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Abstract

The present work is a study of the low inertia spreading dynamics of initially

spherical viscous droplets on a planar interface. The droplets are affected by gravity,

surface tension and viscous forces and are modeled as two-dimensional axisymmet-

ric bodies. The main focus of this study is the examination of the dependence of

droplet stability, equilibrium shape and fluid motion within the drop on the relative

magnitude of these forces. The dynamics are modeled using the unsteady, non-linear

Navier-Stokes equations for an incompressible fluid. The spreading of a droplet on

a solid surface is modeled with both a no-slip and a partial-slip boundary condi-

tion. In addition, the spreading of a droplet on another identical drop (two-drop

problem) is modeled to study the problem without the contact point singularity.

The governing equations are solved numerically using the Mixed Galerkin Finite El-

ement formulation, augmented by the use of the Newton-Raphson iteration scheme

to effectively treat the non-linearities of the problem. The Generalized Eulerian La-

grangian formulation is adopted for the treatment of the moving free surface of the

droplet. Computations are performed for capillary numbers ranging from 0.01 to

100 and for Reynolds numbers from 0.005 to 50, where the velocity scale is based on

the droplet radius and the gravitational acceleration. For the droplet spreading on a

solid surface, three distinct behaviors are observed : for low Reynolds numbers and

sufficiently high capillary numbers, droplets deform to a stable, equilibrium shape;

for higher Reynolds numbers, an oscillatory droplet behavior occurs; at still higher

Reynolds numbers, the droplets shatter. Very often, a recirculation is induced near

the contact point just before the droplet shatters, which is also observed for the case

of stable oscillating droplets. When a partial-slip boundary condition is applied, it
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is observed that the stability of the droplet and the rate at which the droplet attains

the static contact angle depend strongly on the velocity of slip of the droplet with

respect to the solid surface at the contact point. For the two-drop problem, only two

distinct behaviors are observed: for low Reynolds numbers and high capillary num-

bers, the droplet retains a near-spherical shape and remains stable; while for higher

Reynolds numbers, the droplet deforms to a high extent and becomes unstable.
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Chapter 1

Introduction

The dynamics of viscous droplets is a fundamental problem in fluid mechanics

and has been the focus of intense study. This problem represents a point of conver-

gence for many important physical phenomena and of several theoretical principles

that are the foundations for modern fluid mechanics. The behavior of droplets has

been investigated in several forms and under various influencing conditions, due to

its profound significance in multiple engineering disciplines. For instance, the same

mechanism that drastically affects aircraft in flight through the impact of liquid

droplets can be used in the effective atomization of liquid propellents in rockets.

Furthermore, the behavior of viscous droplets has important applications in many

scientific fields such as material processing, processing of pharmaceutical products,

printing, coating, near-net-shape manufacturing and atomization processes. While

the study of droplet dynamics is far-ranging both in terms of phenomena and appli-

cations, a very common and fascinating study is the interaction of drops with solid

surfaces, which in itself encompasses a broad range of research. The present work

focusses on the latter class of problems and the variations therein.

The motion of liquid droplets on a surface constitutes a problem of considerable
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difficulty both in modeling and solution. In addition to the difficulty involved in the

solution of a moving boundary, such as the droplet free surface, the behavior of the

fluid in the vicinity of the fluid-fluid-solid interface (contact line) presents further

complications. If a no-slip boundary condition is assumed at the contact line, a

non-integrable force singularity appears in the Navier-Stokes equations. Moreover,

experimental studies have shown that the dynamic change of the contact angle

is a complex function of the contact line speed and necessiates the inclusion of a

functional relationship in the analysis of the problem [1]. Several studies were made

to model this relationship and have resulted in various degrees of success [2], [3].

Most of these studies were based on the inclusion of a slip velocity of the fluid at the

contact point, with respect to the solid surface, with the reason that when one fluid

displaces another from the solid surface, both fluids move relative to the surface, for

some finite time during the process [3].

The dynamics of free surfaces between two immiscible fluids are usually con-

trolled by surface tension, gravity, viscous forces and the inertia of the system such

that the degree and the rate of spreading depends upon the relative importance

of these three factors, in addition to possible heat transfer. Currently, there is a

plethora of analytical [3], experimental [4] and computational studies [5] dealing

with the spreading of viscous droplets, with the movement of the contact line (the

fluid-fluid interface along a solid surface) being the focal point of such studies. Due

to the importance of the contact line, the general spreading of liquid sublayers (the

viscous liquid region between top point of the droplet and the solid surface), be

it a deforming droplet on a solid surface, or a moving coat of film on a solid sub-

strate, has become synonymous to the motion of the contact line. This equivalence

is based on the established influence of the conditions at the contact line on the

general stability and manner of spreading of the liquid layers on solid substrates.
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1.1 Objectives and Approach

The main objective of this work is the study of the dynamics of the fluid in

droplets spreading on a solid substrate and their dependence on different influencing

parameters (specifically, gravity, surface tension, viscosity and droplet size) under

isothermal conditions of both the fluid and the solid surface. In addition to this,

the problem of two droplets spreading on each other under specific conditions is also

investigated to offer a better understanding of fluid motion in the absence of any

external surfaces. This study is based on the simulations achieved from a numerical

analysis of the problem.

Since the droplet is identical in any plane perpendicular to the surface on which

it spreads, it is modeled as a two-dimensional axisymmetric body. Moreover, in

each of these planes, the droplet is symmetric about a center line through the top

point. Hence, only one half of the droplet is considered in the analysis. As a

tool to model the problem and efficiently investigate its sensitivity to variations

in conditions, the fluid flow is represented using the conservation equations and

appropriate boundary conditions to balance the physical attributes of velocity and

pressure. These equations are solved numerically using a classical Finite Element

Method and a suitable solver to handle the resulting algebraic equations. Since our

interest is in the dynamics of motion, a transient analysis is adopted for the model

and the simulations are obtained, from which the relevant inferences are drawn.

The historical background and the results of previous studies are presented in

Chapter 2, while the physical model and the mathematical formulation of the prob-

lem is discussed in Chapter 3. The solution methodology that has been employed

to solve this problem is discussed in Chapter 4 and the results that were obtained

are presented and discussed in Chapter 5. Finally, the conclusions which can be
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drawn from this study and the possible advances which can be made to enhance the

research are documented in Chapter 6.
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Chapter 2

Literature Review

As mentioned in the previous chapter, the spreading of viscous droplets is a very

fascinating and highly consequential problem which has received a great deal of at-

tention for over a century. Many of the early studies involved attempts at analytical

solutions of the governing equations in pursuit of unique mathematical expressions

for velocity of the liquid inside and the shape of the droplet. These studies were suc-

ceeded by a class of investigations, both experimental and computational, into the

dynamics of droplets impacting on solid surfaces. However, since in these cases the

inertial forces dominate the effects of surface tension, gravity and viscosity, the con-

tact line dynamics for slow droplet spreading was considered separately and several

models were proposed. These models were valid within the range of the assumptions

which were made but did not provide any form of global solution for the problem

of contact line motion.

2.1 Historical Perspective

One of the earliest studies into the dynamics of droplets was conducted by Lamb

in his paper on oscillating viscous “spheroids” in 1881 [6]. In this paper, he pre-
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sented his theoretical analysis on the gravitational oscillations of a spherical mass of

liquid based on a series solution of the Helmholtz equation describing the velocity

of the fluid in the droplet. The solution for velocity was expressed as a weighted

infinite sum of several solid harmonics, such that the weights satisfy certain equa-

tions. Several combinations of these weights are possible that give different possible

solutions, but which belong to a finite set of solutions. All these solutions however,

give a unique expression for the frequency of the oscillations of the droplet and the

viscous decay rate. Lamb presented expressions for these two quantities for the ex-

treme cases in which either gravity or surface tension were important. The influence

of the contact point on the spreading dynamics, however, was not considered.

Many of the later studies were concerned with the dynamics of droplets at very

high impact velocities where the inertia of the droplets obscured the viscous, gravity

and surface tension effects during most of the process (Trapaga & Szekely in 1991 [7],

Trapaga et. al. in 1992 [8], Westhoff et. al. in 1992 [9]). Trapaga & Szekeley [7]

solved a fluid dynamic model of droplet deformation using a numerical approach

to simulate the case of impacting droplets. The scheme that was employed used

an equivalent pressure to replace the stress balances on the free surface. In this

isothermal model, the time variation of the “splat“ radius was reported for liquid

metal droplets impinging on a flat surface. The results showed the increase of the

splat radius till it reached a maximum value, at which it subsequently remained,

due to the assumption that fluid spreading was irreversible. Solidification was not

considered in this model. Since the recoiling of the droplet from the surface was

not considered, the computed maximum splat radii were larger than the expected

wetting radius of the equilibrium sessile state. These calculations were, however,

considered good approximations of the modeling of impacting droplets.

Soon after this study, Fukai et al. [10] came up with an experimental and the-
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oretical study of the collision of droplets and their subsequent deformation. The

theoretical model which they used accounted for the presence of contact-angle hys-

teresis in addition to the effects of inertia, gravity, surface tension and viscosity.

Also, in this work the initial shape of the droplet, as it collides with the solid sur-

face, was assumed to be spherical, unlike preceding studies. When compared to

experimental results of the impingement of the droplets on a solid surface, the ef-

fects of recoiling and oscillation of the droplet were well predicted by the numerical

model. In addition, the prediction of the formation of the ring structure around the

splat and its height also agreed well with experimental results.

However, there is a large number of applications where the effects of gravity,

surface tension and viscosity are much stronger than that of inertia. These gen-

erally constitute the low velocity spreading of liquid droplets. In these cases, the

above mentioned forces themselves account for the driving and restoring action. The

modeling of this class of problems is rendered difficult by the presence of the con-

tact point singularity mentioned earlier, for which various remedial methods were

proposed [2].

For instance, Hocking & Rivers [11], considered a small drop spreading on a

horizontal surface, where the dynamics were affected only by surface tension and

not by gravity. To avoid the force singularity that appears in the governing equations

with a no-slip boundary condition, in the vicinity of the moving contact line, it was

assumed that the slip is proportional to the local velocity gradient. They developed

an equation that related the rate of spreading of the drop to the contact radius,

for a given initial configuration, assuming a constant contact angle. The proposed

theory was compared to experimental data obtained from observations of molten

glass drops on a platinum plate, with appropriate control of surface wetting to avoid

sticking. A sufficiently good agreement was achieved between experimental results
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and the theoretical predictions based on the hypotheses presented, even though the

slip coefficient was not determined accurately.

A similar problem was investigated by Haley &Miksis [2] using lubrication theory

to develop a model for the motion of the free surface. This model includes both the

effect of slip, and the dependence of the contact angle on slip velocity. The model

that was developed by Greenspan [12] was used to determine the spreading rate as

a function of capillary and Bond numbers. This model was obtained by assuming

that the height of the droplet is much smaller than its radius and the resulting

equation was a nonlinear partial differential equation, first order in time and fourth

order in space. This nonlinear partial differential equation was solved using the

Chebychev collocation method. It was concluded in this paper that the proper form

of the relationship needs to be determined by an analysis in the neighborhood of

the contact line. Thus the modeling of the contact line is crucial to this problem.

The objective of the current work is twofold; first, to study the underlining

physics of a spreading droplet under different rheological and process parameters,

such that both gravity and capillary effects are important, and second, to determine

the effect of the slip models on the spreading of impacting droplets under different

model parameters.

Dussan & Davis [13], in what is now considered a classic paper in this area, used

a continuum based model in which they proposed a contact line motion which is

characterized as “rolling”. The basic assumption of the proposed motion is that

fluid particles arrive or leave the contact line in a finite amount of time. This is in

contrast to stagnation point flow where the fluid particles take an infinite amount

of time to arrive at the stagnation point. The implication of the two different flow

situations is that the stagnation point flow the velocity field is analytic whereas in

the case of the rolling contact line the velocity field is multi-valued. The derivation
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of the contact line singularity by Dussan & Davis was independent of surface tension,

surface viscosity or elasticity and other interfacial parameters and was obtained by

using the conservation of mass and the no-slip boundary condition. They showed

that any slip coefficient at the contact line is sufficient to remove the singularity.

They also showed that the moving of the contact angle was kinematically compatible

with the no-slip boundary condition.

Prior to the work of Dussan & Davis, Huh & Scriven [3] theoretically attempted

to treat the singularity at the contact line by simplifying the geometry of the fluid-

fluid interface as a planar surface and by assuming Stokes flow. For this flow sit-

uation they attempted to get an analytic solution for the region near the contact

line. They were unable to satisfy the continuity of the stress across the interface.

The resulting flow field implied an infinite force exerted on the fluid particles at the

point of contact.

Following the work of Dussan & Davis most theoretical, computational and ex-

perimental studies have either verified their conclusions or have based their work

on their recommendations. In general there are two fundamental issues in modeling

contact problems: (a) the nature of the slip velocity, Vslip and (b) the dynamic con-

tact angle θ. The most prevailing approach to relate these two quantities and the

static contact angle θs, is a “power-law” type relation [2],

Vslip = β (θ − θs)
m (2.1)

where β, and m are appropriately chosen coefficients. Under steady state and static

conditions, this relation guarantees that the contact angle is equal to θs. Moreover,

this proposed model has been verified experimentally [13]. Unfortunately, how-

ever, while the form of Eq. 2.1 seems consistent with experiment, the values of the
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constants are unclear. Greenspan [12] used the constitutive relation (Eq. 2.1) and

lubrication theory to study the motion of small viscous droplets. In the same study

he considered the effects of surface contamination on the motion and distortion of

the droplets. Hocking & Rivers [11] removed the force singularity at the point of con-

tact by introducing a slip velocity proportional to the tangential component of the

shear stress. They obtained solutions for a spreading droplet using matched asymp-

totic solutions by considering an inner (rim) solution, an intermediate solution and

an outer solution. In their study they fixed the apparent contact angle at its static

value. They supported their assumptions and solutions by experiments using molten

glass droplets. Haley & Miksis [2] evaluated the relative effect of various parameters

in constitutive relations for the motion of the contact point and the slip velocity,

on the spreading of an initially elliptic droplet. Ehrhard & Davis [14] using the

“power-law” constitutive relation in Eq. 2.1 studied the non-isothermal spreading

of liquid drops. They presented results both for isothermal as well non-isothermal

spreading under various conditions. More recently, Hocking [15] considered the two

seemingly rival approaches in handling the apparent dynamic contact angle; one

that modifies the static angle according to the above relation and the other where

the dynamic contact angle is fixed at its static value. He concluded that “.. some

form of slip at the contact line and a static contact angle provide acceptable basis

for the conditions to be imposed at the contact line”.

2.2 Present Work

The above definitive studies invoked the assumptions of lubrication theory which

among other simplifications neglect the effects of inertia. Many of these studies

also neglect the effects of gravity. Moreover, the initial shape of the droplets under
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study was assumed to be elliptical, with the point of contact ahead of the bulk of the

fluid. The problem we are considering here is different from the above representative

studies in the following respects : (a) the droplet has an initial spherical shape

with the point of contact beneath the bulk of the fluid, and therefore, influenced

by the dynamics of the bulk flow and, (b) the spreading and deformation of the

droplet is dominated by viscous, capillary and gravity forces. Under such conditions

the apparent motion of the point of contact is more complex than the spreading

dominated by capillary forces alone. During the early stages of deformation, the

point of contact is affected by the growing “inner” shear sublayer and the “outer”

mostly potential downward gravity-driven flow of the bulk flow. At the later stages of

deformation, the influence of the outer flow diminishes while the capillary and shear

effects become more important. Therefore, under these conditions, it is unlikely

that a single set of parameters β and m will be sufficient to describe the whole

range of deformation. Nevertheless, in the absence of more definitive theories for

this flow situation, in this work we will rely upon the theoretical and experimental

work of the previous investigators and we will again assume that the contact point

has a finite slip velocity described by the same “power law” model proposed by

most of the previous studies. Additionally though, we will assume that the free

surface undergoes a rolling motion thus allowing particles on the free surface to

come in contact with the solid surface (similar to the assumptions made by Dussan

& Davis [13]). Under these assumptions the apparent motion of the point of contact

(which in reality is not always the same material point) is due to the combined effect

of slipping and rolling. Due to the initial geometry of the droplet it is unlikely that

during the entire spreading process the contact angle remains equal to the static

conduct angle. Therefore, we are not considering Hocking’s proposed approach,

although at the microscopic level his postulate may be true for this problem as well.
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Chapter 3

Problem Formulation

3.1 Physical Model

A liquid droplet, when gently released onto a plane solid surface, spreads un-

der the action of gravity as the free surface advances into contact with the solid.

The dynamics of this phenomenon are affected by the properties of the liquid in

the droplet, those of the ambient fluid and the surface properties of the solid. The

spreading is characterized by the movement of the contact point due to the progres-

sive increase in the contact area and the nature of the relation between the liquid

and the solid surface at this point is crucial for this problem.

A consideration of this relation leads to two distinct possibilities; one, with a

continuous liquid-liquid interface, across which there is no change in fluid properties

and the other, a liquid-solid interface across which the both physical state and the

material itself differ. In the former case, all points on the contact line move with

the bulk of the liquid, while in the latter, only the contact point advances. These

cases simulate, respectively, the spreading of a liquid droplet for : (a) liquid droplet

spreading after the impact of two identical droplets and (b) liquid droplet spreading
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on a solid substrate. The first case represents a physically hypothetical situation

in which gravity acts towards the contact line for both droplets (Fig. 3.1(a)). As

mentioned earlier, this case helps study the problem of droplet spreading while

eliminating the contact point singularity. The second case, however, represents the

more realistic case of a droplet spreading on a plane solid surface (Fig. 3.1(b)). In the

latter case, the spreading is further affected by the nature of motion of the contact

point relative to the surface, which is quantified in terms of a slip coefficient, β. The

effect of this slip coefficient is discussed in greater detail in Chapters 4 and 5.

g

g

(a)

g

(b)

Figure 3.1: Cases of droplet spreading : (a) mutual spreading of two droplets (b)
spreading of a droplet onto a plane solid surface.
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3.2 Mathematical Formulation

A mathematical model was formulated for the two cases of droplet spreading

described above. The simulations were initiated at the instant when the droplet was

released onto the surface (of another droplet or of a plane solid, as the case may be)

and were carried out until the droplet came to rest, attained steady state, or became

unstable (either physically or numerically). At all times during the simulation, the

general conservation laws of fluid dynamics apply to the fluid within the droplet.

In general, any problem involving fluid flow can be described using one of two

approaches, viz. Eulerian and Lagrangian, which differ in the focus of their reference

frames. The Eulerian approach is based on a reference frame fixed at a point in

space, while the Lagrangian approach is based on a reference frame that moves with

a given fluid element. When using a computational Eulerian approach, the values of

fluid properties are determined at fixed grid points of a given mesh. The advantage

of such a description is the ability of retaining accuracy even as the free surface

of the droplet undergoes large distortions. However, when using a finite element

analysis as a solution tool, this description requires the generation of new finite

element discretizations as the fluid surface deforms and, good resolution is difficult

to achieve. When using a Lagrangian approach, fluid properties are determined

only for a finite number of particles that characterize the movement the fluid. This

approach has the advantages of the accurate modeling of small free surface motion

and easy modification for multimaterial flow (not relevant to the current problem)

and the inclusion of surface tension effects. However, with this description, the

accuracy can break down at large free surface distortions.

Thus, to accurately simulate the motion of the deforming free surface, the Gen-

eralized Eulerian Lagrangian (GEL) formulation was adopted [29] & [30], in which
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a reference frame was introduced, which is neither constrained to move with the

material velocity (Lagrangian) nor required to remain stationary (Eulerian) at all

times. The GEL formulation includes the pure Lagrangian and Eulerian descrip-

tions as limiting cases. The process is implemented in two phases by combining

both of these computing approaches. The first phase is that of a Lagrangian com-

putation, which involves the hydrodynamic time-dependent calculations to model

the dynamic deformation of the free surface. And the second phase is that of an Eu-

lerian computation, in which remeshing takes place, as prescribed by the velocity of

the reference frame in order to prevent large distortions in the fluid domain. In the

latter phase, no time change occurs of the velocities associated with the fluid, while

the convective flux calculations are performed to be consistent with the fluid mo-

tion. These two phases are repeated in tandem for the required period of time. An

appropriate choice of the velocity of the reference system can exploit the advantages

of both these descriptions (as described above).

This method has been used in a number of different problems as discussed by

Ramaswamy [29], and Alexandrou & Ahmed [30]. The following is the derivation of

the transformation of the governing laws to GEL coordinates.

3.2.1 General Approach for the GEL formulation

Let us consider an arbitrary moving control volume, Vc. At time t = 0, the

control volume Vc coincides with a system of material particles with constant mass.

Applying the conservation law of an arbitrary function fs we can write,

D

Dt

∫
Vc

fs dVc =

∫
Vc

qs dVc, (3.1)
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where
D

Dt
represents the material (Lagrangian) derivative and the right hand side

term, qs of the conservation equation corresponds to the net influx of the conserved

quantity, fs. For instance, when qs = 0 and fs is the mass density, we obtain the

law of conservation of mass. If the boundary of the control volume is now allowed to

move and deform with arbitrary velocityW, at any time t, Eq. 3.1 can be expressed

as

d

dt

∫
Vc(t)

fs dVc +

∫
Sc(t)

fs(V−W) · n dS =

∫
Vc(t)

qs dVc, (3.2)

where, Vc(t) is the control volume at time t, V is the fluid velocity,W is the velocity

of the reference system (grid points) and n is the unit vector normal to the control

surface, Sc(t). The derivative d/dt is the rate of change of properties in the control

volume, Vc, relative to an observer moving with velocity, W. Here, the absolute

volume of the control volume is fixed, while the change in the shape of the volume

is brought about by the deforming control surface, Sc(t). The velocity W varies in

both space and time and the method of its evaluation is discussed in section 4.5.

Using the Gauss Divergence Theorem and principles of continuum mechanics,

Eq. 3.2 reduces to :

∫
Vc

[
dfs

dt
+ fs∇ ·W

]
dVc +

∫
Vc

∇ · fs(V−W) dVc =

∫
Vc

qs dVc. (3.3)

When the control volume is reduced to a mathematical point, Eq. 3.3 can be

simplified as the following differential equation,

dfs
dt

+ (V−W) · ∇fs = qs. (3.4)

In the following section Eq. 3.4 is used to obtain the appropriate governing

equations and constitutive relations for the deformation of a spreading droplet.
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3.2.2 Governing Equations

Figure 3.2 shows the simplified computational domain for an initially unper-

turbed droplet in contact with a surface, using the assumption that the droplet is

modeled as a two-dimensional body. The following derivation of the governing equa-

tions holds for both cases of droplet spreading mentioned previously. The essential

difference between the two problems lies in the boundary conditions, described fur-

ther in this chapter. Since the drop spreads on the surface under the influence of

gravity alone, it is symmetric in any plane perpendicular to the surface. Due to this

symmetry, the drop is treated as an axisymmetric body, and only half of the domain

is considered in the analysis.

The fluid flow in the drop is modeled using the Navier-Stokes equations of the

conservation of mass and momentum for an incompressible fluid. The governing

equations are, therefore :

∇ · u = 0 (mass), (3.5)

ρ

[
∂u

∂t
+ (u− um) · ∇u

]
= ∇ ·T+ ρg (momentum), (3.6)

where u is the velocity vector of the fluid, um is the velocity vector of the refer-

ence frame, ρ is the density of the fluid, T is the total stress tensor, and g is the

acceleration due to gravity.

Using the constitutive relation for a Newtonian fluid, we get

T = −P I+ 2µD = −P I+ µ
[
∇u+ (∇u)T

]
, (3.7)

where P is the hydrostatic pressure, I is the identity matrix, and D is the rate of

strain tensor.
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z

g

Figure 3.2: The problem domain.

3.2.3 Boundary Conditions

The computational domain is bounded by three distinct types of surfaces :

(i) Lagrangian, which corresponds to the free surface of the drop

(ii) Symmetry, which corresponds to the plane of symmetry of the drop

(iii) The base of the droplet, which is either Eulerian or the interface between

two similar fluids, depending on the case being modeled.

The approach taken for each boundary condition is as follows :

• The Lagrangian boundaries are material surfaces moving with the local fluid

velocity. By considering the pressure balance across the droplet free surface

and the effects of surface tension σ, the traction vector n ·T is defined as

n ·T = (2κ) σn, (3.8)

where n is the outward unit normal vector along the free surface and κ is the
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mean curvature of the surface given by

2κ = κ1 + κ2 =
1

R1
+

1

R2
.

Here R1 and R2 are the local radii along two mutually perpendicular axes (see

Fig. 3.3). From vector calculus,

κ1 =
rzz

[1 + r2z ]
3
2

, κ2 = −
1

r
√
1 + r2z

,

where

rzz =
∂2r

∂z2
, rz =

∂r

∂z
.

Here r is displacement in the direction perpendicular to the axis of symmetry

of the droplet and z is displacement along the axis of symmetry of the droplet

(as shown in Fig. 3.2).

For our case, since the problem is modeled in two dimensions, we haveR2 =∞,

along an axis perpendicular to the rz plane, which implies that κ2 = 0. For the

finite element implementation, and for convenience in applying the boundary

conditions, κ1n is re-written as

κ1n =
dt

dS
. (3.9)

where t is the unit tangent vector in the counterclockwise direction along

the surface in the rz plane. The advantage of the above substitution is the

elimination of the need to evaluate the second order derivative, rzz.

• At the symmetry line, since there is no flow across it, ur = 0. Also, since

there is no shear stress in a plane perpendicular to that of the domain being
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considered, Trz = 0, at this symmetry line.

• At the base of the droplet, the specification of the boundary condition depends

on the case which is being modeled :

For the case of the droplet spreading on a solid surface, the Eulerian surfaces

are those which, at a particular time during the deformation are in contact

with the solid surface; once part of the free surface comes in contact with the

wall, the nodes at those boundaries are reclassified as Eulerian with u = 0.

Only the contact point is allowed to slip along the surface, in which case the

boundary condition reduces to :

ur = β (θ − θs)
m , uz = 0. (3.10)

For the two droplet case, at the interface between the two colliding drops,

there is no flow across the contact line, so that uz = 0. Also, there is no shear

stress in the contact plane of the two drops and hence, Tzr = 0.

2
R

R
1

Figure 3.3: Measurement of radii of curvature in two perpendicular planes.
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3.2.4 Non-dimensionalization and application of the GEL

formulation

The governing equations, Eq. 3.5 and Eq. 3.6, and the constitutive relation,

Eq. 3.7, are non-dimensionalized using appropriate characteristic physical quantities

to obtain the following dimensionless groups :

r∗ =
r

R
; z∗ =

z

R
;

t∗ =
t

R/
√
2gR

;

u∗ =
u
√
2gR

; P ∗ =
P

µ
√
2gR/R

; (3.11)

where R is the initial radius of the drop and µ is the dynamic viscosity of the

Newtonian fluid.

Now, after applying the GEL formulation, the non-dimensional conservation laws

of mass and momentum to be solved for the velocity field u∗ and pressure P ∗, are

obtained as :

∇ · u∗ = 0, (3.12)

Re

[
du∗

dt∗
+ (u∗ − u∗m) · ∇u

∗

]
= ∇ ·T∗ + Stg∗, (3.13)

where u∗m is the non-dimensional velocity vector of the reference frame, and Re is

the Reynolds number defined as Re ≡

√
2gRR

ν
(where ν is the kinematic viscosity

of the fluid). ∇ is the gradient operator with respect to the non-dimensional spatial

variables, r∗ and z∗.
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Here
du∗

dt∗
is the rate of change of the fluid velocity, u∗, as seen by an observer

moving with constant velocity, u∗m. T
∗ is the dimensionless stress tensor given by

T∗ =
T

µ
√
2gR/R

.

St is the Stokes number defined as St ≡ Re
gR

V 2
, where V is the characteristic

velocity defined as V =
√
2gR and g is the acceleration due to gravity (due to the

non-dimensionalization employed here, St ≡ 0.5Re). With the magnitude of gravity

absorbed into the Stokes number, g∗ is the non-dimensional gravity vector, given

by g∗ = gzez + grer, where gz = 1 and gr = 0 and ez and er are unit vectors along

the positive z and r directions, respectively. In this problem, the gravity vector is

taken to be always in the positive z-direction (Fig. 3.2).

The non-dimensional constitutive relation is obtained as

T∗ = −P ∗I+ 2D∗ (3.14)

where the non-dimensional rate of strain tensor is

D∗ = 0.5
[
∇u∗ + (∇u∗)T

]
(3.15)

After non-dimensionalization, the boundary conditions reduce to :

• The Lagrangian boundaries :

n ·T∗ =
2κ∗

Ca
n (3.16)

where Ca is the capillary number defined as Ca =
µ
√
2gR

σ
and κ∗ is the non-

dimensional mean curvature given by κ∗ = κR.
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The corresponding definitions and relations of curvature reduce to :

2κ∗ = κ∗1 + κ∗2 =
r∗zz

[1 + r∗2z]
3
2

−
1

r∗
√
1 + r∗2z

(3.17)

Also, Eq. 3.9 reduces to :

κ∗1n =
dt

dS∗
, (3.18)

where κ∗1 is the non-dimensional curvature in the rz plane (κ
∗
1 = κ1R) and dS∗

is the incremental non-dimensional arc length (dS∗ = dS/R).

• The symmetry line :

u∗r = 0 and T ∗rz = 0

• The base of the droplet :

For the Eulerian surfaces :

u∗ = 0

When the contact point slips,

u∗r = β∗ (θ − θs)
m , u∗z = 0.

For the interface between the two colliding drops :

u∗z = 0 and T ∗zr = 0

Hereafter, for convenience, the asterix (∗) will be dropped from the non-dimensional

variables, and all physical quantities mentioned are dimensionless.
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Chapter 4

Method of Solution

The governing equations and constitutive relations that were developed in the

previous chapter were discretized and solved using the boundary conditions de-

scribed therein by following the classical mixed Galerkin Finite Element Method.

The axisymmetric flow domain was discretized into 6-noded triangular elements,

as represented in Fig. 4.1. Gauss-Quadrature numerical integration was then ap-

plied and the resulting non-linear equations were solved using the Newton-Raphson

iteration procedure.

r

z

Figure 4.1: The computational domain and mesh.
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4.1 Mixed Galerkin Finite Element Formulation

Figure 4.1 shows the triangulated computational domain with the axes located

at the exact locations as actually applied in the model, such that the contact line

is located at z = 2 ∗ R and the top point of the droplet is at z = 0. Consistent

with the mixed formulation, the unknown components of the velocity vector, ur and

uz, were represented using a set of bi-quadratic interpolating functions (φi), and

the unknown pressure, P , using a set of bi-linear interpolating functions (ψi). The

mathematical expressions for the above statement are given as :

uz =
6∑
k=1

φkuk, ur =
6∑
k=1

φkvk, P =
3∑
m=1

ψmPm (4.1)

where φk and ψk denote the basis functions associated with the k-th local node of the

triangular element. The coefficients, uk, vk and Pm are the values of the unknown

physical quantities at the nodes of the triangular elements.

By invoking the traditional finite element procedure and by using the axisym-

metric assumption, the residual equations for the domain (shown in Fig. 3.2) were

obtained as :

continuity equation :

Ric =

∫ ∫
Qi [∇ · u] r dr dz (4.2)

momentum equation :

Rim =

∫ ∫ [
YiRe

(
du

dt
+ (u− um) · ∇u− 0.5g

)
+T · ∇Yi

]
r dr dz −

∫
YiT · n dS

(4.3)

The non-zero terms of the stress tensor T, in the momentum equation are :

T = er er Trr + er ez Trz + ez er Tzr + ez ez Tzz + eθ eθ Tθθ (4.4)
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where er, ez, eθ are unit vectors along the r,z and θ directions respectively.

Since the Galerkin finite element approach was used, the weighting functions Qi

and Yi are respectively, the interpolating functions, ψi and φi, i.e.,

Qi ≡ ψi Yi ≡ φi. (4.5)

By expressing the above equations (Eq. 4.2 and Eq. 4.3) in terms of the orthogo-

nal directions i, j,k and by appropriately accounting for the boundary terms, the

residual equations are expressed as :

continuity equation :

Ric =

∫ ∫
ψi [∇ · u] r dr dz (4.6)

momentum equation in the z-direction :

Rimz =

∫ ∫ [
φiRe

(
du

dt
+ (u− um) · ∇u− 0.5gz

)
+ Tzz φi z + Tzr φi r

]
r dr dz

−

∫
φi

2κ

Ca
n · k dS (4.7)

momentum equation in the r-direction :

Rimr =

∫ ∫ [
φiRe

(
dv

dt
+ (u − um) · ∇v +

Tθθ

r
− 0.5gr

)
+ Tzr φi z + Trr φi r

]
r dr dz

−

∫
φi

2κ

Ca
n · j dS (4.8)

where dS = r dSa, and dSa is the (non-dimensional) arc length along the free surface,

given by the relation dSa =
√
dr2 + dz2.
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4.2 Calculation of the local curvature

Since surface tension plays an important role in the spreading of the droplet,

proper evaluation of this physical quantity has to be ensured. From a mathemat-

ical and numerical point of view, the consideration of surface tension occurs at

the boundary of the computational domain (Fig. 4.1) for the Eulerian surfaces as

discussed in section 3.2.3. This evaluation depends upon the calculation of the lo-

cal curvature, the accuracy of which is critical for this problem. To ensure proper

accuracy, the curvature was calculated and compared using two distinct methods :

(a) Using Eqs. 3.16, 3.17 and 3.18, the boundary integral corresponding to the

traction vector due to surface tension can be written as

∫
φi

2κ

Ca
n dS =

∫
φi

Ca

(
dt

dS
−

1

r
√
1 + r2z

n

)
dS (4.9)

Applying integration by parts, we get

∫
φi

2κ

Ca
n dS = φi

rt

Ca

∣∣∣∣
2

− φi
rt

Ca

∣∣∣∣
1

−

∫
t

Ca

d (rφi)

dS
dSa −

∫
φi

Ca
√
1 + r2z

n dSa

(4.10)

where subscripts 1 and 2 refer to the endpoints of the boundary elements along the

free surface of the droplet, in the counterclockwise direction. Now, the contribution

of (φi r t|2−φi r t|1)/Ca vanishes everywhere except at the end points. If, at the end

points, the liquid meets a solid surface then the tangent vector, t there, is related

to the contact angle, θ.

(b) Alternatively, the local curvature was evaluated using the definitions of κ1

and κ2 at each point along the free surface : κ1 is evaluated by prescribing a circle

through the point of interest and its two adjacent neighboring points and κ2 by

calculating the distance to the axis of rotation (z-axis) along the normal direction
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(Fig. 4.2). Note that Fig. 4.2 shows an enlarged picture for better clarity. In reality

the difference between the actual and numerically calculated values is a very small

percentage of the real value of R2.

Both methods yield identical results in all cases except at higher Re numbers and

whenever the curvature changed sign. The pointwise calculation of the components

of the curvature (approach (b)) was consistently more accurate (determined through

comparison with expected values at specific locations such as the top point of the

droplet) both in magnitude and sign, during the entire spreading process. In the

case of the spreading of a droplet on a solid surface, since the dynamic contact

angle was a known value, approach (a) was used for the evaluation of the boundary

integrals.

For the two droplet case, however, the surface tension at the contact point of

the two droplets was evaluated using approach (b). The motion of this point poses

some physical and mathematical issues which require careful handling. With a

small radius of curvature in the plane of the geometry (R1 in Fig. 4.2), the surface

tension attains very high values at all times during the spreading, which causes

high spreading velocities at the contact point. In addition to this, during the initial

stages of the spreading, R2 is very small (near-zero) since the droplet has a nearly

spherical shape. As a result, the surface tension at the contact point tends to infinity

and the contact point moves very quickly, decelerating as the surface tension falls

to more reasonable values (as R2 increases). This is an inherent physical aspect of

the problem. Added to this, since we need to use discrete points to numerically

model these physics, there is an implied cutoff point which then underestimates the

motion of the contact point, since it assumes a value of R∗2 which is slightly higher

than the actual value, R2 (Fig. 4.2). The dynamics discussed here are in addition

to the spreading of the droplet due to the motion of the neighboring fluid, which is
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discussed in section 5.1.

*

R

R1

z

Droplet 1

r

Droplet 2

R

2

2

Figure 4.2: Evaluation of the local curvature.

4.3 The Dynamic Contact Angle

As mentioned in the previous chapter, the motion of the contact point is very

crucial to the spreading of the droplet on a solid substrate. This motion is quantified

in terms of a finite slip velocity, Vslip, which is assumed to depend upon the dynamic

contact angle, according to the commonly used “power law” constitutive relation [2] :

Vslip = β (θ − θs)
m , (4.11)

where θ is the dynamic contact angle (the angle that the droplet makes with the

solid surface during spreading) and θs is the static contact angle (the angle when the

contact point is at rest) (Fig. 4.3). Rewriting this equation, we get the expression

for the dynamic contact angle as,

θ =

(
Vslip
β

) 1
m

+ θs, (4.12)
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which was used to define the tangent vector, t, according to Eq. 4.10. However,

since the weak formulation of the Finite Element Method was used, this boundary

condition, in the computations, could only be satisfied in an average sense. In view,

however, of the importance of the motion of the contact point, Eq. 4.11 was enforced

exactly within each iteration step.

At this point, it is appropriate to consider the manner in which the contact

point is affected according to Eq. 4.11. To consistently predict the proper direction

of the slip velocity, m must be an odd number. This is to avoid the use of two

different equations to define the direction of slip velocity [2]. Customarily, a value

of m = 3 is used [2]. Since Eq. 4.11 relates the slip velocity to the difference in

the dynamic and static contact angles, the direction of this velocity depends on

the relative magnitudes of the two angles. For instance, when the dynamic contact

angle (θ) is greater than the static contact angle (θs), as shown in Fig. 4.3(a), the

velocity of the contact point is positive, pointing outwards from the center of the

contact area. Consequently, the contact point moves forward on the surface and

the local profile of the droplet tends to an angle closer to the fixed value of θs.

Similarly, when θs is smaller than θ (Fig. 4.3(b)), the vice versa occurs and the

contact point tends to move backward and towards the center of the contact area.

This dynamic change of the contact angle occurs, until the droplet reaches a static

condition when the contact angle, θ becomes equal to the static angle, θs. At this

point, the contact velocity, according to Eq. 4.11, becomes zero and the fluid within

the droplet eventually comes to rest.

It is worth noting that, only the forward-most point in contact with the solid

surface slips, while those already in contact with the surface and completely inside

the contact region stay with the solid surface. This is consistent with the concept

of the slip of the contact point [13].

30



s

θ
θ s

V

(a)

s
sV

θ
θ

(b)

Figure 4.3: Motion of the contact point for : (a) Positive slip velocity (b) Negative
slip velocity. Here, solid lines indicate the shape of the droplet at the current instant
of time and the dashed lines indicate the final shape of the droplet which makes the
predefined angle (θs) with the solid surface.

4.4 The Newton-Raphson Iteration Procedure

After the classical isoparametric transformation to area coordinates and an ap-

propriate Gauss-Quadrature numerical integration of the governing equations in

each element, the resulting system of nonlinear algebraic equations was solved using

the Newton-Raphson iteration procedure. This scheme is mathematically expressed

as :

J
(
q(n+1) − q(n)

)
= −R

(
q(n)

)
(4.13)

Here, R is the vector of the weighted residuals, q is the vector of the unknowns,

q = {u1, v1, P1, ....uN, vN , PN}, and J is the Jacobian of R with respect to the

nodal unknowns q. Thus all the nodal unknowns of the velocity components and
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pressure are evaluated simultaneously. The free surface is calculated automatically

by properly assigning the velocity of the nodes along the free surface to reflect the

fact that the free surface is a material surface. All time derivatives were evaluated

using a fully implicit finite difference scheme.

For the Newton-Raphson iteration scheme, the Jacobian assumes the following

form :

J =




∂Rimz
∂uj

∂Rimz
∂vj

∂Rimz
∂Pj

· · ·

∂Rimr
∂uj

∂Rimr
∂vj

∂Rimr
∂Pj

· · ·

∂Ric
∂uj

∂Ric
∂vj

∂Ric
∂Pj

· · ·

...
...

...
. . .




(4.14)

In the above matrix, the derivatives with respect to the unknowns are given by :

∂Ric
∂uj

=

∫ ∫
ψi

∂φj

∂z
r dr dz,

∂Ric
∂vj

=

∫ ∫
ψi

∂φj

∂r
r dr dz,

∂Ric
∂P

= 0 (4.15)

and, if the velocity vector of the reference frame can be written as :

um = umzez + umrer,

as :

∂Rimz
∂uj

=

∫ ∫
φiRe

(
φj

∂uz

∂z
+ (uz − umz)

∂φj

∂z
+ (ur − umr)

∂φj

∂r

)
r dr dz

+

∫ ∫ (
φiz

∂Tzz

∂uj
+ φir

∂Tzr

∂uj

)
r dr dz (4.16)

∂Rimz
∂vj

=

∫ ∫ [
φiReφj

∂uz

∂r
+

(
φiz

∂Tzz

∂vj
+ φir

∂Tzr

∂vj

)]
r dr dz (4.17)

32



∂Rimz
∂Pj

= −

∫ ∫
ψj

∂φi
∂z

r dr dz (4.18)

∂Rimr
∂uj

=

∫ ∫ [
φiRe

(
φj

∂ur

∂z
+
1

r

∂Tθθ

∂uj

)
+

(
φiz

∂Tzr

∂uj
+ φir

∂Trr

∂uj

)]
r dr dz (4.19)

∂Rimr
∂vj

=

∫ ∫
φiRe

(
(uz − umz)

∂φj

∂z
+ φj

∂ur

∂r
+ (ur − umr)

∂φj

∂r
+
1

r

∂Tθθ

∂vj

)
r dr dz

+

∫ (
φiz

∂Tzr

∂vj
+ φir

∂Trr

∂vj

)
r dr dz (4.20)

∂Rimr
∂Pj

= −

∫ ∫
ψj

∂φi
∂r

r dr dz (4.21)

Using the constitutive relations from Eqs. 3.14 and 3.15, and the finite element

formulation from Eq. 4.1, the derivatives of the stress components can be obtained

as :

∂Tzz

∂uj
= 2

∂φj

∂z
,

∂Tzr

∂uj
=

∂φj

∂r
,

∂Trr

∂uj
= 0;

∂Tzz

∂vj
= 0,

∂Tzr

∂vj
=

∂φj

∂z
,

∂Trr

∂vj
= 2

∂φj

∂r
; (4.22)

The resulting equations from the Newton-Raphson iterative procedure are of the

form :

J∆q = −R.

where the Jacobian J is the global coefficient matrix, which is formed by the as-

sembly of the element matrices and is stored as a banded matrix. R is the right

hand side vector, which is formed from the individual element right-hand side vec-
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tors, after appropriate modifications and accounting for the boundary conditions

(as discussed in section 4.2). The vector of unknowns, q, which we are solving

for is obtained from the above equation using a direct solver based on the Gauss

Elimination Method, using partial pivoting.

4.5 Mesh construction and control

An important step in the process of a numerical solution is the construction of

the computational grid. In the context of the method used here, this issue is vital,

due to the approach of the Generalized Eulerian Lagrangian Formulation, which

requires frequent remeshing of the problem domain.

The initial mesh was constructed by mapping the semi-circle of the computa-

tional domain in Fig. 4.1, into a square of unit length (Fig. 4.4). The coordinates

of the vertices of the triangular elements used in the Finite Element analysis were

obtained using the Laplacian function, ∇2r = 0 and ∇2z = 0, where ∇, was defined

with respect to the coordinates of the unit square. This initial mesh was improved by

using the Delaunay triangulation and consequently, a bandwidth reduction renum-

bering scheme was employed to minimize the bandwidth of the algebraic system.

During deformation, the mesh deforms according to the GEL formulation; the

nodes classified as Lagrangian move with the fluid velocity, while all other nodes

move with the prescribed velocities of the reference frame. After numerous experi-

mental schemes, the simplest and most effective scheme to move the “general nodes”

was found to be one in which the vertices of the finite element mesh moved with the

fluid velocity and the middle nodes moved with the average velocity of the neigh-

boring points. In other words, the material points on the free surface move with

the fluid as the droplet deforms, while the internal points move with the reference

34



frame velocity, W which is calculated as the average of the velocity of the neigh-

boring nodes using the Laplacian function, ∇2W = 0. This captures the distinct

advantage of the GEL formulation in that, the mesh deforms consistent with the

dynamics of the control volume, while preventing large distortions in the fluid do-

main. Every M time steps, the entire domain was remeshed by relocating each node

at the average distance between its neighbors and the Finite Element interpolating

functions (φi and ψi) were used to interpolate the field variables of the new mesh.

3’

1 2 3
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Figure 4.4: The mapping between the semi-circle and a square.
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Chapter 5

Results and Discussion

The results presented in this chapter were obtained for the two cases introduced

in Chapter 3: that of a droplet spreading after the impact of two identical droplets

and that of a droplet spreading on a solid substrate. As mentioned previously,

the problem in both situations is axisymmetric as well as symmetric in any plane

perpendicular to the surface on which the droplet spreads. Hence, without loss

of generality, it is modeled as a two-dimensional droplet and only one half of the

domain was considered (Fig. 3.2). This domain was discretized using 900, 6-noded

triangular elements and 1891 nodes. The important parameters during spreading

are the acceleration due to gravity, the viscosity of the fluid, the surface tension of

the interface and the radius of the droplet. These parameters are expressed using

the dimensionless Reynolds (Re), capillary (Ca) and Stokes (St) numbers. However,

due to the particular non-dimensionalization used here, the Stokes number reduces

to St ≡ 0.5Re. Hence, all results are classified and discussed based on Ca and Re.

The simulations were performed for two cases : (a) two identical droplets colliding

and (b) a droplet spreading on a plane solid surface. The results reveal the dynamics

of spreading as a function of the physical parameters mentioned previously. In the
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following sections, we discuss the spreading phenomena that were observed during

the study of the above mentioned cases and their dependence on several factors such

as physical properties of the liquid, influencing forces and the boundary conditions.

In addition, the stability of the droplet and the dynamic change in its external

profile, as time progresses are discussed. To better understand the phenomena

observed, the bulk motion of the fluid within, the development of instabilities and

the emergence of recirculating zones are also discussed.

The numerical results reported here are effectively independent of spatial and

temporal discretizations. Figure 5.1 demonstrates the independence of the results

with respect to the spatial discretizations. These figures plot the variation of the

velocity of the top point (non-dimensional) with respect to non-dimensional time,

for the case of a droplet spreading on a plane solid surface. The coarse mesh was

obtained through a discretization consisting of 392, 6-noded triangular elements

and 841 nodes, while the fine mesh consisted of 900, 6-noded triangular elements

and 1891 nodes. As can be observed, the two lines trace a very similar trend in

all cases ((a)Ca = 2.0, Re = 1.0; (b)Ca = 1.0, Re = 1.0; (c)Ca = 0.2, Re = 0.5;

(d)Ca = 0.1, Re = 0.01). In Fig. 5.1(d), however, the difference is more noticeable,

but acceptable, based on the time taken to attain equilibrium and the difference

in values, relative to the amplitude scale. This case corresponds to Ca = 0.1 and

Re = 0.01. While the results obtained matched very well for both meshes over most

of the range of Ca and Re, for very low values of both parameters, a slight difference

(as mentioned above) was noticed. Similarly, Fig. 5.2 shows the independence of

the results with respect to the temporal discretizations. As can be observed, by

halving the size of the time step, there is no detectable change in the trend of

the top point velocity, for a droplet spreading on a plane surface (with Ca = 1.0

and Re = 1.0). The results were reproducible over the entire range of Ca and Re,
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regardless of the time step. Whenever possible, the results were compared with exact

analytic solutions; during the first time step, and prior to spreading, the calculated

fluid pressure was the exact pressure predicted by the analytic solution, P = 2/Ca,

(within the computational accuracy). Furthermore, the initial acceleration of the

fluid due to gravity was also predicted exactly.

5.1 Two identical droplets colliding

In this case, two identical droplets, initially at rest, spread due to the action of

gravity (acting in opposite directions and towards the contact line on both droplets).

This case simulates the behavior of two viscous droplets in a hypothetical situation,

where gravity forces both drops towards each other, after a collision, in which the

inertia of the droplets is very low and comparable to the effects of surface tension and

viscosity. This case may be appropriate for the simulation of micromanufacturing,

in which the interaction of two liquid droplets is important.

Unlike the case of a droplet spreading on a solid surface, no singularity at the

contact point is caused by a no-slip boundary condition, in this case. The absence

of singularity and its effects allows the study of spreading dynamics that are free

of mathematical complexities. In addition, since the only surfaces in contact are

fluid surfaces and there is no interference of any external surfaces, the two droplets

can physically reach steady state. However, the manner in which they spread and

the extent to which they deform, depend on the relative strength of surface tension,

gravity and viscous forces. As mentioned in section 4.2, the evaluation of the mean

curvature at the contact point at the early stages of the simulation is approximated

by the numerical discreteness of the solution. However, the affect of this limitation

on the results of this study is negligible.
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For this case, we observed two distinct behaviors that depend on the Reynolds

and capillary numbers. The first behavior is that of a stable oscillating droplet

which eventually reaches steady state. During the oscillations, the droplet retains

its near-spherical shape. The second behavior is that of a droplet which becomes

unstable, and eventually disintegrates. Due to the symmetry about the contact line,

results are shown only for a single droplet.

The behavior of the two droplet spreading is mapped in Fig. 5.3 with the inverse

of the capillary number on abscissa and the Reynolds number on the ordinate. The

parameter 1/Ca indicates directly the effects of surface tension for a fixed value of

viscosity. This map indicates the ranges of Ca and Re for which the droplet exhibits

the behaviors mentioned above. The circles (•) in this map show the cases where

the droplet oscillates, and reaches a stable state after a sufficiently long time. The

squares (�) in the map show the cases where the droplet becomes unstable, and

eventually disintegrates. In this case, due to relatively higher energy and a weaker

dissipative mechanism, the droplet deforms to an extent greater than can be held

by the surface tension and hence, breaks up before it can reach a stable steady

state. The hollow circle (◦) and square (�)) symbols on this map represent the

two cases for which the behaviors are discussed, in detail, in the following sections.

An estimated boundary between these different behaviors has been sketched in to

demarcate the ranges of Re and Ca to which the behaviors correspond. In the

discussion, case 1 refers to the stable behavior of the droplets, while case 2 refers to

the unstable behavior. In contrast to the spreading of a droplet on a solid surface, a

non-oscillatory behavior is not noticed for the two droplet case, since the contact line

separates two fluid domains and the fluid flow in each droplet causes the droplets

to oscillate.

Figure 5.4 shows a similar map, but in this case, the abscissa represents the
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effect of surface tension alone, and the ordinate represents the effect of viscosity and

gravity. As can be observed, as the viscosity in the drop decreases and the effect of

gravity increases (moving upwards along the ordinate), the droplet becomes unstable

and changes behavior from an oscillatory to a disintegrating state. Similarly, as the

surface tension increases (moving along the abscissa), the ability of the droplet to

deform decreases and it disintegrates sooner than if the surface tension were lower.

Figure 5.5 shows the effect of varying gravity on the stability of the droplet.

While the abscissa contains terms pertaining to surface tension and viscosity, the

ordinate contains terms pertaining to gravity. Thus, moving along the ordinate

would imply changing the value of gravity while keeping the rest of the influencing

parameters constant. As can be seen from the figure, when gravity increases in

value, the droplet behavior changes from stable to unstable, which is expected.

The boundary point which corresponds to a capillary number of 1.0 and a Reynolds

number of 0.1 exhibits a border-line behavior, leaning closer to an unstable behavior.

Stable behavior

Figure 5.6 shows a typical stable behavior for the two colliding droplets (case 1).

Due to the action of surface tension, the droplet develops an oscillatory motion.

These oscillations are gradually damped out by the viscosity of the fluid, and the

two drops attain a near-steady state, where the change in velocities is very small,

while the two droplets maintain contact. This figure depicts the external profile

of the droplet and the velocity field of the fluid within, at different times during

the spreading process. As can be noticed, in this mode, the droplet retains a near-

spherical shape at all times without substantial deformation. This behavior occurs

in droplets with relatively high viscosity (i.e., higher viscous forces) and low gravity

effects (low Re) and also for droplets with lower surface tension (high Ca). In

other words, since gravity, being the deforming force, is weaker here than in case 2,
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where the droplet becomes unstable, the shape of the droplet remains more or less

spherical. And since the restoring force (surface tension) is also weaker, compared

to the viscous forces, the droplet tends to oscillate. This is evident especially near

the line of contact of the two drops. When a droplet attains equilibrium, the rate of

spreading is very low, and the velocity field within the drop and its external profile

do not undergo any significant change over a sufficiently long period of time.

Figure 5.7 illustrates a typical behavior of fluid motion in the vicinity of the the

contact line. The four pictures in this figure correspond to the same times as the

previous figure and the hollow rectangle in the inset indicates the region enlarged

in each frame. Figure 5.7(a) shows the velocity field near the contact line at an

early instant of time as the droplets spread outward and towards each other. At a

subsequent instant in time (Fig. 5.7(b)), due to the oscillations, the velocity at the

contact line evidently reverses direction, while the fluid inside the drops continues

to move towards the contact line. This appears to induce a recirculation of the fluid

near the contact line. As the droplets spread further under the action of gravity,

the velocity field returns to its original direction of outward motion (Fig. 5.7(c)).

The oscillations repeat, causing the velocity to alternate direction (Fig. 5.7(d)).

This sequence repeats itself and eventually the droplets attain a state, in which the

spreading rate is near-zero. This behavior is limited only to a certain range of Re

and Ca, outside which an unstable behavior is observed, as is discussed below.

Unstable behavior

Figure 5.8 shows a typical spreading behavior, where, unlike the steady oscil-

lating case, the colliding droplets disintegrate (case 2). Due to the excessive de-

formation, the simulations break down before the two droplets merge into a single

larger drop. And because of higher surface tension than in case 1 which tends to

restore the droplet to its original shape and low viscosity, the fluid does not have
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an effective dissipative mechanism to hold the drop together. Figure 5.8 shows the

drop shape and the velocity field of the fluid inside, at progressive instants of the

spreading. With a stronger effect of gravity, the droplet deforms much more than in

the previous case. However, the strong surface tension forces resist this deformation

and under the action of these opposing forces, the droplet disintegrates. Figure 5.8

shows the extent of deformation that the droplets progressively undergo. This figure

also shows that the magnitude of the velocity field inside the droplets is higher than

that of the earlier case. This is especially evident in the region near the contact line,

which is discussed in more detail below.

Similar to the previous case, Fig. 5.9 depicts the contact line motion in greater

detail for an unstable droplet. Here too, the four pictures in the figure correspond

to the same times as Fig. 5.8 and the hollow rectangles in the inset indicate the

enlarged region which is shown in each frame. Figure 5.9(a) depicts the velocity

field near the contact line as the drops spread outward and towards each other. Due

to the strong effect gravity, the velocities reach high magnitudes. With the contact

line being a fluid-fluid interface, all points on it have finite velocities and participate

in the spreading process. As the spreading continues, the drops begin to deform and

the velocities near the contact point grow in magnitude (Figs. 5.9(b) and 5.9(c)).

Eventually, this deformation becomes substantial and the velocity near the contact

point reaches very high values, as can be seen in Fig. 5.9(d). At this point, the fluid

near the contact line has much greater velocities than that in the remaining part of

the droplets. Hence, the drops cannot hold together any longer and they break up.

Figure 5.10 illustrates the effect of the capillary number on droplet spreading in

the two-droplet case. The figure shows the shape of the droplet at a fixed Reynolds

number (Re = 30.0), but variable capillary numbers. As can be noticed, the effects

of capillary number are more pronounced near the contact area; as expected, the
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droplets spread further with increasing Ca, i.e., with decreasing surface tension.

A similar, but more significant difference, is observed when the capillary number

is kept constant, and the Reynolds number is varied (Fig. 5.11). For instance,

Fig. 5.11(d) shows a distinct difference in the profiles of the droplet as the Reynolds

number increases from a value of 0.5 to 5.0, and then to 30.0. The innermost

profile corresponds to the lowest Re (higher fluid viscosity), while the outermost

corresponds to the highest Re (lower fluid viscosity). This too, agrees well with

the expected behavior where, for a more pronounced effect of gravity relative to

viscous forces, the drop deforms to a greater extent. A close look at the profiles

and the corresponding Reynolds numbers reveals that the extent of deformation of

the droplet varies non-linearly with the Reynolds number. While the change in the

shapes is significant when the Reynolds number changes ten-fold from a value of

Re = 0.5 to Re = 5.0, the change in shape is barely noticeable for a six-fold increase

of the Reynolds number from a value of Re = 5.0 to Re = 30.0.

5.2 Spreading of a drop on a solid surface

These results correspond to a spherical droplet initially at rest and in contact

with a plane solid surface. At time, t = 0, the droplet is released and allowed

to spread on to the surface under the combined influence of gravity, viscosity and

surface tension.

For this situation, the results were obtained using : (a) the no-slip boundary

condition and (b) a finite slip condition at the contact point. In the case of the

no-slip condition (a), it is assumed that any point that comes in contact with the

solid surface comes to rest, relative to the surface, and all other points in the droplet

move with the velocity of the fluid. In addition, it is also assumed that the spreading
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of the fluid is fully reversible, so that during sustained oscillations, the material

points already in contact with the solid surface can leave the surface as shown in

Fig. 5.12(a). However, when the case of irreversible fluid spreading was considered,

there was no noticeable difference in the behavior of the droplet and the modes of

spreading were identical with those of reversible spreading in exactly the same ranges

of Reynolds and capillary numbers. As discussed earlier, it is assumed that the liquid

and solid surfaces are chemically “related”, i.e., under equilibrium conditions, the

static contact angle, between the liquid free surface and the plane solid surface is

a priori known, and is a property of the liquid-fluid-surface system. In this case,

however, it is assumed that the forward-most point on the liquid free surface (the

contact point) moves with a velocity relative to the surface and the difference in these

velocities is expressed in terms of a slip coefficient, β, while all other points which are

in contact with the surface do not slip. In other words, the movement of the contact

point occurs due to the cumulative effect of a slip velocity and the motion of the

material points near the point of contact (Fig. 5.12(b)). Also, the droplet spreading

in this case was considered to be non-wetting, such that the contact angle always

remained above 90◦. When a wetting case was attempted, the droplet underwent

severe deformation and the automatic mesh generator could not handle such high

distortion, causing the code to diverge. In the following pages, the results for both

cases are discussed and compared for different values of the slip coefficient, β and

the dimensionless control parameters, Re and Ca.
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5.2.1 No-slip boundary condition

Dynamics of Spreading

The results presented here are discussed for the case where there is no relative

motion between the contact point and the solid surface, i.e., β = 0. In contrast

to the case of the spreading of one droplet on another (discussed in the previous

section), in this case, the no-slip boundary condition leads to a mathematical sin-

gularity at the contact point. Consistent with the expectation that the dynamics

of droplet spreading are predominantly effected by viscous, gravity and capillary

forces, the dependence of the spreading on capillary and Reynolds numbers was in-

vestigated. As a result, it has been found that the relative magnitude of these two

non-dimensional numbers relates to the droplet spreading in one of three distinct

manners, in this case: stable, oscillatory and splashing (or disintegrating). As the

top point of the droplet is the farthest from the surface, the variation of the velocity

at this point is indicative of the fluid in the bulk of the drop. Thus, to determine

and classify the manner in which the drop spreads on the solid surface, the velocity

of the top point of the droplet is used to illustrate the trend of the velocity field at

all points inside the droplet. Figure 5.13 shows the variation of this velocity for the

three behaviors mentioned above. Here, positive velocity represents motion of the

droplet towards the solid surface and negative velocity represents motion away from

the surface.

For the two droplet case, the focus of the study was the motion of the contact

point and hence the results were classified based on the droplet behavior, which was

governed by the contact line motion. However, in the case of a droplet spreading

on a plane surface, with no slip, since the velocity of the contact point is zero, the

behavior of the droplet is classified based on the motion of the top point, which is
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more appropriate, as explained above.

When the droplet spreads on a plane surface in a stable manner, it typically

spreads downward (towards the surface) due to the action of gravity, and quickly

reaches equilibrium. In contrast to this behavior, when the droplet spreads in an

oscillatory manner, with a greater effect of surface tension and gravity relative to

the viscous forces, it oscillates for some time before eventually attaining a state

of equilibrium. If the relative magnitude of surface tension and gravity are further

increased, the droplet spreads in the third manner, where it disintegrates or splashes

onto the solid surface. These three cases are shown in Fig. 5.13.

When compared to the spreading behavior in the two-drop case, it is observed

that a droplet spreading on a solid surface at low Reynolds number and high capillary

numbers usually attains equilibrium without oscillating. This accounts for the third

manner of droplet spreading in this case. This behavior, as expected, results from

the no slip boundary condition at the contact point, which tends to bring the fluid

in the droplet to rest in a shorter time. Moreover, when low energy droplets, with

high viscosity (low Re) collide, they tend to merge into a single bigger drop and one

does not expect to see the behavior mentioned above.

An observation worth noting here is that, since the contact angle is not fixed,

in the case of the no-slip boundary condition, the droplet never reaches a perfect

steady state, where the velocity of the fluid within the drop comes to a complete

rest. Rather, it attains a rate of spreading which is very slow, and the velocity of

the fluid within the drop is negligible compared to its initial values. This is similar

to the behavior that was observed in the two-droplet case, as well.

The Stability Map

Similar to the case of the colliding droplets, the ranges of capillary and Reynolds

numbers, for which the drop behaves in the manners discussed above, are graphi-
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cally shown on a ”stability map” in Fig. 5.14. Unlike the two-drop case, however,

in this case, three different manners of spreading were observed, as discussed above.

This map is plotted with the inverse of the capillary number on the abscissa and

the Reynolds number on the ordinate, such that the parameter, 1/Ca, indicates,

directly, the effects of surface tension. In the map, the upward pointing triangles

(�) represent the first type of behavior, where the droplet spreads in a stable man-

ner, and quickly attains equilibrium. The circles (•) in the map refer to the second

behavior where the droplet oscillates, damping gradually before attaining a state of

near-equilibrium. The squares (�) correspond to the cases of the third behavior, in

which the droplet splashes on to the surface due to a relatively weaker dissipative

mechanism. An interesting behavior which constitutes the fourth type is that of

a droplet which rebounds from the solid surface and achieves a greater magnitude

of velocity away from the surface than towards it. This behavior is indicated by

the downward pointing triangles in the map and is discussed in more detail later in

this section. The diamonds (�) on the map represent cases which border between

stable and oscillatory modes of spreading. These cases exhibit a predominantly

stable behavior, while a velocity away from the surface is also observed. The am-

plitude of this velocity, however, is several orders of magnitude smaller than that

towards the surface. The hollow symbols (�, ◦, � and �) in this map represent the

cases for which the behaviors are discussed in the following sections. The estimated

boundaries between these different behaviors have been sketched in to demarcate

the ranges of Re and Ca to which the behaviors correspond.

Since the dynamics of the fluid near the contact line are different for the two situ-

ations of droplet spreading, the behaviors exhibited by the droplet and the corre-

sponding ranges of Reynolds and capillary numbers differ for the two cases. This is

evident from an examination of the stability maps shown in Figs. 5.3 and 5.14.
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Figure 5.15 shows a similar map of the distribution of these cases as a function

of Reynolds and capillary numbers. In this map, however, the abscissa represents

the effect of surface tension alone, while the ordinate represents the effect of gravity

and viscosity on the stability of a drop spreading on a plane solid surface. It can

be observed that, as the relative effect of surface tension increases (moving along

the abscissa), the behavior of the drop changes from stable to oscillatory. This is

expected, since, for a relatively higher effect of surface tension, the restoring force is

greater and the droplet tends to oscillate before reaching a state of near-equilibrium.

Similarly, as the effect of gravity increases (moving along the ordinate), relative to

the viscous forces, the droplet changes behavior first, from stable to oscillatory and

then, on to a disintegrating droplet. This is also expected, for, a relatively higher

gravity and weaker dissipation help the drop retain more energy and either oscillate

or splash on to the surface.

Figure 5.16 illustrates the effect of gravity on the stability of the droplet spread-

ing on a solid surface. While the abscissa shows the effect of surface tension and

viscosity, the ordinate shows the effect of gravity and viscosity. Thus, moving along

the ordinate implies a changing value of gravity while all other influencing parame-

ters are kept constant. From this figure, it can be deduced that the behavior of the

droplet depends on the surface tension and viscosity of the droplet. When surface

tension is low, as gravity becomes stronger, the droplet changes behavior from an

oscillating droplet to a stable droplet. On the other hand, when surface tension is

high, for stronger gravity the droplet changes behavior from oscillatory to splashing.

This behavior is expected since, in the latter case, the restoring force of capillarity

is stronger than in the former case.

These behaviors of a droplet spreading on a solid surface agree well with those

observed experimentally by Matson, Rolland & Flemings [4] of an aluminum-copper
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alloy impinging onto a thermally conditioned substrate. In their study, Matson

et. al. considered a solidifying droplet and mapped the behaviors based on Weber

number (We ≡ ReCa) and a freezing number. The ranges in which the respec-

tive behaviors were observed computationally in our analysis correspond to those

observed experimentally by Matson et. al..

Fukai et. al. [10] studied the spreading behavior of droplets impinging on a solid

surface, such that they start with an initial spherical shape and deform into a splat

due to the high inertia of collision. The results that they obtained are similar to

those presented in this work, in the initial stages of the collision, such that the

contact angle never falls below 90◦.

A more detailed discussion of these behaviors is below. The figures used in the

following discussion depict the velocity field in the droplet at different instances of

spreading. The inset in the top left corner of each frame shows an enlarged and

clearer view of the velocity field inside the droplet in the region which is marked

by the hollow black square on the droplet. The inset in the bottom right corner

represents the variation of the velocity of the top point and the small (solid) black

square indicates the instant in time to which the velocity field corresponds.

Stable spreading

Figure 5.13(a) shows the velocity of the top point, as a function of the non-

dimensional time, for a droplet which spreads in a stable manner. As can be ob-

served, the velocity of the top point towards the surface increases to a maximum

value and then gradually decreases to a value of zero relative to the surface. It can

also be noticed that the peak velocity of Vmax = 0.08 towards the surface occurs

at time, t = 0.264. As mentioned before, since the top point of the droplet is the

farthest from the surface, its behavior is indicative of that of the fluid in the bulk

of the drop. Thus, the drop reaches a state of equilibrium within a relatively short
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time and remains stable. Similar to the spreading in the two-drop case, equilibrium

here corresponds to a state where the velocity field within the drop and its shape

do not undergo any significant change over a sufficiently long period of time.

As the stability map (Fig. 5.14) shows, the droplet exhibits this stable behavior

for a range of Reynolds and capillary numbers. The values of the peak top point

velocity and the times at which they occur are shown in Fig. 5.17, for a fixed capillary

number (Ca = 1.0) and a range of Reynolds numbers from Re = 0.01 to Re = 0.2.

It can be inferred from this figure that, the maximum droplet velocity increases

with the Reynolds number. Figure 5.18(a) illustrates this point more effectively and

also gives the relation of the maximum droplet velocity to the Reynolds number

as Vpeak = 0.35471Re0.49897. In addition, Fig. 5.18(b) shows that the time that the

droplet takes to reach the peak velocity also increases with the Reynolds number.

This agrees with the expectation that, for relatively larger gravity and lower viscous

forces, the droplet accelerates more and it takes longer to attain stable equilibrium

due to reduced dissipation. The inset shows the interior region because it illustrates

the bulk fluid motion better than the flow near the top point.

In this mode, since gravity and surface tension are relatively smaller (low Re and

high Ca) than the viscous forces, the droplet spreads and reaches a near-equilibrium

state at a relatively short time. Figure 5.19 shows the typical behavior of a droplet

spreading in a stable manner. Since the forces which affect the free surface of

the drop are relatively smaller in magnitude than the viscous dissipation, the drop

remains close to spherical in shape throughout the process of spreading and the

deformation is very little.

Figure 5.19(a) shows the velocity field in the droplet at an early instant in time as

the drop spreads towards the surface under the influence of gravity. At a later instant

in time (Fig. 5.19(b)), the fluid velocity towards the surface increases in magnitude
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till it reaches a maximum. Thereafter, the velocity of the fluid begins to decrease in

magnitude even as the droplet continues to spread towards the surface (Fig. 5.19(c)).

Soon after (Fig. 5.19(d)), the velocity of the fluid inside the droplet decreases to a

very low value (near-zero) and the droplet attains a state of equilibrium.

When the droplet spreads in a stable manner, the fluid in the region near the

contact line moves downward at all times and hence, no recirculation is observed.

Rather, the fluid continues to spread downward on the surface till the droplet attains

a state of stable equilibrium.

A significant observation in Fig. 5.19 is that all points in the flow field show

velocities pointed towards the surface at all times. This is typical and characteristic

of a droplet spreading in the stable mode, where no point in the flow field ever moves

away from the solid surface. This behavior is in contrast to the oscillatory manner

of spreading, discussed in the following section.

Oscillatory spreading

An interesting mode of spreading of the liquid droplet is when it oscillates before

reaching a state of equilibrium. In this mode of spreading, with relatively stronger

gravity and capillary forces, the droplet possesses higher energy and a weaker dis-

sipative mechanism. As a result, the drop oscillates and the gradual damping of

these oscillations eventually brings it to a state of equilibrium. This behavior of

the top point of the droplet can be seen in Fig. 5.13(b), which is an indication of a

similar behavior in the bulk of the fluid. As can be observed, the top point velocity

reverses direction, in contrast to the stable mode, and oscillates several times as the

viscosity of the fluid damps it down in magnitude. In this case, since the contact

angle is not fixed, the droplet continues to oscillate for a very long time, but after

a sufficiently long initial period, the amplitude of these oscillations decreases to a

value much smaller than that of the initial oscillations. When the droplet reaches
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this state, it is very close to stable equilibrium.

Figure 5.20 shows the typical behavior of an oscillating droplet. Similar to the

case of a stable droplet, this figure shows a sequence of velocity field in the droplet

at different instants of time during the spreading. With a stronger effect of gravity

and surface tension on the droplet, the deformation of the free surface is greater.

Even though the droplet remains close to spherical in shape, the deformation is

noticeably greater than in the stable mode. This deformation in turn has an effect

on the manner of spreading, as explained below.

Figure 5.20(a) depicts the velocity field in the droplet at an early instant of time

when the fluid inside the droplet moves towards the solid surface as it begins to

deform and spread on the surface. At this point, the effect of gravity is stronger

(higher Re) than that of surface tension and the damping mechanism is weaker

(again, higher Re) than before. But as the droplet deforms more, surface tension

become stronger and tends to restore the drop to its original shape. As a result, the

bulk of the drop begins to move away from the surface (Fig. 5.20(b)) in an attempt

to regain its original spherical shape. As this progresses, and the droplet begins to

regain its original shape, surface tension becomes weaker and the velocity in the bulk

of the droplet decreases, still pointing away from the surface (Fig. 5.20(c)). Soon,

the relative magnitude of gravity becomes higher and it tends to move the drop back

toward the surface and the velocity changes direction yet again, causing the drop to

spread downward (Fig. 5.20(d)). This pattern repeats itself, as the opposing effects

of gravity and surface tension drive the droplet back and forth until the amplitude

of velocity fluctuations diminishes to a very small value due to viscous dissipation.

Thereafter, the velocity field of the fluid inside the droplet and its outward profile do

not undergo any significant changes and the droplet approaches a near-equilibrium

state.
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For an oscillating droplet, with opposing motion of the fluid near the contact

line, a slight recirculation occurs in the region close to the solid surface. In several of

the cases, this recirculation disappears after an initial time, like in the case discussed

above. A very small amount of recirculation in Fig. 5.20(a) appears near the contact

point at time, t = 0.9874, which soon disappears and does not affect the stability

of the droplet. However, in a few cases of an oscillating droplet, this recirculation

re-appears several times, but it does not prevent the droplet from attaining a state

of near-equilibrium.

Figure 5.21 shows the logarithmic decrement of the amplitude of the top point ve-

locity for the case discussed above. The velocity in this case decreases exponentially

as Vtop = 0.24775 ∗ exp(−0.40347t) with time, and the dominant (dimensionless)

frequency of the damping oscillations is 0.5445. This is similar to the trend of the

displacement of a spring-mass-damper system, the amplitude of which also falls

exponentially.

As mentioned earlier, Lamb [6] obtained analytical expressions for the frequency

of oscillations for a viscous droplet. The expressions were reported for the cases when

the droplet is affected by either gravity or surface tension alone. These expressions

are presented below :

with gravity alone :

f =
1

2π

√
2n (n− 1)

2n+ 1

g

R
(5.1)

with surface tension alone :

f =
1

2π

√
n (n− 1) (n+ 2)σ

ρR3
(5.2)

where f is the frequency of oscillation, n the frequency mode, R the radius of the
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droplet, g the acceleration due to gravity, ρ the density of the liquid and σ the

surface tension.

After appropriate non-dimensionalization, these equations give a frequency of

f = 0.1007 for gravity alone and f = 8.94 for surface tension alone. When similar

conditions were simulated in our work, the frequencies obtained were f = 0.103

for gravity alone (Re = 15 & Ca = 2) and f = 13.6 for surface tension alone

(Re = 0.005 & Ca = 0.01). While the value for the former case agrees well with

Lamb’s prediction, that of the latter case differs slightly, which can be attributed

to the fact that even at Ca = 0.01, the effect of gravity has not been completely

eliminated. It is worth noting here, that the frequency of f = 0.5445, computed

for the case presented above, lies in the range predicted by Lamb in his analytical

study.

Similar to the two droplet case discussed previously, the profile of the droplet

when it attains a near-equilibrium state depends on the relative magnitude of gravity

and surface tension. These profiles are compared for several Reynolds and capillary

numbers in Fig. 5.22. The first column of figures shows the effect of varying Re

(with Ca held constant). In other words, surface tension is fixed while the effect of

changing gravity is considered. These figures show that as Re is increased, the drop

deforms to a greater extent. This agrees with the expectation that a stronger effect

of gravity leads to a greater drop deformation.

The second column of figures (in Fig. 5.22) tells a similar story, but here, the

Reynolds number is kept constant while the capillary number is varied to con-

sider the effects of surface tension on the near-equilibrium position of an oscillating

droplet. Here again the figures demonstrate that the drop deforms more when the

surface tension is lesser in magnitude (given by the inverse variation in value of

the capillary number). This too, conforms to the expectation that with lesser sur-
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face tension, the restoring force of the droplet is smaller and hence the deformation

greater. In contrast to the two droplet case, however, the effect of varying Re and

Ca on the shape of the droplet is more comparable.

These figures are similar to the comparisons made in the two-droplet case. How-

ever, the profiles of the droplet here correspond only to the equilibrium shapes which

are attained after a sufficiently long time. While the trends in both situations re-

main the same, since the influencing factors have not changed, the extent of spread

and the contact angle are noticeably different. Also, the difference in profiles for

varying Reynolds and capillary numbers is more pronounced for the droplet spread-

ing on a surface. This is due to the difference in the boundary condition at the

contact point. In the former case, the motion of the contact point is not restricted

and hence the spreading occurs unhindered, while in the latter case, the no-slip

boundary condition affects the final shapes that the droplet attains.

The significant difference between a droplet spreading in a stable manner and

one spreading in the oscillatory manner, discussed here, is the alternating reversal of

velocity in the latter mode. The essential cause for this behavior is a higher energy

in the system which is damped out by viscosity in a manner very similar to that of

a spring-mass-damper system. If the energy in the system increases beyond what

the dissipation mechanism can handle, the drop disintegrates and splashes on to the

surface, as is discussed in the following section.

Splashing

Figure 5.13(c) shows the variation of the velocity of the top point for a droplet

which spreads in the splashing mode. It is evident from the figure that, in this

case, the top point does not come close to rest relative to the solid surface. Instead,

the droplet goes unstable and disintegrates. For this case, the amplitude of the

velocity fluctuations of the top point is an order of magnitude higher than for the
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previous cases. The “nick” in the plot of the top point velocity at time, t ≈ 3.3, is

not physical, but a numerical artifact due to the numerical instability that occurs

because of very high deformation of the droplet free surface, close to when it breaks

up.

Figure 5.23 shows the shape and the velocity field of the fluid in the droplet

as it spreads in this mode. Here, since gravity is much stronger than the viscous

forces, the droplet deforms into the shape of a flat disc (Fig. 5.23(c)) and beyond

(Fig. 5.23(d)) as it spreads onto the surface. With greater deformation, the sur-

face tension increases in magnitude and tends to restore the droplet to its original

spherical shape, even as gravity continues to deform the droplet. This causes strong

opposing forces in the drop and it eventually shatters.

Figure 5.23(a) shows the velocity field in the droplet as it begins to spread

on the surface under the effect of gravity. With relatively weaker surface tension

and stronger gravity (higher Re), the droplet deforms to a greater extent and the

velocity of the fluid attains larger values (Fig. 5.23(b)) and reaches a maximum. In

this mode, since the dissipative mechanism is relatively much weaker than for the

previous modes (higher Re), the drop retains its energy for a longer period of time.

As the droplet continues to deform, the surface tension (restoring force) increases

in value and the velocity then begins to decrease (Fig. 5.23(c)). While the velocity

in the upper part of the droplet decreases further and then reverses direction, the

fluid in the rest of the droplet continues to spread in the downward direction. This

opposite movement of the fluid in the droplet eventually becomes very strong and

the droplet tears apart, resulting in splashing immediately after the instant shown

in Fig. 5.23(d).

A very significant phenomenon, in this case, is the recirculation near the contact

point of the droplet which occurs to a much higher degree than for the oscilla-
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tory mode of spreading. Figure 5.24 shows an enlarged view of the recirculation

that develops at the contact line just before (t=2.8) the droplet disintegrates. The

streamlines show that the motion of the fluid inside the droplet is forced downward

at the contact point, which causes the recirculation. At a subsequent time, when

the upper part of the droplet begins to move away from the surface, this downward

motion at the contact point opposes the upward motion and as a result, the droplet

disintegrates.

The above case demonstrates the relation between the recirculation and the

stability of the droplet. Another such case, in which the recirculation is more pro-

nounced, is that of the formation of a crown, discussed below.

Splashing with “crown” (as a special case)

When a droplet splashes onto a solid surface, it deforms into a shape in which it

cannot hold together as a single entity. One of the shapes that it briefly attains is

that of a crown, which has been observed with several fluids [31]. In this case, the

values of capillary and Reynolds numbers are different, but the manner of spreading

is similar to that of a splashing droplet discussed above. Figure 5.25 shows the

velocity of the top point of the droplet as it spreads into the shape of a crown. Unlike

the previous example, this droplet goes through a complete cycle of oscillation before

it disintegrates. Also, in contrast to the instability observed near the top point in

the previous example, the instability for this droplet occurs closer to the contact

point.

Figure 5.26 illustrates the manner in which the droplet deforms into a crown

and disintegrates. In this case, the capillary number is lower (Ca = 0.1) than for

the previous example (Ca = 0.2, Fig. 5.23) and hence, surface tension is higher,

for fixed velocity and viscosity. In other words, since the restoring force is greater,

the droplet has a better ability to return to its original spherical shape. However,
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gravity still dominates and there is not enough viscosity in the fluid to dissipate

the energy. Thus, the droplet deforms into the shape of a flat disc (Fig. 5.26(b)),

then regains a shape closer to spherical, even as it continues to spread along the

surface (Fig. 5.26(c)), and then briefly attains the shape of crown (Fig. 5.26(d))

before shattering.

Figure 5.26(a) corresponds to an early instant in time when the velocity of the top

point towards the surface is at its maximum. At this point, as the droplet continues

to deform and surface tension effects become stronger. As a result, the velocity of

the fluid inside the droplet decreases in magnitude and then reverses direction, such

that the droplet begins to move away from the surface (Fig. 5.26(b)). As the droplet

begins to regain its original shape, surface tension weakens and the velocity of the

fluid away from the surface decreases in magnitude, even as it continues to move

away from the surface (Fig. 5.26(c)). After a while, gravity takes over, forcing the

droplet towards the surface again. At this point, the fluid near the contact line is still

moving away from the surface. As a result of these two opposing motions towards

each other, the fluid spreads out from the side and forms a crown (Fig. 5.26(d)).

As with the previous example, this case too, displays the presence of recirculation

which is related to the droplet disintegration. Figure 5.27 shows the recirculation of

the fluid inside the droplet near the contact point. The streamlines show the fluid

flow inside the droplet at an instant before it forms into the shape of a crown. As

can be observed, the recirculation causes the fluid near the contact point to move

away from the surface. At a subsequent time, the fluid from the upper part of the

drop starts moving towards the surface. When it interacts with this recirculation,

the fluid is pushed outward from the droplet’s side, as shown in Figure 5.28. This

figure corresponds to an instant in time when the crown forms. The streamlines in

this figure demonstrate the fluid movement in the manner discussed above.
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Spreading dynamics for microgravity conditions

As the values of capillary and Reynolds numbers were varied, the droplet dis-

played one of the three distinct behaviors discussed above. However, at extremely

low values for both parameters, an unusual and unexpected behavior was observed,

where stable behavior was expected. Figure 5.29 shows the velocity of the top point

of the droplet as it spreads in this mode. As can be observed, the droplet initially

appears to recoil from the surface, while still in contact with it (since the contact

point remains with the surface), and the fluid begins to move away from the surface.

This velocity (away from the surface) increases until the effect of gravity is felt and

then decreases in magnitude and then reverses direction towards the surface and

quickly reaches a state of near-equilibrium. While the figure shows that the velocity

of the top point is pointed away from the surface right from time, t = 0, the in-

set makes it clear that the droplet does, indeed, move towards the surface initially

before bouncing back. Another interesting observation is that the amplitude of the

velocity away from the surface is greater than that towards the surface. This indi-

cates that the restoring force has a stronger effect than gravity, on the spreading

dynamics of the droplet.

Since this behavior of the droplet is not very different from that of stable spread-

ing, except for the initial reversal of velocity, the droplet retains a shape almost

spherical throughout the spreading process (Fig. 5.30). This is expected, since the

magnitudes of surface tension and viscous forces are much higher than that of grav-

ity, which causes the deformation.

Figure 5.30 shows the sequence of velocity field of the droplet as it exhibits this

behavior. Figure 5.30(a) shows the velocity field at an early instant in time after

the drop bounces back from the surface. The velocity of the fluid inside the drop

is pointed away from the surface and is maximum in magnitude. A little later
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(Fig. 5.30(b)), the velocity of the fluid is still pointed away from the surface but

the magnitude begins to decrease until it reverses direction and spreads towards

the solid surface (Fig. 5.30(c)). The velocity of the fluid increases towards the

surface, reaches a maximum and then decreases gradually (Fig. 5.30(d)) as the

droplet attains equilibrium.

Similar to the case of the stable droplet, no recirculation occurs in this case

and the drop remains in stable equilibrium. This is because of the relatively smaller

magnitudes of velocity and a more gradual reversal of the velocity of the fluid within

the droplet.

For this case, the values of capillary and Reynolds numbers are Ca = 0.1 and

Re = 0.0005. At these low values, the expected behavior was that of a stable

droplet. But since the relative effect of gravity is very low and the effect of surface

tension fairly high, the droplet bounces back under the effect of relatively greater

surface tension. For this very low Reynolds number, the droplet behavior simulates

that which would be observed under low-gravity conditions.

The values of gravity, g (in m/s2) that this case corresponds to (Re = 0.0005)

are tabulated in Table 5.1, for different liquid droplets of varying size :

Liquid Size of the droplet (cm)
0.1 0.5 1.0 2.0 3.0 5.0

Water 1.25x10−9 1.01x10−11 1.25x10−12 1.57x10−13 4.65x10−14 1.01x10−14

Glycerin 1.42x10−3 1.13x10−5 1.42x10−6 1.77x10−7 5.25x10−8 1.13x10−8

SAE 30 oil 1.76x10−4 1.41x10−6 1.76x10−7 2.2x10−8 6.53x10−9 1.41x10−9

Table 5.1: Physical values of gravity for various liquid droplets

It can be seen from the table that microgravity conditions can be easily realized

for droplets in this flow regime. The size of the droplet which corresponds to a

gravity of g = 9.81m/s2 for each of the above liquids is given in table 5.2 below :
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Liquid Size of the droplet (cm)
Water 5.04x10−5

Glycerin 5.25x10−3

SAE 30 oil 2.62x10−3

Table 5.2: Droplet sizes which correspond to g = 9.81m/s2

The properties of these liquids at room temperature are given in Table 5.3 below :

Liquid Temperature Density Dynamic viscosity Kinematic viscosity
(◦C) (kg/m3) (kg/m·s) (m2/s)

Water 15.6 999 1.12x10−3 1.12x10−6

Glycerin 20 1260 1.5 1.19x10−3

SAE 30 oil 15.6 912 3.8x10−1 4.2x10−4

Table 5.3: Physical properties of liquids considered above
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5.2.2 Motion of the contact point

The results discussed so far correspond to the cases in which the contact point

remains attached to the plane surface, so that there is no slip between the contact

point and the surface on which the droplet spreads. However, experimental obser-

vations indicate that, in some cases, there appears to be a finite slip velocity of

the contact point, relative to the solid surface [12]. In other words, as the droplet

spreads on the plane surface, the contact point moves with the fluid, in addition to

more points coming into contact with the solid. Hence, a more realistic approach

would dictate the inclusion of a slip velocity at the contact point. For this purpose,

a slip coefficient, β is defined and the slip velocity is assumed to obey the following

empirical power law [2] :

Vslip = β (θ − θs)
m (5.3)

where θ is the dynamic contact angle and θs is the static contact angle, the latter

of which is a priori known. In the above equation (Eq. 5.3), the slip coefficient, β,

is an empirical value which needs to be determined experimentally. Since the slip

coefficient is defined such that the slip velocity varies as a power of the difference

in the contact angles, the value of this coefficient cannot be determined based on

any theoretical or physical arguments (since the dynamic contact angle cannot be

predicted through any physical or mathematical model); however, it is critical to

the simulation since the dynamic contact angle is determined using the value of β

in Eq. 4.12.

In the following results, we investigate the motion of the contact point by varying

the magnitude of the slip coefficient, β, while fixing the static contact angle at θs =

160◦. These results, similar to those obtained for the no-slip boundary condition,

correspond to a spherical droplet initially at rest and in contact with a plane solid
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surface, with Ca = 1.0 and Re = 5.0. Results are shown for (a) β = 0.1, (b) β = 0.5

and (c) β = 1.0. These results are compared to those with the no-slip (β = 0)

boundary condition.

Figure 5.31 shows the behavior of an oscillating droplet, with Ca = 1.0 and

Re = 5.0 and a no-slip boundary condition at the contact point, i.e., β = 0. This

is taken to be the baseline behavior against which the results of the finite-slip cases

are compared. Similar to the case discussed earlier in Fig. 5.20 (for a droplet with

Ca = 0.1 and Re = 1.0), this droplet oscillates as it spreads onto the solid surface.

Figure 5.31 shows a sequence of the velocity field of the fluid in the droplet as it

moves towards the surface and then away from it before attaining a near-equilibrium

position. The insets in each frame show the variation of the velocity of the top point

and the small black square in them indicates the instant in time to which the velocity

field in the frame corresponds. Figure 5.31(a) corresponds to an early instant in time

when the droplet deforms and spreads towards the surface with increasing velocity.

This velocity reaches a peak value, decreases in magnitude (Fig. 5.31(b)) and then

reverses direction (Fig. 5.31(c)). Soon thereafter, the droplet attains a state of near-

equilibrium (Fig. 5.31(d)). The contact point in this case, remains with the surface

at all times and tends to bring the fluid in the neighboring region to rest relative to

the solid surface.

However, with a finite slip at the contact point, the spreading dynamics of the

fluid are affected locally, depending on the amount of slip, the details of which are

presented below. For the following discussion, the static contact angle was fixed at

160◦ and the exponent in Eq. 5.3 at m = 3. This value of the exponent takes into

account the direction of the velocity of the contact point, depending on the value

of the dynamic contact angle relative to the static angle (as explained in page 29).

Also, the values of the non-dimensional control parameters were fixed at Ca = 1.0
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and Re = 5.0. The figures in the following discussion show the velocity field of

the fluid near the contact point at different instants of spreading. The inset in

the top left corner of each frame depicts the shape of the entire droplet to which

the enlarged view corresponds, while the inset in the opposite corner illustrates

streamlines relating to this flow.

Figure 5.32 shows the spreading behavior of the droplet on a solid plane surface,

for a slip coefficient of β = 0.1. It can be noticed from this figure that the general

manner of spreading remains unchanged and the droplet oscillates as it spreads on

to the surface, similar to the case where β = 0. However, in contrast to the no-slip

case, with a fixed contact angle and a finite slip velocity, the droplet eventually

attains perfect equilibrium, as the contact point moves (slowly, in this case) to

meet the condition where the dynamic contact angle (θ) becomes equal to the static

contact angle (θs). The relative magnitude of the slip velocity at the contact point

determines the rate at which the droplet reaches steady state conditions.

Figure 5.32(a) shows the velocity field of the fluid near the contact point at time

t = 2.5 as the droplet deforms while spreading onto the surface. At a subsequent

time, t = 7.5, a recirculation is induced at the contact point as the slip velocity

affects the local flow conditions (Fig. 5.32(b)). This recirculation is seen for all

tested values of β, including the no-slip case (β = 0). The effect of the slip velocity

in the contact region persists even as the droplet begins to move away from the

surface (Fig. 5.32(c) at time, t = 9.5) and also, as it spreads back towards the

surface at a later time (Fig. 5.32(d) at t = 13.0). The streamline patterns in the

pictures illustrate the effect of the finite slip in causing motion near the contact

point which is different from that of the fluid in the rest of the droplet. It can be

concluded, from this example, that a slip coefficient of β = 0.1 is too low for a

droplet (with Ca = 1.0 and Re = 5.0) to attain a static contact angle of 160◦. In
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this case, an angle of approximately 156◦ was reached.

Figure 5.33 illustrates the effect of a higher slip coefficient (β = 1.0) on the

spreading of the droplet. Similar to the previous case, the overall dynamics of

spreading remain unchanged while the flow field near the contact point shows dis-

tinct differences. Figure 5.33(a), which corresponds to time, t = 2.0, shows the

velocity field of the droplet as it initially spreads onto the solid surface. The higher

slip coefficient causes a greater outward slip velocity at the contact point. A recircu-

lation, similar to the previous case, occurs in the neighborhood as the droplet begins

to oscillate and reverses the direction of velocity (Fig. 5.33(b)). However, instead of

diminishing and eventually disappearing, the recirculation region increases in extent

due to a stronger slip at the contact point, even as the droplet spreads back towards

the surface (Fig. 5.33(c)). Soon, an instability begins to form in the droplet and

the recirculation affects larger parts of the drop (Fig. 5.33(d) at time t = 11.5).

The streamline patterns in the figure show a clear evidence of the formation of the

instability and erratic recirculation which causes the near-steady-state flow in the

upper part of the droplet to become unstable as well. Eventually, the instability

can be observed near the top point of the droplet, as is apparent from Fig. 5.34,

which shows the variation of the velocity of the top point with time. The arrow in

the figure the indicates the point where the fluid at the top point becomes unstable.

This instability is due to the unrealistic physics that is being forced by the high

value of β and is not an artifact of the numerical simulation.

The extreme behavior of the droplet in the above two cases suggests an interme-

diate figure to be a more appropriate value for the slip coefficient. Thus, the case

of β = 0.5 was investigated and the results are presented below.

Figure 5.35 shows a sequence of velocity fields of the resulting manner of spread-

ing of a droplet with a slip coefficient of β = 0.5. Here, too, the general mode of
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spreading is not affected, while the appropriateness of an intermediate value of the

slip coefficient is apparent, both in terms of stable velocity fields and values of θ

being closer to θs. Figure 5.35(a) shows an enlarged view of the flow field near the

contact point as the droplet begins to spread towards the surface at time, t = 3.5.

At a later time (t = 5.5), the now-familiar stable recirculation appears at the contact

point (Fig. 5.35(b)). Even as the motion of the droplet towards the surface slows

down, the local motion of the contact point affects the flow field in the neighboring

region and the free surface continues to move outwards, aiding the spreading process.

Figure 5.35(c) corresponds to an instant when the droplet reverses the direction of

its velocity at time, t = 9.5. Interestingly, at this point, the fluid everywhere in the

droplet moves away from the surface and there is no unusual movement near the

contact point, unlike in the previous cases. The stability of the drop is retained and

the velocity of the contact point matches in order of magnitude, to that of the fluid

in the rest of the droplet (Fig. 5.35(d)). In this case, the streamlines of the fluid

indicate a more uniform and stable flow pattern in the droplet, which we believe

to be more physical than for the previous values of β. The recirculation near the

contact point in frame (d) is stable and occurs due to velocity reversal in the local

region, as can be deduced from a quick look at frame (c).

Stronger evidence of the effect of the varying slip coefficient on the motion of

the contact point and its effect on the local dynamics can be obtained by examining

the trend of the dynamic contact angle shown in Fig. 5.36, which corresponds to

β = 0.1, β = 1.0 and β = 0.5, as indicated in the figure. The irregularity in

the initial stages is due to the dynamic change of the contact point, as frequent

computational points come in contact with the surface. The velocity of the contact

point varies as the droplet deforms, affecting the dynamic contact angle, which in

turn prescribes the slip velocity. After a sufficiently long time, the droplet begins
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to attain the prescribed static contact angle, θs, but only for a value of β = 0.5.

The rate at which the droplet attains the static contact angle depends on the

value of the slip coefficient. In the case of β = 0.1, since the slip velocity is very

small, the process is very slow and takes a long time. However, for a much larger

value of the slip coefficient (β = 1.0), as discussed earlier, an instability begins to

appear which results in very high values of the slip velocity and the dynamic contact

angle, θ. In this case, the dynamic contact angle attains unrealistic values of up

to 180◦ as the droplet goes unstable, as indicated by the spikes in the figure after

a sufficiently long time. Finally, for a value of β = 0.5 for the slip coefficient, as

can be seen from Fig. 5.36, the change in the slip velocity and the dynamic contact

angle is stable and more regular than for the previous cases, as can be noticed from

a comparison of the three plots in the figure.

Figure 5.37 shows the effect of β on the overall shape of the droplet as it spreads

on the solid surface. At early instances in time (Figs. 5.37(a), (b) and (c)), the

difference in shapes between β = 0.5 and all other values (β = 0, β = 0.1, β = 1.0)

is very significant while at later instances, as the droplet spreads more on the solid

surface, the droplet shapes are more comparable. These figures suggest that when

β = 0.5, the effect of the slip velocity is better felt in the bulk of the fluid and is

not localized near the contact point, like in the other cases. This ensures that the

droplet attains the prescribed static contact angle effectively, without any instability

or unnatural local variations in the velocity of the fluid in the droplet.

This suggests that β = 0.5 is a reasonable value for the slip coefficient, even

though the attainment of equilibrium is not very much faster than when β was equal

to a value of 0.1. The exact value, though, will have to be determined experimentally,

for lack of a definite mathematical manner of quantifying the amount of slip between

a liquid and a solid substrate.
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Figure 5.1: Demonstration of the independence of the results of spatial discretiza-
tion : comparison of the velocity of the top point (for droplet spreading on a plane
surface) using the coarse and fine meshes for : (a)Ca = 2.0 & Re = 1.0, (b)Ca = 1.0
& Re = 1.0, (c)Ca = 0.2 & Re = 0.5, (d)Ca = 0.1 & Re = 0.01. The solid line
corresponds to the fine mesh, while the dashed line refers to the coarse mesh.
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Figure 5.2: Demonstration of the independence of the results of temporal discretiza-
tion : comparison of the velocity of the top point (for droplet spreading on a plane
surface) for time steps of dt = 0.001 and dt = 0.0005, with Ca = 1.0 and Re = 1.0.
The solid line corresponds to the larger time step, while the dashed line corresponds
to the smaller time step.
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Figure 5.3: Stability map for the two-drop case : with Re and Ca as control pa-
rameters. •-stable behavior; �-unstable behavior. The hollow symbols (◦ and �)
represent the cases discussed in detail. The solid line is the estimated boundary
between the different regimes.
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Figure 5.4: Stability map for the two-drop case showing the effect of surface tension
on the abscissa and that of viscosity on the ordinate. •-stable behavior; �-unstable
behavior. The hollow symbols (◦ and �) represent the cases discussed in detail.
The solid line is the estimated boundary between the different regimes.
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Figure 5.5: Stability map for the two-drop case showing the effect of surface tension
on the abscissa and that of gravity on the ordinate. •-stable behavior; �-unstable
behavior. The hollow symbols (◦ and �) represent the cases discussed in detail.
The solid line is the estimated boundary between the different regimes.
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(a) (b)

(c) (d)

Figure 5.6: Typical behavior of a stable droplet, for the two-drop case, with Ca = 2.0
& Re = 0.1, at progressive instances of (non-dimensional) time : (a) t=0.075, (b)
t=0.325, (c) t=0.575 and (d) t=1.29757. Note : The vectors in this figure have their
tail at the node location.
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Figure 5.7: Contact point motion of the stable droplet, for the two-drop case, with
Ca = 2.0 & Re = 0.1, at progressive instances of (non-dimensional) time : (a)
t=0.075, (b) t=0.325, (c) t=0.575 and (d) t=1.29757.
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Figure 5.8: Typical behavior of the unstable droplet, for the two-drop case, with
Ca = 1.0 & Re = 30.0, at progressive instances of (non-dimensional) time : (a)
t=0.23973, (b) t=0.95973, (c) t= 1.43973 and (d) t=1.89775.
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Figure 5.9: Contact point motion of the unstable droplet, for the two-drop case,
with Ca = 1.0 & Re = 30.0, at progressive instances of (non-dimensional) time :
(a) t=0.23973, (b) t=0.95973, (c) t= 1.43973 and (d) t=1.89775.
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Figure 5.10: Comparison of droplet shapes, for the two-drop case, with
fixed Reynolds number (Re = 30.0) and variable capillary number (Ca =
1.0, 2.0, 10.0, 20.0) at different (non-dimensional) times : (a) t=0.75, (b) t=1.05,
(c) t=1.5 and (d) t=1.8.
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Figure 5.11: Comparison of droplet shapes, for the two-drop case, with fixed cap-
illary number (Ca = 2.0) and variable Reynolds number (Re = 0.5, 5.0, 30.0) at
different (non-dimensional) times : (a) t=0.75, (b) t=1.05, (c) t=1.5 and (d) t=1.8.

78
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Figure 5.12: Assumptions in the modeling of a droplet spreading on a solid surface :
(a) reversibility of fluid spreading (b) contact point motion due to the combined
effect of the slip velocity and the motion of the neighboring material points.
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Figure 5.13: Variation, with time, of the velocity of the top point, of a droplet
spreading on a solid surface for (a) stable (b) oscillatory and (c) splashing behaviors
(positive velocity represents motion of the droplet towards the surface).

80



0.0001

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

1/Ca

Figure 5.14: Stability map for a drop spreading on a solid surface, with no slip : with
Re and Ca as the control parameters. �-stable spreading; •-oscillatory spreading;
�-splash; �-microgravity; �-border between stable and oscillatory behaviors. The
hollow symbols (�, ◦, � and �) represent the cases discussed in detail. The curves
represent the estimated boundaries between the different behaviors.
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Figure 5.15: Stability map for a drop spreading on a solid surface showing the effect
of surface tension on the abscissa and that of viscosity on the ordinate. �-stable
spreading; •-oscillatory spreading; �-splash; �-microgravity; �-border between sta-
ble and oscillatory behaviors. The hollow symbols (�, ◦, � and �) represent the
cases discussed in detail. The curves represent the estimated boundaries between
the different behaviors.
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Figure 5.16: Stability map for a drop spreading on a solid surface showing the effect
of surface tension on the abscissa and that of gravity on the ordinate. �-stable
spreading; •-oscillatory spreading; �-splash; �-microgravity; �-border between sta-
ble and oscillatory behaviors. The hollow symbols (�, ◦, � and �) represent the
cases discussed in detail. The curves represent the estimated boundaries between
the different behaviors.
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Figure 5.17: Time dependence of the velocity of the top point, of a stable droplet
for a fixed capillary number (Ca = 1.0) and various Reynolds numbers (Re =
0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2).
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Figure 5.18: Variation of the (a) peak velocity and (b) peak time, with Re, for a
droplet spreading in a stable manner, with capillary number fixed at Ca = 1.0. This
figure refers to the results obtained in Fig. 5.17.
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Figure 5.19: Typical behavior of a stable droplet (spreading on a solid surface),
with Ca = 1.0 & Re = 0.05 at progressive instances of (non-dimensional) time : (a)
t=0.1, (b) t=0.25, (c) t=0.6 and (d)t=1.0. The inset in the top corner shows an
enlarged view of the velocity field which corresponds to the hollow rectangle (in the
middle of the droplet) while the inset in the bottom corner shows the variation of
the top point velocity.
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Figure 5.20: Typical behavior of an oscillating droplet (spreading on a solid surface),
with Ca = 0.1 & Re = 1.0 at progressive instances of (non-dimensional) time :
(a) t=0.9874, (b) t=1.247, (c) t=1.8364 and (d) t=2.3383. The inset in the top
corner shows an enlarged view of the velocity field which corresponds to the hollow
rectangle (in the middle of the droplet) while the inset in the bottom corner shows
the variation of the top point velocity.
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Figure 5.21: Exponential decay of the velocity of the top point for the oscillating
droplet with Ca = 0.1 & Re = 1.0
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Figure 5.22: Settling shapes (profiles after a long time) for oscillating droplets
(spreading on a solid surface).
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Figure 5.23: Typical behavior of a splashing droplet (spreading on a solid surface),
with Ca = 0.2 & Re = 30.0 at progressive instances of (non-dimensional) time : (a)
t=1.0, (b) t=2.0, (c) t=2.8 and (d) t=3.29. The inset in the top corner shows an
enlarged view of the velocity field which corresponds to the hollow rectangle (in the
middle of the droplet) while the inset in the bottom corner shows the variation of
the top point velocity.
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Figure 5.24: Recirculation induced near the contact point, for the case of a splashing
droplet, at an instant before splashing (t=2.8); Ca = 0.2 & Re = 30.0.
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Figure 5.25: Time dependence of the velocity of the top point, for a special case of
the splashing droplet : Ca = 0.1 & Re = 30.0.
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Figure 5.26: The formation of a crown (as a special case of a splashing droplet),
with Ca = 0.1 & Re = 30.0 at progressive instances of (non-dimensional) time : (a)
t=2.0, (b) t=2.6, (c) t=3.7991 and (d) t=4.39631. The inset in the top corner shows
an enlarged view of the velocity field which corresponds to the hollow rectangle (in
the middle of the droplet) while the inset in the bottom corner shows the variation
of the top point velocity.
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Figure 5.27: Recirculation pattern in the case of the crown, at an instant (t=4.1991)
before droplet splashing; Ca = 0.1 & Re = 30.0.
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Figure 5.28: Streamtrace pattern for the crown at the instant of splashing
(t=4.39631); Ca = 0.1 & Re = 30.0.
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Figure 5.29: Behavior of the top point of a droplet spreading under reduced gravity
conditions : Ca = 0.1 & Re = 0.0005.
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Figure 5.30: Typical behavior of a droplet spreading under reduced gravity condi-
tions, with Ca = 0.1 & Re = 0.0005 at progressive instances of (non-dimensional)
time : (a) t=0.01, (b) t=0.02, (c) t=0.04 and (d) t=0.05. The inset in the top
corner shows an enlarged view of the velocity field which corresponds to the hollow
rectangle (in the middle of the droplet) while the inset in the bottom corner shows
the variation of the top point velocity.
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Figure 5.31: The spreading of the droplet in an oscillatory mode with a no-slip
(β = 0) boundary condition at the contact point, with Ca = 1.0 & Re = 5.0,
at progressive instances of (non-dimensional) time : (a) t=1.4, (b) t=2.0, (c) t=3.8
and (d) t=6.2. The inset in the bottom corner shows the variation of the top point
velocity.
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Figure 5.32: The spreading of the droplet in an oscillatory mode with finite slip
(β = 0.1) of the contact point, with Ca = 1.0, Re = 5.0 & θs = 160◦, at progressive
instances of (non-dimensional) time : (a) t=2.5, (b) t=7.5, (c) t=9.5 and (d) t=13.0.
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Figure 5.33: The spreading of the droplet in an oscillatory mode with finite slip
(β = 1.0) of the contact point, with Ca = 1.0, Re = 5.0 & θs = 160◦, at progressive
instances of (non-dimensional) time : (a) t=2.0, (b) t=3.0, (c) t=7.5 and (d) t=11.5.
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Figure 5.34: Variation of the velocity of the top point with time, for an oscillating
droplet with β = 1.0 : Ca = 1.0, Re = 5.0 & θs = 160◦.
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Figure 5.35: The spreading of the droplet in an oscillatory mode with finite slip
(β = 0.5) of the contact point, with Ca = 1.0, Re = 5.0 & θs = 160◦, at progressive
instances of (non-dimensional) time : (a) t=3.5, (b) t=5.5, (c) t=9.5 and (d) t=14.5.
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Figure 5.36: Variation of the dynamic contact angle, θ, with time, for an oscillating
droplet with β = 0.1, β = 1.0 and β = 0.5, as indicated, with Ca = 1.0, Re = 5.0
& θs = 160◦.
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Figure 5.37: Comparison of droplet shapes, for different values of β (0, 0.1, 0.5 &
1.0), for a droplet with Ca = 1.0 & Re = 5.0, at different (non-dimensional) times :
(a) t=3.5, (b) t=5.5, (c) t=7.5 and (d) t=11.5.
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Chapter 6

Conclusions and

Recommendations for Future

Work

The spreading of a viscous droplet on a plane solid surface is a very interesting

study with many applications in the field of science and engineering. For example,

several manufacturing processes require insight into the dynamics of such droplets

to understand and possibly control the phenomenon to achieve difficult fabrication

of miniature mechanical components. In addition to the physical advantages of the

study, chemical, biological and surface-related characteristics can be better inves-

tigated and expressed. Experimental investigations of droplets can be difficult to

perform at such small length scales. In such a situation, a valid computational model

is invaluable in providing a convenient and inexpensive tool for the understanding

and modeling of droplet behavior and useful related applications. The purpose of

the present work was to develop such a versatile and helpful capability. The results

that were obtained agree closely with physical observations and expected variations.
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For instance, the three behaviors noticed here, for a droplet spreading on a solid sur-

face were among those experimentally observed by Matson, Rolland and Flemings

in 1998 [4] of an aluminium-copper alloy onto a thermally conditioned substrate.

The distribution of the ranges of these behaviors is also comparable.

6.1 Conclusions

A discrete numerical model was created using an accurate and efficient Finite

Element analysis, which aided the study of the phenomena of droplet spreading

under different controlling conditions. Results were obtained for the cases of

• Spreading of two droplets after an initial, low inertia collision,

• Spreading of a droplet on a solid surface with no slip of the contact point,

• Spreading of a droplet on a solid surface with finite slip of the contact point.

In addition to the above external conditions, the resulting behavior of the droplet

depended on the relative magnitudes of the gravity acting on the droplet, the vis-

cosity of the fluid within and the surface tension holding the drop together. The

spreading dynamics would presumably depend also on the temperature of the fluid

and the solid surface and phase change, if any. The conclusions which can be drawn

from the observations made in the previous chapter can be grouped based on the

cases mentioned above.

Two droplet spreading :

• The study of the hypothetical case of two droplets spreading on each other

with gravity forcing both towards the contact line, served in illustrating the

effect of the physical quantities on the motion of the contact point. In this case,
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without the interference of an external surface, the contact point moves solely

under the direct influence of viscosity and surface tension and the induced

effect of gravity.

• In this situation, two distinct manners of spreading were observed : (a) stable

and (b) unstable. In the former mode, the droplets oscillate, while retaining

their near-spherical shape and eventually attain a stable state, close to equi-

librium. In the latter mode, the spreading becomes unstable as the droplets

undergo very high deformation and eventually disintegrate.

• The manner in which the droplet spreads depends on the relative strengths of

surface tension, viscous and gravity forces acting on the droplet. These physi-

cal quantities have been quantified in terms of the capillary and Reynolds num-

bers. As the Reynolds number increases, or the capillary number decreases,

the droplet gradually changes behavior from stable to unstable spreading. The

profiles and velocity fields were observed and compared, and the results con-

firmed the expected trends.

• An important difference observed in the behavior of the droplet, in contrast to

the spreading on a solid surface, is the motion of all points on the contact line.

In the case discussed below, the only point that moves is the forward-most, or

the contact point.

Droplet spreading on solid surface, with no slip :

• In this case, with the inclusion of the external solid surface, the dynamics of

spreading are distinctly different. An interesting observation is a third manner

of droplet spreading which was not observed in the case discussed above. The

droplet spreads in one of the following three manners : (i) stable (ii) oscillatory
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and (iii) splashing. In the first manner, the droplet spreads towards the surface

and quickly reaches equilibrium. In the second, the droplet oscillates for a

while before gradually attaining a state of very slow motion (near-equilibrium).

In the third mode, the droplet deforms much more than in the previous modes

and eventually disintegrates, splashing on the solid surface.

• Like in the previous case, the behavior of the droplet depends on the capillary

and Reynolds case. In the same way, as the Reynolds number increases, or

the capillary number decreases, the droplet changes behavior from stable to

oscillatory and then on to splashing. Here too, the trends of the velocity field

of the fluid inside and the external profile agree closely with expectation.

• Due to the reversal in the direction of the velocity of the fluid in the droplet,

recirculation is observed near the contact point, the intensity of which depends

again, on the relative strengths of the forces acting on the droplet. In sev-

eral cases, this recirculation relates to the disintegration or instability in the

droplet.

• As an interesting case of the splashing behavior of the droplet, the classical

crown formation was observed for a certain combination of Reynolds and cap-

illary numbers. The recirculation in this case is very evident and the possible

cause of splashing, as the fluid forces itself out the droplet side, briefly building

the drop into the shape of a crown.

• A fourth mode of spreading is observed, in which, the effect of capillarity

being stronger than gravity, the droplet rebounds from the solid surface and

achieves higher velocities away from the surface. This case simulates the case

of droplet spreading under microgravity conditions and is an interesting mode
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of spreading, which can lead to very unusual trends in velocity and droplet

shapes.

Droplet spreading on solid surface with finite slip :

• In this case, the contact point was assumed to slip on the solid surface, such

that the slip velocity relates to the contact angle through a power law. It

was observed that the amount of slip was very crucial for both the stability of

the droplet and the rate at which it attains a constant static angle. The slip

velocity was assumed to be quantified by an empirical, slip coefficient, β and

some values were investigated.

• It was observed that the stability of droplet spreading was very sensitive to

the value of the slip coefficient. While a value of β = 0.1 proved to be too

small, causing very slow changes in the dynamics, β = 1.0 was so high that it

adversely affected the stability of the droplet. An intermediate value of β = 0.5

appeared to be reasonable in terms of droplet stability and its attaining of the

static contact angle. The exact value of this coefficient, however, needs to be

determined experimentally and it is very likely that it depends on the fluid

and surface properties of the solid.

6.2 Recommendations for Future Work

With advancing technology and ever progressing frontiers in the world of compu-

tation, expansion is always possible. Every piece of work has scope for improvement

and advancement and this thesis is no exception. Even though the model was used

for several cases of study, with very reasonable results, it can be made more versatile

and useful in more ways. The following are some suggestions for future work :
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• Investigation of a wider range of Reynolds and capillary numbers, can lead

to discovery of interesting phenomena such as the droplet spreading under

microgravity conditions. Also, the boundary between the different behaviors

can be established more precisely.

• Similarly, a more extensive study of the effect of varying slip coefficient will

prove useful in quantifying the slip velocity of the contact point. Possible

experimentation can help in proving or refuting assumptions and giving us an

insight into the manner of slipping of the contact point.

• As mentioned before, this study was made for isothermal droplet spreading.

Investigation of the dynamics of spreading with varying temperatures and pos-

sible phase changes will definitely lead to a more comprehensive and complete

study of the phenomenon.

• A faster solver or solution algorithm, if applied, would help make verification

and comparison against existing data more efficient.
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