the regions of interest will be hidden and left for the trainee to properly

identify, as described in Section 5.2. The ‘Fullscreen’ checkbox controls whether

the system runs in the normal windowed mode or if it is expanded to cover the

entire screen. In fullscreen mode, the title bar and the operating system’s task bar

are hidden, to provide a cleaner interface and remove awareness of the underlying

operating system.

There is also a bottom menu bar, which contains easily accessible buttons for some

important training features. ‘Re-center Probe’ recalibrates the probe center position.

This will generally need to be done at startup and upon switching sham transducers.

‘Freeze Display’ holds the current view, which is useful for capturing images and

selecting regions of interest. To simplify the user interface and avoid any confusion,

the same button is used for freezing and un-freezing the display. When the display is

66

Figure 3.14: GUI Block Diagram

67

frozen, the button text is changed to ‘Unfreeze’ and is changed back after the display

is unfrozen. As the name would suggest, ‘Screen Capture’ captures a still image of

the screen in the form of a JPEG image. Still image capture is explained further

in Section 5.4. The ‘View Scan Path’ button can be used to launch a MATLAB

script that displays the recorded scan path as described in Section 5.3. The ‘Check

Selection’ button is part of the region of interest selection training feature, described

in Section 5.2. When this button is pressed, the selection evaluation function is called

to determine whether the user’s selection is correct or not. The result of this check

is displayed in the textbox next to the button.

3.4 Interactive Simulation Features

In this section, additional interactive features implemented into the training sys-

tem are discussed. These features are not required for the most basic functions, but

are useful features that improve the system and make it more realistic. Modeled after

features and capabilities implemented in commercial ultrasound systems, these fea-

tures are designed to create a training system that resembles a commercial ultrasound

system as closely as possible.

Figure 3.15 shows a block diagram of the various interactive simulation features

that will be discussed in this section. All of these features can be activated from

the graphical user interface (GUI) shown in Figure 3.16. In addition, scan depth,

gain, and time gain compensation can be modified automatically to preset values by

selecting a scan preset using the GUI.

Probe geometry selection permits users to work with different probe geometries

depending on their current task. Scan depth setting, gain control, and time gain

compensation provide the capability to adjust the image for optimal viewing of specific

anatomical features. The navigational display provides a reference point as to where

the current scan plane resides in the overall volume. The freeze display feature allows

68

the user to lock the display at a given point for further analysis.

Figure 3.15: Diagram of Interactive Simulation Features

3.4.1 Probe Geometry Selection

Ultrasound transducers exist in a number of different geometries including convex

array, linear array, and phased array, and can be strategically selected to provide a

better view for a given situation. This feature provides the option to select probe

types relevant to the imaging application.

Changing the current probe geometry alters both the image seen on the screen as

well as the physical sham transducer that is used. The user may select a different

probe in software and then begin using the corresponding sham transducer. Changing

the probe type and corresponding image geometry alters the shape of the stencil that

determines the visible portion of the current image plane. Selection of the initial probe

shape is determined automatically by the sham transducer that is attached to port 1

of the trakSTAR system. Based on the serial number of the attached tracking sensor,

the software determines which sham transducer it is and applies the appropriate

69

Figure 3.16: Graphical User Interface Screen Capture

70

probe shape. The detection algorithm has been designed such that the software can

determine which probe is connected to each port of the trakSTAR system and account

for that accordingly. Thus, selecting a convex probe in software will always switch to

the convex sham transducer, regardless of whether it is plugged into port 1 or 2.

By applying a mask to the image being viewed, it can be altered to take on the

appearance of the image geometry of the specific transducer. This allows users to

experience scanning with different probe shapes and extends the usefulness of this

training system. This masking is accomplished in OpenGL using a ‘Stencil Buffer’.

The stencil buffer acts very much like a stencil one might use to paint letters onto a

sign. A black and white mask is defined which specifies the regions to be drawn or

to be blocked. A comparison function is used to determine which pixels to draw and

which to ignore. In this implementation, white pixels are drawn, while black ones

are ignored. By appropriately drawing and applying the stencil, the envelope of the

display can be made to take on any shape. Different stencils are generated based on

the selected probe geometry, to accurately portray the viewing area of the selected

probe.

Currently, no additional signal processing is performed to modify the image vol-

ume to match a given geometry. Therefore, it is not possible to make a data set

captured with one transducer geometry look exactly like it was taken with another.

For example, data captured with a convex array will always exhibit radial shadowing

and speckle indicative of the probe geometry, which will not look quite correct for

a linear array geometry. However, this feature does provide the opportunity for the

user to work with the viewing area corresponding to the chosen transducer, which

is still quite beneficial. An alternate solution to this issue would be to capture both

linear and convex array versions of each data set and load a different data volume

when transducers are changed.

Figures 3.17 and 3.18 show convex and linear transducer mask shapes applied to

an ultrasound volume being viewed.

71

Figure 3.17: Convex Array Transducer Shape

72

Figure 3.18: Linear Array Transducer Shape

73

3.4.2 Scan Depth Setting

Scan depth is an essential feature for medical ultrasound and is thus made ad-

justable. To allow the depth to be modified, a ‘Depth Setting’ menu was created.

This adjustment appropriately scales the image to show the selected depth. Selecting

a different depth from the menu performs a transformation to the image being viewed

that modifies the magnification of the volume and the area being viewed.

Modifying the depth affects the viewed image differently for linear and convex

probes. As shown by the Terason screen captures in Figure 3.19, when a linear array

transducer is chosen, the aspect ratio of the scan is also altered. For convex array

geometries, as scan depth is increased, the aspect ratio of the scan remains the same

because the array angle is maintained regardless of depth.

Figures 3.19 and 3.20 show a comparison between changing the depth in Terason

and in the simulation software. In both cases, linear and convex probes are shown.

It should be noted that one inherent difference between the training system and

a real ultrasound scanner is that the maximum depth for a linear probe is the same

as the convex probe in the simulation system. This is due to the fact that the data

are the same regardless of which probe is being used. The depth range can of course

be limited in software if it is desired that the linear probe only allow a certain range

of depths.

3.4.3 Overall Gain Control

Adjustment of the signal gain is an important part of ultrasound imaging. Altering

the overall gain on an ultrasound system modifies the receive amplifier gain and has

the effect of making the image appear darker or brighter. This is necessary because

some dark features may not be visible if the image is too dark and likewise, details

in lighter images may be obscured by an image that is too bright. Sonographers will

typically adjust the gain to an appropriate value before scanning and will sometimes

74

(a) Convex 20 cm (b) Linear 7 cm

(c) Convex 15 cm (d) Linear 5 cm

(e) Convex 10 cm (f) Linear 3 cm

Figure 3.19: Terason Convex and Linear Probes at Various Depths

75

(a) Convex 16 cm (b) Linear 16 cm

(c) Convex 12 cm (d) Linear 12 cm

(e) Convex 8 cm (f) Linear 8 cm

Figure 3.20: Simulation System Convex and Linear Probes at Various Depths

76

modify the gain during a scan to achieve a better view of specific features.

Figure 3.21 shows a block diagram of the gain adjustment process. The gain

parameter is used to generate a blending function, which is then applied as an overlay

on the displayed scan image.

Figure 3.21: Block Diagram of Overall Gain Adjustment

The overall gain control was implemented by applying a semi-opaque mask to

the image being displayed. By adjusting this mask through a range of values be-

tween opaque black to transparent to opaque white, the entire range of gains can be

achieved. The gain adjustment is implemented in OpenGL using OpenGL’s blending

capabilities. The mask is created and then blended with the underlying image to

produce a proper gain-adjusted final image.

The variable gain overall is used for the overall gain. This variable can take

a continuous range of values between 0 and 2, with less than 1 being darker than

the original image and greater than 1 lighter than the original. For gain overall

values greater than 1, the image is blended with a greyscale color represented by

(gain overall -1, gain overall -1, gain overall -1), where the three values are red, green,

and blue, respectively. The numerical value of 1 is subtracted from each of the

gain overall values to put them in an appropriate range of 0 to 1, which spans the

range from transparent to opaque white. When the gain is less than or equal to 1,

the image is blended with a greyscale color represented by (gain overall, gain overall,

gain overall), with the range spanning from opaque black to transparent.

Figure 3.22 shows approximately the same scan plane captured at three different

gain levels. For comparison, Terason ultrasound captures using three similar gain

77

levels are also shown. It can be seen that the implemented gain control has similar

effects on the simulated image as changing the gain for the Terason system does on

the observed ultrasound scan images.

3.4.4 Time Gain Compensation (TGC)

Time gain compensation (TGC) is a common feature on ultrasound systems. This

control modifies the signal gain based on the relative time of the received signal.

Receive time corresponds to depth in the displayed image, so this is effectively a

depth-based gain control and is sometimes referred to as Depth Gain Control. TGC

is essential for adjusting for decreased signal strength deeper within the subject. It

can also be used to improve visibility of certain features. TGC is frequently adjusted

by sonographers before and during a scan, in order to better view features within the

body. Most ultrasound systems have eight TGC adjustments and this number has

become a de facto standard for medical ultrasound [2].

Eight TGC slider adjustments are provided in the GUI to set the TGC values,

which correspond to equally-spaced depths on the scan image. Adjusting a given

slider instantly modifies the gain for that portion of the image.

If only eight distinct gain values were used, the gain would look discontinuous. To

solve this without having an excessive number of TGC adjustments, linear interpola-

tion is performed between the eight adjustment points to create a smooth gradation.

This interpolation is calculated as a weighted average of the two nearest points. Equa-

tion (3.1) shows how the gain for a given depth is calculated. i is the loop variable

that increments through the different TGC control values and j is the loop variable

that goes through the intermediate steps between the controlled gain values. tgc[i]

is the value of TGC slider i. As the depth changes between two consecutive TGC

values, the weighting of a given value is increased as the depth approaches that value.

Table 3.3 shows an example of the linear interpolation between two consecutive TGC

parameters of 0.5 and 1.0, with a MAX STEPS value of 20.

78

(a) Terason Low Gain (b) Simulation Low Gain

(c) Terason Medium Gain (d) Simulation Medium Gain

(e) Terason High Gain (f) Simulation High Gain

Figure 3.22: Comparison of Gain Adjustment between Terason and the Simulation
System

79

gain = (MAX STEPS− j) ∗ tgc[i] + j ∗ tgc[i + 1] (3.1)

tgc[i] tgc[i+1] j gain
0.5 1 0 0.5
0.5 1 1 0.525
0.5 1 2 0.55
0.5 1 3 0.575
0.5 1 4 0.6
0.5 1 5 0.625
0.5 1 6 0.65
0.5 1 7 0.675
0.5 1 8 0.7
0.5 1 9 0.725
0.5 1 10 0.75
0.5 1 11 0.775
0.5 1 12 0.8
0.5 1 13 0.825
0.5 1 14 0.85
0.5 1 15 0.875
0.5 1 16 0.9
0.5 1 17 0.925
0.5 1 18 0.95
0.5 1 19 0.975

Table 3.3: Example of TGC Linear Interpolation

For the TGC to look realistic, its effect must differ between linear and convex probe

geometries. Physically, TGC is a time-based gain, and the gain therefore varies with

the distance from each transducer element. This means that for a convex array, the

gain changes with the radial distance from the transducer, while for a linear array,

the gain varies with the linear depth of the image. Figure 3.23 shows a comparison

of linear and convex geometries with TGC applied.

TGC is implemented in a manner very similar to the overall gain control de-

scribed in Section 3.4.3, except that the gain is applied in steps to create a gradient

corresponding to the selected gain values. Each infinitesimal gain step is generated

80

(a) Convex TGC Example (b) Linear TGC Example

Figure 3.23: Comparison of TGC for Linear and Convex Probe Geometries

according to the block diagram shown in Figure 3.24. For the given depth, the cur-

rent and next TGC parameters are read, as well as the overall gain. These are used

to calculate the gain as described in Equation (3.2), which is similar to the linear

interpolation described Equation (3.1), except that the overall gain is also included.

Figure 3.24: Block Diagram of TGC Generation For a Single Step

gain = gain overall ∗ ((MAX STEPS− j) ∗ tgc[i] + j ∗ tgc[i + 1]) (3.2)

A blending function is then generated in the same manner as the overall gain.

TGC parameters, which are stored in an array called tgc can take a floating point

value between 0 and 2. For tgc[i] values greater than one, the image is blended with

a greyscale color represented by (tgc[i]-1, tgc[i]-1, tgc[i]-1), where the three values

81

are red, green, and blue, respectively. The value of 1.0 is subtracted from each of the

gain values to put them in an appropriate range of 0 to 1, which spans the range from

transparent to opaque white. When the gain is less than or equal to 1, the image is

blended with a greyscale color represented by (tgc[i], tgc[i], tgc[i]), with the range

spanning from opaque black to transparent.

The overlay segment is calculated as a fractional portion of the entire scan image

area. The slice location for given values of i and j are given in (3.3) and (3.4) for linear

and convex arrays, respectively. The total number of steps is 7 ∗ MAX STEPS and

the current step is i ∗MAX STEPS + j, so the current segment location is calculated

as the fractional distance through the scan plane determined by the ratio of the

current step to the total number of steps. The shift for the linear array value is due

to the fact that the segment is drawn as a rectangle between curr slice linear and

curr slice linear+slice width linear, while the convex array is drawn as an arc that is

translated up by 1.1 in the y-axis. Equations (3.5) and (3.6) show the segment width,

which is the fractional portion of the entire scan image area that is represented by

one step.

curr slice linear = 0.9− (i ∗MAX STEPS + j) ∗ (2.4/(7 ∗MAX STEPS)) (3.3)

curr slice convex = (i ∗MAX STEPS + j) ∗ (2.6/(7 ∗MAX STEPS)) (3.4)

slice width linear = 2.4/(7 ∗MAX STEPS) (3.5)

slice width convex = 2.6/(7 ∗MAX STEPS) (3.6)

Figure 3.25 shows a flowchart of the software for the TGC. The software first checks

82

if TGC is enabled by the checkbox in the GUI. If it is disabled, TGC is skipped entirely

to save on processing. Next, the software checks whether the current transducer is

a linear or convex array and uses the appropriate processing code. The processing

for linear and convex arrays is essentially the same, except that the equations are

slightly different to account for how the gain is applied as described earlier in this

section. Next a pair of nested loops are used to generate the TGC overlay. The outer

loop increments through the 8 different TGC parameter values, while the inner loop

increments through the intermediate steps between each value. At each intermediate

step, the gain is calculated using linear interpolation and then applied to a segment

of the image.

Figure 3.26 shows a few examples of different TGC parameters being applied to a

scan image. Figure 3.26(a) shows the scan image without any TGC settings applied.

Figure 3.26(b) gives an example of a TGC curve that has increased gain near the

surface and reduced gain in the middle depth range. In Figure 3.26(c), the gain is

reduced near the surface and increased in the deeper region. Figure 3.26(d) shows a

TGC curve that targets a specific region near the center of the scan.

3.4.5 Scan Type Presets

Scan type presets are a common feature for ultrasound systems, which provide

quick pre-defined settings for a variety of common scan types. While these are not

perfect for every scan of a given type, they are generally a good starting point for

further adjustment. A sonographer performing an abdominal exam might start with

the abdominal preset and then make some minor adjustments to the gain and TGC

to suit the specific patient and scan. Presets commonly affect the scan depth, focus,

gain, and TGC values.

Figure 3.27 shows a block diagram of how the scan type presets work. When a

preset is selected, it automatically changes the scan depth, gain, and TGC to the

preset values for the given scan type. Because this training system does not currently

83

Figure 3.25: TGC Software Flowchart

84

(a) No TGC Applied (b) TGC Example 1

(c) TGC Example 2 (d) TGC Example 3

Figure 3.26: Time Gain Compensation Example Screen Captures

85

have any capability of adjusting focus, the focus remains the same as that of the

selected image data volume.

Figure 3.27: Scan Type Presets Block Diagram

Figure 3.28 shows a flowchart for the software implementation of the scan type

presets. The function is part of the GUI callback function that is described in Sec-

tion 3.3.2, and is called immediately upon a change to the current preset. First a

conditional expression checks which preset was selected. Next, the TGC, gain, and

depth values are set by modifying their respective variables. After these variables

have been set, it is necessary to call the GUI update function to ensure that these

changes are reflected in the on-screen parameters of the GUI. Finally, the depth is up-

dated by calling the depth update callback, which propagates the depth value change

to the rest of the program. After these operations have been completed, the program

resumes at the point it left off.

Presets have been implemented for four selected scan types: No preset, Abdomi-

nal, Gynecological, and Prostate. “No preset” is simply a blank preset that allows the

user to revert back to a default state. Table 3.4 shows the parameters associated with

each of the implemented presets. These values are based on approximations of the

preset values used in the Terason software for the equivalent scan types. Examples

86

Figure 3.28: Scan Type Presets Software Flowchart

87

of these presets being applied are shown in Figure 3.29.

While only four different presets have been implemented at this point, additional

presets can be added simply by defining their characteristics in the code.

Table 3.4: Parameter Values for Implemented Scan Type Presets

Preset Depth Gain TGC[0-7]
No Preset 12 cm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Abdominal 16 cm 1.0 0.4 0.4 0.6 0.8 1.0 1.0 1.1 1.1
Gynecological 12 cm 0.85 0.6 0.4 0.65 0.9 1.0 1.1 1.1 1.05

Prostate 12 cm 0.9 0.5 0.55 0.6 0.8 0.95 1.05 1.1 1.05

3.4.6 Navigational Display

A navigational display was added to show the orientation of the current view in

reference to the overall volume. This display shows a wireframe outline of the volume

being viewed, along with a translucent object in the shape of the slice being viewed.

This provides a reference showing where the currently viewed slice resides within the

overall volume. The display is automatically adjusted to account for different probe

shapes and depths as they are modified for the main display. The same stencil shapes

that are generated for the stencil buffer of the main display are used to determine the

shape to be drawn to this display. Figure 3.30 shows this display, which is located in

the upper left corner of the display window.

While this might not be essential in the final system, it is very useful for de-

velopment and testing purposes. It is especially important when working with the

SpaceNavigator input, because it is not readily apparent where the 2D slice through

the volume is located. Additionally, it is useful for debugging purposes, to ensure

that the proper view is being displayed for a given sensor position.

88

(a) No Preset (b) Abdominal Preset

(c) Gynecological Preset (d) Prostate Preset

Figure 3.29: Screen Captures of Different Scan Presets

89

Figure 3.30: Navigational Display

3.4.7 Freeze Display Functionality

The capability to freeze the display at any time is a useful feature that is included

in most ultrasound systems. The current image can be instantaneously frozen to

permit image captures, analysis, and measurements. For the simulation system, this

is especially useful for some of the training facilities, such as selection of regions of

interest, which will be described in Chapter 5. This feature is not to be confused

with still image capture, which stores an image of the current view and is described

in Section 5.4.

Implementation of this feature was fairly straightforward. When the user presses

the ‘Freeze Display’ button, a flag called freeze is set, which tells the trakSTAR read

function not to update the values. A value of true means that the screen is frozen,

while a value of false indicates normal operation. Without any incoming position

values being used, it is as if the transducer is being held still and no screen movement

occurs.

90

When the display is frozen, the button is changed to say ‘Unfreeze Display’. When

clicked, the flag is set to false and normal operation resumes. The button text is also

changed back to ‘Freeze Display’.

3.5 Conclusions

The additional simulation features and user interfaces described in this section

create a far more realistic training environment. The scanning features provide im-

portant adjustments such as probe geometry selection, depth setting, and gain con-

trol. These features are nearly universal in commercial systems and have come to

be expected by users. The navigational display and ability to freeze the display are

additional useful features that help to enhance the overall experience.

The graphical user interface provides a simple, intuitive interface to all of these

features and the learning assessment features that will be described in Chapter 5.

Without the GUI, all of the features would be far less useful and would be difficult

for users to access during a training session.

The hardware user interface is absolutely essential for this to be a realistic training

system. Without the physical scanning interface provided by the manikin and sham

transducers, this training system would be little more than a video game. The tactile

interface to the images on the screen provide a true sense of realism and make for a

very convincing training experience.

91

Chapter 4

Simulation Data Generation

4.1 Introduction

A necessary requirement of this system is a methodology for generating libraries

of data for users to work with. To give the user complete freedom in their simulated

scans, it is necessary to have data sets consisting of image volumes that are larger than

a single sweep of the transducer, so that the user is not limited to scanning a single

area along a fixed path. For example, a sonographer may choose to scan at multiple

angles across a patient to see different views of a given feature. Furthermore, some

large organs and features may require multiple sweeps to capture in their entirety. To

generate effective simulation data, it is necessary to develop an appropriate scanning

method and a procedure to combine data from multiple sweeps of the transducer.

4.2 Requirements For Generating 3D Image Vol-

umes

The amount of data that can be acquired with a single sweep of an ultrasound

transducer is limited to the width and angular range of the transducer. This is

92

generally not enough data to provide complete freedom in a simulation. To overcome

this limitation, it is necessary to be able to acquire multiple 3D image scans and then

merge, or register, them into a single, contiguous volume.

Figure 4.1 shows a human prostate gland as an example of how an image volume

may be composed from multiple overlapping sweeps. The three rectangles represent

the separate sweeps that could be taken where the arrows show the scan direction. It

can be seen that a single sweep with a transducer of this size would not be wide enough

to encompass the entire gland, necessitating the use of multiple sweeps. Overlap

between sweeps is necessary for calculating the precise alignment of the sweeps relative

to each other to create a smooth transition between them. It should be noted that

with an effective alignment process, the sweeps do not necessarily need to be parallel

or the same size.

Figure 4.1: Example of multiple sweeps within a larger image volume

Acquiring multi-sweep data requires additional processing to ensure accurate align-

ment of the sweeps. Preparation of simulation data must be performed as a two-part

93

offline process. First, the image volume is acquired by a sonographer or researcher.

The data must be captured in a manner conducive to merging multiple sweeps, but

the method should remain simple for the ultrasound operator. Ideally there would

be no constraints on the ultrasound operator; however, if this is not realistic, the

constraints must be known, constant, and should not inhibit normal scanning.

Once data have been acquired, the multiple ultrasound sweeps need to be merged

into a single large volume. It is important that the merging of volumes can be per-

formed accurately, consistently and reasonably fast. Because this is an offline process,

it does not need to be done in real-time, but it also should not take days for process-

ing or require the use of a supercomputer. Ideally this process should be automated

to some extent, requiring minimal user interaction. Excessive requirements for user

interaction would introduce unnecessary human error factors and would complicate

the process.

Figure 4.2 shows an overview of the data acquisition process. A patient or sta-

bilized trauma victim is scanned by hand using a standard ultrasound system with

a 6 DoF position sensor added. This scan is performed in a back-and-forth pattern,

making multiple overlapping sweeps to cover a large area. These image and position

data are combined on a computer to create 3D volumes. The multiple sweeps are

merged together to create one large, contiguous 3D volume containing all of the data.

The data can then be compressed and stored for later simulation use. Image volumes

need only be generated once by the development team, and then can be used by an

infinite number of trainees.

4.3 Registration of Multiple Sweeps

The merging or registration of multiple narrow ultrasound 3D volumes is an es-

sential part of generating data for use in the system. Although the first part of the

data generation process is the acquisition of ultrasound image volumes, the methods

94

Figure 4.2: Block Diagram of Data Acquisition Process

of acquiring data are highly dependent on the specific requirements to facilitate merg-

ing data. For example, a given registration method may require a certain amount of

overlap or may have requirements for the probe pressure used. Therefore, it is neces-

sary to first discuss methods of merging volumetric data, which will help to determine

the specific scanning requirements.

Splicing together two-dimensional images, such as making a panorama out of se-

ries of photos, has become fairly commonplace and there are many software packages

available to accomplish this. However, registration of three-dimensional image vol-

umes is a much less trivial problem and has not been studied nearly as much. This

process is especially difficult for ultrasound data, which are generally noisy and con-

tain view-dependent distortion.

Figure 4.3 shows a flowchart of a typical registration method that uses gradient de-

scent. The general idea behind this type of registration involves making adjustments,

then performing a comparison based on a specific measure of similarity and repeating

this process for a large number of iterations until the optimal alignment is found. In

some cases the end condition is a maximum number of iterations, while in others the

algorithm stops when a certain similarity is achieved. If gradient descent is not used,

then the process is similar except that a the same modification is always applied and

the program tests all possible combinations to determine the optimal alignment. In

95

this case the end condition would be completion of testing every combination.

Figure 4.3: Flowchart of a Typical Registration Algorithm Using a Similarity Measure
and Gradient Descent

The following sections discuss existing software options for merging multiple 3D

image volumes. Most existing algorithms are designed for either multi-modal reg-

istration or inter-subject registration. Multi-modal registration is the alignment of

images taken using different imaging modalities, for example a clinician may wish

to align MRI and CT scans of a patient for concurrent viewing. Inter-subject reg-

istration involves the alignment of data from two different subjects for comparison

purposes. Inter-subject alignment can also be extended to studying temporal changes

in the same subject, for example, looking for new cancerous growths in breast tis-

sue. In most cases, these algorithms are designed for aligning completely overlapping

96

images and not to make large volumes from smaller ones that only overlap slightly.

The following sections discuss different algorithms that were studied and evaluated,

including the chosen solution.

4.3.1 Similarity Measures

Most of the methods of registration that are described in this section use some

type of comparison-based approach. To perform a comparison, it is necessary to have

a certain similarity measure to base that comparison upon.

Similarity measures are typically statistical comparisons of two values. A number

of different similarity measures can be used for comparison of 2D images and 3D data

volumes, each having their own merits and drawbacks. These similarity measures

are all very general and are not limited to comparison on 3D image volumes. These

similarity measures perform voxel-wise comparisons and are typically used to register

volumes by summing the comparison over a pair of 2D images or 3D volumes. Five

different similarity measures are presented:

• Sum of Absolute Differences

• Sum-Squared Error

• Correlation Ratio

• Mutual Information

• Ratio Image Uniformity

Sum of Absolute Differences

Sum of Absolute Differences (SAD), formulated in (4.1), is a simple sum of the

differences in gray scale intensity values between the two compared images, herein

referred to as A and B. This method is simple, but does not have as high of a success

rate as the other available similarity measures.

97

This measure must be normalized by the number of overlapping pixels to provide a

consistent metric for a range of different overlaps. Since it is normalized by the number

of overlapping pixels, noverlap, Absolute Difference tends to favor alignments with less

overlap, which can cause it to incorrectly determine the proper alignment. Another

concern is that this algorithm has trouble determining similarity if the intensity values

for a given feature differ greatly between the two images, which can occur when sweeps

are taken from significantly different angles [13].

SAD =
Σ|A−B|
noverlap

(4.1)

Sum of Absolute Differences does, however, benefit from the fact that because of

its simplicity it can be calculated very quickly, which is beneficial for reducing com-

putational load. It is also not as sensitive to outliers as Sum of Squared Differences,

described in Section 4.3.1 [14].

Sum of Squared Difference

Sum of Squared Difference (SSD) is another relatively simple similarity measure,

described by (4.2). It differs only from SAD in that the square of the difference is

taken, rather than the absolute value.

SSD =
Σ((A−B)2)

noverlap

(4.2)

SSD has been shown to be the optimal similarity measure when the only difference

between images is Gaussian noise, however this is rarely the case for medical imaging

[14]. It is also a very simple similarity measure and can be calculated quite quickly.

Like SAD, it tends to favor reduced overlap because of the normalization that

must be applied. Compared with SAD, SSD is more sensitive to a small number of

outliers with high intensity values [14].

98

Correlation Ratio

Correlation Ratio [36] is a more general similarity measure. It assumes a functional

mapping of intensity values, meaning that one of the images can be modeled based

on the other. The similarity equation used for the correlation ratio is shown in (4.3).

Unlike SAD, the Correlation Ratio does not favor alignments with reduced overlap.

CR =
V ar[E(B|A)]

V ar(B)
(4.3)

The variance, which determines a variable’s spread around its mean is used as a

cost function. The variance is shown to be minimized by the conditional expecta-

tion, E(B|A), defined in (4.4), where p(B—A) is the conditional probability density

function of B assuming A.

E(B|A) =

∫
B ∗ p(B|A)dy (4.4)

The variance of the conditional expectation, V ar[E(B|A)], measures the part of

B predicted by A [35]. A ratio between this term and the variance of B is taken to

compare the prediction to the overall variance of B. The correlation ratio can take

on a range from 0 to 1, with a value of 1 occurring when the images are perfectly

correlated. Additional details about this algorithm are described by Roche et al.

[35, 36].

Mutual Information

Mutual Information (MI) [49] is a very general similarity measure. MI is a measure

of how much information one image contains about another. Therefore, the goal for

MI is to maximize the MI value. This measure is an arbitrary mapping of intensities,

represented by (4.5), where H(X) is defined as the entropy of image X and H(X,Y)

is the joint entropy between two images. Entropy can be interpreted as a measure

of the variability of a random variable. The mathematical definitions of entropy and

99

joint entropy are shown in (4.6) and (4.7). This essentially compares the degree of

dependence between the images or the amount of information that one image contains

about the other [20].

MI = H(A) + H(B)−H(A, B) (4.5)

H(x) = −
∫

p(x) ln p(x)dx (4.6)

H(x, y) = −
∫

p(x, y) ln p(x, y)dxdy (4.7)

The H(A) term is the entropy in the image being compared and the H(B) term is

the entropy of the part of the second image into which A projects. The joint entropy

term, H(A, B), takes effect when A and B are functionally related and favors cases

where A and B are well aligned [48]. The details of this algorithm are described in

further detail by Maes et al. [20].

Ratio Image Uniformity

Ratio Image Uniformity (RIU) is an algorithm that was introduced by Woods et

al [51]. It is also known as Variance of Intensity Ratio (VIR) [14].

The equation for RIU is shown in (4.8) and the definitions of R and R̄ are defined

in (4.9) and (4.10), respectively. R is a ratio image derived from images A and B.

The goal of this similarity measure is to find a transformation that maximizes the

uniformity, or normalized standard deviation of voxels, of this ratio image [14].

RIU =

√
1

noverlap
Σ(R− R̄)2

R̄
(4.8)

R =
A

B
(4.9)

100

R̄ =
1

noverlap

ΣR (4.10)

This algorithm is typically used for intramodality registration and has frequently

been used for registration of Positron Emission Tomography (PET) and MR images.

4.3.2 Image Registration Toolkit

The Image Registration Toolkit [37] is an open source registration program devel-

oped by researchers at Imperial College in London. Source code and pre-compiled

windows binaries are provided, but aside from a few command line examples, mini-

mal documentation is available. The registration program uses mutual information

as a similarity measure [38]. Further information about the algorithms used in this

program are described in papers by the authors of the software [38, 39, 40].

The Image Registration Toolkit was tested with two overlapping halves of an ul-

trasound image volume. It was able to register the volumes with an affine alignment,

but the result was not perfectly aligned. Non-rigid alignment using this program is

too slow to be practical and takes hours to run for a 100 MB volume on a fast desktop

computer. Although this program could be made to work to some extent, it does not

appear to be an effective option.

4.3.3 AIR 5.2.5 (Automated Image Registration)

AIR is an open source program developed by researchers at the University of

California Los Angeles and is primarily designed for multi-modal registration of MRI

and PET data. It is capable of performing linear, affine, and nonlinear registration.

It also includes a large suite of tools for registration and manipulation of 3D volumes.

AIR is distributed as source code only and can be compiled under Linux or Windows.

The authors have done a fairly good job with the documentation and provide useful

information and examples [52].

101

AIR uses the Ratio Image Uniformity similarity measure, which was developed by

the authors of this software [14].

Tests were performed with AIR by attempting to align separated halves of a

single volume in the same manner as Image Registration Toolkit. Initial tests proved

ineffective and it is likely that better test data was required. Upon discovery of more

effective registration methods, further testing was abandoned.

4.3.4 University of Cambridge’s Stradx

Stradx [29] is an acquisition and visualization system developed specifically for

ultrasound by researchers at the University of Cambridge. It is designed to acquire

and manipulate ultrasound data with 6 DoF position information. This software is

very well documented and numerous papers have been written describing in detail

the technical aspects of its various capabilities [13][30][31].

Most of the other algorithms for registering 3D volumes that have been discussed

involve 3D non-rigid deformations, which are very computationally intensive pro-

cesses. Furthermore, the previously discussed algorithms focused on MRI, CT, and

PET modalities with no attention to ultrasound. Their approach uses a two stage

process; they start with a non-rigid inter-B-scan alignment within each sweep and

then perform a rigid translational 3 DoF alignment between the two sweeps. They

have optimized this algorithm for speed, and it performs very quickly. These algo-

rithms have been developed specifically for use with ultrasound data and take into

account the fact that ultrasound data have much more noise and speckle than other

modalities and can be significantly view-dependent.

Alignment Process

The first step in the two-stage Stradx alignment process is to align the B-scans

within each sweep to create well-aligned sweeps. It is very difficult to maintain con-

102

sistent probe pressure through an entire sweep, which results in compression of the

features being scanned. This alignment process compresses and expands each succes-

sive B-scan to match with the one before it, which has the result of causing all of the

B-scans to appear as if they were scanned with constant probe pressure. It also has

the added benefit of removing respiratory artifacts caused by breathing motion. Non-

rigid alignment of 3D data is normally computationally intensive; however, this can

be accomplished fairly rapidly in Stradx because the process only involves aligning

pairs of 2D B-scans to each other, rather than performing a full 3D alignment.

After the scan planes have been aligned within the individual sweeps, multiple

sweeps can be aligned to each other. Due to the mechanics of scanning, organs

and features are likely to be moved around by probe pressure, but are not typically

rotated; therefore, only translations are necessary to line up sweeps [13].

A user-specified dividing plane that cuts through the overlapping region of the

two volumes is defined using a graphical tool. The two volumes being merged are

then compared at this dividing plane. Stradx ’s multi-sweep alignment tool performs

a multi-resolution search in three dimensions. This search is undirected, meaning

that it searches all possible alignments rather than following gradients, because the

authors found that false alignments are possible when a directed search is used [13].

The process begins by smoothing and down-sampling the two images it is comparing,

then translates them in the x and y directions, comparing at each alignment using

one of three user-selectable similarity measures to find the best alignment. One of the

volumes is then shifted in the z axis and checked again. The program keeps track of

the best alignment found during all stages. After checking all alignments within the

user-specified range, the resolution is increased and the process is repeated, starting

from the best correlated alignment found at the previous resolution. Four different

resolutions are used in this alignment process. Stradx provides a graphical interface

to show the user the alignment results, so that the alignment parameters can be

adjusted if necessary.

103

Stradx permits the user to select between three different correlation similarity

measures. In most cases these perform very similarly; however, if the process fails

on a given pair of volumes using one algorithm, it may be helpful to try others. All

three of these methods are common, well-proven similarity measures. These simi-

larity measures consider the two images as random variables and use different types

of probabilistic analysis to determine alignment. The three options for correlation

functions are:

• Sum of Absolute Differences (SAD)

• Correlation Ratio (CR)

• Mutual Information (MI)

These similarity measures were described in more detail in Section 4.3.1. None of

the similarity measures are perfect for all sets of volumes, but it is usually possible to

find one that is effective. In general, Mutual Information and Correlation Ratio tend

to be the two best choices. Selection of a similarity measure is simply a matter of

choosing one from a drop-down box in the alignment window (shown in Figure 4.4),

which allows a user to test all three measures to select one that produces a visibly

correct alignment for the current problem.

4.3.5 University of Cambridge’s Stradwin

A more recent tool from the group at University of Cambridge is called Stradwin

[28]. This is a more updated program that is meant to be a replacement for Stradx.

Until very recently, Stradwin was not a viable option for this system’s data capture

needs, because it did not implement any multi-sweep alignment capabilities. However,

in Stradwin 3.4, the capability to merge multiple sweeps was added.

Stradwin’s multi-sweep alignment is significantly different than that of Stradx.

Instead of performing mathematical comparisons between the sweeps, it simply lines

104

Figure 4.4: Stradx Alignment: Views of sweep alignment at the dividing plane

them up based on the recorded position information. Using the captured 6 DoF

position and orientation data, sweeps are aligned in 6 DoF, accounting for both

translations and rotations. Although it seems this would be much less accurate, in

many cases it is possible to get very good alignment without any additional processing.

As no comparison takes place, no similarity measure is used in this process.

Stradwin also implements a modified scanning process designed for multiple sweep

acquisition, called ‘multi-sweep gated’ mode. In this mode, recording starts when the

probe has been held still for about a second and stops when the probe is held still

again. When the probe is lifted up and moved over, then held still again, another

sweep is created and recording resumes. This can be repeated for any number of

sweeps to form a multi-sweep volume. This avoids the need to manually specify the

extents of the sweeps in the post-processing phase.

Stradwin imposes minimal requirements upon how the data are actually scanned.

The one important requirement is that at least one B-scan must be taken with minimal

probe pressure. This provides a standard to which the rest of the scans can be

105

compared to correct for probe pressure artifacts.

While acquisition using Stradwin is the most effective way of obtaining data, it

is not without its limitations. The primary downside to Stradwin is that it requires

a position tracking system. It also requires either a Terason system or a computer

with frame capture capabilities and a standard ultrasound system. Position sensors

are quite expensive, with the most inexpensive models starting at about $2500 [16].

While using Stradwin, which is a free program, would be simple in a laboratory

environment, it may not be quite as easy to require an ultrasound operator to use

Stradwin on patients. They would need to first be trained in the use of the software.

The cost of the position sensor is the primary concern and as long as that is not

prohibitive, the other limitations are fairly negligible.

Stradwin provides simple and intuitive scanning and alignment, while still being

able to accurately align multiple sweeps. Because the system uses a position tracking

system for the training system, the tracking system will be available for scanning as

well. For these reasons, it was chosen as the best option for the image capture method

for this system.

4.3.6 Free-Form Deformation Registration Code by Dr. Joy-

oni Dey

Although Stradwin was chosen as the preferred method of capturing and stitching

image data, some practical difficulties arose with the use of Stradwin for stitching,

which are described in Section 6.2. Because of these difficulties, some additional

options for multi-sweep stitching have been evaluated. Dr. Joyoni Dey, a researcher

at the University of Massachusetts Memorial Medical School, has developed a method

of stitching multiple 3D data volumes [10]. This method is aimed toward stitching of

MRI volumes, but can be extended to work for ultrasound data. Additionally, it is

designed primarily for registration of two similar MRI volumes of the same subject

106

that are not perfectly aligned.

This code works by first aligning the two volumes rigidly using a 12 degree of

freedom affine alignment. This involves aligning the two volumes by translation, ro-

tation, scaling, and skewing. Following the affine alignment, a free-form deformation

is performed to non-rigidly align the two volumes. For both of these alignments the

Sum of Squared Difference similarity measure is used.

Some initial work was performed with this code, but due to time constraints no

significant results were able to be obtained. The alignment process takes quite a

while to run, which proved to be a hindrance to testing. For a typical registration,

affine registration requires about half of a day of processing on a dual-core server and

free-form deformation requires over a day of processing.

The initial testing was performed with MRI test volumes, so ultrasound data has

not been tested yet. Additional testing using ultrasound data will be necessary to

determine if this might be a viable option for registration of multiple volumes.

4.4 Stradwin Capture Details

Whether or not Stradwin is used to perform volume stitching, it is a clear choice for

data capture. Stradwin is capable of interfacing with nearly any ultrasound scanner,

including the Terason portable ultrasound systems. By combining the image data

from an ultrasound scanner with the position and orientation data from a 6 DoF

tracking system, 3D image volumes can be generated in real time. Stradwin is a

powerful utility that offers many useful features for 3D ultrasound.

Figure 4.5 shows a block diagram of the Stradwin capture process. The subject

is scanned with a transducer with attached 6 DoF tracking system, making multiple

overlapping sweeps of the transducer. Scanning produces streams of image data and

position and orientation values, which must be aligned with each other through a

calibration process. The calibrated data can be used to generate a 3D image volume.

107

Figure 4.5: Block Diagram of Stradwin Capture Process

Although Stradwin makes the data acquisition process fairly simple, there are

still several necessary details and idiosyncrasies that must be known. Appendix F

describes details about the Stradwin setup and data capture process.

4.5 Stradwin Calibration

Combining position data with ultrasound image data for 3D imaging requires

calibration to properly relate the coordinate system of the position sensor to the

images that are recorded. For this reason, it is essential that a calibration process be

performed before attempting to acquire data with Stradwin. In fact, without a valid

calibration, Stradwin will not permit recording of ultrasound data.

Stradwin implements a fairly simple, semi-automated calibration process in which

the user sets some parameters and then goes through a series of specific probe mo-

tions while Stradwin detects lines formed by the bottom of a water bath. Stradwin

provides documentation on calibration; however, the procedure in Appendix G may

prove helpful, as the instructions are oriented toward this specific configuration and

include some additional insight achieved through conversations with the developers

of Stradwin.

Figure 4.6 shows the four different coordinate systems that are aligned by the

108

Stradwin calibration process. T is the coordinate system of the tracking system

transmitter and R is the coordinate system of the tracking receiver. C represents the

coordinate system of the volume being scanned. P is the image coordinate system,

which represents the scan plane and the image seen on the monitor.

Figure 4.6: Diagram of Coordinate Systems Aligned by Stradwin Calibration [32]

Equation (4.11) shows the series of transformations that relate the coordinates of

the scan image, x, to the volume being scanned. CTT is a transformation between

the reconstruction volume and the location of the tracking transmitter and is used to

remove any offset between the captured image volume and the tracking transmitter.

TTR is the transformation between the tracking transmitter and tracking receiver,

which is what is determined by the tracking system. Finally, RTP is the transfor-

mation between the receiver position and the scan image, which is what must be

determined through calibration.

Cx = CTT
TTR

RTP
Px (4.11)

These transformations are defined using translations and fixed angles. The three

109

rotations are specified as (α, β, γ), which correspond to rotations about the z, y, and

x axes, respectively. To properly perform rotations, these must be executed in γ, β,

α order [32].

In general, a 6 DoF transformation from coordinate system I to coordinate system

J takes the form of Equation (4.12).

JTI(x, y, z, α, β, γ) =

cos(α) cos(β) cos(α) sin(β) sin(γ)− sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ) x

sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ) y

− sin(β) cos(β) sin(γ) cos(β) cos(γ) z

0 0 0 1

(4.12)

The calibration procedure produces two points per captured image that define

the ends of the captured line. Calibration using these values is performed using the

Levenberg-Marquardt Algorithm [24], which is an iterative numerical algorithm for

multivariate optimization.

4.5.1 Improved Calibration Using a Mechanical Fixture

Stradwin’s calibration process is fairly simple to perform, but achieving very ac-

curate calibration is difficult because the motions are unconstrained. Additionally,

the bottom surface of a water bath is not a very controlled surface. The designers of

Stradwin came up with a novel approach to improving the efficiency and effectiveness

of the calibration process. They designed a calibration fixture, shown in Figure 4.7,

which they call the Cambridge Phantom [13]. The calibration fixture is used in a

water bath, but the transducer is held in place pointed at the top of a thin brass bar

rather than the bottom of the water bath. Because a brass bar is being viewed, detec-

tion is much easier and the quality of the water bath is not important. This fixture

constrains the movements of the transducer to only one or two degrees of freedom at

a time, making it much easier to isolate the required motions.

110

Figure 4.7: Cambridge Phantom [13]

Unfortunately, the purchase cost for one of these Cambridge Phantoms made by

the Stradwin team is £1600 (approximately $2300), which is prohibitively expensive.

However, after studying their papers and diagrams, it was determined that it would

be feasible to design and produce a similar calibration fixture in-house.

CAD models of the phantom and required parts were drawn up in SolidWorks.

The necessary materials were able to be purchased for a total cost of less than $100

and the parts for the fixture were machined in-house at no cost. Figure 4.8 shows

the CAD model of the calibration fixture with a transducer and Flock of Birds sensor

held in the clamp and a photo of the actual manufactured fixture. Figure 4.9 shows a

CAD drawing of the calibration fixture, and indicates its dimensions in inches. The

manufacturing process for this calibration fixture is described in step-by-step detail

in Appendix M.

111

(a) 3D CAD Model

(b) Photo of Manufactured Fixture

Figure 4.8: WPI Calibration Fixture Images

112

Figure 4.9: CAD Drawing of WPI Calibration Fixture

113

The materials for the calibration fixture were carefully selected to minimize inter-

ference with the magnetic tracking system. Although the Flock of Birds is relatively

immune to interference from nearby metal, it is still affected to some degree, and

some materials are worse than others. Ascension Technology Corporation specifies

that aluminum and 300-series stainless steel are generally not problematic, so these

materials were used whenever metal was necessary. The main parts of the fixture

are machined from aluminum with a brass strip used for the bar that is scanned. In

the calibration fixture’s current state, the bolts and washers are made of 300-series

stainless steel and the wing nuts are nylon. Because these interference concerns were

kept in mind during material selection, the affect on the performance of the tracking

system is negligible.

4.6 Registration of Data Volumes to Manikin

After volumes have been created, some additional processing must take place

to use the volumes with the simulation system. A volume must be appropriately

scaled and aligned with the manikin so that the represented anatomical features are

positioned correctly. The individual scans are registered and the overall resulting

image volume is scaled to the size of the manikin.

Since this registration process needs only to be performed once for a given volume,

it is currently achieved manually. It is assumed that the top of the image volume is

the skin surface and that the volume is centered in the torso of the manikin. The

assumption is also made that the torso shape of the patient from whom the data

were captured is similar to that of the manikin. Thus, the only adjustments that are

necessary are the isotropic scaling of the volume and the longitudinal offset within

the torso. These two parameters are adjusted through trial and error to achieve an

appropriate fit between the image data and manikin.

This process could be improved by the creation of an automated scaling and

114

offset process. One method of doing this would involve capturing a series of points

to represent the surface of the patient in a similar manner to the method described

in Section 5.3.2. This surface capture could be compared to a similar capture for the

manikin to determine the necessary scaling and offsets. Additionally, through a non-

rigid deformation process, it could be possible to account for significant differences in

torso shape between the patient and manikin.

4.7 Image Data Header File

In order to display a 3D volume, it is necessary for the software to know some basic

parameters, such as the dimensions of the volume. While volumes can be loaded by

selecting the data file and manually specifying the parameters, the file loading process

can be streamlined by using a header file that contains all necessary parameters and

the name of the appropriate data file. The use of a header file also permits a larger

number of parameters to be easily specified for any given volume and simplifies record

keeping.

To accommodate the specific needs of this system, a custom header file was de-

signed. This header has the extension ‘.ghd’ and is an extension of the ITK ‘.mhd’

header file format. The header file is an ASCII file containing a number of parameters,

one of which is the filename of the data file, which should have a ‘.raw’ extension.

Table 4.1 describes the different parameters that can be specified in the header file.

115

Parameter Values Description
NDims 2,3 Specifies the number of di-

mensions for the image, this
must be 3 for these volumes

DimSize xxxx yyyy zzzz Image volume dimensions in
pixels

ElementDataFile data filename.raw Name of the file containing
the raw image data

Offset x.xxx y.yyy z.zzz Amount by which to offset
the volume from the center
of the tracking system, used
to align data to the manikin

VolumeScaling x.xxx y.yyy z.zzz x, y, and z scaling factors
to fit the volume to the
manikin

FeatureN x1 x2 y1 y2 z1 z2 x3 x4 y3 y4 z3 z4 Coordinates of features
within the volume, specified
as two rectangular bounding
boxes by pairs of x, y, and z
coordinates. N denotes the
feature number.

Table 4.1: Header File Parameters

116

4.8 Conclusions

The capability to effectively generate simulation data is an important part of

any simulation system. Although not readily apparent to the end user, this is very

important for the developers, as providing an extensive library of data is essential for

this system to be useful.

A variety of similarity measures have been presented and a number of options for

data capture and registration have been evaluated. Stradwin appears to be a clear

choice for data capture and was the initial choice for registration as well. Results

of multi-sweep data captures from a phantom and human subject are discussed in

Section 6.2.

Details of the Stradwin capture process have been presented to provide a clear

description of the necessary steps for successful data capture. The calibration process

is presented, along with details on the calibration fixture that was constructed to

simplify the process.

117

Chapter 5

Learning Outcomes Assessment

5.1 Introduction

Learning outcomes assessment features are what make a training system more

effective than a simulation system. While a simulation system can be a valuable tool

for learning the mechanics of scanning, it does not generally provide any means of

evaluating skills or improvement, so features have been added to this system that

can assess the effectiveness of the training. These learning assessment tools provide

opportunities for users to hone their skills and methods for instructors to assess

whether trainees are improving.

By providing tools to help teach and evaluate students, the training system is

made much more valuable. Students can be asked to identify and localize specific

pathologies or traumas and be told whether they were correct. The scan path can

be recorded and played back for analysis to determine whether trainees are scanning

effectively. Still images can also be captured to provide permanent records and eval-

uate a trainee’s ability to capture quality scan images. These tools serve to help

the trainee learn and to provide an effective means for a trainer to assess learning

outcomes.

118

5.2 Region of Interest Selection

An important training feature is verification of the trainee’s ability to identify

specific anatomical features or abnormalities and select them. This tool provides both

the interface for localizing specific traumas or pathologies using the touch screen and

the ability to determine if features were correctly selected.

The user can asked to scan for and locate a specific pathology or anomalous

condition. Then, using the touch screen the user may select the specific feature

within the scan plane. After the user has made their selection, the are graded on

whether they correctly selected the specified anatomical feature.

Figure 5.1 shows a block diagram of the region of interest selection system. This is

divided into three major parts: drawing feature objects, user selection, and automatic

detection. Drawing feature objects involves reading the objects from the data set and

drawing them relative to the volume being displayed. In most cases, these will be

hidden and will not actually be displayed to the user. User selection is where the user

draws a selection with the touch screen in an attempt to correctly select the desired

region. Automatic detection involves determining if this selection was made correctly.

5.2.1 Inclusion of Features in Data Set

Figure 5.2 shows how regions of interest are specified in the data sat. The manikin

skin surface shown represents the bounding area of the data volume. The red shape in

the middle is a specific anatomical feature that trainees will be requested to identify.

The inner black box that closely surrounds the region of interest is the inner boundary

and the outer black box forms the outer boundary. For clarity, both bounding boxes

reside outside of the region of interest in this figure, but the inner one could certainly

be located within the desired region to permit the user to select right at the edge of

the region of interest. The user is expected to create a selection that is positioned

between the two bounding boxes, such as the yellow box shown in Figure 5.2.

119

Figure 5.1: Region of Interest Selection Block Diagram

Figure 5.2: Feature Object Specification and Correctly Selected Region of Interest

120

Regions of interest can be specified in each data set in the form of feature objects

containing a series of points that make up the outline of the bounding boxes. These

features are specific to a given volume and are encoded in the volume’s header file,

which was described further in Section 4.7. These features are currently specified by

twelve floating point values in the form of four (x,y,z) points, which represent two

diagonally opposite corners for each of two rectangular prisms.

A feature is specified in the header file as “FeatureN = x1 x2 y1 y2 z1 z2 x3 x4 y3 y4

z3 z4”, where N is the number of the feature within the data set. The inner bounding

box is formed by the points (x1,y1,z1) and (x2,y2,z2). The outer bounding box is

specified by the points (x3,y3,z3) and (x4,y4,z4). For initial development, currently

only one feature (‘Feature1’) may be specified, but with further development, any

number of features could be specified for a given data set as long as they are given

unique and serially increasing numbers. Although the bounding boxes are currently

specified as rectangular prisms, this is only to simplify initial design and testing, and

the software could be modified to work with any shape. Other shapes could be used

by specifying proper points and setting up an appropriate drawing function.

The features are normally drawn as invisible objects so that the user will not know

where the features are located. However, an option is included to display the specified

features for debugging purposes, which was described in Section 3.3.3.

5.2.2 User Selection

During a training session, trainees may select specified regions of interest using

the touch screen, as shown in Figure 5.3. By touching the screen and dragging one’s

finger, a user may specify a rectangle, circle, or oval around the object they have

observed. The specific shape depends on the software settings, as multiple selection

shapes have been developed.

When a touch or mouse click is registered, a new object is created at the current

drawing depth. The initial point that is touched is stored as the shape’s starting

121

Figure 5.3: Region of Interest Selection Using an Oval

point and the second point also starts out at this location. As the finger is dragged,

the second point is updated to the new location, providing two distinct points. The

software continuously updates the shape with every screen update, so the user can

see the shape change as they move their finger. When the finger is lifted up, the

selection is saved and continues to be displayed.

For simplicity of initial automatic detection, a rectangular region is used for the

selection to match up easily with the rectangular prism bounding boxes. This is

created as a thin rectangular shell that is open on the front and back ends. It is

specified using the two points captured by the user selection.

Alternatively, an oval shape can be used. To create an oval-shaped selection object,

a circle of diameter 1.0, specified in OpenGL units, is created. The translations and

rotations described in equations (5.1)-(5.5) are applied to scale this to the correct size

and properly position it. The center of the shape is positioned at the arithmetic mean

122

of the starting point and current point. The dimensions of the circle are scaled to the

absolute value of the difference between the points to form an oval with elongation

based on the angle of the selection. The z-axis is generated based on the current

position of the sham transducer, to ensure that it lines up with the view seen by the

user.

translatex =
x1 + x2

2
(5.1)

translatey =
y1 + y2

2
(5.2)

r =
√
|y2− y1|2 + |x2− x1|2 (5.3)

scalex = |x2− x1| (5.4)

scaley = |y2− y1| (5.5)

5.2.3 Automatic Evaluation

The system is developed to provide feedback to the user as to whether he or she has

correctly identified one of the predefined anatomical features. This uses the method

of collision detecting which is common in computer graphics. Collision detection is

frequently used for games and physical simulations to detect when moving objects

collide, so they do not overlap. An example where collision detection would be used

is determining if an object being thrown collides with a wall.

Collision detection is applied in this case by testing whether the selection collides

with the two bounding boxes. The two boxes are specified as solid rectangular prisms,

so that anything inside of them will register as collisions. The selection object, on the

123

other hand, is specified as a open-ended shell, so that it will not collide with other

objects inside of it. As shown in Figure 5.2, the selection should lie within the outer

bounding box, but outside of the inner bounding box. This equates to a collision

with the outer box and no collision with the inner box.

Collision detection was been implemented using a library called SOLID, which

stands for “Software Library for Interference Detection” [11]. This library uses spe-

cially defined graphical objects that contain additional information for the system

to be aware of the space that they occupy. Various objects, such as cubes, spheres,

cones, and cylinders are already defined and available for use.

Initially, a simplified scenario was used, where only a single bounding box was

generated to define the region of interest. The goal of this initial experiment was

to automatically detect if a rectangular prism drawn based on the user selection

intersects with the defined bounding box.

The first step toward this goal was to implement the framework for evaluating a

selection. This consists of a GUI button to call the evaluation function and a textbox

within the GUI to output the results.

SOLID was set up to check for collision of two fixed, overlapping graphical objects.

A basic SOLID configuration was built based on examples included with the library.

It was also tested that intersections would not be detected when the graphical objects

were moved to no longer overlap. This basic test was successful, paving the way to

generate the selection object based on the user selection.

The user-specified coordinates were used to dynamically define the selection box,

and again, intersection was tested. This test was also successful, showing that dy-

namically defined objects could be tested for collision.

Due to time constraints, automatic detection could not be entirely completed.

Some additional effort is required to create a rectangular shell SOLID object for

the user selection, so that when properly selected, it will only intersect with the

outer bounding box. This shell should be comprised of four rectangles to form a

124

rectangular open-ended shell. A correct selection would be detected when the user

selection intersects with the outer bounding box, but not the inner box.

5.3 Scan Path Recording and Display

Another valuable skill for a sonographer is the ability to scan efficiently, so that

a diagnosis is reached in a short time, yet without missing important features. This

is especially relevant in emergency ultrasound, where it is critical that the internal

trauma be identified quickly. By recording the scan path of the transducer, the

opportunity exists for the trainee and instructor to later view the scan path and

discuss the trainee’s scanning methods.

Figure 5.4 shows a block diagram of the scan path recording and display system.

The scan path is recorded within the training system environment, then the MATLAB

engine is called to process and display the data within the MATLAB environment.

A stored surface model of the manikin is displayed by the overlay script and a GUI

is drawn on the graph for control of the playback.

5.3.1 Data Recording

Whenever the ‘Record Data’ checkbox is enabled in the GUI, every data point

from the tracking system is recorded to a log file as the user scans the manikin. This

log file is formatted as a Comma Separated Value (CSV) table. A typical record is in

the form ‘x, y, z, a, e, r, timestamp’, where the records are double-precision floating

point values. The parameters x, y, and z represent the three translational axes while

a, e, and r are the three rotational axes and stand for azimuth, elevation, and roll,

respectively. CSV was chosen because it is a simple format to read and write, and

is compatible with Excel and MATLAB. The log file is automatically saved as a file

named ‘log data.csv’.

125

Figure 5.4: Scan Path Recording and Display Block Diagram

126

5.3.2 Manikin Surface Model Generation

The surface generation script generates a 3D surface mapping of the manikin based

on a captured data set. The data consist of a series of x,y,z coordinates captured by

scanning the surface of the manikin with the position tracking system. Data were

captured using the ts capture software. Points were captured in a grid by making

tight back-and-forth motions, spaced approximately 1 cm apart. A secondary, sim-

ilar grid oriented perpendicular to the first one provided additional detail. As data

points are captured at approximately 50 points per second, scanning can be done at

a comfortable pace. Figure 5.5(a) shows a set of points used to generate a surface

plot.

To properly create a surface rendering, interpolation was performed between the

captured data points. To do this, a user-contributed library from MATLAB’s File

Exchange called gridfit was used. This creates a set of interpolated points fit to a

square grid. The new interpolated data were plotted in MATLAB as a surface plot.

Copper shading tones were used and appropriate lighting was applied to create a

realistic-looking surface model. Figure 5.5(b) shows an example of a surface rendering

generated by this script. It can be seen that the surface rendering is a visually accurate

representation of the surface of the manikin, showing even the most minute details.

The MATLAB code for the surface generation script can be seen in Appendix H.1.

5.3.3 MATLAB Engine

MATLAB provides the MATLAB Engine for interfacing with other applications.

This engine can be opened from within C or C++ code by including the appropriate

headers and libraries and issuing a call to the engine. The engine is opened as a MAT-

LAB command terminal, rather than opening a full graphical instance of MATLAB.

Once the engine is open, MATLAB commands can be run simply by issuing calls to

the engine with the command text. This can be used to run specific commands or

127

(a) Captured Points for Manikin Surface Plot

(b) Manikin Surface Plot

Figure 5.5: Manikin Surface Model

128

call a script to run a pre-defined routine. The one drawback to using the MATLAB

engine, is that MATLAB is required to be installed on the computer running the

software. This is a significant limitation, but for the purposes of this software, it

can be expected that it will be run in an academic environment where MATLAB

would be available or on a system-specific laptop, which would include a MATLAB

installation.

The scan path overlay script is called as a MATLAB function. Once the function

call has been issued, there is no need for further communication between the training

software and the MATLAB engine, as a GUI is provided for the MATLAB script so

that it may be controlled without additional communication between the software

and the MATLAB engine.

5.3.4 Scan Path Overlay

The scan path overlay script is called by the training software and generates a

display of the recorded scan path drawn onto a surface model created using the

script in Appendix H.1. The points are drawn one at a time at a time step of 0.02

seconds; corresponding to the training system capture rate. This permits accurate

visualization of the scanning path and motion.

The plotted points represent only the position of the recorded points and do

not reflect the orientation of the sham transducer during the capture. In most cases,

displaying only position is adequate to visualize and evaluate the scan path. However,

if rotations were necessary, the data points could be shown by drawing a series of

rectangles with appropriate rotations applied rather than dots.

Figure 5.6 shows an example of a scan path overlay on top of a surface rendering,

which was generated by this script.

To improve usability, a GUI was added to the MATLAB scan path overlay script.

This was designed using MATLAB’s Graphical User Interface Development Environ-

ment (GUIDE). GUIDE provides a simple graphical interface for designing GUIs,

129

Figure 5.6: Manikin Surface Plot with Scan Path Overlay

130

which permits the user to add various objects to a form. These objects are then

linked to callback functions, which can be edited by the user.

Four buttons are implemented along with the graphical plot. ‘Plot Path’ plots

the entire scan path instantly. ‘Play Path’ plays through the scan path point-by-

point, showing a real-time replay of the scan. ‘Fast Play’ plays back the path in the

same manner, but at a rate twice as fast. This acts like the fast-forward button on a

videocassette player. Finally, ‘Clear’ erases the plot so that the user may start over.

Figure 5.7 shows a screen capture of the scan path overlay with the GUI. MATLAB

code for the scan path overlay script can be seen in appendix H.2.

Figure 5.7: Scan Path Overlay with GUI

Figure 5.8 shows the software process that occurs when the ‘View Scan Path’

button is clicked. First, the MATLAB engine is started. Next, the display is frozen,

recording is stopped, and the recording file is closed so that it can be opened with

131

MATLAB. The MATLAB script is then run, which draws the manikin surface model

and MATLAB plot GUI. Meanwhile, the program stays in a frozen state until the

‘Unfreeze’ button is clicked, which will create a new data file and resume normal

program operation.

5.3.5 Uses for Assessment of Learning Outcomes

Scan path recording and display is most useful when combined with analysis from

a human trainer. The trainer can view the playback of the recorded scan path and

comment on what the trainee was doing properly or incorrectly. The primary benefit

is that the trainer does not have to be present at the time of scanning. It is also

possible to play back the scans at an increased speed to save time when viewing

long scans. A module within a training course for sonographers could involve the

trainees recording their scan path for a given scan type. The trainees could be asked

to submit all of their scan path files for the trainer to review. In turn, the trainer

could demonstrate what the scan path of a professional might look like and provide

comments.

In addition to being used with the training software, the scan path overlay script

can be used as a standalone scan path viewing utility. This can be especially useful

for permitting trainers to view the scan paths captured by trainees. To use the script

in this manner, the script can be opened in MATLAB and the filename of the desired

scan path can be entered into the script.

In the future, it may be possible to design a system for automatically detecting

whether a scan path exhibits desired characteristics and covers the correct areas of

the manikin. These features have not yet been implemented, but are a conceivable

extension of the current scan path recording system.

132

Figure 5.8: Scan Path Playback Software Flowchart

133

5.4 Still Image Capture

Capturing still images is an important part of a typical ultrasound exam. While

it is important that the sonographer analyzes the patient during the scan, in most

cases the sonographer’s main role is to capture images that will later be reviewed by a

doctor. Image captures are essential for record keeping, second opinions and further

analysis. Often, following an ultrasound examination, the recorded images will be

looked over by the patient’s doctor. Additionally, like x-ray scans, the ultrasound

images become part of the patient’s record, providing documentation of what was

found.

As a very commonly used feature of ultrasound, still image capture is essential to

implement in the ultrasound training system. Not only does this provide an expected

feature; it also provides some additional training and assessment opportunities. By

requiring trainees to capture images of certain anatomical features and pathologies,

their ability to scan for features and capture quality images can be evaluated. By

capturing scan planes, trainees can keep records of their work. These saved scan

images can later be analyzed with a human trainer to discuss the quality and content

of the captured images.

The captured scan images are in the standard JPEG format, which is very com-

monly used for digital camera images. Because of this, they can be opened in nearly

any image viewing application.

5.4.1 Implementation of Still Image Capture

Screen capture capabilities were added to the training system software through

the use of an open source library called mkOpenGLJPEGImage. This class simplifies

the process of capturing a JPEG image from the current OpenGL display, condensing

the process to only a couple of simple lines of code.

To permit capturing of multiple images within a single session, it is necessary

134

that the captured images be appended with a unique serial number. To do this,

a variable is stored that contains the number of the current image. Each time the

capture function is called, the current number is appended to the image in the form

‘captured image#.jpg’, where # is the image serial number. After the image is stored,

the serial number variable is incremented in preparation for the next capture.

There are two different ways to trigger the screen capture. A button has been

placed on the GUI toolbar as described in Section 3.3.3. This button can be seen in

Figure 3.12. Alternatively, the user can press the ‘s’ key on the keyboard to trigger

the image capture function.

5.5 Conclusions

The learning outcomes assessment tools described in this chapter present new

learning and assessment opportunities that are not always possible with traditional

ultrasound systems. Traditionally, training has been performed with a personal in-

structor and by evaluating only the captured scan images outside of the training

session. These improvements allow the instructor much more flexibility in the train-

ing process. The instructor can give an assignment to an entire class and then evaluate

their progress at a time most convenient for them. It could even be possible for a

trainer to teach remotely via the internet. By saving screen captures and scan paths,

the scanning and image capture skills of the sonographer can be evaluated. Region of

interest selection provides the opportunity to automatically evaluate whether students

can correctly locate various pathologies and anatomical features.

Overall, these features significantly improve the training process. Although the

system cannot provide a complete evaluation without any human intervention, it

certainly simplifies the process. Trainees are given more freedom in when they can

perform the training exercises, because they do not need an instructor present during

the training session. Similarly, trainers do not need to be present for the training

135

session and can afterward compare the results from the entire class. Through these

learning assessment tools, the training process is simplified and streamlined.

136

Chapter 6

Results and Discussion

The following sections present some results and discussion for each of the compo-

nents of the system that were described in the previous chapters. Additionally, the

results of a clinical evaluation are presented in this chapter.

6.1 Ultrasound Training System

Figure 6.1 shows a screen capture of this training environment. The training

system interactively generates scan planes in real time, based on a user’s movement

of the sham transducer. The update rate is approximately 20 frames per second on a

standard desktop computer, which provides a smooth, realistic display of scan images.

The training environment includes a number of features to make it intuitive and

realistic. The user can select between different probe geometries and change the scan

depth while scanning. The gain and TGC can be adjusted to improve the display of

certain features. The display can also be frozen for further analysis of a given scan

image. An effective GUI has been implemented to control all of the features and the

program can be displayed in either windowed or fullscreen modes.

The tracking transmitter has been embedded into a manikin by mounting it on

a board with rods that slide into pipes embedded in the manikin. This hides the

137

Figure 6.1: Screen Capture of Ultrasound Training System Software Environment

138

tracking system and ensures that the sensor can be removed and put back in with-

out changing the location relative to the manikin. The sham transducers are very

convincing and could easily be mistaken for real transducers. Both linear and convex

array sham transducers have been constructed and can be switched by simply select-

ing from a menu in the software. A touch screen has been added for simplified use

and intuitive access to learning assessment features.

Overall the software and hardware interfaces make for a very realistic user experi-

ence and provide an authentic training environment. The software has been designed

to emulate that of computer-based portable ultrasound systems and provides a similar

interface and most of the scanning features of these systems. The hardware interface

is very realistic and could easily give a user the impression that they are scanning a

specially-designed anthropomorphic phantom rather than a generic training manikin.

6.2 Data Acquisition

A means of acquiring data for use with simulations has been developed and evalu-

ated. The use of Stradwin to capture multi-sweep ultrasound data makes the capture

process fairly simple and effective. Multiple sweeps are taken with Stradwin’s ‘Mul-

tiple Gated’ capture mode. These data are recorded with calibrated position infor-

mation to spatially align the image data. Using Stradwin, the multiple sweeps can be

aligned to form a single, contiguous volume, which can be exported as evenly-space

voxel data.

Multi-sweep data were captured by scanning an ATS anthropomorphic phantom

and stitched with a fair degree of success. Figure 6.2 shows a comparison between

3 individual sweeps and a composite volume created by stitching together the three

overlapping sweeps. This figure represents one of the better parts of the volume and

there are some portions that do not line up quite as perfectly. Overall, the stitched

volume looks fairly good, having a well-aligned middle section that shows almost no

139

discernible lines between sweeps. However, the outer portions of the volume are not

quite perfect and show more distinct lines at the sweep boundaries. This phantom

only accounts for a small slice of the abdominal region and therefore can only be used

for proof of concept, rather than generating simulation data; therefore, capturing

data from human subjects is essential.

Figure 6.2: Comparison of Individual Scans and Stitched Volume

While capturing data from a phantom proved to be moderately successful, ob-

taining quality data from a human subject is a much more difficult process. From

discussion with clinical contacts, we learned that the primary source of difficulties in

stitching 3D image volumes from actual human subjects is motion of the body and

organs due to internal movements and external forces. Internal movements are related

to motion within the body during scanning, such as those caused by breathing, heart

140

motion and intestinal gas. This causes two scans of the same area to contain different

data and adjacent sweeps that, based on position data should overlap, do not line up

perfectly. Intestinal gas proves to be especially troublesome, as the gas bubbles cause

significant image degradation. External forces consist primarily of probe pressure.

When different pressures are applied, internal organs are compressed to different de-

grees. While Stradwin attempts to adjust for differences in probe pressure, it cannot

always perform this process perfectly. Sweeps in different directions will also push

organs in slightly different ways, further altering the captured data, so it is important

that sweeps be taken in the same direction.

The result of these scanning difficulties would be a data set that does not line up

properly when stitched together using Stradwin’s multi-sweep stitching feature. This

makes it apparent that refinement of the stitching process is required. Stradwin’s

method of stitching together multiple sweeps based solely on position data cannot

be entirely effective for data where motion and deformation have occurred. What

is really necessary is some type of non-rigid registration, which would deform the

captured data to properly create a stitched volume. Dr. Joyoni Dey’s code that was

described in Section 4.3.6 may be an effective solution to this issue. By performing

both affine transformation and free-form deformation to the multiple sweeps, it may

be possible to produce accurately stitched image volumes.

Although the current stitching process does not appear to be effective for human

subjects, Stradwin does seem to be the best choice for data capture, even if it is

not used for stitching. Stradwin provides a clean and effective interface for scanning

3D data volumes with position data. The software is well supported by the team at

the University of Cambridge and software updates are frequently released with new

features. The calibration mode, although somewhat difficult, is generally effective for

aligning ultrasound image data to the tracking system coordinates. Overall, Stradwin

is a quality piece of software and greatly simplifies the process of capturing multi-

sweep data with accurate position and orientation information.

141

6.3 Learning Outcomes Assessment

Software tools for learning outcomes assessment have been implemented to sim-

plify the training process and provide improved opportunities for evaluating skills.

These tools focus on providing stored data that can be analyzed off-line, as well as

providing some degree of automatic assessment. Region of interest selection permits

the user to select a specific pathology or anatomical feature and be graded on whether

they were able to correctly identify the requested feature. Although automatic eval-

uation of these selection has not been completely implemented, the framework exists

and proof of concept has been verified through partial implementation. The scan

path recording and playback features permit the scan path to be recorded and later

played back, showing the recorded path superimposed on a surface rendering of the

manikin. This enables evaluation of a trainee’s scan path and whether they were

scanning efficiently and effectively. The ability to capture still images is implemented

to provide a permanent record of notable scan images and to evaluate a trainee’s

ability to capture meaningful images. These features have been successfully designed

and are implemented directly within the training system software where they can be

accessed using the graphical user interface.

These learning assessment tools, when combined with professional analysis by an

instructor have to potential to be very effective for streamlining the training process.

By providing standardized sets of captured images and scan paths, the process of

evaluating a trainee’s progress is greatly simplified. Furthermore, region of interest

selection provides some degree of automation to the process by providing instant

feedback as to whether features were correctly selected.

Due to time constraints, these tools have not yet undergone a clinical evaluation.

The clinical evaluation will be an essential measure of whether these tools are effec-

tive for their intended purpose and how they might be improved. Tests should be

performed to determine whether a user’s skill can be determined based on captured

142

images and scan paths and whether the region of interest selection tool is effective.

Ideally, this evaluation should happen as part of a traditional course for sonographers,

which could provide opportunities for comparison, along with opportunities to discuss

the training merits with students taking a course.

6.4 Clinical Evaluation

An initial clinical evaluation of system performance and images was performed

by two sonographers at the University of Massachusetts Memorial Medical Center

in October, 2008. They were given the opportunity to test the system and asked to

provide feedback. They found the resolution of the tracking system to be realistic and

felt that the frame rate was adequate. They liked the idea of an ultrasound training

system and pointed out the value of an ultrasound training system for studying a

variety of conditions in a hands-on environment. At the time of evaluation, none of

the learning outcomes assessment tools had yet been implemented, so no evaluation

of those features was possible.

One observed shortcoming was the low quality of the current image data. This

observation is quite understandable, as the available image data set was derived from

a single sweep of a prostate scaled up to cover a larger area. As data capture methods

are improved and better data are captured, this problem should be resolved. Overall

their reaction was positive and enthusiastic.

The opportunity to discuss the benefits and shortcomings of the system with

experienced sonographers was a valuable experience and provided some useful insight.

This helped to refine some of the project goals and provided reassurance that there

is a market for a system like this.

In the future, further clinical evaluation will be necessary to determine the effec-

tiveness of the system and quality of new data sets. Specifically, the system should

be tested on sonographers, ultrasound trainers and sonographers in training to de-

143

termine the strengths and shortcomings of the system. This will be very helpful for

determining future development goals.

144

Chapter 7

Conclusions

In this thesis, a successful prototype of an interactive training system for medical

ultrasound has been developed. The simulation system permits a trainee to scan

a manikin with a sham transducer and view scan planes on the computer screen,

updated in real time. With the addition of the hardware interface, the software can

be run on a standard PC-based desktop or laptop computer. This system provides

a realistic scanning experience, complete with adjustable image parameters such as

scan depth, gain, and TGC. Tools for learning outcomes assessment are provided,

including region of interest selection, still image capture, and scan path recording

and playback.

This system provides an environment for learning and experimentation without

the need to study human patients or use a costly ultrasound system. Furthermore,

once data for a given trauma or pathology has been captured, they can be used re-

peatedly for training. This provides the opportunity for sonographers to get hands-on

experience studying conditions that would otherwise be too rare for training oppor-

tunities to arise.

Data capture has been the most problematic part of this system and further work

is still needed in this area. Although, as shown in Section 6.2, scans of phantoms

can be captured with a fair degree of success, capturing data from human subjects

145

proves to be much more difficult. After consulting with clinicians about the merits of

combining multi-sweep data captured from human subject, it has become apparent

that there may be a need to look back at comparison-based registration methods.

This completed prototype system is a major step toward a marketable ultrasound

training system. If an effective library of data can be compiled, this system has the

potential to revolutionize the way that sonographers are trained. By streamlining

the training process, a computer-based training system could make ultrasound much

more accessible and encourage its use to become more widespread.

7.1 Future Work

Although an effective demonstration system has been developed, there are still

some improvements that could make the system more effective for training and more

commercially viable. Many of these ideas were not goals of the initial project, but

became obvious opportunities for improvement during the development process. Due

to the limited scope and time frame of this project, a number of features could not

be implemented. This section describes these ideas in the hope that they will be

considered for future development opportunities.

The most significant future work that is required is in the area of simulation data.

As noted by the clinicians who evaluated the system, the current simulation data are

of fairly low quality and could certainly use improvement. Because data capture has

proven difficult, image quality has been lower than desired and has not been conducive

to the simple Stradwin stitching process. The inability to effectively stitch together

multiple volumes captured from human subjects has prevented complete data sets

from being produced. The most beneficial development would be to find a way to

successfully perform a non-rigid alignment of multiple ultrasound sweeps. While Dr.

Joyoni Dey’s code shows potential, further effort is necessary to determine if it will

produce acceptable results with ultrasound data. If this method proves ineffective,

146

design of custom software may be necessary. A custom multi-volume registration

program with these goals in mind has the potential to be much more effective than

attempting to make something else work for the needs of this project. This would,

of course, require significant effort and should only be undertaken after ensuring that

there are no existing solutions that could potentially work.

Another major area for improvement would be in the area of real-time image

processing. By performing additional processing on the image data and scan planes

during the training session, more realistic images can be generated. With further

improvements, it may be possible to make the training system nearly indiscernible

from a real ultrasound system.

The following are some image processing improvements that could enhance the

system and are described in the proceeding paragraphs:

• Dynamic Shadowing

• Transducer Geometry Conversion for Image Data

• Focus Adjustment Emulation

• Probe Pressure Processing

Dynamically generated shadows would be beneficial for creating more realistic scan

images. Fixed shadow direction and placement are unrealistic and make the training

system distinguishable from using a real ultrasound scanner. Shadows generated

during the simulation could change based on how the sham transducer is held, for a

more realistic appearance.

The ability to properly convert data captured by one transducer geometry to look

like another geometry would also be quite useful. Without any additional image

processing, it is always obvious what type of transducer was used to capture a data

set, regardless of the mask being applied. To make this a reality, a method for

properly changing the speckle patterns and shadows would be necessary. This could

147

alternatively be performed as an offline process and different data sets could be loaded

when changing probe geometries.

Adjustment of focus is an important part of ultrasound imaging that is currently

not emulated by this system. The data inherently show the focus with which they

was captured. It would be beneficial to perform some type of data processing to

give the appearance of adjustable focus. While it would be difficult to improve upon

the focus of the original image, it may be possible to at least make areas appear

out of focus through Gaussian blurring. If the simulation data are captured with

good, multiple-depth focusing that maintains a well-focused image throughout, then

this blurring could be used to generate the appearance of adjustable focus. It is

likely that this would be implemented in a similar manner to TGC, generating an

interpolated gradient between focus points. However, instead of applying brightness,

blurring would be incorporated.

Ideally, probe pressure would also be accounted for. The image should accurately

compress when enough pressure is applied to the manikin to compress it. The image

should compress properly to show the shapes of internal organs being temporarily

deformed. This pressure being applied could be measured either using a pressure or

force sensor, or by analyzing the probe displacement relative to the manikin surface.

Additionally, when the probe is not in contact with the manikin’s surface, no image

should be displayed. Similarly, there should be no image if ultrasound gel is not

used. Skin contact could be measured using a pressure sensor, or a surface map of

the manikin could be used to determine in software if the probe is in contact with

the manikin. The presence or absence of ultrasound gel could be detected using a

moisture sensor.

The learning assessment tools could be improved by introducing more automated

assessment. For example, the capability to determine the quality of a given scan path

compared with a scan performed by a professional would streamline the scan path

evaluation process and limit the need for a human instructor. Image processing tech-

148

niques to determine the quality and content of captured images would also enhance

the learning process and help to create a more automated training process.

A potentially useful extension of this project would be to implement 4D simulation

by adding a time dimension. A major difficulty with a 4D approach is the large

amount of data that would be necessary. There would essentially need to be an entire

image volume for each time step within the sequence. While this might be realistic

for very limited volumes, a 4D image volume of the entire abdominal region would be

likely to exceed the memory capabilities of most current computer systems. However,

as time progresses and computer systems improve, this may eventually become more

realistic.

149

Appendix A

Software Design Considerations

In any software project, there are some initial design choices to take under consid-

eration. These include development environment, linking method, and source code

control.

The development environment refers to the operating system, integrated develop-

ment environment (IDE), and compiler that are used. As most work for this project

was performed in the Window XP operating system, this was a clear choice for devel-

opment. Although Windows development can be slightly more tricky than develop-

ment on Linux or Unix systems, most of the difficulties come with initial acclimation

to the specific errors that can occur. The selected IDE and compiler are Microsoft

Visual C++ .NET 2003. Microsoft Visual C++ is the standard for Windows C++

development and is well-supported. Although 2003 is not the most recent version, it

provides all of the necessary functionality required for this project.

An important development choice is the selection between static and dynamic

linking. Static linking packs all of the libraries into a single executable, which creates

a larger file size, but does not require any external libraries. This avoids difficulties

with missing library files. Dynamic linking uses Dynamic Link Library (DLL) files,

which are external to the program and must be available on the system running the

software. The primary benefit of dynamic linking is that if multiple programs are

150

being run using the same libraries, only one copy of the library must be loaded into

memory, which can be beneficial if multiple programs are sharing the libraries. Static

linking is a clear choice for this system because for a relatively small program like this

that is using mostly unique libraries, there would be little benefit to dynamic linking.

The benefits of being able to create a single executable and avoid missing DLL issues

far outweighs the slight reduction of memory requirements gained by dynamic linking.

Source code control is an important part of any software project, as it allows revi-

sions to be tracked and facilitates keeping frequent backups and records of progress.

Subversion (SVN) and CVS are the two most common types of code repositories.

While either would be an acceptable option, SVN was chosen because of prior expe-

rience with it, which reduces the required time to get started working with it. All

source code, along with the documentation and multimedia files for this thesis were

kept under subversion control using WPI’s SourceForge server.

151

Appendix B

Ascension Technologies

Corporation Flock of Birds

Datasheet

152

Figure B.1: Ascension Technologies Corporation Flock of Birds Datasheet [4]

153

Appendix C

Ascension Technologies

Corporation trakSTAR Datasheet

154

Figure C.1: Ascension Technologies Corporation trakSTAR Datasheet [4]

155

Appendix D

Discussion of Precision and

Accuracy

Two scientific terms that are commonly confused and misunderstood are precision

and accuracy. By definition, accuracy of measurement is described as the “closeness

of agreement between a measured quantity value and a true quantity value of a

measurand” [17]. Measurement precision is defined as the “closeness of agreement

between indications of measured quantity values obtained by replicate measurements

on the same or similar objects under specified conditions” [17].

In practical terms, accuracy is the closeness of a measurement to the true value,

while precision is the variation of the measured values. This can be thought of in

terms of the target example shown in Figure D.1. An accurate marksman will shoot

close to the bull’s eye, but the shots may not be close together. A precise marksman

may not necessarily hit near the bull’s eye, but a series of shots under the same

circumstances will be very close together. One who is both accurate and precise will

be able to form a tight pattern near the bull’s eye.

Figure D.2 shows a graphical example of accuracy and precision. The deviation of

the mean from the reference value is the accuracy and the precision is the variation

about the mean, generally expressed in terms of the standard deviation.

156

Figure D.1: Accuracy vs. Precision, Target Example [25]

157

Figure D.2: Accuracy vs. Precision, Graph Example [50]

158

Appendix E

Comparison of AC and DC

Magnetic Tracking Systems

159

Figure E.1: Ascension Technologies Corporation AC vs. DC Tracking System Com-
parison [7]

160

Appendix F

Stradwin Capture Process

This appendix details the Stradwin setup and calibration process. Instructions are

provided to assist with configuring the hardware and software and performing a scan.

These descriptions are specifically written for Stradwin 3.6 with a Terason t2000 [43]

or t3000 [44] ultrasound system and an Ascension Flock of Birds [5] position sensor.

While this information should be applicable to most Stradwin configurations, some

modification to the procedures may be required for other systems.

F.1 Initial Hardware and Software Setup

A complete Stradwin acquisition requires the Stradwin software, an ultrasound

image source or RF data source and a position sensor. Figure F.1 shows the specific

setup used for this project. The handheld probe consists of a transducer with an

attached Flock of Birds 6 DoF tracking sensor. A Terason t2000 or t3000 system is

used for the image source. The Terason system is a computer-based ultrasound system

that has an external probe and performs the processing and display on a standard PC-

based computer system. The Terason hardware connects to a PC through a Firewire

interface and the RF data are processed in Terason’s software. Terason provides a

full-featured ultrasound application, but also provides the capability to export the

161

raw RF or image data to other programs.

The position sensor is an Ascension Flock of Birds, which is a magnetic 6 DoF

position tracking system. The Flock of Birds system was described further in Section

2.4.2. It provides accurate position data through a standard RS232 serial port.

Stradwin takes the data provided by Terason, as well as the position and orienta-

tion information generated by the Flock of Birds and combines them to capture 3D

image data.

Figure F.1: Block Diagram of Stradwin Acquisition Hardware Interfaces

To use Terason with Stradwin, it is necessary to acquire some special ActiveX con-

trols from Terason to allow the Terason image data to be used outside of their software.

These files are called ‘TTAutomate.ocx’, ‘TTFrameReceiver.ocx’, and ‘TTRFRe-

ceiver.ocx’. It is a good idea to put these files into the ‘C:\Windows\System32’ folder.

They must be registered using the Windows regsvr32 program. This can be done by

going to ‘Run’ in the start menu and typing in “regsvr32 < path + name of file >”.

This process must be performed for each of the three files.

Before starting to work with Stradwin, it should be verified that the Terason ultra-

sound system and the Flock of Birds are each functioning correctly. To test Terason,

one must ensure that the Terason probe is connected to the computer through a

functional Firewire port and then open the Terason software. If this is the first time

162

running it, it may be necessary to contact Terason for a registration code. If it is

working, the display should be visible and scanning a phantom or water bath should

show something on the display.

To test the Flock of Birds, it is necessary to verify that the system is properly

connected and the main switch is in ‘Fly’ mode. The ‘winbird.exe’ program provided

by Ascension can be used to test the system. In the ‘SetUp’ menu, ‘RS232’ must

be selected. The COM port that the Flock of Birds plugged into must be selected;

this is typically COM1. If the baud rate has not been changed by opening up the

Flock of Birds and changing the configuration switches, the baud rate will be set

to the default of 115,200; the baud rate should be set accordingly in Stradwin. In

most cases, the default options will be correct unless a different COM port is used.

If the main display says ‘Setup Complete’, the sensor can now be tested. Selecting

‘Animate’ under the ‘Take Data’ menu will display a set of axes on the screen. By

moving around the sensor within a 1 m radius of the transmitter, it can be verified

that the sensor responds to rotations and translations.

If both Terason and the Flock of Birds pass basic functionality tests, Stradwin can

now be started. Before Stradwin can be opened, Ascension’s winbird test software

must be closed and the Terason software should be running. Stradwin can be accessed

using the start menu or desktop icon.

The first set of options are on the ‘Record’ tab near the left section of the screen.

It should be verified that above the ‘Configure Image Source’ button, ‘Using Terason’

is displayed. If above the ‘Configure Position Source’ button, ‘No position sensor

available’ is displayed, ‘Configure Position Source’ can be clicked to configure the

position sensor options. The same COM port and baud rate settings as were used

for the winbird test software will work for Stradwin as well. The option to probe for

‘Bird’ tells Stradwin to search for a Flock of Birds. The power switch on the Flock

of Birds should be changed to ‘STBY’ and then back to ‘FLY’ and then in Stradwin,

‘Reprobe for Sensor’ can be selected. At this point, the dialog should display ‘Bird

163

sensor detected’, meaning that the sensor is set up and ready to be used.

The display icon on the toolbar, shaped like a computer monitor, will turn on the

ultrasound display. If everything is working properly, one should see the ultrasound

image on the left main display and a green semicircle on the right main display. If

either of these is not displayed, this can often be remedied by pressing the display

button again to turn it off, resetting the Flock of Birds, and then turning the display

back on. At this point, Stradwin is working and it is possible to continue with

calibration or data acquisition.

F.2 Stradwin Data Acquisition

After initial hardware and software setup has been performed and the system has

been calibrated as described in Appendix G, it is possible to begin capturing data.

If the steps in Section F.1 were followed and calibration has been performed, it

should be fairly simple to begin capturing data.

Ensure that the ultrasound image display is visible and that the position is shown

in the right display. Select the ‘Record’ tab and set the Video Rate to either ‘Gated’

for single-sweep capture or ‘Multiple Gated’ for multi-sweep capture. Gating Thresh-

old adjusts the spacing between captured scan planes and also the sensitivity of the

gating algorithm. A value of 3 is typically a good choice.

To capture a single sweep, click the red record button on the top menu, near

the upper-left. Hold the transducer still against the surface being scanned until an

audible start sound is heard, which sounds like a rising beep, and then begin scanning.

After completing the scan, again hold the transducer still until the audible stop sound

is heard, which should sound like a falling beep. If the scan fails due to the probe

movement being too fast or unsteady, a ‘dush’ sound will be made, and the scan must

be restarted. After a successful scan has been captured, click the red record button

again.

164

To capture multiple sweeps in multiple gated mode, capture a single sweep in the

same manner as in gated mode, but after making a single sweep and hearing the

stop sound, move the probe over to where the next sweep will be captured and hold

it still until the start sound is heard again, at which point another sweep may be

captured. Multiple sweeps may be captured in this manner. When all sweeps have

been completed, acquisition can be stopped by clicking the record button again.

To view the captured data, click the display button in the upper-left corner, which

looks like a computer screen. The captured scan will be displayed and can be viewed

in different ways using the options in the right panel. These viewing options are

described in further detail in the Stradwin documentation [28].

165

Appendix G

Stradwin Calibration Procedure

The following calibration procedure is based on the procedure described in the

Stradwin documentation, but includes additional insight derived from personal expe-

rience and conversations with the developers of Stradwin.

Calibration requires a water bath with a flat, textured bottom surface that pro-

duces a distinct backscatter free of excessive other reflections that may interfere with

the line detector’s ability to discern the actual bottom of the water bath. An acrylic

bath with a standard mouse pad glued to the bottom has worked well in prelimi-

nary tests. The water bath should be filled with clean room-temperature water to a

height a couple of centimeters less than the desired scan depth. If it is not possible

to get room-temperature water, the temperature should be allowed to settle for a

while to achieve a stable temperature. It is important that the water be at a stable

temperature because the speed of sound in water varies with temperature. While

Stradwin can account for different water temperatures, it is not designed to work well

for changing water temperatures.

When using a magnetic tracking system, there are some noise concerns that must

be considered. It is important that calibration, as well as scanning, be performed in

an area free of excessive ferromagnetic metal. While the Flock of Birds tolerates the

presence of metal better than do AC magnetic systems, it still does not work well

166

with large pieces of metal in close proximity. An especially problematic case is where

the transmitter or water bath is placed directly on a metal desk or table. If a CRT

monitor is being used anywhere near the operating area, it is advisable to use the

monitor synchronization cord provided with the Flock of Birds to allow it to account

for noise transmitted by the monitor.

It is important to make sure that Stradwin’s display is turned off before working

with the Terason application, as the Terason window will only be available if Strad-

win’s display is not active. One should ensure that the desired depth is set and verify

other probe settings. The focus should be set to the approximate depth of the bottom

of the water bath with the probe held under water. It is also generally helpful to re-

duce the gain and TGC to their minimum values for calibration, as this will diminish

reflections and show only the more distinct boundary between the water and bottom

of the water bath.

In Stradwin, on the ‘Record’ tab, the ‘Video Rate’ option should be set to ‘Full

speed’ for calibration. Next, it should be verified that the video stream from Terason

is active and visible in Stradwin and that the position display (green semi-circle) is

shown; the display should look like Figure G.1. Clicking ‘Configure image source’ will

bring up a set of options, and in this dialog, ‘Auto Crop Video’ can be selected to

crop the image to only the visible portion.

Next, the ‘Probe Calib’ tab can be selected to enter the calibration mode. At this

point, one may find it helpful to adjust the sizes of the subwindows in Stradwin to

make the ultrasound data display larger. The temperature of the water should be

measured or approximated and entered into the temperature box, then confirmed by

pressing ‘Set’. The next step involves setting the scale of the image on the screen

to correspond to real distances. One measurement must be specified for each of the

x and y axes. The first measurement can be set as the vertical distance by noting

the probe depth set in Terason and marking points on the top and bottom of the

image corresponding to the full depth. One should make sure to click the ‘Finished

167

Figure G.1: Stradwin Display With Properly Configured Video and Position Sensor

168

locating ends of line’ button when done. The horizontal measurement must be set by

using an object of known width, placed in the water bath. This could be a metal or

plastic block that has been precisely measured. The object should be placed in the

water bath and viewed on the screen with the ultrasound system. The slider must be

adjusted to the object’s width, then points can be marked on the left and right sides

of the object seen on the screen.

A region of interest can be defined to prevent erroneous data from being detected.

A good starting range is from the bottom of the display to about the mid-point of

the scan plane. After clicking the ‘Define region of interest’ button, a boundary can

be defined by left-clicking at each corner and then right-clicking to set the final point

and close the region.

The next step is to perform a specific series of motions and accept lines formed

by the bottom of the water bath that Stradwin automatically detects. Figure G.3

shows a graphical representation of these motions. An example of what these lines

should look like is shown in Figure G.2. To optimize calibration, these motions must

be performed carefully. After each probe movement, while holding the probe in place,

it is necessary to verify that Stradwin has properly detected the line formed by the

bottom of the water bath and then click ‘Accept Line for Calibration’. The goal of

the calibration process is to capture approximately 40 lines. If at any point, a line is

accepted that does not represent the water bath, it is necessary to click ‘Delete All

Lines’ and start the series of motions over, as one bad line can ruin the calibration.

The following is a description of the specific probe movements that are required,

which are illustrated in Figure G.3:

(a) Place the probe into the water bath at a depth of about 2 cm. The probe should

be vertical and not tilted in any axis. Acquire one line at this location. Then

move the probe vertically up and down taking a line in each position.

(b) Rotate the probe side to side without significantly lifting or tilting the probe

169

Figure G.2: Capture of a Line for Calibration in Stradwin

170

Figure G.3: Stradwin Calibration Motion Sequence [28] Depicting Necessary Trans-
lations and Rotations for Calibration Process

171

in any other axis as shown in Figure G.3(B). The rotations should be approxi-

mately the same angle in each direction. Accept lines at both rotations.

(c) Rotate the probe forward and accept a line. While keeping the probe oriented

the same way, move it up and down in the direction the probe is pointed as

shown in Figure G.3(C), taking two more lines. Then rotate the probe back-

wards to the same angle and repeat to record three more lines.

(d) Rotate the probe 45◦ in each direction about its vertical axis, accepting two

more lines.

(e) Translate the probe to different area of the water bath and repeat steps (A)-(D).

Next, repeat a third time in a location that does not form a line with the other

two.

If this process is followed properly, 13 lines should have been accepted for each of

the three locations, yielding a total of 39 lines. After all lines have been accepted,

click ‘Solve for Spatial Calibration’.

The final necessary step is to specify the probe name and depth and accept the

calibration. The probe should be given a descriptive name, then pressing the ‘Enter’

key will accept it. Next the depth should be entered and the ‘Enter’ key pressed again.

It is important that ‘Enter’ is pressed after each of these text entries or Stradwin will

not allow the calibration to be accepted. Once this has been completed, the ‘Accept

Calibration’ button should be available, and clicking it will accept this calibration.

At this point, the calibration can be saved by saving the current configuration as

a template. This can be done by clicking the ‘File’ menu and then selecting ‘Save as

template’. It is good practice to give the template a descriptive name, specifying the

probe and depth.

172

Appendix H

Scan Path Visualization Scripts

The scan path visualization feature described in Section 5.3 relies on MATLAB

scripts to map the surface of the manikin and overlay the scan path onto the surface.

H.1 Manikin Surface Generation Script

The surface generation script generates a 3D surface mapping of the manikin based

on a captured data set.

H.1.1 Manikin Surface Generation Script MATLAB Code

% plot_ts.m

% trakSTAR plotting script

% Christian Banker

plot3(x/1.5, y/1.5, -z/1.5); % line plot

grid on;

xlabel(’x [inches]’);

ylabel(’y [inches]’);

zlabel(’z [inches]’);

view([58 58])

figure;

plot3(x/1.5, y/1.5, -z/1.5, ’.’); % point plot

173

grid on;

xlabel(’x [inches]’);

ylabel(’y [inches]’);

zlabel(’z [inches]’);

view([58 58])

% surface plot

figure;

[xfit,yfit,zfit] = gridfit(x,y,-z,100,100); % gridfit function

colormap(copper(256)); % copper color mapping - close to skin tone

surf(yfit/1.5, zfit/1.5, xfit/1.5); % surface plot

camlight right; % set up lighting

lighting phong;

shading interp

grid on;

hold on;

xlabel(’x [inches]’);

ylabel(’y [inches]’);

zlabel(’z [inches]’);

view([58 58])

%surface plot with superimposed lines

figure;

[xfit,yfit,zfit] = gridfit(x,y,-z,100,100); % gridfit function

colormap(copper(256)); % copper color mapping - close to skin tone

surf(yfit/1.5, zfit/1.5, xfit/1.5); % surface plot

camlight right; % set up lighting and shading

lighting phong;

shading interp

grid on;

hold on;

plot3(x/1.5,y/1.5,-z/1.5+1,’linewidth’,2) % plot new coordinates on top of surface

xlabel(’x [inches]’);

ylabel(’y [inches]’);

zlabel(’z [inches]’);

view([58 58])

hold off;

174

H.2 Scan Path Overlay Script

The scan path overlay script is called by the training software and generates a

display of the recorded scan path drawn onto a surface model created using the script

in Section H.1. This permits accurate visualization of the scanning path and motion.

A MATLAB GUI was created using the MATLAB Graphical User Interface Devel-

opment Environment (GUIDE). Guide provides a simple environment for designing a

wide range of graphical interfaces for MATLAB scripts. Further details on the script

and GUI can be found in Section 5.3.4.

Four different options are available in the MATLAB GUI for this script, which

each perform different action. ‘Draw Path’ instantly draws the entire path. ‘Play

Path’ causes the points to be drawn one at a time at a time step of 0.02 seconds;

roughly corresponding to the training system capture rate. ‘Fast Play’ only displays

half of the points to speed up the playback.

H.2.1 Scan Path Overlay Script MATLAB Code

function varargout = plot_gui(varargin)

% PLOT_GUI M-file for plot_gui.fig

% PLOT_GUI, by itself, creates a new PLOT_GUI or raises the existing

% singleton*.

%

% H = PLOT_GUI returns the handle to a new PLOT_GUI or the handle to

% the existing singleton*.

%

% PLOT_GUI(’CALLBACK’,hObject,eventData,handles,...) calls the local

% function named CALLBACK in PLOT_GUI.M with the given input arguments.

%4

% PLOT_GUI(’Property’,’Value’,...) creates a new PLOT_GUI or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before plot_gui_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to plot_gui_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

175

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help plot_gui

% Last Modified by GUIDE v2.5 23-Dec-2008 22:59:20

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @plot_gui_OpeningFcn, ...

’gui_OutputFcn’, @plot_gui_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before plot_gui is made visible.

function plot_gui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to plot_gui (see VARARGIN)

% Choose default command line output for plot_gui

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes plot_gui wait for user response (see UIRESUME)

176

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = plot_gui_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

cla(handles.axes1,’reset’);

load ’C:\Banker\SF_svn\gear\gear_1.0.0\proj\glui_test\matlab\charlie-bu-4.mat’;

output = ezread(’C:\Banker\SF_svn\gear\gear_1.0.0\proj\glui_test\matlab\log_data.csv’, ’,’);

global x y z;

x = output.x/1.5;

y = output.y/1.5;

z = output.z/1.5;

colormap(copper(256)); % copper color mapping - close to skin tone

h=surf(yfit/1.5, zfit/1.5, xfit/1.5); % surface plot

view([58 58])

camlight right; % set up lighting and shading

lighting phong;

shading interp

grid on;

hold on;

% axes(handles.axes1)

% for k = 1:2:length(z), % run through at fixed rate

% plot3(x(k),-y(k),-z(k)+2.3,’.’) % plot new coordinates on top of surface

% pause(0.01)

% end

xlabel(’x [inches]’);

ylabel(’y [inches]’);

zlabel(’z [inches]’);

set(hObject,’toolbar’,’figure’);

guidata(hObject, handles); %updates the handles

% --- Executes on button press in plotpath.

function plotpath_Callback(hObject, eventdata, handles)

% hObject handle to plotpath (see GCBO)

177

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global x y z;

axes(handles.axes1)

for k = 1:1:length(z), % run through at fixed rate

plot3(x(k),-y(k),-z(k)+1.5,’.’) % plot new coordinates on top of surface

end

guidata(hObject, handles); %updates the handles

% --- Executes on button press in playpath.

function playpath_Callback(hObject, eventdata, handles)

% hObject handle to playpath (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global x y z;

axes(handles.axes1)

for k = 1:1:length(z), % run through at fixed rate

plot3(x(k),-y(k),-z(k)+2.3,’.’) % plot new coordinates on top of surface

pause(0.02) % 20 ms delay

end

guidata(hObject, handles); %updates the handles

% --- Executes on button press in fastplay.

function fastplay_Callback(hObject, eventdata, handles)

% hObject handle to fastplay (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global x y z;

axes(handles.axes1)

for k = 1:2:length(z), % run through at fixed rate

plot3(x(k),-y(k),-z(k)+2.3,’.’) % plot new coordinates on top of surface

pause(0.01) % 20 ms delay

end

guidata(hObject, handles); %updates the handles

% --- Executes on button press in clearpath.

function clearpath_Callback(hObject, eventdata, handles)

% hObject handle to clearpath (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

cla(handles.axes1,’reset’);

load ’C:\Banker\SF_svn\gear\gear_1.0.0\proj\glui_test\matlab\charlie-bu-4.mat’;

178

output = ezread(’C:\Banker\SF_svn\gear\gear_1.0.0\proj\glui_test\matlab\log_data.csv’, ’,’);

global x y z;

x = output.x/1.5;

y = output.y/1.5;

z = output.z/1.5;

colormap(copper(256)); % copper color mapping - close to skin tone

h=surf(yfit/1.5, zfit/1.5, xfit/1.5); % surface plot

view([58 58])

camlight right; % set up lighting and shading

lighting phong;

shading interp

grid on;

hold on;

xlabel(’x [inches]’);

ylabel(’y [inches]’);

zlabel(’z [inches]’);

guidata(hObject, handles); %updates the handles

179

Appendix I

gen volume - Volume Generation

Tool

This tool is capable of generating 3D volumes in raw, ITK, Analyze or Stradx

formats based on a series of equations specified within the code. It generates all

appropriate header files for each format and is also capable of generating multi-sweep

volumes for the Stradx format.

I.1 Input, Output and Options

This program takes no input files and outputs appropriate data and header files

in the selected format.

The equations that determine the generated data within the volume must be

manually specific within the code as a series of if...else...else if statements.

The first option is the filename for the volume. This should be entered without an

extension and all generated files will be composed of this filename plus the appropriate

extension. Next the user is requested to select between the four available file formats,

which are described in sections I.1.1 - I.1.4.

180

I.1.1 .raw with no header

This generates a simple raw data file with no header information. The file is gen-

erated with a .raw extension, however this can be renamed to any extension required.

No header information is saved, so it is important to note the settings selected for the

dimensions of the volume. At a later time, the makesx utility described in Appendix

J can be used to generate Stradx headers if the the dimensions of the volume are

known. As long as the dimensions and data type for a raw file are known, it can be

used with Gear.

The only required options for this format are the x, y, and z dimensions of the

volume in voxels.

I.1.2 ITK

The ITK (Insight Segmentation and Registration Toolkit) format is a popular

voxel-based format that consists of a raw .vol file and an ASCII header with a .mhd

extension. The header includes basic information such as the number of dimensions,

data type, spacing between voxels and dimensions of the volume. Various programs

are able to view these files, including VolSuite. This is a useful file format for working

with voxel-based data. gear is able to read the raw data files if the dimensions and

data type are provided and having the ITK header allows the volumes to be opened

in other programs for viewing.

The only required options for this format are the x, y, and z dimensions of the

volume in voxels.

I.1.3 Analyze

Mayo Clinic’s Analyze file format is similar to the ITK format, except that the

header file is in a binary format and cannot simply be edited with a text editor.

The data files are exactly the same as are used in the ITK format, except that these

181

files must have an extension of .img. The header file has an extension of .hdr and

contain similar information to the ITK header, except that it is written in binary

format. This file format is accepted by many programs including Analyze and AIR

[52]. While this file format is useful for permitting volumes to be opened in programs

that require this format, the difficulty of generating and viewing binary header files

makes it less desirable for general-purpose use than the ITK format. The data files

for this format are able to be used with gear, provided that the dimensions and data

type are known.

The only required options for this format are the x, y, and z dimensions of the

volume in voxels.

I.1.4 Stradx

The Stradx file format is much different from most volume file formats, as it is

slice-based rather than voxel-based. Stradx data consist of a series of two-dimensional

slices along with information on how to position them. Although it is an unusual way

of storing data, it is logical for a format developed specifically for freehand ultrasound

data. The header file includes position information for each slice. This format also

includes a calibration file that includes basic information like slice dimensions, along

with more advanced calibration information that can be omitted or replaced with a

constant value for simple generated volumes like these.

The first required option is the number of sweeps. This selects whether the data

consist of a single sweep or two overlapping sweeps. If two sweeps are selected the x -

axis offset between the two sweeps must be entered. This is the difference in position

between the left side of the first sweep and the left side of the second sweep.

The dimensions of the volume must also be entered. For a dual-sweep volume,

these are the dimensions of each sweep.

182

Appendix J

makesx - Stradx Header

Generation Tool

The makesx tool can generate the appropriate Stradx header and calibration files

for a voxelized 3D volume. It is capable of generating headers for a volume containing

either 1 or 2 sweeps. This is especially useful for converting volumes from a raw data

format into Stradx and can also be used to apply different offsets to a Stradx volume

that has regularly spaced slices.

J.1 Input, Output and Options

This program takes no input files and outputs Stradx header (.sx) and calibration

(.sxc) files. It is expected that there exists a raw data file with a .sxi extension of the

same filename being used for these files.

The program first asks for a filename with no extension, which should match the

name of the .sxi data file you have created. It then requests whether this will be a

single or dual-sweep volume.

For the single volume case the program requests values for the x, y, and z di-

mensions of the volume in voxels. These must exactly match the dimensions of the

183

volume in data file.

For a dual-sweep volume, it requests x, y, and z dimensions for the first volume

and a z dimension for the second volume. It is required that the two volumes have

the same x and y dimensions, which is typically the case for data captured from an

ultrasound scanner. Next, the x, y, and z offsets between sweeps are requested. Note

that the x offset is the offset between the left edge of the first sweep and the left edge

of the second sweep. If this value is not known, it can be calculated by subtracting

the sweep overlap from the x -dimension of the first volume.

The next option for either number of sweeps is the voxel spacing, which is the size

of a voxel in each dimension. Currently, this tool only supports isotropic spacing,

where voxels are cubic. A typical value for this setting is 0.1 cm/voxel, which equates

to 1 mm per voxel. It should be noted that Stradx can only account for up to 20

mm of offset in any axis, so the voxel spacing should be set to ensure that no offset

is more than 20 mm when the voxel offset is multiplied by the voxel spacing. Once

the program prints that the header file and calibration file have both completed, the

necessary files have been generated. Ensure that these two files are in the same folder

as the .sxi data file and open the volume by selecting the .sx file in Stradx.

184

Appendix K

ts noisex - trakSTAR

Measurement Rate Determination

Utility

The ts noisex program is designed to capture the necessary data to determine

the optimal measurement rate for a given operating environment. It provides a table

of data points representing measurement rate and noise pairs, which can be used to

select a measurement rate that minimizes noise.

It is modeled after Ascension Technology Corporation’s Noise-X program for their

Flock of Birds system. Because no such utility currently exists for the more recent

trakSTAR, it was necessary to design a custom program to perform this function.

This program works by sweeping through the entire range of measurement rates

and capturing noise measurements at each point.

K.1 Inputs, Outputs, and Options

This program takes no inputs and outputs a Comma Separated Value (CSV) file

consisting of entries of the form ‘meas rate,quality1, quality2, ... qualityN’, where

185

N is an option controlling the number of data points per measurement rate for use

when performing averages. The other user-controlled option is PTS, the number of

measurement rate data points to test. This is the number of subdivisions that are

made within the entire measurement rate range.

186

Appendix L

ts capture - trakSTAR Data

Capture Utility

This program is designed to capture a stream of data from the trakSTAR system

and record it to a Comma Separated Value (CSV) file. This data can be used to

determine noise on individual channels or to generate an accurate mapping of a surface

like was done for the manikin surface mapping.

This program is essentially the same as the trakSTAR read functions used in the

simulation system, but designed into a simple program that only reads the tracking

system.

L.1 Inputs, Outputs, and Options

This program takes no inputs. The output is a CSV table consisting entries of

the form ‘x,y,z,a,e,r,quality’, where x, y, and z are the translations, a, e, and r are

the rotations and quality is a quality factor that is indicative of the amount of noise

present. The only user-modifiable option is the read rate, in Hz, which can be specified

in the header file.

187

Appendix M

Calibration Fixture Manufacturing

Procedure

This section describes the procedure of manufacturing the calibration fixture and

lists required materials and tools. It is expected that anyone attempting to man-

ufacture one of these fixtures has a working knowledge of machining practices and

familiarity with the tools required.

M.1 Materials

• At least 1” length of 3” diameter solid aluminum rod - McMaster-Carr Part #

9034K51

• At least 6” length of 0.062” x 3/4” brass bar - McMaster-Carr Part # 8954K61

• Sheet of 1/4” aluminum, at least 4”x4.5”

• 2-part epoxy designed to bond metals

• 4x 1/4-20 x 4”bolts, 300-series stainless steel

• 4x 1/4-20 nylon wing nuts

• 4x 1/4” nylon or 300-series stainless steel washers

188

• 4x 1/4” 300-series stainless steel lock washers

• 1/4” thick, 1” wide foam tape, at least 4” length

M.2 Tools

• Metal cutting lathe

• Band saw with metal cutting blade

• Milling machine

• Fly cutter for milling machine

• 1/2” end mill for milling machine

• 1/16” end mill for milling machine - McMaster-Carr Part # 2802A81

• Drill bit attachment for milling machine

• 1/4” drill bit

• Accurate vernier caliper

• Various files and deburring tools

M.3 Manufacturing Process

The following sections outline the process of machining each part and assembling

the entire fixture.

M.3.1 Cutting and Milling Wheels

1. Turn 3” aluminum rod on lathe to clean outside diameter

2. Use lathe to clean front face

3. Use a band saw to cut off approximately a 1/4” thick disc

189

4. Put remaining bar back into lathe and clean the front face again

5. Cut off a second 1/4” disc with the band saw

6. Attach an appropriate fly cutter to the milling machine with a radius of at least

4”

7. Mount one of the discs in the milling machine’s clamp, supported by parallels

with the cleaned face down

8. Clean the face and mill down to a thickness of .200”

9. Repeat to mill the second disc

10. Deburr as necessary

M.3.2 Cutting and Machining Brass Bar

1. Cut off a section of the brass bar slightly longer than 6” in length using a band

saw

2. Affix the 1/2” end mill to the milling machine

3. Mount the bar in the milling machine with the end just cut facing toward the

end mill

4. Clean the face of the bar

5. Turn the bar around and clean the other face, then machine it until the total

length of the bar is 6”

6. Mount the bar in the milling machine clamp so that the 3/4” side is vertical,

with at least .20” extending above the top of the clamp

7. Machine the bar until its height is .600”

8. Deburr as necessary

190

M.3.3 Cutting and Machining the Clamp Plates

1. Using the band saw, cut two rectangles out that are slightly larger than 2”x3.15”.

It is preferable for at least one face to lie on a cleaned edge of the sheet of alu-

minum

2. Use the milling machine with the 1/2” end mill to clean all four side faces of

each of these aluminum rectangles.

3. Machine each to a finished size of 2.00” x 3.15”

4. Deburr as necessary

M.3.4 Cutting 1/16” Grooves for the Brass Bar

1. Mark the center point on each wheel and a point .60” from the center

2. Attach the 1/16” end mill to the milling machine

3. Mount one of the wheels in the milling machine

4. Machine a very thin groove from one mark to the other

5. Repeat in increments of approximately 0.010” - 0.020” to slowly mill through

the wheel. This must be done slowly and in small increments to avoid breaking

the small 1/16” end mill.

6. Once a groove has been cut all the way through, check the length of the slot

and test the fit of the brass bar. Incrementally increase the length of the slot

as necessary until the bar just slides into the slot.

7. Repeat for the other wheel.

8. Make marks on the aluminum plates from the center of one short edge to 1.20”

up from there, as shown in the drawings.

191

9. Mount one of the plates in the milling machine

10. Cut a 1/16” groove in the same manner as the wheels

11. Check that the brass bar slides smoothly through the groove, adjust as necessary

12. Repeat for the other clamp plate

M.3.5 Affixing wheels to brass bar

1. Mix 2-part epoxy as specified on packaging

2. Apply epoxy to the inside of the slot on one wheel and the outside of the bar

where they will make contact.

3. Slide the wheel onto the bar and allow to dry. If the fit is loose, they may need

to be clamped in place.

4. After the epoxy for the first wheel has set, affix the second wheel in the same

fashion.

M.3.6 Drilling Holes in Clamp Plates

1. Mark the locations of the 4 holes on each clamp plate as shown in the drawings.

2. Attach a 1/4” drill bit to the milling machine with a drill bit attachment.

3. Line the clamp plates up on top of each other and drill the 4 holes through both

plates simultaneously.

4. Clean the edges of the holes with a counter-sink drill

192

M.3.7 Assembly

1. Ensure that the clamp plates each slide smoothly on the brass bar, file as

necessary.

2. Attach a 1.5” strip of foam tape to each clamp plate, centered horizontally and

spanning from the top of the plate to just above the top of the groove.

3. Put the clamp plates and hardware onto the 4” bolts in the following order:

lock washers, plate 1, plate 2, washers, wing nuts

4. The clamp assembly may now be placed on the bar and wheel assembly.

5. A transducer can be mounted in the clamp assembly by tightening each of the

wing nuts one turn at a time until the transducer is firmly affixed in place.

193

Appendix N

Demonstration Guide

N.1 Introduction

This guide provides step-by-step instructions for setting up and performing a

demonstration of the Interactive Training System for Medical Ultrasound. It describes

the hardware and software setup and the details of running a demonstration. A

troubleshooting guide is also provided in section N.5. The appendices provide some

additional information on initial setup and how to access the subversion repository

where the code is stored.

This is meant to be a complete guide to cover all situations that may be encoun-

tered. However, for the majority of demos the setup will be very straightforward. For

a basic demo, only sections N.2 and N.4 are necessary. If the hardware has already

been set up appropriately, it may be possible to start directly from section N.4.

N.2 Hardware Setup

The first step to preparing a demo is to set up the hardware and make all neces-

sary electrical and data connections. This section details the required hardware and

the methods for setting it up.

194

The following hardware is required for a demonstration:

• Ascension trakSTAR 6 degree of freedom (DoF) Tracking System

• “Choking Charlie” manikin modified with appropriate cutouts

• Manikin mounting board with trakSTAR transmitter attached

• 2 sham transducers: linear and convex array

• A properly configured lab computer with MATLAB software installed. The two

currently configured systems are the Lenovo ThinkPad T61 laptop or the Dell

Precision 490 desktop computer.

• Touch Screen Monitor

• An available internet connection, if a network license for MATLAB is being

used.

• Power strip, or at least 2 available outlets.

The proceeding steps outline the hardware setup process:

1. Carefully place the manikin on the mounting board, ensuring that the rods on

the board slide into the fittings on the manikin. The manikin should rest flat

on the board when mounted correctly.

2. Position the trakSTAR control unit at least 18 inches away from the operating

area where the manikin will be placed.

3. Plug the transmitter cable coming out of the manikin into the trakSTAR control

unit. The plug will only fit in one orientation, so twist it until it audibly clicks

into place.

195

4. Connect the two sham transducers to ports 1 and 2 of the trakSTAR control

unit in the same manner as the transmitter. Which port each sham transducer

is connected to does not matter, except that the one connected to port 1 will

be the default transducer at startup.

5. Connect the trakSTAR’s USB cable to an available USB port on the PC.

6. Verify that the trakSTAR is plugged in and turn the power switch, located

on the back of the trakSTAR system, to the ‘I’ position to power it up. The

LED should initially be solid orange for several seconds and then begin blinking

green.

7. Connect the touch screen’s monitor cable to the monitor output of the computer.

Connect the monitor’s USB cable to an available USB port on the computer.

Plug the green monitor audio cable into the audio output port of the computer,

which is typically colored green. Plug in the power cord of the monitor.

8. Power on the computer system.

After all of these steps have been completed, the hardware is now set up and ready

for use.

N.3 Software Setup

If this is the first time this software is being set up on a new system, there are some

initial one-time steps that must be first performed, which are described in Appendix

N.6.

The software setup process depends on whether or not the code needs to be rebuilt.

The following circumstances would require rebuilding:

• The code has been downloaded to a new directory

196

• Updated code has been downloaded from the SVN

• The code has been modified

If none of these circumstances exist, the steps described in this section are unnec-

essary and the demonstration may be run as described in sectionN.4.

If a rebuild is necessary, the following steps describe the process of rebuilding the

software:

1. Ensure that the code is the desired version. It can be updated to the latest

revision by following the instructions in Appendix N.7.1.

2. Open the software project by double-clicking the icon for ‘Shortcut to cbanker dev.sln’

on the desktop. Alternatively, it can be accessed by opening Microsoft Vi-

sual C++ .NET 2003 and loading the solution ‘cbanker dev.sln’ from ‘[SVN

Root]\gear\gear 1.0.0\proj\’

3. Right click on the project ‘glui test’ and select ‘Build Project’

4. If the message window at the bottom of the screen shows ‘Build: 1 succeeded,

0 failed, 0 skipped’, the project has been built successfully and is ready to be

run.

N.4 Performing the Demonstration

The following steps describe the process of running a demonstration:

1. Ensure that the trakSTAR system is connected and powered on as described in

section N.2.

2. If necessary, load and rebuild the project ‘glui test’ as described in section N.3.

197

3. To use the Scan Path Playback feature, ensure that a MATLAB license is avail-

able. If the license being used is a network license, it will require an active

internet connection. For off-campus demonstrations, the WPI VPN must be

connected to access the MATLAB license server. Presence of a valid MATLAB

license can be verified by running the MATLAB software; if no errors occur, it

should be functional.

4. Place the sham transducer that is connected to port 1 on top of the manikin’s

abdomen; the exact position is not important. This ensures that the sham

transducer is in the top hemisphere at the time of initialization. .

5. To run the software, double-click on the ‘Ultrasound Simulation’ icon located

on the desktop. Initially a black command line window will appear, and then a

graphical display will open.

6. Once the graphical display appears, hold the sham transducer connected to

port 1 such that it is centered on the naval of the manikin. Press the ‘Recenter

Probe’ button to calibrate the center point for the sham transducer.

7. You may now freely scan the manikin. The transducer should be held with the

large groove toward the manikin’s right side, which corresponds to the thumb

for right-handed scanning. See section N.4.1 for information on how to perform

common tasks.

8. When the demonstration is complete, click the ‘Exit’ button in the upper-right

corner of the screen to exit the software. Power down the trakSTAR system.

N.4.1 Common Operating Tasks

This section details some common tasks, along with descriptions of how to accom-

plish them.

198

Exiting the program: Click the ‘Exit’ button at the top right of the screen,

which is a red button with a white ‘X’. Alternatively, this can also be done by pressing

the Esc key on the keyboard while the graphical window is the currently selected

window.

Re-center the sham transducer: Hold the transducer at the desired location

and click ‘Recenter Probe’ or press the space bar. The naval is typically a good

location to center the probe.

Change to the other sham transducer: Select a different probe geometry

from the dropdown menu in the GUI. Pick up the other sham transducer and click

‘Recenter Probe’.

Perform a screen capture: Click the ‘Screen Capture’ button on the GUI or

press the ‘s’ key on the keyboard. A capture will be saved as ‘capture#.jpg’, where #

is the sequential number of the image within this session. These files will be stored in

the program directory, which is currently “C:\Banker\SVN\gear\gear 1.0.0\proj\glui test”.

Note that file numbering is reset after the program is closed, so files should be relo-

cated or renamed prior to starting another session.

View scan path: After recording a scan path, click on ‘View Scan Path’. This

will freeze the screen, stop recording, and close the recording file. The MATLAB

engine will then be called and the manikin surface will be displayed. The scan path

can then be displayed or played back using the buttons on the plot. To resume

scanning, the ‘Un-Freeze’ button must be clicked, which will start a new scan path

recording.

Start new scan path recording: The scan path recording is reset when the

display is frozen and then un-frozen or after the scan path is viewed.

Perform region of interest selection: Draw a line using the touch screen to

specify two opposite corners of a rectangle. A red selection box should appear. Note

that this selection is reference to the current location within the volume and moving

the sham transducer may cause the selection to leave the current view. Click ‘Check

199

Selection’ to evaluate the selection. This will show either ‘Correct’ or ‘Incorrect’ in

the ‘Selection Result’ box in the GUI.

Load a different image volume: To load a different image volume, the startup

parameter for the program must be changed. First ensure that the desired im-

age volume and it’s corresponding header file are located in the program direc-

tory, “C:\Banker\SVN\gear\gear 1.0.0\proj\glui test”. Next, right-click the ‘Ultra-

sound Simulation’ icon on the desktop and select ‘properties’. Modify the target

field to show: “C:\Banker\SVN\gear\gear 1.0.0\proj\glui test\Debug\glui test.exe

desired volume header.ghd”, where “desired volume header.ghd” is the header file

for the volume to be loaded.

The currently available volume options are ‘Patient1 rot.ghd’ and ‘CIRS-stitched.ghd’,

which are the prostate and CIRS phantom volumes, respectively.

N.5 Troubleshooting

This section describes some potential problems that may be encountered, along

with suggestions for solving them.

The observed image comes out upside down:

Likely Cause: Sensor is in the wrong operational hemisphere at startup.

• Exit and restart the software. Ensure that the sham transducer is resting on

the manikin’s abdomen at startup.

No graphical window appears and the program either freezes or exits:

Likely Cause: trakSTAR is not being properly detected or no data volume is being

loaded.

• Ensure that the trakSTAR is correctly connected and powered on.

• Check that the specified data volume and header file are available in the program

folder.

Visualization is excessively noisy (image changes without moving trans-

200

ducer):

Likely Cause: Excessive metal nearby is causing interference.

• Ensure that there are not excessive amounts of metal in the area.

• Verify that the trakSTAR control unit is at least 18 inches away from the

manikin.

• Run ts noisex to determine an optimal measurement rate for the current envi-

ronment.

An image appears on the screen but cannot be controlled by the sham

transducer:

Likely Cause: The trakSTAR system is not connected or powered on, or an error has

occurred.

• Verify the trakSTAR power and communication connections. The LED should

be blinking green before starting the program.

• Ensure that upon starting the program, the trakSTAR LED starts out solid

orange during initialization (about 5-10 seconds) and then turns solid green.

• View the console window during operation to see if any error messages are

reported.

The Scan Path Playback feature does not work:

Likely Cause: The MATLAB software is unavailable or is not configured properly.

• Ensure that a valid internet connection is available and that the WPI VPN is

running and connected if this demonstration is being performed off-campus.

• Check that the MATLAB software will run and can execute commands.

• Verify that the initial setup described in Appendix N.6 has been performed for

this computer.

• Check that the proper project MATLAB directory is included in the MATLAB

path by type “path” at the MATLAB command line.

201

• Re-register the MATLAB COM server as described in Appendix N.6.

• Ensure that MATLAB R2007a is installed and is the default version.

N.5.1 Further Assistance

If none of the suggestions in the troubleshooting guide are helpful in resolving a

given problem, Christian Banker can be contacted for additional assistance. He can

be reached by email at cbanker@gmail.com or by phone at (860)705-7818. Email is

checked frequently and preferred for non-urgent communication.

202

N.6 Appendix: Initial One-Time Setup Instruc-

tions

The following steps must be performed once to set up a new computer system to

run the software.

1. Ensure that MATLAB is installed on the system. Only version R2007a has

been fully validated, but other versions should work. If version R2007a is not

installed, but is available, it may be worthwhile to test with this version.

2. On the windows command line, register the MATLAB server. To do this, click

on ‘Run’ from the Start Menu and type “cmd” to access the command line.

Run the following two commands: “cd $MATLAB\bin\win32”, then“matlab

/regserver”. This will ensure that the MATLAB engine is registered as a Win-

dows COM server.

3. Add the project’s MATLAB directory to MATLAB’s default PATH. To do

this, enter the following in the MATLAB command line: “path(path,‘path

to project MATLAB directory’)”, then “savepath”. Replace “path to project

MATLAB directory” with the current path within the project. Right now this

is “C:\Banker\SVN\gear\gear 1.0.0\proj\glui test\matlab”, but may change if

a different top directory or project name is used.

N.7 Appendix: Subversion (SVN) Repository In-

structions

Subversion, or SVN, is a version control system that allows versions of files to

be stored to an online server as changes are made. This keeps backups of the code

available and allows the ability to revert to a previous version of software at any

203

time. This appendix describes some of the basic tasks that may occasionally be

relevant in the course of performing demonstrations. These instructions assume that

TortoiseSVN, available from http://tortoisesvn.tigris.org/, is installed. This

software is available on both the lab computer and the laptop. It also assumed that

the appropriate username and password have been stored on the computer for access

to the repository; contact Chris Banker (cbanker@gmail.com) if this is not the case.

Additional instructions and information can also be found on the TortoiseSVN

website: http://tortoisesvn.tigris.org/.

N.7.1 SVN Update

Performing a SVN update downloads the latest files from the SVN server and uses

them to update the files currently on your computer. This ensures that the computer

you are using has the latest code that has been committed to the server. This may be

necessary when changes have been made on another computer system and you wish

to use this new version.

To perform a SVN update, perform the following steps:

1. Locate the folder on your computer where you have the software stored. On

the laptop this should be C:\Banker\SVN. If no modifications have been made,

the folder should have a green check mark. If it has a red exclamation point, it

means that files have been modified.

2. If any files have been modified and a red exclamation point is shown on the

folder icon, the files should be reverted before updating to prevent conflicts.

(a) Right click on the folder and go to the ‘TortoiseSVN’ submenu.

(b) Under that menu select ‘Revert’.

(c) Click ‘OK’ in the next dialog. The process of reverting the files will now

commence.

http://tortoisesvn.tigris.org/
http://tortoisesvn.tigris.org/

204

(d) When the process has finished an acknowledgment dialog will come up.

Click ‘OK’ in this dialog.

(e) The files have now been reverted to their original state.

3. Right click on the folder and select the ‘SVN Update’ menu item. The update

process will commence.

4. Upon completion, an acknowledgment dialog will come up. Click ‘OK’ in this

dialog.

5. The files have now been updated to the latest revision available on the server.

N.7.2 Viewing SVN Logs

The SVN repository allows users to enter text into the log to describe the most

recent changes. The log also contains a list of the files that were modified in a

given revision. Viewing these logs can be especially useful for verifying that the code

is actually the desired version. If in doubt about what changes have been made,

checking the logs is a good first step.

The SVN log can be viewed by taking the following steps:

1. Locate the folder that you are interested in viewing logs for. The displayed log

entries will only be those relevant to the selected folder and any files and folders

beneath it.

2. Right click on the folder and select the ‘TortoiseSVN’ submenu.

3. Under that menu select ‘Show Log’.

4. A log window will be displays that shows recent revisions, along with the author,

date, log message and files that were modified.

5. To exit this dialog, click ‘OK’.

205

Bibliography

[1] 3DConnexion. 3DConnexion SpaceNavigator 3D mouse. http://www.

3dconnexion.com/3dmouse/spacenavigator.php [Last accessed 3 February

2009].

[2] D. Aiger and D. Cohen-Or. Real-time ultrasound image simulation. Real-Time

Imaging, 4:263–274, 1998.

[3] AnalyzeDirect. Analyze 8.1 visualization and analysis software. http://www.

analyzedirect.com [Last accessed 3 February 2009].

[4] Ascension Technology Corporation. Ascension 3D Guidance trakSTAR. http://

ascension-tech.com/medical/trakSTAR.php [Last accessed 3 February 2009].

[5] Ascension Technology Corporation. Ascension flock of birds. http://

ascension-tech.com/realtime/RTflockofBIRDS.php [Last accessed 3 Febru-

ary 2009].

[6] Ascension Technology Corporation. Technical description of DC magnetic track-

ers. http://www.5dt.com/downloads/3rdparty/fobtechnicalspec.pdf [Last

accessed 3 February 2009], 2002.

[7] Ascension Technology Corporation. Magnetic fact sheet: DC vs. AC track-

ing. http://ascension-tech.com/docs/ASCWhitePaperDCvAC.pdf [Last ac-

cessed 3 February 2009], 2008.

http://www.3dconnexion.com/3dmouse/spacenavigator.php
http://www.3dconnexion.com/3dmouse/spacenavigator.php
http://www.analyzedirect.com
http://www.analyzedirect.com
http://ascension-tech.com/medical/trakSTAR.php
http://ascension-tech.com/medical/trakSTAR.php
http://ascension-tech.com/realtime/RTflockofBIRDS.php
http://ascension-tech.com/realtime/RTflockofBIRDS.php
http://www.5dt.com/downloads/3rdparty/fobtechnicalspec.pdf
http://ascension-tech.com/docs/ASCWhitePaperDCvAC.pdf

206

[8] J. Bryan. VolSuite: A portable scientific application framwork. http://www.

osc.edu/archive/VolSuite [Last accessed 3 February 2009].

[9] J. Bryan. personal communication through email, 2008.

[10] J. Dey, J. M. O’Connor, Y. Chen, and S. J. Glick. Temporal change analysis

for improved tumor detection in dedicated CT breast imaging using affine and

free-form deformation. volume 6913, page 69131D. SPIE, 2008.

[11] DTECTA. SOLID collision detection library. http://www.dtecta.com/ [Last

accessed 3 February 2009], 2009.

[12] H.-H. Ehricke. SONOSim3D: a multimedia system for sonography simulation

and education with an extensible case database. European Journal of Ultrasound,

7(3):225 – 230, 1998.

[13] A. Gee, G. Treece, R. Prager, and L. Cash, C.J.C.and Berman. Rapid registration

for wide field of view freehand three-dimensional ultrasound. Medical Imaging,

IEEE Transactions on, 22(11):1344–1357, 2003.

[14] D. Hill, P. Batchelor, M. Holden, and D. Hawkes. Medical image registration.

Physics in Medicine and Biology, 46:R1–R45(1), 2001.

[15] HowStuffWorks. HowStuffWorks: How do touch screen monitors know where

you’re touching. http://computer.howstuffworks.com/question716.htm

[Last accessed 3 February 2009].

[16] Inition. Inition - Ascension Flock of Birds. http://www.inition.

co.uk/inition/product.php?URL_=product_mocaptrack_ascension_

flockofbirds&SubCatID_=18 [Last accessed 3 February 2009].

[17] International Vocabulary of Metrology - basic and general concepts and associated

terms (VIM), volume 200. 3rd edition, 2008.

http://www.osc.edu/archive/VolSuite
http://www.osc.edu/archive/VolSuite
http://www.dtecta.com/
http://computer.howstuffworks.com/question716.htm
http://www.inition.co.uk/inition/product.php?URL_=product_mocaptrack_ascension_flockofbirds&SubCatID_=18
http://www.inition.co.uk/inition/product.php?URL_=product_mocaptrack_ascension_flockofbirds&SubCatID_=18
http://www.inition.co.uk/inition/product.php?URL_=product_mocaptrack_ascension_flockofbirds&SubCatID_=18

207

[18] Kitware, Inc. The visualization toolkit. http://www.vtk.org [Last accessed 3

February 2009].

[19] Laerdal Medical, AS. Choking charlie. http://www.laerdal.com/document.

asp?subnodeid=7670740 [Last accessed 3 February 2009].

[20] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Mul-

timodality image registration by maximization of mutual information. Medical

Imaging, IEEE Transactions on, 16(2):187–198, Apr 1997.

[21] D. Magee and D. Kessel. A computer based simulator for ultrasound guided

needle insertion procedures. IEE Conference Publications, 2005(CP509):301–

308, 2005.

[22] H. Maul, A. Scharf, P. Baier, M. Wustemann, H. H. Gunter, G. Gebauer, and

C. Sohn. Ultrasound simulators: experience with the sonotrainer and compara-

tive review of other training systems. Ultrasound in Obstetrics and Gynecology,

24:581–585(5), October 2004.

[23] MITK. MITK: Medical Imaging Interaction Tookit. http://www.mitk.org/

[Last accessed 3 February 2009].

[24] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory.

In G. A. Watson, editor, Numerical Analysis, pages 105–116. Springer, Berlin,

1977.

[25] NOAA 200th feature stories: The high-precision transcontinental traverse:

Accuracy vs precision illustration. http://celebrating200years.noaa.gov/

magazine/tct/accuracy_vs_precision.html [Last accessed 3 February 2009].

[26] OpenGL.org. OpenGL: The industry standard for high performance graphics.

http://www.opengl.org [Last accessed 3 February 2009].

http://www.vtk.org
http://www.laerdal.com/document.asp?subnodeid=7670740
http://www.laerdal.com/document.asp?subnodeid=7670740
http://www.mitk.org/
http://celebrating200years.noaa.gov/magazine/tct/accuracy_vs_precision.html
http://celebrating200years.noaa.gov/magazine/tct/accuracy_vs_precision.html
http://www.opengl.org

208

[27] Planar. Planar: LCD desktop monotir, flat panel display, projection products

for medical imaging, kiosk, touch screen, business and home uses. http://www.

planar.com [Last accessed 3 February 2009].

[28] R. Prager. The Stradwin 3D ultrasound acquisition and visualisation system.

http://mi.eng.cam.ac.uk/~rwp/stradwin/ [Last accessed 3 February 2009].

[29] R. Prager. The Stradx 3D ultrasound acquisition and visualisation system. http:

//mi.eng.cam.ac.uk/~rwp/stradx/ [Last accessed 3 February 2009].

[30] R. Prager, A. Gee, and L. Berman. Stradx: real-time acquisition and visualiza-

tion of freehand three-dimensional ultrasound. Medical Image Analysis, 3:129–

140(12), June 1999.

[31] R. Prager, A. Gee, G. Treece, C. Cash, and L. Berman. Using image-based regres-

sion to acquire freehand 3D ultrasound. Biomedical Imaging, 2002. Proceedings.

2002 IEEE International Symposium on, pages 970–973, 2002.

[32] R. W. Prager, R. N. Rohling, A. H. Gee, and L. Berman. Rapid calibration for

3-D freehand ultrasound. Ultrasound in Medicine and Biology, 24(6):855 – 869,

1998.

[33] P. Rademacher. GLUI user interface library. http://glui.sourceforge.net/

[Last accessed 3 February 2009], 2006.

[34] SpaceNavigator mouse joystick keyboard driver by RBC9. http://rbc.

duckinegg.com/ [Last accessed 18 January 2009].

[35] A. Roche, G. Malandain, N. Ayache, and X. Pennec. Multimodal image reg-

istration by maximization of the correlation ratio. Technical Report RR-3378,

1998.

http://www.planar.com
http://www.planar.com
http://mi.eng.cam.ac.uk/~rwp/stradwin/
http://mi.eng.cam.ac.uk/~rwp/stradx/
http://mi.eng.cam.ac.uk/~rwp/stradx/
http://glui.sourceforge.net/
http://rbc.duckinegg.com/
http://rbc.duckinegg.com/

209

[36] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as

a new similarity measure for multimodal image registration. In MICCAI ’98:

Proceedings of the First International Conference on Medical Image Comput-

ing and Computer-Assisted Intervention, pages 1115–1124, London, UK, 1998.

Springer-Verlag.

[37] D. Rueckert. Image registration toolkit. http://wwwhomes.doc.ic.ac.uk/~dr/

software/ [Last accessed 3 February 2009].

[38] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Non-

rigid registration using free-form deformations: application to breast MR images.

Medical Imaging, IEEE Transactions on, 18(8):712–721, Aug 1999.

[39] D. Rueckert, L. I. Sonoda, E. R. Denton, S. Rankin, C. Hayes, M. O. Leach,

D. L. Hill, and D. J. Hawkes. Comparison and evaluation of rigid and nonrigid

registration of breast MR images. In K. M. Hanson, editor, Proc. SPIE Vol.

3661, p. 78-88, Medical Imaging 1999: Image Processing, Kenneth M. Hanson;

Ed., volume 3661 of Presented at the Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference, pages 78–88, May 1999.

[40] J. A. Schnabel, D. Rueckert, M. Quist, J. M. Blackall, A. D. Castellano-Smith,

T. Hartkens, G. P. Penney, W. A. Hall, H. Liu, C. L. Truwit, F. A. Gerritsen,

D. L. G. Hill, and D. J. Hawkes. A generic framework for non-rigid registration

based on non-uniform multi-level free-form deformations. In MICCAI ’01: Pro-

ceedings of the 4th International Conference on Medical Image Computing and

Computer-Assisted Intervention, pages 573–581, London, UK, 2001. Springer-

Verlag.

[41] D. Shriner, M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide: The

Official Guide to Learning OpenGL, Version 2.1. Addison-Wesley, sixth edition,

2008.

http://wwwhomes.doc.ic.ac.uk/~dr/software/
http://wwwhomes.doc.ic.ac.uk/~dr/software/

210

[42] Sound Technology, Inc. . Sound technology inc., state college, pa, ultrasonic

transducers and probes. http://www.sti-ultrasound.com/ [Last accessed 3

February 2009].

[43] Teratech Corporation. Terason 2000 ultrasound system. http://www.terason.

com/products/t2000.asp [Last accessed 3 February 2009].

[44] Teratech Corporation. Terason t3000 ultrasound system. http://www.terason.

com/products/t3000.asp [Last accessed 3 February 2009].

[45] Teratech Corporation. Terason ultrasound systems. http://www.terason.com

[Last accessed 3 February 2009].

[46] C. Terkamp, G. Kirchner, J. Wedemeyer, A. Dettmer, J. Kielstein, H. Rein-

dell, J. Bleck, M. Manns, and M. Gebel. Simulation of abdomen sonography.

evaluation of a new ultrasound simulator. Ultraschall Med, 2003.

[47] J. Varandas, P. Baptista, J. Santos, R. Mertins, and J. Dias. VOLUS - a visual-

ization system for 3D ultrasound data. Ultrasonics, 42, 2004.

[48] P. Viola and I. Wells, W.M. Alignment by maximization of mutual information.

Computer Vision, 1995. Proceedings., Fifth International Conference on, pages

16–23, 20-23 Jun 1995.

[49] W. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume

registration by maximization of mutual information. Medical Image Analysis,

1(1):35–51, 1996.

[50] Accuracy and precision - Wikipedia the free encylopedia. http://en.

wikipedia.org/wiki/File:Accuracy_and_precision.svg [Last accessed 3

February 2009].

http://www.sti-ultrasound.com/
http://www.terason.com/products/t2000.asp
http://www.terason.com/products/t2000.asp
http://www.terason.com/products/t3000.asp
http://www.terason.com/products/t3000.asp
http://www.terason.com
http://en.wikipedia.org/wiki/File:Accuracy_and_precision.svg
http://en.wikipedia.org/wiki/File:Accuracy_and_precision.svg

211

[51] R. Woods, S. Cherry, and J. Mazziotta. Rapid automated algorithm for aligning

and reslicing PET images. Journal of Computer Assisted Tomography, 16:620–

633, 1992.

[52] R. P. Woods. Automated image registration. http://bishopw.loni.ucla.edu/

AIR5/index.html [Last accessed 3 February 2009], 2002.

[53] Y. Zhu, D. Magee, R. Ratmalingam, and D. Kessel. A virtual ultrasound imag-

ing system for the simulation of ultrasound-guided needle insertion procedures.

Proceedings of Medical Understanding and Analysis, pages 61–65, 2006.

http://bishopw.loni.ucla.edu/AIR5/index.html
http://bishopw.loni.ucla.edu/AIR5/index.html

	Worcester Polytechnic Institute
	Digital WPI
	2009-02-17

	Interactive Training System for Medical Ultrasound
	Christian John Banker
	Repository Citation

	List of Figures
	List of Tables
	Introduction
	Other Ultrasound Simulation and Training Systems
	Interactive Training System for Medical Ultrasound
	Motivation
	Thesis Outline

	Interactive Generation of Scan Planes
	Introduction
	Software Selection
	Complete Packages
	Toolkits and Libraries

	Volume Rendering
	Three-D Graphics Background
	Basic 3D Volume Display
	Arbitrary Reslice Capabilities

	Interactive Control
	Control Using SpaceNavigator 6 DoF Input Device
	Control Using Ascension Technology Corporation Flock of Birds 6 DoF Tracking System
	Control Using Ascension Technology Corporation trakSTAR 6 DoF Tracking System
	trakSTAR Noise Reduction

	Conclusions

	Interactive Scanning Features and User Interfaces
	Introduction
	Hardware User Interface
	Manikin with Embedded Tracking Transmitter
	Sham Transducers
	Touch Screen Interface

	Graphical User Interface Design
	GUI Implementation
	GLUI Details
	GUI Design

	Interactive Simulation Features
	Probe Geometry Selection
	Scan Depth Setting
	Overall Gain Control
	Time Gain Compensation (TGC)
	Scan Type Presets
	Navigational Display
	Freeze Display Functionality

	Conclusions

	Simulation Data Generation
	Introduction
	Requirements For Generating 3D Image Volumes
	Registration of Multiple Sweeps
	Similarity Measures
	Image Registration Toolkit
	AIR 5.2.5 (Automated Image Registration)
	University of Cambridge's Stradx
	University of Cambridge's Stradwin
	Free-Form Deformation Registration Code by Dr. Joyoni Dey

	Stradwin Capture Details
	Stradwin Calibration
	Improved Calibration Using a Mechanical Fixture

	Registration of Data Volumes to Manikin
	Image Data Header File
	Conclusions

	Learning Outcomes Assessment
	Introduction
	Region of Interest Selection
	Inclusion of Features in Data Set
	User Selection
	Automatic Evaluation

	Scan Path Recording and Display
	Data Recording
	Manikin Surface Model Generation
	MATLAB Engine
	Scan Path Overlay
	Uses for Assessment of Learning Outcomes

	Still Image Capture
	Implementation of Still Image Capture

	Conclusions

	Results and Discussion
	Ultrasound Training System
	Data Acquisition
	Learning Outcomes Assessment
	Clinical Evaluation

	Conclusions
	Future Work

	Appendices
	Software Design Considerations
	Ascension Technologies Corporation Flock of Birds Datasheet
	Ascension Technologies Corporation trakSTAR Datasheet
	Discussion of Precision and Accuracy
	Comparison of AC and DC Magnetic Tracking Systems
	Stradwin Capture Process
	Initial Hardware and Software Setup
	Stradwin Data Acquisition

	Stradwin Calibration Procedure
	Scan Path Visualization Scripts
	Manikin Surface Generation Script
	Manikin Surface Generation Script MATLAB Code

	Scan Path Overlay Script
	Scan Path Overlay Script MATLAB Code

	gen_volume - Volume Generation Tool
	Input, Output and Options
	.raw with no header
	ITK
	Analyze
	Stradx

	makesx - Stradx Header Generation Tool
	Input, Output and Options

	ts_noisex - trakSTAR Measurement Rate Determination Utility
	Inputs, Outputs, and Options

	ts_capture - trakSTAR Data Capture Utility
	Inputs, Outputs, and Options

	Calibration Fixture Manufacturing Procedure
	Materials
	Tools
	Manufacturing Process
	Cutting and Milling Wheels
	Cutting and Machining Brass Bar
	Cutting and Machining the Clamp Plates
	Cutting 1/16'' Grooves for the Brass Bar
	Affixing wheels to brass bar
	Drilling Holes in Clamp Plates
	Assembly

	Demonstration Guide
	Introduction
	Hardware Setup
	Software Setup
	Performing the Demonstration
	Common Operating Tasks

	Troubleshooting
	Further Assistance

	Appendix: Initial One-Time Setup Instructions
	Appendix: Subversion (SVN) Repository Instructions
	SVN Update
	Viewing SVN Logs

	Bibliography

