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Abstract 
 

 Mobile technology is improving in quality and capability faster now than ever 

before. When first introduced, cell phones were strictly used to make voice calls; now, 

they play satellite radio, MP3s, streaming television, have GPS and navigation 

capabilities, and have multi-megapixel video cameras. In the near future, cell phones will 

have programmable graphics processing units (GPU) that will allow users to play games 

similar to those currently available for top-of-the-line game consoles. Personal digital 

assistants enable users with full email, scheduling, and internet browsing capabilities in 

addition to those features offered on cell phones. Underlying all this mobile technology 

and entertainment is a battery whose technology has just barely tripled in the past 15 

years, compared to available disk capacity that has increased over 1,000-fold. 

 Ray tracing is a rendering technique used to generate photorealistic images that 

include reflections, refraction, participating media, and can fairly easily be extended to 

include photon mapping for indirect illumination and caustics. In recent years, ray tracing 

has been implemented on the GPU using various acceleration structures to facilitate 

rendering. Until now, all studies have used build time and achievable frame rates to 

determine which acceleration structure is best for ray tracing. We present the very first 

results comparing both CPU and GPU raytracing using various acceleration structures in 

terms of energy consumption. By exploring per-pixel costs, we provide insight on the 

energy consumption and frame rates that can be experienced on cell phones and other 

mobile devices based on currently available screen resolutions.  

 Our results show that the choice in processing unit has the greatest affect on 

energy and time costs of ray tracing, followed by the size of the viewport used, and the 

choice of acceleration structure has the least impact on efficiency. For mobile devices 

enabled with a programmable GPU, whether it is a cell phone, PDA, or laptop computer, 

a bounding volume hierarchy implemented on the GPU is the most energy-efficient 

acceleration structure for ray tracing. Ray tracing on cellular phones with smaller screen 

resolutions is most energy-efficient using a CPU-based Kd-Tree implementation. 
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1 Introduction 

Over the past decade, graphics research has focused on making physically-based 

rendering algorithms, such as ray tracing, interactive. Physically-based algorithms 

implemented on the CPU can take minutes or even hours to process the scene and 

generate high-resolution images. This is contrary to the demands of interactive 

environments, where minimum frame rates are typically between 2 and 15 frames per 

second depending on the level of interactivity desired. In recent years however, new, 

powerful Graphics Processing Units (GPUs), which can process millions of triangles per 

second, have helped bring ray tracing, the industry standard for photorealistic image 

rendering, into the realm of interactive graphics.  

The rapid rate at which these graphics cards have been improving is evident in 

Figure 1-1, where the number of floating point operations per second (FLOPS) capable 

on ATI and NVIDIA graphics cards are compared to that of a Pentium 4 CPU [Buck 

2004]. The GPU is a parallel pipelined system designed to perform similar operations on 

large amounts of input. Thus, it can process more data per second than the CPU. The rate 

at which these cards are increasing in performance, and the recently added capability to 

program them, has inspired much research into utilizing the capabilities of the GPU for 

general-purpose computations [GPGPU]. 

 

 

Figure 1-1: GPU vs. CPU Trends [Buck 2004] 
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As graphics processing speed increases, there is a corresponding decrease in the 

physical size of components based on the technology. These programmable GPUs are 

even being included in personal digital assistants (PDAs) and cell phones. Although these 

devices are faster and more powerful than in the past, they are still resource-limited and 

require that real-time graphics algorithms be reformulated. The per-pixel processing 

power necessary for real-time graphics is available on these mobile devices due to their 

low-resolution screens. With external memory cards that can store several gigabytes of 

information, the memory needed to store the geometric models is also not a limiting 

factor. In fact, the limiting resource is battery power. Intel [2002] suggests that nearly 

half of the total power consumption of a mobile device is due to the display and graphics 

card. In such an environment, the graphics software should be optimized to reduce power 

consumption while taking advantage of the card’s capabilities.  

Battery life has been among the slowest technologies to advance in mobile 

devices. Figure 1-2 shows the relative improvements in various PC technologies from 

1990 through 2001. Where disk capacity and CPU speed have increased 1000 and 400 

fold respectively, battery energy density has only doubled [Starner 2003]. 

  

 

Figure 1-2: Technology trends from 1990 to 2001 [Starner 2003] 
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In the past, there has not been a strong push for improved battery-life of portable 

devices due, in part, to their history of limited functionality. However, the addition of 

email, internet, video conferencing, and music playing capabilities, turning previously 

single-feature devices into multi-functional tools, has increased the popularity of mobile 

devices. As new features are added, the hardware must become more flexible, yet 

maintain the speed that people have grown accustomed to. Increasing speed and reducing 

time costs has been part of the nature of research, as is evident in computer graphics, 

where the quality of rendering systems has only considered the number of frames per 

second that can be produced. On mobile devices, where resources are more limited than 

on a desktop computer, energy consumption should also be an important consideration. 

Mobile resources should be optimized while maintaining the ability to produce high 

quality images.  

1.1 Goal of the Thesis 

The programmability of new graphics processing units has allowed ray tracing, 

the industry standard for photorealistic images, to be performed at interactive frame rates 

[Purcell et al 2002]. We explore the use of ray tracing, implemented on both the CPU and 

GPU, as a means of producing high-quality images on mobile devices, where energy-

efficiency is a concern. The use of acceleration structures to increase rendering speeds by 

reducing the number of ray-triangle intersection tests is a necessary extension to ray 

tracing. However, improved speed could also mean increased energy consumption. 

Research by Barr and Asanovic [2003] reported that a memory access on the CPU uses 

200 times the power of a single computation. Thus, formatting the data into an 

acceleration structure, and accessing it from textures on the GPU, may result in 

unexpected levels of energy-consumption. We compare the energy-efficiency of uniform 

grids, Kd-Trees, and bounding volume hierarchies in CPU-based and GPU-based ray 

tracing systems implemented on a laptop computer. With the growing number of 

graphics-intensive resource-limited mobile devices in use today, an energy-efficient 

rendering engine will have widespread impact. 
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1.2 Organization of the Thesis 

An understanding of the graphics processing unit, the different stages of the fixed-

function and programmable pipelines, and the limitations imposed by the GPU are 

beneficial to understanding the approach we have taken. Chapter 2 describes the graphics 

processing unit along with the necessary features that enable it as a processor for ray 

tracing.  

Ray tracing is a complex rendering algorithm to understand. Chapter 3 covers the 

basics of ray tracing, along with how it is performed on the CPU and the changes that 

must be made to implement it on the GPU. As mentioned, ray tracing was formerly an 

off-line rendering process and considered a very time-consuming algorithm, however, 

several acceleration structures were designed to make ray tracing faster. Among the 

structures that have been designed, the uniform grid, Kd-Tree, and bounding volume 

hierarchy are among the most common, and for this reason we have chosen to measure 

the energy-efficiency of these structures. The CPU and GPU-based implementations of 

these structures are described in Chapter 4.  

Chapter 5 covers the scenes chosen to be included in the testing, along with the 

interface that enabled us to query the drain rate of the battery, and the steps taken to 

ensure that the results were not distorted by other processes running on the test machine. 

The results obtained from these tests and how they are applied to various mobile devices 

is presented in Chapter 6. Finally, Chapter 7 summarizes the conclusions that can be 

drawn from our results and suggests future work in the area of energy-efficient ray 

tracing.  
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2 Graphics Processing Units 

 A graphics processing unit (GPU) is the hardware behind a display device that 

physically controls the image that is being displayed. In an early form, the GPU was only 

capable of controlling pixel color, a process sometimes referred to as 2D rasterization or 

vector graphics. The enabling of pixels has to happen very quickly, and to do so, the GPU 

is based on a parallel architecture that can process many pixels at the same time. Early 

work on the GPU focused on scientific visualizations [SGI 2004], but as popularity grew 

and complex game development began, the GPU was enabled with 3D acceleration with 

the release of OpenGL 2.0 [SGI ARB 2004]. This allowed software to send groups of 

vertices to the GPU which would be positioned as points, lines, or triangles in a virtual 

three-dimensional space, and then projected onto the screen, coloring the appropriate 

pixels. Soon after, support for textures and lighting was added. This level of functionality 

became known as the fixed-function pipeline. Many graphics effects which make simple 

geometry appear much more complex can be implemented with the fixed-function 

pipeline using preprocessed textures. However, the desire for greater control over the 

processes performed in the GPU led way to the programmable pipeline. 

2.1 Fixed-Function Pipeline 

Although any graphics card can be considered to be a fixed-function pipeline, the 

most common pipeline used for gaming or advanced rendering techniques will have 3D 

acceleration. This allows an application to specify geometry with three-dimensional 

vertices to be rendered on the screen. The fixed-function pipeline (Figure 2-1) is a way of 

describing the general path that vertices follow as they travel through the graphics 

hardware and become colored pixels on the screen [Wright and Lipchak 2005]. 

Geometry data, including vertex positions, normals, colors, and texture 

coordinates, among other attributes, are transferred as arrays from the application into the 

GPU as geometry data. In this first stage, all the attributes arrays are broken apart and 

each vertex, along with its corresponding attribute data, is gathered together and sent 

along the pipeline. The next stage is referred to as the Transform & Lighting stage. It can 

be imagined that at this stage the vertices are positioned (transformed) into camera space 
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based on their XYZ coordinates. The vertices’ material properties and orientation relative 

to lights in the scene are used to calculate the color of the geometry at each vertex. These 

color values, along with texture coordinates and other attributes are then interpolated 

along the edges of the geometry as the vertices are assembled into primitives in the third 

stage. The primitives that can be rendered using the fixed-function pipeline are points, 

lines, triangles, and polygons. At this same stage, the primitives are put into context with 

the camera position, and those primitives that are not in view of the camera are culled.  

 

 

Figure 2-1: The fixed-function pipeline 

 

Those primitives that are in view get projected (mapped) onto the viewing plane. 

Fragment Rasterization uses depth information of the projected primitives to identify the 

front-most primitive to the camera. Unless special depth settings are configured, 

primitives that are occluded from view by other primitives are not drawn. The pixels that 

will display a particular primitive are collectively referred to as a fragment. Now that a 

fragment is mapped to each visible primitive, the texture coordinates and other 

interpolated data are used for Fragment Coloring. Among other techniques, sampling 

textures, alpha blending, and stenciling can be used to produce the final pixel colors to be 

displayed on the screen. The color of each pixel is then copied into the frame Buffer, 

which is the output of the fixed-function pipeline, and displayed on the screen. 
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2.2 Programmable Pipeline 

The programmable pipeline is similar to the fixed-function pipeline shown in 

Figure 2-1, but programmability is introduced into the Transform & Lighting and 

Fragment Coloring stages. At each of these stages, the programmer has the option to take 

advantage of the programmability or can default to using the standard fixed-function 

operations. The first of the two new stages is the Vertex Shader, which replaces the 

Transform & Lighting stage. The second area of programmability replaces the Fragment 

Coloring stage, and is referred to as the Fragment Shader (or Pixel Shader). Since the 

GPU is designed for displaying pixels, the Fragment Shader has a lot more processing 

power than the Vertex Shader. The nVidia GeForce GO 7800 used for these experiments 

has 24 fragment shader processors, compared to only 8 vertex shader processors. 

 The pieces of code that get loaded into the Vertex Shader and Fragment Shader on 

the GPU are called shaders. Since the GPU is a parallel architecture, a shader will 

actually be executed on many vertices or pixels simultaneously. The flexibility of these 

shaders has enabled many new rendering effects and has opened the doors for a new field 

of research called GPGPU, which is general purpose computation on the GPU 

[www.gpgpu.org]. This area focuses on taking advantage of the GPU’s highly parallel 

architecture to perform calculations that do not involve triangle vertex processing in the 

manner in which the GPU was intended; such areas include financial calculations, signal 

processing, database querying, and image processing. The GPU is designed to process 

triangles and produce what is known as raster graphics by rasterizing triangles to the 

screen. Ray tracing on the GPU does not render images in this manner; for this reason, it 

is categorized under GPGPU. The triangle vertices are encoded in texture memory and 

the shaders are written to interpret the texture data as triangles; the shaders could be 

modified to interpret the data as spheres or other parametric surfaces to be ray traced on 

the GPU.  

2.2.1 Vertex Shaders 

The Vertex Shader (VS) replaces the Transform & Lighting section of the fixed-

function pipeline and thus controls the method in which vertices are projected into 

camera space. Having control over this stage allows a programmer to algorithmically 
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relocate the vertices and can even decide which vertices should be visible in the final 

image. Additionally, it is possible to calculate vertex colors, normals, and texture 

coordinates among other values to be used throughout the remainder of the pipeline. 

Aside from the vertex attributes, the application can update variables between frames and 

send them into the VS as uniforms. A uniform variable is one that remains the same for 

all the vertices rendered in a given frame. Because the programmer has control over the 

use of each vertex attribute and uniform value, they can be used to send other data into 

the VS.  

In our implementation of the GPU-based ray tracer, the fixed function pipeline is 

used in place of a programmable vertex shader. The only actual vertices that are rendered 

in the application correspond to two triangles that form a screen-aligned quad (a square 

that covers the whole window). Ray tracing is implemented in the fragment shaders to 

generate the image that is displayed on this square. Once the ray traced image is rendered 

to a texture, it can then be applied to a non-screen-aligned quad, as shown in Figure 2-2. 

 

 

Figure 2-2: Ray traced image on a non-screen-aligned quad 

 

2.2.2 Fragment Shaders 

The Fragment Shader (FS) replaces the Fragment Coloring section of the fixed-

function pipeline. The input to the FS comes from the output of the VS which are 

interpolated based on the position of the pixel on the fragment. Similar to the VS, input 

can also come from uniform variables passed in by the application. In addition to the 

uniforms, however, the FS can also get information via textures that are loaded into 
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texture memory. The output of the FS is either no color, or a set of one or more colors. 

The Fragment Shader is allowed to discard pixels, which means that a color will not be 

output for that pixel; this is particularly useful for GPGPU applications. Normally, the FS 

will output one or more colors which will be written to a render target. The render targets 

can include the back buffer (frame buffer), which will be displayed on the screen, or 

renderable textures, which can be used as input to other shaders. 

 The GPU-based ray tracer is implemented entirely using fragment shaders, with 

some minor control flow performed by the CPU. The details of the implementation are 

described in Section 3.3. Necessary textures (such as those containing the vertex 

information) are also constructed on the CPU. With the exception of the final fragment 

shader which calculates the final color of the pixel, all of the shaders have multiple output 

values that are written to renderable textures. The implementation of the renderable 

textures is based on frame buffer objects which are described in Section 2.3. 

2.2.3 Limitations 

The GPU currently has several technical limitations that have to be dealt with in 

implementing ray tracing. Although the GPU allows for conditional statements, looping, 

and claims to support infinite length shaders, there are still limitations in these regards. 

The most prominent limitation imposed by the GPU is the number of loops that can be 

performed in a single execution of the shader. A loop is only allowed to iterate 256 times 

before it is forced to stop. To get around this limit, Thrane and Simonsen [2005] suggest 

nesting the loop inside of a loop with the exact same conditions, thus forcing the inner 

loop to execute again. They claim that this will allow the loop to iterate 162  times, 

however we found that the outer loop was only executed ten times, allowing 2560 

iterations in a single pass. This discrepancy could be due to the use of different hardware 

and different drivers. We believe it to be the result of the shader compiler attempting to 

unroll the loops in hopes of optimizing the resulting code, but perhaps due to memory 

constraints, only a fixed number of loops can be unrolled. This is only speculation 

however, and we have been unsuccessful in finding support for the reason behind this 

limitation. Although iterating 2560 times was sufficient for some tests, in some cases the 

limitation prevented rays from fully traversing the acceleration structure. It is possible to 
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work around this issue by saving some state information, and using occlusion queries to 

determine whether or not the shader should be executed again [Purcell et al 2002]. 

Another GPU limitation that is worth noting is the maximum size of texture width 

and height. This limit is based on the hardware being used and is set at 4096x4096 for the 

nVidia GeForce GO 7800. This limitation is important because the geometry’s vertex 

data is transferred to the GPU using textures. The implication of this maximum size with 

regards to ray tracing is that a limit exists on the number of triangles that can be handled, 

and the size of the acceleration structures. We did not experience any issues caused by 

this limitation, but it exists and could be an issue if we attempted to ray trace more 

detailed or larger scenes.  

2.2.4 The Future 

Available as part of the recently released DirectX 10 specification is another 

section of programmability called the Geometry Shader which resides after the Primitive 

Assembly stage, but before the Fragment Shader. Programs written for this section of the 

pipeline have control over entire pieces of geometry including lines, triangle strips, fans, 

and the connecting vertices. The ability to generate new geometry or to remove pieces of 

geometry allow for a wide variety of new techniques on the GPU. 

2.3 Framebuffer Objects 

The framebuffer object (FBO) was approved by ARB Working Group on January 

31, 2005 [EXT_framebuffer_object 2005] as an extension to OpenGL version 1.1. It 

manipulates off-screen memory that provides a means of rendering to a texture that can 

then be used as input to another shader pass. Previously, an implementation using pixel 

buffers (pbuffers [ARB_pixel_buffer_object 2004]) was used, but requires that the pixels 

be copied from the framebuffer into texture memory using calls in the application. This 

texture copying was a very slow process, but using FBOs the output from one pass may 

be written directly to texture memory, allowing the data to quickly become the input of 

another pass. FBOs can also be generated on the CPU and filled with data from a one-

dimensional array of float values. This provides us with a single interface for writing 
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acceleration structure and geometry data to texture memory and transferring data between 

shader passes. 

FBOs also allow the use of non-power-of-two textures, which is important in 

being able to minimize texture memory consumption which may be limited on mobile 

devices. A power-of-two texture requires that the dimension along the X and Y 

dimension be powers of two; in a non-power-of-two texture, these dimensions can be any 

positive integer. In both cases, there is a limit on the maximum size that the texture may 

be and the texture must be at least rectangular, if not square. Figure 2-3 portrays how a 

power-of-two-texture requires additional unused data (shown in grey) to be inserted to 

pad the texture over a non-power-of-two texture. The padding that is performed on the 

non-power-of-two texture is done to ensure that the texture is rectangular.  

 

 

Figure 2-3: The difference in unused data (grey) between a non-power-of-two texture (left) and a 

power-of-two texture (right).  
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3 Ray Tracing 

Ray tracing is a physically-based rendering technique that can produce 

photorealistic images by simulating the way light moves around a scene and is interpreted 

by the eye. It involves casting rays out from a virtual camera and tracing them through a 

scene to determine the image that the camera sees based on the materials and textures of 

the objects in view. Ray tracing can be extended with photon mapping to incorporate 

indirect lighting, atmospheric effects, soft shadows, and caustics. Other rasterization 

techniques exist that attempt to make these types of effects appear real, but usually they 

are approximations at best, or otherwise may be an artist’s hand-painted texture that 

represents how they expect the shadow or caustic to appear.  

Behind ray tracing are mathematical equations describing how light reflects off of 

surfaces and determining if a ray intersects with the objects in the scene. There are a 

relatively small number of steps that need to be utilized to perform ray tracing, and every 

ray has to perform these steps many times. Since the processing of each ray is almost 

identical, this rendering technique can be easily mapped from the CPU to the GPU, which 

has an advantageous parallel architecture. 

3.1 Basic Ray Tracing 

Ray tracing is similar to looking through a screened window and seeing the world 

on the other side. In real life, the light is emitted from the sun, bounces off all the objects 

outside, comes through the many holes in the screened window, and into your eye. The 

opposite processes, of looking from your eye through each of the holes in the screened 

window at all the sunlight bouncing from one object to another, is like ray tracing. The 

difference of course, is that the sunlight and the objects on the other side of the screen (or 

computer monitor instead of window) are just geometric, mathematical shapes. The 

origin of the rays can still be thought of as being your eye, but it can also be referred to as 

a camera, and instead of looking through each hole in the screened window, a ray is sent 

through each pixel of the monitor. The monitor becomes your window into a virtual 

world.  
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The rays that originate from the camera are called primary rays. As these primary 

rays travel through the pixels and into the scene, there are many objects that they could 

intersect. The color of a particular pixel is determined by the material properties of the 

closest object that a ray hits through that pixel. These material properties do not just 

include color, but can also describe the roughness, reflectivity, and translucence of the 

object. Based on these values, secondary rays may be spawned into the scene. These 

secondary rays determine the colors that might be reflected off of the intersected object, 

or that might be visible through the object if it is transparent. Similarly, the reflected 

object or background object could have material properties that cause it to be reflective or 

transparent, and thus more rays can be spawned. Additionally, at each of these ray-object 

intersections, the object may or may not be in shadow based on the location of emissive 

objects (i.e. objects which emit light) and other objects in the scene. To determine if it is 

in shadow, shadow rays are spawned in the direction of the lights and are solely used to 

identify if there is something obscuring the object from the light source.  

 

 

Figure 3-1: Primary, reflected, refracted, and shadow rays 

 

 Figure 3-1 visualizes the different types of rays that are used while ray tracing. 

The primary ray is labeled ‘P’ and is colored red, reflection rays ‘R’ are colored green, 
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translucence rays ‘T’ (also referred to as refraction rays) are blue, and shadow rays are 

labeled ‘S’. Each of the labels also has a subscript that indicates in what order each of the 

different types of rays is generated. Based on these numbers, the primary ray intersects 

with the center object (producing four secondary rays), the ‘T1’ ray then intersects with a 

ball which produces three ternary rays. Since the ‘R2’ ray does not intersect with 

anything, the intersection caused by the ‘R1’ ray is explored, which produces another 

four ternary rays. Neither ‘R3’ nor ‘T2’ intersect with objects, so shading for primary ray 

‘P’ is complete. From this primary ray, a total of eleven other rays were spawned. The 

exponential growth in the number of rays spawned with each subsequent object hit 

demonstrates why ray tracing has been previously considered an off-line or preprocessed 

rendering technique. 

 To simplify the necessary calculations to determine a ray-object intersection, only 

triangles are supported in our implementation. We have implemented the ray-triangle 

intersection algorithm described by Moller and Trumbore [1997]. This algorithm can be 

ported for use on the GPU, taking advantage of the vector math, as shown by Thrane and 

Simonsen [2005]. Pseudocode for the algorithm is shown in Figure 3-2. In a naïve 

approach to ray tracing, the intersection algorithm will test every ray against every 

triangle in the scene. Due to the number of rays that can be spawned in a scene, this naïve 

approach can result in the ray-triangle intersection algorithm being performed millions of 

times for a relatively simple scene. Acceleration structures were designed to reduce the 

total number of ray-triangle intersections that must be performed by grouping triangles 

together into a bounding region. The computations to traverse a ray through these 

bounding regions are less complicated than the ray-triangle intersection algorithm, which 

computes several expensive dot products and cross products in both the CPU and GPU-

based implementations. 



 15 

 

Figure 3-2: Pseudocode of the ray-triangle intersection algorithm based on Thrane and Simonsen 

[2005] 

 

3.2 CPU-Based Ray Tracing 

The flexible design of CPUs is very advantageous for ray tracing. There are many 

rays traveling in different directions through the scene and additional rays may be 

spawned at any object intersection point. The CPU can handle this complexity because it 

allows for conditional branching, looping, recursion, and the use of complex data 

structures. 

A ray tracer that supports reflections and refractions usually uses a recursive 

algorithm that traces rays over a fixed number of bounces. A bounce would be considered 

any time a new ray must be spawned due to an intersection with an object that has 

material properties that suggest that light would be reflected or refracted. The recursive 

portion of ray tracing pertains to the shading of rays. Figure 3-3 shows the standard 

recursive nature of the shade function. In order to return the color that is seen along a ray 

through a pixel (assuming a positive intersection with the scene), the color that is 
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reflected and refracted off the object must be found. In order to find those colors, 

however, other objects may be similarly reflected and refracted. The higher recursion 

level (or the number of bounces) of the primary ray, the more reflections and refractions 

will be calculated for each primary ray. We followed the CPU-based implementation of 

ray tracing described by Hill [2001].  

 

 
Figure 3-3: Pseudocode of standard recursive shade function 

 

 Shadows are also rendered as part of this algorithm. Although they do not rely on 

recursion, they require additional rays to be spawned for each intersection in the direction 

of each light to determine if another object obstructs the light from reaching the 

intersection point. For example, if half of the lights in the scene are obstructed, then the 

point is shaded with 50% of the color that it would have received. The CPU allows for 

easy creation and tracing of these additional rays, as well as adding or removing them 

from the algorithm. 
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In Figure 3-3, the IntersectWithScene function would be implemented as either 

the naïve approach or with an acceleration structure’s traversal algorithm. Traversal 

algorithms that are based on a tree or hierarchical structure (in their most conventional 

implementation) take advantage of the CPU’s flexibility with a data structure called a 

stack, which is currently not available on the GPU. The stack provides a place to set aside 

data that will need to be used in the future. When something needs to be stored, it is 

placed (pushed) onto the top of the stack, and when it needs to be used it is removed 

(popped) from the top of the stack. Accessed in this manner, the first data pushed onto the 

stack is the last data popped from it; likewise, the most recent data pushed onto the stack 

will be returned when data is popped from the stack. 

3.3 GPU-Based Ray Tracing 

As was mentioned in Chapter 2, the GPU is designed to process many pixels 

simultaneously. Typically rendering pixels only requires mathematical calculations and 

does not involve branching or iterating through loops. The fixed-function pipeline had no 

support for such instructions, but soon after the programmable pipeline was introduced, 

conditional statements and loops were added to the instruction set. Unfortunately these 

instructions are much slower than performing mathematical calculations. The GPU is also 

limited in the number of nested conditional statements and the number of iterations of a 

loop that can be performed in a single execution of a shader. Due to the memory 

complexity that is caused by support for recursion, recursive function calls are also not 

available on the GPU.  

Although the instruction set on the GPU limits the number of loops that can be 

performed and does not allow for recursive calls, like those used to shade the rays on the 

CPU, ray tracing can still be performed using alternative approaches. Although 

reflections, refractions, and shadows are possible using the GPU (Figure 3-4 shows two 

screenshots from a version of our GPU-based ray tracer with shadows enabled), ray 

tracing without these additional rays removes the need for complicated switching 

between the CPU and GPU and removes the need for recursion. These effects were not 

used while generating results for this thesis.  
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Figure 3-4: Screenshots from our GPU-based ray tracer with shadows enabled, as is most clearly 

evident above the back leg on the right image. 

 

Purcell et al [2002] proposed the original organization for a GPU-based ray tracer; 

and did so before the programmable pipeline was even available in graphics hardware. 

The proposal executed fragment shaders on a screen-aligned quad so that the shader 

would be executed for every pixel in the viewport. This naturally leads to using one ray 

per pixel and the shaders could be written to handle one ray at a time.  

They assume that loops would not be available in the instruction set, and provides 

a solution to work around this limitation. For each pixel, the fragment shader may either 

output a color value, or discard the pixel and output nothing. The application can perform 

an occlusion query to get the number of pixels for which a color value was output. The 

result of this occlusion query is automatically returned to the application on the CPU, 

which, based on the result, can choose which of the shaders to execute next. In this 

manner, the CPU is given the task of looping for the GPU.  

There are four fragment shaders used in the proposed approach, each represented 

by a box in Figure 3-5; the arrows on the right side indicate the loops that the CPU 

controls. The first fragment shader uses the camera location and orientation to generate 

the primary rays that will intersect with the scene. Purcell et al [2002] assumes the use of 

a uniform grid as an acceleration structure, but the proposed approach is flexible enough 

to work with any acceleration structure. The second fragment shader traverses the ray 

through the acceleration structure one step at a time. The CPU loops this shader until all 

the rays either traverse through the structure or enter a voxel that contains triangles.  The 

CPU then executes a shader that performs a ray-triangle intersection test for each ray. 

This is executed until all the rays either intersect or miss the triangles in the current voxel. 

If there are rays that failed the triangle intersection tests, then the traverser is executed 
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again until the rays enter another voxel containing geometry. This pair of shaders is 

continually looped by the CPU until all rays have either traversed through the 

acceleration structure, or have a positive intersection with a triangle. At this time, the 

fourth and final shader is executed which colors the pixel and, if necessary, generates 

reflection, refraction, and shadow rays, which can then be sent back through the traversal 

and intersection shaders. The proposed approach has full support for the spawned rays 

that generate the images achieved with ray tracing. Since the CPU performs all the 

looping, the reflections and refractions can be calculated as many times as desired. 

 

 

Figure 3-5: GPU-based ray tracer proposed by Purcell et al [2002] (left)  

and improved version by Thrane & Simonsen [2005] (right). 

 

The approach we followed is based on Thrane and Simonsen [2005] which 

improved upon Purcell et al [2002] after the inclusion of loops in the shader instruction 

set (Figure 3-5). In their implementation, the traversal and intersection fragment shaders 

are combined into a single shader. The reason for the combination is that the traversal of 

a ray through the acceleration structure is very much tied to performing the ray-triangle 

intersection test on the triangles contained within the voxels of the acceleration structure. 
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By combining the two shaders, traversal and intersection can happen as needed until the 

ray has finished traversing.  

The use of occlusion queries is still needed however, because the number of loops 

that can be performed in a shader is limited. The actual number that can be performed 

depends on the hardware being used and the version of the driver. In our case, a single 

loop could be executed 256 times, but by nesting the loop inside a loop with the same 

constraints, the inner loop can be executed a total of 2560 times. When this limit is 

reached, the shader exits the loop and continues processing the shader. In the case that a 

loop is unable to complete in that execution of the shader, data is written out to 

framebuffer objects and the CPU uses the result of an occlusion query to determine if the 

shader should be executed again.  

The data shown on the left side of Figure 3-5 (including the voxel data, triangle 

lists, normals, and materials) need to be transferred from the CPU to the GPU through the 

use of textures. In order to put the data into texture memory, it must first be aligned in a 

one-dimensional array. A texture must then be created with a pixel format that uses 

between one (R) and four (RGBA) components. In the case of the voxel, triangle, and 

material data, all four components are used. Only three components are needed for 

loading the triangle normals. Figure 3-6 visualizes how the one-dimensional data is 

unpacked to fit the data into texels. Every four consecutive values in the array are 

mapped to the RGBA components respectively. The four components in the texel can 

then be retrieved at one time in the shader by sampling the texture. 

  

 

Figure 3-6: The data transformation from a float array (left) to texture memory (right) 
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While deciding on a texture representation to use for storing the triangle vertices, 

we had to consider the number of triangles that should be supported in a scene. The most 

common method of representing the triangle vertices uses two textures. The first stores 

the XYZ coordinates of the vertex into the RGB components of the texel respectively. 

Since the hardware and driver impose a maximum texture width and height of 4096, this 

implementation allows for 16,777,216 vertices to be supported by the scene. A second 

texture contains the triangle data, such that the RGB components of the texture each 

contain an index to the corresponding vertex of the triangle. Sampling of the vertex data 

is performed using the Xcoord and Ycoord that result from Equation 3-1. This equation 

must be solved for each of the three vertices. Storing the data in this manner, 16,777,216 

triangles can be supported. We have devised an alternative approach, which uses three 

textures with corresponding texels containing the vertices pertaining to a single triangle. 

Organized in this manner, a single index can be used to retrieve all three vertices of a 

triangle (using Equation 3-1 to get the texture coordinates to sample from). Our 

representation also allows for 16,777,216 triangles, however for triangles that share a 

vertex, the vertex coordinates must be duplicated. We believe the cost of loading the 

additional texture is offset by the reduced number of modulus calculations that must be 

performed for each triangle that is accessed in the execution of the traversal/intersection 

shader. Additionally, there is one less texture access because a level of indirection has 

been removed. If all 16,777,216 triangles are accessed one time, our approach reduces 

complexity by 16,777,216 texture accesses, and 50,331,648 modulus, division, and 

multiplication calculations (based on each of the three calculations appearing once in 

Equation 3-1 and the equation only being performed once per triangle rather than four 

times).  
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Equation 3-1: Indexing and sampling into texture memory using the vertex index. This equation 

assumes a maximum renderable texture size of 4096 and use of integer texture coordinates. 

 

For each of the triangles that are accessed, a ray-triangle intersection test is 

performed. Aside from the three texture accesses that are needed to obtain triangle vertex 
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information, twenty-seven additional GPU operations are needed (based on the ASM 

instruction count). The intersection implementation is based on Thrane and Simonsen 

[2005] which had improved upon the algorithm in Moller and Trumbore [1997] by taking 

advantage of the vector math available on the GPU. This test is uniform across all the 

acceleration structures, as it operates strictly on triangle vertices and is independent of the 

structures’ traversal and geometry partitioning schemes.  
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4 Acceleration Structures 

Acceleration structures are a means of dividing up a scene in order to simplify 

accessing of the geometry when it is needed for computations. These structures are used 

in ray tracing to reduce the number of ray-triangle intersections at the expense of 

additional build and traversal costs. The general concept is to group a set of spatially 

close triangles within a bounding region that has a simple intersection algorithm. 

Calculating if the ray intersects with this bounding region can quickly eliminate the need 

to perform intersections with each of the contained triangles. Each acceleration structure 

has a different method of partitioning the scene into such bounding regions. There are 

three categories of acceleration structure: those that partition the volume of space 

occupied by the scene, those that partition the geometry specifically, and hybrid 

approaches that partition both the geometry and the volume.  Often times, the layout of 

the scene will be used to guide a partition of the spatial volume. 

Some acceleration structures are well suited for dynamic scenes (those in which 

the geometry is moving over time) and can be updated quickly at runtime based on the 

motions. Other structures are built as a preprocessing step and are better suited for static 

scenes. In this thesis, the focus will be on static scenes which will not require updates to 

the acceleration structure. This limitation does not prevent the camera from moving about 

the scene, but applies strictly to the motion and deformation of the geometry.  

All of the acceleration structures take advantage of a ray-bounding box 

intersection algorithm (Figure 4-1) for different purposes. The uniform grid and Kd-Tree 

use the algorithm to determine if a ray enters the region containing the scene or misses it 

completely; the BVH uses this algorithm throughout traversal. We have implemented a 

ray-bounding box intersection algorithm introduced by Woo [1990] and written for use 

on the GPU by Thrane and Simonsen [2005]. 
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Figure 4-1: Pseudocode of the ray-bounding box intersection algorithm based on Thrane and 

Simonsen [2005] 

 

4.1 Uniform Grid 

The uniform grid is a volume partitioning structure; it was originally implemented 

by Fujimoto et al [1986]. This structure is based on the bounding box of the objects in the 

scene and simply divides each axis into equal-length segments. Traversal of the structure 

is almost as easy as counting the segments along each axis until the position of the ray is 

found. The uniform grid is the most commonly used acceleration structure because the 

cell and ray positions can be easily calculated. Because it evenly divides the volume of 

the geometry, ray tracing with the uniform grid usually provides consistent frame rates 

and there are rarely cases of unexpected performance.  

4.1.1 Construction 

As the geometry is loaded into memory, the minimum and maximum extents are 

tracked and used to determine the bounding box of the scene. The length of the bounding 

box along each axis is then equally divided into a predetermined number of segments. 

The smaller bounding boxes formed by the length of these segments along each axis is 

called a cell, or voxel. Although the dimensions of the voxels need not be square, [Pharr 

2004] uses square voxels to simplify the traversal algorithm, as suggested by Woo [1992]. 

The optimal number of segments for a scene can vary based on the layout of the 
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geometry. Havran et al [2000] suggested that using 5.0*3
+nd  segments along each 

axis (given n triangles and scene density d) provided a reasonable voxel resolution across 

a wide variety of scenes. Commonly d = 1, which seems logical - given a set of uniformly 

distributed triangles each voxel would then contain a single triangle - however, Havran et 

al [2000] constructed their grid using d = 3 and Pharr and Humphreys [2001] used 3*3 n  

which is similar to using d = 9 in the previous formula. We constructed the uniform grid 

using the formula by Havran et al [2000] with d = 1 to determine the number of voxels, 

and did not force them to be square.  

 

 

Figure 4-2: Three steps of putting geometry into a uniform grid. The right-most image represents the 

bounding box of the triangle. The center image represents determining which voxels are intersected 

by the bounding box. The left-most image represents the voxels which the bounding box intersected 

but the triangle does not (shaded dark blue). 

 

Once the number of segments is determined, the geometry must be organized 

according to the volumetric partition; we followed a similar approach described by 

Bikker [2005]; visualized in Figure 4-2. The bounding box of each triangle is used to 

calculate which voxels the triangle could be in, taking advantage of a method proposed 

by Akenine-Moller [2001]. Once the list of possible voxels is determined, an actual 

triangle-box intersection is performed to identify the final containing voxels. The triangle 

is then stored in a list for each voxel. This also has the implication that a single triangle 

might be inserted into the structure multiple times depending on the number of voxels it 

intersects. For example, each of the four triangles in Figure 4-3 would be replicated for 

each voxel it resides in, resulting in a total of eleven triangles being stored. The impact of 

the repeated triangles can be reduced by adding a level of indirection. It is possible to 
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store each of the triangles once and have each voxel contain a list of triangle indices 

rather than a list of triangles. This is done on the CPU, as each list contains a pointer to 

the triangle instead of a copy of it.  

 

 

Figure 4-3: Uniform grid scene division 

 

 On the CPU, the structure is stored using a three dimensional array of lists, such 

that each voxel has a list of triangles intersecting with that voxel. Equation 4-1 shows 

how the minimum extent of the scene and the voxel dimensions are used to calculate the 

voxel that the ray is in at time t. This calculation is only performed after it has been 

confirmed that the ray actually intersects with the scene’s bounding box. 

  

)/))((( sionsVoxelDimenMinExtenttnRayPositiofloor −  

Equation 4-1:  Calculating voxel index from ray position at time t 

 

4.1.2 Traversal 

The traversal algorithm used on the CPU is based on that presented by 

Amanitides and Woo [1987], which has also been previously implemented on the GPU 

by Karlsson and Ljungstedt [2004], Christen [2005], and Thrane and Simonsen [2005]. 

The first step is to intersect the ray with the bounding box of the scene to determine if the 

ray misses the scene completely and is immediately terminated. If the ray enters the scene, 

the time at which the ray enters and exits the bounding box is computed and used to 

calculate (using Equation 4-1) the first voxel that the ray enters. If the ray enters the 
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uniform grid as it does in Figure 4-4, (for a 2D example) the tMax values are calculated 

by setting the ray position to the blue dividing line (to calculate the value along the X 

axis) and the green line (for the Y axis). The earlier of these two times will indicate 

which direction the ray will traverse. After initially entering the structure (the center 

image), the tMax value along the X axis is less than the Y axis, so the ray traverses in the 

X direction (right image). After traversal, the tMax values are recalculated and once again, 

the ray will step along the X axis.  

 

 

Figure 4-4: Uniform grid traversal starting with the ray entering the structure (left), intersecting 

with the first voxel (center), and traversing to the second voxel (right) 

 

 Special situations arise when the ray is traveling directly parallel with one of the 

axes, since the tMax value cannot be calculated under such conditions. Another special 

case is when the ray intersects with a corner of the voxel and could logically traverse into 

any of the touching voxels. In our implementation, the ray is traversed along each of the 

intersecting axes into the voxel that is further along the ray, avoiding the intermediate 

touching voxels.  

4.1.3 GPU Implementation 

There is little difference between the CPU and GPU implementations of the 

uniform grid. Although the traversal algorithm is the same, the data representation of the 

grid must change so that it can be accessed through textures. Uniform data types are used 

to transfer the extents of the uniform grid to the GPU, along with the number of voxels 

that exist along each axis, and the length of the edges of those voxels. This is all the 

information that is required to describe and traverse the uniform grid, with the exception 

of the location of the geometry. Purcell et al [2001] and Thrane & Simonsen [2005] chose 
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to represent the geometry data organized within a uniform grid using a total of five 

textures. Our approach is similar to theirs in the use of three textures to store the vertex 

data of each triangle, as described in Section 3.3. Thrane and Simonsen [2005] used two 

additional textures – one which contains a single index for each voxel of the uniform grid 

which is used to control access into the second texture, which contains a list of triangle 

indices (into the three triangle vertex textures) for each triangle that is contained in the 

corresponding voxel of the uniform grid. This approach avoids the need to repeat 

triangles that span multiple voxels. Our approach removes a level of indirection at the 

expense of having to store a triangle once for each voxel which it intersects. Our 

representation of the uniform grid stores two values per texel for each voxel of the 

uniform grid. These values correspond to the number of triangles contained in the voxel, 

and an index into the triangle vertex textures indicating the first triangle to perform the 

intersection test with. The grid texture is arranged such that there is one texel for each of 

the voxels in the uniform grid. The texture is formatted with the voxels along the X axis 

stored first, followed by each of the rows in the bottom layer, with each successive layer 

appended onto the texture. Sampling of this texture uses the Xcoord and Ycoord values 

from Equation 4-2 as texture coordinates.  
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Equation 4-2: Indexing and sampling into texture memory based on a three dimensional array. This 

equation assumes a max renderable texture size of 4096 and use of integer texture coordinates. 

 

Traversal of the uniform grid on the GPU is performed in the same manner as on 

the CPU. As previously mentioned however, the limitation on the number of loops that 

can be performed on the GPU require some data to be stored so that the traversal shader 

is able to continue where it was when it reached the loop limit. Eight values need to be 

stored for each ray being processed (in addition to those that would normally be output 

containing intersection information), thus requiring two additional FBOs (Figure 4-5). 

The first stores the tMax values along each axis and a flag indicating whether the ray has 

finished traversing, is entering the acceleration structure for the first time (initial state), or 
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is either traversing or intersecting. If the ray is entering the structure, its initial voxel is 

calculated using Equation 4-1 and the tMax values are seeded. The second set of stored 

values is used if the ray is either traversing or intersecting. These hold the X, Y, and Z 

indices of the voxel containing the ray, along with a flag indicating that the ray is either 

traversing or intersecting (and which triangle the ray was intersecting). 

 

 

Figure 4-5: The two additional FBOs needed to store the state of the uniform grid traversal 

 

4.2 Kd-Tree 

K-dimensional trees (Kd-Trees) are another volume partitioning structure. The 

Kd-Tree also uses the bounding box of the scene as a basis, but then recursively divides 

the bounding box in half along one of the three axes. When a region is created that has 

few or no triangles, that region is no longer divided. In this manner, the volume occupied 

by the scene is divided with preference to dividing more where there is more geometry. 

This avoids the situation that the uniform grid may encounter where a ray is traversing 

through empty space. Havran et al [2000] showed that Kd-Trees are statistically among 

the best acceleration structures based on the number of traversals and intersections that 

are performed. Foley et al [2005] implemented a Kd-Tree based GPU ray tracer and 

reported rendering times up to eight times faster than with a uniform grid. They were 

using an optimized ray tracing engine that reduced memory usage, and they used an 

improved surface area heuristic (based on Havran and Bittner [2002]) to assist in 

constructing a more optimal Kd-Tree. 
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4.2.1 Construction 

Similar to the uniform grid, the scene extents are tracked as the geometry is 

loaded into memory. This volume becomes the root node and is divided along one of the 

three axes at a point referred to as a split position. The split axis and split position are the 

two pieces of data that define each node of the Kd-Tree. By splitting the large volume 

into two smaller volumes, a single node branches into two smaller additional nodes. Each 

of these nodes is called an intermediate node. We used a naïve approach to building the 

Kd-Tree that divides each node into equal halves. The axis to split along is chosen based 

on the depth the tree, such that the root node (the scene’s bounding box) is split along the 

X axis, and each successive depth rotates between the Y, Z, and X axes.  As previously 

mentioned, a node which contains no or few triangles will not be divided. Instead of 

containing a split axis and split position, these leaf nodes will contain a list of triangles 

that are at least partially enclosed within that volume. Pharr and Humphreys [2001] 

suggests that using a maximum of 16 triangles per leaf node will result in an optimal tree; 

however preliminary studies of our test models showed better results using 10 triangles 

per leaf as a maximum. A tree with too many triangles per leaf node can be performance 

bound due to intersection computations, while a tree that is too deep can cause the 

traversal cost to out-weigh the reduced number of triangle intersections. 

Another method of building the Kd-Tree uses a surface area heuristic to help 

determine where and along which axis the volume should be split. This compares the 

surface area of the geometry in each half of the volume and attempts to make the two 

halves contain equal surface area. Parameters can be set that also allow the surface area to 

tend towards creating empty nodes early on, so that fewer calculations are performed 

traversing a ray through empty space. A surface area heuristic was not used in generating 

our results.  

One of the drawbacks to the Kd-Tree is that there is a tendency for many triangles 

to span across the split plane, similar to the repeated triangles that were encountered for 

the uniform grid. In this situation, the triangles are included in the triangle lists for both 

halves of that node. Since the volumes are recursively divided, a spanning triangle may 

be repeated several times.  
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 The Kd-Tree is stored as a tree structure on the CPU, such that each node contains 

two float values (the split axis and split position) and pointers to two additional nodes. 

Figure 4-6 exemplifies the first few divisions in a Kd-Tree construction and how the 

resulting tree may appear. The original bounding box of the model is the root node of the 

tree and each half becomes a child node. Each of the halves is then divided along the Y 

axis to form the 3
rd
 layer of the tree. Unfortunately, tree structures like this cannot be 

directly passed to the GPU, but rather must be passed in the form of textures, so a 

different representation must be used on the GPU. 

 

 

Figure 4-6: The building of a Kd-Tree 

 

4.2.2 Traversal 

The traditional traversal algorithm for a Kd-Tree is a stack-based approach. The 

nodes are pushed onto the stack when calculating a ray’s intersection with the node, and 

are popped off of it to obtain the next node to intersect. All primary rays are tested 

against the scene’s bounding box, and rays that do not intersect it are immediately 

terminated, all other rays will perform a ray-node intersection with the root node. It is 
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important to note that only nodes that are intersected by a ray will be traversed. Nodes 

that will not be intersected are never pushed onto the stack, and thus are never traversed.  

Figure 4-7 shows a diagram of the three types of ray-node intersections that result 

in a traversal of at least one side of the node. The side(s) that will be traversed are based 

on three values that are obtained during the ray-node intersection test. The first value is 

represented as blue arrows in the figure. This value corresponds to the distance, or time, 

that the ray traveled before entering the node, and is often referred to as tMin. The next 

value shown in orange, referred to as tSplit, is the time at which the ray intersects with 

the split plane of the node. The final value, tMax, is the time at which the ray exits the 

node and is shown in green. Comparison of these three values determines which side of 

the node to traverse. If tSplit is the smallest of the three values (A), only the farthest node 

is traversed. If tSplit is the largest of the three values (C), then the closest node is 

traversed. Finally, if tSplit is between tMin and tMax (B), then both nodes are traversed. 

In this case, usually the closest node is traversed first, and the farthest node is pushed 

onto the stack. If a ray-triangle intersection results in a positive hit in the closest node, 

then traversal of the far node can be skipped and the traversal for that ray is finished.  

 

 

Figure 4-7: Three potential traversals of the Kd-Tree. A) The ray only travels through the right node. 

B) The ray travels through both nodes. C) The ray only travels through the left node. 
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Since each node is composed of two smaller nodes and leaf nodes are only 

constructed when there are less than 10 triangles in the node, several traversals must be 

performed in order to identify the leaf node that the ray first intersects. If all triangles in 

the leaf node fail their intersection test, then a node is popped off the stack and node 

traversal continues. If the stack is empty at the time that the node should be popped off, 

then the ray has traversed through the Kd-Tree and terminates as not having intersected a 

triangle.  

4.2.3 GPU Implementation 

The traversal algorithm on the GPU is significantly different from that on the 

CPU. The first limitation is that although data structures are available on the GPU, there 

is no means to directly transfer a complex structure on the CPU to a similar structure on 

the GPU. Small amounts of data can be loaded as uniform data types or large amounts of 

data can be manipulated on the CPU into arrays of float values, which can then be 

transferred to the GPU as a texture. This use of texture memory must be used to represent 

the nodes of the Kd-Tree on the GPU. 

 

 

Figure 4-8: Representations of intermediate (left) and leaf nodes (right) of the Kd-Tree on the GPU 

 

The two types of nodes that get generated during Kd-Tree construction get stored 

differently in the texture, as is shown in Figure 4-8. Since both types of nodes are stored 

in the same texture, there must be a means of distinguishing between texels that represent 

intermediate nodes, and those that represent leaf nodes. This is done using the alpha 

channel (yellow). A positive number indicates that the texel represents a leaf node 
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(shown to the right), and the value of the number indicates the number of triangles that 

exist in that node. The index of these triangles into the triangle vertex textures is 

indicated by the red channel; the green and blue channels remain unused (so the value in 

the channel does not matter). A negative number in the alpha channel indicates that the 

texel represents an intermediate node (shown to the left). The value of the number 

indicates which axis the node is divided along, with -2 being the X axis, -3 being the Y 

axis, and -4 being the Z axis; the split position along this axis is stored in the green 

channel. The indices to the nodes on either side of the split position are encoded both in 

the texel components and in the representation of the tree within the texture. The index to 

the left child is stored in the red channel and the texel representing the right child is 

always stored immediately following the texel for the left child. Using this encoding, the 

index of the right child is always one more than the index to the left child. In our 

implementation, the blue channel is not used. 

In addition to the data representation being different on the GPU, the primary 

mechanism for tree traversal on the CPU, the stack, does not exist on the GPU. Foley and 

Sugerman [2005] present two alternative methods of traversal of a Kd-Tree. The first 

method is referred to as Kd-restart and the second is Kd-backtrack. The Kd-restart 

approach uses the same node intersection algorithm as the CPU, but instead of popping a 

node off the stack, the ray position is incremented in distance (or time), and the traversal 

restarts from the root node again. Since the ray is incremented, the traversal algorithm 

will follow a path into the further node than the ray was previously in, and the traversal 

will continue as necessary. The Kd-backtrack approach also offers an alternative to 

popping off the stack. Instead of restarting the ray from the beginning as in the Kd-restart, 

this algorithm updates the ray’s position until it is out of the current node (and thus inside 

a further node) and stores additional data which allows it to walk back up the tree until a 

node is found that contains the updated ray. If such a node is not found, then the ray has 

traversed out of the tree; if it is found, then traversal down the tree continues as normal. 

The additional data that needs to be stored for the Kd-backtrack algorithm would have 

required a revised construction algorithm (to track indexes to parent nodes) and 

additional textures to be loaded (to transfer the data to the GPU). For these reasons, the 

Kd-restart algorithm was implemented for testing.  
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Figure 4-9: The additional FBO needed to store the state of the Kd-Tree traversal 

 

Similar to the uniform grid, the limitation on the number of loops in the GPU 

affected the rendering of scenes using the Kd-Tree. In order to execute the shader again 

to allow the rays to complete traversal, an FBO was used to store the state information. 

Figure 4-9 shows the texel representation of this information. The first value is used as a 

flag to indicate if the ray is iterating over triangles (a positive number) or traversing the 

tree (-1). If Kd-backtrack had been used, a value (-2) can be used to indicate that the ray 

is walking up the tree. The second value indicates if the ray is finished (-1) or is an index 

into the texture (a positive number) representing the node that contained the ray. The 

final two values contain the tMin and tMax values of the ray. 

4.3 Bounding Volume Hierarchy 

The bounding volume hierarchy (BVH) is one of the few structures that partitions 

the geometry rather than the volume. A bounding region, typically an axis-aligned 

bounding box, is formed around pairs of spatially close triangle bounding boxes and then 

pairs of bounding regions are enclosed in a larger region, as shown in Figure 4-10. By 

dividing the geometry, the BVH ensures that there will be more traversal around highly 

detailed areas of the scene, and that empty regions will be traversed quickly. The Kd-Tree 

and BVH both separate the scene in similar manners, but since the BVH is based on 

dividing the geometry, the internal structure, and thus the traversal, is different. A big 

advantage of the BVH over the Kd-Tree is that there are no repeated triangles, thus a ray 

will never intersect with the same triangle more than once. On the other hand, the 
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organization of the scene, in particular the amount of occlusion that exists between 

triangles, has an impact on the speed at which the BVH can be traversed. However, in a 

comparison of acceleration structures, Thrane and Simonsen [2005] showed that the use 

of a BVH resulted in faster ray tracing on the GPU than the other structures. 

 

 

Figure 4-10: The BVH scene division 

 

4.3.1 Construction 

There are two different approaches that can be taken when building a bounding 

volume hierarchy. The first is a bottom-up approach, which inserts one triangle at a time 

into the tree [Goldsmith and Salmon 1987]. It uses a surface area heuristic and the current 

state of the tree to determine the best location (node) for the given triangle to be placed; 

as such, the order in which triangles are inserted into the tree can have an affect on the 

quality of the tree. The other approach is a top-down approach [Kay and Kajiya 1986], 

where the volume of the scene is divided and, in the process of dividing, bounding 

volumes are formed around the partitioned geometry. The latter of these approaches was 

used for constructing the BVH. 

The division of the scene follows a format similar to the Kd-Tree division 

however triangles that span the split position are only inserted into one of the 

subdivisions. A visualization of this division is shown in Figure 4-11. The vertical split 

on the left divides a single triangle and a group of triangles. Division of a volume 

terminates if one or two triangles are contained within it, so the volume containing the 

single triangle is complete, but the group of triangles must still be divided. This next 
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division is chosen in a round-robin fashion (similar to the Kd-Tree naïve division). The 

horizontal split is performed at the mean of the bounding box extents. Given this split 

position, our implementation uses the relative location of the minimum vertex of the 

triangle to determine which side to place it in. This may result in all the triangles all being 

on one side of the split position, in which case the split-axis is incremented and the 

division repeated at most two more times in the round-robin fashion. If no division results 

in a successful split of the triangles, then they are divided evenly among the two halves. 

 

 

Figure 4-11: The construction of a BVH 

 

If a triangle spans the selected split position, as it does in the figure, the triangle is 

inserted into only one of the two volumes. This has both positive and negative 

implications. On the positive side, this results in a binary tree with no repeated triangles. 

This fact allows us to pre-compute the size of the tree (given N triangles, the tree will 

have 1*2 −N  nodes) and perform memory optimization by pre-allocating all the 

necessary memory for the tree. It would also be possible to identify a worst-case scenario 

for ray tracing the scene. This leads into the negative aspect of not repeating the triangle. 

Due to the configuration of the geometry, bounding volumes may overlap where the 
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triangle spanned the split position. This means that rays that intersect the overlapping 

volumes must traverse through both bounding volumes.  

The data storage needed for an intermediate node of the BVH is only 6 float 

values and two references to child nodes. The float values correspond to the coordinates 

of the min and max points of the axis-aligned-bounding-box. Intermediate nodes are 

constructed until only one or two triangles are in the volume, at which time a leaf node 

containing references to the triangles is constructed.  

4.3.2 Traversal 

Traversing a bounding volume hierarchy on the CPU is a stack-based approach; in 

this manner, it is very similar to the Kd-Tree traversal algorithm. When a ray intersects 

with both child nodes of a node, one child is pushed onto the stack and the other is 

traversed. Traversal of nodes is performed in a recursive manner until the ray reaches a 

leaf node, at which time ray-triangle intersections are performed and then the top node is 

popped off the stack, and traversal continues. The ray is done traversing when there is 

nothing more on the stack to pop.  

The main difference between the Kd-Tree traversal and the BVH lies in the ray-

node intersection test. The main mechanism for the BVH ray-node intersection is a fast 

ray-box intersection test provided by Woo [1990]. This test also provides the time that 

the ray enters and exits the bounding-box. If traversal of one node results in a ray-triangle 

intersection that is closer than the node that is popped off the stack, the ray can stop 

traversing early. Figure 4-12 shows a visual of this situation. The orange ray intersects 

with both bounding boxes. Since the tHit of the left bounding-box (blue line) is earlier 

than the tHit of the right box (green line), the node corresponding to the left bounding-

box is traversed. The maroon ray indicates how far the ray has traveled until it intersects 

with a triangle in the left bounding-box and the black ray indicates how far the ray travels 

before intersecting with the second node. Since the tIntersect with the triangle is closer 

than the tHit represented by the green line, the ray cannot find a closer triangle 

intersection in the right node, and thus the ray can terminate traversal. 
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Figure 4-12: Traversal of a BVH showing that the tHit of the child nodes can be used to determine 

which node to traverse first 

 

4.3.3 GPU Implementation 

Implementing the BVH on the GPU requires overcoming the same two hurdles as 

was presented with the Kd-Tree. A texture-friendly format for the node data and a means 

of traversing the structure without a stack must be identified. Thane and Simonsen [2005] 

present a solution to both of these problems.  

They suggest that the intermediate node data naturally leads to a straightforward 

texture format, such that the minimum extents of the bounding box are stored in one texel 

and the maximum extents in another. The leaf nodes do not contain bounding-box data, 

but instead are just triangles. Instead of using one or two texels to store the index of the 

triangle vertices, Thrane and Simonsen [2005] suggest actually storing the triangle vertex 

data in place of the node data. The basis for this suggestion is that as an index to the node 

data is being incremented, a flag in the texel data can be used to indicate that the data 

contained at that node is actually a triangle. This method of compact encoding removes 

the need for extra textures to store the triangle data and the additional texture accesses to 

gather the data. Two texture accesses need to be performed to get intermediate node data, 

after one of the accesses, a flag is checked to indicate whether the data represents a 

triangle or a node and if the data is a triangle, then one additional texture access is 

performed to get the third vertex of the triangle.  
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Figure 4-13: Texel components used to store intermediate nodes (top) and leaf nodes (bottom) of a 

BVH 

 

Our implementation of the GPU-based ray tracer uses three textures to encode the 

vertex data and so the algorithm was modified slightly to account for this. Figure 4-13 

displays the encoding of the intermediate nodes and leaf nodes of the BVH. For 

intermediate nodes, the RGB components of Texture1 hold the XYZ coordinates of the 

minimum bounding box extent; the A component is a flag indicating that the data pertains 

to a triangle (0) or a bounding-box (1). Texture2 contains the maximum extent and an 

escape index offset that indicates where to go if the ray does not intersect with the 

bounding box. In the case of intermediate nodes, Texture3 is unused. Leaf nodes may 

contain one or two triangles; each triangle is stored in the texture memory such that 

Texture1 has one vertex, Texture2 has a second vertex, and Texture3 has the third vertex. 

The solution to the second hurdle, of traversing the structure without a stack, is 

solved in the encoding of the data into the texture. Thrane and Simonsen [2005] observe 

that all rays traverse the tree in a depth-first, right-to-left order. Since the rays already 

have a fixed-order traversal, this order can be encoded in the storage of the structure in 

texture memory. The only issue is identifying which node the ray must jump to if it fails a 
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ray-box intersection test. The secret here lies in the fact that this is a binary tree and given 

N triangles, a node will have 1*2 −N  children. The escape index offset shown in Figure 

4-13 is simply this value based on the number of triangles in that node. The offset is 

added to the current index to get the index of the next node to traverse. The ray finishes 

traversing when the index is equal to the maximum number of nodes. Figure 4-14 (based 

on a figure from Thrane and Simonsen [2005]) shows a diagram of how this approach 

traverses the acceleration structure. Dotted lines represent the path taken if the ray fails 

the ray-box intersection test and the escape offset is used. 

 

 

Figure 4-14: Short example of the texture organization and traversal order of the GPU-BVH 

(Based on a figure from [Thrane and Simonsen 2005]) 

 

Our original choice to use three textures to store the triangle vertices shows a 

drawback here, in that unused texture memory is consumed. As can be seen in Figure 

4-14, the third texture is packed with unused texels (gray) for each of the intermediate 

nodes to ensure that the vertex data of the triangles remains aligned. The benefit of this 

approach, however, is that scenes with more triangles can be encoded through the use of 

three textures (allowing 8,388,608 triangles) rather than just one (only 3,355,443 

triangles).  
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As with the other acceleration structures, the limitation regarding the number of 

loops that can be performed in a single execution of a shader requires that additional data 

be stored so that traversal can continue on the next execution of the shader. In the case of 

the bounding volume hierarchy, only one value needs to be stored – the index into the 

texture that the ray should continue traversing at (Figure 4-15). Since the node and 

triangle information are stored in the same texture, there is no need to further distinguish 

between traversing nodes and intersecting triangles, and unlike the other acceleration 

structures, the ray is not marching through a volume, so there are no tMin and tMax time 

segments that need to be stored. The current implementation stores the one necessary 

index in the R component of a four-component (RGBA) texture, but this could be 

optimized to hold just one value per texel.   

 

 

Figure 4-15: The additional FBO needed to store the state of the BVH traversal 
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5 Experimental setup 

 The drain rate of the battery can be largely impacted by the system configuration 

on which the measurements are being taken. The results presented in this thesis were 

gathered on a Dell Inspiron E1705 laptop with a duo core Intel T2300 processor 

operating at 1.66 Ghz. The machine has 512 MB of system memory and an NVidia 

GeForce GO 7800 PCI Express x16 graphics card with 256 MB of video memory 

running ForceWare version 83.60. The battery powering the system is a Dell 

Rechargeable Li-ion Battery; type D5318. It has a capacity of 53W and rating of 11.1V. 

The video card was configured with vertical sync on at a 60Hz refresh rate and a power 

setting of ‘maximum power savings’. The graphics card in the laptop was designed for 

mobile devices, so several ‘tricks’ that hardware manufacturers use to reduce energy 

consumption are done on this system. For example, the card is designed to run on lower 

watt signals than desktop graphics cards. These same types of modifications will be 

performed on graphics chips for cell phones and PDAs. Thus, the results achieved should 

be representative of those that would be obtained by executing the code on other mobile 

devices.   

 Other factors that can impact battery drain rate involve the system devices that are 

enabled while measuring energy consumption and the level of activity that those devices 

are performing. As these tests target CPU and GPU based ray tracing, there should be 

little network activity and disk access. The level of activity on the CPU and GPU will be 

affected by the acceleration structures used and the geometry that is being ray traced. 

This thesis aims to identify an energy-efficient acceleration structure, so the choice of 

scenes is important.  

5.1 Scenes 

 Our ray tracing engine only used primary rays while ray tracing the scenes. The 

use of only primary rays is called ray casting, as rays are only cast into the scene and are 

not traced along bounces throughout the scene. This was done intentionally to allow the 

results to be applied more generally. When only sending one ray through each pixel into 

the scene, the number of rays is easily calculated and the per-ray (or per-pixel) costs 
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become more applicable to anti-aliased ray tracing, or to a worst-case estimation if any 

secondary rays are used. However, if secondary rays had been included in the tests, 

geometry layout would have had a much greater impact on the number of rays in the 

scene and the material properties would have to be taken into consideration in 

determining the number of rays that were cast into the scene. The addition of secondary 

rays in the tests would have made the results much more difficult to analyze.  

 One of the difficult aspects of identifying an optimal acceleration structure for ray 

tracing is that the organization of the geometry in the scene can have a big impact on the 

traversal order of an acceleration structure. There have been attempts at creating a 

benchmark set of scenes that stress the weak points of different acceleration structures. 

The most complete set of benchmark scenes comes from the Benchmark for Animated 

Ray Tracing (BART) [Lext et al 2001]. Our ray tracing engine was not optimized for the 

areas that BART stresses, including cache performance, large datasets, and bounding 

volume overlaps. Also, BART uses hierarchical animation to position various parts of the 

geometry, but our engine does not have support for such a hierarchy. Although none of 

the BART scenes are used in these tests, the models and scenes chosen for testing were 

intended to provide various levels of complexity. If a trend exists such that one 

acceleration structure is better than another, it should be evident based on the selection of 

scenes used for these tests. 

 Models and scenes (collectively referred to as scenes) with a range of triangle 

counts were chosen for ray tracing and it is arguable that a better approach would have 

been to use multiple levels of detail of each of the scenes. In accordance with the aims of 

this thesis, an efficient acceleration structure should be consistently efficient across a 

collection of scenes regardless of the level of detail or configuration of the geometry. 

Occasionally we differentiate between models and scenes within the remainder of the 

thesis based on the following distinction: models are a single object (which may contain 

any number of triangles), and scenes contain multiple models. 

 After traversing through any of the structures, a ray will eventually either leave 

the acceleration structure, or will intersect with a triangle. The first scene (Figure 5-1) is 

referred to throughout this thesis as the Single Triangle scene, as it contains only one 
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triangle. This extremely simple scene was intended to compare the acceleration structures 

behavior at the most basic level.  

 

 

Figure 5-1: Single Triangle Model (1 triangle) 

 

 

Figure 5-2: Toy Scene (11,141 triangles) 

 

 The Toy Scene (Figure 5-2) contains 11,141 triangles and is representative of a 

simple, typical scene that may be ray traced. There is a relatively low polygon floor with 

five more-detailed objects (wind-up toys) scattered about. This scene was originally 

introduced at SIGGRAPH 2006 by Wald et al [2006]. The complexity in this scene is 

related to the empty space that exists above the floor and between the toys. For this 

reason it is expected that the uniform grid may result in less efficient ray tracing of this 
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scene than other acceleration structures. There is also a significant amount of overlap in 

this scene as the toys occlude the floor behind them and there is a solid bottom on the 

underneath side of the floor. This may cause the BVH to have some difficulty, as it 

requires that rays fully traverse through the scene before identifying the closest 

intersection to the ray origin.  

 The Small Dragon model (Figure 5-3) is a popular model used in ray tracing due 

to its intricate shape and complex geometry. The Small Dragon is available at several 

levels of detail through The Stanford 3D Scanning Repository [Stanford 3D]; the one 

rendered here is the third most complex, with 47,794 triangles. The configuration of the 

dragon’s body creates many empty regions within the dragon’s bounding volume; for this 

reason, this model may be more difficult to ray trace with the uniform grid than with 

other structures.  

 

 

Figure 5-3: Small Dragon Model (47,794 triangles) 

 

 Another popular model that was included for testing is the Stanford Bunny 

[Stanford 3D], shown in Figure 5-4. The Stanford Bunny is also available through the 

Stanford Repository in multiple levels of detail; here the highly tessellated version with 

69,451 triangles is used. The Stanford Bunny has a fairly even distribution of triangles 

throughout, with slightly more-detailed areas around the eyes and ears. There is not much 

overlap within this model, nor are there very many empty regions. Each acceleration 

structure should be able to ray trace this model without difficulty. 
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Figure 5-4: Stanford Bunny Model (69,451 triangles) 

 

 

Figure 5-5: Complex Scene (98,867 triangles) 

 

 The fifth and final scene (Figure 5-5) included for testing is referred to as the 

Complex Scene throughout this thesis. This scene was intended to create a very difficult 

“teapot-in-a-stadium” situation with highly detailed models towards the center of the 

scene and low detail models towards the outskirts. Located in the center of the scene is a 

69,451-triangle Stanford Bunny that is 1/15
th
 the volume of that shown in Figure 5-4; its 

silhouette is barely visible in the center of the figure. The slightly larger object to the left 

of the Stanford Bunny is a 16,646-triangle antique car which has very complicated 

wheels and a less complex body. The left-most object in the scene is a 604-triangle urn. 
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On the opposite side of the scene from the urn is a 2,880-triangle torus knot. These two 

objects have the lowest polygon count of the five models composing the scene. The last 

model is a 9,286-triangle spider. All together there are 98,967 triangles in the Complex 

Scene. The number of triangles and the inconsistent triangle density throughout this scene 

are likely to make it difficult for all the acceleration structures.  

5.2 Measuring Energy Consumption 

 There are many factors that can affect the energy consumption of a laptop 

including, but not limited to, the monitor, network cards, and hard disk specifications. 

Barr and Asanovic [2003] made a strong case for the negative affects that network 

transmission can have on energy consumption. Pilot tests of energy consumption with the 

wireless LAN card enabled resulted in drastically inconsistent battery drain rates; so 

disabling the wireless network card was identified as an important experimental decision. 

The wired network on the test machine is automatically disabled when running on the 

battery, so that also would not interfere with our data gathering. In regards to disk access, 

some access was required by our ray tracing engine to load the models from file, however 

the energy consumption measurements begin immediately before the scene is rendered. 

The disk accesses for model loading must happen before this time. In attempts to 

minimize other programs access to the disk, tests were run with only our ray tracing 

engine running in the foreground. There may have been background processes or OS 

tasks that start or stop during the testing period which would have affected our results, 

but based on the measured results this is not likely to be the case. Figure 5-6 compares 

the discharge rate between rendering a scene with OpenGL and ray tracing the same 

scene on the GPU. The left-most and right-most data points are samples taken before and 

after the testing to provide insight into the discharge rate of the test machine in an idle 

state. The figure makes it evident that both rendering (using OpenGL) and ray tracing 

(using the GPU) increased the drain rate by nearly 50% of idle rate. In the presence of 

additional processes running on the machine, the discharge rate would have fluctuated 

greatly during sampling. Although there are minor fluctuations in the GPU ray tracing 

measurements in the figure, the consistency of the OpenGL rendering suggests that if any 

background tasks were being executed on the test machine during testing, they were 
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minimal and did not interfere with gathering results. The minor shifts in the GPU ray 

tracing are likely due to changes in the number of traversals that rays had to take as the 

camera rotated around the scene.  
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Figure 5-6: Comparing battery discharge rate of OpenGL rendering to GPU-based ray tracing 

 

 If we had tested larger scenes, there could be a concern for additional energy 

consumption in an occasional memory swap writing data to disk. Such costs would be 

dependent on the amount of memory on the system and the amount of data that had to be 

swapped. If this had occurred however, it would likely be a cost associated with the 

attempts at ray tracing a large dataset and the cost of the memory swap should be 

included in the measurements. 

 According to Intel, powering the pixels on a mobile device can account for 50% 

of the battery consumption [Intel 2002]. In attempts to minimize the impact of this, the 

tests were executed with monitor brightness at its lowest setting. Not only did this enable 

us to confirm consistency across the tests, but it extended the battery life enough to allow 

a greater number of tests to complete on a single charge of the battery. 

Most electronics, the test machine included, have batteries which can quickly 

charge a majority of capacity (90% for example) in a short time and then may take the 
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same amount of time to charge to full capacity (the final 10%). A pilot study showed that 

a similar behavior does not exist on the discharge of the battery, and that the level to 

which the battery was charged at the start of the test did not affect the results obtained. A 

test run at 90% capacity had similar results to the same test run at 30% capacity. 

 The graphics research community has not focused on optimizing rendering 

algorithms for power consumption. Barr and Asanovic [2003] worked towards 

optimizing the energy consumption of data compression, motivated by the energy 

consumed during wireless data transfer. They recognized that significant savings could be 

made by using better encryption to minimize the number of bytes sent over a wireless 

connection. Tscheblockov [2004] used shunts and a multimeter to measure and compare 

the power consumption of various graphics cards from different manufacturers. Their 

tests were performed strictly to compare the consumption of graphics cards in ‘idle’ and 

‘burn’ states. PowerScope is a hardware tool developed by Flinn and Satyanaranan 

[1999] which enables easy power measurements to be performed on mobile devices. A 

similar software-based solution called PowerSpy was proposed by Banerjee and Agu 

[2005] as means to measure how software applications are using various hardware 

devices and the corresponding affects on power usage. 

 These solutions are all limited in various ways that prevented them from being 

useful in our research. We chose to use the Advanced Configuration and Power Interface 

(ACPI) that was developed between Microsoft and several other hardware and software 

manufacturers which exposes, among other information, battery discharge rates in mW. 

The frequency at which ACPI updates energy usage information varies depending on the 

devices and operating system installed. Microsoft Windows exposes the information 

through a function called callNtPowerInformation and updates the battery statistics every 

five seconds, although the information can be sampled more frequently than that. 

Preliminary tests showed that sampling more frequently than twice per second had a 

negative impact on performance. It was decided to sample the battery information once 

per second. The ACPI samples are stored until after the testing is complete at which point 

the information is processed and written to file. This was done to avoid additional 

processing and affecting the battery drain rate while testing.  
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 Given a scene and a screen resolution, a test can be executed using one of the 

three acceleration structures on either the CPU or GPU or the scene can be rendered 

using OpenGL. This results in seven structures that can be tested. The test period lasted 

five minutes, during which time the camera would rotate 1 degree around the object after 

each frame was rendered. Figure 5-7 shows the total energy lost after rendering for the 

five minute duration with each of the acceleration structures. The acceleration structure is 

only built once prior to the start of testing, so the energy consumed during construction is 

not included in the results. Each test was only performed once, but the five minute 

duration should have allowed a sufficient number of frames to render that the average 

energy-cost-per-frame would not be biased in the presence of minor noise in the sampling.  
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Figure 5-7: Comparing total energy lost by each of the seven acceleration structures 

 

 The OpenGL rendering is represented throughout this thesis by a blue dot and 

blue line. The CPU-based acceleration structures are represented by a green square and 

the GPU-based structures are represented by a purple triangle. This is done to assist in 

comparing the CPU to GPU-based implementations. Within each of the processing units, 

an orange line is used to represent the uniform grid, a green line is used for the Kd-Tree, 
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and a blue line is used for the bounding volume hierarchy. In some figures a pink line is 

also used to represent a naïve ray tracing implementation that does not use any 

acceleration structure, which is labeled as ‘BasicAS’. 

 The data represented in Figure 5-7 is incomplete, however, as it does not provide 

any indication as to the number of frames rendered during the five minute period. We 

aimed to identify an acceleration structure that was efficient in terms of energy cost per 

frame, so the number of frames rendered is important. Figure 5-8 presents the total 

number of frames rendered on a logarithmic graph. Although the total energy cost may 

have been relatively consistent across all the structures, the number of frames rendered is 

quite different for each of the acceleration structures. For this reason, the results 

discussed in Chapter 6 are presented from the standpoint of energy per frame. 
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Figure 5-8:  Comparing total number of frames rendered by each structure (logarithmic scale) 
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6 Results and Applicability 

 The results obtained from our tests can be analyzed from several viewpoints. First 

and foremost, the objective is to determine which acceleration structure and processing 

unit results in the least amount of energy loss while rendering a scene. This may be 

dependent on the number of triangles in the scene, the layout of the scene, or the viewport 

resolution. The tests included in this thesis targeted triangle count and viewport 

resolution as primary variables, although a byproduct of changing the number of triangles 

in the scene is that scene layout is also affected. We present the results looking first at the 

energy and time costs of the different structures while ray tracing a given scene and how 

they vary as the viewport resolution increases from 128x128 to 1024x1024. We then look 

at a given resolution and compare how the energy and time costs change with increasing 

triangle counts. These results can then be used to estimate the energy and time costs per 

frame that can be achieved on mobile devices. 

6.1 Results 

These results show how different acceleration structures compare between the two 

processing units and how they change as the viewport resolution increases. Results 

generally show that given a model the energy and time costs are influenced most by 

processing unit, then by viewport resolution, and finally by the acceleration structure 

chosen.  

Since the model rendered is consistent across all screen resolutions, data is 

presented in the form of line graphs. Where specified, the results are normalized against 

the CPU implementation of the uniform grid because the combination is considered the 

simplest ray tracing implementation that makes use of an acceleration structure. 

6.1.1 Ray Tracing a Single Triangle 

As a scene is divided through the construction of an acceleration structure, there 

comes a point when there is only a single triangle left to enclose. Similarly, as a ray is 

traversing an acceleration structure, it is likely to intersect with a triangle. This test model 

was intended to show the efficiency of each structure in the trivial situation of having to 
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accelerate the ray tracing of a single triangle. In the testing of this scene we include the 

use of a naïve ray tracing implementation, where every ray is intersected with the triangle. 

Depending on the acceleration structure, some will perform only the ray-triangle 

intersection test, while others will attempt to cull the ray based on a bounding box 

intersection prior to intersecting with the triangle. The data shows (Figure 6-1) that on the 

CPU, the uniform grid and the Kd-Tree both consume more energy and time than the 

other CPU ray tracing schemes due to this extra intersection test. Unfortunately, these 

results don’t reflect how the acceleration structures will perform every time a ray must 

intersect with a triangle; the reason for this is that some structures, such as the Kd-Tree, 

will create a leaf node that contains several triangles. In this case, there might be an 

overhead cost to intersect with the bounding box, but that cost would be amortized over 

all the triangles in the leaf node. 
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Figure 6-1: Energy cost per frame of ray tracing the Single Triangle 

 

Strictly looking at energy cost per frame, there is a very clear separation between 

the CPU and GPU. For such a simple model, the choice of processing unit is more 

important in terms of energy efficiency than the choice of acceleration structure. At a 

resolution of 128x128 the CPU consumed less energy than the GPU, but at the next tested 

resolution of 256x256 the GPU becomes the more-efficient processing unit. 
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Comparatively, the GPU continues to get better as the screen size increases. At the 

highest resolution of 1024x1024, the acceleration structures on the CPU consumed 

roughly 10 times the amount of energy as their GPU counterpart. On a per-frame basis, 

the energy cost of ray tracing on the CPU at a resolution of 256x256 is comparable to that 

of the GPU at a resolution of 1024x1024. Although the number of rendered pixels has a 

16:1 ratio, the efficiency of the GPU allows the energy cost to be similar and renders 

more frames in the same amount of time. 
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Figure 6-2: Time cost per frame of ray tracing the Single Triangle 

 

Comparing seconds per frame (Figure 6-2) to the energy cost shows that the time 

per frame and energy per frame are directly related. To get a better look at that 

relationship, the ratio of energy per second is presented in Figure 6-3. Although energy 

per second could be a measure of energy efficiency, it should not be used in terms of 

computer graphics because it does not take into consideration the number of frames 

rendered. This measure is strictly being used to compare the relationship between energy 

per frame and seconds per frame. The OpenGL rendering costs ~28 W, while the ray 

tracers range between 36 and 47 W. This separation of 8-19 Watts suggests that ray 

tracing uses more energy than not ray tracing. This finding is not of particular interest as 

the objective is to find the most efficient acceleration structure and processing unit pair. 
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At resolutions of 512x512 and 1024x1024, it is easiest to see that for this scene, the 

BasicAS (the naïve approach to ray tracing) is generally the most efficient structure. 

Since this scene has only one triangle which covers a majority of the screen, this result is 

not surprising, as most acceleration structures will add the ray-box intersection test in 

attempts to cull the ray. If the triangle was small, these results probably would have 

changed slightly and the BasicAS may not have been the most efficient.   
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Figure 6-3: Power expended (in Watts) while ray tracing the Single Triangle 

 

Normalized by the amount of energy consumed per frame against the CPU-

uniform grid, we get better insight into the relative efficiency of the structures on the 

CPU (Figure 6-4). The simple case where every frame attempts to intersect with the 

triangle actually ends up being the most efficient of the CPU-based implementations, 

consuming only 60% of the energy as the uniform grid in the best case. The bounding 

volume hierarchy also reaches the same 60% efficiency, whereas the Kd-Tree is at best 

90%. The reason for this separation between the structures is due to a bounding box 

intersection test that must be performed for the Kd-Tree and uniform grid to determine if 

the ray is entering the region inhabited by the triangle. In the case of the BasicAS and 

BVH, the only intersection test performed is with the single triangle. Similar efficiencies 

in rendering times on the CPU are also evident. At the lowest screen resolution, the GPU 
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ray tracer consumes almost 1.6 times the amount of energy and time per frame. However, 

at the highest resolution of 1024x1024, the GPU is more than 10 times more efficient.  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 256 512 768 1024

Screen Resolution

R
e
la
ti
v
e
 E
n
e
rg
y
 C
o
n
s
u
m
e
d
 t
o
 C
P
U
-U
n
if
o
rm

OpenGL

CPU-BasicAS

CPU-Uniform

CPU-KdTree

CPU-BVH

GPU-BasicAS

GPU-Uniform

GPU-KdTree

GPU-BVH

 

Figure 6-4: Relative energy consumed while ray tracing the Single Triangle compared to the CPU-

uniform grid 

 

6.1.2 Ray Tracing the Toy Scene (11k Triangles) 

With over 11,000 triangles, this scene would not finish ray tracing using the 

BasicAS during the five minute test duration. It became clear that scenes of this size and 

greater would require the use of an acceleration structure in order to be ray traced at an 

interactive frame rate.  

Strictly looking at the energy consumed per second of rendering, the GPU is less 

efficient at ray tracing than the CPU (Figure 6-5) at resolutions higher than 256x256. The 

CPU ranges from 37 to 43 W, while the GPU ranges from 40 to 47 W. Although the CPU 

may consume less energy per second of ray tracing, this does not account for the number 

of frames that are rendered.  

Figure 6-6 shows the energy cost per frame of ray tracing. The Kd-Tree 

implementation on the GPU has also begun to stray slightly from the other acceleration 

structures, but maintains a similar trend as the other GPU implementations. The K-Tree 
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aside, there still exists a crossover where the GPU becomes more energy efficient than 

the CPU, however it is significantly less dramatic than before. For the resolutions where 

the CPU is the more efficient processing unit the Kd-Tree is the more efficient structure. 

At higher resolutions the GPU is more efficient, with the uniform grid being just slightly 

better than the bounding volume hierarchy.  

 

0

5

10

15

20

25

30

35

40

45

50

0 256 512 768 1024

Screen Resolution

E
n
e
rg
y
 /
 S
e
c
o
n
d
 (
W
a
tt
s
)

OpenGL

CPU-Uniform

CPU-KdTree

CPU-BVH

GPU-Uniform

GPU-KdTree

GPU-BVH

 

Figure 6-5: Power expended (in Watts) while ray tracing the Toy Scene 
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Figure 6-6: Energy cost per frame of ray tracing the Toy Scene 
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Figure 6-7: Relative energy consumed while ray tracing the Toy Scene compared to the CPU-

uniform grid 

 

When normalized against the CPU-based uniform grid (Figure 6-7), the first 

observation is that the GPU-Kd-Tree is not as efficient as the other structures, performing 

between 2 and 6 times worse than the CPU-Uniform at every resolution. At the smallest 

resolution, the other GPU-based implementations are once again ~1.6 times the CPU-

uniform grid and are now ~10 times more efficient at high resolutions. 

6.1.3 Ray Tracing the Small Dragon Model (48k Triangles) 

The separation between CPU and GPU that started to appear with the previous 

scene is not as clear for this model (Figure 6-8), however the ray tracers do maintain 

similar ranges. The GPU averages ~5 W more expensive than the CPU. Interestingly, the 

OpenGL rendering is now comparable to the ray tracers, consuming between 40 and 44 

W.  
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Figure 6-8: Power expended (in Watts) while ray tracing the Small Dragon Model 
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Figure 6-9: Energy cost per frame of ray tracing the Small Dragon Model 

 

Taking the number of frames rendered into consideration (Figure 6-9), the costs 

of the GPU-based acceleration structures have begun to separate more than they had 

before, and the Kd-Tree implementation seems to fit more closely with the other 

structures. On the CPU, the uniform grid has fallen off from the BVH and Kd-Tree 

implementations, which now have almost identical energy (Figure 6-9) and time (Figure 

6-10) costs.  
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Figure 6-10: Time cost per frame of ray tracing the Small Dragon Model 
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Figure 6-11: Relative energy consumed while ray tracing the Small Dragon compared to the CPU-

uniform grid 

 

Comparing the accelerations to the CPU-uniform grid (Figure 6-11), the CPU-

BVH and CPU-Kd-Tree consume less than half the amount of energy per frame than the 

uniform grid. At small resolutions, the GPU-based structures consume between 1.1 and 

3.25 times the amount of energy, but all are more efficient at resolutions of 768x768 and 
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above. The best of the GPU-based structures is the bounding volume hierarchy, 

consuming less than 1/10 the energy of the CPU-based uniform grid. 

 For rendering the small dragon model, the CPU-based BVH and Kd-Tree were 

the most efficient acceleration structures for resolutions less than 256x256 and the GPU-

based BVH was the most efficient for larger resolutions.   

6.1.4 Ray Tracing the Stanford Bunny Model (70k Triangles) 

The trend of the GPU-Kd-Tree as an outlier continues here, as the geometry 

prevented it from being able to properly render. As the screen resolution increases, more 

rays are being directed into the same area of the model. This raises the likelihood of rays 

grazing the edge of the model and requiring many more traversals. Due to the traversal 

mechanism of the GPU-Kd-Tree, each time the ray moves into a new node, its position 

must be recalculated from the root node of the tree. The limitation in the number of loops 

that can be performed on the GPU is exceeded by the number of traversals that must 

occur in order to fully traverse a model that is this complex. As such, data for resolutions 

higher than 256x256 could not be fairly collected.  
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Figure 6-12: Power expended (in Watts) of ray tracing the Stanford Bunny Model 

 

 Looking at the ratio of energy per second of rendering (Figure 6-12), the GPU is 

still slightly more expensive than the CPU at resolutions greater than 256x256, ranging 
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from 45 - 49 W compared to the CPU range of 37 - 45 W. Once again, the OpenGL 

rendering consumes similar power as ray tracing. For the first time we see that there is a 

consistent difference in power consumption in rendering at a specific resolution. At a 

resolution of 768x768 every structure consumed less power than it did at the surrounding 

two resolutions, with the exception of the CPU-BVH. Although it does not represent that 

trend, it consumed the least amount of power at all other resolutions. It was also the most 

consistent structure, only fluctuating 2 W across all of the resolutions.  

 Figure 6-13 shows the energy consumed in rendering a single frame. We see that 

the CPU-Uniform grid and Kd-Tree are generally the least efficient structures for ray 

tracing. At the smallest resolution, the GPU-Uniform grid is the least efficient structure 

while the CPU-Kd-Tree is the most efficient, differing by roughly 15 Joules per frame. At 

resolutions of 256x256 and higher, the GPU-BVH makes a strong case for being the most 

efficient structure for ray tracing.  
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Figure 6-13: Energy cost per frame of ray tracing the Bunny Model 

 

 At a resolution of 128x128, the CPU-based structures are more efficient than the 

GPU-based structures, with the most efficient being the CPU-BVH using 50% of the 

energy of the CPU-based uniform grid (Figure 6-14). At resolutions of 256x256 and 

larger, the GPU-BVH becomes the most efficient structure, consuming only 11% of the 

energy compared to the CPU-based uniform grid at the largest resolution. With a model 
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of this size, it becomes apparent that the BVH is the most efficient structure regardless of 

the processing unit used. 
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Figure 6-14: Relative energy consumed while ray tracing the Bunny Model compared to the CPU-

uniform grid 

 

6.1.5 Ray Tracing the Complex Scene (99k Triangles) 

The Kd-Tree on the GPU was unable to fully traverse the scene at any screen 

resolution and thus does not appear on any of the results. The energy-time ratio (Figure 

6-15) appears much different for this scene than it did for previous ones. The CPU-based 

structures used between 38.5 and 44 W, while the GPU-based structures used between 40 

and 53.5 W. The OpenGL rendering followed a similar trend as the GPU-based uniform 

grid.  

 Considering the energy cost per frame (Figure 6-16), the GPU appears as the 

preferred processing unit for resolutions of 256x256 and larger. The GPU-BVH was 

consistently the most efficient structure consuming 7.6 Joules per frame at a resolution of 

256x256 and 39.6 Joules per frame at the largest resolution. The CPU-Kd-Tree is the 

most efficient structure at the smallest resolution of 128x128, consuming only 3.2 Joules 

per frame. 
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Figure 6-15: Power expended (in Watts) for ray tracing the Complex Scene 
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Figure 6-16: Energy consumption of ray tracing the Complex Scene 

 

Figure 6-17 shows how each of the structures compares to the CPU-based 

uniform grid; at resolutions of 256x256 and greater, all the structures consume less than 

half the energy. The most efficient structure at these resolutions was the GPU-BVH 

consuming 20% the energy of the CPU-based uniform grid at a resolution of 256x256 

and only 6% at a resolution of 1024x1024. At the smallest resolution, the CPU-Kd-Tree 

was the most efficient, consuming 42% as much energy.  
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Figure 6-17: Relative energy consumed while ray tracing the Complex Scene compared to the CPU-

uniform grid 

 

6.2 Applicability to Mobile Devices 

We aimed to identify an efficient acceleration structure for cell phones, personal 

digital assistants (PDAs), and laptops. In order to better target a particular mobile device, 

we find the viewport resolutions used during testing that most closely matches the screen 

resolution of the target device. Given the set of test results that correspond to the 

resolution, we compare each acceleration structure and processing unit over the set of test 

scenes. The energy-efficient acceleration structure for that resolution is found by 

comparing the worst result for each of the structures. The structure whose worst result is 

better than the other structures’ is labeled the most energy-efficient. Our test results can 

then be used to approximate the expected performance of ray tracing on the target device 

using Equation 6-1.  
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Equation 6-1: Expected performance of a mobile device based on the test results 

 



 67 

6.2.1 Cell Phones 

Although there are a wide variety of cellular phones available, as of this thesis, 

many of them have a screen resolution of 128x160 and do not contain programmable 

GPUs. Our results showed that at a resolution of 128x128, the CPU was the most 

efficient processing unit, so these results can be used to approximate the expected 

performance of ray tracing on a common cell phone. High-end cellular phones that are 

currently available have a programmable GPU and a primary screen resolution of 

240x320 pixels. We use the results of rendering at a resolution of 256x256 to 

approximate ray tracing on a GPU-enabled cell phone. 

Figure 6-18 compares the energy cost per frame of ray tracing the test scenes at a 

viewport resolution of 128x128. There is a positive linear trend between energy cost and 

triangle count on the CPU-based structures, all of which have a lower average than their 

GPU-based counterparts. Using the highest energy cost of each structure to rank them, 

the CPU-Kd-Tree is labeled as the most energy-efficient structure. It was able to render 

the Stanford Bunny Model (70k triangles) and the Complex Scene (99k triangles) with 

approximately the same energy cost of 3.2 Joules-per-frame; this cost is only slightly 

more than 2.5 times the energy cost of rendering a Single Triangle (1.27 Joules-per-

frame).  
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Figure 6-18: Comparing energy-efficiency of ray tracing at a resolution of 128x128 
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The CPU-Kd-Tree was able to ray trace the scenes with an average of 2.76 Joules 

per frame. This suggests a per-pixel (or per-ray) cost of 410*68.1 − Joules-per-pixel for 

each of the 16,384 pixels. On a cell phone with a 128x160 resolution (20,480 pixels) we 

can expect ray tracing to consume 3.45 Joules-per-frame. The CPU-Kd-Tree was able to 

maintain an average frame rate of ~15.56 frames-per-second (fps) while ray tracing the 

test scenes. Appling Equation 6-1 with this value, it can be expected that a low-end cell 

phone could ray trace the scenes while averaging 12.45 fps. 
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Figure 6-19: Comparing energy-efficiency of ray tracing at a resolution of 256x256 

 

High-end cell phones that contain programmable GPUs can best be approximated 

with the test resolution of 256x256. A comparison between each of the acceleration 

structures’ efficiency at ray tracing the test scenes is available in Figure 6-19. The GPU-

Kd-Tree is the most energy-hungry of the acceleration structures; this was also evident in 

Figure 6-18. At first glance, there does not appear to be a significant savings ray tracing 

with one acceleration structure over another, but there is a trend that is consistent for the 

uniform grid on both processing units. There is a positive relationship between energy 

consumption and triangle count for the uniform grid; this trend is also mostly true for the 
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CPU-based Kd-Tree and BVH, but they occasionally have a higher energy cost 

associated with a lower triangle count. For the 256x256 resolution, the GPU-BVH is 

labeled the most energy-efficient structure, as it maintains an almost constant energy 

usage (within 2.2 Joules) for all scene sizes. The Toy Scene was the most expensive 

scene for the GPU-BVH to ray trace, but it managed to do so more efficiently than any of 

the other structures. 

We can better approximate the results for a cell phone by averaging the GPU-

BVH results for all scenes (not including the Single Triangle) and then normalizing over 

the number of pixels (65,536). The average cost for rendering the scenes was 8.09 Joules 

per frame, or 410*23.1 −  Joules-per-pixel. Given a cell phone’s resolution of 240x320 

(76,800 pixels), we can expect ray tracing to cost 9.45 Joules-per-frame. Applying 

Equation 6-1 to the time costs per frame, we expect to ray trace at 4.61 frames per second. 

This rate is slightly slower than the average frame rate of 5.4 fps achieved during testing.  

6.2.2 Personal Digital Assistants 

At the time this thesis was written, a PDA which had a programmable GPU was 

available with a 480x640 resolution screen. We use the results of rendering at a 

resolution of 512x512 to approximate ray tracing on a PDA. 

Figure 6-20 displays the energy cost per frame of rendering at a resolution of 

512x512. There is still an increasing trend in energy costs as the number of triangles 

increases. This trend is most evident on the CPU-based implementations and on the GPU-

uniform grid. The GPU-based Kd-Tree remains an outlier consuming a drastically 

different amount of energy depending on the scene it is ray tracing. Once again, the 

bounding volume hierarchy on the GPU defies the other trends. It was still able to ray 

trace the larger scenes between 2.6 - 8 Joules-per-frame more efficiently than the Toy 

Scene. Although the GPU-uniform grid was 2.7 Joules-per-frame more efficient at 

rendering the Toy Scene, the BVH was more efficient than all structures for the larger 

scenes. Despite the ~900% increase in triangles between the Toy Scene and the Complex 

Scene, the GPU-BVH was able to ray trace the Complex Scene using 73.7% the energy 

per frame as it did while ray tracing the Toy Scene. 
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Figure 6-20: Comparing energy-efficiency of ray tracing at a resolution of 512x512 

 

 The average energy cost of rendering with the GPU-BVH was 15.42 Joules-per-

frame, or 510*88.5 −  Joules-per-pixel. This expands out to rendering on a PDA with 

resolution 480x640 at 18.07 Joules-per-frame. Frame rates on the PDA are expected to be 

2.60 fps. Although the resolution is four times larger than a cell phone, the energy cost on 

the PDA is less than half and frames are rendered at slightly more than half the speed.  

6.2.3 Laptops 

Laptop screens come in a variety of sizes and there are a variety of programmable 

GPUs available for them. At this point in time, most laptops with programmable GPUs 

have either 15” or 17” screens; a typical 15” screen has a resolution of 1280x800 and a 

typical 17” screen has a resolution of 1440x900. For the purposes of this thesis, we will 

use the 1024x1024 test resolution to approximate the performance on a typical 17” laptop 

screen. This is in accordance with the fact that even larger laptop displays are available, 

and that in the future, either the displays will be bigger, or the pixels will become smaller, 

fitting more pixels into the same size screen. 

Similar trends exist at a resolution of 1024x1024 (Figure 6-21) as they did for 

smaller resolutions. The CPU-based structures and the GPU-uniform grid show a strong 

positive trend with triangle count; the GPU-Kd-Tree is also very inconsistent. The GPU-
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based implementations are much more efficient at this resolution than the CPU-based 

ones. Once again, the GPU-BVH continues to out-perform the other acceleration 

structures, with the exception of being 7.3 Joules-per-frame more expensive than the 

GPU-uniform grid for the Toy Scene. However, the BVH consumes only half the energy 

per frame than the uniform grid for the Complex Scene. 
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Figure 6-21: Comparing energy-efficiency of ray tracing at a resolution of 1024x1024 

 

 The GPU-BVH has a range of 20.1 Joules-per-frame depending on the scene 

being ray traced, with an average energy cost of 37.39 Joules. This energy cost per frame 

corresponds to 510*57.3 −  Joules-per-pixel. Over all 1440x900 pixels on the laptop 

screen, ray tracing would cost 46.21 Joules-per-frame at a rate of 1.42 fps. 
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7 Conclusions 

The results show that at small resolutions (~128x128) the CPU is the most efficient 

processing unit for ray tracing. The Kd-Tree and BVH were both more energy efficient 

than the uniform grid. Comparing the structures on an average-energy-cost-per-frame 

basis, the Kd-Tree appears as the most efficient structure. At resolutions of 256x256 and 

higher, the GPU becomes the most efficient processing unit. The Kd-Tree 

implementation on the GPU was unable to render some scenes due to the limitations of 

the GPU, but the uniform grid and BVH both provided promising results. Depending on 

the scene, the uniform grid was more efficient than the BVH, however, as the number of 

triangles in the scene increased, the uniform grid’s energy consumption per frame also 

increased. This trend did not exist for the BVH. In fact, as the number of triangles 

increased, the BVH had an energy-efficiency that remained within a small threshold of 

being constant.  

Several trends were apparent throughout the tests. Given the decision to render 

using ray tracing, the choice of screen resolution has the largest impact on energy 

consumption and frame rate. This is partly because the screen size determines the total 

number of rays (or work) that has to be done. The efficiency can then be targeted based 

on the choice of using the CPU or the GPU. Finally, the choice of acceleration structure 

has the smallest impact on the efficiency of ray tracing (assuming the implementation can 

fully render the scene). In general, at a given screen resolution, the relative efficiency of 

the different acceleration structures was not affected by the number of triangles being ray 

traced. Similarly, none of the acceleration structures were significantly impacted when 

rendering a scene versus a single model. 

Using the various test resolutions, the energy cost per ray can be calculated and 

used to estimate the cost of energy-efficient ray tracing on various mobile devices. Table 

7-1 shows a summary of these estimations. A typical cellular phone has a screen 

resolution of 128x160 and does not have a programmable GPU. It is convenient that at 

this resolution, the CPU-based Kd-Tree is the most energy-efficient acceleration structure 

for ray tracing. It is expected that a frame rate of 12.44 fps can be obtained while 

expending only 3.45 joules-per-frame. Higher-end cell phones are available with a 
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programmable GPU and have a screen resolution of 240x320. A GPU-based BVH is the 

most energy-efficient acceleration structure for one of these phones, and an energy cost 

of 9.45 Joules per frame can be expected at a frame rate of 4.61 frames per second.  

 

Table 7-1: Summary of estimated energy costs and frame rates of ray tracing on various mobile 

devices using the most energy-efficient acceleration structure 

Screen Resolution Acceleration Structure Energy / Frame Frame Rate

Cell Phone 128x160 CPU-KdTree 3.45 12.44

Cell Phone 240x320 GPU-BVH 9.45 4.61

PDA 480x640 GPU-BVH 18.07 2.60

Laptop 1440x900 GPU-BVH 46.21 1.42  

 

A personal digital assistant that has a screen resolution four times larger than a 

high-end cell phone (480x640) can perform ray tracing using a GPU-based BVH at 2.6 

frames per second at 18.07 Joules per frame. A typical laptop with a screen size of 17” 

has a maximum resolution of 1440x900. Our results estimate ray tracing at such a 

resolution to cost 46.21 Joules per frame at a rate of 1.42 frames per second using a GPU-

based BVH. Despite the fact that this resolution is 16.875 times as large as the high-end 

cell phone, the energy consumption of the laptop is only 4.9 times that of the cell phone.  

7.1 Future Work 

We have presented the first results of using energy efficiency to compare 

acceleration structures and processing units for ray tracing. Our analysis has shown the 

bounding volume hierarchy implemented on a programmable graphics processing unit to 

be the most energy-efficient acceleration structure. Additional testing and analysis can 

still be performed that relates energy consumption of the acceleration structures to the 

power consumption of the processing unit. The traversal algorithms and the architecture 

of the system may be further improved by gaining insight into the energy costs of loading 

textures and of performing different types of computations on the GPU. Given this 

knowledge, new algorithms can be developed that further improve energy efficiency, or 

support for current algorithms can be strengthened. 

The system can be further improved by dividing the screen-aligned quad into 

smaller quads before ray tracing the scene, as suggested by Purcell et al [2002]. By 
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performing ray tracing on smaller quads, the cache can be better utilized and groups of 

rays that terminate early will not act as a bottleneck for those rays that need further 

processing with additional executions of the shaders. Although this is understood to 

improve the rendering time, perhaps having to switch between shaders will increase the 

energy consumption of the system. Ray tracing multiple quads would have an effect 

similar to performing packet tracing on the CPU [Wald et al 2001], where each packet 

would be represented by a quad. 

An easy extension to our system would be to execute the experiments on GPUs 

from different manufacturers and different models in order to identify if the relative 

efficiency of the acceleration structures is different and to identify the range of energy 

consumed for each of the structures. It would also be interesting to port the GPU-based 

ray tracing code from OpenGL to DirectX. Since the two APIs handle texture memory 

differently, comparing the energy-efficiency of the graphics API could lead to further 

improvements to our system.  

Improved support for mobile devices could be incorporated into the system also. 

One example would be to store the models, construct the acceleration structures on a 

server and stream the data, as either data structures or textures, over the network to the 

mobile devices. Alternatively, the energy consumed in transmitting and receiving the data 

over the network may exceed that of storing and accessing the model data and 

constructing the acceleration structures.  

Since our work measured the energy consumption of ray casting with the use of 

primary rays, an interesting extension to the research would be to use multiple rays per 

pixel to perform anti-aliased ray tracing. This would only require casting more primary 

rays into the scene and would yield a higher quality image. The results of such research 

would validate that our results can be extended to reflect the expected results at a 

different screen resolution based on per-pixel or per-ray costs.  
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