
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2004-09-24

Addressing the Data Recency Problem in
Collaborative Filtering Systems
Yoonsoo Kim
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Kim, Yoonsoo, "Addressing the Data Recency Problem in Collaborative Filtering Systems" (2004). Masters Theses (All Theses, All Years).
1042.
https://digitalcommons.wpi.edu/etd-theses/1042

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@WPI

https://core.ac.uk/display/212999818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/1042?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F1042&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

ADDRESSING THE DATA RECENCY PROBLEM
IN COLLABORATIVE FILTERING SYSTEMS

by

Yoonsoo Kim

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

September 2004

APPROVED:

Professor David C. Brown, Thesis Advisor

Professor Mark Claypool, Thesis Reader

Professor Michael A. Gennert, Head of Department

ABSTRACT

Recommender systems are being widely applied in many E-commerce sites to

suggest products, services, and information items to potential users. Collabora-

tive filtering systems, the most successful recommender system technology to

date, help people make choices based on the opinions of other people. While

collaborative filtering systems have been a substantial success, there are sev-

eral problems that researchers and commercial applications have identified:

the early rater problem, the sparsity problem, and the large scale problem.

Moreover, existing collaborative filtering systems do not consider data re-

cency. For this reason, if a user’s preferences have changed over time, the sys-

tems might not recognize it quickly. This thesis studies how to apply data re-

cency to collaborative filtering systems to get more predictive accuracy. We

define the data recency problem as the negative impact of old data on the pre-

dictive accuracy of collaborative filtering systems. In order to mitigate this

shortcoming, the combinations of time-based forgetting mechanisms, pruning

and non-pruning strategies and linear and kernel functions, are utilized to ap-

ply weights. A clustering technique is employed to detect the user’s changing

preferences. We apply our research approach to the DeliBook dataset. The

goal of our experiments is to show that our algorithm that incorporates tempo-

ral factors provides better recommendations than existing methods.

Keywords: Collaborative filtering system, Recommender system, Data re-

cency problem, Time-based forgetting strategy, Time-based forgetting func-

tion.

ACKNOWLEDGMENTS

I wish to express sincere appreciation to my advisor Professor David C. Brown for

introducing me to the field of collaborative filtering systems, and for his uncount-

able helpful comments and advice about this thesis. I would not have completed my

thesis without his contributions.

I would like to thank my reader Professor Mark Claypool for his thorough review

of this thesis as well as for many interesting discussions even though he has a lot of

work to do.

I would like to thank my independent study advisor Professor Dewon Shon for his

explanations that allowed me to clearly understand some techniques used in col-

laborative filtering systems.

Empirical research into collaborative filtering methods is not possible without suit-

able datasets. The empirical results presented in this thesis are based on the Deli-

Book dataset (www.delibook.com) that has been generously provided to me for re-

search purposes. I would like to thank CEO Hyukjoon Yoo of the YoungJin E-

Commerce in the Republic of Korea for granting me permission to use the dataset.

Finally, special thanks to my parents, my parents-in-law, and my wife Hyunju

who have given me boundless support, encouragement, and motivation. Regrettably,

I have to apologize to my lovely son Derrick D. because this thesis has not allowed

me much time to play with him.

TABLE OF CONTENTS

List of Figures... iii

List of Tables..v

List of Algorithms ...vi

Chapter 1: Introduction ...1

1.1 Problem Statement..2

1.2 Thesis Organization ..4

Chapter 2: Background and Related Work...5

2.1 Collaborative Filtering Algorithms ..5

2.2 Problems with Collaborative Filtering ...6

2.3 Time-related Research ..7

Chapter 3: Proposed Approach ...10

3.1 Applying Temporal Factors..10

3.1.1 Time-based Forgetting Strategies ...11

3.1.2 Time-based Forgetting Functions ...11

3.2 Detecting User Changing Preferences..13

3.3 Applying Temporal Factors based on the User Preferences................18

3.3.1 Pruning Strategy ..18

3.3.2 Non-Pruning Strategy..20

3.4 The Recommendation Process ...21

3.4.1 Building Matrices ..22

3.4.2 Neighborhood Formation ..23

3.4.3 Generation of Recommendation ...23

 i

Chapter 4: Implementation ...25

4.1 Graphical User Interface...26

4.2 Database ..28

4.3 Algorithms...29

4.4 Miscellaneousness ..32

Chapter 5: Experimental Evaluation...33

5.1 Datasets ...33

5.2 Evaluation Cases...37

5.3 Experimental Design...39

5.4 Evaluation Metrics ..41

Chapter 6: Experimental Results ..45

6.1 Using Fake Data..45

6.2 Using Real Data ..48

Chapter 7: Conclusions and Future Work ..53

7.1 Summary ...53

7.2 Future Work ..54

Appendices ...56

A DDL of TFCF System...56

B Fake Data...57

References ..73

 ii

LIST OF FIGURES

3.1 Linear Function ...13

3.2 Kernel Function...13

3.3 Determining a Cut-off Line ..17

3.4 The Worst Case of Interests Changing over Time.....................................17

3.5 Applying a Single Parameter for Pruning Strategy....................................19

3.6 Applying Two Parameters for Pruning Strategy..19

3.7 Applying Two Parameters to Separate Case for Non-Pruning Strategy ...20

3.8 Applying Two Parameters to Overlapped Case for Non-Pruning Strategy

...21

3.9 Applying Three Parameters to Overlapped Case for Non-Pruning Strategy

...21

4.1 The TFCF System Architecture..25

4.2 The GUI Display of the TFCF System...26

4.3 A Screen Shot of the TFCF System with Results28

5.1 The Number of Purchased Items in Months...35

5.2 The Number of Users versus Number of Items Purchased by Them........35

5.3 The Number of Users in Month Differences..36

5.4 Case 1: A and B Separate..37

5.5 Case 2: A and B Close ..37

5.6 Case 3: A and B Somewhat Overlapped ..38

5.7 Case 4: A and B Completely Overlapped ..38

5.8 Case 5: A in the Left Side; B and C in the Right Side...............................38

6.1 The Experimental Results of Cases 1 and 2 ...46

6.2 The Experimental Results of Case 3...47

6.3 The Experimental Results of Case 4...48

 iii

6.4 The Recall Accuracy When Using Real Data ..49

6.5 The Precision Accuracy When Using Real Data49

6.6 The F1 Accuracy When Using Real Data ..50

6.7 The Experimental Results When Considering Matching Genres..............52

 iv

LIST OF TABLES

1.1 A Sample Matrix of Users versus Items...3

3.1 Interests Changing over Time for User 0 ...15

5.1 The Experimental Design Chart ...39

5.2 The Classification of Actual and Recommended Items.............................42

 v

LIST OF ALGORITHMS

4.1 Jaccard Coefficient..30

4.2 Pearson’s Correlation Coefficient...31

4.3 Top-N Algorithm...31

 vi

Chapter 1
Introduction

ecent rapid expansions in computer use and an enormous increase in

the popularity of the internet have motivated many companies to enter

the on-line market, resulting in a huge expansion in the number of E-

commerce sites. In order to be an outstanding E-commerce site, companies

started to consider how to provide users with information about the most de-

sirable items among their numerous products. As a result, recommender sys-

tems have been developed, and have been applied to many E-commerce sites.

R

Generally, there are two types of recommender systems. The early recom-

mender systems used content-based filtering techniques. Content-based filter-

ing systems build a profile of user preference by observing the behavior of an

individual user to predict which information would be selected or rejected

(Maneeroj et al., 2002). Each user is assumed to operate independently. The

preferences are associated with the contents of items selected. As a result, such

systems can exploit only information that can be derived from document con-

tents: i.e., the systems are based on information about the content of items

rather than on other, similar users’ opinions.

On the other hand, collaborative filtering systems suggest items to a particular

user based on a database of all user ratings. Collaborative filtering is the most

successful recommender system technology to date, and can be used in the

recommendation systems of many areas: web pages, documents, news, movies,

books, CDs, DVDs, and so forth. Some of the best-known representative

1

commercial enterprises using these systems are as follows: Amazon.com™

(www.amazon.com), CDNOW.com™ (www.cdnow.com), and eBay.com™

(www.ebay.com).

1.1 Problem Statement

The challenge of collaborative filtering systems is to improve the quality of the

recommendations for the users. Users need recommendations they can trust to

help them find items they might like (Sarwar et al., 2000a). Many factors

should be considered to enhance such predictions. In this thesis, we suggest

that temporal factors should be one of the important considerations in collabo-

rative filtering systems.

Existing collaborative filtering systems have focused on dealing with only the

users’ explicit or implicit data. They do not consider the data recency. That is,

when users purchased the item does not affect the result of a recommendation.

For this reason, if a user’s interest has changed, the systems might not recog-

nize it quickly. This means that the prediction becomes inaccurate until the

system notices the change in the user interest.

We define the data recency problem as the negative impact of old data on the

predictive accuracy of collaborative filtering systems.

Suppose that there is a user whose major was Computer Science in her under-

graduate years, but she is an MBA student now. She bought a lot of books re-

lated to CS during her undergraduate years. However, now she needs to buy

Management books because that is what she is studying. Basic collaborative

filtering systems would still recommend CS books to her although she has

2

been buying only Management books recently.

With respect to Table 1.1, consider that we would like to predict user 0’s (U0)

preference. There are 4 users and some items purchased by them. Items pur-

chased are in categories A, B, C, and D, respectively. As you can see, user 0

purchased A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, C1, B3, C2, and C3, over time.

The number of the same items purchased by users 0 and 1, users 0 and 2, and

users 0 and 3 is 6, 8, and 8, respectively. Whose preference is the most similar

to user 0’s? Existing collaborative filtering systems might say the answer is

users 2 and 3 since user 0’s correlation coefficient with user 2 is 0.37 and 0.22

with user 3. Both of which are greater than with user 1’s where the value is

-0.22. However, considering data recency, our answer to the question would

be user 1.

The reason is that the point of the time when user 0 purchased items from

category A could be too long ago to be considered with the same weight.

T I M E
 1 2 3 4 5 6 7 8 9 10

U0 A1 A2,A3 A4,A5 A6,A7 A8 B1,B2 C1 B3,C2 C3

U1 D1 D2 B1 B2 D3,C1 B3,C2 C3 C4

U2 B1 B2 A3 A4,A2 A1 A7 A8 A9

U
S
E
R
S U3 C1 B1,B2 A1 B3 A2,A3 A4 D1 D2

Table 1.1: A sample matrix of users versus items

In order to mitigate this shortcoming, in this thesis we provide techniques that

uses data recency and demonstrate that it is an important factor to include in

collaborative filtering systems. We propose several possible methods to apply

to collaborative filtering systems, and carry out comparison experiments of

these methods.

3

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the underly-

ing algorithms of collaborative filtering systems, the identified problems with

collaborative filtering, and previous research that uses temporal data. Chapter

3 presents our approach that incorporates temporal factors. It involves apply-

ing time-based forgetting strategies and functions, detecting user changing

preferences, applying temporal factors based on the user preferences, and rec-

ommendation process. Chapter 4 depicts a particular implementation built us-

ing the algorithms described in Chapter 3. Some simplified cases, the experi-

mental design using those cases, and evaluation matrices to show the im-

provement of predictive accuracy are showed in chapter 5. The results ob-

tained in our experiments are given in Chapter 6. Finally, Chapter 7 consists of

the concluding remarks and the future work.

4

Chapter 2
Background and Related Work

n this chapter, we briefly outline the main ideas of collaborative filtering

algorithms that are reported in the literature, investigate the proposed prob-

lems in collaborative filtering, and introduce some time-related research.

I
2.1 Collaborative Filtering Algorithms

Collaborative filtering was developed in order to complement content-based

filtering. It has improved over the past decade to the point where a wide vari-

ety of algorithms exist for generating recommendations. The systems predict

items a particular user might prefer based on a database of ratings or purchases

from all users.

In a collaborative filtering system, we first build a matrix of m users and n

items which is a database of ratings or purchases. We then find the most like-

minded users by comparing the target user’s purchase pattern to others.

The general technique is based on Pearson’s correlation coefficient which is

used by Resnick et al. (1994) on their GroupLens project. The correlation be-

tween users a and b is (Breese et al., 1998):

∑ ∑
∑

−−

−−
=

i i bibaia

i bibaia

rrrr

rrrr
bacorr

2
,

2
,

,,

)()(

))((
),(

,

5

where the bars over r are the means for the ratings of users a and b, and the

summations over i are over the items for which both users a and b have re-

corded ratings. The value of corr(a,b) ranges from -1 to 1. If their purchase

patterns are similar, the value is positive; negative, otherwise. When they don’t

correlate, the value becomes 0.

Finally, using the most like-minded users, the algorithms recommend the N

most frequent items that have not been purchased by the target user (Breese et

al., 1998; Karypis, 2000; Sarwar et al., 2000a) in the top-N recommendation

experiment; whereas the prediction experiment employs the following formula

which is the prediction on the item j for user a (Resnick et al., 1994):

∑
∑ −

+=
x

x xjx
aja xacorr

rrxacorr
rr

),(
))(,(,

, ,

where the summations over x range over all users who rated the item j.

2.2 Problems with Collaborative Filtering

While collaborative filtering systems have been a substantial success, there are

several problems that researchers and commercial applications have identified:

a. Early rater problem. Pure collaborative filtering cannot provide predictions

for an item when it first appears since there are no users’ ratings on which

to base the predictions. In order to avoid this problem, Sarwar et al. (1998)

present filterbots which are automated rating robots that evaluate new

documents as soon as they are published and enter ratings for those docu-

ments.

6

b. Sparsity problem. The number of items far exceeds what any individual can

hope to absorb, thus matrices containing the ratings for all items for all us-

ers are very rare, and actual matrices are sparely filled. Usenet studies have

shown a rating density of about 1% in some areas. We can estimate that

few people will have read and formed an opinion on even 1/10 of 1% of the

over two million books available through the largest bookstores (Sarwar et

al., 1998). Thus, Claypool et al. (2001) suggest developing a curious

browser which can collect user’s implicit ratings such as mouse, scrollbar,

and keyboards activities, as well as explicit ones.

c. Large scale problem. The more the number of users or items increases, the

higher the computational complexity is. Sarwar et al. (1998) try to explore

the relationships between items rather than the relationships between users.

Hofmann (2003) describes a model-based algorithm designed with prob-

abilistic latent semantic analysis.

2.3 Time-related Research

There are some researchers who have considered temporal factors as capable

of playing a significant role to improve the accuracy in dealing with users’

transaction data.

Chalmers et al. (1998) developed a system that recommends URLs based on

the context of an individual’s recent activity by using a path model. The path

model is a developed approach to information access that stemmed from col-

laborative filtering. Like collaborative filtering, the path model primarily in-

terprets information by means of the people who use it. The path is a time-

ordered history of a person’s use of information objects. Unlike collaborative

7

filtering, context or current activity is an essential part of the approach.

Billsus and Pazzani (1999) developed an intelligent agent, named NewsDude,

which is designed to compile a daily news program for individual users. Based

on feedback from the user, the system automatically adapts to the user’s pref-

erences and interests. The system has two separate user models: one represents

the user’s short-term interests; the other represents the user’s long-term inter-

ests. The short-term model is learned from the most recent observations only.

If the short-term model cannot classify the story at all, it is passed on to the

long-term model. The purpose of the long-term user model is thus to model a

user’s general preferences for news stories and compute predictions for stories

that could not be classified by the short-term model.

Koychev and Schwab (2000) presented a method for gradual forgetting, which

is applied for learning drifting concepts, and claimed that the ability to adapt

fast to the user current interests is an important feature for recommender sys-

tems. Concept changes (aka, drifting), whether gradual or abrupt, occur over

time. The evidences for changes in a concept are represented by the training

examples, which are distributed over time. Hence, the old observation can be-

come irrelevant to the current period so that the learned knowledge could be

out-of date. They experimented with recommendations for the users of ELFI

(ELectronic Finding Information) which is a content-based filtering system

that provides information about research funding, and with STAGGER which

is an incremental learning system that dynamically tracks changes of concepts

by applying gradual forgetting function.

Kukar (2003) suggested that many of the databases available for Statistical,

Machine Learning and Data Mining algorithms violate the assumption that the

data they use is a random sample drawn from a stationary distribution since

8

they were gathered over months or years, and the underlying processes gener-

ating them may have changed during this time, sometimes radically (i.e., con-

cept drift). He reviewed several techniques for dealing with concept drift in

Machine Leaning and Data Mining framework and evaluated linear and kernel

functions for dealing with concept drift in clinical studies with a case study of

coronary artery disease diagnostics.

9

Chapter 3
Proposed Approach

his thesis proposes a new technology designed to apply data recency to

pure collaborative filtering systems to cope with the data recency prob-

lem. We claim that user preferences are not stationary and can drift with time.

As time goes by, a user’s preferences can vary depending on personal or social

issues. Thus, her/his future selections of items should be more affected by

her/his recent data than by past data.

T

In this thesis, we do not focus on the prediction of the exact rating a user

would have given to a target item. We would much rather like to have a sys-

tem that can recommend items that are more likely to be purchased by a user

in the future. Thus, our approach is designed for E-commerce sites by produc-

ing a list of Top-N recommended items for a target user.

This chapter describes the concept of how to apply temporal factors to collabo-

rative filtering systems. It includes the exploitation of time-based forgetting

techniques, a clustering technique for detecting a user’s changing preferences,

and the combined approaches of these two methods. Also, a recommendation

process is provided.

3.1 Applying Temporal Factors

In this section, we introduce some time-based forgetting strategies and func-

tions. The purchasing behavior of the users can be seen as occurring over time.

10

The main idea is to treat the observations as time series data and to give more

impact to more recent data by applying time-based forgetting strategies.

3.1.1 Time-based Forgetting Strategies

In general, there are two different strategies. One is to consider the recent data

only, rather than the whole data (i.e., Pruning). The other is to use all the data

(i.e., non-Pruning).

Applying only the most recent observations may lead to collaborative filtering

systems that can adjust more rapidly to user changing interests. The simplest

of methods presented by Billsus and Pazzani (1999) is to restrict a window

size to the n most recently rated. The window is of fixed size, and the oldest

observation is dropped whenever a new one comes in. However, this method

seems to exacerbate the sparsity problem more than existing collaborative fil-

tering systems. Thus, in this thesis, a window size varies depending on the

user’s current preferences. This is the more reasonable method than setting the

window to a fixed size.

3.1.2 Time-based Forgetting Functions

Two functions are used, the linear and kernel functions. These functions pro-

vide each data item with a different weight based on its time of occurrence.

Hence, they make the most recent observations more significant for our algo-

rithms than the old ones. That is how we try to alleviate the fact that the old

data may sometimes be detrimental to the predictive accuracy.

Koychev (2000) suggested using a linear gradual forgetting function, defined

11

as follows:

lt
n

lwt ++−
−

−= 1)1(
1

2 ,

where t is a counter of observations starting from the most recent one and go-

ing back over time, n is the length of the observed sequence, and l∈[0,1] is a

parameter. By varying l, the slope of the linear function can be adjusted.

Another forgetting function, which is non-linear, is a kernel function suggested

by Kukar (2003), defined as follows:

2

2

2

2
1 k

d

t e
kπ

w
−

= ,

where d=t/n is a relative time distance to the training example from the past,

and k∈[0,1] is a parameter. By varying k, the slope of the kernel function can

be adjusted.

The graphs of the linear and kernel functions are given in Figures 3.1 and 3.2.

In the linear function, as the parameter l increases, the slope gets steep. If we

want to give nearly even impact to all observations, a lower value of parameter

l should be given. Allowing the parameter l to be zero means giving no weight

to any observation; whereas allowing the parameter l to be one means giving

no weight to only the oldest data item.

On the contrary, for the kernel function, as the parameter k increases, the slope

gets more gentle. If we would like to give the most impact to the most recent

data, using a kernel function might be a better choice than using a linear func-

tion by giving the lowest value to the parameter k.

12

Figure 3.1: Linear function

Figure 3.2: Kernel function

3.2 Detecting User Changing Preferences

The main idea in this section is that user interests can be tracked over time by

13

measuring the dissimilarities between the categories of a user’s purchased

items in order to identify the point in time at which the users changed their

preferences. The time point will be used as a cut-off line in pruning or as a

place to apply a different parameter in a non-pruning strategy.

Specifically, we are interested in being able to classify data items from each

user into current or past clusters. The “current cluster” has items relevant to

the user’s current preference and the “past cluster” has items irrelevant to the

user’s current preference.

Schwab et al. (2000) employed a univariate significance analysis in their con-

tent-based recommendation component to determine a user’s interest in spe-

cific values of the detailed view (DV) features. It is based on the idea that at-

tribute values in random samples are normally distributed. If the value appears

in the selected DVs significantly more frequently than in a random sample, the

user is assumed to be interested in it. On the other hand, if the selection fre-

quency is lower, the user is not interested in that value. However, they do not

consider temporal factors in deciding interest.

By contrast, Crabtree and Soltysiak (1998) tried to derive user interest profiles

automatically by monitoring user web and e-mail habits. They claimed that

since user interests are not likely to remain constant, any interest learning algo-

rithm must track changes in the user interests. To incrementally update the

profile of a user, they employed a clustering algorithm which identifies inter-

ests, and then clusters them together to form interest themes. The main effort

of their research is to see if the clustering approach to generating the user in-

terests can be used to track changes in interests over time. They applied the

clustering technique to a series of documents generated during a time period t,

and then to a series of items generated in time period t+1. They then compared

14

clusters generated at time window t+1 with those generated in time window t

by employing a dot-product for a similarity measure.

Our approach starts with applying a general time window method. To classify

the items, we need to suppose that each item already has its own predefined

category (e.g., Family, Health, Management, and etc.). All items purchased by

user 0 shown in Table 1.1 are used as an example. A time window three-

months wide is used for clustering. For our first run, items from months 1

through 3 inclusive are classified into each category. The time window is then

advanced one month, and the next three months worth of items are classified

(months 2 through 4 inclusive). This is repeated throughout the time period.

Table 3.1 shows the periods in which the purchased items appeared for the

user 0. As we can see, each category appears or disappears over the examined

period of time. In our approach, we disregard the item frequencies on each pe-

riod since the item frequencies might affect the user’s current interest more

than the temporal factors. Thus, we only consider their two different features

of appear and disappear which correspond to 1 and 0, respectively.

Month Category A Category B Category C
1 ~ 3
2 ~ 4
3 ~ 5
4 ~ 6
5 ~ 7
6 ~ 8
7 ~ 9
8 ~ 10

Table 3.1: Interests changing over time for user 0

We first identify categories in the most recent period, which are categories B

and C. And then we go back to compare the lengths of periods of these two.

15

We now assume that user 0’s preference is category B as it shows the largest

continuous most-recent interest.

Next, we measure the dissimilarities between category B and the others. Cal-

culating the dissimilarity between matching categories from one period to the

next provides an indication of the time difference between two categories. This

will help determine points at which interests changed.

The dissimilarity measure is given by using the Jaccard coefficient. The Jac-

card coefficient is used in measuring the dissimilarity between two objects

only for binary variables (Han and Kamber, 2001). It is defined as follows:

srq
srjid
++

+
=),(,

where q is the number of variables that equal 1 for both objects i and j, r is the

number of variables that equal 1 for object i but that are 0 for object j, and s is

the number of variables that equal 0 for object i but that are 1 for object j. The

dissimilarity value d(i, j) ranges from 0 to 1. And, a higher value indicates

more dissimilarity between the two.

We adopt this equation to our approach, where the categories take the role of

the objects. The dissimilarity calculations are:

,875.0
431

43),(=
++

+
=ABd

.250.0
013

01),(=
++

+
=CBd

These measurements suggest that categories B and A are unlikely to have a

16

similar temporal pattern since they have a higher dissimilar value. Of course

categories B and C are more likely to have a similar temporal pattern. As we

can see in these results, we expect that s/he is currently interested in category

C more than category A relative to category B. Therefore, we could estimate

the first purchase point of time of categories B and C as the point of time of

her/his changed interest, as shown in Figure 3.3.

Figure 3.3: Determining a cut-off line

However, some worst cases may exist in this approach. Suppose that a user’s

interest is category A since it holds a lot of recently purchased items, and there

is another category B that also holds recently purchased items but occupies

much smaller period than category A, as shown in Figure 3.4. Intuitively, we

can see two categories are not similar over the examined period of time (i.e.,

the dissimilarity value is not low). If we regard category B as a “past cluster”,

the co-existence of current and past occurs at some period and if this is the

situation, the time period before this point should normally be a “past cluster”.

This is a clear violation of our assumption that category A is the user’s interest.

Therefore, it is more reasonable that category B as well as category A should

be in the “current cluster” although the dissimilar value is not low.

Figure 3.4: The worst case of interests changing over time

17

3.3 Applying Temporal Factors
based on the User Preferences

Once the user’s current preference has been detected it can be given more

weight by the recommender system. We do this by using the time sensitive

approaches described above in combination with the clusters of preferences. A

variety of combinations of techniques are possible.

This section proposes some combined approaches using the techniques de-

scribed in sections 3.1 and 3.2. The pruning or non-pruning strategies, cluster-

ing or non-clustering analysis, weights, linear or kernel function, or non-

weights can all be varied.

3.3.1 Pruning Strategy

The first combined approach is to combine the pruning strategy and the time-

based forgetting functions based on the user preferences. The cut-off line is

not the same for every user, but different according to their preferences. It is

fixed depending on the clustering technique by comparing the dissimilarity

between categories on each user described in section 3.2.

Figures 3.5 and 3.6 show a user purchase pattern changing from category A to

category B over time. After detecting the user’s interests, we identify that

category B is in her/his “current cluster”; whereas category A is in her/his

“past cluster”. We first assign the time of the first data item of category B to

the cut-off line, and then apply the time-forgetting functions to observations

from the cut-off line.

18

One or two parameters can be used to give weights to the observations in ap-

plying the time-based forgetting functions.

Figure 3.5: Applying a single parameter for pruning strategy

Figure 3.6: Applying two parameters for pruning strategy

The first method is to use a single parameter. In Figure 3.5, the cut-off line in-

cludes some data in category A as well as all the data in category B. One pos-

sible approach is to consider only the items in category B; whereas, the other

is to consider some items in category A which overlap with category B, as

well as all items in category B.

In the second case, we employ two parameters. In Figure 3.6, the observations

from the cut-off line can be divided into two periods, overlapped and non-

overlapped. We apply different parameters to each period, respectively, since

the overlapped period may be regarded as the period of interest changing from

category A to category B.

However, applying two parameters rather than one may cause an excessive

19

overlap with the period of a “current cluster” given the worst case described in

section 3.2. Its result is that too many items in a “current cluster” could be

given lower weights.

3.3.2 Non-Pruning Strategy

The second method is not to use pruning, but to use the time-based forgetting

functions based on the user preferences. Figures 3.7, 3.8, and 3.9 show the pa-

rameters varied into two or three values depending on a user’s interests. That

is why we would like to give different impact to each period.

Once all observations are classified into cluster groups, we can divide the pe-

riods into two or three parts. If these two groups are separate as shown in Fig-

ure 3.7, we apply two different parameters to the recent and the past group,

respectively. Of course, the first weight of the first group should be scaled to

be less than the last weight of the second group.

Figure 3.7: Applying two parameters to separate case for non-pruning strategy

On the other hand, in Figures 3.8 and 3.9, two groups are somewhat over-

lapped. The observations can be divided into three periods, the recent, the

overlapped and the past periods. We can use two or three parameters to these

periods, as shown in Figures 3.8 and 3.9, respectively. Of course, we need to

20

adjust the first weights of each period to be less than the last weight of the pre-

vious period. However, applying three parameters may also suffer from the

excessive overlapping problem in the worst case, as mentioned before.

Figure 3.8: Applying two parameters to overlapped case for non-pruning strategy

Figure 3.9: Applying three parameters to overlapped case for non-pruning strategy

3.4 The Recommendation Process

We have described how to apply temporal factors, detect changing user inter-

ests, and combine these techniques. Now, we look into the procedure of the

recommendation with the techniques in detail. There are three steps: Building

matrices, Neighborhood formation, and Generation of recommendation. Each

procedure of our algorithm follows the general steps of typical collaborative

filtering systems.

21

3.4.1 Building Matrices

The first step is to build matrices which are used to find like-minded users. In

a typical collaborative filtering system, each user’s transaction data can be rep-

resented by the items a user has purchased. Just as for a collaborative filtering

system, our process starts with construction of an original matrix whose col-

umns are associated with item i∈I={i1, i2,…, iN}, and whose rows are associ-

ated with user u∈U={u1, u2,…, uM}. If a user a purchases an item i, we use

one as the element ra,i of the original matrix, and zero otherwise, which is

called a Binary feature vector (Huang et al., 2004; Karypis, 2000).

⎩
⎨
⎧

=
.otherwise,0

, iteman purchased user a if,1
,

ia
r ia

We now build a weighted matrix that holds an element wa,i that is a weight

corresponding to the element ra,i in the original matrix. When using the prun-

ing strategy, even though a user purchased an item, if the item is outside the

calculated boundary of her/his interests, the element wa,i should be zero;

whereas in the other cases, the element wa,i should have a non-zero value,

which is calculated by using the time-based forgetting functions.

We then produce a combined matrix by multiplying these two matrices. Its

elements contain:

iaiaia wrp ,,, ×= ,

where ra,i is in the original matrix and wa,i is in the weighted matrix.

22

3.4.2 Neighborhood Formation

The most important phase is to measure the similarities between users, as it is

used to form a proximity-based neighborhood between a target user and a

number of like-minded users. The neighborhood formation process is the

learning process for a collaborative filtering system algorithm. The main goal

of neighborhood formation is to find for each user u an ordered list of l users

N={N1, N2, …, Nl} such that u∉N and corr(u, N1) is maximum, corr(u, N2) is

the next maximum, and so on.

In our algorithm, we utilize the adjusted Pearson’s correlation coefficient by

using pu,i, which is produced at the building matrices stage, instead of using ru,i

in the original matrix, which is given by:

∑ ∑
∑

−−

−−
=

i i bibaia

i bibaia

pppp

pppp
bacorr

2
,

2
,

,,

)()(

))((
),(.

3.4.3 Generation of Recommendation

The final step is to derive the top-N recommendations from the neighborhood

of users. There are two different techniques: Most-frequent item recommenda-

tion and Association rule-based recommendation. In this thesis, we use the

most frequent item recommendation method since it can quickly and easily

generate the list of the top-N recommendations.

The method looks into the neighborhood N and for each neighbor scans

through her/his purchase data and performs a frequency count of the items.

When using the pruning strategy, the items eliminated by the cut-off line

23

should not be counted. After all neighbors are accounted for, the system sorts

the items according to their frequency count and simply returns as the recom-

mendation the N most frequent items that have not yet been purchased by the

target user. The value of N could be determined and varied depending on the

results of each experiment.

24

Chapter 4
Implementation

his chapter introduces how to construct our algorithms that incorporated

temporal factors into collaborative filtering systems. Some pseudocode

is also presented. We have not implemented a complete E-commerce site, but

designed and developed the heart of a collaborative filtering system, calling it

the Temporal Factors Collaborative Filtering (TFCF) system.

T

The TFCF system was implemented using C# which is run on the Microsoft

.NET Framework. It was tested on a Windows XP Professional based PC with

Intel® Pentium 4 processor having a speed of 2.00 GHz and 512 MB of RAM.

SQL Server 2000 is employed for the database to build the user/item matrices

and to store recommended items, and it is connected via ADO.NET.

The TFCF system is broken into three parts: Graphical User Interface, Data-

base, and Algorithms. Figure 4.1 depicts the architecture of the system.

Figure 4.1: The TFCF system architecture

25

The ovals represent the recommendation steps, and the dotted arrow means the

conditional process. The process “Detecting User Interests” is executed only

when either the pruning strategy or the non-pruning strategy using two pa-

rameters are selected. Consequently it is connected with a dashed line in the

Figure.

4.1 Graphical User Interface

The Graphical User Interface (GUI) of the TFCF system is Window-based, as

shown in Figure 4.2, in order to provide convenient usage. The interface was

designed to allow control of experimentation with the techniques developed. It

allows the user to select which techniques and data are to be used in an ex-

periment.

Figure 4.2: The GUI display of the TFCF system

26

Ten menus are needed since we evaluate our algorithms with various combi-

nations of techniques. The responsibilities of each menu are as follows:

 The “Strategy” menu is for Pruning and non-Pruning.

 The “Function” menu is for Existing, Linear, and Kernel.

 The “Parameter” menu is for One and Two which are the number of pa-

rameters used in time-based forgetting functions.

 In the “From” and “To” menus, we can easily decide the periods of the data

by choosing specific dates from the real calendars.

 The “Ratio” menu enables us to divide the dataset into the training and test

data depending on the value.

 The “Dissimilarity” and “Time Window” menus are used in the cluster

analysis to detect the user’s current preference.

 The “Similarity” menu is used in determining the like-minded users for a

specific target user.

 The “Top-N” menu is for setting the value N of the number of items to be

recommended in the generation of recommendation phase.

After determining all of the techniques from those menus, the user pushes the

buttons in the bottom of the display. First, clicking the “Read Data” button

connects the database and retrieves the order transaction data from the data-

base. Next, the “Build Matrices” button is for building the original, weighted,

and produced matrices. The “Generate Items” button is for generating and rec-

ommending items to target users. Clicking the “Evaluate” button enables us to

27

check the predictions using the evaluation metrics of our algorithm discussed

in chapter 5. Finally, we can terminate the system by pushing the “Exit” but-

ton.

In addition, there are four display areas on the right side of the menus. These

boxes show the results of each step of the recommendation process. Figure 4.3

is a screen shot of the TFCF system with results.

Figure 4.3: A screen shot of the TFCF system with results

4.2 Database

Order information and the list of recommendations are stored in a SQL Server

2000 database. The GUI and algorithms connect to the database via

ADO.NET. ADO.NET represents a new approach for building applications

that interact with databases. It also provides a powerful, flexible, and appropri-

28

ate method for accessing data in modern applications that are more widely dis-

tributed than with previous technologies, such as ADO, OLE DB, RDO, DAO,

and ODBC.

4.3 Algorithms

In this section, we present some pseudocode that describes the core of the

TFCF system. The algorithms are written in C# which is an object-oriented

language. C# is the next phase in the evolution of C and C++, and was devel-

oped expressly for Microsoft’s .NET platform.

Clicking the “Read Data” button is used to read the dataset from the database.

Before reading, we need to calculate the ratio depending on the dates of the

“From” and “To” menus in order to divide the data into the training and test

sets. And, then we make the indexes of users, items, and genres data by re-

trieving the data from the database. The indexes are used as keys in the

user/item matrices.

We now build three user/item matrices by pushing the “Build Matrices” button.

The original matrix, whose columns are associated with the index of item and

whose rows are associated with the index of user, can be built easily. And then

we need to calculate the weights by using the linear or kernel functions. Calcu-

lating the weights is varied depending on the “Strategy” and “Parameter”

menus. If we choose Pruning from the “Strategy” menu, we need to identify a

cut-off line. If Two from the “Parameter” menu and non-Pruning from the

“Strategy” menu are selected, we need to identify the point at which a different

parameter is applied. It is achieved by measuring the dissimilarity value using

the Jaccard coefficient (see Algorithm 4.1).

29

private void JaccardCoefficient()
{
 Set q, r, and t to 0

 While not at end of category list
 While not at end of time window list
 If clusterArray (current category, time window) is 1 Then
 If clusterArray (category, time window) is 1 Then
 Increment q
 Else
 Increment r
 End If
 Else
 If clusterArray (category, time window) is 1 Then
 Increment s
 End If
 End If
 End While
 End While

 Compute dissimilarity as (r+s) / (q+r+s)
}

Algorithm 4.1: Jaccard coefficient

We now know in which categories the user is interested currently. We can

build the weighted matrix by applying the weights to each observation in the

current cluster with one parameter when we choose the pruning strategy, or in

the current and past clusters with two parameters when we choose the non-

pruning strategy.

After producing these two matrices, we find the neighborhood users by meas-

uring similarities between a particular user and others using the Pearson’s cor-

relation coefficient (see Algorithm 4.2).

Finally, we store recommended items into a Recommendation table of the da-

tabase. The recommended items are given by the Top-N algorithm which

counts frequencies on items purchased by the neighborhood users and adopts

30

the top-N frequent ones (see Algorithm 4.3).

private void ComputeCorrelation()
{
 Compute the means of users

 While not at end of target users list
 ra mean of target user
 While not at end of training users list
 rb mean of training user
 While not at end of items list
 ai Subtract ra from the value of matrix
 bi Subtract rb from the value of matrix
 Add saa ai

 2

 Add sbb bi
2

 sab Multiple ai by bi
 End While
 End While
 End While

 Compute corr as sab / sqrt(saa * sbb)
}

Algorithm 4.2: Pearson’s correlation coefficient

private void GenerateTopN()
{
 While not at end of target users list
 While not at end of training users list
 If training user is closest neighbor to target user Then
 While not at end of items list
 Increment frequentArray (item)
 End While
 End If
 End While
 Sort frequentArray
 While not at end of items list
 If item is not purchased by the target user Then
 Store the item into recommend table
 End If
 End While
 End While
}

Algorithm 4.3: Top-N algorithm

31

4.4 Miscellaneousness

To build the original matrix, an m x n size of array is needed which is the case

for typical collaborative filtering algorithms. However, the TFCF system

needs three matrices of the same size for the original, weighted, produced ma-

trices. The larger the number of users and items is, the higher the possibility of

getting an out-of-memory error. Unfortunately, the TFCF system could suffer

from the complexity problem more than existing collaborative filtering sys-

tems.

It is very important that the system is bug-free in order to get a good result.

Hence, we have debugged the system by comparing the calculations of each

step in the system with those done by hand using an Excel tool.

32

Chapter 5
Experimental Evaluation

his chapter provides the five simple cases of user purchase patterns and

demonstrates the design of experiments with these cases. We also re-

view some methodologies to evaluate the recommendation performance of our

algorithms.

T

5.1 Datasets

Empirical research into collaborative filtering methods is not possible without

suitable datasets. A lot of empirical research has used the MovieLens or Each-

Movie dataset.

The MovieLens dataset were collected by the GroupLens Research Project.

This dataset consists of 100,000 ratings (1~5) from 943 users on 1,682 movies.

Each user has rated at least 20 movies. The data was collected through the

MovieLens web site (movielens.umn.edu) during 17 months period from Sep-

tember 19, 1997 through April 22, 1998. The features for the movies are: Un-

known, Action, Adventure, Animation, Children's, Comedy, Crime, Docu-

mentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance,

Sci-Fi, Thriller, War, or Western. The dataset has three tables, such as User,

Item, and Data.

The EachMovie dataset were colleted by the Compaq Systems Research Cen-

ter for 18 months from 1995 through 1997. There are 72,916 users and

33

2,811,983 ratings (0.0~1.0) for 1,628 different movies. The features for the

movies are: Action, Animation, Art/Foreign, Classic, Comedy, Drama, Family,

Horror, Romance, or Thriller. The dataset has three tables, such as Person,

Movie, and Vote.

Although these two datasets have the time information of rating on items, the

datasets may not be pertinent enough for our thesis to expect an improvement

in accuracy of recommendations. This is due to the fact that the time informa-

tion is not the date on which people rate the movies immediately after choos-

ing or watching them. That is, a lot of people rate almost all items on the same

day or within a short period. The consequence is that it was impossible to de-

termine the change in users’ preferences, as they are not spread out over time.

Therefore, the dataset we utilized in our experiments is from DeliBook which

is a real dataset currently used in the on-line bookstore (www.delibook.com)

debuted in 2002 and managed by YoungJin E-Commerce. The dataset is being

used with their permission under certain privacy restrictions. There are 5,392

users, 9,204 books, and 17,479 order transactions for about 30 months from

February 1, 2002 through August 6, 2004 in their dataset.

The categories for the books are: Family, Health, Management/Economy, Stu-

dents, Cartoon, Literature, Dictionary, Social Science, Test, Travel, His-

tory/Culture, Foreign Language, Kids, Humanities, Biography, Self-

development, Nature/Science, Magazine, Professionals, Religion, Textbooks,

Youth, Recommendations, Hobby/Sports, Computer/Internet, or Original

Texts. The dataset has six primary attributes: MemberID, BookID, BookName,

GenreID, GenreName, and OrderDate.

Figures 5.1, 5.2, and 5.3 are the histograms of the distributions of data in the

34

DeliBook dataset. Figure 5.1 depicts the number of purchased items for each

month. As we can see, the dataset seems to have sufficient items ordered per

month for use in our experiments, except for the first 6 months and the last

month. The average number of purchased items is about 583 in each month.

Figure 5.1: The number of purchased items in months

Figure 5.2: The number of users versus number of items purchased by them

35

Figure 5.2 shows that the number of users and the number of items purchased

by them. Note that the y axis is shown in log scale. Each user purchased about

3 items on average, and the number of users who purchased at most 10 items

is 5,131 which are 95% of all users.

Figure 5.3 shows the number of users ordered by the difference between the

earliest and latest dates of order for each user. The value 0 means that the users

purchased items within one month. The number of users who have the value 0

is 4,569. Among them, 4,287 users, 80% of the dataset, purchased items in one

day.

Figure 5.3: The number of users in month differences

Just as with many other datasets, this dataset seems to have a sparsity problem.

As mentioned before, the dataset has 5,392 users, 9,204 books, and 17,479 or-

der transactions. Thus, the size of the user/item matrix is 5,392 x 9,204 ele-

ments. The MovieLens and EachMovie datasets are 93.70% and 97.63%

sparse, respectively; whereas the DeliBook dataset is 99.97% sparse since the

ratio of the number of non-zero elements versus the size of the matrix is

36

17,479 / 49,627,968. This value means that the dataset might be insufficient to

identify similarities in users’ interests and moreover insufficient to recommend

frequent items. However, although the DeliBook dataset is probably too sparse

to be perfect for our thesis, we could not help but use this dataset, since in

spite of our every endeavor, it was the only appropriate dataset that we ob-

tained permission to use in our research.

5.2 Evaluation Cases

In this section, we describe some simplified cases of the distribution of data

over time to be used in detecting user changing interests. These cases are in-

tended to express the simple patterns of user transactions data. We deal with

only the cases of two and three categories of user purchases in order to give a

precise explanation.

Suppose that a user purchased items in categories A and B over time. Figure

5.4 (Case 1) shows two distributions that are separate; whereas Figure 5.5

(Case 2) shows two distributions that are close. We might expect a similar re-

sult from these two cases since we assume that s/he now likes the category of

recently purchased items. We could thus declare that s/he no longer likes cate-

gory A, but is now interested in category B.

Figure 5.4: Case 1: A and B separate

Figure 5.5: Case 2: A and B close

37

With respect to Figure 5.6 (Case 3), two distributions are somewhat over-

lapped. We could say that s/he is interested in category B; whereas her/his de-

gree of interest in category A is based on the result of measuring their similari-

ties over time. On the other hand, two distributions are completely overlapped

in whole periods in Figure 5.7 (Case 4). Obviously, s/he is interested in both

categories.

Figure 5.6: Case 3: A and B somewhat overlapped

Figure 5.7: Case 4: A and B completely overlapped

There exist three distributions in Figure 5.8 (Case 5). The distribution of cate-

gory A is separated from those of category B and C; whereas the distributions

of category B and C are overlapped. We might say that s/he no longer likes

category A, but is interested in category B depending on the result of measur-

ing their similarities over time, and is definitely interested in category C.

Figure 5.8: Case 5: A in the left side; B and C in the right side

Besides these above cases, we might also consider the cases of four or more

categories, but we would like to leave the more intricate cases for future work.

In addition, we expect the more complex cases to be composed of the simple

38

cases discussed above.

5.3 Experimental Design

This section describes how to design the experiments used to evaluate the ac-

curacy of our research approach. It also explains how to select training and test

data (including target data) from the DeliBook dataset, as well as how to de-

termine the dissimilarity values and the size of the neighborhood in the top-N

recommendation.

We evaluate the pruning and non-pruning strategies, respectively, as shown in

Table 5.1. All the testing is compared with the plain test of the existing col-

laborative filtering algorithm under the same experimental conditions in order

to determine how much impact temporal factors have.

Method Cases 1,2 Case 3 Case 4 Real
Existing algorithm

No Weights Pruning
Strategy Linear Function

- with one parameter

Linear Function
- with one parameter
- with two parameters

 Non-Pruning
Strategy Kernel Function

- with one parameter

Table 5.1: The experimental design chart

When using the pruning strategy, the experiments of applying no weights and

applying the linear function with a single parameter are provided. We compare

these two cases to see how similar or different their results are.

When using the non-pruning strategy, the linear and kernel functions with a

39

single parameter are tested. Also, after clustering items on each user depend-

ing her/his current preference we apply two parameters to the linear function

in the experiment.

In order to evaluate the quality of our algorithm, we selected 823 users who

purchased items over more than one months’ period since there is no point in

applying the time sensitive approach to the data of users who purchased items

within one month. We split the data into training and test sets. Unlike typical

collaborative filtering research, we divided the data on the basis of the order

time instead of the amount. We used 60% as the training set to build a predic-

tive model, and the remaining most recent 40% was used to evaluate the pre-

dictive accuracy of the model. Among the training and test data, we retrieved

69 users who purchased at least 10 items in 12 or more months as target users.

We also employed some “fake data” as target users. The artificial data repre-

sents Cases 1/2, 3 and 4 described in section 5.2 in order to show obvious ex-

amples and verify our approach. Each case has the same users and items, but

different order dates corresponding to the four cases. We randomly selected

items whose frequencies are three or four in order to reduce the frequent bias.

And, every item was used only once without duplication to prevent the users

of the “fake data” from being each other’s neighborhood. We allowed the last

two observations of each user to be a test set. Ten users’ data per case are

given and are shown in Appendices.

The dissimilarity value in a clustering technique plays a significant role: in the

pruning strategy it is used to determine the cut-off line and in the non-pruning

strategy it is used to apply the appropriate value of the parameters to data. As

we adopt a lower dissimilarity value, more items are included in a current clus-

ter; on the other hand, a higher dissimilarity value limits her interest to only

40

the latest purchased categories. Thus, we first tried dissimilarity values from

0.8 in decrements of 0.1. We realized that when applying 0.6 or more the re-

sults were similar to that when using the non-pruning strategy. In addition, all

the cases of applying 0.5 or less got the same results. Hence, in our experi-

ment, we set 0.5 as the dissimilarity value to see the apparent differences be-

tween the results of the pruning and non-pruning strategies.

A time window three-months wide is used to detect user preferences for the

clustering. Since we selected users who purchased within more than one

month as the training set, the shortest purchasing gap can be one to two

months. Hence, even if the gap is the shortest, the window width allows the

user’s data to have at least two time periods corresponding to rows in Table 2.

And, it also enables the Jaccard coefficient to be applied.

The size of the neighborhood has significant impact on the recommendation

quality (Herlocker et al., 1999). It also should be determined by varying its

size in experiments. Thus, we first tried from 0.6 in decrements of 0.1 as the

size of the neighborhood. However, we identified that when the value is

greater than or equal to 0.4, no items were recommended due to the sparsity

problem. Therefore, we realized that setting 0.1 as the value gets better rec-

ommendations than setting 0.2 or 0.3, and it is appropriate to recommend 10

items to the target users in the top-N recommendation.

5.4 Evaluation Metrics

In this section, we discuss some techniques used for testing the accuracy of our

algorithms. Generally, there are two different accuracy metrics. One is predic-

tive accuracy metrics that empirically measure how well a system can predict

41

an exact rating value for a specific item. The other is classification accuracy

metrics that measure how close a system’s predicted ranking of items for a

user differs from the user’s true ranking of preference (Herlocker et al., 2004).

In this thesis, we are not interested in the most accurate prediction of an exact

rating which a user would have given to the target item. Rather we would like

to have a system that can accurately recommend items that are liked by the

user. Therefore, we use three metrics often used to evaluate classification ac-

curacy, namely, Recall, Precision, and F1, to determine the quality of collabo-

rative filtering systems using data recency techniques.

Classification accuracy metrics measure the frequency with which the recom-

mender system makes correct or incorrect decisions about whether an item is

good (Herlocker et al., 2004). The metrics are thus relevant for tasks such as

finding good items when users have true binary preferences. Recall represents

the probability that a relevant item will be selected, and precision represents

the probability that a selected item is relevant. The higher the recall and the

precision, the more accurately the recommendations classify.

 Relevant Irrelevant Total
 Recommended a b a+b
 Not Recommended c d c+d
 Total a+c b+d a+b+c+d

Table 5.2: The classification of actual and recommended items

The recall is defined as:

ca
a
+

==
databasetheinitemsrelevantofnumberTotal

drecommendeitemsrelevantofNumberRecall .

The precision is defined as:

42

ba
a
+

==
drecommendeitemsofnumberTotal

drecommendeitemsrelevantofNumberPrecision .

The main goal of our evaluations is to look into the test set and match items

with our top-N set. Hence, Sarwar et al. (2000a) rewrote recall and precision,

as follows:

test
toptestRecall -N∩

= ,

N
-NtoptestPrecision ∩

= ,

where test is the data excluding training data, and top-N is the data in a Rec-

ommendation table from the database.

Precision and recall depend on the separation of relevant and non-relevant

items. They are less appropriate for domains with non-binary granularity of

true preference.

These two measures are, however, often conflicting in nature (Sarwar et al.,

2000a). For instance, increasing the number N in the top-N set tends to in-

crease recall but decreases precision. The fact that both are critical for the

quality judgment leads us to use a combination of the two. Several approaches

have been taken to combine recall and precision into a single metric. One ap-

proach is the F1 metric which combines precision and recall into a single

number (Herlocker et al., 2004; Sarwar et al., 2000a). The value of F1 ranges

from 0 to 1, with a higher value indicating the best performance. Here we as-

sign equal importance to recall and precision, resulting in the following defini-

tion for F1:

43

PrecisionRecall
PrecisionRecall2F1

+
××

=
.

The recall, precision, F1 metrics are important measures in evaluating collabo-

rative filtering algorithms. Among these metrics, we believe that the most im-

portant measure is the recall metric when considering from the sales’ perspec-

tive since no matter how many matching items the system actually recom-

mended, the actual number of purchased matching items is what counts. How-

ever, the user cannot look at too many recommendations, hence precision mat-

ters.

44

Chapter 6
Experimental Results

n this chapter, we present our experimental results regarding our tech-

niques for generating recommendations. Our goal is to evaluate the quali-

ties and performances of the methods provided by the various combinations

described in chapter 3 by comparing existing algorithm. As mentioned before,

we experimented with data from two different target users: i.e., the fake and

real data.

I

6.1 Using Fake Data

We first tried the experiments with fake data that was made to fit selected

temporal cases (see Appendix). Figures 6.1, 6.2, and 6.3 show the results of

the recall, precision, and F1 when using Cases 1/2, 3, and 4 in section 5.2, re-

spectively. Cases 1 and 2 have two categories that are not overlapped. Case 3

has two categories are somewhat overlapped. Case 4 has two categories com-

pletely overlapped.

As we can see in Figure 6.1 which shows the results when using Cases 1 and

2, the recall, precision, and F1 of our methods have improved 0.0% to 20.0%,

0.0% to 4.0%, and 0.0% to 6.7% with average improvements of 13.0%, 2.7%,

and 4.4%, respectively. All of our methods except the pruning strategy with

the linear function got better accuracy performances than existing algorithm.

We can identify that when users’ preferences have changed apparently without

overlapped categories, considering only the recent data and applying weights

45

can give better performances. However, we know that applying weights to the

recent data could give an adverse effect on predictions since it could give less

impact than applying weights to all observations.

Figure 6.1: The experimental results of cases 1 and 2

With respect to Figure 6.2 which is the results when using Case 3, the recall,

precision, and F1 of our methods have improved 0.0% to 20.0%, 0.0% to

4.0%, and 0.0% to 6.7% with average improvements of 10.0%, 2.0%, and

3.3%, respectively. Similar to cases 1 and 2, all of our methods except the

pruning strategy with the linear function got better performance accuracy than

the existing algorithm. The non-pruning strategy with the linear function and

with the kernel function using one parameter have improved less than those of

cases 1 and 2 compared to the existing algorithm; whereas the pruning strategy

with no weights and the non-pruning strategy with linear using two parameters

still give better performance. That is because in the overlap period, the items

of the users’ current preferences can be given less weight than the items of the

user’ past preferences.

46

Figure 6.2: The experimental results of case 3

Looking at Figure 6.3 which is the results when using Case 4, the recall, preci-

sion, and F1 of our methods have improved 0.0% to 10.0%, 0.0% to 2.0%, and

0.0% to 3.3% with average improvements of 6.0%, 1.2%, and 2.0%, respec-

tively. Only the pruning strategy with the linear function using one parameter

and the non-pruning strategy with the linear and kernel functions using one

parameter got better performance accuracy than the existing algorithm. We

cannot see any differences in the pruning strategy with no weights and the

non-pruning strategy with linear using two parameters compared to the exist-

ing algorithm. The reason is that the users’ preferences have not changed. It

means that there are no items outside of the cut-off line since the users are in-

terested in both categories.

To make a long story short, through our experiments with the fake data we

identified that the results of using the linear and kernel functions are almost the

same and they can also give better performance regardless of the change in

users’ preferences. Particularly, in the case where users’ preferences have ap-

47

parently changed, considering the most recent items or applying different pa-

rameters to their current and past clusters can be expected to perform the best

predictive accuracy.

Figure 6.3: The experimental results of case 4

6.2 Using Real Data

Next we experimented with real data. In order to ensure that our results are

statistically accurate, for each of the experiments we perform three different

trials by varying the amount of the dataset used: the first 60%, the first 80%,

and 100% of the data. The results are the averages over these three runs. The

other conditions are given with the same as previous experiments.

Looking at the results in Figures 6.4, 6.5, and 6.6, the recall, precision, and F1

performances of our methods have improved 0.16% to 0.28%, 0.34% to

0.41%, and 0.24% to 0.32% with average improvements of 0.23%, 0.38%, and

0.29%. When using the first 60%, there are no differences (in some cases

48

rather worse) between our methods and the existing algorithm. The wider or-

der date period of data we use the higher differences we get. This suggests that

better predictions could be achieved through using a wider range of data.

Figure 6.4: The recall accuracy when using real data

Figure 6.5: The precision accuracy when using real data

49

Figure 6.6: The F1 accuracy when using real data

All of the methods we proposed generally showed improvements in prediction

compared to the existing algorithm. Especially, applying the linear function

with either the pruning or non-pruning strategy showed the biggest improve-

ment on each metric.

When using fake data the change in user preference is clear and distinct. How-

ever, with real data the change is more gradual. This means that clustering

may be approximate. This makes the results for the pruning strategy different

in these two cases, with real data giving poorer results.

We also discovered that the pruning strategy could subject some target users to

be recommended nothing. The reason is that due to discarding (i.e., pruning)

items in their past clusters there are no similar users on which to base the rec-

ommendations.

With fake data, using the kernel function revealed a similar result as using the

linear function, but with real data, we get less performance. The reason is that

50

with fake data, the number of data in all users’ training set is the same,

whereas it is not the same with real data. Thus, when using the first 80% of the

data we saw the best performance, but when using 100% it was not the best

performance. We might say that using the kernel function tends to show ir-

regular performance.

In addition, the recommended lists of some target users who did not change

their preferences remain the same as when using the existing algorithm. Simi-

larly, whether selecting the pruning or non-pruning strategy when employing

the linear function the recommendation lists of the target users is the same.

Although our methods have improved the predictive accuracy, the differences

are lower than our expectation and are disappointing. As mentioned in section

5.1, we realized that the dataset is too sparse to see how many recommended

items really matched the purchased ones among the test set, since no matter

which methods we select, only at most 12 items were matched.

For that reason, in order to make the impact of the temporal factors more ap-

parent, we need an assumption that the hits of the matching genres can be used

on behalf of those of the exact matching items. Since even though there are no

matching items between the test and top-N sets, users’ probabilities of re-

purchasing items among genres in their test sets are higher.

For instance, consider the recommendation {A1, A5, B3, B7} and the actual

purchase {A2, A6, B4, B8}. With exact matching we get a 0% prediction, but

by matching genre’s (i.e., “A” instead of “A1”) we get a 100% prediction of

two A’s and two B’s.

Figure 6.7 shows the experimental result when considering matching genres

51

between the test and top-N sets. The Recall, Precision, and F1 performances of

our methods have improved by 0% to 2.8%, -0.5% to 3.3%, and -0.4% to

3.0% with average improvements of 1.5%, 2.3%, and 2.2%. Therefore, we can

say that considering matching genres as well as matching items, we could get

better predictive accuracy.

Figure 6.7: The experimental results when considering matching genres

52

Chapter 7
Conclusions and Future Work

he main contribution of this thesis is to present a new framework which

introduces a method to apply temporal factors to current collaborative

filtering systems. We have proposed and evaluated some time sensitive ap-

proaches with various combinations of time-based forgetting strategies and

functions.

T

7.1 Summary

For the first time, we have brought up the data recency problem in collabora-

tive filtering systems and defined the problem as the negative impact of old

data on the predictive accuracy of collaborative filtering systems.

We reviewed the procedure of typical collaborative filtering systems and

looked into some problems identified by researchers and commercial applica-

tions. Also, we studied some time-related research that has been published so

far.

In order to overcome the data recency problem, we designed the pruning and

non-pruning strategies, and employed the linear and kernel functions to apply

different weights to users transaction data. Also, we demonstrated how to de-

tect users’ current preferences by classifying the data into current and past

clusters by utilizing a clustering technique. Depending on it, we determined

points at which interests changed.

53

It was achieved by implementing the Temporal Factors Collaborative Filtering

(TFCF) system. The system is designed to allow control of experimentation

with the techniques developed. We tested with five combinations, the pruning

strategy with no weights and the linear function, the non-pruning strategy with

the linear function using one and two parameters, and the kernel function us-

ing one parameter, and compared them with the existing algorithm.

Through our extensive experiments, we have obtained some improvement of

accuracy predictions compared to a typical collaborative filtering algorithm. In

general, using the linear function can be expected to provide the best predic-

tive accuracy. If there are many users whose preferences have changed, we

can also expect that the pruning strategy can get the best performances.

From our results it is clear that temporal factors should not be neglected when

making recommendations. We believe that this thesis will pave the way for

further analysis of applying temporal factors for the improvement of predictive

accuracy.

7.2 Future Work

We employed the DeliBook dataset for our experimentations. Since the dataset

is so sparse, we had trouble in showing good results. Hence, we would like to

experiment with datasets that are non-sparse and have enough long periods of

users’ order dates in order to verify these apparently better recommendations.

We also want to leave the rated case to the future work since we considered

only the purchase and non-purchase cases. We think that applying the rated

case will be a more complex approach. Since the training data are applied

54

weights, the test data also should be applied weights which completely depend

on their orders. But we do not know the order in which the items appear, and

here lies the problem.

Lastly, the linear and kernel functions consider only the order of item observa-

tions. Thus, they do not consider how far it is between the two observations.

The consequence is that the same proportions of weights are applied whether

the gap is only one day or several years.

55

APPENDICES

Appendix A: DDL of TFCF System

CREATE TABLE Training (

 ID int IDENTITY (1, 1) NOT NULL ,

 UserID varchar (30) NOT NULL ,

 ItemID varchar (10) NOT NULL ,

 GenreID varchar (10) NOT NULL ,

 OrderDate datetime NOT NULL ,

 TargetFlag char (1) NOT NULL

)

CREATE TABLE Recmnds (

 UserID varchar (30) NOT NULL ,

 Priority int NOT NULL ,

 ItemID varchar (10) NOT NULL ,

 GenreID varchar (10) NOT NULL

)

56

Appendix B: Fake Data

B1. Cases 1 and 2:

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '16259', '1067', '4/14/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '18236', '1067', '5/2/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '20755', '1067', '5/30/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '26843', '1067', '6/20/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '43118', '1067', '7/18/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11928', '1129', '2/2/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '12247', '1129', '5/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '12776', '1129', '8/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11929', '1129', '1/8/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '13435', '1129', '5/11/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '18775', '1129', '9/16/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '19756', '1129', '9/29/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '21039', '1129', '10/12/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '28412', '1129', '11/24/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '29769', '1129', '12/1/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '49153', '1067', '4/23/03', '1');

57

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '7684', '1067', '6/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '7848', '1067', '7/17/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '22443', '1067', '12/5/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '27370', '1067', '4/19/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '12376', '1425', '11/19/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '12449', '1425', '12/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '18441', '1425', '1/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '18511', '1425', '2/20/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '28904', '1425', '3/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '17208', '1528', '6/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '17524', '1528', '7/3/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '34011', '1528', '8/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '36994', '1528', '12/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '39939', '1528', '4/30/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26371', '1623', '10/7/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26415', '1623', '10/31/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '27343', '1623', '11/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '27430', '1623', '12/24/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '25540', '1623', '3/8/03', '1');

58

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Lee', '11645', '1959', '4/19/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Lee', '12759', '1959', '6/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Lee', '15956', '1959', '7/13/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Lee', '26893', '1959', '12/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Lee', '16625', '1959', '3/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '17208', '1528', '12/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '34011', '1528', '3/20/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '36994', '1528', '4/30/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '39939', '1528', '6/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '14991', '1528', '6/2/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '42057', '1623', '6/19/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '41545', '1623', '7/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '32141', '1623', '7/29/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '29364', '1623', '2/14/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '25540', '1623', '5/19/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '15951', '1959', '3/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '23308', '1959', '6/26/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '25230', '1959', '8/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '47520', '1959', '11/29/02', '1');

59

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ann', '21218', '1959', '3/21/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ann', '1112', '690', '5/15/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ann', '11138', '690', '6/8/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ann', '1327', '690', '7/24/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ann', '11140', '690', '3/1/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ann', '1256', '690', '7/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1595', '690', '1/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '15950', '690', '2/11/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '16025', '690', '3/10/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1605', '690', '4/16/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1476', '690', '5/5/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '38110', '1425', '6/28/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '7908', '1425', '7/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '7871', '1425', '8/2/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '34974', '1425', '1/7/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '9592', '1425', '6/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '13378', '691', '8/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '27357', '691', '10/2/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29868', '691', '11/9/02', '1');

60

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '45991', '691', '1/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '6195', '691', '3/7/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '29934', '741', '4/4/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '31071', '741', '6/27/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '34304', '741', '7/2/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '31067', '741', '4/20/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Nan', '29193', '741', '6/17/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '8718', '741', '12/19/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '31073', '741', '2/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '31818', '741', '3/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '6497', '741', '5/16/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '31067', '741', '6/11/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '10802', '859', '6/19/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '11856', '859', '6/30/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '15305', '859', '7/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '10801', '859', '2/28/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '11458', '859', '4/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '33633', '859', '4/3/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8128', '859', '5/7/02', '1');

61

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '8258', '859', '7/16/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '49232', '859', '11/10/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '17529', '859', '1/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '22112', '961', '2/6/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '9801', '961', '3/8/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '8717', '961', '5/15/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '10739', '961', '10/12/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Jay', '11927', '961', '3/3/04', '1');

B2. Case 3:

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '16259', '1067', '4/14/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '18236', '1067', '5/2/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '20755', '1067', '5/30/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '26843', '1067', '6/20/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11928', '1129', '7/18/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '43118', '1067', '2/2/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '12247', '1129', '5/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '12776', '1129', '8/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11929', '1129', '1/8/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11930', '1129', '5/11/04', '1');

62

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '18775', '1129', '9/16/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '19756', '1129', '9/29/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '21039', '1129', '10/12/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '49153', '1067', '11/24/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '28412', '1129', '12/1/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '7684', '1067', '4/23/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '29769', '1129', '6/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '7848', '1067', '7/17/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '22443', '1067', '12/5/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Tom', '27370', '1067', '4/19/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '12376', '1425', '6/19/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '12449', '1425', '11/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '18441', '1425', '1/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '18511', '1425', '2/20/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '17208', '1528', '3/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '28904', '1425', '6/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '17524', '1528', '7/3/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '34011', '1528', '8/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '36994', '1528', '12/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '39939', '1528', '4/30/04', '1');

63

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26371', '1623', '7/7/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26415', '1623', '7/31/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '27343', '1623', '11/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '27430', '1623', '2/24/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '11645', '1959', '3/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '25540', '1623', '4/19/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '12759', '1959', '6/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '15956', '1959', '7/13/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26893', '1959', '12/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '16625', '1959', '3/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '17208', '1528', '6/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '34011', '1528', '11/20/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '36994', '1528', '4/30/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '42057', '1623', '6/2/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '39939', '1528', '6/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '41545', '1623', '6/19/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '14991', '1528', '7/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '32141', '1623', '7/29/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '29364', '1623', '2/14/04', '1');

64

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '25540', '1623', '5/19/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '15951', '1959', '3/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '23308', '1959', '6/26/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '25230', '1959', '7/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '47520', '1959', '11/29/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '1112', '690', '1/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '21218', '1959', '2/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '11138', '690', '6/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '1327', '690', '7/24/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '11140', '690', '3/1/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '1256', '690', '7/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1595', '690', '6/8/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '15950', '690', '12/11/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '16025', '690', '3/10/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1605', '690', '4/16/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '38110', '1425', '5/5/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1476', '690', '6/28/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '7908', '1425', '7/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '7871', '1425', '8/2/03', '1');

65

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '34974', '1425', '1/7/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '9592', '1425', '6/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '13378', '691', '8/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '27357', '691', '10/2/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29868', '691', '11/9/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29934', '741', '1/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '45991', '691', '3/7/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '31071', '741', '4/4/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '6195', '691', '6/27/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '34304', '741', '7/2/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '31067', '741', '4/20/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29193', '741', '6/17/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '8718', '741', '9/19/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '31073', '741', '12/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '31818', '741', '3/21/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '6497', '741', '5/16/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '10802', '859', '6/11/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '31067', '741', '6/19/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '11856', '859', '6/30/03', '1');

66

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '15305', '859', '7/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '10801', '859', '2/28/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '11458', '859', '4/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '33633', '859', '4/3/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8128', '859', '5/7/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8258', '859', '7/16/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '49232', '859', '11/10/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '22112', '961', '1/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '17529', '859', '2/6/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '9801', '961', '3/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8717', '961', '5/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '10739', '961', '10/12/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '11927', '961', '3/3/04', '1');

B3. Case 4:

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '16259', '1067', '4/14/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11928', '1129', '4/14/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '18236', '1067', '5/2/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '12247', '1129', '5/30/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '20755', '1067', '6/20/02', '1');

67

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '12776', '1129', '5/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '26843', '1067', '8/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11929', '1129', '8/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '43118', '1067', '3/14/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Sam', '11930', '1129', '5/11/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '18775', '1129', '9/16/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '49153', '1067', '9/16/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '19756', '1129', '10/12/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '7684', '1067', '9/29/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '21039', '1129', '11/24/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '7848', '1067', '6/30/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '28412', '1129', '7/17/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '22443', '1067', '7/17/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '29769', '1129', '2/19/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Tom', '27370', '1067', '4/19/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '12376', '1425', '11/19/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '17208', '1528', '11/19/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '12449', '1425', '12/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Kim', '17524', '1528', '1/15/03', '1');

68

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Kim', '18441', '1425', '2/20/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Kim', '34011', '1528', '7/3/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Kim', '18511', '1425', '8/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Kim', '36994', '1528', '8/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Kim', '28904', '1425', '2/17/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Kim', '39939', '1528', '4/30/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26371', '1623', '10/7/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '11645', '1959', '10/7/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26415', '1623', '10/31/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '12759', '1959', '11/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '27343', '1623', '12/24/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '15956', '1959', '6/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '27430', '1623', '7/13/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '26893', '1959', '7/13/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '25540', '1623', '1/10/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Lee', '16625', '1959', '3/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '17208', '1528', '12/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '42057', '1623', '12/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Meg', '34011', '1528', '3/20/03', '1');

69

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '41545', '1623', '4/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '36994', '1528', '6/15/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '32141', '1623', '7/21/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '39939', '1528', '7/29/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '29364', '1623', '7/29/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '14991', '1528', '4/1/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Meg', '25540', '1623', '5/19/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '15951', '1959', '3/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '1112', '690', '3/30/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '23308', '1959', '6/26/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '11138', '690', '8/5/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '25230', '1959', '11/29/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '1327', '690', '6/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '47520', '1959', '7/24/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '11140', '690', '7/24/0', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '21218', '1959', '5/2/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ann', '1256', '690', '7/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '1595', '690', '1/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Ken', '38110', '1425', '1/8/03', '1');

70

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '15950', '690', '2/11/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '7908', '1425', '3/10/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '16025', '690', '4/16/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '7871', '1425', '7/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '1605', '690', '8/2/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '34974', '1425', '8/2/034', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '1476', '690', '1/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Ken', '9592', '1425', '6/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '13378', '691', '8/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29934', '741', '8/27/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '27357', '691', '10/2/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '31071', '741', '11/9/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29868', '691', '1/1/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '34304', '741', '6/27/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '45991', '691', '7/2/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '31067', '741', '7/2/034', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '6195', '691', '2/10/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Nan', '29193', '741', '6/17/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Eve', '8718', '741', '12/19/02', '1');

71

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '10802', '859', '12/19/02', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '31073', '741', '2/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '11856', '859', '3/21/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '31818', '741', '5/16/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '15305', '859', '6/30/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '6497', '741', '7/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '10801', '859', '7/1/03', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '31067', '741', '1/5/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)
VALUES ('Eve', '11458', '859', '4/10/04', '1');

INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '33633', '859', '4/3/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '22112', '961', '4/3/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8128', '859', '5/7/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '9801', '961', '7/16/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8258', '859', '11/10/02', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '8717', '961', '3/8/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '49232', '859', '5/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '10739', '961', '5/15/03', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '17529', '859', '1/30/04', '1');
INSERT INTO Training (UserID, ItemID, GenreID, OrderDate, TargetFlag)

VALUES ('Jay', '11927', '961', '3/3/04', '1');

72

REFERENCES

Billsus, D. and Pazzani, J. (1999). A Hybrid User Model for News Story Clas-
sification. In Proceedings of the 17th International Conference on User
Modeling, Springer Verlag, pp. 99-108.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical Analysis of Pre-
dictive Algorithms for Collaborative Filtering. In Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence, pp. 43-52.

Chalmers. M., Rodden. K., and Brodbeck. D. (1998). The Order of Things:
Activity-Centred Information Access. In Proceedings of the 7th Interna-
tional Conference on the World Wide Web, Brisbane, April 1998, pp. 359-
367.

Claypool, M., Le, P., Waseda, M., and Brown, D. C. (2001). Implicit Interest
Indicators. In Proceedings of the 6th International Conference on Intelli-
gent User Interfaces, pp. 33-40.

Crabtree, I. B. and Soltysiak, S. J. (1998). Identifying and Tracking Changing
Interests. International Journal of Digital Libraries, vol. 2: 38-53.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers.

Herlocker, J., Konstan, J., Borchers, A., and Riedl, J. (1999). An Algorithmic
Framework for Performing Collaborative Filtering, In Preceedings of
ACM SIGIR’99.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evalu-
ating Collaborative Filtering Recommender Systems. In Proceedings of
the ACM Transactions on Information Systems, vol. 22, no. 1, pp. 5-53.

Hofmann, T. (2003). Collaborative Filtering via Gaussian Probabilistic Latent
Semantic Analysis. In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pp. 259-266.

Huang, Z., Chen, H., and Zeng, D. (2004). Applying Associative Retrieval
Techniques to Alleviate the Sparsity Problem in Collaborative Filtering. In
Proceedings of the ACM Transactions on Information Systems, vol. 22, no.
1, pp. 116-142.

Karypis, G. (2000). Evaluation of Item-Based Top-N Recommendation Algo-
rithms. Technical Report #00-046, Dept. of Computer Science, University
of Minnesota, Minneapolis, MN.

73

http://www.wpi.edu/~yoonskim/sub_02/articles/breese98empirical.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/breese98empirical.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/claypool01implicit.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/claypool01implicit.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/karypis00evaluation.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/karypis00evaluation.pdf

Koychev, I. (2000). Gradual Forgetting for Adaptation to Concept Drift. In
Proceedings of ECAI 2000 Workshop: Current Issues in Spatio-Temporal
Reasoning, pp. 101-106, Berlin, Germany.

Koychev, I. and Schwab, I. (2000). Adaptation to Drifting User’s Interests. In
Proceedings of ECML2000/MLnet Workshop: Machine Learning in the
New Information Age, pp. 39-45, Barcelona, Spain.

Kukar, M. (2003). Drifting Concepts as Hidden Factors in Clinical Studies. In
Proceedings of 9th Conference on Artificial Intelligence in Medicine in
Europe, AIME 2003, Protaras, Cyprus.

Maneeroj, S., Kanai, H., and Hakozaki, K. (2002). An Improved Recommen-
dation Method for Better Filtering Information out of Database. IPSJ
Transactions on Databases Abstract, vol. 43, no. SIG05-007.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994).
GroupLens: An Open Architecture for Collaborative Filtering of Netnews.
In Proceedings of the 1994 ACM Conference on Computer Supported Co-
operative Work, pp. 175-186, Chapel Hill, NC.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000a). Analysis of Rec-
ommendation Algorithms for E-Commerce. In Proceedings of ACM Con-
ference on Electronic Commerce, Minneapolis, MN.

Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., and
Riedl, J. (1998). Using Filtering Agents to Improve Prediction Quality in
the GroupLens Research Collaborative Filtering System. In Proceedings of
the ACM Conference on Computer Supported Cooperative Work, Seattle,
WA.

Schwab, I., Pohl, W., and Koychev, I. (2000). Learning to Recommend from
Positive Evidence. In Proceedings of Intelligent User Interfaces, pp. 241-
247, New Orleans, LA.

Yoo, H. (2004). DeliBook On-line Bookstore Dataset. YoungJin E-Commerce.
http://www.delibook.com.

74

http://www.wpi.edu/~yoonskim/sub_02/articles/resnick94grouplens.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/sarwar00analysis.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/sarwar00analysis.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/sarwar98using.pdf
http://www.wpi.edu/~yoonskim/sub_02/articles/sarwar98using.pdf

	Worcester Polytechnic Institute
	Digital WPI
	2004-09-24

	Addressing the Data Recency Problem in Collaborative Filtering Systems
	Yoonsoo Kim
	Repository Citation

	Chapter 1
	Introduction
	1.1 Problem Statement
	1.2 Thesis Organization

	Chapter 2
	Background and Related Work
	2.1 Collaborative Filtering Algorithms
	2.2 Problems with Collaborative Filtering
	2.3 Time-related Research

	Chapter 3
	Proposed Approach
	3.1 Applying Temporal Factors
	3.2 Detecting User Changing Preferences
	3.3 Applying Temporal Factors �based on the User Preferences
	3.4 The Recommendation Process

	Chapter 4
	Implementation
	4.1 Graphical User Interface
	4.2 Database
	4.3 Algorithms
	4.4 Miscellaneousness

	Chapter 5
	Experimental Evaluation
	5.1 Datasets
	5.2 Evaluation Cases
	5.3 Experimental Design
	5.4 Evaluation Metrics

	Chapter 6
	Experimental Results
	6.1 Using Fake Data
	6.2 Using Real Data

	Chapter 7
	Conclusions and Future Work
	7.1 Summary
	7.2 Future Work
	Appendix A: DDL of TFCF System
	Appendix B: Fake Data
	B1. Cases 1 and 2:
	B2. Case 3:
	B3. Case 4:

