
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2004-01-14

Traffic Sensitive Quality of Service Controller
Abhishek Anand Kumar
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Kumar, Abhishek Anand, "Traffic Sensitive Quality of Service Controller" (2004). Masters Theses (All Theses, All Years). 97.
https://digitalcommons.wpi.edu/etd-theses/97

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/213000011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/97?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Traffic Sensitive Quality of Service Controller

by

Abhishek Kumar

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

Dec 2003

APPROVED:

Professor Mark Claypool, Major Thesis Advisor

Professor Robert Kinicki, Major Thesis Advisor

Professor Craig Wills, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

Internet applications have varied Quality of Service (QoS) Requirements. Tra-

ditional applications such as FTP and email are throughput sensitive since their

quality is primarily affected by the throughput they receive. There are delay sen-

sitive applications such as streaming audio/video and IP telephony, whose quality

is more affected by the delay. The current Internet however does not provide QoS

support to the applications and treats the packets from all applications as primarily

throughput sensitive. Delay sensitive applications can however sacrifice throughput

for delay to obtain better quality. We present a Traffic Sensitive QoS controller

(TSQ) which can be used in conjunction with many existing Active Queue Manage-

ment (AQM) techniques at the router. The applications inform the TSQ enabled

router about their delay sensitivity by embedding a delay hint in the packet header.

The delay hint is a measure of an application’s delay sensitivity. The TSQ router

on receiving packets provides a lower queueing delay to packets from delay sensitive

applications based on the delay hint. It also increases the drop probability of such

applications thus decreasing their throughput and preventing any unfair advantage

over throughput sensitive applications. We have also presented the quality met-

rics of some typical Internet applications in terms of delay and throughput. The

applications are free to choose their delay hints based on the quality they receive.

We evaluated TSQ in conjunction with the PI-controller AQM over the Network

Simulator (NS-2). We have presented our results showing the improvement in QoS

of applications due to the presence of TSQ.

Acknowledgements

I extend my sincere gratitude to my advisor Prof. Mark Claypool, who has

helped me every step of the way in completion of this thesis work. His dedication

has been a true inspiration for me. Thank You for all the guidance and for showing

patience with me. I also thank my co-advisor Prof. Robert Kinicki for his guidance

during my research work.

I thank Prof. Craig Wills for being the reader for my work and providing useful

comments. I thank all my friends who have made my stay at WPI memorable, and

hence helped me relax and make life easier for me.

I dedicate my work to my parents, whose life is an inspiration for me, and whose

unconditional love and support is the reason why I could reach here and finish this

work.

i

Contents

1 Introduction 1

2 Related Work 5

2.1 QoS Support . 5

2.2 Source Hints . 7

2.3 Multimedia Quality . 8

2.4 TCP friendliness . 8

2.5 AQM approaches . 9

3 Quality Metrics 11

3.1 Interactive Audio Quality . 12

3.1.1 Effect of Delay on Interactive Audio Quality 12

3.1.2 Effect of Throughput on Interactive Audio Quality 14

3.2 Interactive Video Quality . 16

3.2.1 Effect of Delay on Interactive Video Quality 16

3.2.2 Effect of Throughput on Interactive Video Quality 16

3.3 File Transfer Quality . 18

3.3.1 Effect of Delay on File Transfer Quality 18

3.3.2 Effect of Throughput on File Transfer Quality 19

ii

4 Mechanism 21

4.1 Delay Hints . 22

4.2 Cut-in-Line . 23

4.3 Drop Probability . 24

4.4 Summary . 26

5 Experiments 29

5.1 Experimental Setup . 30

5.2 Audio Quality Evaluation . 31

5.2.1 Experimental Setup . 31

5.2.2 Analysis . 31

5.3 Video Quality Evaluation . 34

5.3.1 Experimental Setup . 34

5.3.2 Analysis . 35

5.4 Performance of TSQ over varying traffic mixes 37

5.4.1 Experimental Setup . 37

5.4.2 Analysis . 38

5.5 Unresponsive Flows . 40

5.5.1 Experimental Setup 1 . 41

5.5.2 Analysis 1 . 41

5.5.3 Experimental Setup 2 . 42

6 Future Work 44

7 Conclusions 46

iii

List of Figures

1.1 QoS Spectrum of Applications . 2

3.1 MOS scores versus round-trip delay 13

3.2 Delay Quality for Interactive Audio versus One Way Delay 14

3.3 Throughput Quality for Interactive Audio versus Throughput 15

3.4 Video Quality versus Throughput . 17

3.5 Delay Quality of File Transfer versus One Way Delay 19

3.6 Throughput Quality of File Transfer Application versus Throughput . 20

4.1 Traffic Sensitive QoS Controller along with an Active Queue Mechanism 26

4.2 TSQ Algorithm . 28

5.1 Network Topology . 30

5.2 CDF of the queueing delay experienced by the audio flow with delay

hints of 1,6 and 16. 32

5.3 CDF of the throughput experienced by the audio flow with delay

hints of 1, 6 and 16. 33

5.4 Throughput and Delay Quality for an audio flow versus Delay Hint . 34

5.5 Quality for an audio flow versus Delay Hint 35

5.6 CDF of queueing delay of the video flow for delay hints of 1, 6 and 16 36

5.7 CDF of throughput of the video flow with delay hints of 1, 6 and 16. 37

iv

5.8 Delay and throughput quality of a single video flow versus delay hint 38

5.9 Quality of a single video flow versus delay hint 39

5.10 Normalized Quality of Audio flows and FTP flows with varying traffic

mixes . 40

5.11 Normalized file transfer throughput versus delay hints 42

5.12 Quality Variation with UDP flows . 43

v

Chapter 1

Introduction

Applications on the Internet today have different Quality of Service(QoS) require-

ments in terms of bandwidth and delay. We broadly identify the following different

QoS requirements for applications: a) Throughput sensitive applications which ben-

efit from increased throughput and are willing to tolerate large amounts of delay,

for example FTP and email; b) Delay sensitive applications which require low de-

lays and are willing to sacrifice some throughput to get lower delays, for example

streaming audio/video and IP telephony; c) In between applications, which have

less stringent delay requirements than delay sensitive applications, but still bene-

fit from increased throughput, for example Web browsing. Figure 1.1 shows a few

applications and their throughput and delay sensitivity.

Unfortunately, the current Internet does not support per application QoS. In-

stead all applications are treated primarily as throughput sensitive and no attempt

is made to provide a lower delay to applications that desire it. Every packet arriv-

ing at a router is enqueued at the tail, thus providing the same average delay to all

applications. When there is persistent congestion, the router queue builds up and

eventually packets have to be dropped. Thus, the router drops packets randomly

1

Figure 1.1: QoS Spectrum of Applications

without considering the throughput requirements of the applications sending the

packets. Also the large queue build-up causes high queueing delays for all applica-

tions, regardless of their delay sensitivity.

However, if the router is capable of providing QoS support, then it could treat

packets from delay-sensitive applications differently than those from throughput-

sensitive applications. Since the delay-sensitive applications are loss-tolerant, the

router can try to provide them with a lower delay and approximately decrease the

throughput provided to them. The loss of throughput may not decrease the overall

quality of the delay-sensitive applications very significantly, but the reduction in

delay can cause a significant improvement in quality. The throughput gained can be

allocated to the throughput-sensitive applications, thus providing them with higher

2

quality.

ABE [HKBT01] provides a queue management mechanism for low delay traf-

fic. ABE allows delay-sensitive applications to sacrifice throughput for lower de-

lays. ABE, however, rigidly classifies all applications as either delay-sensitive or

throughput-sensitive. Thus applications are not able to choose relative degrees of

sensitivity to throughput and delay. CBT [BFC93] is a class-based approach and

provides bandwidth limit guarantees for different classes. However, these fixed and

pre-determined classes are not sufficient to represent the varying QoS requirements

of applications within one particular class. Similarly, DCBT with ChIPS [CC00],

which extends CBT by providing dynamic thresholds and lower jitter for multimedia

traffic, still limits all multimedia traffic to the same QoS. DiffServ approaches, such

as Assured Forwarding (AF) [HBWW99] and Expedited Forward (EF) [JNP99], try

to give differentiated service to traffic aggregates. However the DiffServ architec-

tures are very complicated and require the presence of traffic monitors, markers,

classifiers, traffic shapers and droppers to enable the components to work together.

IntServ [SBC94] provides the best possible per flow QoS guarantees. However, it

requires complex signaling and reservations via RSVP by all routers along a con-

nection on a per-flow basis, making scalability difficult for global deployment.

This thesis presents a QoS controller called the Traffic Sensitive QoS Controller

(TSQ), that provides per packet QoS support based on an application’s delay sen-

sitivity. TSQ works well in the current Internet and can be applied on top of most

existing Active Queue Management (AQM) techniques. With TSQ, applications

mark each packet with a delay hint which is a measure of the application’s senstiv-

ity to delay. Applications which use low delay hints values degrade under network

and queueing delay. On the other hand, applications which use high values of delay

3

hints depend more significantly on throughput and less on delay. The TSQ router

will, on receipt of each packet, examine its delay hint and calculate an appropriate

queue position where the packet is to be inserted. A packet from an application

which has a low value of delay hint will be allowed to “cut-in-line” towards the front

of the queue, while a packet from an application with a high value of delay hint will

be inserted towards the end of the queue. To prevent the delay-sensitive applica-

tions from gaining an unfair advantage over the throughput-sensitive applications,

TSQ proportionately increases the drop probability of the packets inserted into the

queue. The more a packet cuts-in-line, the more the packet’s drop probability is

increased. Throughput-sensitive applications mark their packets with high values of

delay hints, and hence they are not cut-in-line, so nor do they have their drop prob-

ability increased, thus providing them with good quality. TSQ requires no per-flow

state information, no traffic monitoring and no edge policing or marking.

We have evaluated the performance of TSQ when used in conjunction with the

PI-controller (Proportional Integral controller) AQM [HMTG01] with varying mixes

of delay-sensitive and throughput-sensitive flows. We also evaluated the performance

of TSQ in the presence of unresponsive flows (UDP flows in our case). The results

obtained suggest that TSQ with PI provides better quality for all application sim-

ulation set-ups than PI by itself.

The remainder of the thesis is organized as follows: Chapter 2 describes the

related work; Chapter 3 presents the Quality Metrics we have devised for some

typical applications; Chapter 4 discusses the TSQ mechanism; Chapter 5 describes

the various experiments we conducted to evaluate TSQ and the analysis of the

results obtained and Chapters 6 and 7 summarise our work and discuss the possible

future work.

4

Chapter 2

Related Work

In this chapter we discuss some of the work related to this thesis. In Section 2.1 we

discuss different approaches that have been developed to provide QoS support to

Internet applications. Some approaches are best effort and attempt to provide per-

packet QoS, while some are class-based algorithms. We briefly discuss in Section 2.2

some of the mechanism that use source hints in the form of bits in the packet header.

Section 2.3

2.1 QoS Support

Various suggestions have been proposed to make the Internet be able to provide

varying degrees of QoS support to the applications using it. In this section we de-

scribe a few approaches towards providing QoS support on the Internet. In [PCK02]

two algorithms viz. Red-Worcester and Red-Boston have been proposed. RED-

Worcester is a simple extension to the ARED [FGS01] mechanism and tries to meet

the average performance requirements of incoming packets in terms of throughput

and delay, thus improving the overall QoS support at the router. It has a moving

target queue size, which depends on the average QoS requirements of the incoming

5

traffic. The QoS requirement of the applications is specified by inserting a delay

hint in the IP header of each packet. If incoming traffic is mostly throughput-

sensitive RED-Worcester maintains a higher average queue to improve the overall

throughput. On the other hand, when incoming traffic is mostly delay sensitive,

RED-Worcester lowers the average queue size to reduce the average queueing delay.

RED-Boston calculates the average drop probability based on the average queue

size like ARED, but adjusts the per-packet drop probability p’ based on the delay

hint and the average delay as follows:

p′ = p× delay/delay hint

RED-Boston inserts packets in the queue sorted by weight, where the weight is

calculated from the delay hint and the arrival time of each packet as follows:

weight = arrival time+ delay hint

Thus packets with lower delay hints will have lower weights and will be inserted

further into the queue. This will provide packets with lower delay hints to achieve

lower queueing delays. Thus RED-Boston attempts to provide a per-packet QoS. It

does not provide any guarantee of service but instead it is a best effort service.

Another approach proposed is Alternate Best Effort (ABE) [HMTG01]. ABE

identifies two classes of network traffic; delay sensitive (green) and throughput sen-

sitive (blue). It provides the packets from two classes with different treatment by

maintaining two separate queues, a larger queue for blue traffic and a smaller queue

for green traffic and uses a deadline based scheduler to serve the packets from these

queues. This allows delay-sensitive applications to sacrifice throughput for lower de-

6

lays without affecting throughput-sensitive applications. However, as ABE provides

just two classes of service, it restricts the applications to be either delay-sensitive or

throughput-sensitive without allowing them to choose their own delay-throughput

tradeoff.

The approach presented in [NT02] provides service differentiation to interactive

TCP applications by prioritizing the packets from these applications. Some other

approaches to provide QoS service are class based mechanisms such as CBT [Par01],

CBQ [Flo], IntServ [SBC94], DiffServ [HBWW99] [JNP99] etc.

2.2 Source Hints

In both RED-Worcester and RED-Boston described in Section 2.1, applications

send source hints (in form of delay hints) to inform the router about their QoS

requirements. These source hints can be placed in the IP or TCP header. In

the Context-Aware TCP/IP proposed in [Car02], context information is provided

by marking the packet headers. This is another form of source hint. In [NT02]

a mechanism for source marking is suggested, where the applications mark the

headers with their priority in terms of delay (High, Med, Low). Similarly sometimes

the hints are provided by the edge routers instead of the source. In CSFQ [SSZ98]

edge routers compute per-flow rate estimates and label the packets passing through

them by inserting these estimates in the header. Similarly in [GM01] edge routers

mark individual packets as belonging to the class of short flows or the class of long

flows.

7

2.3 Multimedia Quality

Multimedia applications have different QoS requirements from traditional throughput-

sensitive Internet applications. We discuss some of the work that has been done

to measure the quality of these applications. [IKK93] studies the variation in the

perceived quality (Mean Opinion Scores also known as MOS) of Internet audio ap-

plications with round-trip delay. The study done in [DCJ93] measures the effect of

one-way transmission delay on different aspects of communication such as difficulty,

ease of interruption and general acceptability. [Zeb93] conducts tests on the effect

of delay on audio and video telephony.

2.4 TCP friendliness

The throughput of a TCP flow is given by the TCP response function [PFTK98] as

follows:

T =
s

R
√

2p
3

+ tRTO(3
√

3p
8

)p(1 + 32p2)

where s is packet size, R is round-trip time, p is the steady-state loss rate and tRTO

is the TCP retransmit timeout value. In [FF99] a TCP-friendly flow is defined as

flow is defined as the flow whose arrival rate does not exceed the arrival rate of

a conformant TCP connection in the same circumstances. The following equation

places an upper bound on the througput of a TCP-friendly flow.

T ≤
1.5
√

1/3×B
R×√p

where B is the bytes per packet and R is the round-trip delay including the queueing

delay. It is important for applications to use TCP-friendly protocols to keep network

8

congestion in control. Applications using these protocols respond to packet drops

by reducing their rate of transmission, thereby decreasing congestion. Protocols

such as UDP do not respond to packet drops and are not TCP-friendly. Thus it

is possible for UDP flows to gain more than their fair share of bandwidth. Hence,

in order to maintain TCP-friendliness of TSQ, any unfair gain in bandwidth by a

particular flow should be prevented.

2.5 AQM approaches

The problems faced by Drop-Tail routers in face of persistent congestion such

as global synchronization, lockouts and full queues have prompted various Active

Queue Management(AQM) algorithms. Random Early Detection (RED) [FJ93]

maintains two thresholds for the current queue size, known as minth and maxth. If

the queue size goes above minth, then the router assumes imminent congestion and

starts dropping packets randomly with a drop probability of p. As the queue size

builds up, the drop probability is increased even further, to reduce congestion. If

the queue size exceeds maxth, then the router drops all incoming packets, i.e. the

drop probability is now 1.

Another AQM technique that uses a drop probability to control queue is the

PI-controller [HMTG01], which we have used in our experiments. The PI-controller

tries to maintain its average queue size close to a defined reference called the qref .

The PI-controller also maintains a drop probability p, which is updated at fixed

interval. The following set of equations govern the drop probability of the PI con-

9

troller:

p = a× (q − qref)− b× (qold − qref) + pold

pold = p

qold = q

where a and b are parameters of PI. The PI controller prevents excess queue build up

during congestion. Hence it can prevent very large queueing delays at the expense

of higher loss rates. BLUE [FKSS01] is another AQM that uses a drop probability

p for congestion control. However other AQM algorithms such as REM [ALLY01]

and AVQ [KS01] etc. do not have an explicit drop probability p.

10

Chapter 3

Quality Metrics

In this chapter we describe our approach in developing quality metrics which are

used to quantify the performance of three network applications: interactive audio,

such as used in IP telephony, interactive video, such as used in a video conference

and file transfer applications such as used in P2P or FTP. Based on information from

previous work [Gan] [IKK93] [DCJ93] [Zeb93], we have devised quality functions for

these three applications in terms of their network delay and the network throughput

called the delay quality (Qd) and throughput quality (Qt) respectively. The overall

quality of the application is the minimum of the two quality metrics.

Q(d, T) = min(Qd(d), Qt(T))

The quality measure lies between 0 and 1, where 1 represents the maximum quality

that the application requires, and a quality of 0 is of no use to the application at

all.

11

3.1 Interactive Audio Quality

In this section we discuss the quality functions that we have derived for an interactive

audio application. The quality functions are of two types, the delay quality function

and the throughput quality function. We have graphed the quality functions for the

application versus one-way delay and throughput respectively.

3.1.1 Effect of Delay on Interactive Audio Quality

As discussed earlier, the quality of interactive audio applications over the network

is very sensitive to delay. On the other hand these applications are less sensitive

to reduction in throughput. [Gan] suggests that audio quality in terms of delay is

essentially divided into 3 parts. A one-way delay of 150 ms or less means excellent

quality for the audio application. As the delay increases the audio quality decreases,

and a one-way delay of 150-400 ms means good quality. A one-way delay in excess

of 400 ms is poor quality. Also [IKK93] has observed the variation of audio quality

with delay in terms of Mean Opinion Scores (MOS scores). The graph in Figure 3.1

is from [IKK93] and it shows the variation of MOS scores for free conversation with

round-trip delay.

Based on this previous work, we have produced the graph in Figure 3.2 plotting

the delay quality of an interactive audio application. The best quality possible is 1,

and it happens when there is a zero delay. A quality of 1 can be considered equiva-

lent to a MOS score of 5 which means excellent quality. The audio application has

an excellent quality if the one way delay is within 150 ms. As the delay starts in-

creasing, the fall in quality is not very significant, and a delay of 150 ms provides the

application with a quality of 0.98, an almost insignificant drop in quality. However,

as the delay increases above 150 ms, the drop in quality now becomes significant. A

12

Figure 3.1: MOS scores versus round-trip delay

delay of 300 ms reduces the quality to 0.7 (equivalent to a MOS score of 3.5) and it

reduces further to 0.5 (equivalent to a MOS score of 3) when delay is 400 ms. This is

the minimum acceptable quality for interactive audio. As the delay increases higher

than 400 ms, the quality of the application degrades significantly. We propose that

the degradation after 400 ms is about twice the degradation in quality from 150 to

400 ms delay. Thus, from the graph we can see the three broad sections of quality

described in [Gan] and also get the value of the quality for intermediate one-way

delays. The set of equations governing the delay quality of an interactive audio

13

application is as follows:

Qd(d) = −0.00133× d+ 1 d ≤ 150

Qd(d) = −0.00192× d+ 1.268 150 ≤ d ≤ 400

Qd(d) = −0.004× d+ 2.1 400 ≤ d ≤ 525

Qd(d) = 0 525 ≤ d

Figure 3.2: Delay Quality for Interactive Audio versus One Way Delay

3.1.2 Effect of Throughput on Interactive Audio Quality

Figure 3.3 shows the plot of quality for an interactive audio application versus the

throughput that the application receives (the throughput quality). The application

has a thoughput quality of 1 when the throughput is 128 Kbps, since at this bit-rate

the quality of audio is of CD quality, which we assume is the best possible. The

14

Figure 3.3: Throughput Quality for Interactive Audio versus Throughput

throughput quality decreases linearly as the throughput is halved. This is because,

every time one fewer bit is used to encode the audio, the throughput of the audio

codec is reduced by half. We assume that the quality of the audio application

reduces linearly with the reduction in the number of encoding bits. Hence the

variation of audio quality with throughput is a logarithmic curve, where a reduction

in throughput above 64Kbps does not greatly reduce the quality of the application,

while a reduction in throughput below 64 Kbps does. The throughput quality is 1

for 128 Kbps throughput, decreases to 0.83 for 64 Kbps and falls further to 0, when

the throughput is 2 Kbps. This is because 4 Kbps is the lowest codec rate available

for audio application [Cor98]. The set of equations for the throughput quality are

15

as follows:

Qt(T) = 1 128 ≤ T

Qt(T) = 0.24045× log(T)− 0.17 4 ≤ T ≤ 128

Qt(T) = 0 T ≤ 4

3.2 Interactive Video Quality

As another representative delay sensitive application we derived quality metrics for

an interactive video application, specifically a typical H.323 video-conference. We

have developed quality functions in terms of both one-way delay and throughput.

3.2.1 Effect of Delay on Interactive Video Quality

Since the nature of the interactivity of a video conference is the same as that in an

audio conference, the delay requirements of a video conference are similar to those

of an interactive audio application described in Section 3.1.2. Hence the plot in

Figure 3.2 showing the delay quality of interactive audio also represents the delay

quality of a video conference. The formulae for interactive audio delay quality

suggested in Section 3.1.2 also apply to delay quality of video conference.

3.2.2 Effect of Throughput on Interactive Video Quality

Typically, a H.323 video conference requires 384 Kbps of bandwidth for good qual-

ity [Cor00]. If the application receives this throughput we assign it a quality of 0.8,

based on the MOS scale, where a score of 4 on a scale of 1-5 is considered good. As

the throughput provided to the application increases the quality of the application

increases, but in a smaller proportion. Thus, the quality increases to 0.85 when

16

Figure 3.4: Video Quality versus Throughput

throughput is 512 Kbps, and to obtain a quality of 0.9 the throughput required is

768 Kbps. It gets its best quality of 1 when the throughput is 1.5 Mbps because a

H.323 video conference operating at 1.5 Mbps is of excellent quality [Cor00]. Any

subsequent increase in the throughput does not improve the quality. An H.323 video

conference has average quality if it has a throughput of 160 Kbps. Thus, we assign

this throughput a quality value of 0.6 corresponding to a MOS score of 3 which

is considered as “fair” quality. Any further reduction in throughput will cause the

quality to fall off sharply. We thus come up with the following set of equations which

17

determine the throughput quality for the video application, depicted in Figure 3.4.

Qt(T) = 1 1500 < T

Qt(T) = 0.0001367× T + 0.795 768 ≤ T ≤ 1500

Qt(T) = 0.0001953× T + 0.75 512 ≤ T ≤ 768

Qt(T) = 0.0003906× T + 0.65 384 ≤ T ≤ 512

Qt(T) = 0.0008928× T + 0.46 160 ≤ T ≤ 384

Qt(T) = 0.00375× T T ≤ 160

3.3 File Transfer Quality

In this section we discuss the quality metrics we used to measure the quality of

file transfer applications. File transfer applications, unlike the interactive audio and

video conference applicacations, are not delay sensitive. Instead, the quality of these

applications is almost entirely dependent on their throughput.

3.3.1 Effect of Delay on File Transfer Quality

The quality of the FTP application is not affected by an increase in the delay over

typical Internet latencies. This is because the application is not delay-sensitive and

hence an increase in the delay the order of a few 100 ms, will not affect its quality.

The application’s quality will degrade only if the delay increases on the order of tens

of seconds, which is well beyond the scope of router queueing delay. Since in our

experiments, the delay is generally on order of few 100 ms, we ignore the effect of

delay on FTP quality beyond 1000 ms. If the delay is within this range, the delay

quality of the FTP application will be the best possible. Figure 3.5 shows the graph

18

Figure 3.5: Delay Quality of File Transfer versus One Way Delay

and the equation is as follows:

Qd(d) = 1 d ≤ 1000

3.3.2 Effect of Throughput on File Transfer Quality

The quality of a file transfer application depends almost entirely on the throughput

that it can get from the network. In this section, we quantify its quality in terms

of its throughput. Since, the size of files being transfered can vary greatly, it is

not appropriate to have a single curve represent the quality requirements of all file

transfers. Hence in our quality metrics, the quality requirements of a file transfer is

dependent upon the size of the file that it is transferring. A small file will require

a lower throughput to attain good quality as compared to a very large file. We

propose that an FTP application has the best quality if it can finish transferring a

19

Figure 3.6: Throughput Quality of File Transfer Application versus Throughput

file in 1 second. Thus for 10 Mb file, the best quality of 1 is attained if it can get

a throughput of 10 Mbps. If the throughput obtained is greater, the quality does

not improve. However, the decrease in quality is directly proportional to a decrease

in throughput. Similarly for a smaller file of 10 Kb, the required throughput for

best quality will be only 10 Kbps. We derive the following equation for throughput

quality of file transfer applications:

Qt(T, S) = T/S

where S is the size of the file. Figure 3.6 shows the quality plots of file transfer

applications with various file sizes. As can be seen, the quality plot for a small file

transfer is much steeper as compared to that of a large file.

20

Chapter 4

Mechanism

The Traffic Sensitive QoS controller (TSQ) is a Quality of Service (QoS) controller

that can be used in conjunction with many existing Active Queue Mechanisms

(AQMs). TSQ accomodates delay sensitive applications, such as interactive multi-

media, by providing a low queueing delay, while at the same time not penalizing the

throughput of the traditional applications, such as file transfers. TSQ achieves this

per-application QoS by providing a trade-off between queueing delays and drop prob-

abilities. The applications inform TSQ about their delay sensitivity by providing a

delay hint. A TSQ-enabled router provides flows with a low delay hint with a lower

delay by using a “cut-in-line” mechanism. In order to avoid penalizing throughput-

sensitive applications, TSQ adjusts the drop probability of a delay-sensitive packets

based on the reduction in delay it provides to the packet.

In Section 4.1, we first describe how applications notify the TSQ router about

their delay sensitivity by using a delay hint. In Section 4.2, we describe the “cut-

in-line” mechanism which is used to provide delay sensitive applications with lower

queueing delays. Section 4.3 discusses the adjustment in drop probability that is

made for the delay-sensitive flows so that they do not get unfair advantage over

21

throughput-sensitive flows. Section 4.4 concludes with a diagram and algorithm

detailing TSQ.

4.1 Delay Hints

Applications wanting to use the benefits of TSQ need to provide the router with a

measure of their sensitivity to delay. This is done by providing a delay hint (d) in

the header of each IP packet, where a low delay hint means that the application

requires a low network delay for good quality and a high delay hint means that the

application is throughput-sensitive and does not require a low delay for improvement

in quality. Applications such as interactive multimedia will typically provide low

delay hints. On the other hand, applications such as file transfer will typically

provide higher delay hints.

Based on the discussion in [SZ99] there are 4 to 17 bits available in the IP header

that can be used to carry hint information. In our current implementation of TSQ,

the range of delay hints is from 1 to 16 requiring 4 bits in the packet header. Thus,

an application which chooses the minimum delay hint of 1 will be extremely delay-

sensitive, in contrast to an application which can tolerate some delay and hence

will have the maximum delay hint of 16. If the number of bits used for the delay

hints is increased, the applications will have more levels of delay-senstivity to choose

from, hence more accurately representing their QoS requirements, but at the cost

of increased overhead in each packet header. Similarly if the number of bits used

to represent delay hints is reduced, the applications will have a smaller range of

delay-sensitivity to choose from, but less overhead per packet. The optimal number

of bits for delay hints is left as future work.

22

4.2 Cut-in-Line

Typically routers use a FIFO queue to hold packets. Since all packets are enqueued

at the end of the queue, all packets and therefore all applications receive the same

queueing delay. The queueing delay obtained by each packet depends upon the

instantaneous queue length (q) and the outgoing link capacity. TSQ provides delay-

sensitive packets with a lower queueing delay by “cutting” packets in line according

to their delay hints. A packet from a delay sensitive application with a low delay hint

will generally be queued towards the front of the queue leading to a lower queueing

delay for that packet. A packet from a throughput-sensitive application having a

high delay hint will generally be enqueued towards the end of the queue.

However queue insertion based solely on delay-hints may cause starvation of

packets with high delay hints. For example, a packet with a high delay-hint at the

end of the queue can be starved in the face of a large number of low delay-hint

packets cutting in line at (or above) the link capacity in front of this packet. To

avoid this, we introduce an aging mechanism to prevent starvation. This cut-in-line

mechanism is implemented by using a weighted insertion into the queue. At the

arrival time (ta) of a packet, we calculate the queueing delay that the packet would

experience if it was inserted at the end of the queue; we call this queueing delay the

drain time (td) of the queue. TSQ calculates its weight (w) according to its delay

hint and time of arrival at the queue.

w =
d× td

2n
+ ta (4.1)

where n is the number of bits used to represent the delay hint (4 in our current

implementation). The packets in the queue are inserted in order sorted by their

23

weights, with the lower weight packets inserted towards the front of the queue and

the higher weight packets inserted towards the end of the queue. This new position

of the packet in the queue is called q’. Thus, a high delay-hint will cause a packet

to have a higher weight and hence a higher value of q’. Newly arriving packets will

have their weights slightly increased due to the effect of the time of arrival on their

weight, thus preventing starvation of older packets.

This cut-in-line requires a weighted insertion that can be implemented using a

probabilistic data structure such as skip lists [Pug90], giving complexity O(log(l)),

where l is the number of packets in the queue.

4.3 Drop Probability

During congestion, many AQM techniques produce a drop probability (p) which is

applied to packets arriving at the router. All arriving packets are subject to the

same drop probability, with packets that are randomly dropped, not inserted in the

queue. However, in the case of the TSQ, a uniform drop probability for all packets

will potentially result in a higher throughput for the delay-sensitive applications,

since TSQ is providing a lower delay to its packets. Hence, TSQ increases the drop

probability for packets with delay hints lower than the maximum (2n, or 16 in our

implementation). The increase in drop probability is related to the reduction in

queueing delay that the packet would otherwise experience if it were inserted in the

queue in the position calculated by the cut-in-line mechanism. Thus, for a packet

from a throughput sensitive application which would otherwise be inserted at the end

of the queue, the drop probability from the AQM technique is not increased, hence

the application benefits from any throughput advantage provided by the underlying

24

AQM.

To determine the appropriate drop probability of packets that have cut-in-line,

TSQ starts with the steady state throughput T of a TCP flow in which through-

put is inversely proportional to the queueing delay and the square root of the loss

rate [PFTK98]:

T =
K

r ×√p
(4.2)

where, r is the round-trip time, p is the loss rate and K is a constant for all flows

based on the network conditions. The round trip delay r is the sum of the queue-

ing delay and the round-trip propagation delay. Since some packets can have a

decreased queueing delay by cutting in line, we compensate by increasing the drop

probability for those packets. Let the new queueing delay after TSQ be q’, the new

drop probability be p’, and the round-trip propagation delay be l. The throughput

obtained by the flow will now be T’:

T ′ =
K

(l + q′)×
√
p′

(4.3)

We want to prevent the new throughput T’ from being greater than the throughput

obtained without TSQ, (T ′ ≤ T). Hence, we calculate the new drop probability p’

as:

p′ =
(l + q)2 × p

(l + q′)2
(4.4)

The value of p’ depends on the new queue position value q’ and the queue position

q if TSQ were not present (in other words, the instantaneous queue length when the

packet arrived). p’ also depends on the one way propagation delay l of the network.

Since it is difficult for the router to determine the one way propagation delay of

every flow, we keep the value of l as a constant, but is typically between 40-100 ms

25

for many Internet links [CPS02]. Setting l to lower values in this range will result

in a more aggressive increase in drop probability, while setting l to higher values of

propagation delay will result in less aggressive increase in drop probability. For our

experiments, we fixed the one way propagation delay constant for the router at 40

ms1.

4.4 Summary

Figure 4.1: Traffic Sensitive QoS Controller along with an Active Queue Mechanism

Figure 4.1 shows TSQ in relation to the AQM. TSQ is essentially a QoS controller

which will work in conjuction with an AQM. The congestion controller can be any

AQM technique that provides an aggregate drop probability (PI in our case). The

1Note that this value is fixed for the TSQ router for all experiments although the experiments
will be simulated on networks with different propagation delays.

26

congestion controller is responsible for controlling the flow of packets through the

router. Most AQM techniques try to control the size of the router queue by dropping

packets with a uniform drop probability. Packets that are not dropped are queued

at the end in a FIFO queue. TSQ examines the delay hint of each packet and

determines the position in the queue where the packet should be inserted. It also

adjusts the drop probability of the packet based on the position on which it will be

inserted. If, after adjusting the drop probability the packet is not dropped then it is

inserted into the queue in the previously determined position. The QoS controller

thus aims to provide per packet QoS.

Figure 4.2 summarizes the algorithm for TSQ.

27

//q - length of queue
//q’ - position in the queue, where the packet will be inserted
//C - capacity of queue
//w - packet weight
//d - delay hint
//td - drain time
//n - number of bits used for delay hints
//ta - time of arrival
//p - drop probability before TSQ
//p’ - drop probability after TSQ
//l - network latency
on receiving packet pkt:

// Calculate its drain time
td = q/C

// Calculate packet weight
w = (d × td)/2n + ta

// Determine new position of packet in the queue
q’ = weightedInsert(w,pkt)

// Calculate new drop probability

p’ = (l+q)2×p
(l+q′)2

// Generate random number between 0 and 1
r = uniform[0,1]

if (r ≤ p’) then
drop(pkt)

else
insertPacket(q’, pkt)

Figure 4.2: TSQ Algorithm

28

Chapter 5

Experiments

This chapter describes the experiments which were carried out to evaluate the Traf-

fic Sensitive Quality of Service Mechanism (TSQ) over an existing Active Queue

Management (AQM) technique. We chose the PI-controller [HMTG01] as the AQM

technique over which to evaluate TSQ. The PI-controller attempts to provide a

steady queueing delay by keeping the queue size stable around a target queue length,

by adjusting the drop probability applied to incoming packets. Thus, PI provides

an explicit drop probability that enables TSQ to be easily placed on top of the PI

controller AQM.

We conducted a variety of experiments to test the effect of TSQ on the quality

of interactive audio, interactive video and file transfer flows. We also measured the

variation in queueing delay and throughput for the audio and video flows. We also

make a comparison between the performance of the applications with PI and TSQ

to the same applications with only PI. Finally, we ran experiments to measure the

effect of unresponsive flows when using TSQ in order to verify that non-responsive

flows do not benefit from TSQ.

29

5.1 Experimental Setup

Figure 5.1: Network Topology

All the experiments were done over the Network Simulator (NS-2) [ref]. Fig-

ure 5.1 shows the generic network topology for all the experiments in the simula-

tion. There are N sources S1..SN and N destinations D1..DN. These N flows are

connected to a single common link giving rise to a bottleneck at router R1. Each of

the connections between the sources and the bottleneck node have a link capacity

of 50 Mbps and propagation delay of 50 ms. Similar connections exist between the

egress router (R2) and the destinations. The bottleneck link capacity is B Mbps.

The one way propagation delay of the network is D ms. This bottleneck router runs

the PI AQM [HMTG01] plus TSQ. PI is configured with the values recommended

in [HMTG01], a = 0.00001822, b = 0.00001816, w = 170, qref = 200 packets and

qmax = 800 packets. The average packet size is 1000 bytes.

30

5.2 Audio Quality Evaluation

In this experiment we evaluate the performance of a single interactive audio flow

sharing the network with other TCP based FTP flows.

5.2.1 Experimental Setup

The network topology is same as the generic setup described in Section 5.1. The

bottleneck link capacity B is 15 Mbps. The one-way propagation delay D of the

bottleneck link is 50 ms. Hence the one-way propagation delay between each of

the sources and their respective receivers is 150 ms. In this experiment N = 100,

hence there are 100 sources and 100 destinations. Among the 100 flows present in

the network there are 99 TCP based FTP bulk transfer flows that are not delay

sensitive and so provide the maximum delay hint of 16, and the other flow is an

interactive audio flow simulated as a TCP-friendly source sending data at a rate of

128 Kbps. The experiment is allowed to run for 100 seconds. At the end of each

run, we change the delay hint of the audio flow. Hence, we evaluate the performance

of the audio flow over several runs with different delay hints.

5.2.2 Analysis

We analyze the effect of different delay hints on the queueing delay and throughput

of the audio flow.

Figure 5.2 plots the CDF of the queueing delay experienced by the audio flow

for 3 different delay hints. The CDF is plotted for a delay hint 1, which gives

the minimum delay, a delay hint 6, which gave the audio flow its optimal quality,

and delay hint 16, which gives maximum delay. As we can see from the figure the

31

Figure 5.2: CDF of the queueing delay experienced by the audio flow with delay
hints of 1,6 and 16.

median queueing delay is lower for the lower delay hints, also the CDF plots for lower

hints are much steeper, which implies that there is less variation in the per-packet

queueing delay at lower hints. Hence, for delay sensitive applications an AQM with

TSQ can provide a lower average queueing delay with less variation than can an

AQM alone.

Figure 5.3 shows a similar CDF plot for the throughput obtained by the audio

flow for the delay hints of 1, 6 and 16. The throughput is calculated every RTT (300

ms in this experiment). The throughput distributions of the file transfer flows are

similar to the distributions obtained with delay hints of 16. If TSQ were not used,

then the throughput distribution would be similar to that of a flow with delay hint

16. As is evident from the figure, the median throughput decreases as the delay hint

becomes lower.

We measured the throughput and total delay (queueing delay plus propagation

32

Figure 5.3: CDF of the throughput experienced by the audio flow with delay hints
of 1, 6 and 16.

delay) experienced by the audio flow for the various delay hints. Using the quality

model described in Chapter 3 we plot the quality of the audio flow as the delay

hints vary. Figure 5.4 shows the variation of the delay quality and throughput

quality of the audio flow with different delay hints. The delay quality of the audio

application improves with a decrease in delay hint, while its throughput quality

decreases. In other words, as the application indicates its preference for lower delay,

it is “cutting” more in line, hence getting a lower average queueing delay which

improves its delay quality. However, correspondingly the audio flow gets dropped

with a higher probablity, hence acheiving a lower throughput and causing a drop in

the throughput quality.

Figure 5.5 shows the overall quality of the application for various delay hints.

As we have proposed in our quality model, the overall quality of an application is

the minimum of the delay quality and the throughput quality. Thus the application

33

Figure 5.4: Throughput and Delay Quality for an audio flow versus Delay Hint

gets its best overall quality at a delay hint of 6. When TSQ is not used, the delay

obtained by all applications is similar to that obtained by an application with delay

hint 16.

5.3 Video Quality Evaluation

The experiments conducted in the previous section and the analysis following it

showed how TSQ can be used to improve the quality of interactive audio applica-

tions. We next present a series of experiments showing how TSQ can be useful for

improving the quality of interactive video applications.

5.3.1 Experimental Setup

The topology for the video-conference is similar to the generic dumbell topology

described in Section 5.1. In these experiments, we have 20 flows (N=20), and a

34

Figure 5.5: Quality for an audio flow versus Delay Hint

bottleneck link of 4 Mbps. Of the 20 flows, 19 are bulk file transfers, and one flow is

a TCP-friendly CBR source sending data at a rate of 500 Kbps, typical of a H.323

video-conference [Cor00]. All other parameters remain the same as in the previous

set of experiments. We run each simulation for 100 seconds and change the delay

hint of the video flow after each run.

5.3.2 Analysis

Figure 5.6 shows the CDF of the queueing delay for the video flow for delay hints of

1, 6 and 16. As seen in Section 5.2.2 for the audio application, the median queueing

delay for the video application is lower for the lower delay hints. Also, the CDF

plots for lower hints are much steeper, which implies low variance in the queueing

delay. Thus similar to the interactive audio, TSQ can provide a lower queueing

delay with less variation to the interactive video application.

35

Figure 5.6: CDF of queueing delay of the video flow for delay hints of 1, 6 and 16

Figure 5.7 shows the CDF of the throughput obtained by the video flows for the

same 3 delay hint values. The throughputs are calculated over 1 RTT (300 ms in our

experiments). The three CDF plots are closer for video as compared to interactive

audio, indicating that the decrease in throughput is not very significant when the

delay hint is reduced.

The graph in Figure 5.8 shows how the quality of the video flow is affected by

different delay hints. For lower delay hints, the average queueing delay and hence

the average delay for the video flow decreases. This results in a significant gain in

delay quality. However, the drop in throughput quality is not as significant for lower

delay hints as it was in the audio experiments.

Figure 5.9 shows the overall quality of the video flow for different delay hints.

The quality for the video conference is maximum when the delay hint is 6. Thus,

by changing its delay hint, the application can get optimal quality.

36

Figure 5.7: CDF of throughput of the video flow with delay hints of 1, 6 and 16.

5.4 Performance of TSQ over varying traffic mixes

The experiments conducted so far had one single delay sensitive flow (an audio flow

in the first set of experiments and a video flow in the second set of experiments). We

now evaluate the performance of TSQ when there is a varying mix of delay-sensitive

and throughput-sensitive flows.

5.4.1 Experimental Setup

The experimental setup for this experiment is similar to the first set of experiments,

i.e., we have a 15 Mbps bottle-neck link shared by 100 flows. Within these 100

flows, we changed the relative number of delay-sensitive (audio) flows with respect

to throughput-sensitive (file transfer) flows. The delay-sensitive flows used a delay

hint of 6 for all runs. The traffic mixes we ran include: 1 audio flow, 99 file transfer

flows; 25 audio, 75 file transfer; 50 audio, 50 file transfer; and 75 audio, 25 file

37

Figure 5.8: Delay and throughput quality of a single video flow versus delay hint

transfer1. The FTP flows are TCP flows using the maximum delay hint of 16.The

audio flows are a TCP-friendly CBR sources sending data at a rate of 128 Kbps and

using a delay hint of 6 (the optimum delay hint from Section 5.2).

5.4.2 Analysis

We calculated the average quality obtained by file transfer flows and audio flows

for the various traffic configurations. This quality was then normalized against the

quality that the application obtained when TSQ was switched off. In other words,

the normalized quality of an application when TSQ is switched off is 1. If it gets

better quality when TSQ is switched on, then its normalized quality is greater than

1. Conversely if the quality of the application is worse when TSQ is switched on,

1The extreme case of 99 audio flows and 1 file transfer flow was not evaluated, as this configu-
ration did not cause sufficient queue build-up and hence was not useful for comparitive evaluation.

38

Figure 5.9: Quality of a single video flow versus delay hint

then normalized quality is less than 1.

Figure 5.10 summarizes the results obtained by this experiment. It can be seen

that as the percentage of audio flows in the network increases, the average gain in

quality of the audio application decreases. This is because as the number of delay-

sensitive flows increase in the network, they will cut in line less than they would

with fewer such flows. Hence the advantage gained in decreasing the queueing

delay will be reduced. However, at all times the normalized quality is greater than

1. Hence, the quality of service obtained using TSQ is always higher than that

obtained without TSQ even with increasing numbers of audio flows.

For the file transfer flows, the normalized quality increases initially with an

increase in number of flows. However, as the number of audio flows increases beyond

25 percent, the normalized file transfer quality starts decreasing. However for all

traffic mixes, the normalized file transfer quality is greater or equal to 1. Thus, TSQ

39

Figure 5.10: Normalized Quality of Audio flows and FTP flows with varying traffic
mixes

provides better or equal quality for both audio and file transfer applications than

does the underlying AQM (PI in our experiments) without TSQ.

5.5 Unresponsive Flows

In this section we evaluate the behavior of unresponsive flows when TSQ is used.

A TCP based application will halve its congestion window if a packet is dropped.

However an unresponsive UDP application will not reduce its rate of sending data in

response to packet loss. Hence, we investigated whether unresponsive UDP flows can

gain an unfair advantage due to the presence of TSQ. In the first set of experiments,

we introduced a single unresponsive UDP flow in a network with only file transfer

TCP flows. We observed the effect of the UDP flow on the average throughput of

the TCP flows. We repeated the experiment with different values for the delay hints

40

for the UDP flow.

Current Internet has many interactive media flows using UDP. Hence, in the

second set of UDP experiments we evaluated the effect on quality of UDP and

TCP applications with varying mixes of UDP and TCP flows. The quality of these

applications were normalized against the quality achieved under similar network

conditions if TSQ was not used.

5.5.1 Experimental Setup 1

The network topology is similar to those in previous experiments. We have 99 bulk

file transfers using TCP, and 1 audio flow over UDP sharing a 15 Mbps link. The

audio flow is a CBR traffic source sending data at a rate of 600 Kbps, which is

more than the flow’s fair share of bandwidth of 150 Kbps. The file transfer flows

are delay-insensitive and hence have the maximum delay hint of 16. The UDP flows

used a different delay hint in each run. We ran each simulation for 100 seconds.

5.5.2 Analysis 1

We measured the average throughput for the 99 file transfer flows in each run.

Figure 5.11 shows the average file transfer throughput when running with UDP

flows with different delay hints. The throughput is normalized against the average

file transfer throughput when the same experiment ran on PI without TSQ. As we

can see from the graph, the average file transfer throughput remains almost constant

in each of the runs and the file transfer throughput is actually a little less affected by

the UDP flow under TSQ. Hence, we can say that by using a lower delay hint, the

unresponsive flows will not gain any additional advantage due to TSQ. This makes

AQM routers that use TSQ no more vulnerable to unresponsive flows than if they

did not use TSQ.

41

Figure 5.11: Normalized file transfer throughput versus delay hints

5.5.3 Experimental Setup 2

A total of 100 flows share a 15 Mbps link with a one-way propagation delay of 150

ms. The 100 flows comprise of a mix of unresponsive audio flows running over UDP

and file transfers running over TCP. We vary the mix of UDP flows from 1 to 75

(1, 25, 50 and 75). The audio flows use a delay hint of 6 and the TCP flows use a

delay hint of 16.

Analysis

Figure 5.12 shows a plot of the average audio and file transfer quality normalized

against the average quality obtained without TSQ. As the number of UDP audio

flows in the network increases the normalized quality decreases for both the UDP

and file transfer applications. However, at all times the normalized quality is above

1 for both UDP audio and TCP file transfer. Hence, there is an improvement in

42

Figure 5.12: Quality Variation with UDP flows

the average quality of both the UDP audio and TCP file transfer applications due

to the TSQ for a varying mixes of flows, suggesting TSQ will not more negatively

impact network performance in the presence of unresponsive flows.

43

Chapter 6

Future Work

Our current implementation of TSQ uses 4 bits in the IP header to embed the

delay hint. This allows applications to choose from 16 levels of delay senstivity. A

larger range of delay hints will be available if more bits are used to embed the delay

hint, but at the cost of more bits of overhead. Hence, further research is required

to determine the number of bits needed to support a sufficient sensitivity without

inducing unnecessary overhead.

Another area of potential future research is in developing quality metrics. We

have made an attempt to provide quality metrics representative of three applications

(interactive audio, interactive video and file transfer). However, if other applications

need to take advantage of TSQ, they must have knowledge of their quality require-

ments. In addition, there may be other ways to quantify QoS, such as taking the

average (or the sume) of the throughput and delay qualities. Hence, further in-

vestigation into the quality metrics and requirements of other applications on the

Internet is required to support the full range of applications of today’s Internet. This

44

will allow the evaluation of TSQ performance with a wider variety of applications.

Another possible extension would be to build applications that can take advan-

tage of TSQ by dynamically changing their delay hints. These applications can

evaluate the quality that they obtained by using their current delay hint and can

adapt their delay hint if they are not satisfied with the QoS received. How rapidly

an application adapts to change network QoS would be an open issue.

45

Chapter 7

Conclusions

The current Internet supports applications with varying Quality of Service (QoS)

requirements. The QoS of the application primarily depends on two factors: 1)

the delay, and 2) the throughput. Emerging applications, such as interactive mul-

timedia, are delay-sensitive and hence their quality is affected more by changes in

network delay than by changes in network throughput. Traditional applications,

such as file transfer, are throughput-sensitive and their quality is almost solely de-

pendent on the throughput that they obtain. Unfortunately, the current Internet

however does not distinguish between the differences in application QoS require-

ments and instead provides uniform service to all applications. We assert that the

Internet can instead provide QoS mechanisms while remaining best effort, raising

the overall QoS for most applications, while preserving the robustness and scalabilty

of the network.

In this thesis, we have presented a Traffic Sensitive QoS controller (TSQ). TSQ

is sensitive to the varying QoS requirements of diverse Internet traffic, and thus

provides different delay and throughput treatments to packets from different types

of applications. TSQ can be used in conjunction with many current AQM techniques

46

allowing the full performance benefits to quality that the underlying AQM has to

offer. Applications inform TSQ about their delay sensitivity by embedding within

each packet a delay hint, an indicator of an application’s delay-sensitivity. Based on

the delay hint of each packet, TSQ makes a decision as to where the packet must be

inserted in the queue (thus potentially decreasing its queueing delay) and how much

the drop probability of the packet must be increased (thus potentially decreasing its

throughput). This mechanism helps delay-sensitive applications attain better QoS,

while at the same time avoids hurting the QoS of throughput-sensitive applications.

In order to quantify an application’s QoS, we propose a QoS metric based on

the minimum of an application’s delay quality and throughput quality. We have

also presented quality metrics for some typical Internet applications: interactive

audio, interactive video and file transfer. Based on previous perceptual quality

research, we have devised quality functions for these applications in terms of delay

and throughput. Thus, with TSQ, applications such as these, with knowledge of

their QoS requirements can dynamically choose their delay hints so as to maximize

their Quality of Service.

We have implemented TSQ in ns-2, in conjuction with the PI-Controller [HMTG01].

We have tested TSQ to measure its effect on the quality of interactive audio, inter-

active video and file transfer applications. We have also evaluated TSQ by varying

the proportion of delay-sensitive and throughput-sensitive flows in the traffic mix.

Our evaluation of TSQ with varying traffic mixes shows TSQ can increase the av-

erage quality of all applications (8% to 18% for delay sensitive applications and up

to 4% for throughput sensitive applications) over the quality obtained by using the

AQM without TSQ. We have also evaluated the performance of TSQ when there

are unresponsive flows in the traffic mix. The results obtained show that TSQ does

47

not allow unresponsive traffic to gain further advantage over responsive traffic than

does the underlying AQM.

TSQ is still a best-effort service and thus requires no policing, traffic monitoring,

or per-flow information. The RED-Boston algorithm presented in [PCK02] enhances

the ARED [FGS01] by providing a per-packet QoS to Internet applications. It also

uses delay hints and “cut-in-line” mechanism. However our approach extends the

work done in [PCK02] as follows:

1. We developed QoS metrics based on delay and loss. The overall quality is

defined as the minimum of the delay quality and throughput quality. We have

defined the quality metrics for 3 applications: interactive audio, interactive

video and file transfer.

2. We formally defined the relationship between the decrease in queueing delay

and the corresponding increase in drop probability to maintain TCP “fair-

ness”. We have derived the necessary formulas based on TCP steady state

throughput.

3. We decoupled the QoS controller from the underlying AQM. This allows TSQ

to be applied in conjunction with many existing AQM techniques. In this

work, we have implemented it on top of the PI-Controller.

48

Bibliography

[ALLY01] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM: Active Queue

Management. IEEE Network, May 2001.

[BFC93] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT) an

Architecture for Scalable Multicast Routing. In Proceedings of ACM

SIGCOMM Conference, pages 85 – 95, September 1993.

[Car02] Carey Williamson and Qian Wu. A Case for Context-Aware TCP/IP.

ACM Performance Evaluation Review, 29(4):11 – 23, March 2002.

[CC00] Jae Chung and Mark Claypool. Demonstration of Dynamic Class-Based

Router Queue Management. In Proceedings of the ACM Multimedia

Conference, November 2000.

[Cor98] Real Networks Corporation. Real Networks Guide for Audio Produc-

tion, 1998.

[Cor00] RadVision Corporation. Multipoint Conferencing Specifications, 2000.

[CPS02] Andrew Corlett, D. I. Pullin, and Stephen Sargood. Statistics of One-

Way Internet Packet Delays. In Proceedings of 53rd Internet Engineer-

ing Task Force, March 2002.

49

[DCJ93] Spiros Dimolitsas, Franklin L. Corcoran, and John G. Phipps Jr. Im-

pact of Transmission Delay on ISDN Videotelephony. In Proceedings of

Globecom, pages 376 – 398, November 1993.

[FF99] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Conges-

tion Control in the Internet. IEEE/ACM Transactions on Networking,

February 1999.

[FGS01] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive

RED: An Algorithm for Increasing the Robustness of RED’s Active

Queue Management. Under submission, 2001.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways

for congestion avoidance. IEEE/ACM Transactions on Networking,

1(4):397–413, 1993.

[FKSS01] W. Feng, D. Kandlur, D. Saha, and K. Shin. Blue: An Alternative

Approach To Active Queue Management. In Proceedings of the Work-

shop on Network and Operating Systems Support for Digital Audio and

Video (NOSSDAV), June 2001.

[Flo] Sally Floyd. References on CBQ (Class-Based Queueing). Internet

document.

http://www-nrg. ee.lbl.gov/floyd/cbq.html.

[Gan] Implementation Architecture Specification for the Premium

IP Service, 2002. Gn1(Gant) deliverable d9.7-addendum 1.

http://archive.dante.net/geant/public-deliverables/GEA-02-

079v2.pdf.

50

[GM01] Liang Guo and Ibrahim Matta. The War Between Mice and Elephants.

In 9th IEEE International Conference on Network Protocols, November

2001.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured For-

warding PHB Group. IETF Request for Comments (RFC) 2597, June

1999.

[HKBT01] P. Hurley, M. Kara, J. Le Boudec, and P. Thiran. ABE: Providing

a Low Delay within Best Effort. IEEE Network Magazine, May/June

2001.

[HMTG01] C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong. On

Designing Improved Controllers for AQM Routers Supporting TCP

Flows. In Proceedings of INFOCOM, pages 1726–1734, 2001.

[IKK93] Satoru Iai, Takaaki Kurita, and Nobuhiko Kitawaki. Quality Re-

quirements for Multimedia Communication Services and Terminals-

interaction of Speech and Video Delays. In Proceedings of Globecom,

pages 394 – 398, November 1993.

[JNP99] V. Jacobson, K. Nichols, and K. Poduri. Expedited Forwarding PHB

Group. IETF Request for Comments (RFC) 2598, June 1999.

[KS01] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Vir-

tual Queue. In Proceedings of ACM SIGCOMM, August 2001.

[NT02] Wael Noureddine and Fouad Tobagi. Improving the Performance of

Interactive TCP Applications using Service Differentiation. In Pro-

ceedings of IEEE Infocom, June 2002.

51

[Par01] Mark Anthony Parris. Class-Based Thresholds: Lightweight Active

Router-Queue Management for Multimedia Networking, 2001.

[PCK02] Vishal Phirke, Mark Claypool, and Robert Kinicki. Traffic Sensitive

Active Queue Management for Improved Quality of Service. Techni-

cal Report WPI-CS-TR-02-21, CS Department, Worcester Polytechnic

Institute, May 2002.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP

Throughput: A Simple Model and Its Empirical Validation. In Pro-

ceedings of ACM SIGCOMM, 1998.

[Pug90] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced

Trees. Communications of the ACM, 33(6):668–676, June 1990.

[SBC94] S. Shenker, R. Braden, and D. Clark. Integrated Services in the Internet

Architecture: An Overview. IETF Request for Comments (RFC) 1633,

June 1994.

[SSZ98] Ion Stoica, Scott Shenker, and Hui Zhang. Core-Stateless Fair Queue-

ing: Achieving Approximately Fair Bandwidth Allocations in High

Speed Networks. In Proceedings of ACM SIGCOMM Conference,

September 1998.

[SZ99] Ion Stoica and Hui Zhang. Providing Guaranteed Services Without Per

Flow Management. In Proceedings of ACM SIGCOMM Conference,

September 1999.

[Zeb93] J.A. Zebarth. Let Me Be Me. In Proceedings of Globecom, pages 389 –

393, November 1993.

52

	Worcester Polytechnic Institute
	Digital WPI
	2004-01-14

	Traffic Sensitive Quality of Service Controller
	Abhishek Anand Kumar
	Repository Citation

	tmp.1530275769.pdf.l6VHp

