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Abstract 

This study involves the modeling of small cold-gas (N2) thrusters nozzle and 

plume flows, their interactions with spacecraft surfaces and the induced pressure 

environment.  These small cold-gas thrusters were used for pitch, yaw and roll control 

and were mounted on the bottom of the conical Environmental Monitor Payload (EMP) 

suborbital spacecraft.  The pitch and yaw thrusters had 0.906 mm throat diameter and 

4.826 mm exit diameter, while the roll thrusters had 1.6 mm throat diameter and 5.882 

mm exit diameter.  During thruster firing, at altitudes between 670 km and 1200 km, 

pressure measurements exhibited non-periodic pulses (Gatsonis et al., 1999).  The 

pressure sensor was located inside the EMP and was connected to it’s sidewall with a 0.1-

m long, 0.022-m diameter tube and the pressure pulses appeared instantaneously with the 

firings for thrusters without a direct line-of-sight with the sensor entrance.  Preliminary 

analysis showed that the plume of these small EMP thrusters undergoes transition from 

continuous to rarefied. Therefore, nozzle and plume simulations are performed using a 

combination of Navier-Stokes and Direct Simulation Monte Carlo codes.   

This study presents first a validation of the Navier-Stokes code Rampant used for 

the continuous EMP nozzle and plume simulations.  The first Rampant validation 

example involves a two-dimensional axisymetric freejet expansion and is used to 

demonstrate the use of Bird’s breakdown parameter.  Results are compared favorably 

with those of Bird (1980) obtained through the method of characteristics.  The second 

validation example involves three-dimensional plume simulations of a NASA thruster. 

 i



  

This nitrogen nozzle has a throat diameter of 3.18 mm, an exit diameter of 31.8 mm, 

half-angle of 20 degrees, stagnation temperature of 699 K, stagnation pressure of 6,400 

Pa.  Simulation results are compared favorably with previous Navier-Stokes and Direct 

Simulation Monte Carlo numerical work.  The third validation example involves three-

dimensional simulations of Rothe’s (1970) nozzle that has a throat diameter of 2.5 mm, 

an exit diameter of 20.3 mm, half-angle of 20 degrees, operating at stagnation 

temperature of 300 K and pressure of 1975 Pa.  Numerical results also compared 

favorably to experimental data. 

The combined Navier-Stokes/DSMC approach and the EMP simulation results 

are presented and discussed.  The continuous part of the EMP nozzle and plume flow is 

modeled using the three-dimensional Navier-Stokes Rampant code.  The Navier-Stokes 

domain includes the geometry of the nozzle and the EMP base until transition of the 

continuous flow established by Bird’s breakdown parameter.  The rarefied part of the 

plume flow is modeled using the Direct Simulation Monte Carlo code DAC. Flowfield 

data obtained inside the breakdown surface from the Navier-Stokes simulation are used 

as inputs to the DSMC simulations.  The DSMC domain includes the input surface and 

the EMP spacecraft geometry.  The combined Navier-Stokes/DSMC simulations show 

the complex structure of the plume flow as it expands over the EMP surfaces.  Plume 

reflection and backflow are demonstrated.   The study also summarizes findings 

presented by Gatsonis et al. (2000), where the DSMC predictions at the entrance of the 

pressure sensor are used as inputs to a semi-analytical model to predict the pressure 

inside the sensor.  It is shown that the pressure predictions for the pitch/yaw thrusters are 
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close to the measurements.  The plume of a pitch or yaw thruster reaches the pressure 

sensor after expanding on the EMP base.  The pressure predicted for the roll thruster is 

larger that the measured.  This is attributed to the uncertainty in the roll thruster location 

on the EMP base resulting, in the simulation, in a component of direct flow to the sensor. 
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Chapter I: Introduction 

 

In recent years the need for modeling of the plume flow of small cold gas 

thrusters on-board spacecraft has been growing.  The drive to make satellites smaller and 

the increasing complexity and sensitivity of onboard instruments, has increased the 

potential for plume interaction.  Plumes can contaminate and degrade sensitive spacecraft 

surfaces and sensors leading to problems ranging from sensor performance errors to 

power reduction and reduced communication capability.  In addition, plume impingement 

on surfaces may generate undesirable forces.  Solar panels and communication dishes are 

especially susceptible to these external forces due to their light construction.  These 

forces can also create satellite rotations that are undesirable or create bending moments 

on long fragile structures like solar panels. 

There have been numerous ground based experimental investigations of small 

thruster plumes.  Numerical simulation studies of plumes have been carried out with 

Navier-Stokes codes. The major shortcomings of the continuous description of the 

expanding plume are related to the breakdown and non-equilibrium due to the rarefaction 

effects which have been addressed with the Direct Simulation Monte Carlo (DSMC) 

method.  Recent studies have combined the two methods by following the flow via a 

Navier-Stokes approach until breakdown is established, then continuing with a DSMC 

approach. 
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 This study involved modeling of the nozzle and plume flow of cold gas attitude 

control thrusters used onboard the Environmental Monitoring Package (EMP) spacecraft.  

The mission was conducted by the Applied Physics Laboratory to study the induced 

environment around a suborbital spacecraft.  Eight N2 cold gas thrusters were employed 

in the EMP, for pitch, yaw and roll control.  The location of the thrusters is shown in 

Figure 1.1.  A pressure sensor was used to monitor the local environment created during 

thruster firings.  The pressure sensor was located inside the EMP on a plane 15 cm from 

the base of the spacecraft as shown in Figure 1.1.  Pressure profile data for the duration of 

the EMP flight from 500 to 1620 seconds is shown in Figure 1.2.  

 

 

 

 

 

 

 

 

Figure 1.1 EMP Geometry and Thruster Locations (Gatsonis et al., 2000). 
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Figure 1.2 EMP Pressure Measurements (Gatsonis et al., 1997). 

 

The pressure spikes from 500 to 1400 seconds shown in Figure 1.2 have been 

associated with thruster firings by Gatsonis et al. (1999).  The pressure oscillations from 

1500 to 1600 seconds are associated with the ram/wake phase of the EMP mission 

(Gatsonis et al., 1997).  During the period between 500 and 1400 seconds the thrusters 

were fired with multiple impulses of 0.03 seconds each in duration and the complete data 

analysis is presented by Gatsonis et al. (1999).   

The objectives of this study are to develop and validate a combined three-

dimensional Navier-Stokes/DSMC computational approach using existing codes.  

Validation of the codes was performed against previous numerical and experimental 

work.  In addition a Navier-Stokes/DSMC coupling methodology at the breakdown 

surface was developed and the combined methodology applied to study the EMP nozzle 

and plume flows.   
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1.1 Review of Small Thruster Nozzle and Plume Flow 

Spacecraft need onboard propulsion for orbit changes and attitude control.  The 

simplest form of chemical onboard propulsion is the cold gas thruster. The thrust is 

generated when a high-pressure gas expands through a nozzle.  Cold gas thrusters have 

small (specific impulse) Isp’s (approximately 70 seconds) and are not efficient.  However 

because these systems are unheated they consume very little power which makes them 

easy to use and to implement at low cost. 

A second class of onboard propulsion are electro-thermal thrusters which include 

arcjets and resistojets.   These thrusters work in a similar manner to the cold gas thrusters 

but have the advantage of a high temperature working fluid.  The increase in temperature 

can be achieved through many different manners such as direct electric heating or the use 

of heating elements.  The use of high temperature fluid increases the system cost, power 

requirements and complexity but also increases the specific impulse up to six to tens 

times that of a cold gas thruster (Brown, 1996). This is a substantial savings when 

considering the high cost to launch fuel into orbit. 

A third class of onboard propulsion is the electrostatic/electromagnetic propulsion 

thrusters (EPT) which include ion thrusters, Hall (or SPT) thrusters and pulsed plasma 

thrusters (PPT). In general EP thrusters accelerate ionized particles or plasma through the 

use of electrostatic or electromagnetic fields to very high velocities.  Electric propulsion 

thrusters have Isp’s well above 1000 seconds but the deliver relatively low thrusts.  

A comparative table between various onboard thrusters is shown bellow in Table 

1.1 (Brown, 1996) 
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Type Propellant Energy Thrust (N) Isp (Sec) 

Cold Gas N2 Pressure 0.05-200 50-75 

Resistojet N2, NH3, etc Resistive Heat 0.005-0.5 150-700 

Arcjet NH3, H2, etc Elec. Arc Heat 0.05-5 450-1500 

Ion Hg/A/Xe/Cs Electrostatic 5E-6 – 0.5 2000-6000

Pulsed Plasma Teflon Electromagnetic 5E-6 -0.005 1500 

Table 1.1 Typical Thruster Specifications and Performance Parameters. 

 

 This thesis investigates cold gas thrusters and as such we will review some 

interesting features that occur as the flow progresses from the nozzle throat to the nozzle 

exit.  These features include the formation of a boundary layer in the nozzle, rapid 

expansion as the flow travels past the nozzle lip at the exit, and a plume flow that may 

begin as continuous and reach a rarefied state further downstream.  A general schematic 

of the process is shown in Figure 1.3. 

 Boundary layer effects play an important role in determining the nozzle and 

plume flow characteristics of cold gas thrusters.  Due to the very small diameter of these 

nozzles, the boundary layer can occupy a significant portion of  the nozzle diameter.  One 

of the parameters used to evaluate the thickness of the boundary layer is the Reynold’s 

number given by  

       (1.1) 
Re VLρ

µ
=

 

 5



 

where ρ is the gas density, V is the velocity of the gas, L is the characteristic length, and 

µ is the viscosity of the gas. Flows with a high Re number have a less significant (thinner 

thickness) boundary layer with a larger isentropic core region as compared to low Re 

flows.  High-Re flows generally occur in cold gas thrusters that have high stagnation 

pressures.  For low Re flows the boundary layer may reach to a thickness nearly equal to 

that of the radius of the nozzle.  The formation of a boundary layer leads to losses in 

efficiency and also affects the subsequent plume flow. 

 As the flow leaves the nozzle lip, it undergoes a rapid expansion sometimes 

described as a Prandtl-Meyer expansion.  The expansion angle can be used to determine 

the size and direction of the plume that forms outside the nozzle (Bird, 1980). 

  

 

 

 

 

 

 

 

Figure 1.3 Typical Nozzle and Plume Flow Regimes of a Small Thruster. 

 

As the plume expands the gas becomes rarefied.  As long as the flow can be 

considered to be continuous it can be described using the Navier-Stokes equations.  As 
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rarefaction increases, the flow reaches the transitional regime and the breakdown point 

defined by Bird (1970).  This point must be determined in order to evaluate the validity 

of Navier-Stokes based plume solutions.  The breakdown is associated to the non-

equilibrium state of the expanding plume flow that requires consideration of the 

vibrational, translational and rotational temperatures of the gas. 

One criterion used to determine the breakdown point of a flowing gas is the non-

dimensional Knudsen number defined as 

         (1.2) λKn
L

=
 

where L is the characteristic length of the flow.  The mean-free path for elastic collisions, 

λ, in a simple gas is defined as 

  

2

1
2 d n

λ
π

=
                 (1.3) 

where d is the hard sphere molecular diameter and n is the number density of the gas. 

Continuous flow requires £0.01, slip flow 0.01£Kn£0.1, transition Kn≥0.1 and free 

molecular flow Kn≥10. A better definition of the Kn may be based on a local 

characteristic length, which is based on macroscopic gradients of flow properties such as 

density.  Using a local characteristic length allows the flow field to be considered 

continuous until the ≥ 0.2 (Bird, 1994). 

Kn

Kn

 In order to determine the transition point more accurately, Bird (1970) defined the 

breakdown parameter given by 
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              (1.4) 

 

1 (ln )DP
Dt

ρ
ν

=

where ν is the collision frequency and ρ is the density of the gas.  The breakdown 

parameter does not suffer from the problems associated with determining a local 

characteristic length, as it is determined primarily from the collision frequency ν and 

density gradients. As the flow becomes rarefied, collisions will occur less frequently and 

thus the value of the breakdown parameter will increase.  A flow-field is considered to be 

in transition state for 0.03 ≤  P ≤ 0.05 and is considered rarefied when P > 0.05.  For P > 

1.0 the flow is approximately in the free-molecular regime.  

 For an expanding plume flow, P can be used to obtain a breakdown surface as 

shown in Figure 1.3.  Once transition has been reached a method which does not use the 

Navier-Stokes equations must be implemented to obtain an accurate solution.  The use of 

Direct Simulation Monte Carlo (DSMC) method is the most common approach.  DSMC 

developed by Bird (1994) is a particle based method capable of modeling rarefied gas 

flows in non-equilibrium. 

 

1.2 Review of Nozzle and Plume Flow Studies 

Over the past three decades a large number of studies have been performed in an 

attempt to better understand the behavior of thruster plume flow using experiments, 

analytical modeling and computations involving continuum (CFD) and rarefied 

methodologies (DSMC).  Recently, studies involving a combination of CFD and DSMC 
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methodologies have added significantly to our modeling capabilities as well as the 

understanding of these flows.  Some of these works are reviewed below. 

Hill and Draper (1966) presented some of the first analytic techniques for 

describing expanding plume flows into vacuum.  Bird (1970) studied the breakdown of 

translational equilibrium and established the Direct Simulation Monte Carlo method.  A 

one-dimensional empirical breakdown formula [Eq 1.4] was proposed in order to define 

the point at which breakdown of the continuum domain occurs. One of the most widely 

referenced experimental studies was performed by Rothe (1971) who used an electron 

beam technique for measurements of viscous flows in supersonic nozzles.  Rothe 

measured the temperature and density properties of nitrogen flows along the nozzle 

centerline.  This data set has been used very often for comparison with numerical studies.  

Bird (1980) studied the breakdown of continuum flow in Prandtl-Meyer expansions, free 

jets and rocket plumes using the DSMC method.  Naumann (1988) employed a particle 

simulation technique to study plume flows and determine impingement parameters.  This 

study also determined the optimal nozzle geometry that reduces plume expansion to a 

minimum.  In Boyd and Stark (1989) the effects of the isentropic core of a thruster on 

plume impingement were investigated using the method of characteristics (MOC) and 

DSMC. Nelson and Doo (1989) used DSMC to simulate nozzle and plume flows 

expanding into a vacuum and compared results with experimental data. Their DSMC 

domain included the nozzle throat as rarefaction prevailed in most of the nozzle 

considered. In Mombo-Caristan et al. (1989) the use of laser beam deviation technique 

was employed in measuring freejet densities in a supersonic nozzle. The method of 
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characteristics was also used to calculate the densities inside the nozzle for comparison 

with the experimental data.  In Schabrath et al. (1989) intracavity laser scattering was 

used to investigate CO2 and N2O freejets. These experiments were performed to better 

understand rotational and vibrational temperatures of low density plume flows. Campbell 

(1991) used the DSMC method to study plume/free stream interactions applicable to a 

rocket exhaust plume at high altitudes. The numerical results compared favorably with 

experimental data involving pitot probes, photographs and electron beam density 

measurements.  Beylich et al, (1992) performed a numerical and experimental 

investigation of freejets from annular orifices.  Simulations were performed using a 

Navier-Stokes code and the numerical results were compared with pitot tube pressure and 

electron beam density measurements. The results were found to be comparable to data for 

Reynolds numbers that were over 1000.  Boyd et al. (1992) studied the flow of small 

helium nozzles and plumes using DSMC and compared the numerical results with 

experimental data. A simple analytical model developed by Simons (1972) was also 

compared with the DSMC results for validation.  Boyd and Penko (1992) investigated 

nitrogen plumes from small nozzles.  They compared pitot tube pressure measurements, 

temperature and velocity data to simulations using continuum and DSMC methodologies.  

In this study the flow quickly became rarefied and the DSMC results provided a much 

more accurate description of the expanding flow.  In Dupuis (1992) DSMC was used to 

study the plume flow and its impingement effects on control surfaces of spacecraft. 

Meyer (1992) conducted experiments to measure the particle densities of plumes 

expanding in a background gas.  The data was used to determine the plume geometry and 
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flowfield parameters such as temperature and velocities. Chung and De Witt (1993) using 

continuum and DSMC methods, studied low density nozzle flows and compared the 

results with experimental data of Rothe (1970). Rault (1993) presented a three-

dimensional DSMC code as an efficient means of calculating plume flows around 

complex geometries.  The calculated flows were compared against wind tunnel 

measurements and flight data.  In Teshima (1993) the structure of freejets flowing from a 

rectangular orifice was studied through the use of laser induced fluorescence.  The focus 

of the paper was on barrel shocks that form from different size area ratio nozzles.  

Zelesnik et al. (1993(a)) performed low-Reynolds number (100 ≤ Re ≤ 1000) nozzle 

simulations using DSMC.  The study determined performance characteristics associated 

with conical, trumpet and bell nozzles.  Zelesnick et al. (1993(b)) also used DSMC 

methodologies to study the effects of nozzle geometry on the internal and external flow 

of small nitrogen thrusters.  Their study included conical, trumpet and bell shaped 

nozzles with comparisons between helium and nitrogen gas species. Boyd et al. (1994 a) 

performed DSMC computational and experimental investigations of low density plumes 

of hydrogen.  The experimental techniques involved Raman scattering and were used for 

DSMC code validation. Boyd et al. (1994 b) also studied micro-thruster helium flows  at 

0.1 ≤ Kn < 1 using the DSMC method.  The numerical results were also compared with 

experimental data. Genkin et al. (1994) investigated the plumes of small thrusters using 

the semi-inverse marching characteristics scheme (SIMA) and power-law interpolation.  

Simulation results were compared against three different small-plume experiments. 

Gilmore et al. (1995) studied the breakdown of continuum flows in rapidly expanding 
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plumes and compared Navier-Stokes and DSMC solutions with experimental data 

gathered in a low density wind tunnel facility.  They concluded that the failure of the 

continuum model occurs well before the translational temperature departes from the 

continuum value.  Tartabini et al. (1995) used continuum and DSMC methodologies to 

study plume interactions with a flat plate. The nozzle flow was simulated using 

continuous and DSMC approaches while the plume flow was simulated using DSMC.  

The work by Boyd et al. (1996) presented numerical and experimental studies of rarefied 

flows from small nozzles.  The studies involved hydrogen, and nitrogen plume flows 

using Navier-Stokes and DSMC methodologies.  The numerical results were compared 

against the experimental data and confirmed the validity of the computational methods.  

In Liang et al.  (1996) the study of low thrust nozzles was performed numerically using 

the method of characteristics and a Navier-Stokes code.  Validation was performed 

against previous numerical work and experimental data.  The main goal of the study was 

to optimize the nozzle geometry in order to improve efficiency. 

 Pickett et al. (1996) presented some of the few space based results from neutral 

gas releases onboard a suborbital vehicle.  The study involved the SPEAR-3 rocket with 

an onboard environmental monitoring package, which measured the neutral pressure 

around the rocket. They identified pressure spikes associated with gas releases.  Finally 

Gatsonis et al. (1998a) performed data analysis of pressure measurements during small 

cold gas thruster firings onboard the EMP spacecraft.  This data will be reviewed further 

in Chapter 3 of this study. 

     

 12



 

1.3 Combined 3D CFD/DSMC Methodology 

 In recent years several attempts to combine continuous with rarefied approaches 

have appeared in the literature, in part due to increased computational power. The 

combined approach begins by modeling the internal flow from a thruster and if possible 

the plume, using continuum solvers until breakdown of the continuum assumption.  Once 

this solution is complete, information from the continuum solution can be used as input 

data for a rarefied approach such as DSMC.  These techniques are computationally 

expensive but with recent breakthroughs in computational power, studies involving 

combined methodologies have been becoming more frequent. 

Lumpkin et al. (1995, 1996) performed combined three-dimensional numerical 

simulations of plume impingement using continuum and DSMC methodologies.  The 

continuum solution was followed until breakdown and provided input data for the 

subsequent DSMC simulation.  Ivanov et al. (1997) presented a similar numerical 

analysis of thrusters studied previously by Rothe (1970) and Chung et al. (1995) in which 

experimental data was available. They used a Navier-Stokes code until breakdown and 

initiated the DSMC simulation at the breakdown surface.   Ivanov et al. (1998) presented 

a comparison study of free flight experimental results with Numerical Simulation for cold 

gas thruster plumes from the Mir space station. 

 

1.4 Problem Statement, Objectives and Methodology  

Through the use of CFD (continuum) and DSMC (rarefied) methodologies, a 

better understanding of the properties of nozzle and plume flow from small thrusters has 
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been gained.  Previous 2D and recent 3D studies have contributed considerably to our 

understanding of the complex non-equilibrium phenomenon associated with expanding 

plume flows.  However there is still a need for: 

1. Efficient 3D methodologies to simulate plumes and their interactions with realistic 

spacecraft geometries. 

2. Methods that couple Navier-Stokes (continuous) and DSMC (rarefied) methodologies 

at the breakdown surface. 

3. Code validations with space-based data since there have been very few such studies. 

  

The Objectives of this study are: 

1. Develop a combined 3D Navier-Stokes/DSMC modeling approach using existing 

codes to study nozzle and plume flows. 

2. Validate the Navier-Stokes code with previous numerical and experimental results. 

3. Develop a Navier-Stokes/DSMC coupling methodology at the breakdown surface. 

4. Apply the combined methodology in the simulation of the cold gas nozzle and plume 

flows of the EMP spacecraft.  

 

Methodology and Approach 

 The Navier-Stokes solver used in our study to simulate the continuous part of the 

nozzle and plume flow is Rampant 4.0, a compressible finite-volume code. Rampant is 

capable of simulating a wide range of flows involving heat transfer, chemical reactions, 

turbulent flow and complex geometries.  In our simulations chemical reactions are 
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ignored since all cases involve inert gases like helium and nitrogen. Turbulent flow 

modeling is also disabled since these flows experience Reynolds numbers below 5,000. 

 The DSMC code used in this study is DAC and was developed at the NASA 

Johnson Spaceflight Center (Le Beau, 1997).  The code uses a 3D tetrahedral grid, is 

capable of modeling complex geometries and has a re-grid capability based on mean free 

path of the plume flow.   

 

Navier-Stokes Code Validation 

1) The first Rampant validation example involves a 2D axisymetric Prandtl-Meyer 

expansion.  This case is used to demonstrate the use of Bird’s breakdown parameter, 

P and the results are compared with those by Bird (1980).   

2) The second validation example involves plume flows from the NASA Lewis 

Research Center nozzle of Tartabini et al. (1995). Three-dimensional simulation 

results are compared with N-S and DSMC results of Tartabini et al. (1995). 

3) The third validation example involves three-dimensional simulations of a nozzle flow 

and numerical results are compared to experimental data by Rothe (1971). 

No validation was performed for DAC as the code has been used extensively in 

plume studies (Lumpkin, 1995; Lumpkin, 1996). 
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Coupling Navier-Stokes and DSMC 

In plume simulations, input conditions to the DSMC code are obtained from the N-S 

solution.  In our study the steps involved in a nozzle/plume simulation are as follows: 

1) The Navier-Stokes solution is run until convergence is achieved.   

2) From this solution a breakdown surface is defined using Bird’s breakdown parameter. 

3) In order to use the Navier-Stokes solution data as the input boundary in the DSMC 

code, a grid is generated that approximates a surface inside the 3D breakdown surface 

found from the 3D N-S solution.   

4) Using a post processing software such as TecPlot, the data from the N-S solution is 

interpolated onto the input surface grid generated for the DSMC solution. 

5) The DSMC code  is run until a steady state solution is reached. 

 

EMP Nozzle and Plume Flow Simulation 

The N-S/DSMC methodology applied to the simulation of the EMP thrusters can be 

summarized as follows: 

1) First, perform three-dimensional N-S simulations of the nozzle and plume flow until 

breakdown using a domain that includes the thruster geometry and the necessary 

EMP surfaces. 

2) Second, perform three-dimensional DSMC simulations for the plume flow in a 

domain that includes the EMP geometry up to the plane of the pressure sensor.  The 

input surface to the DSMC is inside the breakdown surface as determined by the N-S 

simulations.  
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3) Third, the N-S/DSMC predictions at the entrance of the pressure-sensor tube are used 

by Gatsonis et al. (1999) in conjunction with the theory of Hughes and de Leeuw 

(1965) to obtain the pressure inside the sensor chamber.  These predictions are 

summarized in this study. 

 

In Chapter II the numerical methodologies for the Navier-Stokes and DSMC methods 

are presented.  The validation cases of the Navier-Stokes code are also presented. In 

Chapter III, simulations of the EMP thruster nozzle and plume flows are presented.  

Chapter IV presents a summary and conclusion that can be drawn from the study of the 

EMP thrusters. 
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Chapter II  

Navier-Stokes and DSMC Numerical 

Methodologies 

 

In this chapter the Navier-Stokes (N-S) and DSMC computational methodologies 

and codes used in this study are presented.  Validation of Rampant, a compressible 

Navier-Stokes code, is accomplished by comparisons against numerical and experimental 

results from previous nozzle flow studies.  The first Rampant validation example 

involves a 2D axisymetric Prandtl-Meyer expansion.  This case is used to demonstrate the 

use of Bird’s breakdown parameter, P and results are compared with data from Bird 

(1980).  The second validation example involves a NASA Lewis Research Center nozzle 

geometry of Tartabini et al. (1995) Three dimensional simulation results are compared 

with N-S and DSMC numerical work of Tartabini et al. (1995).  The third validation 

example involves three-dimensional simulations of a nozzle flow and numerical results 

are compared to experimental data by Rothe  (1970). 
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2.1 Navier-Stokes Methodology and the Rampant Code 

 2.1.1 Compressible Navier-Stokes Equations 

 The continuum solutions in this study are obtained using Rampant, a finite 

volume code that solves the Navier-Stokes equations. Presented below is a summary of 

the computational methodology employed in Rampant. 

The continuity equation in Cartesian coordinates is given by 

 ( ) ( ) ( ) mu v w
t x y z

S∂ρ ∂ ∂ ∂ρ ρ ρ
∂ ∂ ∂ ∂

+ + + =             (2.1) 

where ρ is the density, u, v and w are the x, y and z components of the velocity and Sm is 

the mass added to the domain defined by a user input. 

 The momentum equations are given by 

( ) ( ) ( ) ( ) yxxx zx
x

Pu uu uv uw
t x y z x x y z

F
∂τ∂τ ∂τ∂ ∂ ∂ ∂ ∂ρ ρ ρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + + ,   (2.2a) 

( ) ( ) ( ) ( ) xy yy zy
y

Pv vu vv vw
t x y z y x y z

F
∂τ ∂τ ∂τ∂ ∂ ∂ ∂ ∂ρ ρ ρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + + ,   (2.2b) 

( ) ( ) ( ) ( ) yzxz zz
z

Pw wu wv ww
t x y z z x y z

F
∂τ∂τ∂ ∂ ∂ ∂ ∂ ∂τρ ρ ρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + + ,   (2.2c) 

where P is the pressure, ρ is the density, τij are components of the stress tensor and Fi are 

the gravity and body forces in the component directions.  The stress tensor τij is given by 

 2
3

ji l
ij ij

j i l

uu u
x x x

∂∂ ∂τ µ µ
∂ ∂ ∂

  
= + −      

δ ,           (2.3) 

where µ is the viscosity and the second term on the right hand side is the effect of volume 

dilation. 
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 Conservation of energy is written as 

 ' '
'

( ) ( ( )) ( )i jj j
ji i i

TE u E p k h J u
t x x x ij hS∂ ∂ ∂ ∂ρ ρ τ

∂ ∂ ∂ ∂
+ + = − +∑ + ,       (2.4) 

where E is the total energy per unit mass, k is the conductivity, hj is the enthalpy,  Jj` is 

the diffusion flux of species j` and xi denotes summation over i=1,2,3...  The source term 

Sh includes heat of chemical reactions, any interphase exchange of heat or other 

volumetric heat source.  The total energy E is defined as 

 
2

2
iupE h

ρ
= − +             (2.5) 

Enthalpy h for an ideal mixed gas is defined as 

              (2.6) ' '
'

j j
j

h m= ∑ h

dT

where mj` is the mass fraction of species j` and 

                           (2.7) ' , '

ref

T

j p j
T

h c= ∫

where cp is the specific heat and Tref = 298.15 K. 

   

2.1.2 Grid Generation  

An initial geometry of the computational domain is drawn using the graphics 

package GeoMesh.   The geometry is then imported into P-Cube where nodal distribution 

and boundary condition assignments on the faces of the boundary surface are applied.   

The generated grid is based on hexahedral elements, which can then be used directly by 

Rampant.  
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To create a grid that can more closely model arbitrary shapes a surface grid can be 

generated in P-Cube out of triangular elements.  This can be imported into T-Grid to 

create the unstructured tetrahedral volume mesh. T-Grid uses a Delaunay Triangulation 

methodology to generate the volume mesh in the domain.  An initial mesh is created 

which contains all the boundary nodes and boundary faces. This initial mesh is then 

refined by placement of interior nodes until a reasonably fine mesh is generated.  Once 

the interior volume mesh has been generated Rampant can be used to simulate a flow 

through the specified geometry and boundary conditions. 

 

2.1.3 Finite Volume Discretization  

Rampant uses a Finite-Volume Method (FVM) scheme for spatial discretization 

of the N-S equations (2.1 – 2.7).  In Rampant the N-S equations are written in flux form 

as: 

 

              (2.8) t
∂ ∂ ∂

Γ + =
∂ ∂ ∂x x
Q F G

where Γ is a preconditioning matrix and Q, F, and G are flux vectors of primitive 

variables (Fluent, 1996).  The governing equation in Cartesian form is integrated over an 

arbitrary volume, V, with differential surface area, dA, as 

 [ ]dV d
t

0∂
∂

Γ + −∫∫∫ ∫∫Q F G A = .          (2.9) 

 Following the finite volume spatial discretization the physical domain is 

subdivided into small non-deforming polyhedral cells and the integral in Eq. 2.9 is 
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applied to each cell.  Each control volume in the flow field is represented by Q , the cell-

average variable given by 

~

 
~ 1 dV

V
≡ ∫∫∫Q Q .          (2.10) 

Upon substitution into Eq 2.9 it becomes 

 
~

1 [ ] d
t V

∂
∂

Γ + − ⋅ =∫∫
Q F G A 0 .           (2.11) 

The surface integral is evaluated by first dividing the cell surface into discrete faces and 

introducing the discrete flux vectors, F  and G . The surface integration is performed 

piecewise on each face assuming that the fluxes are constant across each face.  The 

discretized system reduces to the system of differential equations 

 
~

~ ~1 ( )
facest V

∂
∂

Γ + − ⋅ =∑Q F G A 0          (2.12) 

where A is a face area vector. 

 For higher accuracy, the solution vector Q , used to evaluate the fluxes at cell 

faces is computed using a multidimensional linear reconstruction technique.  This is 

achieved through a Taylor series expansion of the cell-average solution vector about the 

cell centroid 

 
~ ~

= + ∇ ⋅ ∆Q Q Q x           (2.13) 

where ∆x is the displacement vector from the cell centroid to the face centroid.  The 

gradient ∇  is computed using the divergence theorem, which is written as 
~
Q
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 1
facesV

∇ = ∑
~
Q QA                  (2.14) 

The gradients  are limited so that they do not introduce new maxima or minima into 

the reconstructed data.  For first-order accuracy the face fluxes are computed from cell 

variables rather than using linear reconstruction.  The cell face quantities are determined 

by assuming that the flow quantities are constant across each cell.   

~
∇Q

 

2.1.4 Time Integration 

 Rampant then proceeds with the integration of the system of ordinary differential 

equations described in Eq. (2.12). The general expression for the time evolution of a 

variable φ is given by 

 ( )∂φ φ
∂

= F
t

           (2.15) 

where the function F(φ) includes the spatial discretization.  Using backward differencing 

and a time step ∆t, the first order accurate temporal discretization becomes 

 
1

( )φ φ φ
+ −

=
∆

n n

F
t

          (2.16) 

and the second-order accurate discretization becomes 

 
1 13 4 ( )

2
φ φ φ φ

+ −− +
=

∆

n n n

F
t

         (2.17) 

 The evaluation of F(φ) can be performed implicitly or explicitly.  In the explicit 

time integration, F(φ) is evaluated at the current time level n as 
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=
∆

n n
nF

t
                 (2.18) 

 Explicit integration is used by Rampant when global time stepping is chosen.  For 

a time-accurate solution, the time step in each cell in the domain must be the same.   In 

order to maintain stability in the solution, Rampant chooses the smallest time step and 

applies it to the entire domain.  This method is rather restrictive and is used primarily for 

capturing fluid flow behavior like shocks. 

 For steady simulations Rampant uses an implicit method to evaluate F(φ) at the 

new time level, n+1, according to 

 
1

1(φ φ φ
+

+−
=

∆

n n
nF

t
)           (2.19) 

 

2.1.5 Boundary Conditions 

 Inlets and outlets of the flows as well as walls require implementation of 

boundary conditions.   Rampant defines them as pressure inlet and outlet boundaries. 

 

Pressure Inlet Boundaries 

 The boundary conditions necessary to compute the inlet conditions are the total 

pressure, Po, static pressure, Ps, and the total temperature, To.  From these input 

conditions the velocity of the flow at the inlet is computed from the following relation 

 
1211

2
o

s

P M
P

γ
γγ −− = +  

.                    (2.20)  
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The Mach number, M is defined as 

 1/ 2( )γ
= =

s

v vM
c RT

          (2.21) 

where, c is the speed of sound, γ is the specific heat of the fluid and R is the gas constant. 

The static temperature Ts is computed from 

 211
2

γ −
= +o

s

T M
T

          (2.22) 

and the density at the inlet plane for an ideal gas is given by 

 /s sP RTρ =            (2.23) 

 

Pressure Outlet 

A static pressure is specified as the outflow boundary condition at the exit.  This is 

only used as long as the flow remains subsonic.  If the flow becomes supersonic then the 

exit conditions are extrapolated from the internal upstream flow conditions using 

Riemann invariants. 

 A set of backflow conditions are also utilized by Rampant in cases where the flow 

is reversed at the pressure outlet during the solution process.  These backflow conditions 

require specification of total stagnation temperature. 

 

Wall Boundaries 

Wall boundary conditions can be of three different types in Rampant.  

Fixed Heat Flux:  The default is an adiabatic wall condition in which zero heat flux 

to the wall occurs.  A heat flux to the wall must otherwise be specified.  
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Fixed Temperature: A constant wall temperature is specified. 

Convective Heat Transfer: Heat transfer from the fluid stream to the wall is 

calculated. 

 

2.2 Navier-Stokes Code Validation 

 A series of two and three dimensional nozzle and plume simulations are 

performed in order to validate the Rampant code. 

 

2.2.1 Axisymmetric Plume Simulation and Comparison to Numerical Data 

 The first case used for the validation of Rampant is an axially symmetric freejet 

expansion near a wall lip.  Though this case is also useful for the validation of the 2D 

axisymmetric code, the primary objective is to demonstrate the use of Bird’s breakdown 

parameter, P, in determining the point at which the continuum solver can no longer be 

applied. 

 Figure 2.1 shows the geometry of the freejet used by Bird (1980). Bird used the 

method of characteristics (MOC) to calculate the plume flow of a diatomic gas and 

uniform conditions with M=1.1. The simulation domain is set up using a stagnation 

pressure of Po=10130 Pa and a temperature of To=300o K.  The flow inlet boundary 

condition is set at to a constant velocity with M=1.1, the gas is taken as N2 and the 

simulation is performed assuming laminar flow conditions. For this case the Knudsen 

number at the exit is approximately 0.05 and the rarefaction of the flow takes place only 
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near the nozzle lip backflow region or at large distances from the exit of the jet (Bird, 

1980). 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Plume geometry and results from Bird (1980). 

 

 The axes in the Bird (1980) results in Figure 2.1 are non-dimensionalized to the 

radius of the freejet nozzle exit.  The Rampant results in Figure 2.2, Figure 2.3 and Figure 

2.4 are actual distances in meters.  The x=1 corresponds to the x/re=5 distance in Figure 

2.1. 

In Figure 2.1 and Figure 2.2, contours of Mach number are presented for Bird 

(1980) and our Rampant simulation and demonstrate an overall good agreement.  One 

discrepancy between the two results is that the Mach contours from Bird are all 

connected to the wall lip while the contours in the Rampant solution are detached for the 
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higher Mach values.  This is a result of the breakdown of the continuum flow near the 

external wall lip of the freejet. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Mach contours of an axisymmetric plume simulation using Rampant. 

 

 Figure 2.3 displays contour ratios of breakdown parameter to Knudsen number 

P/Kne.  This is a means of determining if the flow field is within the continuum domain. 

The values of Kne are based on the characteristic length of the nozzle radius. Once again 

the comparison with the data from Bird in Figure 2.1 shows agreement with results 

obtained from the Rampant solution.  The P/Kne contours of 50 and 500 correspond to 

Knudsen values of 10-3 and 10-4 respectively (Bird, 1980) indicating that the plume flow 

is within the continuous regime and, thus, can be simulated using a Navier-Stokes solver 

such as Rampant. 
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Figure 2.3 Contours of P/Kne of an axisymmetric plume simulation. 

 

 Figure 2.4 presents contours of breakdown parameter, P and shows that most of 

the plume has values of P<0.01. It is generally accepted that transition flow starts at 

P≅0.3, while rarefied flow begins at P≅0.5 (Bird, 1994). Therefore it can be concluded 

that the plume for the most part is continuous. Figure 2.4 shows that a small area adjacent 

to the lip has a P=0.03.  Since transitional flow and breakdown are beginning to occur at 

this point, it is not possible to completely accept the N-S solution in this area. The Mach 

number contours in the near-lip area of Figure 2.2 also demonstrate that the breakdown of 

the continuous flow can adversely affect the N-S solution. 
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Figure 2.4 Contours of Breakdown Parameter P of an axisymmetric plume 

simulation. 

 

2.2.2 Three Dimensional Nozzle/Plume Flow Simulation and Comparison to 

Numerical Data 

 This case is used to validate the use of the Rampant code in a 3D flow by 

comparison with the numerical results of Tartabini et al. (1995).  These authors used a 

NASA Lewis nozzle and compared N-S (VNAP2 code) to DSMC (G2 code) simulation 

results. The nozzle has a throat diameter of 3.18 mm and an exit diameter of 31.8 mm 

with a 20o half angle.  The stagnation pressure and temperature are 6,400 Pa and 699o K 

respectively and the test gas is nitrogen.  A no-slip boundary condition is enforced at the 

wall, with a wall temperature of 545o K.  The Reynolds number at the exit is Re=850, and 
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the Kn at the exit is approximately 0.02.  Under these conditions the flow rarefies near the 

nozzle exit causing the Navier-Stokes solution to become invalid.  Mach contours from 

Tartabini et al. (1995) presented in Figure 2.5, show the differences between the N-S and 

DSMC solutions, especially noticeable at the exit plane. Figure 2.6 shows the Mach 

number contours obtained through Rampant.  A comparison between the two N-S 

solutions in Figure 2.5 and Figure 2.6 shows that they are in agreement.  The Rampant 

solution predicts a slightly lower Mach value at the exit plane than VNAP2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 DSMC and VNAP2 Mach number contours in the NASA Lewis nozzle 

(Tartibini, et al., 1995). 
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Figure 2.6  Rampant Mach number contours in the NASA Lewis nozzle. 

 

 Figure 2.7 shows that the exit velocity profile obtained using Rampant are in good 

agreement with those of Tartabini et al. (1995).   

A similar comparison of the temperature profiles in Figure 2.8 shows that 

Rampant’s and VNAP2’s results also in agreement with the exception in the core of the 

flow.  Rampant predicts a core flow with a temperature of approximately 40o K higher 

than the VNAP2 solution. 
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Figure 2.7 NASA Lewis nozzle exit velocity profiles along radial direction. 
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Figure 2.8 NASA Lewis nozzle exit temperature profiles. 

 

2.2.3 Three-Dimensional Nozzle Flow and Comparison to Experimental Data 

 This validation case presents a comparison between nozzle flow results obtained 

by Rampant and the experimental data by Rothe (1970) that have been used in numerous 

validation studies as reviewed in the introduction.  Rothe used an electron beam 

technique to measure temperature and density along the centerline of a small nozzle 

shown in Figure 2.9. The nozzle was operated at various pressures resulting in a range of 

Reynolds numbers from 110 to 1230.  In order to reduce problems associated with 
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rarefaction effects a Re of 1230 was chosen for our simulation and corresponds to a 

chamber stagnation pressure of 1975 Pa and a stagnation temperature of 300o K.  The 

wall boundary condition was set as adiabatic in our numerical study as it was maintained 

during the experimental study.  Nitrogen was used as the test gas in our simulation. 

Figure 2.9 Nozzle geometry from Rothe experiment (1970). 

 

Figure 2.10 shows the numerical and experimental temperature profiles normalized to the 

stagnation temperature of the nitrogen gas along the nozzle centerline.  Figure 2.10 

demonstrates that Rampant predicts well the experimental data with the exception of the 

nozzle exit where Rampant predicts a higher temperature. This discrepancy may be 

attributed to the breakdown of Rampant as the flow reaches a Kn≅0.033 at the exit plane 

indicating a rarefied flow condition.   
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Figure 2.10 Normalized temperature along the centerline of Rothe’s nozzle. 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Normalized pressure along the centerline of Rothe’s Nozzle. 
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Figure 2.11 shows the normalized centerline pressure and Figure 2.12 the 

normalized density. As with the temperature, pressure and density predictions from 

Rampant are in agreement with Rothe’s data. 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 Normalized density along centerline of Rothe’s nozzle. 

 

 The overall good comparisons between Rothe’s experiments and computational 

results indicate that Rampant provides accurate solutions as long as the flow remains 

within the continuous regime. 
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2.3 DSMC Methodology and the DAC code 

 The Direct Simulation Monte Carlo (DSMC) method developed by Bird (1994) is 

used in this study to simulate the rarefied part of the expanding plume flows. In DSMC 

the flow is simulated using particles that move in the computational domain and collide 

with other particles and solid surfaces.  DSMC uses computational particles that account 

for many real particles and performs collisions in a Monte Carlo (stochastic) manner.  

The basic steps in a DSMC code are as follows: 

1. The domain is discretized with cells based on the mean free path, λ. 

2. Cells are populated with particles based on prescribed distribution functions. 

3. Particles enter and leave boundaries based on physical models. 

4. Particles move and collide with elastic collision models such as Hard Sphere and 

Variable Hard Sphere. 

5. Particles can also interact in chemical reactions. 

6. Particles collide with walls based on specular, diffuse or more complex surface 

interaction models. 

7. Macroscopic quantities such as density and velocity are based on sampling of 

particle properties. 

 

2.3.1 Grid Generation 

The 3-D DSMC code used in this study is DAC, developed at the Johnson Space 

Flight Center (Le Beau, 1997).  The DAC code has an advanced grid generation ability 

that allows complex geometry’s to be simulated.  Grid generation for the DAC code starts 
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with the surface grid of the solid boundaries found in the computational domain and the 

input boundary surface.  The discretization of the input boundary surface in DAC is 

based on the mean free path at the location of the boundary surface.  Though DAC does 

not require the input boundary surface grid to be as small as the mean free path, it is 

better for convergence to generate the grid as refined as possible. 

 Once the surface grid has been generated and flow parameters from the boundary 

conditions necessary for the simulation have been set, the generation of the interior flow-

field grid is accomplished using PREDAC.  This module in DAC generates the interior 

grid via two methods.  The first method sets a free stream value of number density, 

velocity components, and temperature.  The PREDAC utility then creates the interior grid 

based on the interior surface grid, an exterior box grid, and the mean free path calculated 

from the input conditions described above.  The second method is basically an adaptive 

grid capability that uses a previous solution to generate a more accurate interior grid.  The 

PREDAC utility calculates the mean free path from the flow-field conditions rather than 

the free stream conditions.  This generates an interior grid that is more efficient in 

subsequent DAC simulations. 

 

2.3.2 Boundary Conditions 

 The DAC code allows for four boundary conditions to be set at each surface grid 

element: wall, out-gassing wall, inflow boundary, and outflow boundary. 

 The solid wall and out-gassing wall are handled through globally defined 

variables; fraction of specular reflection, surface catalysis efficiency, and wall 
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temperature.  The inflow boundary and the outflow boundary are relatively simple in that 

they either allow particles to enter or exit the simulation domain respectively.  Particles 

enter the simulation based on the local cell information of number density, velocity 

components, and temperature. 

  

2.3.3 DAC Flow chart 

1. Run SETBC; this utility is used to setup boundary conditions, geometry 

merging/extractions and rotation/translation. 

2. Run PREDAC; a preprocessor to initialize and adapt solutions. 

3. Run MOLSCALE; a utility to scale molecule files.  Populates that domain 

more quickly than running several hundred iterations. 

4. Run DAC; a code that carries out the DSMC simulation. 

5. Rerun steps 2, 3 and 4 until the grid is sufficiently refined.  

6. Run DAC until solution is sufficiently converged. 

7. Post Processing: 

A. Run SPROP: Analyzes surface sample quantities. 

B. Run SLICE: Analyzes flow field sample quantities. 
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2.3.4 Collision Models in DAC 

 The VHS collision model is utilized by DAC to perform collisions between 

molecules (Bird, 1994).  The DAC code can take inputs for the VHS collision model of 

the viscosity temperature index and the reference temperature. 

 DAC also handles collisions between molecules and solid surfaces.  These 

collisions require information by the user of the fraction of specularly reflected molecules 

and the surface temperature of the solid body.  The fraction of specularly reflected 

molecules allows the user to define a specular collision model or a diffuse collision 

model or some model between the two.  The specular collision model is a model that 

treats the collision between molecules and solid surface as completely elastic while the 

diffuse collision model treats these interactions as inelastic.  For the simulation 

performed in this thesis the diffuse model was used. 

 

2.3.5 Time Stepping and FNUM’s 

 The time step created by PREDAC is determined by dividing the dimensions of 

each cell by the average speed of a molecule in that cell. Therefore, each molecule on 

average spends one time step in each cell. DAC allows the time step to be set manually 

and in that case it is chosen as a fraction of the PREDAC computed time step.  This 

creates a time step in which each molecule may spend more than one time step in some 

cells while spending only one time step in other cells. 
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 PREDAC also evaluates an estimate on the average number of real particles per 

computational particle (FNUM) to be used in the simulation.  This also may be set 

manually.  PREDAC attempts to maintain a minimum of 10 molecules in each cell.  It 

does this by refining or coarsening the mesh appropriately and choosing an FNUM 

sufficient to allow for a reasonable molecule population. The FNUM can be set to some 

value slightly lower than the calculated value given by PREDAC.  This has the affect of 

increasing the number of particles in each simulation allowing for better statistical 

sampling at the price of computational speed. 
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Chapter III  

EMP Nozzle and Plume Flow 

 

This chapter presents simulations of small cold-gas attitude control thrusters 

onboard the suborbital Environmental Monitor Package (EMP) spacecraft.  The EMP 

carried a pressure sensor connected to the outside of the spacecraft with a long tube and 

recorded pressure spikes during the firings of its cold-gas thrusters.  First a review of the 

EMP mission and collected data is presented.  The coupled Navier-Stokes/DSMC 

methodology is then described.  A discussion of the results is presented for each of the 

Pitch, Yaw and Roll cases.  A discussion of the data collected from the EMP spacecraft 

with comparison to the simulation results is also presented.  Due to an over prediction of 

the results in the first roll case, a second case for the roll thrusters are presented.  The 

results for the second case and the EMP comparison data are also discussed. 

 

3.1 EMP Description and Problem Definition 

The Environmental Monitor Package (EMP) was a suborbital spacecraft designed 

and built by the Applied Physics Laboratory.  The EMP was designed to measure the 

induced environment around the spacecraft through the use of numerous instruments.  
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Figure 1.1 shows an engineering view of the EMP spacecraft while Figure 3.1 illustrates 

the mission profile. The spacecraft’s attitude control system is shown in detail in Figure 

3.2 as well as the axis convention used for the EMP simulation domains.  This system 

was mounted on its base, which included eight N2 cold gas thrusters: pitch-down (P-D), 

pitch-up (P-U), yaw-right (Y-R), yaw-left (Y-L), two roll-clockwise (R-CC1, R-CC2) and 

two roll-counterclockwise (R-CCW1, R-CCW2).  Nozzle characteristics of the EMP 

thrusters are indicated in Table 3.1. The EMP thruster-firing period occurred during two 

phases which spanned the time from 500-1400 s (mission elapsed time) of the EMP 

mission. The first phase occurred in the time period during which the EMP ascended 

from 1000 km at 500 s, and then reached apogee of 1230 km at 840 s.  The second phase 

involved the descent to 670 km at 1400 s.   

A cold-cathode ionization sensor with operating range of 4x10-5 Pa to 0.1333 Pa 

( ± 15%) was used to monitor the neutral gas pressure surrounding the spacecraft. The 

neutral pressure was monitored at a pressure sampling rate of 16.67 samples/s with the 

EMP rotating with a period of approximately 10 s (frequency of 0.1 Hz.) The pressure 

sensor, housed in the spacecraft was connected to an entrance hole on the surface of the 

EMP.  The  tube had a length Lt=0.1 m and diameter Dt=0.022 m.  The location of the 

pressure-sensor tube inlet was approximately 0.11 m off the axis perpendicular to the 

EMP base and at a plane 0.15 m from the base of the spacecraft as shown in Figure 1.1.  

Gatsonis et al. (1997) presented an analysis of pressure sensor response in the EMP 

spacecraft during the quiet thruster period of the mission (second phase), while the EMP 

was recording ram-wake pressure oscillations. 
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Figure 3.1 Approximate EMP altitude and speed (Gatsonis et al., 2000). 

 

Z

X

Figure 3.2 EMP base showing thruster location (looking forward, -Y Direction) 

(Gatsonis et al., 2000). 
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Thruster Thrust 
(N) 

Exit 
Diameter 
De (mm) 

Throat 
Diameter 
Dt (mm) 

Pitch 1.245 4.826 0.906 

Yaw 1.245 4.826 0.906 

Roll 3.278 5.588 1.6 

Table 3.1 EMP thruster characteristics. 

 
 A typical pressure profile is shown in Figure 3.3 during thruster firings for the 

period between 540s and 560s. Data indicates that nearly instantaneous pressure increases 

are created by all thruster firings.  The reduced pressure is obtained by subtracting the 

background pressure from recorded pressure obtained during the thruster firing.   

 

 

 

 

 

 

 

Figure 3.3 EMP data showing the reduced pressure for the 840-860 s thruster-firing  

period (Gatsonis et al., 1999). 
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Table 3.2 shows the analysis of individual thruster effects (Gatsonis et al., 1999).  

The reduced average pressure is the average of the all of the individual thruster firing 

reduced pressure measurements.  This data suggests that similar pressure peaks are not 

produced even for thrusters of the same thrust levels.  The R-CCW thrusters produced 

pressure amplitudes almost an order of magnitude larger than the R-CW thrusters, while 

differences between the yaw thrusters are small. The EMP thruster plumes, which did not 

have a direct line-of-sight to the sensor entrance, result in pressure pulses as shown in 

Figure 1.2 and Figure 3.3.   During the thruster-firing period, the maximum ambient and 

incident pressure are estimated at approximately 3.7x10-8 Pa and 1.7x10-6 Pa respectively 

and occurred at an altitude of 670 km (1400 s). The pressure recorded inside the EMP 

sensor is orders of magnitude higher than the maximum ambient and incident pressure, as 

shown in Table 3.2.  It can be conclude that for this part of the EMP mission, the effects 

of the ambient flow are negligible and therefore all pressure measurements can be 

attributed to the thruster firings.  Details of the data analysis can be found in Gatsonis et 

al. (1999). 
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Thruster 

 

Number  

of  

Firings 

Reduced 
Average 
Pressure (Pa) 

Standard 
Deviation 
(Pa) 

Pitch-Down  27 3.19x10-5 7.73x10-6 

Pitch-Up 210 1.3x10-4 3.91x10-5 

Yaw-Right  21 4.56x10-5 1.34x10-5 

Yaw-Left 1450 5.67x10-5 2.04x10-5 

Roll-CW 270 2.09x10-4 7.81x10-5 

Roll-CCW 248 1.41x10-5 7.25x10-6 

Table 3.2 Reduced average pressure of individual thrusters (Gatsonis et al., 1999). 

 

3.2 Numerical Methodology 

Features typical of small cold-gas thrusters (discussed in Chapter 1) are expected to 

be exhibited by the EMP nozzle and plume flow.  Table 3.3 shows estimates of the flow 

conditions for Reynolds and Knudsen numbers at the throat and exit, which indicate that 

the EMP nozzle flows are expected to be well within the continuum regime. A rapid 

expansion due to the flow turning near the nozzle lip is expected to cause rarefaction to 

be reached quickly.  Downstream within the plume, a similar phenomenon is expected 

from which a surface can be defined where rarefaction effects breakdown the continuous 

character of the flow.  The methodology adapted in our study is summarized as follows: 
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1. Perform three-dimensional N-S simulations of the nozzle and plume flow until 

breakdown using a domain that includes the thruster geometry and the necessary 

EMP surfaces. 

2. Perform three-dimensional DSMC simulations for the plume flow in a domain that 

includes the EMP geometry up to the plane of the pressure sensor.  The input surface 

for the DSMC simulation is inside the breakdown surface as determined by the N-S 

simulations.  

3. The flow conditions at the entrance of the pressure sensor entrance have been used by 

Gatsonis et al. (2000) to obtain the pressure inside the sensor chamber. 

 

Throat Exit Thruster 

Re Kn Re Kn 

Yaw/Pitch 635,000 1.75x10-6 26,380 9.4x10-5 

Roll 736,000 1.51x10-6 60,400 4.0x10-5 

Table 3.3 Estimates of flow conditions at thruster throat and exit. 

 

3.3 Continuous Nozzle and Plume Flows 

In this study Rampant (Fluent, 1996) is used to obtain the continuous nozzle and 

plume solutions.  As shown in Figure 3.2 the Pitch and yaw thrusters fire toward the 

center of the EMP base and are also identical in size.  The computational domain shown 

in Figure 3.4a is used to perform three-dimensional simulations of nozzle and plume 

flows for a pitch (or yaw) thruster.  The pitch (or yaw) thruster is located 0.0184 m above 
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the EMP base and fires towards the X-direction.  The N-S domain contains the detailed 

geometry of the nozzle as shown in Figure 3.4b.  Preliminary simulations determined that 

breakdown in the plume of a pitch (or yaw) thruster occurs approximately 0.2 m from the 

exit.  This distance is much smaller than the 0.56-m diameter of the EMP base and 

therefore, the entire EMP geometry was not included in the N-S simulations.  Figure 3.4a 

shows the pitch (or yaw) domain contains a flat plate with dimension 0.2x0.15 m to 

represent a small section of the EMP base.   

 

 

 

 

 

 

 

 

Figure 3.4a) N-S computational domain for nozzle and plume flow.  The EMP base 

is shown as a shaded region. The thruster is located at ( , . , )x y z= =0 0 0184 0= and is 

firing in the +X-direction. 
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Figure 3.4b) Expanded view of the N-S grid showing the nozzle and near-exit area 

on the  (x,y,z=0) plane. The thruster is located at ( , . , )x y z= = =0 0 0184 0 and is firing 

in the +X-direction. 

 

Three-dimensional N-S simulations using Rampant were also performed for the 

roll thrusters using the domain shown in Figure 3.5a.  The Roll thrusters fire in pairs in 

anti-parallel directions and are located symmetrically on the EMP base as shown in 

Figure 3.2, but due to a lack of detailed engineering information the exact position of 

these thrusters is not known. In our first simulation for the roll thrusters, they are placed 

0.0184 m above and at the edge of the EMP base as shown in Figure 3.5a.  Preliminary 

simulation showed that the effects of the plume flow over the roll thrusters are confined 

to only a portion of the EMP base as in the Yaw/Pitch simulation.  During the R-CCW 

firings, only the R-CCW1 thruster, located near the pressure sensor as shown in Figure 

3.2, is expected to contribute to the pressure inside the sensor.  Similarly, during the R-

CW firings, only the R-CW1 thruster is expected to affect the pressure inside the sensor.  
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By assuming that the effects of the second thruster (R-CCW2 / R-CW2) on the pressure 

inside the sensor are negligible, the computations can be simplified by including only one 

roll thruster in the simulations.  

 

 

 

 

 

 

 

 

Figure 3.5) N-S computational domain for roll nozzle and plume flow.  The EMP 

base is shown as a shaded region.  The roll thruster is located at 

( , . , )x y z= = =0 0 0184 0  and is firing in the +Z-direction. 

 

The gas in all the N-S simulations is N2.  The flow is modeled from the thruster 

throat, which is set as the pressure inlet.  This point is chosen as the starting location for 

the simulations because the flow conditions can be specified by analytical equations.  The 

stagnation pressure is set to =1034 kPa; the stagnation temperature is set to TPo o = 300  

oK.  The pressure outlet boundary is set to the ambient at the altitude of the thruster 

firing.  An adiabatic wall condition with a temperature Tw = 300 oK is used for all solid 

surfaces. 
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3.4 Rarefied Plume Flow 

The rarefied part of the EMP plume flow is modeled using DAC (Le Beau, 1997). 

The DSMC simulation domain is comprised of the EMP spacecraft up to the plane of the 

pressure sensor.  The DSMC domain for a pitch or yaw thruster is shown in Figure 3.6a.  

Figure 3.6b shows the DSMC domain for a roll thruster.  Figure 3.6a and Figure 3.6b 

indicate that the DSMC input surfaces are well within the breakdown region of the plume 

defined as the isosurface of P ≈ 0.03 from the N-S solution.  The input boundary, created 

from the N-S solution, creates the coupling method between the Navier-Stokes solution 

and the DSMC simulation. Input data from the N-S solution necessary for the DSMC 

simulation are produced using linear interpolation and the TecPlot visualization software 

(TecPlot, 1996).  Ambient free stream conditions are used for the boundaries of the 

computational domain.  Based on measurements aboard the EMP, the surface is set to a 

diffuse reflection and surface temperature Tw = 300 K. 
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Figure 3.6a) DSMC computational domain for the Yaw/Pitch thruster showing the 

EMP surface and the DSMC input surface obtained from the N-S simulations. The 

thruster is located at ( , . , )x y z= = =0 0 0184 0 and is firing in the +X-direction. 

 

 

 

 

 

 

 

 

Figure 3.6b) DSMC computational domain for the roll thruster showing the EMP 

surface and the DSMC input surface obtained from the N-S simulations. The roll 

thruster is located at ( , . , )x y z= = =0 0 0184 0 and is firing in the +Z-direction. 
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The mean-free paths calculated from the N-S solution, and an approximation of 

the expanding plume for the rarefied part of the domain is used to create the surface grid 

for the DSMC computations.  The interior grid is generated by DAC using mean-free 

paths based on flow conditions at the DSMC-input surface.  This procedure creates a grid 

that is initially over-refined. Multiple grid adaptations are performed based on the 

previous DSMC solutions. Once the grid is sufficiently adapted, the solution can be 

allowed to run until the simulation reaches steady state.  It was determined that for the 

EMP thrusters, the time of thruster operation is larger than the time required for the 

plume to reach steady state.  The EMP thrusters generated multiple impulses that lasted 

for 0.03 s per impulse.  It is also demonstrated in Figure 3.3, as well as by Gatsonis et al. 

(1999) that pressure spikes occurred nearly simultaneously with the firings, which were 

followed by a gradual decay.  All the above suggests that steady-state DSMC results 

should be sufficient to predict the flow conditions at the entrance of the pressure-sensor 

tube.  Unsteady DSMC calculations would be required in cases where predictions of the 

pressure evolution were necessary.   

 

3.5 Results and Discussion 

3.5.1 Pitch and Yaw Thrusters 

The pitch and yaw thrusters are identical in size and fire directly into the middle 

of the EMP base as shown in Figure 3.4a. The flow characteristics of a typical case can 

be considered representative of the flow resulting from a pitch (or yaw) thruster.  Figure 
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3.7a, 3.7b and 3.7c display, respectively, the number density, temperature and Mach 

contours from the N-S simulation for a pitch (or yaw) thruster. The results are plotted on 

the ( , , )x y z = 0 plane passing through the nozzle centerline, which is perpendicular to the 

EMP base.  Figure 3.7 (left) shows an expanded view of the flow field covering the 

nozzle and the near-exit region.  Figure 3.7 (Right) show the plane covering the entire 

computational domain.  The flow accelerates from the throat and reaches M 5 near to 

the exit. The rapid expansion that occurs near the nozzle lip and the formation of a 

relatively thin boundary layer inside the nozzle is also shown in Figure 3.7.  The near-

sonic Mach contours, shown in Figure 3.7c (left), emanate from the thruster throat and 

terminate at the nozzle lip.  The flow, expands in the plume region while its temperature 

and density drop significantly which is shown in Figure 3.7 (right).  At a distance of 0.2 

m downstream of the exit, the density is 10 which is almost three orders of 

magnitude lower than that of the thruster exit. The interaction of a pitch (or yaw) plume 

with the EMP base and the formation of a reflecting wave is shown in Figure 3.7 (right).   

≈

21 3m−

 

Figure 3.7a) Number density contours (m-3). 

 56  



 

 

 

Figure 3.7b) Temperature contours (K). 

 

Figure 3.7c) Mach contours. 

Figure 3.7 Pitch (yaw) nozzle and plume flowfield from N-S simulations on the 

(x,y,z=0) plane.  (Left) Expanded view of the nozzle and near-exit flow region 

(Right) Entire domain. 
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The contours of the breakdown parameter, P are shown in Figure 3.8.  The breakdown 

surface in the Y-direction is asymmetric due to plume-surface interactions.  Note that 

transitional flow does not begin until at least 0.2 m downstream from the nozzle exit.  

 

 

 

 

 

 

Figure 3.8 Breakdown parameter contours for Pitch (or Yaw) thruster plume from 

N-S simulation on the (x,y,z=0) plane. 

 

Figure 3.9a shows number density predictions from the DSMC simulation for a 

pitch (or yaw) thruster.  Figure 3.9b shows the ( , , )x y z = 0

. , )

 plane, which is perpendicular 

to the EMP base.  This plane passes through the centerline of the EMP pitch/yaw nozzle.  

Figure 3.9c depicts the thruster plane ( ,x y z= 0 0184  passing though the nozzle 

centerline, which is parallel to the EMP base.  Figure 3.9d depicts the 

( , . , )x y z= −015 pressure-sensor plane, which is also parallel to the EMP base.  Figure 

3.9b indicates the reflection of the plume flow off the surface of the spacecraft.  Figure 

3.9b also shows the expansion around the spacecraft edge at the far side of the thruster 

and the backflow region behind the thruster.  The density of the plume flow in the 

parallel thruster plane (parallel to the EMP base) is symmetric due to the firing 
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orientation of the pitch (or yaw) thruster which can be seen in Figure 3.9c.  In the plane 

of the sensor, the density decreases close to the surface of the EMP and increases in the 

backflow region of the thruster, which can be seen in Figure 3.9d and Figure 3.9b.  

 

 

3.9a) Three-dimensional view. 3.9b) Perpendicular thruster plane 

(x,y,z=0). 

3.9c) Parallel thruster plane 

(x,y=0.0184 ,z). 

3.9d) Pressure sensor plane 

(x,y=-0.15,z). 

Figure 3.9 DSMC number density (m-3) for a pitch (or yaw) thruster plume.  The 

thruster is located at (x=0,y=0.0184,z=0) and is firing in the +X-direction.  The 

DSMC input surface is shown as a black-shaded region. 
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The EMP surface pressure predicted by DSMC is depicted in Figure 3.10a and 

Figure 3.10b.  The maximum pressure occurs at the base of the spacecraft where the 

plume impinges and reflects.  The pressure decreases rapidly as the plume flow moves 

across the surface and then over the edge of the EMP base and down to its sides.  The 

pressure contours in the backflow region of the thruster can be seen in Figure 3.10b.  It is 

possible to see from Figure 3.10b there is an increase in surface pressure due to the pitch 

(or yaw) plume backflow. 

 

 

Figure 3.10 DSMC predicted surface pressure (Pa) due to Pitch (or Yaw) thruster 

plume. The thruster is located at (x=0,y=0.0184,z=0) and is firing in the +X-

direction. 

 

3.5.2 Roll Thrusters 

The roll thrusters, which are larger than the pitch and yaw thrusters, fire in the Z-

direction away from the EMP base (Figure 3.5a).  Figure 3.11 shows number density, 

temperature and Mach from the N-S simulation. The results are plotted on the (x=0, y, z) 
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plane passing through the nozzle centerline, which is perpendicular to the EMP base.  

Figure 3.11 (left) shows the expanded view of the flow field within the nozzle and the 

near-exit region while Figure 3.11 (right) shows the entire plane of the computational 

domain. The characteristics inside the nozzle are similar to those of the pitch (and yaw) 

thrusters.  However, due to the partial reflection of the Roll plume off the EMP base, the 

plume region characteristics are different from those of the pitch (and yaw) thrusters.  

The plume shown in Figure 3.11 (right), expands while its temperature and density drop 

significantly due to rarefaction.  At a distance of 0.2 m downstream of the exit, the 

density is approximately 10 , which is almost three orders of magnitude lower than 

that at the thruster exit.  Figures 3.11a,b,c (right)  show that the interaction of the plume 

with the EMP base results in the formation of a reflecting wave as in  the pitch (and yaw) 

case. 

22 3m−

 

 

 

3.11a)  Number density contours (m-3). 
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3.11b)  Temperature contours (K). 

 

 

 

3.11c)  Mach contours. 

Figure 3.11 Roll nozzle and plume flow field from N-S simulations on the (x,y,z=0) 

plane. (Left) Expanded view of the nozzle and near-exit region, (Right) Entire 

domain. 
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The contours of the breakdown parameter, P are shown in Figure 3.12.  Plume-surface 

interaction causes the breakdown surface to be asymmetric. Note that transitional flow 

does not begin until at least 0.2 m downstream from the exit. 

 

 

 

 

 

Figure 3.12 Roll nozzle and plume breakdown parameter from N-S simulations 

shown on the (x,y,z=0) plane. 

 

DSMC number density predictions for a roll thruster are shown in Figure 3.13. 

The ( , , )x y z= 0

. ,

 plane that passes through the centerline of the nozzle and is 

perpendicular to the EMP base is shown in Figure 3.13b. The parallel thruster plane 

( , )x y z= 0 0184  is shown in Figure 3.13c. The ( , . , )x y z= −015 pressure-sensor plane 

parallel to the EMP base is shown in Figure 3.13d.  The plume, shown in Figure 3.13b, 

reflects off the surface of the spacecraft forming a large backflow region.  The density at 

the parallel thruster plane, shown in Figure 3.13c, is asymmetric due to the firing of the 

roll thruster close to the edge of the EMP base.  The pressure-sensor plane, shown in 

Figure 3.13d, shows that the density perturbation is confined to the roll-thruster side of 

the EMP. 
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3.13a) Three-dimensional view. 3.13b) Perpendicular thruster plane 

(x=0,y,z). 

 

3.13c) Parallel thruster plane 

(x, y=0.0184, z). 

3.13d) Pressure sensor plane 

(x, y=-0.15, z). 

  

Figure 3.13 DSMC number density (m-3) for Roll thruster plume. The thruster is 

located at (x=0,y=0.0184,z=0) and is firing in the +Z-direction.  The DSMC input 

surface is shown as a black-shaded region. 
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Figures 3.14a and 3.14b present the EMP surface-pressure predicted by DSMC.  

Pressure is higher on the EMP base that is closer to the roll thruster.  High surface 

pressure levels are created when a portion of the roll plume flow expands freely and leaps 

to the side of the EMP.  At the opposite EMP roll thruster side, the pressure is at 

background levels.  This is consistent with our assumption that the roll thrusters although 

firing in pairs, are not expected to contribute to the EMP surface-pressure equally.  

 

 

Figure 3.14 DSMC predicted surface pressure (Pa) due to Roll thruster plume. The 

thruster is located at (x=0,y=0.0184,z=0) and is firing in the +Z-direction. 

 

3.6 Data Comparison 

The flow conditions at the surface of the EMP and the entrance of the pressure-

sensor tube are obtained by N-S/DSMC computations of the nozzle and plume flows.  

However, some means of estimating the pressure inside the sensor chamber is needed in 

order to compare with experimental measurements taken during the EMP mission. The 

data comparison is presented by Gatsonis et al. (2000) and is summarized here. Our 
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DSMC simulations showed that near the entrance of the sensor tube the plume is in a 

rarefied state and the flow velocity is nearly parallel to the EMP side surface.  Figure 3.15 

shows a schematic of the underlying EMP pressure-sensor geometry used by Gatsonis et 

al. (1997, 2000) for the application of the pressure-probe theory of Hughes and de 

Leeuw. (1965)   
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Figure 3.15 Schematic of the EMP pressure-sensor (Gatsonis et al., 1997). 

 

A tube with a ratio D D Lt t= =/ .0 22  connects the sensor chamber with the 

external plume flow incoming at an angle of attack α E , mean speed U , temperature 

and pressure .  The flow conditions in the sensor chamber are designated 

by a temperature T  and the equilibrated pressure inside the volume, , is 

written in terms of the pressure ratio 

E

TE P n kTE E=

C

E

C

)

P n kTC C=

R S DE E( , ,α  by 

1/ 2

( , , )α
  

=  
  

C E
E

E C

P T R S D
P T E

mE

           (3.1) 

In the above expression, S U CE E= /  is the ratio of the mean speed to the most 

probable random speed, C k .  At equilibrium, the flux of molecules that 

originate in the chamber is equal to the flux entering the tube.  This model has been 

T mE E2 /mE =
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implemented in a computer code (Maynard, 1996) and used in Gatsonis et al. (1997 & 

2000) with input conditions at the tube entrance taken from the DSMC simulations as 

shown in Table 3.4.  The chamber temperature is TC = 300 o K; and the resulting chamber 

pressure  is shown in Table 3.4. PC

α E

 

Thruster N E  (m-3) TE (K) U E (m/s) (deg) PE  (Pa) PC  (Pa) 

P-D 2.07x1016 119 311 87 3.38x10-5 3.8x10-5 

P-U 1.20x1017 115 336 84 1.91x10-4 1.98x10-4 

Y-R 1.97x1016 87 297 77 2.35x10-5 3.43x10-5 

Y-L 2.05x1016 112 246 86 3.16x10-5 3.62x10-5 

R-CW (1) 4.13x1018 213 426 80 1.21x10-2 1.47x10-2 

R-CCW (1) 3.54x1018 166 505 63 8.08x10-3 2.50x10-2 

Table 3.4 Flow conditions at the entrance of the sensor tube and predicted sensor-

chamber pressure .  Roll thruster position correspond to Case-1. PC

 

Figure 3.16 compares the DSMC sensor-chamber pressure predictions correlated 

from the pressure at the sensor-entrance region, and the EMP reduced average pressure 

(Average of sensor pressure minus background as shown in Figure (3.3)).  The chamber 

pressures predicted and the measured pressures for the pitch and yaw thrusters are very 

close.  The flux at the entrance of the pressure-sensor tube is mainly due to the random 

part of the plume flow.  Surface geometry and non-equilibrium effects do not play a role 

as explained in Gatsonis et al. (2000).  
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Figure 3.16 Comparison of Numerical and Experimental Pressure for EMP 

Thrusters. Roll thruster position correspond to Case-1. 

  

An over-prediction of both the R-CCW1 and R-CW1 thrusters is also shown in 

Figure 3.16.  As explained earlier, due to uncertainty in the actual location of the roll 

thrusters, they were aligned with the EMP edge in our simulations.  As a result, a major 

part of the roll plume reaches the entrance of the pressure-sensor tube directly.  In reality, 

the roll thrusters were located several centimeters inside the edge of the EMP base and 

their plume underwent expansion on the EMP base before reaching the pressure-sensor 
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entrance.  The plume reflection greatly reduced the flux to the sensor tube and, 

consequently, the pressure inside the sensor.  One important conclusion of the roll 

simulations is that in certain cases the detailed position and geometry of thrusters must be 

known for accurate predictions.  

 

3.7 Roll Thrusters – Second Case 

As a result of the over prediction from the first roll simulation, a second roll 

thruster simulation was performed in which the thruster location was placed 2.5 cm inside 

the perimeter of the base surface of the EMP spacecraft.  This placement is considered a 

more realistic approximation to the true geometry of the spacecraft than was simulated in 

the original roll thruster model. As in the original simulation, the roll thruster still fires in 

the +Z-direction away from the EMP base (figure 3.5a).  

It can be seen by comparing Figures 3.11 and 3.17 that the second roll case plume 

flow is reflected off of the base surface of the EMP more than in the first roll case.  The 

reflection of the plume flow allows less of the plume flow to reach the pressure-sensor 

tube.  This reduces the chamber pressure found for the second case roll thruster with 

respect to the first case.   

Figure 3.17 shows number density, temperature and Mach from the N-S 

simulation. The results are plotted on the (x=0, y, z) plane passing through the nozzle 

centerline, which is perpendicular to the EMP base.  Figure 3.17 (left) shows the 

expanded view of the flow field within the nozzle and the near-exit region while Figure 

3.17 (right) shows the entire plane of the computational domain. The characteristics 
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inside the nozzle are similar to those of the pitch (and yaw) thrusters.  However, due to 

the partial reflection of the roll plume off the EMP base, the plume region characteristics 

are different from those of the pitch (and yaw) thrusters.  The plume shown in Figure 

3.17 (right), expands while its temperature and density drop significantly due to 

rarefaction.  At a distance of 0.2 m downstream of the exit, the density is approximately 

, which is almost three orders of magnitude lower than that at the thruster exit. 

Figures 3.17a,b,c (right)  show that the interaction of the plume with the EMP base 

results in the formation of a reflecting wave that is weaker than that in the pitch (and 

yaw) case. 
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3.17a)  Number density contours (m-3). 
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3.17b)  Temperature contours (K). 
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3.17c)  Mach contours. 

Figure 3.17 Roll nozzle and plume flowfield from N-S simulations on the (x,y,z=0) 

plane.  (Left) Expanded view of the nozzle and near-exit region, (Right) Entire 

domain. 
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The contours of the breakdown parameter, P are shown in Figure 3.18.  Plume-

surface interaction causes the breakdown surface to be asymmetric. Note that transitional 

flow does not begin until at least 0.2 m downstream from the exit. 
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Figure 3.18 Roll nozzle and plume breakdown parameter from N-S simulations 

shown on the (x,y,z=0) plane. 

 

DSMC number density predictions for a roll thruster are shown in Figure 3.19. 

The ( , , )x y z= 0

. ,

 plane that passes through the centerline of the nozzle and is 

perpendicular to the EMP base is shown in Figure 3.19b. The parallel thruster plane 

( , )x y = 0 0184 z  is shown in Figure 3.19c. The ( , . , )x y z= −015 pressure-sensor plane 

parallel to the EMP base is shown in Figure 3.19d.  The plume, shown in Figure 3.19b, 

reflects off the surface of the spacecraft forming a large backflow region.  The density at 

the parallel thruster plane, shown in Figure 3.19c, is asymmetric due to the firing of the 

roll thruster close to the edge of the EMP base.  The pressure-sensor plane, shown in 

Figure 3.19d, shows that the density perturbation is confined to the roll-thruster side of 

the EMP. 
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3.19a) Three-dimensional view. 3.19b) Perpendicular thruster plane 
(x=0,y,z). 

 

3.19c) Parallel thruster plane  
(x, y=0.0184, z). 

3.19d) Pressure sensor plane  
(x, y=-0.15, z). 

  

Figure 3.19 DSMC number density (m-3) for Roll thruster plume. The thruster is 

located at (x=0,y=0.0184,z=0) and is firing in the +Z-direction.  The DSMC input 

surface is shown as a black-shaded region. 

 

Figures 3.20a and 3.20b present the EMP surface-pressure predicted by DSMC.  

Pressure is higher on the EMP base that is closer to the roll thruster.  High surface 

pressure levels are created when a portion of the roll plume flow expands freely and leaps 
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to the side of the EMP.  At the opposite EMP roll thruster side, the pressure is at 

background levels.  This is consistent with our assumption that the roll thrusters although 

firing in pairs, are not expected to contribute to the EMP surface-pressure equally.  

 

 

Figure 3.20 DSMC predicted surface pressure (Pa) due to Roll thruster plume. The 

thruster is located at (x=0,y=0.0184,z=0) and is firing in the +Z-direction. 

 

3.8 Data Comparison –Roll Thruster Cases 

The following section presents the results of the second simulation case for the 

roll thrusters.  A comparison of the first and second case is also presented. Input 

conditions at the tube entrance taken from the DSMC simulations for the first and second 

case are shown in Table 3.5.  It can be seen that an order of magnitude drop in pressure 

has occurred for the second case over the first roll thruster case.  The chamber 

temperature is  TC = 300 oK; the resulting chamber pressure  is shown in Table 3.5. PC
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Thruster (Case) N E  (m-3) TE  (K) U E (m/s) α E (deg) PE  (Pa) PC  (Pa) 

R-CW1     (1) 4.13x1018 213 426 80 1.21x10-2 1.47x10-2 

R-CCW1  (1) 3.54x1018 166 505 63 8.08x10-3 2.50x10-2 

R-CW1     (2) 1.47x1018 81 571 95 1.64x10-3 1.92x10-3 

R-CCW1  (2) 4.78x1017 79 493 81 5.12x10-4 6.33x10-4 

Table 3.5 Flow conditions at the entrance of the sensor tube and predicted sensor-

chamber pressure  due to  Roll Thrusters  for Case-1 and Case-2 positions. PC

 

Figure 3.21 compares the DSMC pressure at the sensor-entrance region, the 

sensor-chamber pressure predictions and the EMP reduced average pressure. The flux at 

the entrance of the pressure-sensor tube is mainly due to the random part of the plume 

flow.  Surface geometry and non-equilibrium effects do not play a role as explained by 

Gatsonis et al. (2000).  

 

 

 

 

 

 

 

 

 

 75  



 

 

 

10-5

10-4

10-3

10-2

10-1

R-CW R-CCW

DataFigure17 3:55:32 PM 4/26/99

EMP Reduced Average Pressure 
Predicted Sensor Chamber Pressure - Case 1
Predicted Sensor Chamber Pressure  - Case 2

E
M
P
 R
ed
uc
ed
 A
ve
ra
ge
 P
re
ss
ur
e 

THRUSTER

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Comparison of Numerical and Experimental Pressure for EMP Roll 

Thrusters for Case-1 and Case-2 Positions. 
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As explained earlier, in the first case roll thrusters were aligned with the EMP 

edge in our simulations due to uncertainty in the exact location which resulted in an over-

prediction of both the R-CCW1 and R-CW1 thrusters shown in Figure 3.21.  It can also be 

seen that for the second case an over-prediction was also generated though less severe 

than in the first case.   The second case roll thruster was placed 2.5 cm inside the edge of 

the EMP perimeter based on estimates from limited engineering drawings available.   

As a result of the thrusters being placed on the EMP edge for the first case, a 

major part of the roll plume flow directly reaches the entrance of the pressure-sensor 

tube.  For the second case, less plume flow reaches the pressure-sensor tube.  The plume 

in the second roll thruster case is reflected off of the EMP base away from the pressure-

sensor tube. This reduced the chamber pressure for the second case in the pressure-sensor 

tube. 

The flux to the sensor tube, and consequently the pressure inside the sensor, was 

greatly reduced because the roll thrusters were located inside the EMP base and their 

plume underwent expansion on the EMP base before reaching the pressure-sensor 

entrance. One important conclusion of the roll simulations is that the detailed position 

and geometry of thrusters must be known for accurate predictions.  In contrast, the 

plumes from the Pitch-Down, Pitch-Up, Yaw-Right and Yaw-Left thrusters expand over 

the entire EMP base diameter of 0.56m before reaching the pressure entrance and are 

insensitive to this 2.5-cm variation in the position. 
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Chapter IV 

Summary, Conclusions and Future Work 

 

This study involved the modeling of small cold-gas (N2) thrusters nozzle and 

plume flows, their interactions with spacecraft surfaces and the induced pressure 

environment.  These small cold-gas thrusters were used for pitch, yaw and roll control 

and were mounted on the bottom of the conical Environmental Monitor Payload (EMP) 

suborbital spacecraft.  The Pitch and Yaw thrusters had 0.906 mm throat diameter and 

4.826 mm exit diameter, while the Roll thrustesr had 1.6 mm throat diameter and 5.882 

mm exit diameter.  During thruster firing at altitudes between 670 km and 1200 km 

pressure measurements exhibited non-periodic pulses (Gatsonis et al., 1999). The 

pressure data that motivated this study were taken onboard the EMP, through the use of a 

pressure sensor onboard the EMP which was housed inside the spacecraft, connected to 

the outside with a 0.1-m long, 0.022-m diameter tube.  The data was collected during the 

thruster-firing period of the mission with the spacecraft flying from 670 km, to apogee at 

1230 km and down to 670 km. Pressure pulses appeared nearly instantaneously with the 

firings even for thrusters without a direct line-of-sight with the sensor entrance.  The 

pressure pulses also corresponded with the firings for thrusters without a direct line-of-

sight with the sensor entrance.  Preliminary  analysis showed that the plume of these 

small EMP thrusters undergoes transition from continuous to rarefied, therefore, nozzle 
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and plume simulations are performed using a combination of Navier-Stokes and Direct 

Simulation Monte Carlo codes.    In this study we: 

1. Developed a combined 3D Navier-Stokes/DSMC modeling approach using existing 

codes to study nozzle and plume flows that undergo transition. 

2. Validated the Navier-Stokes code with previous numerical and experimental results. 

3. Developed a Navier-Stokes/DSMC coupling methodology at the breakdown surface. 

4. Applied the combined methodology in the simulation of the cold gas nozzle and 

plume flows of the EMP spacecraft. 

  

4.1 Numerical Methods and Validation 

 An overview of the Rampant code used in the continuous simulations is presented 

in Chapter 2 along with three validation examples. 

The first Rampant validation example involved a 2D axisymetric freejet 

expansion.  This case was used to demonstrate the use of Bird’s breakdown parameter, P 

and results were compared favorably with those obtained by the method of characteristics 

from Bird (1980).  The results confirmed that most of the flow could be modeled using 

continuous methods and that at distances that are several nozzle diameters downstream  

breakdown is expected.  Both results also demonstrated that in the area near the wall lip, 

the continuous methods could begin to breakdown due to the rapid plume expansion.  

The Rampant code did not handle the breakdown of the plume flow as well as the Bird 

method and showed the flow detaching from the wall lip while the Bird data showed that 

all Mach numbers contours converged at the wall lip. 
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The second validation example involved the simulation of a NASA Lewis 

Research Center nozzle. The nozzle has a throat diameter of 3.18 mm and an exit 

diameter of 31.8 mm with a half-angle of 20 degrees.  Stagnation temperature and 

pressure were 699 K and 6,400 Pa respectively and the test gas was nitrogen. Three 

dimensional Rampant simulation results were compared with N-S and DSMC simulations 

of Tartabini et al. (1995).   Mach contours, temperature and exit velocity profiles are in 

agreement with Tartabini et al. for most part of the domain although Rampant’s exit 

mach numbers are slightly lower. Both simulations show that the flow stream becomes 

rarefied near the nozzle exit.   

The third validation example involved three-dimensional simulations of Rothe’s 

(1970) nozzle flow at stagnation temperature of 300 K and pressure of 1975 Pa.  

Temperature, pressure and density profiles were compared along the centerline of the 

nozzle flow and agree well with the experimental data of Rothe.  The Rampant results 

overpredict the Rothe data slightly near the nozzle exit.  This was attributed to a potential 

rarefied flow near the nozzle exit that Rampant could not handle. 

 Overall, Rampant was found to agree well with other modeling techniques as well 

as with experimental data.  The Rampant code showed disagreements with the previous 

studies and data in cases where the flow became rarefied. 

In Chapter 2 the DSMC code DAC used for the rarefied flow simulations was 

presented. The overview included grid generation, boundary conditions, collision models, 

time stepping, and particle motion.  Validation was not performed for DAC as the code 

has been previously validated extensively in plume studies.  
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4.2 EMP Simulations 

Chapter 3 presented the EMP thruster simulations.  Numerical simulations were 

performed using a combination of Navier-Stokes and Direct Simulation Monte Carlo 

(DSMC).   For each EMP thruster, the nozzle and plume flow was followed until 

breakdown using a three-dimensional Navier-Stokes code in a domain that included the 

detailed geometry of the nozzle and the EMP base.  Data from inside the breakdown 

surface were interpolated and used as inputs to a three-dimensional DSMC plume 

simulation.  The DSMC domain included the EMP spacecraft geometry beyond the plane 

of the sensor. 

The N-S/DSMC simulations showed the complex structure of the plumes 

including reflections and backflows as they expand over the EMP surfaces. 

Measurements taken aboard the EMP were compared with chamber pressure predictions.  

It was shown that the pressure predictions for the pitch and yaw thrusters are very close 

to the EMP measurements.  The plumes of these thrusters reach the pressure sensor after 

expanding on the EMP base.  The pressure due to the roll thrusters is over predicted most 

likely due to the uncertainty in their location on the EMP base.  As a result of their 

placement at the edge of the EMP base in our simulations, the roll plume does not expand 

over the 0.56-m diameter base and directly reaches the sensor in the simulations.  Further 

investigation showed that placement of the roll thrusters 2.5 cm inside the edge of the 

EMP allowed part of the plume to expand over the base and resulted in pressure 

predictions that are closer to the experimental values.  It is therefore concluded that 
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detailed spacecraft geometry and thruster configuration can play a significant part in 

obtaining accurate results. 

 

4.3 Future Work 

A major improvement of current modeling techniques would include methods 

used to merge the Navier-Stokes with the DSMC codes.  The methodology to merge the 

two codes together in this study was a rather cumbersome process involving the use of 

several steps.  Once the N-S solution was completed it was necessary to perform a 

calculation to determine the grid structure for the rarefied DSMC simulation.  Thus two 

grids were created independent of each other.  Their only connection was the flowfield 

velocity, temperature and density information. 

A truly hybrid code would model the system as one complete geometry by 

providing only a preliminary mesh.  Boundary conditions could be set for the outer 

bounds of the domain with the breakdown boundary between the continuous and rarefied 

regimes determined automatically. By merging the two codes into a hybrid program 

information could be shared between the two domains automatically. 

Simulations involving multiple simultaneous thruster firings could also be 

performed.  For example in the EMP case, when using roll thrusters it is necessary to fire 

at least two thrusters at a time to maintain the stability of the spacecraft.  This study was 

limited to studying single thruster firings.  Simultaneous thruster firing could have 

interesting interactions depending on the placement of the thrusters and the geometry of 

the spacecraft. 
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