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Abstract In this paper we consider the problem of finding 
optimal parameters of the Kelvin element in vibration analysis. 
This problem is based on finding analytical solution of the initial 
ODE for development of the optimization model. Such technique 
allows us to compute optimal parameters of Kelvin element.  

I. INTRODUCTION AND LITERATURE REVIEW  

In this paper we consider the problem of finding optimal 
parameters of the vehicle suspensions given roads with 
different profiles and different times the driver or passenger 
is exposed while the vehicle is driven on these roads. The 
method introduced in this paper consists of the following 
steps. First, we describe a model suitable for vibration 
analysis. Then, we find analytical solution of the vibrating 
model and impose restrictions according to the ISO standard 
[4]. And, finally, we construct an objective function and 
search for the global minimum of this function with respect 
to the spring stiffness and viscosity of the damper of the 
model. This ensures maximum comfort and safeness for a 
driver and passenger in a moving vehicle.  

Currently, there are quite a lot of publications on modelling 
vehicle suspensions [1,3] and methods devoted to finding 
optimal parameters of suspensions at constant harmonic 
excitations [2,7-11], none of the reviewed works utilize the 
ISO recommendations on evaluation of the admissible level 
of vertical accelerations [4]. In the present paper we apply the 
ISO recommendations to find optimal parameters of 
suspensions. As far as we aware, no similar investigations 
have been made in this area in the literature. Such a 
combination ensures provision of the maximal ride comfort at 
the long-term exposure to vertical accelerations due vehicle 
movement along roads with different road profiles. In the last 
section of the paper we present several numerical examples 
that demonstrate application of the proposed approach to the 
construction of suspension. 

II. FORMULATION OF OPTIMIZATION PROBLEM 

2.1. Kelvin element and its second order equations  
Kelvin element (sometimes called as Voigt element due to 

another originator) is the main type of viscoelastic elements 
used in modelling vehicle suspensions, tires, and human 
muscular-skeletal structure. The principle scheme of such an 
element is given in Figure 1.  

 

 
 
It is assumed that springs and dashpots used in constructing 

the basic viscoelastic elements are weightless and have linear 
and constant with time response characteristics. The 
corresponding ODE for the freely vibrating mass is  

 
  0Mx Cx Kx+ + = ,  (1) 

 
where x  is the deflection from the equilibrium position; the 
mass M , the viscosity factor C , and the spring rate K  are 
material constants independent of ,x x , and time t . The 
obvious physical reasons imply 

 
  0, 0, 0M C K> ≥ ≥   (2) 

 

2.2. Deflection of the support and analytical solutions  
Herein, we construct analytical solution for the case when 

harmonic (vertical) deflection ( ) exp( )u t A i t= ω  is applied to 
the support, where A  is amplitude of harmonic deflections of 
the support. We shall also apply a constant gravity force Mg  
to the mass. The governing second order equation for the 
considered case is:  
 
 ( ) ( ) ( ) ( ) ( )Mx t Cx t Kx t Cu t Ku t Mg+ + = + −  (3) 
 

Introducing a new variable v x= , and denoting 
x

X
v
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, we 

transform (3) to the following system of two ODEs of the 
first order. 

 

Fig. 1.  Kelvin (Voigt) element 



 
  X X= ⋅G    (4) 
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Matrix G  is known as the Jacobian of system (4).  

The partial solution of (3) corresponds to the steady state 
vibrations of the mass of the Kelvin Element.  Thus, we can 
find a partial solution in the form (see, for example, [12]): 

 1( ) ( ) hX t i P−= − ⋅I Gω   (6) 

with harmonic loading vector hP : 

0
( )

( ) ( )hP t C Ku t u t g A
M M

⎛ ⎞
⎜ ⎟= ⎛ ⎞⎜ ⎟+ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (7) 

Combining (4) - (7) yields deflection ( )x t  of the mass and its 
second derivative – acceleration ( ) ( )a t x t= : 
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( )( ) i tC iK iMga t i Ae
M i C K

+ −= −
− −

ωωω
ω ω

  (8) 

 

2.3. Vibration evaluation and Objective Function construction. 
According to the ISO 2631 [4] standards, vibration 

evaluation includes measurements of the weighted root-
mean-square (r.m.s) accelerations.  

In ISO 2631 the r.m.s weighted acceleration wa  is 
defined by the following formula: 

1
22

0

1 ( )
T

w wa a t dt
T

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∫   (9) 

whereT  is a duration of measurement, and ( )wa t is the 
frequency weighted acceleration: 

1
22( ) ( ( ))w i i

i
a t W a t

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ .  (10) 

In (10) iW  is the weighting factor for the i -th frequency 
band iω  of deflection of Kelvin’s element support and 

( )ia t  is the acceleration function for the corresponding 
frequency band defined by (8). In applications, iW  values 
will be taken form ISO 2631. 
Combining (9) and (10) we obtain the following expression: 
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      (11) 
where 

2

0

1( ) ( )
T

i iA T a t dt
T

= ∫ .   (12) 

The aim should be to find such parameters of spring 
stiffness K  and damper viscosity C  that the r.m.s weighted 
acceleration wa  is minimal. This leads to the following 
optimization problem: 

1
22 ( )w i i

i
a W A T

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ,  (13) 

Subject to: ,K C B∈ .   (14) 
Here B  is a box defined by 

[ ] [ ]min max min max, ,B K K C C= × ; min max,K K  
are the minimum and maximum values of stiffness of the 
spring, min max,C C  are the minimum and maximum 
values of viscosity of the damper.  

As we can see, form (12) and (8), the objective function 

wa  is a function of  ,K C . 

2.4. Steady-state vibrations 
As it was mentioned above, the steady state response 

corresponds to the partial solution of (3). For steady state-
state vibrations the problem of minimization (13) can be 
derived in the following manner using only the real part of 
the acceleration (8) for each considered i -th band of 
excitation: 

( )Re ( ) cos( ) sin( )i i i i i i ia t A L t A Q t= ω + ω  (15) 

where iA  is an amplitude of harmonic deflections of the 

support corresponding to i -th frequency band and 
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Therefore, using (15) we can transform (9) as follows: 
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     (17) 
In (17), the terms corresponding to sin( )iTω  and 

cos( )iTω  converge to zero as T → ∞ . Therefore, for 

large T , ( )iA T  will be mostly dependent on the other 

terms and that allows us to consider only the limits ( )iA T  

as T → ∞ . We have: 
2

2 2lim ( ) ( )
2
i

i i i
T

AA T L Q
→∞

= + .  (18) 

Thus, the objective function (13) can be simplified by 
formula (18) and represented in the following manner: 
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      (19) 
where n  is the number of frequencies in vibration spectrum 
and again, ,i iL Q  are defined by (16). Thus, Problem 
(13),(14) can be represented as the follows: 

Minimize: ( , )F K C .   (20) 
Subject to: ,K C B∈ .   (21) 

We note that, this statement involves steady solutions only 
and, in contrast of (13),(14), it does not use T . 

2.5. Vibrations of the Kelvin Element on different sequential 
excitations of the support 

Now, consider the case with several sequential vibration 
periods , ( 1, )kT k m=  to different magnitudes and 
durations of Kelvin Element. According to ISO 2631, the 
following formula is applied to calculate the total comfort 
corresponding to all periods kT . 
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1
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where  wka  is the vibration magnitude for exposure period 

kT . In terms of steady solutions it can be represented as 

wka = ( , )F K C  in (19): 

1
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Index k indicates the corresponding k -th period in of 
vibration of the Kelvin element and ,ik ikL Q  are defined 
similar to (16) as follows: 
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     (24) 
Thus, objective function (22) leads to the following 
optimization problem: 

Minimize: 
~

( , )F K C    (25) 
Subject to: ,K C B∈ .   (26) 

This is an optimization problem with box constraints (26). 
The objective function (23) is not convex or concave, 
therefore the problem (25) may have many local solutions. 
We are looking for a global solution in our research. In the 
calculations below, we use the global optimization algorithm 
AGOP, introduced in [5, 6]. 

III. NUMERICAL EXAMPLES 

3.1. Single spectrum vibration 
Here we assume that the mass M  is constant and the 

deflection of the Kelvin element is defined by a periodic 
function given in (7). It is also assumed that the frequency of 
deflections iω  and the amplitude iA  are constant during the 
vibrations and the numbers of bands of the total vibration 
spectrum are 6,5,4n = . The weighting factors iW  

corresponding each iω  were taken from the ISO 2631. The 

spring stiffness here is [ ]200,1500K ∈  and damper 

viscosity is [ ]1,10C ∈ . Looking at (14), we can represent 

[ ] [ ]200,1500 1,10B = × . 

The parameters of Kelvin element and the bands of vibrating 
spectrum are taken as follows: 



1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

1 ,
1 , 0.08 , 0.482
2 , 0.08 , 0.531
5 , 0.002 , 1.039
8 , 0.002 , 1.036
4 , 0.001 , 0.967
3 , 0.0005 , 0.804

M kg
Hz A m W
Hz A m W
Hz A m W
Hz A m W
Hz A m W
Hz A m W

=
ω = = =
ω = = =
ω = = =
ω = = =
ω = = =
ω = = =

 

Some additional values for bands will also be considered for 
better performance and comparability. 

The corresponding computational results for the 
acceleration of mass for the considered model are presented 
in Table I.  

Analyzing the presented results, we can find relationships 
between optimal values of the Kelvin element and its 
different excitations. We can find the tendency that could be 
expected: in terms of optimality, high stiffness of spring 
requires low damping and high viscosity of damper requires 
low stiffness of spring.  However, even in this simple case, 
different amplitudes of vibrations lead to different optimal 
values ,K C .  

While considering different sequential vibrations, the 
problem of finding optimal values ,K C  might be quite 
complicated. In the following example we are considering 
such a case. 

TABLE I 
THE OPTIMAL PARAMETERS C AND K FOR DIFFERENT SINGLE VIBRATION 

SPECTRUM IN EXAMPLE 1 
Additional 
amplitude 
values of 

excitation of 
the 

support iA  

Frequency of 
variable 

amplitudes iω  

Optimal 
Damper 
viscosity 

C  

Optimal 
Stiffness of 

spring K  

The minimum value 
of Objective Function  

6n =  

6A  6ω  

   

0.0005 3 3.1826 283.186 3.2828 

0.0004 3 2.5065 287.2385 3.2459 

0.0006 3 3.7643 278.7984 3.3184 

5n =  

5A  5ω  

   

0.001 4 1 302.2257 3.1315 

0.002 4 7.8 200 3.5049 

0.005 4 6.8890 200 4.2166 

4n =  

4A  4ω  

   

0.001 8 7.5456 200 0.8667 

0.0011 8 7.3676 200 0.8896 

0.0012 8 1 281 0.9028 

3.2. Multiple spectrum vibration. 
Here we adopt all the notations mentioned in Section 3.1 

and consider two different vibration spectra that consist of 

1 2 4n n= =  number of bands each and set the time of 

vibrating periods on each spectrum as 1T  and 2T . 
The parameters of Kelvin element and the bands of 

vibrating spectra are taken as follows: 
the first spectrum: 

11 11 11

21 21 21

31 31 31

41 41 41

1 ,
2 , 0.08 , 0.531
4 , 0.04 , 0.967
25 , 0.001 , 0.513
8 , 0.001 , 1.036

M kg
Hz A m W
Hz A m W
Hz A m W

Hz A m W

=
ω = = =
ω = = =
ω = = =
ω = = =

 

and the second vibrating spectrum: 

12 12 12

22 22 22

32 32 32

42 42 42

2 , 0.02 , 0.531
4 , 0.001 , 0.967
25 , 0.001 , 0.513
8 , 0.005 , 1.036

Hz A m W
Hz A m W
Hz A m W

Hz A m W

ω = = =
ω = = =
ω = = =
ω = = =

 

The computational results for the acceleration of mass for 
the considered model are presented in Table II with different 
proportions between periods 1 2,T T  spending on each 
vibration spectra. 

Looking at the results, we can see the tendencies of 
changing optimal values of spring and damper of the Kelvin 
element in terms of different proportions of the vibrating 
periods: the vibration periods 1 2,T T  influence on optimal 

values ,K C . For example, when 1T >> 2T , it could be 

more preferable to have in the Kelvin element maxC  and 

461.3286K = , at the same time when 1T << 2T , low 

vibrations achieves at minC  and 400.5220K = .  

TABLE II 
THE OPTIMAL PARAMETERS C AND K FOR DIFFERENT  TIME PERIODS T1 AND 

T2 IN EXAMPLE 2 
Proportions between vibrating 

periods 1 2,T T  

Optimal 

Damper 

viscosity C  

Optimal 
Stiffness of 

spring K  

The minimum 

value of Objective 

Function 

1 2
1 1;
2 2

T T= =  

5.3892 423.3512 6.0683 

1 2
4 1;
5 5

T T= =  

10 461.3286 6.9551 

1 2
1 4;
5 5

T T= =  

1 400.5220 4.4207 



Also we see that the optimal values of K  doesn’t change 
much with different proportions of vibration periods, and 
C changes from minimum values to maximum values of 
viscosity. 
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