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Abstract 

This work is part of an effort to develop an unstructured, three-dimensional, 

direct simulation Monte Carlo/particle-in-cell (DSMC/PIC) code for the simulation of 

non-ionized, fully ionized and partially-ionized flows in micropropulsion devices.  

Flows in microthrusters are often in the transitional to rarefied regimes, requiring 

numerical techniques based on the kinetic description of the gaseous or plasma 

propellants. The code is implemented on unstructured tetrahedral grids to allow 

discretization of arbitrary surface geometries and includes an adaptation capability.   

In this study, an existing 3D DSMC code for rarefied gasdynamics is 

improved with the addition of the variable hard sphere model for elastic collisions 

and a vibrational relaxation model based on discrete harmonic oscillators.  In addition 

the existing unstructured grid generation module of the code is enhanced with grid-

quality algorithms.  The unstructured DSMC code is validated with simulation of 

several gaseous micronozzles and comparisons with previous experimental and 

numerical results.  Rothe’s 5-mm diameter micronozzle operating at 80 Pa is 

simulated and results are compared favorably with the experiments.  The Gravity 

Probe-B micronozzle is simulated in a domain that includes the injection chamber and 

plume region.  Stagnation conditions include a pressure of 7 Pa and mass flow rate of 

0.012 mg/s.  The simulation examines the role of injection conditions in micronozzle 

simulations and results are compared with previous Monte Carlo simulations.  The 

code is also applied to the simulation of a parabolic planar micronozzle with a 15.4-

 i



micron throat and results are compared with previous 2D Monte Carlo simulations.  

Finally, the code is applied to the simulation of a 34-micron throat MEMS-fabricated 

micronozzle.  The micronozzle is planar in profile with sidewalls binding the upper 

and lower surfaces. The stagnation pressure is set at 3.447 kPa and represents an 

order of magnitude lower pressure than used in previous experiments.  The simulation 

demonstrates the formation of large viscous boundary layers in the sidewalls. 

A particle-in-cell model for the simulation of electrostatic plasmas is added to 

the DSMC code.  Solution to Poisson's equation on unstructured grids is obtained 

with a finite volume implementation.  The Poisson solver is validated by comparing 

results with analytic solutions.  The integration of the ionized particle equations of 

motion is performed via the leapfrog method.  Particle gather and scatter operations 

use volume weighting with linear Lagrange polynomial to obtain an acceptable level 

of accuracy.  Several methods are investigated and implemented to calculate the 

electric field on unstructured meshes.  Boundary conditions are discussed and include 

a formulation of plasma in bounded domains with external circuits.   The unstructured 

PIC code is validated with the simulation of a high voltage sheath formation.    
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Nomenclature 

SI units were used throughout this work.  When a symbol corresponds to more than 

parameter, the variable of interest will be made clear by the context.  Boldface 

denotes vector or matrix (tensor) quantities.  The magnitude of a vector is denoted 

using the same symbol without boldface type.  Parameters not listed here are denoted 

explicitly in the text. 

 

A area 

B magnetic flux density 

C capacitance 

c speed of light in free space 

D electric displacement 

d molecular diameter 

E electric field 

E energy 

e elementary charge (1.602177x10-19 coulombs) 

F force vector 

f distribution function 

g relative velocity 

H magnetic field 

h (local) characteristic mesh spacing; also, Planck’s constant 

 x



I current 

j current density 

k Boltzmann’s constant (1.380658x10-23 J/K) 

Kn Knudsen number 

L inductance 

m mass 

N number of nodes 

NF,i number of neighbors of node i 

n̂  unit normal vector (outward, where applicable) 

n number density; also, time-step counter 

Q total charge 

q electric charge  

R resistance 

r (radial) distance 

Re Reynolds number 

T temperature 

t time 

v velocity vector 

x position vector 

 

Θ characteristic temperature 

Λ fraction of inelastic collisions 

 xi



Ξ average degrees of freedom 

Φ (electric) scalar potential 

 

α thermal accommodation coefficient 

ε electric permittivity; also, angle between collisional plane and local x-y plane 

εo permittivity of free space 

θ (impact) angle 

λ mean free length; also, wavelength 

µ magnetic permeability 

µo permeability of free space 

ν variable hard sphere exponent; also, frequency 

ρ density (of mass or charge) 

σ molecular cross section; also, surface charge density 

χ molecular scattering angle 

ω viscosity temperature exponent 

 

Subscripts 
* nozzle throat (sonic) condition; also post-collisional values 

c capacitor 

cm center of mass 

conv convective 

De Debye 

 xii



e electron 

i ion 

M momentum 

ref reference 

rot rotational 

S surface 

T total 

tr translational 

V volume 

vib vibrational 

x x-component 

y y-component 

z z-component 

 

 xiii



Chapter 1  

1.1 Introduction 
The increasingly prolific nature of microspacecraft has motivated interest in 

smaller propulsion systems.  As electronics continue to be manufactured with greater 

capabilities at smaller sizes, new space missions are conceived of consisting of 

capable spacecraft with minimal weight.  Micropropulsion is a mission enabling 

technology for microspacecraft, providing precision maneuvering necessary for the 

nature of such craft.  Missions consisting of constellations of microspacecraft have 

been conceived of where the precision maneuvering and communication among the 

spacecraft lead to collective capabilities, such as an antenna with an aperture equal 

the diameter of the constellation (Schilling et al., 2000).  Manufacturing techniques 

similar to those used in MEMS (Micro Electro Mechanical Systems) have enabled the 

precision manufacture of very small propulsion systems. 

Microthrusters typically have thrusts in the millinewton range and are 

applicable for use as precision manuevering propulsion for spacecraft up to 100 kg 

and as primary propulsion for smaller spacecraft.  Table 1 summarizes the classes of 

microspacecraft and applicability of micropropulsion (reproduced from Mueller, 

2000). 
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Table 1: Classication of Microspacecraft (from Mueller, 2000) 

Designation Spacecraft mass, 

kg 

Spacecraft power, 

W 

Spacecraft 

dimension, m 

Microspacecraft 

(Air Force/European 

definition) 

10-100 10-100 0.3-1 

Class I microspacecraft 

(≤10 kg, nanosat) 

5-20 5-20 0.2-0.4 

Class II microspacecraft 1-5 1-5 0.1-0.2 

Class III microspacecraft 

(picosat) 

<1 <1 <0.1 

 

Micropropulsion was considered to some degree during the 1960s and earlier.  

Early efforts involving low-thrust propulsion were mainly concerned with station-

keeping, as the miniaturization of electronics at this phase of space exploration had 

not matured to allow microspacecraft in the modern sense of the word.  It is worth 

mentioning that Explorer I would fit into the category of microspacecraft, having a 

mass of 14.5 kg (Ketsdever and Micci, 2000).  A modern focus in microspacecraft 

research involves the complete integration of technologies in a light but highly 

capable package.  Towards this end, new manufacturing techniques are being 

developed, some similar to those used for the manufacture of MEMS. 

Micropropulsion may be classified by the dominant thrust production 

mechanism as cold-gas, chemical, electrothermal, electrostatic, or electromagnetic.  

Cold-gas microthrusters derive all of their energy from this thermodynamic 
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expansion.  An example of a cold-gas microthruster is shown in Figure 1 (courtesy of 

Robert Bayt).  Chemical reactions may also be used to increase thrust levels – 

however, only a few chemical microthrusters have so far been investigated due to the 

complexity of regulating a chemical reaction reliably on such a small scale.  Electrical 

microthrusters appear more promising as electrical energy may in principle be 

converted to mechanical thrust with no limit on power supply (save weight and 

thermal considerations) .  The efficiency of the propulsion system is of concern both 

in terms of energy and in the velocity imparted to a unit mass of propellant (specific 

impulse).  A thruster with high energy-efficiency and specific impulse minimizes the 

size and weight of the power supply (for electric micropropulsion) and propellant. 

 

Figure 1. MEMS Micronozzle, 19 micron throat, 5.4:1 expansion ratio (from 

Bayt, 1999) 
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The optimization of micropropulsion systems is an issue of increasing 

concern.  Currently, many micropropulsion devices have low efficiencies in terms of 

directed kinetic energy versus potential energy (thermal, chemical, and electrical) due 

to a lack of understanding of the flows in such devices.  In order to improve 

micropropulsion techniques, the flows of such devices must be modeled in order to 

gain insight into the driving thrust mechanisms.  With accurate models of 

microthrusters, engineers may improve the operation of such devices through 

minimization of loss mechanisms and corresponding increase of thrust and specific 

impulse.  The optimization of micro propulsion system will enable better performance 

per unit mass and lead to enablement of microspacecraft systems. 

The continuum assumption commonly used in gas and plasma dynamics 

breaks down at smaller densities and/or characteristic dimensions of flow.  The 

Knudsen number is the ratio of the mean free path of gas molecules to a characteristic 

dimension of flow.  As the Knudsen number becomes larger, the collision rate 

becomes too low to maintain local thermodynamic equilibrium.  Furthermore, the 

expansion of a propellant from chamber conditions to vacuum often involves flow 

regimes from continuum to transition to free molecular, though the smallest devices 

may not have any component in the continuum regime.  The transition and free-

molecular regimes need to be modeled using kinetic theory. From a computational 

point, particle-base methods must be used to accurately model transitional 

micropropulsion flows. 
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The objective of this thesis is the development of a computational method for 

the simulation of rarefied and transitional flows in gaseous and plasma 

micropropulsion devices.  The computational model will be based on stochastic 

particle simulation methods and contain the necessary algorithms for three-

dimensional simulations of neutral and fully ionized microflows in arbitrary 

geometries.  This computational method is applied to internal flows of cold-gas 

microthrusters and electrostatic plasma simulations. 

1.1.1 Cold-Gas and Chemical Micropropulsion 

In this section, we review the previous work and state of the art of cold-gas 

and chemical microthrusters.  The small thrust levels in traditionally machined 

nozzles are achieved through use of a low plenum pressure.  The use of a low 

pressure corresponds to low Reynolds number and large boundary layers in the 

nozzle.  In contrast, MEMS nozzles such as shown in Figure 1 use plenum pressures 

often greater than one atmosphere, minimizing the viscous effects and leading to 

higher nozzle efficiencies. 

Rothe’s experiments (Rothe, 1971) demonstrated the qualitative difference 

between high and low Reynolds number nozzle flows. Rotational temperature and 

number density along the nozzle centerline were measured using analysis of electron-

beam fluorescence by two spectrometers.  Two graphite nozzles, as shown in Figure 2 

(2.5 and 5.1mm throat diameters), were used by Rothe.  The test gas was nitrogen at a 

stagnation temperature of 300K at chamber pressures from 88-2000 Pa.  Electron 
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beams were passed through small holes in the nozzle and reflected to the 

spectrometers downstream.  For higher Reynolds numbers, the temperature decreased 

along the centerline was monotonic.  For more rarified flows, the temperature reached 

a minimum and increased again, due to the broadening of the viscous boundary layer 

at low densities. 

 

Figure 2. Schematic of Rothe’s nozzle with 5.1 mm throat diameter (from Rothe 

1971) 

The Gravity Probe-B (GP-B) spacecraft considered cold-gas micropropulsion 

as mission-enabling technology.  GP-B is scheduled for launch in Septemeber. 2002 

(Mullins, 2000) and is designed to investigate the relativistic precession of an Earth 

orbiting gyroscope in a drag-free environment.  By monitoring the drag-makeup 

thrust, detailed information may be obtained about the variations of density and winds 

of the atmosphere at the orbital altitude of 600 km.  The nullification of the drag force 

is to be accomplished with cold gas thrusters operating in the milli-Newton range.  
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The experiments on board must be cryogenically cooled, and the boil-off helium used 

for attitude control and drag correction.  The Knudsen number in the nozzle at these 

conditions is 0.01-1 corresponding to stagnation pressures of 7-930Pa (Boyd et al., 

1994). The fluid effects and thermal non-equilibrium of this regime lead to 

experimental (Jafry et al., 1992) and computational (Boyd et al., 1994) investigations 

of a prototype nozzle and comparison to theories for this flow regime. 

Mass flow measurements of the GP-B prototype nozzle were performed by 

Jafry and Vanden Beukel (1992) using a helium mass spectrometer in a vacuum 

facility.  The stangation temperature was maintained at 286K.  The throat diameter of 

the prototype nozzle used is 2.5mm and the exit diameter is 5mm.  Mass flux relative 

to centerline values are given in ten-degree increments 2.38 cm from the nozzle exit.  

The far field plume shape was also observed.  Results were compared with free 

molecular and continuum (Boynton-Simons) models and a good comparison was 

found with both models. 

The most recent advance in micronozzles is their manufacture by techniques 

used for MEMS.  Etching technology as used in the production of integrated circuits 

may be used to create micropropulsion devices.  Isotropic etching may be achieved by 

wet chemical etching, while anisotropic etching may be achieved with ion etching 

(Bayt et al., 1997).  Use of deep reactive ion etching allows the creation of several 

two-dimensional micronozzles on a single chip.  The development of boundary layers 

on the sidewalls decreases the effectiveness of 2-D MEMS nozzles, however. Three-

dimensional nozzles may be created with anisotropic etching of a single silicon 
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crystal to create converging-diverging with a square cross-section.  Laser machining 

may also be used to create nozzles of arbitrary shape (Janson et al., 1999).  The use 

of new manufacturing techniques has facilitated the creation of smaller nozzles than 

possible with traditional machining techniques.  The ability to manufacture smaller 

nozzles permits lower thrust for higher chamber pressures and Reynolds numbers, 

which may minimize viscous effects associated with low thrust nozzles (Ivanov et al., 

1999). 

Several geometries (conical, bell, and trumpet) of two-dimensional ion etched 

micronozzles were investigated experimentally and computationally by Bayt et al. 

(1997).  The throat diameter of the nozzles studied was about 30 microns, compared 

to an etch depth of 370 microns.  Nitrogen was used as a propellant at chamber 

pressures from 1-150 psia (6895-1.03x106 Pa), exhausting into an atmospheric or 5 

torr (667 Pa) background pressure.  Mass flow rates were determined as a function of 

chamber pressure.  At Re = 1000, the Knudsen number was found to be 0.001 at the 

throat and 0.005 inside the nozzle at the lip.  This is well into the velocity slip regime.  

A two-dimensional finite volume approximation of the Navier-Stokes equation was 

used to model the micronozzles.  The code included velocity slip effects, present in 

this regime. 

Bayt and Breuer (1998) measured the discharge coefficients of 2-D nitrogen 

ion-etched micronozzles.  Throat widths were from 18 to 37.5 microns with 

expansion ratios from 5.4:1 to 17:1.  Mass flow rates were measured with a 0-1000 

sccm flow meter and thrust measurements were taken on a thrust stand accurate to 1 
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mN over the range of 1-20 mN.  The stagnation pressure was varied between 35,000-

689,000 Pa with a constant stagnation temperature of 295.65K (Bayt, 1999).  A two-

dimensional finite volume Navier-Stokes solver was used similar to that used in Bayt 

et al., 1997.  Numerical and experimental results increasingly diverged as the 

Reynolds number decreased.  The effects of sidewall boundary layers on thruster 

performance are discussed and cited as a reason for the disagreement of experiment 

and two-dimensional numerical calculations.  As the Reynolds number drops, the 

boundary layer thickness increases, decreasing thruster performance. 

The ability to batch manufacture several thrusters on a single wafer using 

MEMS fabrication techniques has enabled the concept of digital microthruster arrays.  

Each thruster is packaged with propellant and can only be fired once.  Chemically 

reacting propellants are most often recommended for this application, and the 

disposable nature of such devices eliminate many of the reliability concerns of other 

chemically propelled microthrusters.  The failure of a single thruster is negligible 

compared to the number of thrusters in the array.  The use of digital microthruster 

arrays is recommended for station keeping and attitude control due to the small 

impulse bits.  Control algorithms for thruster firing must be developed taking into 

account the thruster position and impulse bits.  The advantages of digital 

microthruster arrays are their simplicity and small discrete impulse bit. 

Decomposing solid thrusters using heated filament or laser ignition were 

fabricated using MEMS manufacturing techniques (deep etching) and tested by de 

Groot et al. (1998).  Expansion ratios from 1-25 were considered.  The throat width 
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was 0.3mm and the throat height was 0.55mm.  Fuel pellets of C2H4N6O2 reside in 

each two-dimensional chamber and were ignited to produce nitrogen, hydrogen and 

carbon monoxide.  Screens within the chamber were machined to prevent throat 

blockage by incompletely decomposed chunks of solid propellant.  With an array of 

similar thrusters, a single laser could be used for ignition of the array.  Chamber 

pressures from 0.22 to 0.1 MPa were achieved with thrusts of the order of Newtons 

for durations of a few hundred milliseconds. The initial temperature of decomposition 

was 440-465K and the stagnation temperature was estimated at around 1000K.  Laser 

ignition was not successful; the data for pressure, temperature and thrust reflect only 

the heated wire ignition.  De Groot et al. recommend research into alternative solid 

fuels, as C2H4N6O2 proved unsatisfactory due to poor ignition characteristics from 

lasers and incomplete decomposition of the propellant. 

1.1.2 Electric Micropropulsion 

In general, electric propulsion offers an increased specific impulse over cold 

gas or chemical propulsion.  The three types of electric propulsion are electrothermal 

propulsion (electrically heats the propellant), electrostatic propulsion (derives thrust 

from the qE force), and electromagnetic propulsion (derives thrust from the j×B 

force).  It is to be noted that more than one thrust mechanism many be present in a 

single device.  The drive of electric propulsion devices to smaller sizes has been 

enabled by the miniaturization of power supplies and capacitors as well as MEMS 

fabrication techniques. 
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Field emission electric propulsion (FEEP) is an electrostatic propulsion 

technique offering high specific impulses (~10,000 s) and thrust levels ranging from 

micro-Newtons to milli-Newtons.  These characteristics make FEEP an attractive 

option for very spacecraft requiring precise control.  Liquid metal is fed from a 

reservoir to a needle-like emitter that is biased to a positive potential relative to an 

accelerator electrode.  A conductor with a small aperture opposite and near to the 

emitter is biased to a negative potential.  Due to the high electric field, the liquid 

metal forms cusps.  At a local electric field strength of 106 V/mm, the electrons are 

stripped off the liquid metal surface through field emission (Mueller, 2000).  The 

walls collect the electrons and the ions serve as the propellant.  The beam must be 

neutralized as in an ion thruster to avoid spacecraft charging.  A downside of FEEP 

thrusters is potentially high power requirements due to low thrust to power values 

(Mueller, 2000).  As with any propulsion system, trade-off studies must be conducted 

to determine whether the benefits of FEEP thrusters outweigh the penalties for a 

particular mission. 

The Austrian Research Centre Seibersdorf has investigated FEEP thrusters for 

space applications including in-orbit operations.  Fehringer et al. (1999) have 

experimentally investigated indium FEEP thrusters in attempt to improve their 

operational efficiency and minimize their weight.  The mass efficiency (ratio of 

ionized mass emitted to total mass emitted) was determined and optimized with 

improved emitter design.  The ionized mass emitted was determined by current 

collection assuming that all ions were singly ionized.  The total mass emitted was 
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determined from precision weighing.  The optimizations substantially improved mass 

efficiency, especially at higher currents.  A 12kV power converter with a maximum 

current of 1mA was used as the power supply.  A 500-microampere current for the 

optimized thruster corresponds to a thrust of 55 micro-Newtons.  The needle diameter 

was 50 microns at the tip.  A compact electron emitter was developed for 

neutralization of the emitted ions.  The effectiveness of the neutralization was tested 

through use of external current collection in a vacuum facility.  The experiments 

demonstrated charge neutralization of the ion beam.  The Austrian program as well as 

an Italian program using Cesium demonstrate the applicability of FEEP technology to 

micropropulsion. 

Field emission cathodes utilize a large electric field to allow electrons to 

tunnel off the cathode surface into a vacuum.  Field emission cathodes appear 

promising for use in electric microthrusters, as they may be fabricated using MEMS 

techniques and have much smaller size and weight than hollow and other thermionic 

cathodes.  In addition, field emission cathodes have a lower power requirement than 

thermionic cathodes for comparable emission currents.   

Pulsed plasma thrusters are unsteady electric propulsion devices that are 

powered by exposing the propellant to a short-duration current discharge (from a 

capacitor) in pulses.  Pulsed plasma thrusters (PPTs) achieve propellant acceleration 

from both electrothermal and electromagnetic means.  Though gas-fed PPTs have 

been experimented with, use of Teflon as a propellant for micro-PPTs is more 

attractive due to the simple feed mechanism and high reliability.  To maximize the 

 12



efficiency of PPTs, high current discharges across the propellant in each pulse, 

leading to electromagnetic acceleration as the current increases to the point where 

maximum inductance is achieved (Jahn, 1968).  This is similar to the acceleration 

mechanism of a railgun.  Another mode of operation for the PPT is the current arc 

remaining stationary over the discharge that accelerates the plasma (Keefer et al., 

1997). The discharge also heats the propellant, leading to thermal (gasdynamic) 

acceleration.  The relative contributions to electrothermal and electromagnetic forms 

of acceleration depend on the thruster configuration, mass ablated, and characteristics 

of the circuit. 

Keefer and Rhodes (1997) present an analytical and computational study of 

the acceleration mechanisms of a Teflon coaxial pulsed plasma thruster.  A model is 

developed of the maximum possible component of electromagnetic acceleration and 

compared to the MHD code MACH2.  Two ablated masses were considered for the 

MACH2 simulation:  7.3 and 73 micrograms, where the higher mass is consistent 

with that of a laboratory PPT model (Kamhawi et al., 1996).  For the high-mass case, 

the PPT received most of its thrust from electrothermal acceleration.  The MACH2 

simulation also showed the current being concentrated near the base of the PPT for 

the duration of the pulse, similar to a MHD accelerator.  For the low-density case, the 

thruster received substantial electromagnetic contributions to its thrust.  The 

simulation illustrated the current sheet accelerating down the PPT, pushing the 

propellant in a manner similar to railgun acceleration.  The lower density PPT 
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simulation showed a higher specific impulse and a different mode of acceleration than 

the higher density case. 

The Air Force Research Lab (AFRL) conducted studies of Teflon coaxial 

Micro-PPTs for use on microsattelites (Gulczinkski et al., 2000).  Instead of a 

sparkplug triggering mechanism used traditionally in PPTs, the AFRL designs 

featured pulsed discharge initiation by semiconductor switches or alternatively a self-

triggered design where voltage is applied to a capacitor until the voltage breaks down 

across the propellant face and the discharge is initiated.  Three different propellant 

diameters were studied:  2.21, 3.58, and 6.35mm.  Maximum capacitor energy ranged 

from 3.3 to 15.2 J for a capacitance of 0.1-0.31µF.  The semiconductor switch 

triggered microPPT produced more consistently repeatable impulse bits than the self-

triggered device.  Several designs for the self-triggered PPT were considered before 

finding a configuration that did not fail over 16000 seconds of testing with a firing 

rate of about 1 Hz.  For this configuration, the ablation rate was 1.3 micrograms per 

discharge with 2.4 J expended per discharge (average).  Thrust measurements of the 

self-triggered PPT were made in a vacuum facility with the thruster was fired in 

resonance with a thrust stand so that large deflections could be observed.  Measured 

thrusts ranged from 20 to 80 micro-Newtons. 

Cassady et al. (2000) studied a small rectangular Teflon PPT for use on 

sattelite constellations in the 10-20 kg regime.  The impulse bits produced by the PPT 

was 70 µN s and its total mass was 3.8 kg.  A modular test unit was developed to 

allow the testing of a wide variety of configurations of electrodes and capacitors.  The 
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dimensions of the propellant bar was 0.76 cm by 3.05 cm, the longer length being the 

distance between the electrodes.  Several capacitors were tested to determine which 

one produced the short duration high currents required by the PPT:  an oil-filled 

capacitor, a ceramic capacitor, a mica capacitor, and a metallized film capacitor.  

Current waveforms presented show that all capacitors discharge in under 10 µs.  The 

research presented by Cassady et al. (2000) continues in the selection of an 

appropriate capacitor and miniaturization of the power supply for the PPT. 

1.2 Modeling of Gaseous Microthrusters 
Microthrusters involve the expansion of a propellant into vacuum.  As the 

collision rate falls off in the expansion and flow temperatures freeze (relaxation time 

>> residence time), the continuum assumption commonly used in Navier-Stokes 

based CFD codes fails and the accuracy of results suffers.  Consequently, particle-

based codes such as direct simulation Monte Carlo (DSMC) for gas dynamics and 

particle in cell (PIC) codes for ionized flows must be used in the portion of the 

domain where the continuum description breaks down or throughout the flow.  

Additionally, particle based methods can provide a prediction of backflow and plume 

impingement on spacecraft.  As device scales draw near to the characteristic length of 

particle interaction, breakdown of the continuum assumption occurs further inside the 

device and a kinetic description becomes increasingly necessary. 

The direct simulation Monte Carlo (DSMC) method for gasdynamics (Bird, 

1994) is based on a kinetic description and is applicable to flows where local 

equilibrium breaks down.  A number of computational particles are used to 
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approximate the phase space of the gas.  The DSMC method uses the dilute gas 

assumption that the time of collisions is much less than the time between collisions.  

The motion and collisional processes are uncoupled in time and it can be shown that 

the DSMC method is a first-order solution in time to Boltzmann’s equation (Nanbu, 

2000).  Collisions are modeled probabilistically using models of molecular cross-

sections.  Internal energies, chemical reactions, and other behaviour important to the 

modeling of gases may also be included (Bird, 1998).  The DSMC method has been 

applied to many nozzle flows of in the transition regime. 

The effects of nozzle geometry and stagnation temperature were studied using 

the DSMC method by Zelesnik et al. (1993) for low Reynolds number nozzle flows.  

The variable hard sphere molecule was used as the collisional model and the nozzle 

walls were assumed to be diffusely reflecting.  Particles entered the region 

downstream of the throat according to the results of a Navier-Stokes code.  The code 

was first verified against numerical and experimental results of Boyd et al, 1992.  The 

geometries considered were conical, trumpet shaped and bell shaped, chosen with the 

same throat radius (0.5mm) and area ratio (104.04).  Nitrogen was used with 

stagnation temperatures of 300 K and 1000 K, with stagnation pressure of 1109.6 Pa.  

Data available in the study were the pressure at the exit plane, temperature fields, 

velocity vector fields, and Mach contours.  The trumpet nozzle proved the most 

efficient at low temperatures, though the conical nozzle produced the most thrust as it 

had the highest mass flow rate.  For the heated case (1000 K stagnation temperature), 
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both the trumpet and bell nozzle had comparable efficiencies, 6.5% above that of the 

conical nozzle. 

The Gravity Probe-B prototype cold-gas nozzle was modeled by Boyd, et al. 

(1994) using the DSMC method and compared to experimental results.  The 

simulation was performed on non-uniform, structured, 2-D grids and the nozzle 

surface was assumed have full thermal accommodation.  The calculated angular 

distribution of mass flux compared well with experiment, as did the plume centerline 

mass flux and nozzle discharge coefficient.  Mach contours interior to the nozzle were 

presented, as well as velocity profiles along the plume centerline.  The effect of back 

pressure on calculations was shown by comparing simulation results at vacuum to 

those with a back pressure of 8.7x10-4 Pa.  This study illustrated the application of 

DSMC to supersonic micro-flows and confirmed the experimental and theoretical 

data used in the Gravity Probe-B mission. 

Piekos and Breuer (1996) presented results for the application of the DSMC 

method to helium MEMS flows in a micro-channel and micronozzle.  The DSMC 

method used unstructured 2D grids for the benefit of handling arbitrary geometries.  

The outlet Knudsen numbers in the channel flows was between 0.05 and 0.44.  

Boundary conditions for these subsonic cases came from the method of 

characteristics using a weighted time average of flow statistics.  The interior of a 2-D 

parabolic micronozzle was also simulated with a 15.4 micron throat height and a 

nozzle length of 92.6 microns.  An equilibrium free-stream at atmospheric conditions 

was used upstream and vacuum conditions were used downstream.  Mach and 
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temperature contours were presented, and a Mach number for the velocity component 

tangential to the wall at the exit exceeding 0.5 was observed. 

Rothe’s nozzle (Rothe, 1971) was modeled by Ivanov et al. (1997) with a 

stagnation pressure of 474 Pa using a parallel, axisymmetric, DSMC code.  The 

calculated density and rotational temperatures agreed with the experimental data.  A 

multizone approach was used where a Navier-Stokes code was used when Bird’s 

breakdown parameter was sufficiently small, the DSMC was used in the transition 

region, and a test-particle Monte Carlo (TPMC) was used in the free-molecular 

regime.  This multizone approach features optimal computational efficiency as only 

the necessary computation for each region is performed.  This approach was applied 

(Ivanov et al., 1997) to the study of plume interaction with surfaces similar to the 

ESA’s XMM satellite.  The calculations showed that 15% of the total thrust of two 

thrusters is lost due to plume interaction and impingement on the satellite. 

The role of surface conditions in DSMC is shown with respect to a free-

molecular micro-resistojet (FMMR) by Ketsdever et al., 1998.  The design utilizes a 

surface covered by a thin heated film, which is arranged to be the last surface to 

contact the propellant.  Argon was used as the simulation gas for simplicity, though 

the authors recommended ammonia or water as a propellant for future investigation.  

The throat diameter was 0.1mm and the wall temperature was kept at 300 or 600 K. 

The effects of expansion geometry were studied using surfaces with fully diffuse 

reflection.  The specific impulse was studied as a function of surface accommodation 
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using the Maxwell model and two forms of the Cercignani-Lampis-Lord model.  

Favorable comparison between DSMC results and free-molecular theory was found. 

Spacecraft contamination and the induced environment due to cold-gas 

attitude control thrusters were studied by Gatsonis et al. (1999).  The Environmental 

Monitor Package (EMP) spacecraft carried a pressure sensor which collected data 

from the firings of eight attitude control thrusters.  The EMP spacecraft has a 0.56 m 

diameter base and a length of 0.52 m.  The thrusters used produced thrust from 1.2 to 

3.3 N with an exit diameter 4.8-5.6 mm and a throat diameter of 0.9-1.6 mm.  The 

flow inside the thrusters had a Knudsen number in the order of 1.5x10-6 at the throat 

(Reynolds number ~ 650,000) and 7x10-5 at the exit (Reynolds number 26,000-

60,000).  As the flow is initially continuous, a Navier-Stokes code was used until the 

breakdown of the continuty assumption according to Bird’s breakdown parameter 

(Bird, 1970).  The Navier-Stokes solution then provided input into a three-

dimensional, unstructured DSMC code which is used to simulate the rarefied portion 

of the plume.  The grid for the DSMC code was sized to accurately capture the 

surface geometry and the flow physics.  The DSMC results at the location of the 

pressure sensor entrance were used to determine the presure inside the sensor 

according to the theory of Hughs and de Leeuw.  The simulation results for the 

pressure sensor chamber pressure showed good agreement with the experimental 

measurements for the pitch and yaw thrusters.  Agreement with the roll thrusters is 

less good, but it is demonstrated that this is due to lack of knowledge of the exact 

thruster configuration, as two orders of magnitude difference is observed by slight 
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(2.5 cm) changes in the radial position in the roll thrusters.  This study illustrates the 

value of unstructured DSMC and Navier-Stokes codes to predict complex flow 

configuations with transitions from continuous to rarefied flow. 

The breakdown of the Navier-Stokes equations and equilibrium in 

micronozzles was studied numerically by Ivanov et al. (1999) using a Navier-Stokes 

solver (GASP) and the DSMC method.  The studied focused on characterizing the 

performance of nozzles based on the two techniques.  A conical helium nozzle was 

considered with a sharp throat (radius: 27 microns) that diverged at a 15 degree angle 

to an exit diameter of 81.3 microns.  Two stagnation pressures, 10 and 1 atm, were 

studied at a constant stagnation temperature (297K) to assess the effects of 

breakdown. GASP used first order extrapolation at the nozzle exit, as is common in 

nozzle flow modeling (Ivanov et al., 1999).  The DSMC code featured the majorant 

cell and free cell schemes, adaptation, different time steps, and radial weighting.  

These contribute to the efficiency and accuracy of the calculations.  The two inlet 

DSMC boundary conditions on velocity (uniform and Poiseuille profiles) produced 

similar results.  An area slightly outside the nozzle was also modeled with DSMC for 

accuracy. The DSMC code showed the sonic isoline touching the nozzle lip, while the 

Navier-Stokes calculation showed it removed from the wall an increasing distance 

with increasing rarefaction.  While properties from both calculations agreed near the 

nozzle centerline, as equilibrium breaks down near the nozzle lip pressure and Mach 

contours produced by the different methods diverged.  Breakdown of equilibrium 

occurred further inside the nozzle for the lower chamber pressure case.  The Navier-
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Stokes prediction for specific impulse were higher than the DSMC ones for both 

pressures, and for the lower pressure the N-S results showed a specific impulse higher 

than that of an ideal nozzle.  The DSMC results illustrated a decrease in specific 

impulse for higher expansion ratios for very low Reynolds number nozzle flows.  

Rothe’s nozzle was also studied for Re = 270 and Re = 120.  Both simulations 

compared well with the centerline values of temperature and density found by 

experiment.  The DSMC method compared more favorably to experimental values 

near the nozzle exit wall.  The lower Reynolds number case accentuated this 

behavior, and additionally illustrated a breakdown of equilibrium of translational and 

rotational temperature, which the DSMC code accurately predicted and the Navier-

Stokes code did not.  This study illustrates the importance of outflow boundary 

conditions and the breakdown of the continuum assumption near the nozzle lip. 

The role of the nozzle lip in backflow was studied numerically (Ivanov and 

Markelov, 2000) using the DSMC method with respect to contamination issues 

associated with micronozzle plumes.  Navier-Stokes calculations were also performed 

for the sake of comparison.  It was found that a thick lip (five radii of the nozzle exit) 

can reduce contamination but not eliminate it altogether.  Bird’s breakdown 

parameter along with density and temperature was plotted in the region near the 

nozzle lip of a bell nozzle previously studied (Ivanov et al., 1997).  The loss of 

efficiency when scaling small traditionally machined thrusters to microthrusters is 

chiefly due to increased viscous boundary losses.  In order to reduce these losses, the 

slip velocity at the wall must be increased.  Ivanov and Markelov introduce a fraction 
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of helium (0.1) into the chamber of Rothe’s nitrogen nozzle in order to study the 

effect. Being a lighter gas, helium is forced to the wall and provides an effective 

gasdynamic lubrication.  Velocity profiles at the exit show that the introduction of 

helium decreases the boundary layer thickness and provides a higher exit velocity 

than either nitrogen or helium alone. 

Three-dimensional modeling of microthruster flows is still a developing art.  

The shear magnitude of three-dimensional particle simulation has only been recently 

accessible with modern high-speed computers.  Surface interaction models have not 

been completely studied either empirically or computationally, and often play an 

important role in microthruster simulations.  Injection conditions and chemical 

kinetics appropriate to micronozzle flows are other outstanding issues that have only 

been partially addressed in DSMC modeling.  For high temperature flows, vibrational 

degrees of freedom must also be considered.  Many micronozzle geometries, such as 

planar MEMS micronozzles, result in fully three-dimensional flows that must be 

modeled appropriately.  If spacecraft interaction is to be considered, complex flow 

geometry must be simulated as well.  Gasdynamic modeling of microthrusters useful 

to engineering applications continues to be investigated and improved as 

understanding of issues important to micronozzle flows increases. 

1.3 Modeling of Plasma Microthrusters 
When ionization become important, it is necessary to include electric effects 

when modeling microthrusters.  Plasma modeling performed in the continuum regime 

utilizes the magnetohydrodynamic equations.  As the flows in electric 
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micropropulsion devices may deviate far from equilibrium and the density level is 

low, a kinetic description is most appropriate for the treatment of these flows. 

The particle-in-cell (PIC) method uses weighted particles to represent a 

distribution function, similar to the DSMC method for gasdynamics.  There are 

several levels of approximation in PIC, each of which may be used to treat different 

types of plasma flows.  Flows may be modeled as electrostatic and collisionless.  The 

flow may be modeled as electrostatic with collisions included probabilistically, in 

which case the the simulations are PIC/DSMC models.  The flow may also be 

modeled as electromagnetic (EM-PIC), both with and without collisions.  If collisions 

are included then Boltzmann’s equation is stochastically solved; if collisions are 

neglected then the PIC methodology reproduces Vlasov’s equation (Nanbu, 2000). 

1.3.1 Electrostatic Models 

Electrostatic PIC codes are the most widely used and developed, both because 

of their well-studied computational properties and their application to many problems 

of engineering interest.  Despite the neglect of time-varying magnetic fields, the 

electrostatic formulation is accurate for most electrically driven flows. 

Electrostatic codes are usually based upon a solution to Poisson’s equation 

(Birdsall, 1991) but may be also derived from the current balance equation (Gatsonis 

and Yin, 1997a; Gatsonis and Yin, 1997b) or Gauss’s law for simple geometries.  In 

both the former cases, electrons may be described as fluids through the inclusion of 
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fluid operators as part of the charge density, making the resulting matrices 

algebraically non-linear. 

A 3-D PIC model was applied to the study of field emission cathodes with 

respect to application in electric microthrusters (Marrese et al., 2000).  A planar field 

emission array was modeled as if attached to a spacecraft surface.  The area of the 

field emitter array was 0.22 cm2, and the domain was loaded initially with ambient 

ions and electrons in a Maxwellian distribution.  Thermal particles were also injected 

from the open boundaries, and the field emission cathode array emitted particles in a 

cold beam.  The current density was varied from 34 to 236 mA/cm2, and at lower 

values of current density, potential contours closely resembled planar behavior 

(especially near the center of the array).  At higher values, a more spherical sheath is 

seen. 

Several outstanding computational issues exist in electrostatic plasma 

modeling.  Development of arbitrary circuit boundary conditions for three dimensions 

remains to be done for arbitrary geometries.  In partially ionized flows, a 

methodology for appropriate interaction between neutral and charged particles has 

been developed (Nanbu, 2000) but is not yet widely applied.  Appropriate electric 

flux and particle-surface interaction boundary conditions have not been widely 

developed.  Further development of appropriate boundary condition models and 

particle collision models is important to accurate electrostatic modeling of 

micropropulsion devices. 
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1.3.2 Electromagnetic Models 

When the physical problem includes time-varying fields, it becomes necessary 

to turn to a solution of the full or partial set of Maxwell’s equations: 
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In these equations, H is the magnetic field; J is the current density; D is the 

electric displacement; E is the electric field; B is the magnetic-flux density; ρ is the 

charge density (Jackson, 1999).  In a linear medium, D and E are related according to 

D=εE, and B and H are related according to B=µH, where ε and µ are the permitivity 

and permeability of the medium, respectively. 

Yee (1966) proposed a computational method for electromagnetic wave 

propagation and scattering on two staggered Cartesian grids.  The method is based on  

the Ampere-Maxwell law and Faraday’s law.  The magnetic flux density and electric 

displacement vector are linearly discretized and a leap-frog method is used to advance 

the fields in time for second-order accuracy.  The method is based upon the integral 

representation of the Maxwell equations and that the edges of one mesh correspond 

and are orthogonal to the faces of its dual, and vice versa.  The fields are updated on a 

face by taking the sum of contributions from the alternate field along the edges of the 

face, including contributions of current when updating the magnetic field.  This is a 
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discretized approximation of Stoke’s theorem relating the curl of a field normal to a 

surface to the line integral around the surface. 

Yee’s lattice method may be generalized in principle to any polyhedral mesh 

and a suitable dual using the method of discrete surface integrals (Hermeline, 1993; 

Madsen, 1995).  The discrete surface integral (DSI) method is based on the duality of 

edges and faces of two meshes and uses a discrete approximation to Stoke’s theorem 

for the Ampere-Maxwell law and Faraday’s law.  The DSI method becomes Yee’s 

method on a Cartesian mesh. 

Hermeline (1993) proposed a method for Maxwell’s equations on the 

Delaunay mesh and its Voronoi dual in two and three spatial dimensions with field 

components represented in three dimensions.  It is shown that there are two separate 

methods as the electric and magnetic fields may be associated with either mesh.  

Attention is given to particle and current weighting procedures, which use a 

combination of piecewise linear functions and the least squares method.  Since the 

piecewise linear charge distribution and current density do not exactly satisfy charge 

conservation locally, it is desirable to introduce a correction scheme for the electric 

field based upon deviation from the divergence equation: 

( )
o

E ρϕ
ε

∇ − ∇ =i        (1.2) 

In this equation, φ is the correction potential and ρ is charge density (in 

coulombs).  Since the charge density electric field is known, this leads to a 

formulation for Poisson’s equation: 
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Once the correction potential is obtained, the gradient of this value is added to 

the electric field.  Hermeline (1993) also notes that since all that is needed in the DSI 

formulation is the product of current integrated over the area of the control volume. If 

this current is obtained using particles (via the PIC method) then the enforcement of 

the discretized Gauss law remains a consequence of the discretized Ampere’s law and 

it is unnecessary to correct the electric field.  However, it is noted that this method 

provides noisy results.  Calculations, with error analysis, are presented for the case of 

eigenmodes of a square cavity on 2-D Cartesian and unstructured meshes.  The error 

was comparable for the two meshes and in both cases negligible.  Radiation from a 

dipole was also modeled and results of the two methods were similar.  A thermal 

cathode and photo-injector were also modeled in two dimensions. 

The discrete surface integral method was presented for non-orthogonal 

staggered polyhedrons by Madsen (1995).  Previous approaches to electromagnetics 

in irregular domains, such as stair-stepping Cartesian grids, finite elements, and two 

finite volume formulations, are reviewed and found inadequate.  Madsen presented an 

algorithm for the finite difference time domain method for non-orthogonal polyhedral 

grids with a dual constructed through joining the barycenters of primary cells.  This 

led to one-to-one correspondence between nodes, edges, faces, and cells of the 

primary grid to cells, faces, edges, and nodes of the dual grid.  It was noted that 

solution accuracy degenerates when primary edges and faces do not intersect with 

 27



their dual faces and edges.  Though electric currents were not taken into account in 

this paper, their effects could be added in a manner similar to cases for Cartesian 

grids (Birdsall and Langdon, 1991) or the Voronoi-Delaunay dual (Hermeline, 1993).  

The components of a field (for example, E) normal to the surface may be updated 

using an integral around the edges of the face of the complement field (B in this 

example).  The field at the nodes may be obtained through a 3x3 system of equations 

based on the values calculated at the faces of the grid bordering the edge of interest.  

This leads to several values of the field which are interpolated to the face either by a 

vector sum average, a partially volume weighted averaged, or a fully volume 

weighted average.  The field obtained at the face due to the updating of its derivative 

is projected onto the edge to update the complementary field in a similar manner.  It 

was noted that this algorithm is charge conservative.  It was also noted that if the 

grids used are orthogonal, the averaging procedure may be avoided entirely and the 

algorithm reduces to the general finite-difference time domain technique. 

Madsen (1995) presented tests and error analysis for the DSI algorithm on 

distorted grids.  In a grid constructed by mapping a square to a circle, it was shown 

that all methods are conditionally stable.  The simple vector sum provided the lowest 

level of stability and the fully volume weighted method the highest stability.  A 

rectangular wave-guide was modeled with a sinusoidal driving signal using 

orthogonal and skewed grids composed of hexahedra, tetrahedra, pyramids, and 

hybrid meshes.  This problem was chosen for the availability of an analytic solution.  

Error in all cases was comparable and the most accurate solution was obtained on 
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tetrahedral grid derived from the division of skewed hexahedra.  Comparison of 

results for scattering of a Gaussian pulse from a conducting sphere showed that 

discretization of the sphere into a non-orthogonal surface provides a better 

comparison to analytic data than a comparable stair-stepped approximation of the 

sphere.  The three-dimensional DSI algorithm also showed favorable comparison to 

radiation from a dipole on a mostly orthogonal grid.  As a final example, a twisted 

wave-guide was modeled using DSI.  The electric field time history for the twisted 

and straight wave-guides were essentially identical, showing a good validation for the 

model where no analytic solution is known and methods based on Cartesian grids do 

not apply. 

A three-dimensional EM-PIC method was presented by Wang, et al. (1997) 

using a non-orthogonal grid of hexahedral cells and the discrete surface integral 

method to update the electric and magnetic fields.  Particle location was tracked in 

Cartesian logical space while the velocity was kept in physical coordinates.  The code 

takes advantage of the fact that if charge is rigorously conserved, both globally and 

locally, then the fields may be updated by the Maxwell curl equations alone.  Tri-

linear interpolation was used to map logical coordinates to physical coordinates.  

Current deposit was done in logical space by use of Villasenor and Buneman’s (1992) 

rigorously conservative algorithm based on area and volume weighting.  Particle 

movement was done using the standard leap-frog technique with the addition of a 

rotation matrix that maps physical and logical space. 
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Fields were updated in Wang, et al. (1997) using the discrete surface integral 

method for non-orthogonal grids.  The fields were found at the vertices from 

knowledge of their normal components at the three faces within the cell that share the 

node.  Three methods were considered in weighting the results at each node among 

the cells that share it:  simple vector weighting, full volume weighting, and one-sided 

volume weighting.  In one-sided volume weighting, the vector associated with the 

face is split into two components from the centers of the cells to the center of the face.  

The components associated with each side of the cell are averaged separately.  Once 

the field components are updated, their values at the vertices are computed using a 

similar method involving the solution at the three faces of interest for each cell 

containing the node. 

Analysis of error for the EM-PIC method is presented in Wang, et al. (1997).  

The particle pusher was accurate as long as grid distortion is not too great due to its 

dependence on a rotation matrix.  EM wave propagation was studied on distorted 

grids all three weighting schemes studied lead to non-physical instabilities despite the 

fact the Courant condition is satisfied.  The simple vector weighting method was 

shown to be the most stable and one-sided volume weighting the least.  Greater grid 

distortion increased the growth rate of error.  Results on a skewed grid were always 

numerically stable.  Properties of the weak instabilities of the DSI method on non-

orthogonal grids were discussed and recommendations given on how to deal with this 

source of error.  Energy conservation was monitored for the unstable configuration of 

two opposing relativistic electron streams.  It was found that error did not exceed 2% 
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even for highly distorted grids.  The EM-PIC code was shown to be highly 

parallelizable, as only local information must be exchanged. 

The finite difference time domain (FDTD) method (Yee’s lattice (1966) on 

Cartesian meshes and DSI on general meshes (Heremline, 1993; Madsen, 1995) 

require knowledge of the electric current if free currents are considered in the 

problem, as is the general case with particle methods.  In general, finite difference 

time domain electromagnetic solutions satisfy the Maxwell divergence equations for 

electric and magnetic fields if they were satisfied initially and charge is rigorously 

conserved (Birdsall and Langdon, 1991).  It was advised that a potential correction 

based on Poisson’s equation be used to ensure conservation of charge in particle 

methods (Birdsall and Langdon, 1991).  However, weighting procedures that 

rigorously conserve charge may allow electromagnetic calculations to be performed 

without the computational cost of a Poisson solve at every electromagnetic step 

(Villasenor and Buneman, 1992; Wang et al., 1997).  If the Poisson correction is not 

used, the FDTD method is a purely local method -- this has several conceptual and 

computational advantages. 

Villasenor and Buneman (1992) developed a rigorous charge conservation 

scheme for electromagnetic particle simulation methods based on area weighting.  

The particle was considered a cloud with charge uniformly distributed over the area 

of a Cartesian cell (a square shaped particle, in 2-D).  The formulation was given for 

two and three dimensions, for an arbitrary number of boundaries being affected by the 

particle.  It was assumed that the computational particle would cross no more than a 
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single boundary within a time-step, as implied from the Courant condition.  It was 

found that area weighting, identical to that used to weight currents, eliminated self-

force during the field-to-particle weighting procedure.  The scheme was tested 

through the assignment of a charge distribution and electric field that satisfied 

Poisson’s equation for electrostatics.  It was shown that the magnetic field remained 

zero, as the electric field was initially curl-free.  Villasenor and Buneman (1992) 

compared this result to that obtained to the potential correction method used to 

ensured conservation of charge, and it was found that the two methods agree to within 

round-off. 

Electromagnetic plasma modeling is generally more computationally 

expensive and not as well developed than electrostatic modeling.  Appropriate 

boundary conditions for circuit elements have been developed with limiting 

assumptions, but further work is needed.  Modeling of arbitrary boundary conditions 

for electromagnetics is still developing.  A charge conserving routine similar to that 

of Villasenor and Buneman (1992) has not been developed for arbitrary geometries.  

In order to accurately model electromagnetic micropropulsion devices, adequate 

study of appropriate boundary conditions and particle interaction models must be 

done. 

1.4 Objectives and Approach 
The goal of this work is to further develop a particle-based code appropriate to 

the modeling of partially ionized flows with application to micropropulsion devices.  

Specifically, an unstructured tetrahedral DSMC-PIC code will be developed in order 
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to characterize and assess the gasdynamic and plasmadynamic effects in micro 

thrusters.  Much of the work for the DSMC kernel and the code of grid generator has 

been developed through previous efforts (Kovalev, 2000).  The specific objectives for 

this work are: 

• Development of a simple triangular surface generator to characterize domains 

of engineering interest for aid in mesh generation. 

• Addition of quality assessment and control techniques to the unstructured 

tetrahedral generator.  Higher quality grids lead to greater accuracy and 

computational efficiency for both particle and field solvers. 

• Implementation of techniques to minimize and prevent lost particles 

encountered in particle movement. 

• Addition of the variable hard sphere model for molecular cross-sections.  The 

use of variable hard spheres offers much more accurate characterization of molecules 

than hard spheres and without much additional computational cost. 

• Validation of molecular rotational degrees of freedom and addition of discreet 

vibrational degrees of freedom.  In the continuum regime, it may be assumed that 

rotational degrees of freedom may be relaxed, but this does not hold as collisions 

grow more infrequent.  Vibrational degrees of freedom are rarely fully excited and 

must be treated as discrete levels. 

• Implementation and validation of an electrostatic solver based on Poisson’s 

equation for electric potential. 
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• Application of the DSMC code to gaseous microthruster simulations and 

comparison with experimental and computational results. 

• Preliminary application of the unstructured PIC to electrostatic plasmas. 

This thesis is organized as follows:  in Chapter 2, the grid generator, DSMC, 

and PIC methodologies and their implementation on unstructured grids are presented.  

In Chapter 3, the DSMC and PIC simulations are presented.  In Chapter 4, the 

conclusions of the work are outlined along with recommendations for future work. 
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Chapter 2  

DSMC-PIC Methodology, Implementation, and 

Validation 

2.1 Overview  
This chapter summarizes the methods used and implemented for the DSMC-

PIC solver on unstructured grids.  The methodology for grid generation is presented 

with application to particle modeling.  The models for molecular cross-section and 

internal energy exchange are presented with application to the DSMC solver.  A 

finite-volume electrostatic solver is presented with applications to plasma modeling.  

Validation examples are presented with the computational methods used to illustrate 

their accuracy and applicability. 

2.2 Unstructured Tetrahedral Grids and Application to 
DSMC-PIC Modeling 

Flows encountered in the study of micropropulsion devices are often three-

dimensional.  The microthruster may have a geometry that itself gives rise to a three-

dimensional flow, such as a planar MEMS nozzle or a rectangular PPT.  In the study 

of plume-spacecraft interaction, the thruster plume may impinge upon the spacecraft 

in such a way that the flow is three-dimensional.  In order to study such flows, a grid 

methodology must be applied that accurately captures surface geometry. 

An unstructured tetrahedral Delaunay mesh generator is utilized in this work 

in order to satisfy these requirements.  The full methodology of the grid generator 
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used in this work is available in Kovalev, (2000), where the algorithms are presented 

in some detail.  A surface triangulation of the relevant geometry is used as input to 

the mesh generator, which produces a Delaunay triangulation of the surface geometry 

with spacing values that match the input triangulation.  Due to the deficiencies of the 

grid generator by Kovalev, (2000), meshes were generated with poor grid quality for 

certain geometries of interest.  To correct this, heuristic optimization is implemented 

in this work to increase grid quality. 

In order to generate meshes for engineering use, a mesh generator is utilized 

based on Watson’s algorithm for point insertion (Watson, 1981).  Watson’s algorithm 

creates a new Delaunay mesh from an existing one by meshing the new node to the 

facets of the cells whose circumspheres contain the new node, checking that 

tetrahedra with positive volumes are created.  Delaunay triangulations have several 

properties that make them useful for purposes of mesh generation and scientific 

computations.  A perspective in Delaunay triangulations with respect to bounded 

mesh generation is available in Baker, (1989).  In the mesh generator used herein and 

presented by Kovalev, (2000), the Delaunay triangulation starts with a cube divided 

into six tetrahedra to generate a background mesh, into which the boundary points are 

inserted.  Constrained edges and faces are then recovered.  New points are generated 

by the exponential division of edges (Borouchaki and George, 1997), which 

generates points with good spacing values for the numerical methods considered here.  

It is necessary to filter the generated nodes to examine if they are too close to existing 

nodes. 

 36



2.2.1 The Delaunay Triangulation and Voronoi Tessellation 
A Delaunay triangulation of a set of points in N dimensions divides the set 

into simplex elements of N + 1 points such that the N circumsphere of each element 

does not contain points from any other element.  In two dimensions the circumcircle 

of each triangle element contains no other points save its three defining points.  

Similarly, in three dimensions the circumsphere of each tetrahedron contains no other 

points save its four defining points. The Delaunay triangulation of a set of points is 

unique if no set of more than N + 1 points lies on the same N circumsphere.  

The Voronoi diagram is formed by the set of points (lines in two dimensions, 

faces in three dimensions) equidistant to a point and its nearest neighbor.  The points 

inside a Voronoi cell are nearer to the node defining the cell than any other. 

Examination of the Delaunay triangulation and Voronoi diagram shows that 

the two are natural duals.  In three dimensions, there is a one-to-one correspondence 

between Delaunay nodes, edges, faces, and cells to Voronoi cells, faces, edges and 

nodes, respectively.  In the case of other dimensions, a similar hierarchy of 

associations may be found.  Edges of one mesh are orthogonal to the face of the other.  

These properties of the Delaunay triangulation and the Voronoi tessellation make 

them favorable for computational use. 

Construction of Voronoi Dual from the Delaunay Triangulation 

The Voronoi mapping is complex in terms of variations in structure from cell 

to cell.  However, the finite volume formulation on the Voronoi mesh is essentially 

identical in computational efficiency to a standard finite difference scheme – the 
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coefficient matrix simply has a variable number of coefficients per row depending on 

the valence of the node.  In order to obtain an acceptable level of accuracy, the mesh 

used must have a high orthogonality (or alternatively, use a more complex 

formulation with more coefficients) and enforce properties at the boundaries. 

The Voronoi mesh is constructed as follows.  The circumcenters of each 

tetrahedral cell are found.  The boundaries of the tetrahedral mesh are enforced while 

preserving important properties of the Voronoi dual.  The Voronoi dual of each 

tetrahedral edge is found and relevant properties (associated area and volume) are 

determined. 

The circumcenters of each cell are found according to the equation for a 

sphere, which may be uniquely determined from four non-degenerate cells.  An 

example of a two-dimensional Delaunay triangulation and associated Voronoi 

diagram is shown in Figure 3.  Characteristics appropriate to the Delaunay and 

Voronoi meshes will be illustrated in two-dimensions, as three-dimensional examples 

cannot be adequately presented in two-dimensional figures. 
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Figure 3. Example of a bounded 2-D Delaunay triangulation (red) and its 
Voronoi dual (green). 

Care must be taken in enforcement of the boundary to preserve the 

characteristics of the Voronoi mesh.  The general methodology is to map any Voronoi 

node laying outside of its boundary component to its Voronoi equivalent in the next 

lower geometric dimension.  The circumcenters are found for each triangular face that 

is on the boundary for purposes of electric calculations.  If these circumcenters lay 

outside the face, as for a poorly formed element, they are moved to the nearest edge 

midpoint, which is the one-dimensional Voronoi equivalent.  The orientation of the 
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circumcenters in boundary tetrahedrons may be determined by the dot product 

concerning the outward normal of the boundary faces.  If the circumcenter is outside 

the grid, it is moved to the circumcenter of the boundary face (the two-dimensional 

Voronoi equivalent).  The Voronoi dual of a boundary edge (a planar polygon) 

consists of the edge midpoint, the circumcenter of one of the boundary faces 

containing the edge, the circumcenter of the tetrahedral cells containing the edge, and 

the circumcenter of the second boundary face containing the edge.  This boundary 

enforcement scheme preserves the properties of orthogonality and equidistance of 

Voronoi faces from boundary edge nodes, which are important properties of the 

Voronoi tessellation for purposes of finite volume accuracy.  Complex boundary 

edges (formed by the intersection of three or more boundary faces) are not treated 

here algorithmically, but the scheme is essentially the same.  It is also noted that these 

types of boundary surfaces are rare for engineering applications and usually may be 

avoided without any loss of important geometric information. 

2.2.2 Surface Grid Generation 

In general, boundary conditions must be applied at surfaces defining the 

domain. Surfaces may also be specified internal to a flow in order to apply boundary 

conditions there.  For neutral particles, surfaces may serve the role as exhausting 

particles into vacuum, injection of new particles from a prescribed distribution, or a 

material boundary that interacts to rebound or absorb the incident particle.  For 

charged particles, a surface may be a conductor or a free boundary, or have the 
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normal component of electric field applied.  Details on the implementation of 

boundary conditions for the charged particle case are given in section 2.6. 

Triangulation of the surfaces of the domain is the first step in generation of a 

tetrahedral grid using Watson’s algorithm.  Triangulation of the surface may be done 

analytically for simple surfaces, or using mesh generation techniques for more 

complicated surfaces. 

A simple surface generation scheme was developed with respect to issues of 

particle modeling.  The surface generator constructs triangulations of axial and box-

like domains according to user-specified spacing. 

Surface Generator Implementation 

A surface generator was written for axially symmetric objects and box-like 

objects (objects that are definable by bi-linear elements).  From the definition of 

control points suitably connected by lines, arcs, or upward downward facing 

parabolas and appropriate spacing values at these points, a two-dimensional topology 

may be made (also useful for two-dimensional grid generation) according to the 

spacing value with edges having an attribute specified by connection.  Assuming 

appropriate spacing values, this topology may be tiled about an axis analytically to 

create a high-quality axisymmetric surface.  For bi-linear surfaces, only the first two 

edges of a bi-linear element may be created with arbitrary spacing values.  The 

spacing values for the second two edges of an element are inferred from the 

requirement that the opposing edges have the same number of nodes.  Care must be 
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taken in selection of spacing values as well as creation order of bi-linear elements and 

objects to ensure a high quality triangulation.  After axially symmetric or bi-linear 

objects are created, they may be rotated and added to a group of objects, if the 

simulation domain includes multiple objects.  If the object is represents an internal 

boundary, a virus point (see Kovalev, 2000 for definition) must be included that lies 

within the object’s interior.  An object or group of objects may be output to a file that 

is used by the grid generator. 

It is possible to triangulate many other surfaces of engineering interest, as well 

as to triangulate surfaces using Watson’s algorithm, with respect to an analytic 

definition of the surface or sharp edges.  There are also several commercial CAD 

programs that contain this feature. 

2.2.3 Grid Quality Issues for DSMC and PIC Modeling 

The role of the grid in particle modeling is to provide discrete cells of physical 

space for selection of collision partners and sampling purposes.  For unstructured 

grids, particle movement involves complex calculations to determine the intersection 

point of the particle at the face.  In order to generate acceptable results, the effect of 

grid quality should be considered in the context of stochastic particle modeling. 

As long as the longest cell dimension is less than the local mean free length 

(the smallest mean free path, or length of where gradients of macroscopic quantities 

may be treated as linear), the sampling and collisional procedures should not suffer as 

long as enough particles are included in the cell to accurately represent the 
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distribution.  In practice, it is desirable to have a high quality grid in all cases, as low 

quality grids will have more cells and faces than high quality grids and require 

subsequently more computational time for the same physical problem.  Poor quality 

grids are more computationally expensive, as there will be more cells for given 

spacing values with corresponding lower volumes.  More particles must therefore be 

used to obtain an accurate representation of velocity space in each cell.  Also, 

sampling and collisional procedures may suffer in accuracy from grid biases on poor 

quality grids.  The particle movement routine may break down as cell quality 

worsens, and the issue of losing particles becomes important on grids of questionable 

quality. 

Several algorithmic procedures were added to monitor and delete lost 

particles.  It was observed that cells with poor dihedral angles were primarily 

responsible for loss of the particles.  Elimination of these cells, by quality grid 

generation or cell removal if the cell was on a boundary, proved to minimize or even 

eliminate lost particles entirely.  Care must be taken when removing boundary cells to 

ensure boundary conditions and flow physics are satisfied. 

Implementation of Heuristic Optimization for Unstructured 

Tetrahedral Grid Generation 

Mesh generation diagnostics showed that the cells where particles were lost 

had poor quality minimal dihedral angles and solid angles.  Examination of the poor-

quality elements showed them to be known types of “slivers” (Cheng et al., 2000). 
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It is provable that for a decent-quality surface triangulation, it is possible to 

generate a conformal Delaunay mesh of high quality (Li, 2000).  A simple 

optimization method was used in this work which improved quality of the 

triangulation to the extent that it proved good for the particle and field computations 

of interest.  More robust optimization methods (Li, 2000; Cheng et al., 2000) could be 

implemented if the existing method proved to be inadequate for computations. 

The minimum allowable dihedral angle is defined by a user in an input file.  

Typically, only the cells with the lowest minimum dihedral angles cause 

computationally invalid results.  Nodes are generated according to the exponential 

spacing technique of Borouchaki and George (1997).  The nodes are filtered to see if 

they are too close to other nodes, according to the local spacing criteria.  The 

remaining nodes are checked to see if they improve mesh quality according to the 

minimum dihedral angle.  If they do not, and their minimum dihedral angle lies under 

the user defined minimum, they are not inserted into the mesh.  Care must be taken in 

selection of the minimal value, as selecting too high of an allowable minimum 

dihedral angle may result in a mesh with poor spacing criteria.  

Figure 4 illustrates a cross-section of a closed rectangular geometry with the 

optimization method applied.  The interior triangles shown in the cross-section all 

have good quality, visually illustrating the effectiveness of the method.  In Figure 5, 

the distribution of minimum dihedral angle in a cell is shown versus number of cells 

for the same rectangular geometry with and without optimization.  The minimum cut-

off angle for the optimized case was chosen to be 0.3 rad.  The presence of fewer 
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cells in the optimized case is due to more efficient tessellation of the domain.  In 

Figure 6, the normalized distribution function of minimum dihedral angle in a cell is 

shown for the Gravity Probe-B thruster surface triangulation.  Both optimized and 

non-optimized cases are shown, with the minimum cut-off angle for the optimized 

case being 0.3 rad.  The optimized curve has significantly fewer low minimal dihedral 

angles and a greater amount of higher quality dihedral angles. 

 

Figure 4. Cross-section of mesh for a closed rectangular geometry using a cut-off 

dihedral angle of 0.3 rad. 
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Implementation of the heuristic optimization method proved to vastly reduce 

the number of lost particles.  In all cases presented in this work, less than one percent 

of the mass flow rate of particles is lost, and in many cases no particles are lost.  

Heuristic mesh optimization such as presented here is adequate for many numerical 

methods so long as the computational routines used are written for general geometries 

such that only round-off error and local grid biases contribute to computational error. 



 

 

Figure 5. Effect of choosing a cut-off dihedral angle (0.30) on the dihedral angle 

distribution. 
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Figure 6. Normalized minimum dihedral distribution for the Gravity Probe-B 

surface triangulation with zero cutoff angle and a cutoff angle of 0.30 rad. 

2.3 Gasdynamics via Direct Simulation Monte Carlo  

2.3.1 Overview of DSMC Methodology 

The Direct Simulation Monte Carlo (DSMC) method stochastically models 

dilute gases through the uncoupling of movement and collisional processes.  A 

number of particles are alternatively moved and sampled for collisions.  Collisional 

procedures are based upon the molecular cross section of each species included and 

the fact each computational molecule represents a large number of real molecules.  

The fundamental assumption of DSMC is that the time between collisions is much 
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greater than the duration of collisions, a condition applicable to gases of low to 

moderate densities. 

Most DSMC implementations divide the domain of interest into cells for 

purposes of selection of collisional partners and flow-field sampling.  This is done for 

computational efficiency and convenience.  The cell size should be less than the mean 

free path of the gas as well as small enough to capture the physics of the flow-field.  

A sufficient number of particles must be present in each cell to accurately 

characterize the velocity distribution function.  On average, a particle should not cross 

a whole cell during the time step so that it has a chance to collide with physically 

valid collision partners. 

The no time counter scheme (Bird, 1998) is used for collisional sampling.  

The total number of collisions Npq, per unit time per unit volume between molecules 

of species p and q, is: 

pq p q Tpq pqN n n gσ=        (2.1) 

where np and nq are the number densities of species p and q,  σTpq denotes the total 

cross-section, and gpq is the relative speed.  The average value is obtained by 

integration over the velocity distribution function. 

However, evaluation of the average of the product of relative speed and 

collisional cross-section requires calculations of the order of the number of particles 

per cell squared.  The no time counter methodology greatly reduces the computational 

load by taking advantage of the probabilistic acceptance-rejection procedure.  The no 

time counter scheme is such that 

 48



( ){1
2pairs p q N T MAX pq

c

N N N F t g
V

= ∆ σ }

}

     

 (2.2) 

where  pairs are selected from the cell for consideration to be collided.  In Eq. 

(2.2), V

pairsN

c is the volume of the cell, Np and Nq are the number of computational 

particles in the cell, ∆t is the time step, and FN is the particle weight.  These pairs are 

chosen at random from the particles in the cell and the collision probability P of a 

chosen pair is evaluated as 
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Each sampled pair is checked for collision using the acceptance-rejection 

method.  It is most efficient if the maximum probability of collision is almost one.  In 

this case, only one random number must be used to determine if the pair of molecules 

collide or not.  A random fraction is chosen from zero to one, and if it is less than the 

collision probability of Eq. (2.3) for the chosen pair, the collision occurs.  Otherwise, 

the collision is rejected.  The colliding particles are scattered according to the 

appropriate molecular cross-section model. 

The DSMC code has also been modified to include the effects of internal 

energies, chemical reactions, radiation, and other collisional events important to low-

density gasdynamics (Bird, 1998).  The DSMC method makes no assumptions other 

than those already implied by the Boltzmann equation (Nanbu, 2000).  Being a 
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stochastic method, DSMC may produce noisy results as the number of particles used 

is typically far fewer than the number of actual molecules. 

2.3.2 Neutral Particle Loading 
Particle loading is the first procedure in the process of a DSMC simulation. 

The cells are to be populated according to the local density number and particle 

weight.  From a computational point of view it is more convenient to set initially the 

total number of computational particles.  In this case, the particle weight can be 

calculated by integration throughout computational domain 

F
n V

Ns

s
V

s

=
z rb gd

       (2.4) 

where  is the particles weight of species s,  is the total number of computational 

particles and  is density number of real atoms or molecules of gas. Usually the 

numerical value of particle weight is very high, and N

Fs N s

ns

s is very small in comparison 

with number of real gas molecules in the gas system to be modeled. Each particle is 

characterized by its position vector r and velocity . v

It is assumed that the distribution of particles inside each cell is uniform and 

the number of computational particles inside the cell is calculated in accordance to 

the volume of the cell and total particle weight.  Particles are randomly distributed 

within a cell with initial velocities based on the assumption of thermal equilibrium 

and independence of particle velocity components.  Therefore, the distribution 

function for one component of thermal velocity is 
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.  Due to the independence of the velocity components, the 

distribution function that describes , , and w is a product of type (2.5) functions as 

given by 
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Sampling from the Maxwellian follows standard procedures described by Bird 

(1994). 

2.3.3 Neutral Particle Injection 

The injection boundary condition is an important part of the DSMC 

methodology.  It allows a free-stream to enter the domain with prescribed conditions 

(herein, from a drifting Maxwellian distribution).  The injection boundary condition is 

useful in modeling external flows of a body moving relative to the gas velocity or in 

modeling internal flows such as a nozzle where gas is injected into the system from 

near equilibrium conditions. 

The number of particles to be adding into the simulation can be evaluated 

based on analysis of molecular flux across a surface element.  Without loss of 

generality, we can choose such a coordinate system where two of coordinate axes are 

in the injection plane. A coordinate system is chosen in such a way when the surface 

element lies in yz-plane, and mean flow velocity of injected particles is in xy-plane. 

 51



The inward number flux N  can be defined by integration of the velocity 

distribution function 

0
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In this coordinate system, particle velocity can be expressed in terms of a 

mean flow velocity  and a thermal molecular velocity (u’, v’, w’). c0
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Equation (2.7) can be rewritten as 
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After integration, this expression becomes (Bird, 1998) 
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erf denotes the error function.  The molecular speed ratio s is given by 

0 2
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The value of  can be interpreted as number of gas molecules of the species 

of interest crossing a unit area surface element per unit time with mean flow velocity 

. The number of computational particles to be added 

N s

c0 ∆N s  during a time ∆t is given 

by 
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where  is the particle weight and S is the area of the surface element. Fs

While the number of new computational particles is known, each particle 

must be characterized by position and velocity vectors.  The position vector can be 

easily generated if we assume uniform distribution over surface element.  The 

velocity vectors are distributed according to 

f u c u∝ ′ + − ′0
2 2cos expθ βb gc h c h      (2.13) 

To apply the acceptance-rejection method to this distribution, it is necessary 

to obtain the maximum value by evaluating 
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   (2.14) 

The most probable thermal speed, which corresponds to the maximum value 

of the distribution function can be found as solution of the quadratic equation 

1 2 02
0− ′ ′ +β u u c cosb gc h       (2.15) 

The above has two solutions 
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Due to the choice of coordinate system, ′u must be greater than zero and 

therefore the solution may be written as 

′ =
+ −

u
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     (2.17) 

Taking into account the last expression, the ratio of probability to the 

maximum probability used in the acceptance-rejection method is given by 
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The v’ and w’ velocity components are generated following the same 

procedure that was used for particle loading. 

2.3.4 Collisional Methodology 

Hard Sphere Model 
Though molecular interactions often depend on complex quantum mechanical 

considerations, it is convenient to treat them through consideration of a 

phenomenological collisional cross section defined by their interaction potential.  In 

general, neutral molecules exert collisional forces by spherically symmetric fields 

which are weakly attractive at large distances and strongly repulsive at short 

distances.  Classical kinetic theory generally assumes hard sphere or Maxwell 

molecules for ease of calculation and since real gases exhibit behavior between these 

limits.  The hard sphere molecular model assumes molecules of a constant size with 

scattering determined through the mechanics of two hard spheres colliding.  

However, the hard sphere model does not accurately characterize molecular 

interaction.  Highly accurate models, such as the Lennard-Jones potential model 

( 1

'
( 1) ( ' 1)r rη

κ κφ
η η−= −

− − ' 1η −  [from Bird, 1998]), the Sutherland model (which adds 

an inverse power attractive potential to the hard sphere model), and inverse power 
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law may be applied to the DSMC method.  However, these methods are generally 

more computationally intensive than hard spheres.  It is desirable to use a method that 

is both computationally efficient and accurately reproduces the behavior of real gases. 

In the hard sphere molecular model, all real molecules and atoms are presented as 

rigid spheres with a symmetric force field specified by its radii and masses. While 

mass of the computational particle directly corresponds to mass of the real particle, 

the radius of the computational particle represents the characteristic length of the 

interaction force between real gas particles. 

In elastic binary collisions as shown in Figure 7, the kinetic energy and 

momentum of the pair of particles must be conserved: 

m v m v m v m v

m m m m
1 1

2
2 2

2
1 1

2

2 2

2

1 1 2 2 1 1 2 2

+ = +

+ = +

* *

* *

c h c h
v v v v

     (2.19) 

The subscripts 1 and 2 denote the particle numbers and m and v are mass and 

velocity of corresponding particle. Post-collision values of velocities are marked by 

superscript *. It is convenient to describe collision process in the center of mass 

system of reference moving with velocity 

v
v v

cm
m m

m m
=

+
+

1 1 2 2

1 2

       (2.20) 

Particle velocities in this frame of reference are 

v v

v v

1
2

1 2

2
1

1 2

= +
+

= −
+

cm

cm

m
m m

m
m m

g

g
       (2.21) 
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where g v  is the relative velocity. v= −1 2

 

Figure 7.  Interaction of Hard Sphere Molecules (from Bird, 1998) 

It is convenient to evaluate the post-collision relative velocity in a coordinate 

system (x’, y’, z’) where x’ is in the direction of the pre-collision relative velocity g.  

The components of the post-collision relative velocity g* are given as 

( )
( ) ( )
( ) ( )

*

*

*

cos

sin cos

sin sin

x

y

z

g g

g g

g g

χ

χ ε

χ ε

′

′

′

=

=

=

       (2.22) 
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where χ is the scattering angle and ε is the angle between the plane of collisions 

(where the pre-collisional and post-collisional relative velocities lie) and the x-y 

plane.  Transformation into the initial system of coordinates (x, y, z) gives the 

components as 



( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

* 2

* 2

* 2

cos sin sin

cos sin cos

cos sin cos

x x y z
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g g gg g g g g

g g gg g g g g

χ χ ε

χ χ ε

χ χ ε

= + +

= + −

= − −
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2

2
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z

+

+

  (2.23) 

Finally, the pair of the post-collision velocities is given by 

* *2
1

1 2

* *1
2

1 2

cm

cm

m
m m

m
m m

= +
+

= −
+

v v g

v v g
      (2.24) 

The collisional process is expressed in terms of a differential collisional cross 

section σ and a total collisional cross-section σ Tpq , where subscript p and q denote 

particular species.  The collision cross section is an atom specific quantity and is a 

function only of the kind of interaction potential involved in the collision and the 

relative particle speed.  If one considers the situation where there are n  molecules 

per unit volume with velocity  and  molecules per unit volume with velocity v .  

Consider collisions between molecules of these two classes for which the relative 

velocity  after collision lies in the solid angle 

1

v1 n2 2

g* dΩ  centered about the direction 

specified by the angles χ  and ε . The differential cross section pqσ  is defined such 

that the number of collisions per unit volume of the above type pre unit time is 

. The cross-section has dimensions of area and is proportional to the 

probability that a collision at a relative speed 

1 2 pqn n gσ dΩ

g  will result in a deflection χ .  The 

differential cross-section is given by 
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( )sinpq
bσ b

χ χ
∂

=
∂

       (2.25) 

If the molecules are represented as elastic spheres of diameter , the angle of 

incidence is equal to the angle of reflection and the impact angle 

d

θ  is related to χ  as 

(1
2

)θ π χ= −         (2.26) 

The impact parameter is given by 

( ) 1sin cos( )2b d dθ χ= =       (2.27) 

and 

(1 1sin2 2
b d )χ
χ

∂
=

∂
      (2.28) 

The differential cross-section is then (Bird, 1998): 

2

4pq
dσ =         (2.29) 

For the case of species with different diameters, it is necessary to replace d by d12 

where 

(12 1 2
1
2

d d= + )d        (2.30) 

The total cross-section may be obtained by integration of the differential cross-section 

over all solid angles.  Since the interaction potential is spherically symmetric, this 

becomes: 

0

2 sinT pq d= ∫
π

σ π σ χ χ        (2.31) 
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Integrating, the total cross-section becomes (Bird, 1998) 

2
12Tpq dσ π= .        (2.32) 

Similarly, a momentum transfer (or diffusion) cross-section may be defined: 

0

2 (1 cos )sinM pq d= −∫
π

σ π σ χ χ χ      (2.33) 

Integration reveals that for the hard sphere model, the momentum transfer cross-

section is the same as the total cross-section: 

2
12Mpq Tpq dσ σ π= =        (2.34) 

The total cross-section may be used to determine the number of collisions in a 

cell and for the probabilistic selection of collision partners in the no time counter 

methodology.  Since the differential and total cross-sections are independent of 

scattering angle, the post-collision value of relative velocity is isotropic with respect 

to the center of mass frame of reference.  That is, all directions are equally likely for 

g*.  If a pair is selected to undergo a collision using the no-time counter methodology, 

the direction of the post-collision relative velocity is selected randomly.  The 

velocities of each of the particles are then updated with respect to conservation of 

momentum and energy for the pair of particles using Equation (2.24). 

Variable Hard Sphere Model 

Bird (1980) proposed a model in which molecular scattering is performed 

identically to the hard sphere model, but the diameter of the molecule involved varies 

according to an exponent which may be set in order to attempt to match the 
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collisional behavior of real gases.  This is the variable hard sphere model (VHS) and 

the diameter of a molecule of interest is given by: 

( ref
ref

g
d d

g
)ν=        (2.35) 

where dref and gref are reference values chosen to provide the appropriate interaction 

potential based on empirical data and  ν is the VHS exponent, also chosen to best 

match the interaction potential of known empirical data.  The general behavior of 

VHS diameter as a function of temperature can be seen in Figure 8 for nitrogen. 

 

Figure 8. Variable hard sphere diameter for nitrogen gas molecules with mean 
relative speed as a function of temperature (ν=0.24). 
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The cross-sections for molecular interaction are determined as one would for 

hard spheres, as is the scattering angle.  The total cross section (Eq. (2.31)) and the 

momentum transfer cross section (Eq. (2.33)) for interaction between molecules 1 and 

2 are identical, as in the hard sphere case and given by 

1 2
2

2 1, 2,
12 1, 2,4

ref ref
T M ref ref

g g
d d d

g g

ν ν
πσ σ π

    
= = = ⋅ + ⋅         

  (2.36) 

In order to sample collisions in the no time counter scheme, the product of the 

total cross-section and the relative speed of the potential collision pair is needed.  For 

the VHS model, the appropriate expression is: 

1 2

1

2

2 1, 2,
12 1, 2,0.5 0.5( )

4
ref ref

T ref ref

g g
g gd d d

g g

ν ν

ν ν

πσ π −

 
= = +

 
2 −     (2.37) 

( )11 2
20.5 0.5

1, 1, 2, 2,( ) ( ) ( )
4T ref ref refg g d g g d gνν ν 2

ref
νπσ − −= +   (2.38) 

2.3.5 Internal Degrees of Freedom 

For monatomic gases, the energy of the molecule is purely translational, 

except at very high temperatures when the electronic energies must be considered.  

For diatomic or polyatomic molecules, the effects of rotational and vibrational 

energies must also be considered.  While a detailed treatment of energy transfer 

between internal degrees of freedom is a problem of quantum mechanics, a 

phenomenological description may be developed that is computationally efficient and 

accurate for engineering purposes. 
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Quantum mechanics expresses the energy in discrete energy levels.  Sensible 

energy is measured above the ground state, which all particles would reach at 

absolute zero (ignoring quantum fluctuations).  If the energy levels are closely spaced 

in the regime of interest (i.e. if the characteristic temperature of level transition is 

sufficiently low compared to the energies of interest) then energy may be treated as a 

continuum.  If energy levels are widely spaced in the regime of interest then this must 

be taken into account. 

 Larsen-Borgnakke Model 

The Larsen-Borgnakke model (Borgnakke and Larsen, 1975; Bird, 1980; 

Bird, 1998) is a phenomenological model for the exchange of internal and 

translational energies of a gas molecule.  In the Larsen-Borgnakke model, a fraction 

of the collisions are regarded as completely inelastic and new values of internal and 

translational energies are sampled from a distribution based upon the effective 

temperature of the collision.  The fraction of inelastic collisions is known for gases 

from relaxation rates. 

 Rotational Degrees of Freedom in a Gas Mixture 

Gases in general have characteristic temperatures of rotation near absolute 

zero.  When the overall temperature is much higher than this, as is the case in near-

field plumes where collisional effects dominate, the rotational levels are very closely 

spaced and may be regarded as continuous (classical treatment).  The Larsen-

Borganakke model redistributes energy between different energy modes (rotational, 
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translation, etc.) from a Maxwellian distribution based on the effective temperature of 

the collision. 

Consider a collision between molecules of type 1 and type 2.  Following the 

notation of Bird (1998), let Ξ denote the average number of degrees of freedom in a 

collision.  Ξa and Ξb denote one group of degrees of freedom with energy to be 

distributed and the remainder of the degrees of freedom for a particular collision, 

respectively.  Ea represents energy to be assigned to the first group of modes and Eb 

the energy to be assigned to the remaining modes.  The Larsen-Borgnakke result for 

the distribution of energy between the two groups is (Bird, 1998) 

1 1( )( ) ( ) ( ) ( )
( ) ( )

a ba b a b a b

a b a b a b a b a b

E E E Ef f
E E E E E E E E

Ξ − Ξ −Γ Ξ + Ξ
= =

+ + Γ Ξ Γ Ξ + +
(2.39) 

where f is the distribution function of the appropriate quantity and Γ is the gamma 

function, 

1

0

( ) exp( )jj x x
∞

−Γ = −∫ dx .      (2.40) 

Since the sum of the total energy in the collision is constant, it can be shown 

that the average value of Ea is 

( ) (a
a average a b

a b

E Ξ
=

Ξ + Ξ
)E E+       (2.41) 

This shows that the Larsen-Borgnakke model leads to equipartition of energy 

(Bird, 1998). 

For the special case of a mode with two degrees of freedom, Ξa=1 and the 

expression for the distribution of Ea: 
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1( ) (1 ) ba
b

a b a b

E Ef
E E E E

a Ξ −= Ξ −
+ +

     (2.42) 

It can be shown (Bird, 1998) that for the two degrees of freedom case, this 

distribution may be sampled using 

1/1 ba
f

a b

E R
E E

Ξ= −
+

       (2.43) 

In this equation, Rf denotes a random fraction from zero to unity.  If energy for 

a number of degrees of freedom other than two is up for redistribution, then the 

acceptance-rejection method must be used to find an appropriate value (Bird, 1998). 

The Larsen-Borgnakke method, while completely phenomenological, has 

several strengths that lend to its usefulness for engineering computations.  Energy is 

conserved and equipartition of energy is preserved on average.  The method is based 

on the effective temperature of the collision, precluding any bias from local flow 

conditions.  The Larsen-Borgnakke method allows arbitrary groups of energy to be 

redistributed, which may be taken advantage of in serial redistribution of molecular 

degrees of freedom. 

 Harmonic Oscillator Model for Vibrational Energy Exchange 

Gases usually have characteristic vibrational temperatures in excess of 1000K, 

so vibrational levels cannot be considered closely spaced.  In addition, as the 

temperature becomes higher, dissociative and ionization effects become important as 

well.  In general, detailed modeling of vibrational degrees of freedom involves energy 

transfer between translational and rotational modes to the vibrational mode of 
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interest.  For most engineering applications, the above approach is unnecessary unless 

there is sufficient non-equilibrium to warrant the detailed treatment. 

The Larsen-Borgnakke model may be extended to be applicable to discrete 

energy levels suitable for modeling vibrational energy transfer.  Vibrational energy 

levels are generally anharmonic, as the space between energy levels becomes smaller 

as energies become larger.  If it is necessary to model the anharmonic nature of 

vibrational energy levels along with dissociation, a scheme presented in Bird, 1998 

may be used. 

Vibrational energy levels are often modeled as harmonic oscillators with 

evenly space discrete energy levels.  The harmonic oscillator approximation is good if 

only the first several vibrational energy levels are of interest and the effective 

temperature of the molecular collision is typically far beneath the characteristic 

temperature of dissociation (usually in excess of 30,000 K). 

Bergemann and Boyd (1993) developed a computationally efficient form of 

the Larsen-Borgnakke model for vibrational energy exchange using the discrete 

harmonic oscillator approximation.  The equilibrium energy distribution for harmonic 

oscillator vibrational energy levels i in a gas is 

1( , ) [1 exp( )]exp( ) ( ); 0..vib
vib vib vib

Ef E i E ik i
kT T kT

δΘ
= − − − − Θ = ∞

 
(2.44)

 

where δ is the Dirac delta function and Evib is the vibrational energy.  The 

characteristic temperature of vibration is 

vib
h
k

Θ =
ν ,        (2.45) 
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where ν is the characteristic frequency of the oscillator and h is Planck’s constant.  

The energy of level i of a particular mode is 

,vib i vibE ik= Θ         (2.46) 

Since the Larsen-Borgnakke model allows the serial redistribution of energy 

from multiple groups, vibrational energy redistribution may be done after 

redistributing rotational energy (Bergemann and Boyd, 1993) or before (Bird, 1998).  

The method presented here redistributes vibrational energy prior to rotational energy 

exchange following Bird.  The normalized distribution function for post-collision 

vibrational level is: 

123/ 2

max ( )

(1 )
collision

f ik
f E

ω−Θ
= −       (2.47) 

where ω is the temperature exponent of viscosity for molecules of type 1 and 2. 12

The distribution function f is a function of the collisional energy and the post-

collision vibrational energy level number i.  Since the collision energy is known, i 

may be sampled using the acceptance-rejection method.  At first an integer is 

randomly selected from the possible values of post-collisional vibrational energy 

level according to the total collision energy.  It is known that fmax lies at i=0.  The 

acceptance-rejection procedure is applied until i is determined.  The collision energy 

is appropriately reduced to ensure energy conservation. 

The methodology for discrete harmonic oscillators is an implementation of the 

generalized Larsen-Borganakke model and shares its advantages.  The vibrational 

mode of interest may be redistributed serially with rotational or other vibrational 
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modes.  In the case of two particles with internal energies, the Larsen-Borgnakke 

model may be applied to each particle in turn. 

 Validation of Larsen-Borgnakke Model for Rotational Relaxation 

The relaxation of a rotational temperature is considered in order to validate the 

continuum form of the Larsen-Borgnakke model for rotational degrees of freedom.  

For known initial values of translational and rotational temperatures, an otherwise 

unperturbed gas will relax towards an equilibrium temperature.  The formulation of 

the Larsen-Borgankke allows an analytical expression for the temperatures of rotation 

and translation (from Bird, 1998): 

,( )exp( )i e e i oT T T T tυ= − − − Λ       (2.48) 

In this equation, Ti is the temperature of internal modes, Te is the equilibrium 

temperature of the gas, and Ti,o is the initial temperature of internal modes.  The 

collision frequency, υ, may be determined from the molecular model, either hard 

spheres or variable hard spheres.  To test rotational relaxation, nitrogen is used with 

the translation temperature set initially to 500 K and the rotational temperature set to 

0 K.  The rotational collision number (which is the typical number of collisions 

before rotational energy is redistributed), 1/Λ, was set to be 5, typical for nitrogen.  

The analytical expressions for translational and rotational temperature become: 

300 200exp( / 5)trT tυ= + −       (2.49) 

300{1 exp( / 5)}rotT tυ= − −       (2.50) 
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These analytic results are compared with DSMC computations in Figure 9 of a 

gas with no energy transfer to the boundary in terms of the product of collision rate 

and simulation time.  The scatter shown is well within statistical scatter for such a 

small number of particles (20,000).  The results are comparable to those in Bird, 

1998.  The VHS exponent for the case is 0.24 (viscosity temperature exponent ~ 

0.74).  The HS calculations lies within the bound of the theoretical equations and the 

VHS calculations match the theory almost exactly, as in Bird. 

 

Figure 9. Analytic (solid lines) and computed (dashed lines) values of 

translational and rotational temperature (upper and lower contours, 

respectively) [K] graphed against the product of collision frequency and 

simulation time.  HS and VHS molecular models. 

Several different formulations have been considered in other works as 

attempts to improve on the Larsen-Borgnakke method.  Energy may be distributed 

internally based upon collision pairs instead of considering each molecule in a pair 
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individually.  By comparison with the analytical results above, the relaxation for the 

formulation based on collision pairs happens more slowly.   

One criticism of the Larsen-Borgnakke model is that it is physically 

unrealistic in as far as only a fraction of the collisions are considered inelastic.  

Another formulation distributes a fraction Λ of the calculated change in rotational 

energy at each collision.  As Bird (1998) points out, this does not satisfy detailed 

balancing and the result does not lead to the analytic temperature distribution for 

rotational energy.  These procedures are avoided and the Larsen-Borganakke model is 

accepted for what it is – a phenomenological method that accurately predicts transfer 

of energy to internal modes for situations where the concept of an effective 

temperature of a collision is valid.  If it is highly desirable to accurately model 

translational energy transfer or if the assumption of random molecular orientation is 

far from valid, more accurate transfer models may be used at the expense of higher 

computation time.  The Larsen-Borgnakke model has shown good results in 

comparison with empirical data for flows of engineering interest, including those 

where equilibrium of translational temperature breaks down. 

 Validation of Larsen-Borgnakke Model for Vibrational Relaxation 

The discrete Larsen-Borgnakke model for vibrational energy may be validated 

by comparison with computational results of known validity.  As the method of 

redistribution is identical to Bird’s methodology, we turn to his handbook (Bird, 

1998) that provides an excellent example for comparison.  Again, the general scheme 
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is to examine relaxation times versus temperature for a gas with internal degrees of 

freedom initially set to zero vibrational temperature and a high translational 

temperature. 

The DSMC simulation took place in an adiabatic box using a diatomic gas 

with a single vibrational mode with a characteristic temperature of 2000K.  Variable 

hard spheres were used as the molecular model.  The translational temperature was 

initially 5000K and the rotational and vibrational temperature was initially 0K.  The 

collision numbers for rotational and vibrational energy exchange were both set to be 

5.  Though five is unrealistically high for a collision number for vibrational exchange, 

it allows the behavior of the rotational and vibrational energy exchange to be 

compared.  The vibrational temperature of the gas was determined from the near 

equilibrium equation: 

0 1/ ln( / )vib vibT N= Θ N       (2.51) 

where No and N1 are the number of molecules in the ground and first excited state, 

respectively. 

The results shown in Figure 10 agree well with Bird, both qualitatively and 

quantitatively.  The discrepancy between vibrational temperature evolutions may be 

due to different values of the variable hard sphere exponent between this simulation 

and that of Bird, as the VHS exponent is not given by Bird for this simulation. 
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Figure 10. Comparison of calculated rotational, vibrational relaxation with 

Bird’s results.  Eqn. 11.31 in Bird is the results if vibrational energy was 

continuous rather than discrete. 

2.3.6 Boundary Conditions for Gas-Surface Interaction 

The details of gas-surface interaction are not generally known for an arbitrary 

surface.  When a gas molecule strikes a surface, it may be absorbed, react with the 

surface, or be reflected.  Unless surface mechanics are important in the problem of 

interest, it is standard practice in DSMC to assume that all gas molecules impinging 

on a surface are reflected. 
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When a gas molecule strikes a surface, some or all of its momentum and 

energy may be transferred to the surface.  Similarly, the thermal (vibrational) motion 

of the surface molecules may transfer momentum and energy to the gas molecule.  

Determining how much momentum and energy is transferred in a gas-surface 

collision is a detailed problem based primarily on surface roughness and the gas 

adsorbed on the surface.  A qualitative model of gas-surface interaction may be 

developed by the specification of accommodation coefficients – for energy (thermal), 

normal and tangential momentum.  The accommodation coefficients expresses the 

ratio of the quantity transferred between the gas molecule and the wall over the 

quantity available for transfer. 

The thermal accommodation coefficient (Wachman, 1992) is defined as the 

difference in temperature (equivalently, energy) between the impinging molecule and 

the reflected molecule over that between the impinging molecule and the wall, 

according to 

incident reflected incident reflected

incident surface incident surface

T T E E
T T E E

α
− −

= =
− −

    (2.52) 

where Esurface is the energy that would be carried away by the molecule if it had 

totally equilibrated to the surface temperature.  The limits of the thermal 

accommodation coefficient, zero and unity, correspond to a molecule reflecting with 

no energy exchange to the wall and total thermal accommodation with the wall, 

respectively.  These correspond to specularly and diffusely reflecting boundaries. 
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For specularly reflecting boundaries, no momentum or energy is exchanged 

with the wall.  Specular reflection may be used to model either rigid surfaces or 

planes of symmetry.  If a particle strikes a specularly reflecting surface, the normal 

component of the particle’s velocity changes its sign. 

For diffusely reflecting boundaries, the temperature of reflected particles is 

given as the wall temperature.  After the particle strikes the boundary, a new velocity 

must be prescribed to the particle, which is generated through the equilibrium 

distribution with the wall’s temperature.  This is similar to the injection of particles 

from a surface element using the Maxwellian distribution with zero mean flow 

velocity. 

As most engineering surfaces have sufficient microscopic roughness and 

adsorbed gas molecules near the surface, using diffuse reflection is a good 

characterization of the boundary.  Conditions where this assumption is questionable 

are given in Bird, 1998. 

2.3.7 Neutral Particle Motion 
The DSMC method is a stochastic solution to Boltzmann’s equation: 

1
V

collisions

f f f
t m t

∂  + ∇ + ∇ =  ∂ ∂ 
v Fi i f∂      (2.53) 

where f is the velocity distribution function and ∇V is the del operator with respect to 

velocity space coordinates.  Since the DSMC method uncouples collisional and 

movement operations, the particle motion phase of computations corresponds to 
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solution of the collisionless Boltzmann equation.  The equations of motion for a 

neutral particle are 

dm
dt

=
v F         (2.54) 

d
dt

=
x v         (2.55) 

For a non-constant (or non-uniform) body force, an integration scheme must 

be used to update the equations of motion.  However, the only forces on neutral 

particles is the collisional force and gravity.  Collisions are dealt with using the 

molecular cross-section concept.  As gravity is constant, no accuracy is lost in the 

application of the force either before or after the particle motion phase of 

computations. 

Particles are moved between adjacent tetrahedral cells using a particle tracing 

technique.  The intersection of a particle with the plane defined by a triangular cell 

face is expressed as a system of linear equations involving two edges of the face, the 

current particle position, and velocity.  Solution of these equations yields the time of 

intersection and point of intersection in a skewed coordinate system defined by the 

edges used in the calculation.  Intersections occurring outside the face or in negative 

time are ignored.  If the particle does intersect the face, its position and owning cell 

are updated.  Small displacements are made relative to the face dimensions if the 

intersection occurs near the edges of the face, in order to avoid intersecting near an 

edge that may lead to an incorrect solution with any finite precision.  Each face of the 

current cell is checked in turn for intersection. 
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Figure 11. Skew local coordinate system used for particle tracing for face ABC. 
Following Figure 11, the intersection of a particle with initial position ro and 

velocity v with face ABC is 

o AB ACτ α β+ = +r v       (2.56) 

In this equation,  and AB AC  are the vectors from point A to points B and C, 

respectively, τ is the time elapsed in moving from the initial point to the plane defined 

by points A, B, and C; α and β define the point of intersection in the skewed 

coordinate system of face ABC.  If the time τ is negative, an intersection does not 

occur.  If α or β are less than zero or greater than unity, an intersection does not occur 

within the face.  If the sum of α and β is greater than unity, then the intersection 

occurs outside the face. 

The linear system of equations does not necessarily have good characteristics 

and may be ill-conditioned if the cells and corresponding faces are badly shaped or 
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velocity is very large.  In practice, the former is more severe than the latter as the 

latter may be prevented by using a smaller global time-step. 

2.4 Plasmadynamics via the Particle in Cell Method 
The necessary equations for expression of the electrostatic condition are 

available from two of Maxwell’s equations: 

0
t

∂
∇ × = − =

∂
BE   Faraday's Law    (2.57) 

o

ρ
ε

∇ =Ei    Gauss’s Law    (2.58) 

This limit assumes the magnetic field induced by currents in the domain of 

interest is negligible, though a external magnetic field, B, (nearly) constant in time is 

still permitted in the approximation.  In the electrostatic approximation, the electric 

field may be expressed as the gradient of a scalar potential: 

= −∇ΦE         (2.59) 

Gauss’s law then becomes Poisson’s equation for the case of electrostatics: 

2 1

Ni

i i e e
i

o o

q n q n
ρ
ε ε

=

+
∇ Φ = − = −

∑

      (2.60)
 

In the above, the total charge density in the volume of interest is ρ; εo is the 

permitivity of free space; Ni is the number of ionized species; q is the charge per 

particle, and n is the number density.  The subscripts i and e denote ion and electron 

species, respectively. 
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The differential form of Gauss’s law may be applied over a closed surface S 

with outward unit normal  which and results in the integral form of Gauss’s law: n̂

ˆo
S V

dA dV Qε ρ=∫∫ ∫∫∫E ni =       (2.61) 

where Q is the total charge enclosed. 

2.4.1 Charged Particle Loading 

The loading of the domain with charged particles is accomplished in a manner 

identical to the loading of neutral particles described in Section 2.3.2.  Particle 

velocities are sampled from a drifting Maxwellian distribution function.  Positions are 

randomly assigned such as to maintain the necessary density.  As the leap-frog 

method is used for the integration of the equations of motion for charged particles, it 

is necessary to move the velocities back half a time step using the force field values at 

the initial time.  This is done after all particles are loaded into the domain. 

2.4.2 Charged Particle Injection 

The injection of charged particles into the domain is accomplished in a 

manner identical to the injection of neutral particles described in Section 2.3.3.  

Particle velocities are sampled from the portion of the Maxwellian equilibrium 

distribution function that correspond to particles which could physically cross an 

open surface with the prescribed drift velocity.  As the leap-frog method is used for 

the integration of the equations of motion for charged particles, it is necessary to 

move the velocities back half a time step using the force field at the current time.  
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This is done after each particle is moved into the domain a random fraction of a time 

step using the initial velocity sampled from the equilibrium distribution function. 

2.4.3 Charged Particle Motion 

In a plasma, the equation of motion of a particle is coupled with the 

electromagnetic fields.  The equations of motion for non-relativistic particles in 

vector form are: 

dm
dt

=
v F         (2.62) 

d
dt

=
x v         (2.63) 

The leap-frog method shown schematically in Figure 12, obtains second-order 

accuracy in time through use of a velocity that is staggered at half time-steps relative 

to the particle position.  The particle position and velocity derivatives are discretized 

using a linear finite difference form: 

1/ 2 1/ 2n n
nm

t

+ −−
=

∆
v v F        (2.64) 

1
1/ 2

n n
n

t

+
+−

=
∆

x x v        (2.65) 

where n is the time-step counter.  The time centered property of the discretized 

equations is what gives second order accuracy, as can be seen from examination of 

the Taylor series.  The leap-frog method requires minimal information to be stored 

with respect to velocity and position, as the new values of velocity and position may 
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be updated directly from previous values and only one set of velocity and position 

components need be stored. 

 

Figure 12. Schematic of leap-frog integration method (from Birdsall, 1991). 

In the case of PIC, the force on a charged particle is due to the Lorentz force: 

(d q
dt m

= + ×
v E v B)        (2.66) 

This may be discretized by using a time-centered average for the magnetic term, 

consistent with the leap-frog formulation.  The discretized form of the equation is: 

1/ 2 1/ 2 1/ 2 1/ 2

(
2

n n n n
nq

t m

+ − + −− −
= + ×

∆
v v v vE )nB     (2.67) 

Since the previous velocity is known, the above represent a set of three 

equations and three unknowns for the velocity at the new time step.  However, 

computationally faster methods have been developed to obtain the new velocity.  The 

methodology discussed here is from Birdsall et al., (1991) following a method 

developed by Boris, (1970). 
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The magnetic and electric forces may be separated completely from the 

substitution of two new variables into the discretized force equation: 

1/ 2

2

n
n q

m
− − t∆

= −
Ev v        (2.68) 

1/ 2

2

n
n q

m
+ + t∆

= +
Ev v        (2.69) 

Contributions from the electric field cancel entirely, which leaves just a 

rotation due to the magnetic field: 

( )
2

nq
t m

+ −
+ −−

= + ×
∆

v v v v B       (2.70) 

Half of the electric impulse is added to the initial velocity to obtain −v , the 

rotation is performed to obtain v+, and then the second half of the electric impulse is 

added to v+. 

The magnitude of the angle of rotation can  be evaluated from construction of 

the vectors v+ and v- according to 

tan
2 2

q t
m

θ + −
⊥ ⊥

+ −
⊥ ⊥

− ∆
= =

+

v v B
v v

      (2.71) 

The velocity components in this equation are perpendicular to the magnetic 

field and θ is the angle between the velocity vectors. 

Several steps are necessary to implement the rotation due to the magnetic field 

efficiently.  First, is incremented to produce a vector v' which is perpendicular to 

both ( ) and B according to 

−v

+ −v v−

' − −= + ×v v v t        (2.72) 
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The vector t is defined from the requirement that the angle between v  and v− + 

is θ/2 according to 

2
q
m

∆
≡

Bt t

−

        (2.73) 

Since  is parallel to + −v v '×v B , v+ can be found from 

'+ −= + ×v v v s        (2.74) 

The vector s is parallel to B and its magnitude is determined by the requirement that 

the square of the velocities (kinetic energy) is unchanged by the rotation according to 

2

2
1 t

=
+

ts         (2.75) 

This algorithm, from Boris (1970), may be made relativistic if necessary for 

the simulation. 

Updating of particle positions is performed identically to that of the neutral 

case, using the particle tracing technique for unstructured tetrahedral grids.  

Consideration of grid quality for PIC computations has the same issues as for DSMC. 

2.4.4 Validation of Leap-Frog Integration for Particle Motion 

A simple test was performed to ensure that leap-frog integration was 

implemented correctly and that sufficient accuracy is achieved for particle velocity 

and position versus time.  A single ion was placed randomly in a domain with a 

steady electric field (1000 V/m) resulting from the monotonic decay of potential 

between two infinite conducting plates 0.1 m apart.  The force should be steady on 
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the particle – velocity is expected to increase linearly and position quadratically.  The 

particle was monitored until it hit a surface. 

 

Figure 13. Particle velocity in x-direction versus time.  The line indicates analytic 

results and the symbols are calculated results. 

Computational results shown in Figure 13 and Figure 14 are nearly identical 

to analytic results.  It was noted in preliminary results of this test when runs were 

made with multiple particles and a very large time step that some particles escaped 

the domain, despite the precautions taken to detect and eliminate lost particles.  These 

particles contributed physically unrealistic values of charge due to use of the 

Lagrange weighting procedure outside of the domain. This illustrates the importance 

of using a time-step appropriate to the simulation of interest. 
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Figure 14. Particle position versus time.  The line indicates analytic results and 

the symbols indicate calculated results. 

2.4.5 Finite Volume Method for Poisson’s Equation in Delaunay 

Tetrahedral Domains 

The finite volume method separates the domains into discrete control 

volumes.  In each control volume, the differential equation is discretized.  When 

applicable, integrals over volume involving gradients are transformed into integrals 

over surfaces using the divergence theorem.  Similarly, integrals over surfaces may be 

transformed into integrals around closed contours and back using Stokes’s theorem.  

Quantities in a single cell, face, or edge may be considered constant or vary 

depending on the formulation or accuracy desired. 

The order of error for a finite difference or finite element formulation is given 

as the highest derivative kept from a Taylor series expansion.  Using two evenly 

spaced points about the point of interest, one may obtain an expression second-order 
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accurate in space for the first derivative.  Considering the direction x to be the 

direction that the points are collinear: 

21 1

,

( )
2

i i

i j

u u u O x
x x

+ −∂ − = +∂ ∆
∆       (2.76) 

Overall accuracy may be increased by considering more points in the Taylor series or 

using small values of spacing. 

In this work, advantage is taken of the Voronoi dual of the Delaunay 

triangulation in order to formulate a finite volume method for Poisson’s equation with 

accuracy adequate for engineering calculations.  The Voronoi cell corresponding to 

each Delaunay node contains the set of points closer to that point than any other.  

Also, the facets of the Voronoi cell are orthogonal to the lines joining the tetrahedral 

nodes. 

 Finite Volume Formulation 

If one considers a node-centered finite-volume scheme with finite volume i 

associated with node i with a number of faces NF that is (in theory) small enough to 

accurately capture the physics, the semi-discrete equation form of Gauss’s law is: 

,

,
1

F iN
i

i k
k o

Q
ε=

=∑E Ai .       (2.77) 

In the above, Qi is the total charge enclosed by volume i, Ai,k is the area of the 

face k of associated with volume i, and the summation is over all the faces of the 

finite volume as shown in Figure 15 for a 2-D case.  Using the electric potential Φ: 
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( )
1 1, ,

ˆ
F FN N

i

k ki k i k o

QA A
n ε= =

∂Φ ∇Φ = = − ∂ 
∑ ∑ni     (2.78) 

where Ai,k=(A )n̂ i,k is the magnitude of the area of the face k for the volume 

associated with node i multiplied by the unit outward normal vector.  In deriving Eq. 

(2.78), we used the definition of the gradient, 

ˆ
n

∂Φ
∇Φ =

∂
ni .        (2.79) 

As the planes defined by the faces of the Voronoi dual are orthogonal to the 

edges of the tetrahedral grid and contain the midpoint of each edge, an expression for 

the derivative at the faces of the Voronoi dual may be obtained from the central 

difference method which is second-order accurate with node spacing. 

21 ( )i io

i

O h
n L

+Φ − Φ∂Φ  = +∂ 
.      (2.80) 

Here, io (equivalent to i-1 in a standard finite difference lattice) denotes the index of 

the node in the Voronoi cell of interest, i+1 is the index of the node at the opposing 

end of the edge, and L is the distance between the nodes.  Note that switching places 

of the index counters switches the sign of the derivative, which may be taken 

advantage of during computations.  The local value of node spacing (in this case, one 

half the edge length) is denoted as h. 
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Figure 15. Example of 2-D Delaunay mesh (red lines)and its Voronoi dual (green 

lines) used in electrostatic computations. 

An approximation of the electric flux into a cell containing node i across a 

Voronoi face corresponding to an edge with nodes k and i is: 

( )
,

,
,

1 ,

ˆ (
F iN

i k
ki k

k i k

A
A

L=

∇Φ = Φ − Φ∑ ni )i      (2.81) 

In the above, Li,k is the distance from node i to node k.  Summing over all faces k of a 

Voronoi cell corresponding to node i, a system of linear equations may be formed 

assuming the charge inside the volume, Qi, is known.  The system is 

,
,

1 ,

( )
F iN

i k i
i k

k i k o

A Q
L ε=

Φ − Φ =∑ .      (2.82) 

It is noted that this method reduces to the standard 2nd order finite-difference method 

on Cartesian meshes. 

The matrix form of this equation is: 
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1,1 1,2 1,3 1, 1 1

2,1 2,2 2,3 2, 2 2

3,1 3,2 3,3 3, 3
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       =Φ 
  

 


  
 


  

  Φ


      

   (2.83) 

N is the number of nodes in the mesh.  Ri,j is the coefficient, which is determined by 

,
,

,
1 ,

F iN
i k

i j
k i k

A
R

L=

= ∑  for i = j,       (2.84) 

,
,

,

i j
i j

i j

A
R

L
= −  if j is adjacent to i,      (2.85) 

, 0i jR =  otherwise.       (2.86) 

,

,

i j

i j

A
L

 is the ratio of the area of the Voronoi face between nodes i and j to the distance 

between nodes i and j if the nodes. 

The resulting symmetric matrix equations may be solved for using any standard 

solution technique.  The sparse matrix was stored in compressed row storage (CRS) 

format that is computationally efficient both in terms of storage and matrix 

operations.  Details of the CRS format may be found in Hammel (2001). 

 Electric Field Evaluation 

The divergence theorem may be used to construct the electric field (negative 

of the gradient of the potential) in a volume of interest.  For a volume V bound by a 

surface S composed of n faces Fi, the divergence theorem is expressed as 

V S

dV d∇ =∫ ∫Y Yi Ai        (2.87) 
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where Y is a vector and dA is an outward normal differential surface element.  A 

formula for the gradient can be constructed through use of a constant vector k, 

( )
V S

dV d∇ Φ = Φ∫ ∫k ki Ai

A

.      (2.88) 

Since k is arbitrary and constant, it may be taken outside of the integral and 

divided out according to 

V S

dV d∇Φ = Φ∫ ∫k ki i       (2.89) 

V S

dV d∇Φ = Φ∫ ∫ A .       (2.90) 

To this point, the formulation is arbitrary and exact.  If one assumes that the 

gradient varies only slightly over the control volume and the potential is constant for 

a given face, a discrete formulation of equation (2.90) may be constructed as follows: 

1

1 n

i i
iV =

∇Φ = Φ∑ S        (2.91) 

where Si is the outward normal vector of face i with a magnitude equal to the area of 

the face. 

Since the potential is known at the nodes and not the faces of either the 

Delaunay or Voronoi mesh, averaging must be done to obtain the potential at the 

faces.  It is worth noting that this is a general method for finding the gradient on 

unstructured meshes with minimal information. 
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Another method of finding the gradient of a scalar function known at the 

nodes on general meshes is the least squares algorithm.  A locally linear variation of 

the potential is assumed, such that 

1oΦ + ∇Φ ∆ = Φri        (2.92) 

where, ∆r is the vector from node 0 to node 1.  For a point with J neighbors, this may 

be written in Cartesian coordinates considering the neighbor point j as 

j j j j
o oo

x y z
x y z

∂Φ ∂Φ ∂Φ
∆ + ∆ + ∆ = Φ −

∂ ∂ ∂ oΦ     (2.93) 

In matrix form, this is expressed as 

= ∆ΦMd         (2.94) 

where, M  is the  matrix: 3J ×

1 1

2 2

1

2

J J J

x y z
x y z

x y x

∆ ∆ ∆ 
 ∆ ∆ ∆=
 
 ∆ ∆ ∆ 

M  .      (2.95) 

In Equation (2.94), d is the components of the gradient at node 0: 

o

o

o

x

y

z

 ∂Φ
 ∂ 
 ∂Φ

= 
∂ 

 ∂Φ 
∂  

d          (2.96) 

and ∆Φ is the length J vector of differences in Φ: 

 89



1

2

o

o

J o

Φ − Φ 
 Φ − Φ∆Φ =
 
 Φ − Φ 

        (2.97) 

This linear system contains J equations and three unknowns.  Since in practice 

J will be larger than three, this is an over-determined system.  Physically, this means 

that we cannot assume a linear profile for the potential around point 0 such that 

exactly reconstructs the known solution at all of its neighbors.  It is necessary to 

search for a solution that fits this data in the best possible way. 

The least squares method gives a way to find a solution to this system that 

minimizes the root mean square value of error.  The error in the reconstructed value 

for point j is given by 

(j j j j j
o oo

R x y z
x y z

∂Φ ∂Φ ∂Φ
= ∆ + ∆ + ∆ − Φ − Φ

∂ ∂ ∂
)o    (2.98) 

The square of the error over all the neighbors of point 0 is 

2
2 (j j j j j

j j o oo

R R x y z
x y z

)o

 ∂Φ ∂Φ ∂Φ
= = ∆ + ∆ + ∆ − Φ − Φ ∂ ∂ ∂ 

∑ ∑  (2.99) 

It is desired to find the derivatives of the potential such that the error is minimized.  

The standard way is the differentiate R with respect to the derivatives of the potential 

and set the result equal to zero: 

0

o

R

x

∂
=

 ∂Φ
∂  ∂ 

        (2.100) 
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0

o

R

y

∂
=

 ∂Φ∂  ∂ 

        (2.101) 

0

o

R

z

∂
=

 ∂Φ
∂  ∂ 

        (2.102) 

This set of equations is the same as that obtained by multiplying the matrix 

equation for M , d, and ∆Φ by the transpose of M : 

T T
= ∆M Md M Φ        (2.103) 

This is a set of three equations and three unknowns that may be solved for by 

a standard linear algebra technique. 

 Implementation of Gradient Calculations on Unstructured Meshes 

Several methods of calculating the gradient were studied in order to assess 

their relative accuracy.  Both the control volume approach (from the divergence 

theorem) and least-squares approach gave an approximation of the gradient usable in 

calculations. 

The least squares approach was implemented using the neighbors of the node 

sharing an edge of the Delaunay mesh.  For the divergence approach, two different 

control volumes studied produced acceptable gradients:  a tetrahedron (cell-centered 

gradient) and the volume of all tetrahedra which share the node of interest (node-

centered scheme).  The schemes are assessed here for applicability. 
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It is highly desirable to use the same particle weighting function as force 

weighting function (Birdsall, 1991).  Use of different weighting functions represents 

different particle shapes for charge accumulation and field calculation and may lead 

to non-physical instabilities (Birdsall, 1991).  Use of the same weighting function for 

charge accumulation and field distribution also eliminates the self-force and 

conserves momentum (Birdsall, 1991).  Therefore, if it is desired to use linear 

Lagrange polynomials to accumulate charge at the node, the same function should be 

used to weight the electric field (and magnetic field, when applicable) back to the 

particles.  Use of a tetrahedral cell-centered scheme is, in general, inappropriate to 

this type of weighting.  Averaging techniques could be used to obtain the value at the 

node from the value at the cell, but it would be difficult to formulate an average that 

conserved all the relevant quantities of interest as well as was identical to the linear 

Lagrange function.  Therefore, it is desirable for purposes of calculating the electric 

field from the electric potential to use a method that gives the gradient at the node.  

Cell-centered methods, if desirable, could be used for other purposes involving the 

calculation of the gradient on unstructured meshes. 

It is noted that the cell-centered tetrahedral method and the node-centered 

method using all the cells bordering a node give equivalent results.  It is obvious that 

the results obtained using the explicit node-centered control volume approach 

correspond to results at the node, while this is not necessarily obvious for the 

tetrahedral cell-centered method.  The control volume for an interior node i is shown 

in Figure 16. 
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Figure 16. Volume used for interior node i for the calculation of the gradient 

using the divergence theorem. 

Another method to calculate the gradient is the differentiation of the linear 

Lagrange function which can be used to approximate the potential in a node.  At the 

nodes, this method is identical to the control volume method applied to the volume of 

all tetrahedra that contain the node.  However, this method has the conceptual 

advantage that the field is applied directly to the particle and is consistent with using 

the same function to accumulate charge as to interpolate the electric field. 

Each method studied is weakest at the boundaries of the domain, as 

information about the derivative is not available in the direction into the boundary.  It 

is possible to correct the field at the boundaries of the mesh by using the  imposed 

boundary conditions.  For Neumann boundary conditions, the normal component of 
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the electric field is known and may be applied directly to the calculated gradient.  For 

conductors, the electric field is normal to the boundary and its magnitude may be may 

be computed from the surface charge density: 

i
i

o

σ
ε

=E         (2.104) 

An expression for the surface charge density may be obtained to the discretized 

Gauss’s law: 

,
,

( )
1 ,

( )

( )
F iN

i k
o i k plas

k i k
i

boundary i

A
Q

L
A

ε
σ =

 
Φ − Φ − 

 =
∑ ma i

    (2.105) 

Correcting for the potential at the boundary proved to slightly increase the accuracy 

of the node-centered method. 

The accuracy of the methods was studied numerically for problems of 

engineering interest.  Accuracy of the methods was observed to be less than that 

obtained on Cartesian meshes, but could be acceptable for engineering calculations.  

The least squares method and both the tetrahedral cell-centered control volume 

method and node-centered control volume method share about linear accuracy.  For 

the cell-centered method, values were obtained at the nodes by straight volume 

averaging over the cells sharing the node.  It was noticed that all three methods 

exhibited problems in the same geometric regions, which indicates that spacing in 

these regions may need to be refined and that these methods suffer from some 

geometric biases.  The best method was shown to be grid dependent, as least-squares 
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proved better on some meshes and the control volume method proved better on 

others. 

One test used imposed a monotonic decay of potential between two infinite 

parallel conductors.  For such a case, the value of the gradient should be a constant 

vector.  All of the methods were accurate to within 7% for the component of electric 

field perpendicular to potential lines. 
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Figure 17.  Electric field at grid points using the node-centered control volume 
method. 
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Figure 18. Electric field at grid points using least-squares method. 
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Figure 19. Electric field using the node-centered control volume approach using 

field corrections at the boundaries. 
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Figure 20. Electric field using the least squares approach using field corrections 

at the boundaries. 

The results of the gradient calculations are shown in Figures 16-19.  The 

analytical value for the field is 43,333 V/m, shown in solid black lines.  Figures 16 

and 17 illustrate the value of the electric field using the node-centered control volume 

approach and the least squares approach.  Figures 18 and 19 illustrate the effect of 

correcting the electric field using boundary conditions.  Figure 18 illustrates the  

node-centered control-volume approach and Figure 19 illustrates the least-squares 

approach.  As seen in the illustrations, all methods have similar accuracy and suffer in 

accuracy in the same locations.  Correcting for boundary conditions slightly improves 

the electric field near the boundaries.  The electric field accuracy should be sufficient 

for most computations of engineering interest, but attention should be paid to 

locations and conditions where the electric field accuracy is questionable. 
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2.4.6 Boundary Conditions for PIC Methodology 

In a bounded domain, a solution to Poisson’s equation may be specified 

uniquely by piece-wise continuous Dirichlet and Neumann boundary conditions 

(Jackson, 1999).  Dirichlet boundary conditions involve the specification of the 

voltage on the boundaries, as with a system of conductors.  Neumann boundary 

conditions involve the specification of the component of the electric field normal to 

the surface.  It is to be noted that a domain enclosed by only Neumann boundary 

conditions has an arbitrary (unspecified) zero potential, but as only the gradient of 

potential is of interest anyway, this should not be an issue of concern.  The solution to 

a problem with the arbitrary specification of both Ф and ∂ Ф /∂n (Cauchy boundary 

conditions) does not exist for a bounded domain since the piece-wise specification of 

mixed boundary conditions determines the problem uniquely (Jackson, 1999). 

Since the boundaries of the Delaunay mesh are forced to coincide with the 

boundaries of the tetrahedral mesh during the construction of the Voronoi mesh, the 

implementation of boundary conditions is straightforward and requires no special 

technique.  Specification of voltage on the boundaries is considered a strong 

condition:  the voltage is placed on the right hand side of the matrix and the 

corresponding row zeroed with a one placed on the diagonal.  Fluxes due to the 

Neumann boundary condition are added to the flux formulation for the Voronoi cell 

corresponding to the boundary node.  Dirichlet boundary conditions have precedence 

over Neumann boundary conditions in the case when a node is in the interface 

between boundary condition types. 
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To enforce a Dirichlet condition, the coefficient for the node of interest on the 

diagonal is set to unity and the rest of the row is zeroed.  To enforce a Neumann 

condition, the value of the inward normal electric field multiplied by the boundary 

area is added to the right hand side of the node of interest. 

This is illustrated in matrix form for the boundary shown in Figure 21. Node 1 

is a node on a Dirichlet boundary with potential Φo.  Node 2 is a node on a Neumann 

boundary with associated inward flux EN,2AN,2.  Nodes 3 and N are interior nodes (not 

shown in figure).  Ri,j  are the coefficients from Equations (2.84) to (2.86). 

1

2,1 2,2 2,3 2, 2 2 ,2

3,1 3,2 3,3 3, 3 3

,1 ,2 ,3 ,

1 0 0 0
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 (2.106) 

 

Figure 21.  Illustration of enforcement of boundary conditions on Voronoi dual 

for nodes 1 and 2.  Node 1 is on conducting boundary with potential (black 

line).  Node 2 is on a Neumann boundary with inward normal electric field E

oΦ

N 

(blue line).  The control volume associated with node 1 is shown as a dotted line. 
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2.4.7 PIC Simulation of Bounded Plasmas 

V
R L C

 
Figure 22. A plasma in series with an RLC circuit. 

In general, the conductors of a plasma device system are not held at an 

independent potential but may interact with the plasma and an external circuit.  The 

plasma serves as a conducting medium that may deposit charge on electrodes and is 

driven by their time-dependent potential.  A bounded plasma is illustrated in Figure 

22.  In order to model the electrostatic behavior of a plasma correctly, the circuit and 

the plasma must be solved in a coupled manner. 
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It is possible to model an arbitrary system of conductors and circuit elements 

in conjunction with a plasma through the discretization of Maxwell’s equations 

(Thomas et al., 1994).  However, in general it is necessary to explicitly model the 

devices external the plasma including geometric details.  For the application of an 

electrostatic code, another approach is taken.  The standard equations for an external 

circuit are solved in conjunction with Poisson’s equation for electrostatics using the 

assumption that a conductor is at a constant potential and the standard circuit 

equations apply. 

Assume that a system of conductors bounding a plasma includes one driven 

and one grounded electrode as shown in Figure 22.  The potential on the driven 

conductor is unknown and is a function of circuit and plasma parameters.  Other 

conductors with explicitly specified potentials may be present, though it is assumed 

that their potentials are independent of the plasma and the circuit, as if connected to 

an ideal battery with a very thin wire.  The potential on the grounded conductor is 

asserted to be zero so that at least one Dirichlet boundary condition is present.  To 

obtain the potential on the driven conductor, it is useful to apply Gauss’s law: 

o o
S S V S

d d dV dS Qε ε ρ σ= − ∇Φ = + =∫∫ ∫∫ ∫∫∫ ∫∫E S Si i    (2.107) 

where, Q is the total charge enclosed in the volume of interest (in Coulombs) and it is 

assumed that the permittivity in the volume is that of free space, and σ is the surface 

charge density on the conductor. 
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The surface charge density may be associated with the boundary faces or the 

boundary nodes.  It is convenient to associate the surface charge density with the 

nodes for the node-based scheme described in the development of the finite volume 

approach.  A semi-discrete expression for Gauss’s law is available directly from the 

finite volume discretization of Equation (2.82): 

,
, , ( ) (

,

( ) i k
o N i N i i k plasma i i boundary i

k i k

A
E A Q A

L
ε σ

 
+ Φ − Φ = + 

 
∑ )

dV

  (2.108) 

The expression here is evaluated at the Voronoi volume corresponding to 

boundary node i.  The outward electric flux due to Neumann boundary conditions into 

the node’s corresponding Voronoi volume is designated by EN,iAN,i, if any.  The sum 

is taken over all neighbors of node i.  There will be no contribution from neighbor 

nodes k on the same conducting boundary since their potential will be the same as 

potential at i.  The boundary area associated with node i is A(boundary)i, and  Q(plasma)i is 

the charge due to the plasma weighted to node i: 

( )plasma i
V

Q ρ= ∫∫∫        (2.109) 

The electric field inside a perfect conductor in electrostatics is zero, so it is 

unnecessary to include a flux term that would correspond to flux into the conductor.  

This is equivalent to saying that all current in the driven electrode is perpendicular to 

the surface. 

It is necessary to develop an expression that constrains the potential to be 

constant on a conductor in accordance with the principles of electrostatics. 
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The time variation of the total surface charge density (the surface charge 

density integrated over the conductor divided by its area) can be obtained from the 

law of charge conservation following Vahedi and DiPeso, (1997): 

( )T
conv

dA I t Aj
dt
σ

= +         (2.110) 

In the above, I is the external current, jconv is the convected plasma current 

density arriving at the electrode, and A is the total area of the electrode: 

(
( )

boundary i
boundary i

A A= ∑ )

Q

       (2.111) 

A discrete form of the charge conservation at the boundary which is first order 

accurate in time is following Vahedi and DiPeso (1997): 

1 1( )t t t t t
T T convA Q Qσ σ − −− = − +      (2.112) 

The superscript integral counter t indicates the time step number.  In Equation 

(2.112), Q is the total charge on the capacitor and Qconv is the charge deposited on the 

electrode during the time interval (t-1, t).  Using Equation (2.108) and summing over 

all the boundary nodes gives an expression for the total charge at the current time. 

,
( )( ) ( ) , ,

,

[ ( ) ]t tt t t i k t
i k plasma iT boundary i i boundary i o N i N i

i i i k i k

A
A A E A Q

L
σ σ ε= = + Φ − Φ −∑ ∑ ∑ ∑

(2.113) 

Applying charge conservation (Equation (2.112)), Equation (2.113) becomes 

1 1 ,
, (,

,

[ ( ) ]t t t t t t t t i k t
N i i k plasma iT T conv o N i

i k i k

A
A A Q Q Q E A Q

L
σ σ ε− −= + − + = + Φ − Φ −∑ ∑ )

(2.114) 
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If we constrain the potential to be a constant value Φo for all boundary nodes i 

on the conductor, then Eq. (2.114) becomes 

, 1 1
, (,

,

( )t t t i k t t t t t
N i o k plasma io N i T conv

i k ii k

A
E A A Q Q Q Q

L
ε σ − − 

+ Φ − Φ = + − + + 
 
∑ ∑ ∑ ) (2.115) 

1 1 ,
( ) , ,
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1 [ ]t t t t t t t i k
plasma i N i kT conv N i

i i ko i kt
o

i k

i k i k

A
A Q Q Q Q E A

L
A
L

σ
ε

− −  
+ − + + + − + Φ 

 Φ =
∑ ∑ ∑

∑∑
(2.116) 

In general, the value of Qt comes from the circuit equation of the external circuit and 

is a function of the potential Φo.  In effect, the wall is treated as a single unknown 

node, with connections to all of the adjacent nodes and appropriate geometric 

quantities. 

The linearity of Maxwell’s equations allows the total field to be considered as 

contributions of fields from separate sources.  This is the principle of linear 

superposition.  Similarly, the electrostatic potential may be seen as the superposition 

of the potential due to the plasma charge density with zero boundary conditions, the 

potential due to an imposed the electric field, and the potential due to the electrodes. 

( tt
plasma E field electrodes−Φ = Φ + Φ + Φ )      (2.117) 

The potential due to the imposed electric field comes from Neumann 

boundary conditions.  The potential due to the (driven and grounded) electrodes needs 

only to be solved initially using Laplace’s equation in absence of any space charge.  

The potential on the driven electrode is normalized to unity, such that the potential 
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field at an arbitrary time due only to the potential drop from the driven electrode may 

be obtained as the initial potential field multiplied by a constant. 

,
t t

i o NL i plasmaΦ = Φ Φ + Φ ,
t

i

i

,
t

ma i

      (2.118) 

In this equation, Φplasma denotes the potential due to the volume (plasma) charge 

distribution, the imposed electric field, and independently biased conductors.  The 

potential due to the driven conductor is , where Φ,
t

o NLΦ Φ NL,i is the normalized time-

independent potential profile obtained initially due to the driven and grounded 

conductors and Φo
t is the potential on the driven conductor at time t.  If K 

independent external circuits are considered (with either a common ground or 

grounds specifically provided by constant Dirichlet boundary conditions) this 

equation becomes: 

, ,
1

K
t t

i o k NL ik plas
k =

Φ = Φ Φ + Φ∑      (2.119) 

Note that Laplace’s equation must be solved once for each driven electrode. 

A value may be obtained explicitly for the driven electrode potential by substituting 

this solution for neighbors j of the electrode into the expression for potential from 

consideration of Gauss’s law near the boundaries: 

1 1 ,
( ) , ( ),

,

,
,

,

1 [ ]

(1 )

t t t t t t ti k
plasma i N i plasma kT conv N i

i i ko i kt
o

i k
NL k

i k i k

A
A Q Q Q Q E A

L
A
L

σ
ε

− −  
+ − + + + − + Φ 

 Φ =
− Φ

∑ ∑ ∑

∑∑
(2.120) 
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Once the potential on the conductor is known, the total charge on the 

conductor, AσT
t, may be calculated from Gauss’s law (Equation (2.108).  The new 

value of charge on the capacitor may be obtained from the discretized Kirchoff’s 

current loop law: 

1 1( )t t t t
T T c coQ A Q Qσ σ − −= − + − t

nv      (2.121) 

 Floating conductor 

A conducting boundary is floating if it cannot exchange charge via an external 

circuit.  This is equivalent to an open circuit.  Floating boundary conditions are useful 

in modeling electrostatic (Langmuir) probes, spacecraft charging, and other 

phenomenon of engineering interest. 

A floating conductor may be modeled as above by simply removing the Qt terms.  

Then Equations (2.114) and (2.120) become 

1 ,
, (,

,

[ ( ) ]t t t t i k t
N i plasma iT T conv o N i i k

i k i k

A
A A Q E A Q

L
σ σ ε−

)
  = + = + Φ − Φ − 
  

∑ ∑ (2.122) 
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A Q Q E A

L
A
L

σ
ε

−  
+ + + − + Φ 

 Φ =
− Φ

∑ ∑ ∑

∑∑
(2.123) 

 Capacitative Circuit 

A simple type of external circuit useful in plasma simulations is an ideal 

voltage source and capacitor in series with the plasma with a grounded electrode.  
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This circuit type is useful for analysis of capacitative discharges (Vahedi and DiPeso, 

1997).  The circuit analysis presented above is applied here to the capacitative circuit. 

The voltage across the capacitor is available from Kirchhoff’s voltage loop law: 

( )cV V t= − Φo

o

        (2.124) 

In this equation, Vc is the voltage across the capacitor, V(t) is the time-

dependent ideal voltage source, and Φo is the potential at the driven electrode.  The 

charge on the capacitor, Qt, is (Vahedi and DiPeso, 1997) 

( ( ) )t
cQ CV C V t= = − Φ       (2.125) 

Equation (2.120) for the potential Φo becomes 
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( ) , , ( )
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(2.126) 
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(2.127) 

 Series RLC Circuit 

Many plasma discharges, including the pulsed plasma thruster, are initiated by 

and coupled with a series RLC circuit. The equation for an RLC circuit with a voltage 

drop Φo across a plasma is 
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0

1 ( )
t

o
dIL RI Idt V t
dt C

+ + = − Φ∫      (2.128) 

where, V(t) is the applied voltage.  This equation may also be cast in terms of the 

charge on the capacitor Q: 

2

2 ( ) o
d Q dQ QL R V t
dt dt C

+ + = − Φ      (2.129) 

It is desirable to obtain a backwards difference expression in order to evaluate this 

circuit.  A representation of the derivatives of interest is (taken from Verboncoeur et 

al., 1993): 

1 23 4
2

t t t tdQ Q Q Q
dt t

− −− +  =  ∆ 
      (2.130) 

2 1

2 2

2 5 4
t t t t td Q Q Q Q Q

dt t

2 3− − −  − + −
=  ∆ 

     (2.131) 

These expressions are second order accurate in time (Verboncoeur et al., 

1993).  A slightly more accurate second order expression for the second derivative 

may be obtained by substituting (dQ/dt)t for Q into the finite difference expression for 

the first derivative, but this results in a five-point expression.  It is generally 

preferable to use as few points as possible in a finite difference scheme unless 

significant gains in accuracy are achieved. 

The four-point finite difference equation for the RLC circuit may be solved to 

obtain the current charge on the capacitor as a function of the driven electrode 

potential, voltage source, and charge on the capacitor at previous time steps.  This is 

given by 
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The equation for the potential on the driven electrode is 
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 Initialization of External Circuits and Stability Considerations 

For circuits dependent on more than one previous value of charge on the 

capacitor, it is necessary to obtain these values in starting the simulation. 

A method was adopted from Verboncoeur et al. (1993) for obtaining the initial circuit 

parameters.  The circuit equation is solved for the potential on the electrode in 

absence of plasma in the region.  If the method is stable, the initial conditions will be 

damped with time (Verboncoeur et al., 1993). 

 External Circuits and Neumann Boundary Conditions 

The capacitance matrix concept (Haus and Melcher, 1989; Jackson, 1999) 

used here is typically presented for a system of conductors using only Dirichlet 
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boundary conditions.  It is possible to implement Neumann boundary conditions as 

well (Vahedi and DiPeso, 1997), but care should be exercised in doing so. 

The method for circuit solution implemented here uses only the no-flux 

Neumann boundary conditions such that the imposed electric field normal to the 

boundary is zero (EN,i=0).  The implementation of the no-flux condition requires no 

additional computational effort, only that both Laplace’s equation for the capacitance 

matrix and Poisson’s equation for plasma potential are solved with the no-flux 

Neumann boundary condition (Vahedi and DiPeso, 1997).  As this is trivially 

implemented in this finite volume approach (zero is added to the right hand side of 

the appropriate linear equation), the method can be used without alteration. 

It can be seen that the implementation of the no-flux condition is done 

trivially for the capacitance matrix method for circuit electrodes.  When the 

normalized potential profile (obtained from Laplace’s equation) is multiplied by the 

value of the potential at the current time, the effect is that the gradient of the potential 

field is multiplied by this value.  As the slope of the potential normal to the no-flux 

boundary is zero, it will remain zero when multiplied by any number.  The total 

potential profile is obtained from the sum of all potential profiles (including that due 

to the plasma).  As each potential profile will be flat normal to the no-flux surface, 

their sum will also be flat normal to this surface.  Thus the no-flux condition is 

trivially satisfied. 
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2.4.8 Validation of the Electrostatic Solver 

Electrostatics is a well-studied field.  Many analytic solutions are available for 

comparison, both with and without free charges.  In order to validate the electrostatic 

solver, comparison is made to both types of these cases. 

One classic problem is a grounded conducting sphere immersed in a uniform 

electric field.  Jackson (1999) gives the potential far from a conducting sphere at the 

origin as 

3

2( )coo
aE r
r

sθΦ = − −       (2.134) 

where, Eo is the imposed electric field strength, a is the radius of the sphere (in 

meters), r is the distance from the sphere, and θ is the angle from the imposed electric 

field vector. 

This problem was simulated in a cylindrical domain 7 meters long and 7 

meters in radius.  The sphere radius was one meter.  About 60,000 elements were 

used to discretize the domain, with spacing concentrated near the sphere where high 

gradients were expected as shown in Figure 23.  The analytic solution is plotted in 

Figure 24 and the numerical result in Figure 25.  Figure 26 plots the absolute value of 

the analytic minus the numerical results.  Figure 27 illustrates the electric field as 

calculated using the control volume approach, and Figure 28 illustrates the 

orthogonality of the potential and electric field lines in the vicinity of the sphere. 
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Figure 23 Domain and boundary conditions used for grounded sphere in 

imposed electric field problem. 

 

 

Figure 24. Analytic solution for potential around a grounded sphere in a 

uniform electric field (from Jackson, 1999) 
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Figure 25. Computed solution for potential around grounded sphere. 

 

Figure 26. Absolute value of error in volts. 
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In general, agreement was excellent between calculated and numeric potential.  

The values of electric field at the boundaries also matched the prescribed conditions.  

Slight disagreement is shown in Figure 26 near the boundaries (though small 

compared to the value of potential there), but this is due to the imposition of a finite 

domain on what is, in principle, an unbounded problem.  This example illustrates the 

validity of the electrostatic solver for a variety of boundary conditions. 

 

Figure 27. Electric field lines and contour plot of x-component of electric field 

(V/m).  The discrepancy near the boundary may be caused by sensitivity to 

boundary conditions and poorer resolution in this region, and does not seems to 

affect the general field shape. 
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Figure 28. Close-up showing orthogonality of electric field lines and potential 

contours.  The spacing between electric field lines and potential contours is not 

to scale. 

Another problem of interest is that of a uniform charge distribution between 

two infinite grounded conducting plates at x = -l/2 and x=l/2.  Poisson’s equation in 

one dimension is: 

2

2
i

o

d
dx

en
ε

Φ
= −         (2.135) 

An exact formulation proceeds from the imposition of boundary conditions.  

Imposing Φ=0 at x = -l/2 and x = l/2 and dΦ/dx=0 at x=0 (from symmetry) leads to 

an analytic formulation for the potential: 
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  Φ = −  
   

      

 (2.136) 

This problem was simulated with the electrostatic solver in a cylindrical 

domain and the results compared to the analytic formulation.  The distance of plate 

separation was 0.1 m and the ion number density (ni) was 1016 m-3, using parameters 

similar to Lieberman and Lichtenberg (1994).  One million singly-charged particles 

were used on grids ranging from 12,000 to 25,000 cells.  On average, about 50 

particles resided in each cell, which is a similar number to simulation parameters.  

Variation in the number of particles per cell to as low as about 10 did not seriously 

affect the outcome.  The charge weighting used in this and subsequent simulations is 

based on linear Lagrange polynomials, as nearest grid point weighting proved 

inadequate.  Figure 29 illustrates the potential contours with the projection of the 

background mesh shown.  Figure 30 shows the potential as a function of x and y with 

contour levels. 
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Figure 29. 2-D view of potential lines and background mesh for uniform charge 

distribution between infinite grounded conducting plates. 

 

Figure 30. Potential between two infinite grounded conducting plates for a 

uniform charge distribution. 
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Figure 31. Comparison between calculated and analytic potential for a uniform 

charge distribution between two infinite parallel grounded conducting plates. 

(X: distance (m); Y: volts) 

This simulation assesses several important aspects of the electrostatic solver.  

The general accuracy of the algorithm may be seen through the good comparison with 

analytic data in Figure 31, as well as the accuracy of the boundary conditions for a 

grounded exterior boundary and the no-flux condition.  Also, the charge weighting 

routine was verified and shown to be robust.  The only location where error was 

numerically considerable compared to the voltage was near the conductor boundary, 

where the gradient of the potential is large.  Use of a smaller characteristic spacing 

near this boundary would have corrected for this error.  Deviation from smoothness 

 118



shown on the two-dimensional mesh cross-section is due to the interpolation 

algorithm of Tecplot and is present in both numerical and analytic data. 

Particle weighting and loading procedures and discretization scale is assessed 

in the next simulation involving the monotonic decay of potential between two 

conductors.  This simulation illustrates the importance of using a discretization 

smaller than the Debye length, as well as the need for improved weighting 

procedures.  It is known (Birdsall, 1991) that even a Maxwellian distribution may be 

numerically unstable using a cell length h such that ( )/ 0.De hλ 3< .  The Debye length 

is the scale over which significant charge separations may be seen and is the 

characteristic length scale of a plasma dominated by electrostatic interaction.  For a 

plasma in equilibrium, the Debye length is given as (Lieberman and Lichtenberg, 

1994) 

1/ 2

o e
De

o

T
en
ελ

 
=  

 
       (2.137) 

where, no is the bulk plasma density.  For singly ionized species and quasi-neutral 

plasma, no=ne=ni. 

A simulation domain similar to the interior of the LES-6 PPT (Vondra, 1970) 

was used.  The two opposing electrodes were set 3.0 cm apart, one biased to 100 V 

and the other grounded.  No-flux boundary conditions were used on remaining 

domain walls.  An equal number of electrons and positive ions were randomly 

distributed throughout the domain such that the plasma should be neutral everywhere.  

The spacing value used in the discretization of the domain was 1.14  m. -310×
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While the velocity components are not important in this simulation (as only 

the initial electric and potential fields are desired), the Debye length was calculated 

according to an assumed electron temperature of 10 eV.  It is noted that if the voltage 

drop across the electrodes was of the order of that of the plasma electron temperature, 

a much more detailed resolution would be necessary as the thermal noise would be of 

the order of the potential of interest.  A minimum of 15 particles per cell was used. 

Two different bulk plasma densities were used:  1.77 and 1.0 m1510  × 1610  ×

-410×

-3.  

This corresponds to Debye lengths at electron temperatures of 10 eV of 5.68  m 

and  m, respectively.  The discretization length was 2.0 and 4.9 times larger 

than the Debye length.  Though normally it is desirable to use values of discretization 

spacing smaller than Debye length, these values were chosen to numerically 

characterize the error induced by using too large of a spacing value. 

-42.34 10×

For the case where a spacing value twice the Debye length is used, the 

potential shown in Figure 32 drops evenly over the domain and the electric field lines 

are such that a physical simulation could progress with these initial conditions.  For 

the case where the discretization spacing is 4.9 times the Debye length, the potential 

shown in Figure 33 does not drop evenly and considerable error is seen in the electric 

field lines.  An analytically neutral reference (no particles) is shown in Figure 34.  

While the temperature used (10 eV) is arbitrary, the case where the Debye length for 

the  m161.0 10× -3 case is set to equal the Debye length of the 1.77  m1510× -3 case 

illustrates the context of this temperature.  The electron temperature for the first case 

would be equal to 56.4 eV.  Since the voltage drop over the domain is 100 V, 
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statistical fluctuations in electron behavior for a temperature of 56.4 eV would be 

considerable.  In order to properly resolve this case with the existing implementation, 

it is desirable to use a smaller discretization scale and many more particles.  If it is 

important to load particles such that no biases are introduced, the quiet start method 

(Birdsall, 1991) may be used.  The quiet start method produces a phase space that is 

initially ordered.  An improved weighting procedure would also improve accuracy 

considerably. 

 

Figure 32. Potential contours and electric field lines for a discretization spacing 

of twice the Debye length. Contours shown every 10 V. 
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Figure 33. Potential contours and electric field lines for a discretization of 4.9 

times the Debye length. Contours shown every 10 V. 
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Figure 34. Potential contours and electric field lines with no charged particles 

(analytically neutral). Contours are shown every 6.25 V.. 

Though these simulations possess symmetries not found in fully three-

dimensional problems, the unstructured solver is unbiased by these symmetries and 

the validation provided by these examples can be considered general.  Few fully 

three-dimensional analytic solutions exist for electrostatic problems. 
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Chapter 3  

DSMC and PIC Simulations 

Gasdynamic thrusters are considered for micropropulsion for the role of 

attitude control as well as primary propulsion.  These devices derive their thrust from 

thermal energy in the plenum being transformed to kinetic energy as the gas expands 

through the nozzle.  These neutral thrusters may use a cold gas for simplicity, or 

derive additional energy from electric heating or exothermic chemical reactions.    

The transformation of thermal energy into directed energy his is most often 

accomplished with a converging-diverging nozzle. 

In this chapter we present simulations using the DSMC/PIC code.  The 

internal and external flow of the Gravity Probe-B thruster prototype is simulated and 

compared with data from Boyd et al. (1994a, 1994b).  Rothe’s nozzle was simulated 

at low pressures.  A two-dimensional planar MEMS nozzle was simulated and 

compared to DSMC simulations on structured meshes.  A three-dimensional MEMS 

nozzle was simulated to assess the effect of side walls.  To assess the PIC code, high 

voltage sheath formation was simulated. 

3.1 Gravity Probe-B Thruster Prototype 
The Gravity Probe-B (GP-B) thruster prototype is described by Jafry and 

Vanden Beukel (1992).  Mass flow rates for this thruster range from 0.012-3.6 mg/s 

corresponding to thrust forces from 0.02 to 4.5 mN and Knudsen numbers ranging 
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from 1.1 and 0.01, respectively. The experiment obtained mass flux profiles via a 

mass spectrometer in a vacuum facility.  The mass flux profiles were normalized to 

centerline flow at three points in the plume in angular increments of 10 degrees. The 

GP-B thruster prototype was numerically modeled using the DSMC method on 

structured grids by Boyd et al. (1994a, 1994b).  These DSMC calculations compared 

favorably with the mass spectrometer measurements of mass flux when diffuse 

reflection with full thermal accommodation was used as the surface interaction model 

for the nozzle wall.  Cases were considered zero and finite background pressure 

corresponding to experimental conditions. 

The unstructured DSMC code is used to model this nozzle for validation and 

also in order to study the characteristics of the rarefied nozzle flow.  In addition, the 

GP-B thruster chamber is at the stagnation conditions at the chamber and therefore, it 

can serve as a case-study for proper application of subsonic boundary conditions in 

DSMC simulations.  The mass flow rate considered is 0.012 mg/s = 1.2x10-8 kg/s.  

For this flow, stagnation conditions are taken from Boyd et al. as Po=7 Pa and 

To=286K.   

The surface is discretized with care taken to make sure the local mean free 

paths are greater than the average cell spacing.  The computational grid is shown in 

Figure 35 and a close-up of the nozzle in Figure 36.  The spacing of the grid interior 

to the nozzle is approximately 0.35 mm, which is about ten times smaller than the 

mean free path for equilibrium stagnation conditions.  Several sizes of bounding 

cylinders external to the nozzle were used to obtain plume flow data.  The largest 
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bounding cylinder was set to be 11 cm in radius and extended 20 cm from the nozzle.  

The grid spacing on this boundary is about 34 mm, which is much smaller than the 

mean free path of ~10 m evaluated using the background density.  The calculations of 

Boyd et al. (1994a, 1994b) show that the density near the boundary for a domain of 

this size is essentially the same as the background value.  The increase in spacing 

from the nozzle to the exterior domain was chosen as some approximation of flow 

diffusivity. 

 

Figure 35. Cross-section of computational grid used for GP-B thruster 

simulations.  Nozzle located at 0, 0. 
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Figure 36. Cross-section of GP-B grid, close-up of nozzle region. 

Boundary conditions were prescribed to the various surfaces.  The exterior 

domain was set to a free boundary.  The nozzle surfaces were set to be diffusely 

reflecting with a temperature equal to the stagnation temperature.  To ensure a correct 

mass flow rate, two approaches were investigated.  First, injection was implemented 

from an orifice in the back of the chamber wall.  In this case boundary conditions 

were set such that particles could not leave across this orifice.  The orifice size and 

injection flow velocity were set such that the correct mass flow rate was ensured.  The 

second approach involved prescribing the back and side walls of the chamber as free 

boundaries, injecting with some finite stream velocity from the back wall and 

allowing diffusion across the side wall.  The stream velocity was assigned such that 

 127



the incoming mass flux was close to the flux of particles escaping back across the 

boundary in an iterative process. 

The first injection condition was found to match mass flow rate, far field 

temperature, and stagnation temperature.  This injection condition also showed the 

unity Mach number contour intersecting the lip as well as other Mach contours 

intersecting the wall at appropriate locations.  Number density was up to 50% higher 

than the stagnation value, but only at a small location near the injection orifice.  Mach 

contours for this injection condition are shown in Figure 37 and are compared with 

the results of Boyd et al.  In the bulk of the flow, the results compare well.  The 

results shown in Figure 37 were obtained on a coarser grid than that shown in Figure 

36, and resulting in the poor resolution of Mach contours near the wall.  However, the 

chamber used matched stagnation conditions and the Mach contours of Boyd et al. 

better.  Number density contours for this injection condition are shown in Figure 38. 

The second injection condition matched mass flow rate as well.  However, 

stagnation temperature was low (~265 vs. 286 K).  The unity Mach contour did not 

intersect the lip but remained upstream of it.  Other Mach contours did not compare 

well with the results of Boyd et al.  Stagnation number density matched experimental 

data within numerical accuracy of the DSMC solver. 

 128



 

 

Figure 37. Gravity Probe-B Mach contour comparison.  Current results:  shaded 

contours; Boyd’s:  dotted lines. 
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Figure 38. Plume shape (number density contours) for Gravity Probe-B 

prototype nozzle. 

3.2 Rothe’s Nozzle 
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Rothe (1971) presented experimental investigations of two graphite nozzles 

with throat diameters of 2.5 and 5.1 mm.  Reynolds numbers ranged from 100 to 1500 

with stagnation pressures as low as 80 Pa.  Electron beams were used to determine the 

centerline rotational temperature and density as well as radial number density 

profiles. Rothe showed a qualitative difference in the behavior of flows as the 

Reynolds number dropped:  for higher values of Re and chamber pressure, 

temperature decreased monotonically along the centerline; for lower values of Re, 



temperature initially decreases but then rises again due to the dominance of viscous 

behavior.  This result is important to micronozzles design, because viscous losses 

should be minimized to obtain maximum efficiency. 

Rothe’s 5-mm nozzle is modeled using our DSMC code on unstructured 

tetrahedral grids in order to validate the code and demonstrate the behavior of small 

nozzles at low Reynolds numbers.  Only the lowest pressure (80.3 Pa) is simulated 

with a stagnation temperature of 300 K.  The nozzle walls are modeled as diffusely 

reflecting and a constant value of relaxation collision number is used. 

The simulation did not converged, even for a simulation time of 9.0  

seconds.  From the interim results, the formation of a viscous boundary layer on the 

diverging nozzle side-walls is observed.  Contours of translational and rotational 

temperature are presented in Figures 39 and 40, respectively.  Notice that the 

rotational temperature falls out of equilibrium with translational temperature due to 

the lack of collisions as the flow becomes increasingly rarefied.  Number density 

contours are shown in Figure 41. 

-410×
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Figure 39. Translational temperature for Rothe’s nozzle (K).The time is 9.0x104 
s. 

X

Y

0 0.05 0.1

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Trot
275
250
225
200
175
150
125
100
75
50
25

Rotational Temperature

 
Figure 40. Rotational temperature for Rothe’s nzzle (K).  The time is 9.0x10-4  s. 
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Figure 41. Nitrogen number density contours for Rothe’s nozzle (1/m3).  The 

time of the simulation is 9.0x10-4 s. 

3.3 Parabolic MEMS Nozzle 
Piekos and Breuer (1995, 1996) presented two-dimensional DSMC studies of 

flows in micro pipes and a planar parabolic nozzle chosen to be similar in flow 

regime to MEMS micronozzles.  The inlet condition for their studies was atmospheric 

and a perfect vacuum was assumed at the exit plane.  The width of the throat was 15.4 

microns and the nozzle walls were modeled as diffusely reflecting.  Piekos and 

Breuer (1995,1996) illustrated important kinetic effects associated with flows in this 

flow regime, such as thermal and velocity slip at the wall. 

This parabolic nozzle is modeled in two dimensions using our DSMC code on 

an unstructured grid.  In order to model only half the flow field, the plane of 

symmetry was modeled as a specularly reflecting wall. The flow conditions are 
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identical to those used by Piekos and Breuer (1995, 1996).  In our simulation we 

added a small surface outside of the nozzle that includes a lip. 

 

Figure 42. Two-dimensional grid used for modeling of planar parabolic nozzle.  

The chamber is located at left. 

Results of the simulation on unstructured grids agree with the results of Piekos 

and Breuer (1995, 1996).  A comparison of Mach number contours is shown in 

Figure 43.  Disagreement in the chamber is probably due to insufficient simulation 

time in both models, though this should not significantly affect supersonic results. 
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Figure 43. Comparison of Mach number contours.  The results of Piekos and 

Breuer are shown above, and our results are shown below. 



3.4 Planar MEMS Nozzle 
Our direct simulation Monte Carlo code was applied to the study of a 

micronozzle manufactured using deep reactive ion etching (Bayt and Breuer, 1998).  

These nozzles are planar in profile with side walls binding the upper and lower 

surfaces.  The ion etch is highly anisotropic with a depth of 308 microns.  The flow 

field including the entrance was solved numerically by Bayt et al. (1998) using a 

Navier-Stokes finite volume code.  These nozzles were tested experimentally at 

chamber pressures from 3.45  to Pa with thrust on the order of 

milliNewtons.  At lower pressures and corresponding mass flow rates, experimental 

results for the coefficient of discharge fall significantly below results predicted by the 

Navier-Stokes code.  Bayt et al. (1998) attribute this to viscous losses due to 

increasing boundary layers on the side walls at low pressures, which were not 

modeled in the two-dimensional code. 

410× 56.895 10×

The nozzle chosen for our DSMC study has a 7.1:1 expansion ratio and a 34 

micron throat (Bayt et al., 1998).  In order to assess sidewall effects, a fully three-

dimensional discretization was performed of the domain of interest as shown in 

Figure 44.  Advantage may be taken of planes of symmetry, which may be modeled 

as specularly reflecting surfaces, in order than only one quarter of the nozzle may be 

modeled.  High grid quality may be ensured by taking advantage of the planar nature 

of the nozzle and mapping a two-dimensional triangular grid to a tetrahedral grid.  In 

general, if this discretization is inadequate then adaptation may be used to further 

enforce grid spacing requirements. 
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A stagnation pressure of 3447.4 Pa, one-tenth of the lowest stagnation 

pressure studied by Bayt and Breuer (Bayt, 1999; Bayt et al, 1998), was chosen for 

the three-dimensional simulation.  The use of this stagnation pressure represents the 

limit of very low thrust required for highly sensitive missions and results in a much 

faster computation time than higher pressures, as larger cells and a smaller number of 

computational particles may be used than for the high pressure case.  As the Reynolds 

number is lower in this case than in Bayt and Breuer’s study, sidewall effects will be 

heightened as the boundary layers will be thicker and more prominent as the viscous 

behavior becomes more important. 

 

Figure 44. Computational mesh for MEMS 7.1:1 micronozzle (3447 Pa 

stagnation pressure).  The white line designates the location of the lip. 
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The chamber in the simulation is not geometrically identical with the physical one, 

but is intended to give representative chamber conditions.  The nozzle lip of the side 

wall is assumed to be infinitesimally thin in order to more easily construct the 

computational mesh..  The effect of the nozzle lip on flow parameters is well known 

but it is believed that this assumption will not significantly affect flow parameters 

internal to the nozzle except in the vicinity of the lip.  In actuality, the nozzle lip of 

the MEMS thruster has considerable thickness.  

The nozzle walls, including the side wall, are modeled as diffusely reflecting 

with a temperature equal to the stagnation temperature of the gas.  The planes of 

symmetry are specularly reflecting.  Particles are injected from the back wall of the 

chamber at equilibrium conditions with the same temperature as the wall temperature. 

 The results of this simulation heighten the concerns of the sidewall at this 

plenum pressure.  The temperature contours shown in Figure 45 illustrate a hot 

viscous boundary layer on the side wall.  The retardation of the flow may be seen in 

Figures 46 and 47, which present directed velocity and Mach numbers, respectively.  

The expansion of the gas is dampened by the viscous boundary layer formed on the 

side wall.  It can be seen that the boundary layer is much thicker than in Markelov et 

al. (2000), as expected due to the corresponding lower pressure.  This illustrates the 

importance of both high etch anisotropy and high plenum pressure in the 

minimization of viscous losses. 
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Figure 45. Temperature (in K) contours interior to MEMS nozzle. 
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Figure 46. Effect of sidewalls on directed velocity (m/s).  The top plane is a plane 
of symmetry, the bottom plane is the sidewall (diffusely reflecting). 
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Figure 47. Mach contours of MEMS nozzle.  The sidewall is at the top.  The 
middle section is the plane of symmetry dividing the nozzle width-wise.  The 
lower portion is the plane of symmetry dividing the nozzle height-wise. 

 

 Planar MEMS micronozzles operate at high nozzle efficiencies for large 

plenum pressures and highly anisotropic etches.  As plenum pressures become lower 

or the etch depth becomes smaller, boundary layers formed on the side wall become 

important loss mechanisms.  The DSMC method with the added flexibility of 

unstructured grids with adaptation can be used to aid in the understanding of viscous 

loss mechanisms and help in their elimination. 
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3.5 High Voltage Sheath 
When the sheath drop is much larger than the plasma potential (both in volts), 

Child’s law is observed.  Simulation was done of the initial process of sheath 

formation in a domain bounded by two infinite planar electrodes with a voltage drop 

of 100 V.  No current is injected into the domain, so the simulations differ from 

Child’s law in this respect.  However, the process of sheath formation remains much 

the same. 

The domain was a thin cylindrical region 10 cm long with a diameter  of 

about 0.1 cm.  This extreme aspect ratio was used in order to have few enough cells 

to tackle this one-dimensional problem in three dimensions.  The domain was initially 

loaded with a neutral plasma with a density of 1.0 m1310× -3 and an electron and ion 

temperature of 1 eV.  The simulation results were compared with the code xpdp1 

(http://ptsg.eecs.berkeley.edu).  For the first 1.0 810−× s, the phase space results were 

nearly identical as shown in Figure 48.  Electric field and potential profiles also 

compared favorably.  However, after this time the results diverge, as the electrons in 

the unstructured code are not prevented from entering the sheath around the cathode 

as they are in the xpdp1 simulation.  It is believed that this is caused by artificial 

heating of the plasma due to a poor quality gradient calculation and poor weighting 

procedures.  As the gradient calculation suffers near the boundaries, the overall 

quality is poor on this mesh which has a high surface area to volume ratio.  In order to 

simulate long-term behavior of a plasma, the accuracy of these procedures must be 

increased. 
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Figure 48. Electron X-Vx phase space.  Red: xpdp1. Green: unstructured 3-D 
phase space. 
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Chapter 4  

Conclusions and Recommendations 

4.1 Conclusions 
This thesis involved the development of a DSMC/PIC solver on unstructured 

grids.  A surface generator was developed for the design of surfaces of engineering 

interest in the study of microthrusters.  Grid quality was heuristically optimized to 

reduce lost particles and increase computational efficiency.  Several improvements 

were made to the DSMC solver.  First, the variable hard sphere model was added to 

the DSMC code in order to increase the accuracy of collision modeling.  Second, 

internal degrees of freedom were added and verified.  The implementation of these 

modules allowed us to perform DSCM simulations of micropropulsion devices. 

A particle-in-cell program for the simulation of electrostatic plasmas was 

implemented on unstructured meshes.  The code uses a finite volume approach for the 

solution of Poisson’s equation.  Several methods were investigated and implemented 

to evaluate the electric field on unstructured meshes.  The integration of the particle 

equations of motion is done via the leap-frog method.  Particle gather and scatter 

operations use volume weighting (linear Lagrange polynomials) to obtain an 

acceptable level of accuracy.  Simulations were performed to assess the accuracy of 

the solution method and to gain insight into the gas dynamics of micropropulsion 

devices. 
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The DSMC solver was used to characterize flows in micronozzles.  It was 

shown that as the chamber pressure decreased or the throat diameter increased, 

viscous losses increasingly reduced total nozzle thrust.  Boundary conditions for such 

flows were assessed for the Gravity Probe-B nozzle, showing that it is important for 

simulation accuracy to match subsonic boundary conditions in the plenum. 

The electrostatic PIC code was used to model a high voltage sheath.  The 

accuracy of the electric field solver (discrete gradient operator) proved inadequate for 

long-term plasma simulations (for instance, comparable to a few microseconds 

necessary for the simulation of a micro-PPT).  The numerical noise artificially heated 

the plasma, leading to increasingly inaccurate results with the procession of time.  

More work is needed to remedy this problem. 

4.2 Recommendations for Future Work 
1. Using a multiple domain approach with time steps and weights variable 

between domains may considerably increase computational efficiency, as each 

domain needs only to be resolved to local conditions.  This is in contrast to global 

time-steps and weights over the entire flow field.  Areas requiring high spatial and 

temporal resolution may be modeled separately and matched to their neighbors only 

in time increments.  Also, areas with few computational particles under the single-

weight system may achieve more accurate resolution of phase-space through use of a 

lower weight.  The use of multiple domains also lends itself to parallelization of the 

program, which is required for any large-scale simulation. 
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2. In continuum conditions, such as a nozzle plenum, DSMC is computationally 

inefficient as very small cells and time steps must be used with a corresponding large 

number of particles.  The use of a Navier-Stokes solver for neutral flows may greatly 

reduce this inefficiency.  The Navier-Stokes equations (with or without velocity slip 

conditions at the wall) are solved in the continuum region and flow-field information 

is communicated to the DSMC flow solver.  The location where the transition 

between the two numerical methods is made may be decided based on evaluation of a 

breakdown parameter (Bird, 1970) or chosen conservatively such that the continuum 

assumption is satisfied (Ivanov et al., 1997).  The latter approach has the advantage of 

avoiding a complicated shape that bridges the regions, though care must be taken to 

ensure the cut-off breakdown parameter is not exceeded.  Similarly, the test particle 

Monte Carlo method (Bird, 1998) may be used when collisions are not important and 

the flow is free-molecular.  This method is illustrated in the context of thruster plume 

studies by Ivanov et al. (1997).  The test particle Monte Carlo method is applicable 

also to ionized flows as long as close-range Coulomb collisions have little effect and 

the Lorentz force law is applied.  The magnetogasdynamic (MGD) equations may be 

applied to ionized flows in the continuum regime, but only with the realization that 

there are multiple length and time scales in a plasma and the smallest scales must be 

satisfied.  While a definitive semi-empirical breakdown criterion for gasdynamic 

flows has been defined by Bird, the author is unaware of any such universal criteria 

being defined for plasma flows.  The application of a PIC-MGD solver must be done 

with care in order that kinetic effects are minimal in the region where the MGD 
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equations are applied.  A region of overlap between the PIC and MGD methods may 

be necessary to ensure that the system is in quasi-equilibrium in the MGD solution 

region. 

3. The primary advantage of unstructured tetrahedral grids is that any surface of 

engineering interest may be represented and meshed by a single grid generator.  

However, as noted in this study and elsewhere, a large percentage of the time is spent 

moving particles using ray-tracing techniques.  In contrast, updating particle cell 

ownership and position on Cartesian grids is semi-automatic:  in absence of boundary 

interactions, a particle is added to the cell determined through indexing of the 

particle’s new position through division of the grid spacing.  Drawing from the 

literature on finite element and finite volume methods, an approach may be used 

where a tetrahedral mesh is used near the boundaries and a Cartesian mesh, either 

structured or unstructured (Bird, 1998) is used in as much of the interior as possible.  

The location and direction to the nearest boundary is stored in each cell and particle 

location and cell ownership are updated semi-automatically when applicable.  This 

would greatly increase computational efficiency in the flow far from the boundaries.  

This would require modification of the grid generator to mesh appropriate grids and 

the flow solver to take into account the type of cell for calculation purposes. 

4. Local coordinates may be used to update particle position instead of global 

coordinates.  The use of local coordinates may speed up particle motion as well as 

help prevent lost particles.  The relevant data can be calculated once for each cell and 

stored to minimize running computation time.  In addition, the weighting procedures 
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associated with linear Lagrange polynomials (volume weighting), which now 

consume much of the time in each electrostatic iteration, would become trivial. 

5. Improved boundary conditions could be implemented for dielectrics, 

especially considering the external circuit case.  Currently, only a constant-valued 

Neumann condition may be implemented and only the no-flux condition for circuit 

cases.  The capacitance matrix may be formulated in terms of charge instead of 

voltage, and using this formulation a complete picture of the electrostatic potential 

could be developed in conjunction with the circuit methodology.  In order to correctly 

model dielectrics, particle-surface interactions appropriate to the physics must also be 

implemented. 

6. An improved method of obtaining the electric field is also desirable.  

Currently, field accuracy may be poor and may artificially heat the plasma.  One 

possibility that avoids grid biases is the use of radial basis functions to compose the 

potential and differentiate these functions to obtain electric field components at the 

nodes. 

7. A matrix solver based on a Krylov sub-space could be used to speed up the 

solution of the CRS matrix for Poisson’s equation. 

8. The use of the quiet start method reduces the initial noise and produces an 

ordered phase-space and should be implemented as well. 
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